1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->end());
 370   }
 371 
 372   // Now, we will update the top fields of the "continues humongous"
 373   // regions. The reason we need to do this is that, otherwise,
 374   // these regions would look empty and this will confuse parts of
 375   // G1. For example, the code that looks for a consecutive number
 376   // of empty regions will consider them empty and try to
 377   // re-allocate them. We can extend is_empty() to also include
 378   // !is_continues_humongous(), but it is easier to just update the top
 379   // fields here. The way we set top for all regions (i.e., top ==
 380   // end for all regions but the last one, top == new_top for the
 381   // last one) is actually used when we will free up the humongous
 382   // region in free_humongous_region().
 383   hr = NULL;
 384   for (uint i = first + 1; i < last; ++i) {
 385     hr = region_at(i);
 386     if ((i + 1) == last) {
 387       // last continues humongous region
 388       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 389              "new_top should fall on this region");
 390       hr->set_top(obj_top);
 391       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 392     } else {
 393       // not last one
 394       assert(obj_top > hr->end(), "obj_top should be above this region");
 395       hr->set_top(hr->end());
 396       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 397     }
 398   }
 399   // If we have continues humongous regions (hr != NULL), its top should
 400   // match obj_top.
 401   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 402   check_bitmaps("Humongous Region Allocation", first_hr);
 403 
 404   increase_used(word_size * HeapWordSize);
 405 
 406   for (uint i = first; i < last; ++i) {
 407     _humongous_set.add(region_at(i));
 408   }
 409 
 410   return new_obj;
 411 }
 412 
 413 // If could fit into free regions w/o expansion, try.
 414 // Otherwise, if can expand, do so.
 415 // Otherwise, if using ex regions might help, try with ex given back.
 416 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 417   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 418 
 419   verify_region_sets_optional();
 420 
 421   uint first = G1_NO_HRM_INDEX;
 422   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 423 
 424   if (obj_regions == 1) {
 425     // Only one region to allocate, try to use a fast path by directly allocating
 426     // from the free lists. Do not try to expand here, we will potentially do that
 427     // later.
 428     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 429     if (hr != NULL) {
 430       first = hr->hrm_index();
 431     }
 432   } else {
 433     // We can't allocate humongous regions spanning more than one region while
 434     // cleanupComplete() is running, since some of the regions we find to be
 435     // empty might not yet be added to the free list. It is not straightforward
 436     // to know in which list they are on so that we can remove them. We only
 437     // need to do this if we need to allocate more than one region to satisfy the
 438     // current humongous allocation request. If we are only allocating one region
 439     // we use the one-region region allocation code (see above), that already
 440     // potentially waits for regions from the secondary free list.
 441     wait_while_free_regions_coming();
 442     append_secondary_free_list_if_not_empty_with_lock();
 443 
 444     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 445     // are lucky enough to find some.
 446     first = _hrm.find_contiguous_only_empty(obj_regions);
 447     if (first != G1_NO_HRM_INDEX) {
 448       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 449     }
 450   }
 451 
 452   if (first == G1_NO_HRM_INDEX) {
 453     // Policy: We could not find enough regions for the humongous object in the
 454     // free list. Look through the heap to find a mix of free and uncommitted regions.
 455     // If so, try expansion.
 456     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 457     if (first != G1_NO_HRM_INDEX) {
 458       // We found something. Make sure these regions are committed, i.e. expand
 459       // the heap. Alternatively we could do a defragmentation GC.
 460       ergo_verbose1(ErgoHeapSizing,
 461                     "attempt heap expansion",
 462                     ergo_format_reason("humongous allocation request failed")
 463                     ergo_format_byte("allocation request"),
 464                     word_size * HeapWordSize);
 465 
 466       _hrm.expand_at(first, obj_regions);
 467       g1_policy()->record_new_heap_size(num_regions());
 468 
 469 #ifdef ASSERT
 470       for (uint i = first; i < first + obj_regions; ++i) {
 471         HeapRegion* hr = region_at(i);
 472         assert(hr->is_free(), "sanity");
 473         assert(hr->is_empty(), "sanity");
 474         assert(is_on_master_free_list(hr), "sanity");
 475       }
 476 #endif
 477       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 478     } else {
 479       // Policy: Potentially trigger a defragmentation GC.
 480     }
 481   }
 482 
 483   HeapWord* result = NULL;
 484   if (first != G1_NO_HRM_INDEX) {
 485     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 486                                                        word_size, context);
 487     assert(result != NULL, "it should always return a valid result");
 488 
 489     // A successful humongous object allocation changes the used space
 490     // information of the old generation so we need to recalculate the
 491     // sizes and update the jstat counters here.
 492     g1mm()->update_sizes();
 493   }
 494 
 495   verify_region_sets_optional();
 496 
 497   return result;
 498 }
 499 
 500 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 501   assert_heap_not_locked_and_not_at_safepoint();
 502   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 503 
 504   uint dummy_gc_count_before;
 505   uint dummy_gclocker_retry_count = 0;
 506   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 507 }
 508 
 509 HeapWord*
 510 G1CollectedHeap::mem_allocate(size_t word_size,
 511                               bool*  gc_overhead_limit_was_exceeded) {
 512   assert_heap_not_locked_and_not_at_safepoint();
 513 
 514   // Loop until the allocation is satisfied, or unsatisfied after GC.
 515   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 516     uint gc_count_before;
 517 
 518     HeapWord* result = NULL;
 519     if (!is_humongous(word_size)) {
 520       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 521     } else {
 522       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 523     }
 524     if (result != NULL) {
 525       return result;
 526     }
 527 
 528     // Create the garbage collection operation...
 529     VM_G1CollectForAllocation op(gc_count_before, word_size);
 530     op.set_allocation_context(AllocationContext::current());
 531 
 532     // ...and get the VM thread to execute it.
 533     VMThread::execute(&op);
 534 
 535     if (op.prologue_succeeded() && op.pause_succeeded()) {
 536       // If the operation was successful we'll return the result even
 537       // if it is NULL. If the allocation attempt failed immediately
 538       // after a Full GC, it's unlikely we'll be able to allocate now.
 539       HeapWord* result = op.result();
 540       if (result != NULL && !is_humongous(word_size)) {
 541         // Allocations that take place on VM operations do not do any
 542         // card dirtying and we have to do it here. We only have to do
 543         // this for non-humongous allocations, though.
 544         dirty_young_block(result, word_size);
 545       }
 546       return result;
 547     } else {
 548       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 549         return NULL;
 550       }
 551       assert(op.result() == NULL,
 552              "the result should be NULL if the VM op did not succeed");
 553     }
 554 
 555     // Give a warning if we seem to be looping forever.
 556     if ((QueuedAllocationWarningCount > 0) &&
 557         (try_count % QueuedAllocationWarningCount == 0)) {
 558       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 559     }
 560   }
 561 
 562   ShouldNotReachHere();
 563   return NULL;
 564 }
 565 
 566 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 567                                                    AllocationContext_t context,
 568                                                    uint* gc_count_before_ret,
 569                                                    uint* gclocker_retry_count_ret) {
 570   // Make sure you read the note in attempt_allocation_humongous().
 571 
 572   assert_heap_not_locked_and_not_at_safepoint();
 573   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 574          "be called for humongous allocation requests");
 575 
 576   // We should only get here after the first-level allocation attempt
 577   // (attempt_allocation()) failed to allocate.
 578 
 579   // We will loop until a) we manage to successfully perform the
 580   // allocation or b) we successfully schedule a collection which
 581   // fails to perform the allocation. b) is the only case when we'll
 582   // return NULL.
 583   HeapWord* result = NULL;
 584   for (int try_count = 1; /* we'll return */; try_count += 1) {
 585     bool should_try_gc;
 586     uint gc_count_before;
 587 
 588     {
 589       MutexLockerEx x(Heap_lock);
 590       result = _allocator->attempt_allocation_locked(word_size, context);
 591       if (result != NULL) {
 592         return result;
 593       }
 594 
 595       if (GC_locker::is_active_and_needs_gc()) {
 596         if (g1_policy()->can_expand_young_list()) {
 597           // No need for an ergo verbose message here,
 598           // can_expand_young_list() does this when it returns true.
 599           result = _allocator->attempt_allocation_force(word_size, context);
 600           if (result != NULL) {
 601             return result;
 602           }
 603         }
 604         should_try_gc = false;
 605       } else {
 606         // The GCLocker may not be active but the GCLocker initiated
 607         // GC may not yet have been performed (GCLocker::needs_gc()
 608         // returns true). In this case we do not try this GC and
 609         // wait until the GCLocker initiated GC is performed, and
 610         // then retry the allocation.
 611         if (GC_locker::needs_gc()) {
 612           should_try_gc = false;
 613         } else {
 614           // Read the GC count while still holding the Heap_lock.
 615           gc_count_before = total_collections();
 616           should_try_gc = true;
 617         }
 618       }
 619     }
 620 
 621     if (should_try_gc) {
 622       bool succeeded;
 623       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 624                                    GCCause::_g1_inc_collection_pause);
 625       if (result != NULL) {
 626         assert(succeeded, "only way to get back a non-NULL result");
 627         return result;
 628       }
 629 
 630       if (succeeded) {
 631         // If we get here we successfully scheduled a collection which
 632         // failed to allocate. No point in trying to allocate
 633         // further. We'll just return NULL.
 634         MutexLockerEx x(Heap_lock);
 635         *gc_count_before_ret = total_collections();
 636         return NULL;
 637       }
 638     } else {
 639       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 640         MutexLockerEx x(Heap_lock);
 641         *gc_count_before_ret = total_collections();
 642         return NULL;
 643       }
 644       // The GCLocker is either active or the GCLocker initiated
 645       // GC has not yet been performed. Stall until it is and
 646       // then retry the allocation.
 647       GC_locker::stall_until_clear();
 648       (*gclocker_retry_count_ret) += 1;
 649     }
 650 
 651     // We can reach here if we were unsuccessful in scheduling a
 652     // collection (because another thread beat us to it) or if we were
 653     // stalled due to the GC locker. In either can we should retry the
 654     // allocation attempt in case another thread successfully
 655     // performed a collection and reclaimed enough space. We do the
 656     // first attempt (without holding the Heap_lock) here and the
 657     // follow-on attempt will be at the start of the next loop
 658     // iteration (after taking the Heap_lock).
 659     result = _allocator->attempt_allocation(word_size, context);
 660     if (result != NULL) {
 661       return result;
 662     }
 663 
 664     // Give a warning if we seem to be looping forever.
 665     if ((QueuedAllocationWarningCount > 0) &&
 666         (try_count % QueuedAllocationWarningCount == 0)) {
 667       warning("G1CollectedHeap::attempt_allocation_slow() "
 668               "retries %d times", try_count);
 669     }
 670   }
 671 
 672   ShouldNotReachHere();
 673   return NULL;
 674 }
 675 
 676 void G1CollectedHeap::begin_archive_alloc_range() {
 677   assert_at_safepoint(true /* should_be_vm_thread */);
 678   if (_archive_allocator == NULL) {
 679     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 680   }
 681 }
 682 
 683 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 684   // Allocations in archive regions cannot be of a size that would be considered
 685   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 686   // may be different at archive-restore time.
 687   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 688 }
 689 
 690 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 691   assert_at_safepoint(true /* should_be_vm_thread */);
 692   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 693   if (is_archive_alloc_too_large(word_size)) {
 694     return NULL;
 695   }
 696   return _archive_allocator->archive_mem_allocate(word_size);
 697 }
 698 
 699 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 700                                               size_t end_alignment_in_bytes) {
 701   assert_at_safepoint(true /* should_be_vm_thread */);
 702   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 703 
 704   // Call complete_archive to do the real work, filling in the MemRegion
 705   // array with the archive regions.
 706   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 707   delete _archive_allocator;
 708   _archive_allocator = NULL;
 709 }
 710 
 711 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 712   assert(ranges != NULL, "MemRegion array NULL");
 713   assert(count != 0, "No MemRegions provided");
 714   MemRegion reserved = _hrm.reserved();
 715   for (size_t i = 0; i < count; i++) {
 716     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 717       return false;
 718     }
 719   }
 720   return true;
 721 }
 722 
 723 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 724   assert(!is_init_completed(), "Expect to be called at JVM init time");
 725   assert(ranges != NULL, "MemRegion array NULL");
 726   assert(count != 0, "No MemRegions provided");
 727   MutexLockerEx x(Heap_lock);
 728 
 729   MemRegion reserved = _hrm.reserved();
 730   HeapWord* prev_last_addr = NULL;
 731   HeapRegion* prev_last_region = NULL;
 732 
 733   // Temporarily disable pretouching of heap pages. This interface is used
 734   // when mmap'ing archived heap data in, so pre-touching is wasted.
 735   FlagSetting fs(AlwaysPreTouch, false);
 736 
 737   // Enable archive object checking in G1MarkSweep. We have to let it know
 738   // about each archive range, so that objects in those ranges aren't marked.
 739   G1MarkSweep::enable_archive_object_check();
 740 
 741   // For each specified MemRegion range, allocate the corresponding G1
 742   // regions and mark them as archive regions. We expect the ranges in
 743   // ascending starting address order, without overlap.
 744   for (size_t i = 0; i < count; i++) {
 745     MemRegion curr_range = ranges[i];
 746     HeapWord* start_address = curr_range.start();
 747     size_t word_size = curr_range.word_size();
 748     HeapWord* last_address = curr_range.last();
 749     size_t commits = 0;
 750 
 751     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 752               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 753               p2i(start_address), p2i(last_address));
 754     guarantee(start_address > prev_last_addr,
 755               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 756               p2i(start_address), p2i(prev_last_addr));
 757     prev_last_addr = last_address;
 758 
 759     // Check for ranges that start in the same G1 region in which the previous
 760     // range ended, and adjust the start address so we don't try to allocate
 761     // the same region again. If the current range is entirely within that
 762     // region, skip it, just adjusting the recorded top.
 763     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 764     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 765       start_address = start_region->end();
 766       if (start_address > last_address) {
 767         increase_used(word_size * HeapWordSize);
 768         start_region->set_top(last_address + 1);
 769         continue;
 770       }
 771       start_region->set_top(start_address);
 772       curr_range = MemRegion(start_address, last_address + 1);
 773       start_region = _hrm.addr_to_region(start_address);
 774     }
 775 
 776     // Perform the actual region allocation, exiting if it fails.
 777     // Then note how much new space we have allocated.
 778     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 779       return false;
 780     }
 781     increase_used(word_size * HeapWordSize);
 782     if (commits != 0) {
 783       ergo_verbose1(ErgoHeapSizing,
 784                     "attempt heap expansion",
 785                     ergo_format_reason("allocate archive regions")
 786                     ergo_format_byte("total size"),
 787                     HeapRegion::GrainWords * HeapWordSize * commits);
 788     }
 789 
 790     // Mark each G1 region touched by the range as archive, add it to the old set,
 791     // and set the allocation context and top.
 792     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 793     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 794     prev_last_region = last_region;
 795 
 796     while (curr_region != NULL) {
 797       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 798              "Region already in use (index %u)", curr_region->hrm_index());
 799       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 800       curr_region->set_allocation_context(AllocationContext::system());
 801       curr_region->set_archive();
 802       _old_set.add(curr_region);
 803       if (curr_region != last_region) {
 804         curr_region->set_top(curr_region->end());
 805         curr_region = _hrm.next_region_in_heap(curr_region);
 806       } else {
 807         curr_region->set_top(last_address + 1);
 808         curr_region = NULL;
 809       }
 810     }
 811 
 812     // Notify mark-sweep of the archive range.
 813     G1MarkSweep::set_range_archive(curr_range, true);
 814   }
 815   return true;
 816 }
 817 
 818 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 819   assert(!is_init_completed(), "Expect to be called at JVM init time");
 820   assert(ranges != NULL, "MemRegion array NULL");
 821   assert(count != 0, "No MemRegions provided");
 822   MemRegion reserved = _hrm.reserved();
 823   HeapWord *prev_last_addr = NULL;
 824   HeapRegion* prev_last_region = NULL;
 825 
 826   // For each MemRegion, create filler objects, if needed, in the G1 regions
 827   // that contain the address range. The address range actually within the
 828   // MemRegion will not be modified. That is assumed to have been initialized
 829   // elsewhere, probably via an mmap of archived heap data.
 830   MutexLockerEx x(Heap_lock);
 831   for (size_t i = 0; i < count; i++) {
 832     HeapWord* start_address = ranges[i].start();
 833     HeapWord* last_address = ranges[i].last();
 834 
 835     assert(reserved.contains(start_address) && reserved.contains(last_address),
 836            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 837            p2i(start_address), p2i(last_address));
 838     assert(start_address > prev_last_addr,
 839            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 840            p2i(start_address), p2i(prev_last_addr));
 841 
 842     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 843     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 844     HeapWord* bottom_address = start_region->bottom();
 845 
 846     // Check for a range beginning in the same region in which the
 847     // previous one ended.
 848     if (start_region == prev_last_region) {
 849       bottom_address = prev_last_addr + 1;
 850     }
 851 
 852     // Verify that the regions were all marked as archive regions by
 853     // alloc_archive_regions.
 854     HeapRegion* curr_region = start_region;
 855     while (curr_region != NULL) {
 856       guarantee(curr_region->is_archive(),
 857                 "Expected archive region at index %u", curr_region->hrm_index());
 858       if (curr_region != last_region) {
 859         curr_region = _hrm.next_region_in_heap(curr_region);
 860       } else {
 861         curr_region = NULL;
 862       }
 863     }
 864 
 865     prev_last_addr = last_address;
 866     prev_last_region = last_region;
 867 
 868     // Fill the memory below the allocated range with dummy object(s),
 869     // if the region bottom does not match the range start, or if the previous
 870     // range ended within the same G1 region, and there is a gap.
 871     if (start_address != bottom_address) {
 872       size_t fill_size = pointer_delta(start_address, bottom_address);
 873       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 874       increase_used(fill_size * HeapWordSize);
 875     }
 876   }
 877 }
 878 
 879 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 880                                                      uint* gc_count_before_ret,
 881                                                      uint* gclocker_retry_count_ret) {
 882   assert_heap_not_locked_and_not_at_safepoint();
 883   assert(!is_humongous(word_size), "attempt_allocation() should not "
 884          "be called for humongous allocation requests");
 885 
 886   AllocationContext_t context = AllocationContext::current();
 887   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 888 
 889   if (result == NULL) {
 890     result = attempt_allocation_slow(word_size,
 891                                      context,
 892                                      gc_count_before_ret,
 893                                      gclocker_retry_count_ret);
 894   }
 895   assert_heap_not_locked();
 896   if (result != NULL) {
 897     dirty_young_block(result, word_size);
 898   }
 899   return result;
 900 }
 901 
 902 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 903   assert(!is_init_completed(), "Expect to be called at JVM init time");
 904   assert(ranges != NULL, "MemRegion array NULL");
 905   assert(count != 0, "No MemRegions provided");
 906   MemRegion reserved = _hrm.reserved();
 907   HeapWord* prev_last_addr = NULL;
 908   HeapRegion* prev_last_region = NULL;
 909   size_t size_used = 0;
 910   size_t uncommitted_regions = 0;
 911 
 912   // For each Memregion, free the G1 regions that constitute it, and
 913   // notify mark-sweep that the range is no longer to be considered 'archive.'
 914   MutexLockerEx x(Heap_lock);
 915   for (size_t i = 0; i < count; i++) {
 916     HeapWord* start_address = ranges[i].start();
 917     HeapWord* last_address = ranges[i].last();
 918 
 919     assert(reserved.contains(start_address) && reserved.contains(last_address),
 920            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 921            p2i(start_address), p2i(last_address));
 922     assert(start_address > prev_last_addr,
 923            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 924            p2i(start_address), p2i(prev_last_addr));
 925     size_used += ranges[i].byte_size();
 926     prev_last_addr = last_address;
 927 
 928     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 929     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 930 
 931     // Check for ranges that start in the same G1 region in which the previous
 932     // range ended, and adjust the start address so we don't try to free
 933     // the same region again. If the current range is entirely within that
 934     // region, skip it.
 935     if (start_region == prev_last_region) {
 936       start_address = start_region->end();
 937       if (start_address > last_address) {
 938         continue;
 939       }
 940       start_region = _hrm.addr_to_region(start_address);
 941     }
 942     prev_last_region = last_region;
 943 
 944     // After verifying that each region was marked as an archive region by
 945     // alloc_archive_regions, set it free and empty and uncommit it.
 946     HeapRegion* curr_region = start_region;
 947     while (curr_region != NULL) {
 948       guarantee(curr_region->is_archive(),
 949                 "Expected archive region at index %u", curr_region->hrm_index());
 950       uint curr_index = curr_region->hrm_index();
 951       _old_set.remove(curr_region);
 952       curr_region->set_free();
 953       curr_region->set_top(curr_region->bottom());
 954       if (curr_region != last_region) {
 955         curr_region = _hrm.next_region_in_heap(curr_region);
 956       } else {
 957         curr_region = NULL;
 958       }
 959       _hrm.shrink_at(curr_index, 1);
 960       uncommitted_regions++;
 961     }
 962 
 963     // Notify mark-sweep that this is no longer an archive range.
 964     G1MarkSweep::set_range_archive(ranges[i], false);
 965   }
 966 
 967   if (uncommitted_regions != 0) {
 968     ergo_verbose1(ErgoHeapSizing,
 969                   "attempt heap shrinking",
 970                   ergo_format_reason("uncommitted archive regions")
 971                   ergo_format_byte("total size"),
 972                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 973   }
 974   decrease_used(size_used);
 975 }
 976 
 977 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 978                                                         uint* gc_count_before_ret,
 979                                                         uint* gclocker_retry_count_ret) {
 980   // The structure of this method has a lot of similarities to
 981   // attempt_allocation_slow(). The reason these two were not merged
 982   // into a single one is that such a method would require several "if
 983   // allocation is not humongous do this, otherwise do that"
 984   // conditional paths which would obscure its flow. In fact, an early
 985   // version of this code did use a unified method which was harder to
 986   // follow and, as a result, it had subtle bugs that were hard to
 987   // track down. So keeping these two methods separate allows each to
 988   // be more readable. It will be good to keep these two in sync as
 989   // much as possible.
 990 
 991   assert_heap_not_locked_and_not_at_safepoint();
 992   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 993          "should only be called for humongous allocations");
 994 
 995   // Humongous objects can exhaust the heap quickly, so we should check if we
 996   // need to start a marking cycle at each humongous object allocation. We do
 997   // the check before we do the actual allocation. The reason for doing it
 998   // before the allocation is that we avoid having to keep track of the newly
 999   // allocated memory while we do a GC.
1000   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1001                                            word_size)) {
1002     collect(GCCause::_g1_humongous_allocation);
1003   }
1004 
1005   // We will loop until a) we manage to successfully perform the
1006   // allocation or b) we successfully schedule a collection which
1007   // fails to perform the allocation. b) is the only case when we'll
1008   // return NULL.
1009   HeapWord* result = NULL;
1010   for (int try_count = 1; /* we'll return */; try_count += 1) {
1011     bool should_try_gc;
1012     uint gc_count_before;
1013 
1014     {
1015       MutexLockerEx x(Heap_lock);
1016 
1017       // Given that humongous objects are not allocated in young
1018       // regions, we'll first try to do the allocation without doing a
1019       // collection hoping that there's enough space in the heap.
1020       result = humongous_obj_allocate(word_size, AllocationContext::current());
1021       if (result != NULL) {
1022         return result;
1023       }
1024 
1025       if (GC_locker::is_active_and_needs_gc()) {
1026         should_try_gc = false;
1027       } else {
1028          // The GCLocker may not be active but the GCLocker initiated
1029         // GC may not yet have been performed (GCLocker::needs_gc()
1030         // returns true). In this case we do not try this GC and
1031         // wait until the GCLocker initiated GC is performed, and
1032         // then retry the allocation.
1033         if (GC_locker::needs_gc()) {
1034           should_try_gc = false;
1035         } else {
1036           // Read the GC count while still holding the Heap_lock.
1037           gc_count_before = total_collections();
1038           should_try_gc = true;
1039         }
1040       }
1041     }
1042 
1043     if (should_try_gc) {
1044       // If we failed to allocate the humongous object, we should try to
1045       // do a collection pause (if we're allowed) in case it reclaims
1046       // enough space for the allocation to succeed after the pause.
1047 
1048       bool succeeded;
1049       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1050                                    GCCause::_g1_humongous_allocation);
1051       if (result != NULL) {
1052         assert(succeeded, "only way to get back a non-NULL result");
1053         return result;
1054       }
1055 
1056       if (succeeded) {
1057         // If we get here we successfully scheduled a collection which
1058         // failed to allocate. No point in trying to allocate
1059         // further. We'll just return NULL.
1060         MutexLockerEx x(Heap_lock);
1061         *gc_count_before_ret = total_collections();
1062         return NULL;
1063       }
1064     } else {
1065       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1066         MutexLockerEx x(Heap_lock);
1067         *gc_count_before_ret = total_collections();
1068         return NULL;
1069       }
1070       // The GCLocker is either active or the GCLocker initiated
1071       // GC has not yet been performed. Stall until it is and
1072       // then retry the allocation.
1073       GC_locker::stall_until_clear();
1074       (*gclocker_retry_count_ret) += 1;
1075     }
1076 
1077     // We can reach here if we were unsuccessful in scheduling a
1078     // collection (because another thread beat us to it) or if we were
1079     // stalled due to the GC locker. In either can we should retry the
1080     // allocation attempt in case another thread successfully
1081     // performed a collection and reclaimed enough space.  Give a
1082     // warning if we seem to be looping forever.
1083 
1084     if ((QueuedAllocationWarningCount > 0) &&
1085         (try_count % QueuedAllocationWarningCount == 0)) {
1086       warning("G1CollectedHeap::attempt_allocation_humongous() "
1087               "retries %d times", try_count);
1088     }
1089   }
1090 
1091   ShouldNotReachHere();
1092   return NULL;
1093 }
1094 
1095 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1096                                                            AllocationContext_t context,
1097                                                            bool expect_null_mutator_alloc_region) {
1098   assert_at_safepoint(true /* should_be_vm_thread */);
1099   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1100          "the current alloc region was unexpectedly found to be non-NULL");
1101 
1102   if (!is_humongous(word_size)) {
1103     return _allocator->attempt_allocation_locked(word_size, context);
1104   } else {
1105     HeapWord* result = humongous_obj_allocate(word_size, context);
1106     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1107       collector_state()->set_initiate_conc_mark_if_possible(true);
1108     }
1109     return result;
1110   }
1111 
1112   ShouldNotReachHere();
1113 }
1114 
1115 class PostMCRemSetClearClosure: public HeapRegionClosure {
1116   G1CollectedHeap* _g1h;
1117   ModRefBarrierSet* _mr_bs;
1118 public:
1119   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1120     _g1h(g1h), _mr_bs(mr_bs) {}
1121 
1122   bool doHeapRegion(HeapRegion* r) {
1123     HeapRegionRemSet* hrrs = r->rem_set();
1124 
1125     _g1h->reset_gc_time_stamps(r);
1126 
1127     if (r->is_continues_humongous()) {
1128       // We'll assert that the strong code root list and RSet is empty
1129       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1130       assert(hrrs->occupied() == 0, "RSet should be empty");
1131       return false;
1132     }
1133 
1134     hrrs->clear();
1135     // You might think here that we could clear just the cards
1136     // corresponding to the used region.  But no: if we leave a dirty card
1137     // in a region we might allocate into, then it would prevent that card
1138     // from being enqueued, and cause it to be missed.
1139     // Re: the performance cost: we shouldn't be doing full GC anyway!
1140     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1141 
1142     return false;
1143   }
1144 };
1145 
1146 void G1CollectedHeap::clear_rsets_post_compaction() {
1147   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1148   heap_region_iterate(&rs_clear);
1149 }
1150 
1151 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1152   G1CollectedHeap*   _g1h;
1153   UpdateRSOopClosure _cl;
1154 public:
1155   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1156     _cl(g1->g1_rem_set(), worker_i),
1157     _g1h(g1)
1158   { }
1159 
1160   bool doHeapRegion(HeapRegion* r) {
1161     if (!r->is_continues_humongous()) {
1162       _cl.set_from(r);
1163       r->oop_iterate(&_cl);
1164     }
1165     return false;
1166   }
1167 };
1168 
1169 class ParRebuildRSTask: public AbstractGangTask {
1170   G1CollectedHeap* _g1;
1171   HeapRegionClaimer _hrclaimer;
1172 
1173 public:
1174   ParRebuildRSTask(G1CollectedHeap* g1) :
1175       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1176 
1177   void work(uint worker_id) {
1178     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1179     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1180   }
1181 };
1182 
1183 class PostCompactionPrinterClosure: public HeapRegionClosure {
1184 private:
1185   G1HRPrinter* _hr_printer;
1186 public:
1187   bool doHeapRegion(HeapRegion* hr) {
1188     assert(!hr->is_young(), "not expecting to find young regions");
1189     if (hr->is_free()) {
1190       // We only generate output for non-empty regions.
1191     } else if (hr->is_starts_humongous()) {
1192       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1193     } else if (hr->is_continues_humongous()) {
1194       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1195     } else if (hr->is_archive()) {
1196       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1197     } else if (hr->is_old()) {
1198       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1199     } else {
1200       ShouldNotReachHere();
1201     }
1202     return false;
1203   }
1204 
1205   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1206     : _hr_printer(hr_printer) { }
1207 };
1208 
1209 void G1CollectedHeap::print_hrm_post_compaction() {
1210   PostCompactionPrinterClosure cl(hr_printer());
1211   heap_region_iterate(&cl);
1212 }
1213 
1214 bool G1CollectedHeap::do_collection(bool explicit_gc,
1215                                     bool clear_all_soft_refs,
1216                                     size_t word_size) {
1217   assert_at_safepoint(true /* should_be_vm_thread */);
1218 
1219   if (GC_locker::check_active_before_gc()) {
1220     return false;
1221   }
1222 
1223   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1224   gc_timer->register_gc_start();
1225 
1226   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1227   GCIdMark gc_id_mark;
1228   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1229 
1230   SvcGCMarker sgcm(SvcGCMarker::FULL);
1231   ResourceMark rm;
1232 
1233   G1Log::update_level();
1234   print_heap_before_gc();
1235   trace_heap_before_gc(gc_tracer);
1236 
1237   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1238 
1239   verify_region_sets_optional();
1240 
1241   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1242                            collector_policy()->should_clear_all_soft_refs();
1243 
1244   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1245 
1246   {
1247     IsGCActiveMark x;
1248 
1249     // Timing
1250     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1251     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1252 
1253     {
1254       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1255       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1256       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1257 
1258       g1_policy()->record_full_collection_start();
1259 
1260       // Note: When we have a more flexible GC logging framework that
1261       // allows us to add optional attributes to a GC log record we
1262       // could consider timing and reporting how long we wait in the
1263       // following two methods.
1264       wait_while_free_regions_coming();
1265       // If we start the compaction before the CM threads finish
1266       // scanning the root regions we might trip them over as we'll
1267       // be moving objects / updating references. So let's wait until
1268       // they are done. By telling them to abort, they should complete
1269       // early.
1270       _cm->root_regions()->abort();
1271       _cm->root_regions()->wait_until_scan_finished();
1272       append_secondary_free_list_if_not_empty_with_lock();
1273 
1274       gc_prologue(true);
1275       increment_total_collections(true /* full gc */);
1276       increment_old_marking_cycles_started();
1277 
1278       assert(used() == recalculate_used(), "Should be equal");
1279 
1280       verify_before_gc();
1281 
1282       check_bitmaps("Full GC Start");
1283       pre_full_gc_dump(gc_timer);
1284 
1285 #if defined(COMPILER2) || INCLUDE_JVMCI
1286       DerivedPointerTable::clear();
1287 #endif
1288 
1289       // Disable discovery and empty the discovered lists
1290       // for the CM ref processor.
1291       ref_processor_cm()->disable_discovery();
1292       ref_processor_cm()->abandon_partial_discovery();
1293       ref_processor_cm()->verify_no_references_recorded();
1294 
1295       // Abandon current iterations of concurrent marking and concurrent
1296       // refinement, if any are in progress. We have to do this before
1297       // wait_until_scan_finished() below.
1298       concurrent_mark()->abort();
1299 
1300       // Make sure we'll choose a new allocation region afterwards.
1301       _allocator->release_mutator_alloc_region();
1302       _allocator->abandon_gc_alloc_regions();
1303       g1_rem_set()->cleanupHRRS();
1304 
1305       // We should call this after we retire any currently active alloc
1306       // regions so that all the ALLOC / RETIRE events are generated
1307       // before the start GC event.
1308       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1309 
1310       // We may have added regions to the current incremental collection
1311       // set between the last GC or pause and now. We need to clear the
1312       // incremental collection set and then start rebuilding it afresh
1313       // after this full GC.
1314       abandon_collection_set(g1_policy()->inc_cset_head());
1315       g1_policy()->clear_incremental_cset();
1316       g1_policy()->stop_incremental_cset_building();
1317 
1318       tear_down_region_sets(false /* free_list_only */);
1319       collector_state()->set_gcs_are_young(true);
1320 
1321       // See the comments in g1CollectedHeap.hpp and
1322       // G1CollectedHeap::ref_processing_init() about
1323       // how reference processing currently works in G1.
1324 
1325       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1326       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1327 
1328       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1329       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1330 
1331       ref_processor_stw()->enable_discovery();
1332       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1333 
1334       // Do collection work
1335       {
1336         HandleMark hm;  // Discard invalid handles created during gc
1337         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1338       }
1339 
1340       assert(num_free_regions() == 0, "we should not have added any free regions");
1341       rebuild_region_sets(false /* free_list_only */);
1342 
1343       // Enqueue any discovered reference objects that have
1344       // not been removed from the discovered lists.
1345       ref_processor_stw()->enqueue_discovered_references();
1346 
1347 #if defined(COMPILER2) || INCLUDE_JVMCI
1348       DerivedPointerTable::update_pointers();
1349 #endif
1350 
1351       MemoryService::track_memory_usage();
1352 
1353       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1354       ref_processor_stw()->verify_no_references_recorded();
1355 
1356       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1357       ClassLoaderDataGraph::purge();
1358       MetaspaceAux::verify_metrics();
1359 
1360       // Note: since we've just done a full GC, concurrent
1361       // marking is no longer active. Therefore we need not
1362       // re-enable reference discovery for the CM ref processor.
1363       // That will be done at the start of the next marking cycle.
1364       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1365       ref_processor_cm()->verify_no_references_recorded();
1366 
1367       reset_gc_time_stamp();
1368       // Since everything potentially moved, we will clear all remembered
1369       // sets, and clear all cards.  Later we will rebuild remembered
1370       // sets. We will also reset the GC time stamps of the regions.
1371       clear_rsets_post_compaction();
1372       check_gc_time_stamps();
1373 
1374       // Resize the heap if necessary.
1375       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1376 
1377       if (_hr_printer.is_active()) {
1378         // We should do this after we potentially resize the heap so
1379         // that all the COMMIT / UNCOMMIT events are generated before
1380         // the end GC event.
1381 
1382         print_hrm_post_compaction();
1383         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1384       }
1385 
1386       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1387       if (hot_card_cache->use_cache()) {
1388         hot_card_cache->reset_card_counts();
1389         hot_card_cache->reset_hot_cache();
1390       }
1391 
1392       // Rebuild remembered sets of all regions.
1393       uint n_workers =
1394         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1395                                                 workers()->active_workers(),
1396                                                 Threads::number_of_non_daemon_threads());
1397       workers()->set_active_workers(n_workers);
1398 
1399       ParRebuildRSTask rebuild_rs_task(this);
1400       workers()->run_task(&rebuild_rs_task);
1401 
1402       // Rebuild the strong code root lists for each region
1403       rebuild_strong_code_roots();
1404 
1405       if (true) { // FIXME
1406         MetaspaceGC::compute_new_size();
1407       }
1408 
1409 #ifdef TRACESPINNING
1410       ParallelTaskTerminator::print_termination_counts();
1411 #endif
1412 
1413       // Discard all rset updates
1414       JavaThread::dirty_card_queue_set().abandon_logs();
1415       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1416 
1417       _young_list->reset_sampled_info();
1418       // At this point there should be no regions in the
1419       // entire heap tagged as young.
1420       assert(check_young_list_empty(true /* check_heap */),
1421              "young list should be empty at this point");
1422 
1423       // Update the number of full collections that have been completed.
1424       increment_old_marking_cycles_completed(false /* concurrent */);
1425 
1426       _hrm.verify_optional();
1427       verify_region_sets_optional();
1428 
1429       verify_after_gc();
1430 
1431       // Clear the previous marking bitmap, if needed for bitmap verification.
1432       // Note we cannot do this when we clear the next marking bitmap in
1433       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1434       // objects marked during a full GC against the previous bitmap.
1435       // But we need to clear it before calling check_bitmaps below since
1436       // the full GC has compacted objects and updated TAMS but not updated
1437       // the prev bitmap.
1438       if (G1VerifyBitmaps) {
1439         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1440       }
1441       check_bitmaps("Full GC End");
1442 
1443       // Start a new incremental collection set for the next pause
1444       assert(g1_policy()->collection_set() == NULL, "must be");
1445       g1_policy()->start_incremental_cset_building();
1446 
1447       clear_cset_fast_test();
1448 
1449       _allocator->init_mutator_alloc_region();
1450 
1451       g1_policy()->record_full_collection_end();
1452 
1453       if (G1Log::fine()) {
1454         g1_policy()->print_heap_transition();
1455       }
1456 
1457       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1458       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1459       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1460       // before any GC notifications are raised.
1461       g1mm()->update_sizes();
1462 
1463       gc_epilogue(true);
1464     }
1465 
1466     if (G1Log::finer()) {
1467       g1_policy()->print_detailed_heap_transition(true /* full */);
1468     }
1469 
1470     print_heap_after_gc();
1471     trace_heap_after_gc(gc_tracer);
1472 
1473     post_full_gc_dump(gc_timer);
1474 
1475     gc_timer->register_gc_end();
1476     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1477   }
1478 
1479   return true;
1480 }
1481 
1482 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1483   // do_collection() will return whether it succeeded in performing
1484   // the GC. Currently, there is no facility on the
1485   // do_full_collection() API to notify the caller than the collection
1486   // did not succeed (e.g., because it was locked out by the GC
1487   // locker). So, right now, we'll ignore the return value.
1488   bool dummy = do_collection(true,                /* explicit_gc */
1489                              clear_all_soft_refs,
1490                              0                    /* word_size */);
1491 }
1492 
1493 // This code is mostly copied from TenuredGeneration.
1494 void
1495 G1CollectedHeap::
1496 resize_if_necessary_after_full_collection(size_t word_size) {
1497   // Include the current allocation, if any, and bytes that will be
1498   // pre-allocated to support collections, as "used".
1499   const size_t used_after_gc = used();
1500   const size_t capacity_after_gc = capacity();
1501   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1502 
1503   // This is enforced in arguments.cpp.
1504   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1505          "otherwise the code below doesn't make sense");
1506 
1507   // We don't have floating point command-line arguments
1508   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1509   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1510   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1511   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1512 
1513   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1514   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1515 
1516   // We have to be careful here as these two calculations can overflow
1517   // 32-bit size_t's.
1518   double used_after_gc_d = (double) used_after_gc;
1519   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1520   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1521 
1522   // Let's make sure that they are both under the max heap size, which
1523   // by default will make them fit into a size_t.
1524   double desired_capacity_upper_bound = (double) max_heap_size;
1525   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1526                                     desired_capacity_upper_bound);
1527   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1528                                     desired_capacity_upper_bound);
1529 
1530   // We can now safely turn them into size_t's.
1531   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1532   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1533 
1534   // This assert only makes sense here, before we adjust them
1535   // with respect to the min and max heap size.
1536   assert(minimum_desired_capacity <= maximum_desired_capacity,
1537          "minimum_desired_capacity = " SIZE_FORMAT ", "
1538          "maximum_desired_capacity = " SIZE_FORMAT,
1539          minimum_desired_capacity, maximum_desired_capacity);
1540 
1541   // Should not be greater than the heap max size. No need to adjust
1542   // it with respect to the heap min size as it's a lower bound (i.e.,
1543   // we'll try to make the capacity larger than it, not smaller).
1544   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1545   // Should not be less than the heap min size. No need to adjust it
1546   // with respect to the heap max size as it's an upper bound (i.e.,
1547   // we'll try to make the capacity smaller than it, not greater).
1548   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1549 
1550   if (capacity_after_gc < minimum_desired_capacity) {
1551     // Don't expand unless it's significant
1552     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1553     ergo_verbose4(ErgoHeapSizing,
1554                   "attempt heap expansion",
1555                   ergo_format_reason("capacity lower than "
1556                                      "min desired capacity after Full GC")
1557                   ergo_format_byte("capacity")
1558                   ergo_format_byte("occupancy")
1559                   ergo_format_byte_perc("min desired capacity"),
1560                   capacity_after_gc, used_after_gc,
1561                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1562     expand(expand_bytes);
1563 
1564     // No expansion, now see if we want to shrink
1565   } else if (capacity_after_gc > maximum_desired_capacity) {
1566     // Capacity too large, compute shrinking size
1567     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1568     ergo_verbose4(ErgoHeapSizing,
1569                   "attempt heap shrinking",
1570                   ergo_format_reason("capacity higher than "
1571                                      "max desired capacity after Full GC")
1572                   ergo_format_byte("capacity")
1573                   ergo_format_byte("occupancy")
1574                   ergo_format_byte_perc("max desired capacity"),
1575                   capacity_after_gc, used_after_gc,
1576                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1577     shrink(shrink_bytes);
1578   }
1579 }
1580 
1581 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1582                                                             AllocationContext_t context,
1583                                                             bool do_gc,
1584                                                             bool clear_all_soft_refs,
1585                                                             bool expect_null_mutator_alloc_region,
1586                                                             bool* gc_succeeded) {
1587   *gc_succeeded = true;
1588   // Let's attempt the allocation first.
1589   HeapWord* result =
1590     attempt_allocation_at_safepoint(word_size,
1591                                     context,
1592                                     expect_null_mutator_alloc_region);
1593   if (result != NULL) {
1594     assert(*gc_succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   // In a G1 heap, we're supposed to keep allocation from failing by
1599   // incremental pauses.  Therefore, at least for now, we'll favor
1600   // expansion over collection.  (This might change in the future if we can
1601   // do something smarter than full collection to satisfy a failed alloc.)
1602   result = expand_and_allocate(word_size, context);
1603   if (result != NULL) {
1604     assert(*gc_succeeded, "sanity");
1605     return result;
1606   }
1607 
1608   if (do_gc) {
1609     // Expansion didn't work, we'll try to do a Full GC.
1610     *gc_succeeded = do_collection(false, /* explicit_gc */
1611                                   clear_all_soft_refs,
1612                                   word_size);
1613   }
1614 
1615   return NULL;
1616 }
1617 
1618 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1619                                                      AllocationContext_t context,
1620                                                      bool* succeeded) {
1621   assert_at_safepoint(true /* should_be_vm_thread */);
1622 
1623   // Attempts to allocate followed by Full GC.
1624   HeapWord* result =
1625     satisfy_failed_allocation_helper(word_size,
1626                                      context,
1627                                      true,  /* do_gc */
1628                                      false, /* clear_all_soft_refs */
1629                                      false, /* expect_null_mutator_alloc_region */
1630                                      succeeded);
1631 
1632   if (result != NULL || !*succeeded) {
1633     return result;
1634   }
1635 
1636   // Attempts to allocate followed by Full GC that will collect all soft references.
1637   result = satisfy_failed_allocation_helper(word_size,
1638                                             context,
1639                                             true, /* do_gc */
1640                                             true, /* clear_all_soft_refs */
1641                                             true, /* expect_null_mutator_alloc_region */
1642                                             succeeded);
1643 
1644   if (result != NULL || !*succeeded) {
1645     return result;
1646   }
1647 
1648   // Attempts to allocate, no GC
1649   result = satisfy_failed_allocation_helper(word_size,
1650                                             context,
1651                                             false, /* do_gc */
1652                                             false, /* clear_all_soft_refs */
1653                                             true,  /* expect_null_mutator_alloc_region */
1654                                             succeeded);
1655 
1656   if (result != NULL) {
1657     assert(*succeeded, "sanity");
1658     return result;
1659   }
1660 
1661   assert(!collector_policy()->should_clear_all_soft_refs(),
1662          "Flag should have been handled and cleared prior to this point");
1663 
1664   // What else?  We might try synchronous finalization later.  If the total
1665   // space available is large enough for the allocation, then a more
1666   // complete compaction phase than we've tried so far might be
1667   // appropriate.
1668   assert(*succeeded, "sanity");
1669   return NULL;
1670 }
1671 
1672 // Attempting to expand the heap sufficiently
1673 // to support an allocation of the given "word_size".  If
1674 // successful, perform the allocation and return the address of the
1675 // allocated block, or else "NULL".
1676 
1677 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1678   assert_at_safepoint(true /* should_be_vm_thread */);
1679 
1680   verify_region_sets_optional();
1681 
1682   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1683   ergo_verbose1(ErgoHeapSizing,
1684                 "attempt heap expansion",
1685                 ergo_format_reason("allocation request failed")
1686                 ergo_format_byte("allocation request"),
1687                 word_size * HeapWordSize);
1688   if (expand(expand_bytes)) {
1689     _hrm.verify_optional();
1690     verify_region_sets_optional();
1691     return attempt_allocation_at_safepoint(word_size,
1692                                            context,
1693                                            false /* expect_null_mutator_alloc_region */);
1694   }
1695   return NULL;
1696 }
1697 
1698 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1699   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1700   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1701                                        HeapRegion::GrainBytes);
1702   ergo_verbose2(ErgoHeapSizing,
1703                 "expand the heap",
1704                 ergo_format_byte("requested expansion amount")
1705                 ergo_format_byte("attempted expansion amount"),
1706                 expand_bytes, aligned_expand_bytes);
1707 
1708   if (is_maximal_no_gc()) {
1709     ergo_verbose0(ErgoHeapSizing,
1710                       "did not expand the heap",
1711                       ergo_format_reason("heap already fully expanded"));
1712     return false;
1713   }
1714 
1715   double expand_heap_start_time_sec = os::elapsedTime();
1716   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1717   assert(regions_to_expand > 0, "Must expand by at least one region");
1718 
1719   uint expanded_by = _hrm.expand_by(regions_to_expand);
1720   if (expand_time_ms != NULL) {
1721     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1722   }
1723 
1724   if (expanded_by > 0) {
1725     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1726     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1727     g1_policy()->record_new_heap_size(num_regions());
1728   } else {
1729     ergo_verbose0(ErgoHeapSizing,
1730                   "did not expand the heap",
1731                   ergo_format_reason("heap expansion operation failed"));
1732     // The expansion of the virtual storage space was unsuccessful.
1733     // Let's see if it was because we ran out of swap.
1734     if (G1ExitOnExpansionFailure &&
1735         _hrm.available() >= regions_to_expand) {
1736       // We had head room...
1737       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1738     }
1739   }
1740   return regions_to_expand > 0;
1741 }
1742 
1743 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1744   size_t aligned_shrink_bytes =
1745     ReservedSpace::page_align_size_down(shrink_bytes);
1746   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1747                                          HeapRegion::GrainBytes);
1748   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1749 
1750   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1751   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1752 
1753   ergo_verbose3(ErgoHeapSizing,
1754                 "shrink the heap",
1755                 ergo_format_byte("requested shrinking amount")
1756                 ergo_format_byte("aligned shrinking amount")
1757                 ergo_format_byte("attempted shrinking amount"),
1758                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1759   if (num_regions_removed > 0) {
1760     g1_policy()->record_new_heap_size(num_regions());
1761   } else {
1762     ergo_verbose0(ErgoHeapSizing,
1763                   "did not shrink the heap",
1764                   ergo_format_reason("heap shrinking operation failed"));
1765   }
1766 }
1767 
1768 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1769   verify_region_sets_optional();
1770 
1771   // We should only reach here at the end of a Full GC which means we
1772   // should not not be holding to any GC alloc regions. The method
1773   // below will make sure of that and do any remaining clean up.
1774   _allocator->abandon_gc_alloc_regions();
1775 
1776   // Instead of tearing down / rebuilding the free lists here, we
1777   // could instead use the remove_all_pending() method on free_list to
1778   // remove only the ones that we need to remove.
1779   tear_down_region_sets(true /* free_list_only */);
1780   shrink_helper(shrink_bytes);
1781   rebuild_region_sets(true /* free_list_only */);
1782 
1783   _hrm.verify_optional();
1784   verify_region_sets_optional();
1785 }
1786 
1787 // Public methods.
1788 
1789 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1790 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1791 #endif // _MSC_VER
1792 
1793 
1794 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1795   CollectedHeap(),
1796   _g1_policy(policy_),
1797   _dirty_card_queue_set(false),
1798   _into_cset_dirty_card_queue_set(false),
1799   _is_alive_closure_cm(this),
1800   _is_alive_closure_stw(this),
1801   _ref_processor_cm(NULL),
1802   _ref_processor_stw(NULL),
1803   _bot_shared(NULL),
1804   _cg1r(NULL),
1805   _g1mm(NULL),
1806   _refine_cte_cl(NULL),
1807   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1808   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1809   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1810   _humongous_reclaim_candidates(),
1811   _has_humongous_reclaim_candidates(false),
1812   _archive_allocator(NULL),
1813   _free_regions_coming(false),
1814   _young_list(new YoungList(this)),
1815   _gc_time_stamp(0),
1816   _summary_bytes_used(0),
1817   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1818   _old_evac_stats(OldPLABSize, PLABWeight),
1819   _expand_heap_after_alloc_failure(true),
1820   _old_marking_cycles_started(0),
1821   _old_marking_cycles_completed(0),
1822   _heap_summary_sent(false),
1823   _in_cset_fast_test(),
1824   _dirty_cards_region_list(NULL),
1825   _worker_cset_start_region(NULL),
1826   _worker_cset_start_region_time_stamp(NULL),
1827   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1828   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1829   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1830   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1831 
1832   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1833                           /* are_GC_task_threads */true,
1834                           /* are_ConcurrentGC_threads */false);
1835   _workers->initialize_workers();
1836 
1837   _allocator = G1Allocator::create_allocator(this);
1838   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1839 
1840   // Override the default _filler_array_max_size so that no humongous filler
1841   // objects are created.
1842   _filler_array_max_size = _humongous_object_threshold_in_words;
1843 
1844   uint n_queues = ParallelGCThreads;
1845   _task_queues = new RefToScanQueueSet(n_queues);
1846 
1847   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1848   assert(n_rem_sets > 0, "Invariant.");
1849 
1850   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1851   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1852   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1853 
1854   for (uint i = 0; i < n_queues; i++) {
1855     RefToScanQueue* q = new RefToScanQueue();
1856     q->initialize();
1857     _task_queues->register_queue(i, q);
1858     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1859   }
1860   clear_cset_start_regions();
1861 
1862   // Initialize the G1EvacuationFailureALot counters and flags.
1863   NOT_PRODUCT(reset_evacuation_should_fail();)
1864 
1865   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1866 }
1867 
1868 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1869                                                                  size_t size,
1870                                                                  size_t translation_factor) {
1871   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1872   // Allocate a new reserved space, preferring to use large pages.
1873   ReservedSpace rs(size, preferred_page_size);
1874   G1RegionToSpaceMapper* result  =
1875     G1RegionToSpaceMapper::create_mapper(rs,
1876                                          size,
1877                                          rs.alignment(),
1878                                          HeapRegion::GrainBytes,
1879                                          translation_factor,
1880                                          mtGC);
1881   if (TracePageSizes) {
1882     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1883                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1884   }
1885   return result;
1886 }
1887 
1888 jint G1CollectedHeap::initialize() {
1889   CollectedHeap::pre_initialize();
1890   os::enable_vtime();
1891 
1892   G1Log::init();
1893 
1894   // Necessary to satisfy locking discipline assertions.
1895 
1896   MutexLocker x(Heap_lock);
1897 
1898   // We have to initialize the printer before committing the heap, as
1899   // it will be used then.
1900   _hr_printer.set_active(G1PrintHeapRegions);
1901 
1902   // While there are no constraints in the GC code that HeapWordSize
1903   // be any particular value, there are multiple other areas in the
1904   // system which believe this to be true (e.g. oop->object_size in some
1905   // cases incorrectly returns the size in wordSize units rather than
1906   // HeapWordSize).
1907   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1908 
1909   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1910   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1911   size_t heap_alignment = collector_policy()->heap_alignment();
1912 
1913   // Ensure that the sizes are properly aligned.
1914   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1915   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1916   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1917 
1918   _refine_cte_cl = new RefineCardTableEntryClosure();
1919 
1920   jint ecode = JNI_OK;
1921   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1922   if (_cg1r == NULL) {
1923     return ecode;
1924   }
1925 
1926   // Reserve the maximum.
1927 
1928   // When compressed oops are enabled, the preferred heap base
1929   // is calculated by subtracting the requested size from the
1930   // 32Gb boundary and using the result as the base address for
1931   // heap reservation. If the requested size is not aligned to
1932   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1933   // into the ReservedHeapSpace constructor) then the actual
1934   // base of the reserved heap may end up differing from the
1935   // address that was requested (i.e. the preferred heap base).
1936   // If this happens then we could end up using a non-optimal
1937   // compressed oops mode.
1938 
1939   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1940                                                  heap_alignment);
1941 
1942   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1943 
1944   // Create the barrier set for the entire reserved region.
1945   G1SATBCardTableLoggingModRefBS* bs
1946     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1947   bs->initialize();
1948   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1949   set_barrier_set(bs);
1950 
1951   // Also create a G1 rem set.
1952   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1953 
1954   // Carve out the G1 part of the heap.
1955 
1956   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1957   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1958   G1RegionToSpaceMapper* heap_storage =
1959     G1RegionToSpaceMapper::create_mapper(g1_rs,
1960                                          g1_rs.size(),
1961                                          page_size,
1962                                          HeapRegion::GrainBytes,
1963                                          1,
1964                                          mtJavaHeap);
1965   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1966                        max_byte_size, page_size,
1967                        heap_rs.base(),
1968                        heap_rs.size());
1969   heap_storage->set_mapping_changed_listener(&_listener);
1970 
1971   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1972   G1RegionToSpaceMapper* bot_storage =
1973     create_aux_memory_mapper("Block offset table",
1974                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1975                              G1BlockOffsetSharedArray::heap_map_factor());
1976 
1977   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1978   G1RegionToSpaceMapper* cardtable_storage =
1979     create_aux_memory_mapper("Card table",
1980                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1981                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1982 
1983   G1RegionToSpaceMapper* card_counts_storage =
1984     create_aux_memory_mapper("Card counts table",
1985                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1986                              G1CardCounts::heap_map_factor());
1987 
1988   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1989   G1RegionToSpaceMapper* prev_bitmap_storage =
1990     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1991   G1RegionToSpaceMapper* next_bitmap_storage =
1992     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1993 
1994   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1995   g1_barrier_set()->initialize(cardtable_storage);
1996    // Do later initialization work for concurrent refinement.
1997   _cg1r->init(card_counts_storage);
1998 
1999   // 6843694 - ensure that the maximum region index can fit
2000   // in the remembered set structures.
2001   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2002   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2003 
2004   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2005   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2006   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2007             "too many cards per region");
2008 
2009   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2010 
2011   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2012 
2013   {
2014     HeapWord* start = _hrm.reserved().start();
2015     HeapWord* end = _hrm.reserved().end();
2016     size_t granularity = HeapRegion::GrainBytes;
2017 
2018     _in_cset_fast_test.initialize(start, end, granularity);
2019     _humongous_reclaim_candidates.initialize(start, end, granularity);
2020   }
2021 
2022   // Create the ConcurrentMark data structure and thread.
2023   // (Must do this late, so that "max_regions" is defined.)
2024   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2025   if (_cm == NULL || !_cm->completed_initialization()) {
2026     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2027     return JNI_ENOMEM;
2028   }
2029   _cmThread = _cm->cmThread();
2030 
2031   // Initialize the from_card cache structure of HeapRegionRemSet.
2032   HeapRegionRemSet::init_heap(max_regions());
2033 
2034   // Now expand into the initial heap size.
2035   if (!expand(init_byte_size)) {
2036     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2037     return JNI_ENOMEM;
2038   }
2039 
2040   // Perform any initialization actions delegated to the policy.
2041   g1_policy()->init();
2042 
2043   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2044                                                SATB_Q_FL_lock,
2045                                                G1SATBProcessCompletedThreshold,
2046                                                Shared_SATB_Q_lock);
2047 
2048   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2049                                                 DirtyCardQ_CBL_mon,
2050                                                 DirtyCardQ_FL_lock,
2051                                                 concurrent_g1_refine()->yellow_zone(),
2052                                                 concurrent_g1_refine()->red_zone(),
2053                                                 Shared_DirtyCardQ_lock);
2054 
2055   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2056                                     DirtyCardQ_CBL_mon,
2057                                     DirtyCardQ_FL_lock,
2058                                     -1, // never trigger processing
2059                                     -1, // no limit on length
2060                                     Shared_DirtyCardQ_lock,
2061                                     &JavaThread::dirty_card_queue_set());
2062 
2063   // Initialize the card queue set used to hold cards containing
2064   // references into the collection set.
2065   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2066                                              DirtyCardQ_CBL_mon,
2067                                              DirtyCardQ_FL_lock,
2068                                              -1, // never trigger processing
2069                                              -1, // no limit on length
2070                                              Shared_DirtyCardQ_lock,
2071                                              &JavaThread::dirty_card_queue_set());
2072 
2073   // Here we allocate the dummy HeapRegion that is required by the
2074   // G1AllocRegion class.
2075   HeapRegion* dummy_region = _hrm.get_dummy_region();
2076 
2077   // We'll re-use the same region whether the alloc region will
2078   // require BOT updates or not and, if it doesn't, then a non-young
2079   // region will complain that it cannot support allocations without
2080   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2081   dummy_region->set_eden();
2082   // Make sure it's full.
2083   dummy_region->set_top(dummy_region->end());
2084   G1AllocRegion::setup(this, dummy_region);
2085 
2086   _allocator->init_mutator_alloc_region();
2087 
2088   // Do create of the monitoring and management support so that
2089   // values in the heap have been properly initialized.
2090   _g1mm = new G1MonitoringSupport(this);
2091 
2092   G1StringDedup::initialize();
2093 
2094   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2095   for (uint i = 0; i < ParallelGCThreads; i++) {
2096     new (&_preserved_objs[i]) OopAndMarkOopStack();
2097   }
2098 
2099   return JNI_OK;
2100 }
2101 
2102 void G1CollectedHeap::stop() {
2103   // Stop all concurrent threads. We do this to make sure these threads
2104   // do not continue to execute and access resources (e.g. gclog_or_tty)
2105   // that are destroyed during shutdown.
2106   _cg1r->stop();
2107   _cmThread->stop();
2108   if (G1StringDedup::is_enabled()) {
2109     G1StringDedup::stop();
2110   }
2111 }
2112 
2113 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2114   return HeapRegion::max_region_size();
2115 }
2116 
2117 void G1CollectedHeap::post_initialize() {
2118   CollectedHeap::post_initialize();
2119   ref_processing_init();
2120 }
2121 
2122 void G1CollectedHeap::ref_processing_init() {
2123   // Reference processing in G1 currently works as follows:
2124   //
2125   // * There are two reference processor instances. One is
2126   //   used to record and process discovered references
2127   //   during concurrent marking; the other is used to
2128   //   record and process references during STW pauses
2129   //   (both full and incremental).
2130   // * Both ref processors need to 'span' the entire heap as
2131   //   the regions in the collection set may be dotted around.
2132   //
2133   // * For the concurrent marking ref processor:
2134   //   * Reference discovery is enabled at initial marking.
2135   //   * Reference discovery is disabled and the discovered
2136   //     references processed etc during remarking.
2137   //   * Reference discovery is MT (see below).
2138   //   * Reference discovery requires a barrier (see below).
2139   //   * Reference processing may or may not be MT
2140   //     (depending on the value of ParallelRefProcEnabled
2141   //     and ParallelGCThreads).
2142   //   * A full GC disables reference discovery by the CM
2143   //     ref processor and abandons any entries on it's
2144   //     discovered lists.
2145   //
2146   // * For the STW processor:
2147   //   * Non MT discovery is enabled at the start of a full GC.
2148   //   * Processing and enqueueing during a full GC is non-MT.
2149   //   * During a full GC, references are processed after marking.
2150   //
2151   //   * Discovery (may or may not be MT) is enabled at the start
2152   //     of an incremental evacuation pause.
2153   //   * References are processed near the end of a STW evacuation pause.
2154   //   * For both types of GC:
2155   //     * Discovery is atomic - i.e. not concurrent.
2156   //     * Reference discovery will not need a barrier.
2157 
2158   MemRegion mr = reserved_region();
2159 
2160   // Concurrent Mark ref processor
2161   _ref_processor_cm =
2162     new ReferenceProcessor(mr,    // span
2163                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2164                                 // mt processing
2165                            ParallelGCThreads,
2166                                 // degree of mt processing
2167                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2168                                 // mt discovery
2169                            MAX2(ParallelGCThreads, ConcGCThreads),
2170                                 // degree of mt discovery
2171                            false,
2172                                 // Reference discovery is not atomic
2173                            &_is_alive_closure_cm);
2174                                 // is alive closure
2175                                 // (for efficiency/performance)
2176 
2177   // STW ref processor
2178   _ref_processor_stw =
2179     new ReferenceProcessor(mr,    // span
2180                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2181                                 // mt processing
2182                            ParallelGCThreads,
2183                                 // degree of mt processing
2184                            (ParallelGCThreads > 1),
2185                                 // mt discovery
2186                            ParallelGCThreads,
2187                                 // degree of mt discovery
2188                            true,
2189                                 // Reference discovery is atomic
2190                            &_is_alive_closure_stw);
2191                                 // is alive closure
2192                                 // (for efficiency/performance)
2193 }
2194 
2195 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2196   return g1_policy();
2197 }
2198 
2199 size_t G1CollectedHeap::capacity() const {
2200   return _hrm.length() * HeapRegion::GrainBytes;
2201 }
2202 
2203 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2204   hr->reset_gc_time_stamp();
2205 }
2206 
2207 #ifndef PRODUCT
2208 
2209 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2210 private:
2211   unsigned _gc_time_stamp;
2212   bool _failures;
2213 
2214 public:
2215   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2216     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2217 
2218   virtual bool doHeapRegion(HeapRegion* hr) {
2219     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2220     if (_gc_time_stamp != region_gc_time_stamp) {
2221       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2222                              "expected %d", HR_FORMAT_PARAMS(hr),
2223                              region_gc_time_stamp, _gc_time_stamp);
2224       _failures = true;
2225     }
2226     return false;
2227   }
2228 
2229   bool failures() { return _failures; }
2230 };
2231 
2232 void G1CollectedHeap::check_gc_time_stamps() {
2233   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2234   heap_region_iterate(&cl);
2235   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2236 }
2237 #endif // PRODUCT
2238 
2239 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2240   _cg1r->hot_card_cache()->drain(cl, worker_i);
2241 }
2242 
2243 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2244   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2245   size_t n_completed_buffers = 0;
2246   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2247     n_completed_buffers++;
2248   }
2249   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2250   dcqs.clear_n_completed_buffers();
2251   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2252 }
2253 
2254 // Computes the sum of the storage used by the various regions.
2255 size_t G1CollectedHeap::used() const {
2256   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2257   if (_archive_allocator != NULL) {
2258     result += _archive_allocator->used();
2259   }
2260   return result;
2261 }
2262 
2263 size_t G1CollectedHeap::used_unlocked() const {
2264   return _summary_bytes_used;
2265 }
2266 
2267 class SumUsedClosure: public HeapRegionClosure {
2268   size_t _used;
2269 public:
2270   SumUsedClosure() : _used(0) {}
2271   bool doHeapRegion(HeapRegion* r) {
2272     _used += r->used();
2273     return false;
2274   }
2275   size_t result() { return _used; }
2276 };
2277 
2278 size_t G1CollectedHeap::recalculate_used() const {
2279   double recalculate_used_start = os::elapsedTime();
2280 
2281   SumUsedClosure blk;
2282   heap_region_iterate(&blk);
2283 
2284   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2285   return blk.result();
2286 }
2287 
2288 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2289   switch (cause) {
2290     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2291     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2292     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2293     case GCCause::_g1_humongous_allocation: return true;
2294     case GCCause::_update_allocation_context_stats_inc: return true;
2295     case GCCause::_wb_conc_mark:            return true;
2296     default:                                return false;
2297   }
2298 }
2299 
2300 #ifndef PRODUCT
2301 void G1CollectedHeap::allocate_dummy_regions() {
2302   // Let's fill up most of the region
2303   size_t word_size = HeapRegion::GrainWords - 1024;
2304   // And as a result the region we'll allocate will be humongous.
2305   guarantee(is_humongous(word_size), "sanity");
2306 
2307   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2308     // Let's use the existing mechanism for the allocation
2309     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2310                                                  AllocationContext::system());
2311     if (dummy_obj != NULL) {
2312       MemRegion mr(dummy_obj, word_size);
2313       CollectedHeap::fill_with_object(mr);
2314     } else {
2315       // If we can't allocate once, we probably cannot allocate
2316       // again. Let's get out of the loop.
2317       break;
2318     }
2319   }
2320 }
2321 #endif // !PRODUCT
2322 
2323 void G1CollectedHeap::increment_old_marking_cycles_started() {
2324   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2325          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2326          "Wrong marking cycle count (started: %d, completed: %d)",
2327          _old_marking_cycles_started, _old_marking_cycles_completed);
2328 
2329   _old_marking_cycles_started++;
2330 }
2331 
2332 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2333   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2334 
2335   // We assume that if concurrent == true, then the caller is a
2336   // concurrent thread that was joined the Suspendible Thread
2337   // Set. If there's ever a cheap way to check this, we should add an
2338   // assert here.
2339 
2340   // Given that this method is called at the end of a Full GC or of a
2341   // concurrent cycle, and those can be nested (i.e., a Full GC can
2342   // interrupt a concurrent cycle), the number of full collections
2343   // completed should be either one (in the case where there was no
2344   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2345   // behind the number of full collections started.
2346 
2347   // This is the case for the inner caller, i.e. a Full GC.
2348   assert(concurrent ||
2349          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2350          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2351          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2352          "is inconsistent with _old_marking_cycles_completed = %u",
2353          _old_marking_cycles_started, _old_marking_cycles_completed);
2354 
2355   // This is the case for the outer caller, i.e. the concurrent cycle.
2356   assert(!concurrent ||
2357          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2358          "for outer caller (concurrent cycle): "
2359          "_old_marking_cycles_started = %u "
2360          "is inconsistent with _old_marking_cycles_completed = %u",
2361          _old_marking_cycles_started, _old_marking_cycles_completed);
2362 
2363   _old_marking_cycles_completed += 1;
2364 
2365   // We need to clear the "in_progress" flag in the CM thread before
2366   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2367   // is set) so that if a waiter requests another System.gc() it doesn't
2368   // incorrectly see that a marking cycle is still in progress.
2369   if (concurrent) {
2370     _cmThread->set_idle();
2371   }
2372 
2373   // This notify_all() will ensure that a thread that called
2374   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2375   // and it's waiting for a full GC to finish will be woken up. It is
2376   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2377   FullGCCount_lock->notify_all();
2378 }
2379 
2380 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2381   GCIdMarkAndRestore conc_gc_id_mark;
2382   collector_state()->set_concurrent_cycle_started(true);
2383   _gc_timer_cm->register_gc_start(start_time);
2384 
2385   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2386   trace_heap_before_gc(_gc_tracer_cm);
2387   _cmThread->set_gc_id(GCId::current());
2388 }
2389 
2390 void G1CollectedHeap::register_concurrent_cycle_end() {
2391   if (collector_state()->concurrent_cycle_started()) {
2392     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2393     if (_cm->has_aborted()) {
2394       _gc_tracer_cm->report_concurrent_mode_failure();
2395     }
2396 
2397     _gc_timer_cm->register_gc_end();
2398     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2399 
2400     // Clear state variables to prepare for the next concurrent cycle.
2401      collector_state()->set_concurrent_cycle_started(false);
2402     _heap_summary_sent = false;
2403   }
2404 }
2405 
2406 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2407   if (collector_state()->concurrent_cycle_started()) {
2408     // This function can be called when:
2409     //  the cleanup pause is run
2410     //  the concurrent cycle is aborted before the cleanup pause.
2411     //  the concurrent cycle is aborted after the cleanup pause,
2412     //   but before the concurrent cycle end has been registered.
2413     // Make sure that we only send the heap information once.
2414     if (!_heap_summary_sent) {
2415       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2416       trace_heap_after_gc(_gc_tracer_cm);
2417       _heap_summary_sent = true;
2418     }
2419   }
2420 }
2421 
2422 void G1CollectedHeap::collect(GCCause::Cause cause) {
2423   assert_heap_not_locked();
2424 
2425   uint gc_count_before;
2426   uint old_marking_count_before;
2427   uint full_gc_count_before;
2428   bool retry_gc;
2429 
2430   do {
2431     retry_gc = false;
2432 
2433     {
2434       MutexLocker ml(Heap_lock);
2435 
2436       // Read the GC count while holding the Heap_lock
2437       gc_count_before = total_collections();
2438       full_gc_count_before = total_full_collections();
2439       old_marking_count_before = _old_marking_cycles_started;
2440     }
2441 
2442     if (should_do_concurrent_full_gc(cause)) {
2443       // Schedule an initial-mark evacuation pause that will start a
2444       // concurrent cycle. We're setting word_size to 0 which means that
2445       // we are not requesting a post-GC allocation.
2446       VM_G1IncCollectionPause op(gc_count_before,
2447                                  0,     /* word_size */
2448                                  true,  /* should_initiate_conc_mark */
2449                                  g1_policy()->max_pause_time_ms(),
2450                                  cause);
2451       op.set_allocation_context(AllocationContext::current());
2452 
2453       VMThread::execute(&op);
2454       if (!op.pause_succeeded()) {
2455         if (old_marking_count_before == _old_marking_cycles_started) {
2456           retry_gc = op.should_retry_gc();
2457         } else {
2458           // A Full GC happened while we were trying to schedule the
2459           // initial-mark GC. No point in starting a new cycle given
2460           // that the whole heap was collected anyway.
2461         }
2462 
2463         if (retry_gc) {
2464           if (GC_locker::is_active_and_needs_gc()) {
2465             GC_locker::stall_until_clear();
2466           }
2467         }
2468       }
2469     } else {
2470       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2471           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2472 
2473         // Schedule a standard evacuation pause. We're setting word_size
2474         // to 0 which means that we are not requesting a post-GC allocation.
2475         VM_G1IncCollectionPause op(gc_count_before,
2476                                    0,     /* word_size */
2477                                    false, /* should_initiate_conc_mark */
2478                                    g1_policy()->max_pause_time_ms(),
2479                                    cause);
2480         VMThread::execute(&op);
2481       } else {
2482         // Schedule a Full GC.
2483         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2484         VMThread::execute(&op);
2485       }
2486     }
2487   } while (retry_gc);
2488 }
2489 
2490 bool G1CollectedHeap::is_in(const void* p) const {
2491   if (_hrm.reserved().contains(p)) {
2492     // Given that we know that p is in the reserved space,
2493     // heap_region_containing() should successfully
2494     // return the containing region.
2495     HeapRegion* hr = heap_region_containing(p);
2496     return hr->is_in(p);
2497   } else {
2498     return false;
2499   }
2500 }
2501 
2502 #ifdef ASSERT
2503 bool G1CollectedHeap::is_in_exact(const void* p) const {
2504   bool contains = reserved_region().contains(p);
2505   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2506   if (contains && available) {
2507     return true;
2508   } else {
2509     return false;
2510   }
2511 }
2512 #endif
2513 
2514 bool G1CollectedHeap::obj_in_cs(oop obj) {
2515   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2516   return r != NULL && r->in_collection_set();
2517 }
2518 
2519 // Iteration functions.
2520 
2521 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2522 
2523 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2524   ExtendedOopClosure* _cl;
2525 public:
2526   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2527   bool doHeapRegion(HeapRegion* r) {
2528     if (!r->is_continues_humongous()) {
2529       r->oop_iterate(_cl);
2530     }
2531     return false;
2532   }
2533 };
2534 
2535 // Iterates an ObjectClosure over all objects within a HeapRegion.
2536 
2537 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2538   ObjectClosure* _cl;
2539 public:
2540   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2541   bool doHeapRegion(HeapRegion* r) {
2542     if (!r->is_continues_humongous()) {
2543       r->object_iterate(_cl);
2544     }
2545     return false;
2546   }
2547 };
2548 
2549 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2550   IterateObjectClosureRegionClosure blk(cl);
2551   heap_region_iterate(&blk);
2552 }
2553 
2554 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2555   _hrm.iterate(cl);
2556 }
2557 
2558 void
2559 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2560                                          uint worker_id,
2561                                          HeapRegionClaimer *hrclaimer,
2562                                          bool concurrent) const {
2563   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2564 }
2565 
2566 // Clear the cached CSet starting regions and (more importantly)
2567 // the time stamps. Called when we reset the GC time stamp.
2568 void G1CollectedHeap::clear_cset_start_regions() {
2569   assert(_worker_cset_start_region != NULL, "sanity");
2570   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2571 
2572   for (uint i = 0; i < ParallelGCThreads; i++) {
2573     _worker_cset_start_region[i] = NULL;
2574     _worker_cset_start_region_time_stamp[i] = 0;
2575   }
2576 }
2577 
2578 // Given the id of a worker, obtain or calculate a suitable
2579 // starting region for iterating over the current collection set.
2580 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2581   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2582 
2583   HeapRegion* result = NULL;
2584   unsigned gc_time_stamp = get_gc_time_stamp();
2585 
2586   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2587     // Cached starting region for current worker was set
2588     // during the current pause - so it's valid.
2589     // Note: the cached starting heap region may be NULL
2590     // (when the collection set is empty).
2591     result = _worker_cset_start_region[worker_i];
2592     assert(result == NULL || result->in_collection_set(), "sanity");
2593     return result;
2594   }
2595 
2596   // The cached entry was not valid so let's calculate
2597   // a suitable starting heap region for this worker.
2598 
2599   // We want the parallel threads to start their collection
2600   // set iteration at different collection set regions to
2601   // avoid contention.
2602   // If we have:
2603   //          n collection set regions
2604   //          p threads
2605   // Then thread t will start at region floor ((t * n) / p)
2606 
2607   result = g1_policy()->collection_set();
2608   uint cs_size = g1_policy()->cset_region_length();
2609   uint active_workers = workers()->active_workers();
2610 
2611   uint end_ind   = (cs_size * worker_i) / active_workers;
2612   uint start_ind = 0;
2613 
2614   if (worker_i > 0 &&
2615       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2616     // Previous workers starting region is valid
2617     // so let's iterate from there
2618     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2619     result = _worker_cset_start_region[worker_i - 1];
2620   }
2621 
2622   for (uint i = start_ind; i < end_ind; i++) {
2623     result = result->next_in_collection_set();
2624   }
2625 
2626   // Note: the calculated starting heap region may be NULL
2627   // (when the collection set is empty).
2628   assert(result == NULL || result->in_collection_set(), "sanity");
2629   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2630          "should be updated only once per pause");
2631   _worker_cset_start_region[worker_i] = result;
2632   OrderAccess::storestore();
2633   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2634   return result;
2635 }
2636 
2637 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2638   HeapRegion* r = g1_policy()->collection_set();
2639   while (r != NULL) {
2640     HeapRegion* next = r->next_in_collection_set();
2641     if (cl->doHeapRegion(r)) {
2642       cl->incomplete();
2643       return;
2644     }
2645     r = next;
2646   }
2647 }
2648 
2649 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2650                                                   HeapRegionClosure *cl) {
2651   if (r == NULL) {
2652     // The CSet is empty so there's nothing to do.
2653     return;
2654   }
2655 
2656   assert(r->in_collection_set(),
2657          "Start region must be a member of the collection set.");
2658   HeapRegion* cur = r;
2659   while (cur != NULL) {
2660     HeapRegion* next = cur->next_in_collection_set();
2661     if (cl->doHeapRegion(cur) && false) {
2662       cl->incomplete();
2663       return;
2664     }
2665     cur = next;
2666   }
2667   cur = g1_policy()->collection_set();
2668   while (cur != r) {
2669     HeapRegion* next = cur->next_in_collection_set();
2670     if (cl->doHeapRegion(cur) && false) {
2671       cl->incomplete();
2672       return;
2673     }
2674     cur = next;
2675   }
2676 }
2677 
2678 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2679   HeapRegion* result = _hrm.next_region_in_heap(from);
2680   while (result != NULL && result->is_pinned()) {
2681     result = _hrm.next_region_in_heap(result);
2682   }
2683   return result;
2684 }
2685 
2686 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2687   HeapRegion* hr = heap_region_containing(addr);
2688   return hr->block_start(addr);
2689 }
2690 
2691 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2692   HeapRegion* hr = heap_region_containing(addr);
2693   return hr->block_size(addr);
2694 }
2695 
2696 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2697   HeapRegion* hr = heap_region_containing(addr);
2698   return hr->block_is_obj(addr);
2699 }
2700 
2701 bool G1CollectedHeap::supports_tlab_allocation() const {
2702   return true;
2703 }
2704 
2705 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2706   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2707 }
2708 
2709 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2710   return young_list()->eden_used_bytes();
2711 }
2712 
2713 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2714 // must be equal to the humongous object limit.
2715 size_t G1CollectedHeap::max_tlab_size() const {
2716   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2717 }
2718 
2719 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2720   AllocationContext_t context = AllocationContext::current();
2721   return _allocator->unsafe_max_tlab_alloc(context);
2722 }
2723 
2724 size_t G1CollectedHeap::max_capacity() const {
2725   return _hrm.reserved().byte_size();
2726 }
2727 
2728 jlong G1CollectedHeap::millis_since_last_gc() {
2729   // assert(false, "NYI");
2730   return 0;
2731 }
2732 
2733 void G1CollectedHeap::prepare_for_verify() {
2734   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2735     ensure_parsability(false);
2736   }
2737   g1_rem_set()->prepare_for_verify();
2738 }
2739 
2740 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2741                                               VerifyOption vo) {
2742   switch (vo) {
2743   case VerifyOption_G1UsePrevMarking:
2744     return hr->obj_allocated_since_prev_marking(obj);
2745   case VerifyOption_G1UseNextMarking:
2746     return hr->obj_allocated_since_next_marking(obj);
2747   case VerifyOption_G1UseMarkWord:
2748     return false;
2749   default:
2750     ShouldNotReachHere();
2751   }
2752   return false; // keep some compilers happy
2753 }
2754 
2755 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2756   switch (vo) {
2757   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2758   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2759   case VerifyOption_G1UseMarkWord:    return NULL;
2760   default:                            ShouldNotReachHere();
2761   }
2762   return NULL; // keep some compilers happy
2763 }
2764 
2765 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2766   switch (vo) {
2767   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2768   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2769   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2770   default:                            ShouldNotReachHere();
2771   }
2772   return false; // keep some compilers happy
2773 }
2774 
2775 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2776   switch (vo) {
2777   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2778   case VerifyOption_G1UseNextMarking: return "NTAMS";
2779   case VerifyOption_G1UseMarkWord:    return "NONE";
2780   default:                            ShouldNotReachHere();
2781   }
2782   return NULL; // keep some compilers happy
2783 }
2784 
2785 class VerifyRootsClosure: public OopClosure {
2786 private:
2787   G1CollectedHeap* _g1h;
2788   VerifyOption     _vo;
2789   bool             _failures;
2790 public:
2791   // _vo == UsePrevMarking -> use "prev" marking information,
2792   // _vo == UseNextMarking -> use "next" marking information,
2793   // _vo == UseMarkWord    -> use mark word from object header.
2794   VerifyRootsClosure(VerifyOption vo) :
2795     _g1h(G1CollectedHeap::heap()),
2796     _vo(vo),
2797     _failures(false) { }
2798 
2799   bool failures() { return _failures; }
2800 
2801   template <class T> void do_oop_nv(T* p) {
2802     T heap_oop = oopDesc::load_heap_oop(p);
2803     if (!oopDesc::is_null(heap_oop)) {
2804       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2805       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2806         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2807                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2808         if (_vo == VerifyOption_G1UseMarkWord) {
2809           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2810         }
2811         obj->print_on(gclog_or_tty);
2812         _failures = true;
2813       }
2814     }
2815   }
2816 
2817   void do_oop(oop* p)       { do_oop_nv(p); }
2818   void do_oop(narrowOop* p) { do_oop_nv(p); }
2819 };
2820 
2821 class G1VerifyCodeRootOopClosure: public OopClosure {
2822   G1CollectedHeap* _g1h;
2823   OopClosure* _root_cl;
2824   nmethod* _nm;
2825   VerifyOption _vo;
2826   bool _failures;
2827 
2828   template <class T> void do_oop_work(T* p) {
2829     // First verify that this root is live
2830     _root_cl->do_oop(p);
2831 
2832     if (!G1VerifyHeapRegionCodeRoots) {
2833       // We're not verifying the code roots attached to heap region.
2834       return;
2835     }
2836 
2837     // Don't check the code roots during marking verification in a full GC
2838     if (_vo == VerifyOption_G1UseMarkWord) {
2839       return;
2840     }
2841 
2842     // Now verify that the current nmethod (which contains p) is
2843     // in the code root list of the heap region containing the
2844     // object referenced by p.
2845 
2846     T heap_oop = oopDesc::load_heap_oop(p);
2847     if (!oopDesc::is_null(heap_oop)) {
2848       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2849 
2850       // Now fetch the region containing the object
2851       HeapRegion* hr = _g1h->heap_region_containing(obj);
2852       HeapRegionRemSet* hrrs = hr->rem_set();
2853       // Verify that the strong code root list for this region
2854       // contains the nmethod
2855       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2856         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2857                                "from nmethod " PTR_FORMAT " not in strong "
2858                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2859                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2860         _failures = true;
2861       }
2862     }
2863   }
2864 
2865 public:
2866   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2867     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2868 
2869   void do_oop(oop* p) { do_oop_work(p); }
2870   void do_oop(narrowOop* p) { do_oop_work(p); }
2871 
2872   void set_nmethod(nmethod* nm) { _nm = nm; }
2873   bool failures() { return _failures; }
2874 };
2875 
2876 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2877   G1VerifyCodeRootOopClosure* _oop_cl;
2878 
2879 public:
2880   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2881     _oop_cl(oop_cl) {}
2882 
2883   void do_code_blob(CodeBlob* cb) {
2884     nmethod* nm = cb->as_nmethod_or_null();
2885     if (nm != NULL) {
2886       _oop_cl->set_nmethod(nm);
2887       nm->oops_do(_oop_cl);
2888     }
2889   }
2890 };
2891 
2892 class YoungRefCounterClosure : public OopClosure {
2893   G1CollectedHeap* _g1h;
2894   int              _count;
2895  public:
2896   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2897   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2898   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2899 
2900   int count() { return _count; }
2901   void reset_count() { _count = 0; };
2902 };
2903 
2904 class VerifyKlassClosure: public KlassClosure {
2905   YoungRefCounterClosure _young_ref_counter_closure;
2906   OopClosure *_oop_closure;
2907  public:
2908   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2909   void do_klass(Klass* k) {
2910     k->oops_do(_oop_closure);
2911 
2912     _young_ref_counter_closure.reset_count();
2913     k->oops_do(&_young_ref_counter_closure);
2914     if (_young_ref_counter_closure.count() > 0) {
2915       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2916     }
2917   }
2918 };
2919 
2920 class VerifyLivenessOopClosure: public OopClosure {
2921   G1CollectedHeap* _g1h;
2922   VerifyOption _vo;
2923 public:
2924   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2925     _g1h(g1h), _vo(vo)
2926   { }
2927   void do_oop(narrowOop *p) { do_oop_work(p); }
2928   void do_oop(      oop *p) { do_oop_work(p); }
2929 
2930   template <class T> void do_oop_work(T *p) {
2931     oop obj = oopDesc::load_decode_heap_oop(p);
2932     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2933               "Dead object referenced by a not dead object");
2934   }
2935 };
2936 
2937 class VerifyObjsInRegionClosure: public ObjectClosure {
2938 private:
2939   G1CollectedHeap* _g1h;
2940   size_t _live_bytes;
2941   HeapRegion *_hr;
2942   VerifyOption _vo;
2943 public:
2944   // _vo == UsePrevMarking -> use "prev" marking information,
2945   // _vo == UseNextMarking -> use "next" marking information,
2946   // _vo == UseMarkWord    -> use mark word from object header.
2947   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2948     : _live_bytes(0), _hr(hr), _vo(vo) {
2949     _g1h = G1CollectedHeap::heap();
2950   }
2951   void do_object(oop o) {
2952     VerifyLivenessOopClosure isLive(_g1h, _vo);
2953     assert(o != NULL, "Huh?");
2954     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2955       // If the object is alive according to the mark word,
2956       // then verify that the marking information agrees.
2957       // Note we can't verify the contra-positive of the
2958       // above: if the object is dead (according to the mark
2959       // word), it may not be marked, or may have been marked
2960       // but has since became dead, or may have been allocated
2961       // since the last marking.
2962       if (_vo == VerifyOption_G1UseMarkWord) {
2963         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2964       }
2965 
2966       o->oop_iterate_no_header(&isLive);
2967       if (!_hr->obj_allocated_since_prev_marking(o)) {
2968         size_t obj_size = o->size();    // Make sure we don't overflow
2969         _live_bytes += (obj_size * HeapWordSize);
2970       }
2971     }
2972   }
2973   size_t live_bytes() { return _live_bytes; }
2974 };
2975 
2976 class VerifyArchiveOopClosure: public OopClosure {
2977 public:
2978   VerifyArchiveOopClosure(HeapRegion *hr) { }
2979   void do_oop(narrowOop *p) { do_oop_work(p); }
2980   void do_oop(      oop *p) { do_oop_work(p); }
2981 
2982   template <class T> void do_oop_work(T *p) {
2983     oop obj = oopDesc::load_decode_heap_oop(p);
2984     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2985               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2986               p2i(p), p2i(obj));
2987   }
2988 };
2989 
2990 class VerifyArchiveRegionClosure: public ObjectClosure {
2991 public:
2992   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2993   // Verify that all object pointers are to archive regions.
2994   void do_object(oop o) {
2995     VerifyArchiveOopClosure checkOop(NULL);
2996     assert(o != NULL, "Should not be here for NULL oops");
2997     o->oop_iterate_no_header(&checkOop);
2998   }
2999 };
3000 
3001 class VerifyRegionClosure: public HeapRegionClosure {
3002 private:
3003   bool             _par;
3004   VerifyOption     _vo;
3005   bool             _failures;
3006 public:
3007   // _vo == UsePrevMarking -> use "prev" marking information,
3008   // _vo == UseNextMarking -> use "next" marking information,
3009   // _vo == UseMarkWord    -> use mark word from object header.
3010   VerifyRegionClosure(bool par, VerifyOption vo)
3011     : _par(par),
3012       _vo(vo),
3013       _failures(false) {}
3014 
3015   bool failures() {
3016     return _failures;
3017   }
3018 
3019   bool doHeapRegion(HeapRegion* r) {
3020     // For archive regions, verify there are no heap pointers to
3021     // non-pinned regions. For all others, verify liveness info.
3022     if (r->is_archive()) {
3023       VerifyArchiveRegionClosure verify_oop_pointers(r);
3024       r->object_iterate(&verify_oop_pointers);
3025       return true;
3026     }
3027     if (!r->is_continues_humongous()) {
3028       bool failures = false;
3029       r->verify(_vo, &failures);
3030       if (failures) {
3031         _failures = true;
3032       } else if (!r->is_starts_humongous()) {
3033         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3034         r->object_iterate(&not_dead_yet_cl);
3035         if (_vo != VerifyOption_G1UseNextMarking) {
3036           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3037             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3038                                    "max_live_bytes " SIZE_FORMAT " "
3039                                    "< calculated " SIZE_FORMAT,
3040                                    p2i(r->bottom()), p2i(r->end()),
3041                                    r->max_live_bytes(),
3042                                  not_dead_yet_cl.live_bytes());
3043             _failures = true;
3044           }
3045         } else {
3046           // When vo == UseNextMarking we cannot currently do a sanity
3047           // check on the live bytes as the calculation has not been
3048           // finalized yet.
3049         }
3050       }
3051     }
3052     return false; // stop the region iteration if we hit a failure
3053   }
3054 };
3055 
3056 // This is the task used for parallel verification of the heap regions
3057 
3058 class G1ParVerifyTask: public AbstractGangTask {
3059 private:
3060   G1CollectedHeap*  _g1h;
3061   VerifyOption      _vo;
3062   bool              _failures;
3063   HeapRegionClaimer _hrclaimer;
3064 
3065 public:
3066   // _vo == UsePrevMarking -> use "prev" marking information,
3067   // _vo == UseNextMarking -> use "next" marking information,
3068   // _vo == UseMarkWord    -> use mark word from object header.
3069   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3070       AbstractGangTask("Parallel verify task"),
3071       _g1h(g1h),
3072       _vo(vo),
3073       _failures(false),
3074       _hrclaimer(g1h->workers()->active_workers()) {}
3075 
3076   bool failures() {
3077     return _failures;
3078   }
3079 
3080   void work(uint worker_id) {
3081     HandleMark hm;
3082     VerifyRegionClosure blk(true, _vo);
3083     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3084     if (blk.failures()) {
3085       _failures = true;
3086     }
3087   }
3088 };
3089 
3090 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3091   if (SafepointSynchronize::is_at_safepoint()) {
3092     assert(Thread::current()->is_VM_thread(),
3093            "Expected to be executed serially by the VM thread at this point");
3094 
3095     if (!silent) { gclog_or_tty->print("Roots "); }
3096     VerifyRootsClosure rootsCl(vo);
3097     VerifyKlassClosure klassCl(this, &rootsCl);
3098     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3099 
3100     // We apply the relevant closures to all the oops in the
3101     // system dictionary, class loader data graph, the string table
3102     // and the nmethods in the code cache.
3103     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3104     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3105 
3106     {
3107       G1RootProcessor root_processor(this, 1);
3108       root_processor.process_all_roots(&rootsCl,
3109                                        &cldCl,
3110                                        &blobsCl);
3111     }
3112 
3113     bool failures = rootsCl.failures() || codeRootsCl.failures();
3114 
3115     if (vo != VerifyOption_G1UseMarkWord) {
3116       // If we're verifying during a full GC then the region sets
3117       // will have been torn down at the start of the GC. Therefore
3118       // verifying the region sets will fail. So we only verify
3119       // the region sets when not in a full GC.
3120       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3121       verify_region_sets();
3122     }
3123 
3124     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3125     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3126 
3127       G1ParVerifyTask task(this, vo);
3128       workers()->run_task(&task);
3129       if (task.failures()) {
3130         failures = true;
3131       }
3132 
3133     } else {
3134       VerifyRegionClosure blk(false, vo);
3135       heap_region_iterate(&blk);
3136       if (blk.failures()) {
3137         failures = true;
3138       }
3139     }
3140 
3141     if (G1StringDedup::is_enabled()) {
3142       if (!silent) gclog_or_tty->print("StrDedup ");
3143       G1StringDedup::verify();
3144     }
3145 
3146     if (failures) {
3147       gclog_or_tty->print_cr("Heap:");
3148       // It helps to have the per-region information in the output to
3149       // help us track down what went wrong. This is why we call
3150       // print_extended_on() instead of print_on().
3151       print_extended_on(gclog_or_tty);
3152       gclog_or_tty->cr();
3153       gclog_or_tty->flush();
3154     }
3155     guarantee(!failures, "there should not have been any failures");
3156   } else {
3157     if (!silent) {
3158       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3159       if (G1StringDedup::is_enabled()) {
3160         gclog_or_tty->print(", StrDedup");
3161       }
3162       gclog_or_tty->print(") ");
3163     }
3164   }
3165 }
3166 
3167 void G1CollectedHeap::verify(bool silent) {
3168   verify(silent, VerifyOption_G1UsePrevMarking);
3169 }
3170 
3171 double G1CollectedHeap::verify(bool guard, const char* msg) {
3172   double verify_time_ms = 0.0;
3173 
3174   if (guard && total_collections() >= VerifyGCStartAt) {
3175     double verify_start = os::elapsedTime();
3176     HandleMark hm;  // Discard invalid handles created during verification
3177     prepare_for_verify();
3178     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3179     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3180   }
3181 
3182   return verify_time_ms;
3183 }
3184 
3185 void G1CollectedHeap::verify_before_gc() {
3186   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3187   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3188 }
3189 
3190 void G1CollectedHeap::verify_after_gc() {
3191   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3192   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3193 }
3194 
3195 class PrintRegionClosure: public HeapRegionClosure {
3196   outputStream* _st;
3197 public:
3198   PrintRegionClosure(outputStream* st) : _st(st) {}
3199   bool doHeapRegion(HeapRegion* r) {
3200     r->print_on(_st);
3201     return false;
3202   }
3203 };
3204 
3205 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3206                                        const HeapRegion* hr,
3207                                        const VerifyOption vo) const {
3208   switch (vo) {
3209   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3210   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3211   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3212   default:                            ShouldNotReachHere();
3213   }
3214   return false; // keep some compilers happy
3215 }
3216 
3217 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3218                                        const VerifyOption vo) const {
3219   switch (vo) {
3220   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3221   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3222   case VerifyOption_G1UseMarkWord: {
3223     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3224     return !obj->is_gc_marked() && !hr->is_archive();
3225   }
3226   default:                            ShouldNotReachHere();
3227   }
3228   return false; // keep some compilers happy
3229 }
3230 
3231 void G1CollectedHeap::print_on(outputStream* st) const {
3232   st->print(" %-20s", "garbage-first heap");
3233   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3234             capacity()/K, used_unlocked()/K);
3235   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3236             p2i(_hrm.reserved().start()),
3237             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3238             p2i(_hrm.reserved().end()));
3239   st->cr();
3240   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3241   uint young_regions = _young_list->length();
3242   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3243             (size_t) young_regions * HeapRegion::GrainBytes / K);
3244   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3245   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3246             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3247   st->cr();
3248   MetaspaceAux::print_on(st);
3249 }
3250 
3251 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3252   print_on(st);
3253 
3254   // Print the per-region information.
3255   st->cr();
3256   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3257                "HS=humongous(starts), HC=humongous(continues), "
3258                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3259                "PTAMS=previous top-at-mark-start, "
3260                "NTAMS=next top-at-mark-start)");
3261   PrintRegionClosure blk(st);
3262   heap_region_iterate(&blk);
3263 }
3264 
3265 void G1CollectedHeap::print_on_error(outputStream* st) const {
3266   this->CollectedHeap::print_on_error(st);
3267 
3268   if (_cm != NULL) {
3269     st->cr();
3270     _cm->print_on_error(st);
3271   }
3272 }
3273 
3274 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3275   workers()->print_worker_threads_on(st);
3276   _cmThread->print_on(st);
3277   st->cr();
3278   _cm->print_worker_threads_on(st);
3279   _cg1r->print_worker_threads_on(st);
3280   if (G1StringDedup::is_enabled()) {
3281     G1StringDedup::print_worker_threads_on(st);
3282   }
3283 }
3284 
3285 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3286   workers()->threads_do(tc);
3287   tc->do_thread(_cmThread);
3288   _cg1r->threads_do(tc);
3289   if (G1StringDedup::is_enabled()) {
3290     G1StringDedup::threads_do(tc);
3291   }
3292 }
3293 
3294 void G1CollectedHeap::print_tracing_info() const {
3295   // We'll overload this to mean "trace GC pause statistics."
3296   if (TraceYoungGenTime || TraceOldGenTime) {
3297     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3298     // to that.
3299     g1_policy()->print_tracing_info();
3300   }
3301   if (G1SummarizeRSetStats) {
3302     g1_rem_set()->print_summary_info();
3303   }
3304   if (G1SummarizeConcMark) {
3305     concurrent_mark()->print_summary_info();
3306   }
3307   g1_policy()->print_yg_surv_rate_info();
3308 }
3309 
3310 #ifndef PRODUCT
3311 // Helpful for debugging RSet issues.
3312 
3313 class PrintRSetsClosure : public HeapRegionClosure {
3314 private:
3315   const char* _msg;
3316   size_t _occupied_sum;
3317 
3318 public:
3319   bool doHeapRegion(HeapRegion* r) {
3320     HeapRegionRemSet* hrrs = r->rem_set();
3321     size_t occupied = hrrs->occupied();
3322     _occupied_sum += occupied;
3323 
3324     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3325                            HR_FORMAT_PARAMS(r));
3326     if (occupied == 0) {
3327       gclog_or_tty->print_cr("  RSet is empty");
3328     } else {
3329       hrrs->print();
3330     }
3331     gclog_or_tty->print_cr("----------");
3332     return false;
3333   }
3334 
3335   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3336     gclog_or_tty->cr();
3337     gclog_or_tty->print_cr("========================================");
3338     gclog_or_tty->print_cr("%s", msg);
3339     gclog_or_tty->cr();
3340   }
3341 
3342   ~PrintRSetsClosure() {
3343     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3344     gclog_or_tty->print_cr("========================================");
3345     gclog_or_tty->cr();
3346   }
3347 };
3348 
3349 void G1CollectedHeap::print_cset_rsets() {
3350   PrintRSetsClosure cl("Printing CSet RSets");
3351   collection_set_iterate(&cl);
3352 }
3353 
3354 void G1CollectedHeap::print_all_rsets() {
3355   PrintRSetsClosure cl("Printing All RSets");;
3356   heap_region_iterate(&cl);
3357 }
3358 #endif // PRODUCT
3359 
3360 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3361   YoungList* young_list = heap()->young_list();
3362 
3363   size_t eden_used_bytes = young_list->eden_used_bytes();
3364   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3365 
3366   size_t eden_capacity_bytes =
3367     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3368 
3369   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3370   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3371 }
3372 
3373 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3374   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3375                        stats->unused(), stats->used(), stats->region_end_waste(),
3376                        stats->regions_filled(), stats->direct_allocated(),
3377                        stats->failure_used(), stats->failure_waste());
3378 }
3379 
3380 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3381   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3382   gc_tracer->report_gc_heap_summary(when, heap_summary);
3383 
3384   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3385   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3386 }
3387 
3388 
3389 G1CollectedHeap* G1CollectedHeap::heap() {
3390   CollectedHeap* heap = Universe::heap();
3391   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3392   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3393   return (G1CollectedHeap*)heap;
3394 }
3395 
3396 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3397   // always_do_update_barrier = false;
3398   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3399   // Fill TLAB's and such
3400   accumulate_statistics_all_tlabs();
3401   ensure_parsability(true);
3402 
3403   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3404       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3405     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3406   }
3407 }
3408 
3409 void G1CollectedHeap::gc_epilogue(bool full) {
3410 
3411   if (G1SummarizeRSetStats &&
3412       (G1SummarizeRSetStatsPeriod > 0) &&
3413       // we are at the end of the GC. Total collections has already been increased.
3414       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3415     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3416   }
3417 
3418   // FIXME: what is this about?
3419   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3420   // is set.
3421 #if defined(COMPILER2) || INCLUDE_JVMCI
3422   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3423 #endif
3424   // always_do_update_barrier = true;
3425 
3426   resize_all_tlabs();
3427   allocation_context_stats().update(full);
3428 
3429   // We have just completed a GC. Update the soft reference
3430   // policy with the new heap occupancy
3431   Universe::update_heap_info_at_gc();
3432 }
3433 
3434 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3435                                                uint gc_count_before,
3436                                                bool* succeeded,
3437                                                GCCause::Cause gc_cause) {
3438   assert_heap_not_locked_and_not_at_safepoint();
3439   g1_policy()->record_stop_world_start();
3440   VM_G1IncCollectionPause op(gc_count_before,
3441                              word_size,
3442                              false, /* should_initiate_conc_mark */
3443                              g1_policy()->max_pause_time_ms(),
3444                              gc_cause);
3445 
3446   op.set_allocation_context(AllocationContext::current());
3447   VMThread::execute(&op);
3448 
3449   HeapWord* result = op.result();
3450   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3451   assert(result == NULL || ret_succeeded,
3452          "the result should be NULL if the VM did not succeed");
3453   *succeeded = ret_succeeded;
3454 
3455   assert_heap_not_locked();
3456   return result;
3457 }
3458 
3459 void
3460 G1CollectedHeap::doConcurrentMark() {
3461   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3462   if (!_cmThread->in_progress()) {
3463     _cmThread->set_started();
3464     CGC_lock->notify();
3465   }
3466 }
3467 
3468 size_t G1CollectedHeap::pending_card_num() {
3469   size_t extra_cards = 0;
3470   JavaThread *curr = Threads::first();
3471   while (curr != NULL) {
3472     DirtyCardQueue& dcq = curr->dirty_card_queue();
3473     extra_cards += dcq.size();
3474     curr = curr->next();
3475   }
3476   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3477   size_t buffer_size = dcqs.buffer_size();
3478   size_t buffer_num = dcqs.completed_buffers_num();
3479 
3480   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3481   // in bytes - not the number of 'entries'. We need to convert
3482   // into a number of cards.
3483   return (buffer_size * buffer_num + extra_cards) / oopSize;
3484 }
3485 
3486 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3487  private:
3488   size_t _total_humongous;
3489   size_t _candidate_humongous;
3490 
3491   DirtyCardQueue _dcq;
3492 
3493   // We don't nominate objects with many remembered set entries, on
3494   // the assumption that such objects are likely still live.
3495   bool is_remset_small(HeapRegion* region) const {
3496     HeapRegionRemSet* const rset = region->rem_set();
3497     return G1EagerReclaimHumongousObjectsWithStaleRefs
3498       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3499       : rset->is_empty();
3500   }
3501 
3502   bool is_typeArray_region(HeapRegion* region) const {
3503     return oop(region->bottom())->is_typeArray();
3504   }
3505 
3506   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3507     assert(region->is_starts_humongous(), "Must start a humongous object");
3508 
3509     // Candidate selection must satisfy the following constraints
3510     // while concurrent marking is in progress:
3511     //
3512     // * In order to maintain SATB invariants, an object must not be
3513     // reclaimed if it was allocated before the start of marking and
3514     // has not had its references scanned.  Such an object must have
3515     // its references (including type metadata) scanned to ensure no
3516     // live objects are missed by the marking process.  Objects
3517     // allocated after the start of concurrent marking don't need to
3518     // be scanned.
3519     //
3520     // * An object must not be reclaimed if it is on the concurrent
3521     // mark stack.  Objects allocated after the start of concurrent
3522     // marking are never pushed on the mark stack.
3523     //
3524     // Nominating only objects allocated after the start of concurrent
3525     // marking is sufficient to meet both constraints.  This may miss
3526     // some objects that satisfy the constraints, but the marking data
3527     // structures don't support efficiently performing the needed
3528     // additional tests or scrubbing of the mark stack.
3529     //
3530     // However, we presently only nominate is_typeArray() objects.
3531     // A humongous object containing references induces remembered
3532     // set entries on other regions.  In order to reclaim such an
3533     // object, those remembered sets would need to be cleaned up.
3534     //
3535     // We also treat is_typeArray() objects specially, allowing them
3536     // to be reclaimed even if allocated before the start of
3537     // concurrent mark.  For this we rely on mark stack insertion to
3538     // exclude is_typeArray() objects, preventing reclaiming an object
3539     // that is in the mark stack.  We also rely on the metadata for
3540     // such objects to be built-in and so ensured to be kept live.
3541     // Frequent allocation and drop of large binary blobs is an
3542     // important use case for eager reclaim, and this special handling
3543     // may reduce needed headroom.
3544 
3545     return is_typeArray_region(region) && is_remset_small(region);
3546   }
3547 
3548  public:
3549   RegisterHumongousWithInCSetFastTestClosure()
3550   : _total_humongous(0),
3551     _candidate_humongous(0),
3552     _dcq(&JavaThread::dirty_card_queue_set()) {
3553   }
3554 
3555   virtual bool doHeapRegion(HeapRegion* r) {
3556     if (!r->is_starts_humongous()) {
3557       return false;
3558     }
3559     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3560 
3561     bool is_candidate = humongous_region_is_candidate(g1h, r);
3562     uint rindex = r->hrm_index();
3563     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3564     if (is_candidate) {
3565       _candidate_humongous++;
3566       g1h->register_humongous_region_with_cset(rindex);
3567       // Is_candidate already filters out humongous object with large remembered sets.
3568       // If we have a humongous object with a few remembered sets, we simply flush these
3569       // remembered set entries into the DCQS. That will result in automatic
3570       // re-evaluation of their remembered set entries during the following evacuation
3571       // phase.
3572       if (!r->rem_set()->is_empty()) {
3573         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3574                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3575         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3576         HeapRegionRemSetIterator hrrs(r->rem_set());
3577         size_t card_index;
3578         while (hrrs.has_next(card_index)) {
3579           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3580           // The remembered set might contain references to already freed
3581           // regions. Filter out such entries to avoid failing card table
3582           // verification.
3583           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3584             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3585               *card_ptr = CardTableModRefBS::dirty_card_val();
3586               _dcq.enqueue(card_ptr);
3587             }
3588           }
3589         }
3590         r->rem_set()->clear_locked();
3591       }
3592       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3593     }
3594     _total_humongous++;
3595 
3596     return false;
3597   }
3598 
3599   size_t total_humongous() const { return _total_humongous; }
3600   size_t candidate_humongous() const { return _candidate_humongous; }
3601 
3602   void flush_rem_set_entries() { _dcq.flush(); }
3603 };
3604 
3605 void G1CollectedHeap::register_humongous_regions_with_cset() {
3606   if (!G1EagerReclaimHumongousObjects) {
3607     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3608     return;
3609   }
3610   double time = os::elapsed_counter();
3611 
3612   // Collect reclaim candidate information and register candidates with cset.
3613   RegisterHumongousWithInCSetFastTestClosure cl;
3614   heap_region_iterate(&cl);
3615 
3616   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3617   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3618                                                                   cl.total_humongous(),
3619                                                                   cl.candidate_humongous());
3620   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3621 
3622   // Finally flush all remembered set entries to re-check into the global DCQS.
3623   cl.flush_rem_set_entries();
3624 }
3625 
3626 #ifdef ASSERT
3627 class VerifyCSetClosure: public HeapRegionClosure {
3628 public:
3629   bool doHeapRegion(HeapRegion* hr) {
3630     // Here we check that the CSet region's RSet is ready for parallel
3631     // iteration. The fields that we'll verify are only manipulated
3632     // when the region is part of a CSet and is collected. Afterwards,
3633     // we reset these fields when we clear the region's RSet (when the
3634     // region is freed) so they are ready when the region is
3635     // re-allocated. The only exception to this is if there's an
3636     // evacuation failure and instead of freeing the region we leave
3637     // it in the heap. In that case, we reset these fields during
3638     // evacuation failure handling.
3639     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3640 
3641     // Here's a good place to add any other checks we'd like to
3642     // perform on CSet regions.
3643     return false;
3644   }
3645 };
3646 #endif // ASSERT
3647 
3648 uint G1CollectedHeap::num_task_queues() const {
3649   return _task_queues->size();
3650 }
3651 
3652 #if TASKQUEUE_STATS
3653 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3654   st->print_raw_cr("GC Task Stats");
3655   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3656   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3657 }
3658 
3659 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3660   print_taskqueue_stats_hdr(st);
3661 
3662   TaskQueueStats totals;
3663   const uint n = num_task_queues();
3664   for (uint i = 0; i < n; ++i) {
3665     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3666     totals += task_queue(i)->stats;
3667   }
3668   st->print_raw("tot "); totals.print(st); st->cr();
3669 
3670   DEBUG_ONLY(totals.verify());
3671 }
3672 
3673 void G1CollectedHeap::reset_taskqueue_stats() {
3674   const uint n = num_task_queues();
3675   for (uint i = 0; i < n; ++i) {
3676     task_queue(i)->stats.reset();
3677   }
3678 }
3679 #endif // TASKQUEUE_STATS
3680 
3681 void G1CollectedHeap::log_gc_header() {
3682   if (!G1Log::fine()) {
3683     return;
3684   }
3685 
3686   gclog_or_tty->gclog_stamp();
3687 
3688   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3689     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3690     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3691 
3692   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3693 }
3694 
3695 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3696   if (!G1Log::fine()) {
3697     return;
3698   }
3699 
3700   if (G1Log::finer()) {
3701     if (evacuation_failed()) {
3702       gclog_or_tty->print(" (to-space exhausted)");
3703     }
3704     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3705     g1_policy()->print_phases(pause_time_sec);
3706     g1_policy()->print_detailed_heap_transition();
3707   } else {
3708     if (evacuation_failed()) {
3709       gclog_or_tty->print("--");
3710     }
3711     g1_policy()->print_heap_transition();
3712     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3713   }
3714   gclog_or_tty->flush();
3715 }
3716 
3717 void G1CollectedHeap::wait_for_root_region_scanning() {
3718   double scan_wait_start = os::elapsedTime();
3719   // We have to wait until the CM threads finish scanning the
3720   // root regions as it's the only way to ensure that all the
3721   // objects on them have been correctly scanned before we start
3722   // moving them during the GC.
3723   bool waited = _cm->root_regions()->wait_until_scan_finished();
3724   double wait_time_ms = 0.0;
3725   if (waited) {
3726     double scan_wait_end = os::elapsedTime();
3727     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3728   }
3729   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3730 }
3731 
3732 bool
3733 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3734   assert_at_safepoint(true /* should_be_vm_thread */);
3735   guarantee(!is_gc_active(), "collection is not reentrant");
3736 
3737   if (GC_locker::check_active_before_gc()) {
3738     return false;
3739   }
3740 
3741   _gc_timer_stw->register_gc_start();
3742 
3743   GCIdMark gc_id_mark;
3744   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3745 
3746   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3747   ResourceMark rm;
3748 
3749   wait_for_root_region_scanning();
3750 
3751   G1Log::update_level();
3752   print_heap_before_gc();
3753   trace_heap_before_gc(_gc_tracer_stw);
3754 
3755   verify_region_sets_optional();
3756   verify_dirty_young_regions();
3757 
3758   // This call will decide whether this pause is an initial-mark
3759   // pause. If it is, during_initial_mark_pause() will return true
3760   // for the duration of this pause.
3761   g1_policy()->decide_on_conc_mark_initiation();
3762 
3763   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3764   assert(!collector_state()->during_initial_mark_pause() ||
3765           collector_state()->gcs_are_young(), "sanity");
3766 
3767   // We also do not allow mixed GCs during marking.
3768   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3769 
3770   // Record whether this pause is an initial mark. When the current
3771   // thread has completed its logging output and it's safe to signal
3772   // the CM thread, the flag's value in the policy has been reset.
3773   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3774 
3775   // Inner scope for scope based logging, timers, and stats collection
3776   {
3777     EvacuationInfo evacuation_info;
3778 
3779     if (collector_state()->during_initial_mark_pause()) {
3780       // We are about to start a marking cycle, so we increment the
3781       // full collection counter.
3782       increment_old_marking_cycles_started();
3783       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3784     }
3785 
3786     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3787 
3788     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3789 
3790     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3791                                                                   workers()->active_workers(),
3792                                                                   Threads::number_of_non_daemon_threads());
3793     workers()->set_active_workers(active_workers);
3794 
3795     double pause_start_sec = os::elapsedTime();
3796     g1_policy()->note_gc_start(active_workers);
3797     log_gc_header();
3798 
3799     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3800     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3801 
3802     // If the secondary_free_list is not empty, append it to the
3803     // free_list. No need to wait for the cleanup operation to finish;
3804     // the region allocation code will check the secondary_free_list
3805     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3806     // set, skip this step so that the region allocation code has to
3807     // get entries from the secondary_free_list.
3808     if (!G1StressConcRegionFreeing) {
3809       append_secondary_free_list_if_not_empty_with_lock();
3810     }
3811 
3812     assert(check_young_list_well_formed(), "young list should be well formed");
3813 
3814     // Don't dynamically change the number of GC threads this early.  A value of
3815     // 0 is used to indicate serial work.  When parallel work is done,
3816     // it will be set.
3817 
3818     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3819       IsGCActiveMark x;
3820 
3821       gc_prologue(false);
3822       increment_total_collections(false /* full gc */);
3823       increment_gc_time_stamp();
3824 
3825       verify_before_gc();
3826 
3827       check_bitmaps("GC Start");
3828 
3829 #if defined(COMPILER2) || INCLUDE_JVMCI
3830       DerivedPointerTable::clear();
3831 #endif
3832 
3833       // Please see comment in g1CollectedHeap.hpp and
3834       // G1CollectedHeap::ref_processing_init() to see how
3835       // reference processing currently works in G1.
3836 
3837       // Enable discovery in the STW reference processor
3838       ref_processor_stw()->enable_discovery();
3839 
3840       {
3841         // We want to temporarily turn off discovery by the
3842         // CM ref processor, if necessary, and turn it back on
3843         // on again later if we do. Using a scoped
3844         // NoRefDiscovery object will do this.
3845         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3846 
3847         // Forget the current alloc region (we might even choose it to be part
3848         // of the collection set!).
3849         _allocator->release_mutator_alloc_region();
3850 
3851         // We should call this after we retire the mutator alloc
3852         // region(s) so that all the ALLOC / RETIRE events are generated
3853         // before the start GC event.
3854         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3855 
3856         // This timing is only used by the ergonomics to handle our pause target.
3857         // It is unclear why this should not include the full pause. We will
3858         // investigate this in CR 7178365.
3859         //
3860         // Preserving the old comment here if that helps the investigation:
3861         //
3862         // The elapsed time induced by the start time below deliberately elides
3863         // the possible verification above.
3864         double sample_start_time_sec = os::elapsedTime();
3865 
3866         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3867 
3868         if (collector_state()->during_initial_mark_pause()) {
3869           concurrent_mark()->checkpointRootsInitialPre();
3870         }
3871 
3872         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3873         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3874 
3875         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3876 
3877         register_humongous_regions_with_cset();
3878 
3879         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3880 
3881         _cm->note_start_of_gc();
3882         // We call this after finalize_cset() to
3883         // ensure that the CSet has been finalized.
3884         _cm->verify_no_cset_oops();
3885 
3886         if (_hr_printer.is_active()) {
3887           HeapRegion* hr = g1_policy()->collection_set();
3888           while (hr != NULL) {
3889             _hr_printer.cset(hr);
3890             hr = hr->next_in_collection_set();
3891           }
3892         }
3893 
3894 #ifdef ASSERT
3895         VerifyCSetClosure cl;
3896         collection_set_iterate(&cl);
3897 #endif // ASSERT
3898 
3899         // Initialize the GC alloc regions.
3900         _allocator->init_gc_alloc_regions(evacuation_info);
3901 
3902         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3903         pre_evacuate_collection_set();
3904 
3905         // Actually do the work...
3906         evacuate_collection_set(evacuation_info, &per_thread_states);
3907 
3908         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3909 
3910         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3911         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3912 
3913         eagerly_reclaim_humongous_regions();
3914 
3915         g1_policy()->clear_collection_set();
3916 
3917         // Start a new incremental collection set for the next pause.
3918         g1_policy()->start_incremental_cset_building();
3919 
3920         clear_cset_fast_test();
3921 
3922         _young_list->reset_sampled_info();
3923 
3924         // Don't check the whole heap at this point as the
3925         // GC alloc regions from this pause have been tagged
3926         // as survivors and moved on to the survivor list.
3927         // Survivor regions will fail the !is_young() check.
3928         assert(check_young_list_empty(false /* check_heap */),
3929           "young list should be empty");
3930 
3931         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3932                                              _young_list->first_survivor_region(),
3933                                              _young_list->last_survivor_region());
3934 
3935         _young_list->reset_auxilary_lists();
3936 
3937         if (evacuation_failed()) {
3938           set_used(recalculate_used());
3939           if (_archive_allocator != NULL) {
3940             _archive_allocator->clear_used();
3941           }
3942           for (uint i = 0; i < ParallelGCThreads; i++) {
3943             if (_evacuation_failed_info_array[i].has_failed()) {
3944               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3945             }
3946           }
3947         } else {
3948           // The "used" of the the collection set have already been subtracted
3949           // when they were freed.  Add in the bytes evacuated.
3950           increase_used(g1_policy()->bytes_copied_during_gc());
3951         }
3952 
3953         if (collector_state()->during_initial_mark_pause()) {
3954           // We have to do this before we notify the CM threads that
3955           // they can start working to make sure that all the
3956           // appropriate initialization is done on the CM object.
3957           concurrent_mark()->checkpointRootsInitialPost();
3958           collector_state()->set_mark_in_progress(true);
3959           // Note that we don't actually trigger the CM thread at
3960           // this point. We do that later when we're sure that
3961           // the current thread has completed its logging output.
3962         }
3963 
3964         allocate_dummy_regions();
3965 
3966         _allocator->init_mutator_alloc_region();
3967 
3968         {
3969           size_t expand_bytes = g1_policy()->expansion_amount();
3970           if (expand_bytes > 0) {
3971             size_t bytes_before = capacity();
3972             // No need for an ergo verbose message here,
3973             // expansion_amount() does this when it returns a value > 0.
3974             double expand_ms;
3975             if (!expand(expand_bytes, &expand_ms)) {
3976               // We failed to expand the heap. Cannot do anything about it.
3977             }
3978             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3979           }
3980         }
3981 
3982         // We redo the verification but now wrt to the new CSet which
3983         // has just got initialized after the previous CSet was freed.
3984         _cm->verify_no_cset_oops();
3985         _cm->note_end_of_gc();
3986 
3987         // This timing is only used by the ergonomics to handle our pause target.
3988         // It is unclear why this should not include the full pause. We will
3989         // investigate this in CR 7178365.
3990         double sample_end_time_sec = os::elapsedTime();
3991         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3992         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3993         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3994 
3995         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3996         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3997 
3998         MemoryService::track_memory_usage();
3999 
4000         // In prepare_for_verify() below we'll need to scan the deferred
4001         // update buffers to bring the RSets up-to-date if
4002         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4003         // the update buffers we'll probably need to scan cards on the
4004         // regions we just allocated to (i.e., the GC alloc
4005         // regions). However, during the last GC we called
4006         // set_saved_mark() on all the GC alloc regions, so card
4007         // scanning might skip the [saved_mark_word()...top()] area of
4008         // those regions (i.e., the area we allocated objects into
4009         // during the last GC). But it shouldn't. Given that
4010         // saved_mark_word() is conditional on whether the GC time stamp
4011         // on the region is current or not, by incrementing the GC time
4012         // stamp here we invalidate all the GC time stamps on all the
4013         // regions and saved_mark_word() will simply return top() for
4014         // all the regions. This is a nicer way of ensuring this rather
4015         // than iterating over the regions and fixing them. In fact, the
4016         // GC time stamp increment here also ensures that
4017         // saved_mark_word() will return top() between pauses, i.e.,
4018         // during concurrent refinement. So we don't need the
4019         // is_gc_active() check to decided which top to use when
4020         // scanning cards (see CR 7039627).
4021         increment_gc_time_stamp();
4022 
4023         verify_after_gc();
4024         check_bitmaps("GC End");
4025 
4026         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4027         ref_processor_stw()->verify_no_references_recorded();
4028 
4029         // CM reference discovery will be re-enabled if necessary.
4030       }
4031 
4032       // We should do this after we potentially expand the heap so
4033       // that all the COMMIT events are generated before the end GC
4034       // event, and after we retire the GC alloc regions so that all
4035       // RETIRE events are generated before the end GC event.
4036       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4037 
4038 #ifdef TRACESPINNING
4039       ParallelTaskTerminator::print_termination_counts();
4040 #endif
4041 
4042       gc_epilogue(false);
4043     }
4044 
4045     // Print the remainder of the GC log output.
4046     log_gc_footer(os::elapsedTime() - pause_start_sec);
4047 
4048     // It is not yet to safe to tell the concurrent mark to
4049     // start as we have some optional output below. We don't want the
4050     // output from the concurrent mark thread interfering with this
4051     // logging output either.
4052 
4053     _hrm.verify_optional();
4054     verify_region_sets_optional();
4055 
4056     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4057     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4058 
4059     print_heap_after_gc();
4060     trace_heap_after_gc(_gc_tracer_stw);
4061 
4062     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4063     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4064     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4065     // before any GC notifications are raised.
4066     g1mm()->update_sizes();
4067 
4068     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4069     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4070     _gc_timer_stw->register_gc_end();
4071     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4072   }
4073   // It should now be safe to tell the concurrent mark thread to start
4074   // without its logging output interfering with the logging output
4075   // that came from the pause.
4076 
4077   if (should_start_conc_mark) {
4078     // CAUTION: after the doConcurrentMark() call below,
4079     // the concurrent marking thread(s) could be running
4080     // concurrently with us. Make sure that anything after
4081     // this point does not assume that we are the only GC thread
4082     // running. Note: of course, the actual marking work will
4083     // not start until the safepoint itself is released in
4084     // SuspendibleThreadSet::desynchronize().
4085     doConcurrentMark();
4086   }
4087 
4088   return true;
4089 }
4090 
4091 void G1CollectedHeap::remove_self_forwarding_pointers() {
4092   double remove_self_forwards_start = os::elapsedTime();
4093 
4094   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4095   workers()->run_task(&rsfp_task);
4096 
4097   // Now restore saved marks, if any.
4098   for (uint i = 0; i < ParallelGCThreads; i++) {
4099     OopAndMarkOopStack& cur = _preserved_objs[i];
4100     while (!cur.is_empty()) {
4101       OopAndMarkOop elem = cur.pop();
4102       elem.set_mark();
4103     }
4104     cur.clear(true);
4105   }
4106 
4107   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4108 }
4109 
4110 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4111   if (!_evacuation_failed) {
4112     _evacuation_failed = true;
4113   }
4114 
4115   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4116 
4117   // We want to call the "for_promotion_failure" version only in the
4118   // case of a promotion failure.
4119   if (m->must_be_preserved_for_promotion_failure(obj)) {
4120     OopAndMarkOop elem(obj, m);
4121     _preserved_objs[worker_id].push(elem);
4122   }
4123 }
4124 
4125 class G1ParEvacuateFollowersClosure : public VoidClosure {
4126 private:
4127   double _start_term;
4128   double _term_time;
4129   size_t _term_attempts;
4130 
4131   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4132   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4133 protected:
4134   G1CollectedHeap*              _g1h;
4135   G1ParScanThreadState*         _par_scan_state;
4136   RefToScanQueueSet*            _queues;
4137   ParallelTaskTerminator*       _terminator;
4138 
4139   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4140   RefToScanQueueSet*      queues()         { return _queues; }
4141   ParallelTaskTerminator* terminator()     { return _terminator; }
4142 
4143 public:
4144   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4145                                 G1ParScanThreadState* par_scan_state,
4146                                 RefToScanQueueSet* queues,
4147                                 ParallelTaskTerminator* terminator)
4148     : _g1h(g1h), _par_scan_state(par_scan_state),
4149       _queues(queues), _terminator(terminator),
4150       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4151 
4152   void do_void();
4153 
4154   double term_time() const { return _term_time; }
4155   size_t term_attempts() const { return _term_attempts; }
4156 
4157 private:
4158   inline bool offer_termination();
4159 };
4160 
4161 bool G1ParEvacuateFollowersClosure::offer_termination() {
4162   G1ParScanThreadState* const pss = par_scan_state();
4163   start_term_time();
4164   const bool res = terminator()->offer_termination();
4165   end_term_time();
4166   return res;
4167 }
4168 
4169 void G1ParEvacuateFollowersClosure::do_void() {
4170   G1ParScanThreadState* const pss = par_scan_state();
4171   pss->trim_queue();
4172   do {
4173     pss->steal_and_trim_queue(queues());
4174   } while (!offer_termination());
4175 }
4176 
4177 class G1ParTask : public AbstractGangTask {
4178 protected:
4179   G1CollectedHeap*         _g1h;
4180   G1ParScanThreadStateSet* _pss;
4181   RefToScanQueueSet*       _queues;
4182   G1RootProcessor*         _root_processor;
4183   ParallelTaskTerminator   _terminator;
4184   uint                     _n_workers;
4185 
4186 public:
4187   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4188     : AbstractGangTask("G1 collection"),
4189       _g1h(g1h),
4190       _pss(per_thread_states),
4191       _queues(task_queues),
4192       _root_processor(root_processor),
4193       _terminator(n_workers, _queues),
4194       _n_workers(n_workers)
4195   {}
4196 
4197   void work(uint worker_id) {
4198     if (worker_id >= _n_workers) return;  // no work needed this round
4199 
4200     double start_sec = os::elapsedTime();
4201     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4202 
4203     {
4204       ResourceMark rm;
4205       HandleMark   hm;
4206 
4207       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4208 
4209       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4210       pss->set_ref_processor(rp);
4211 
4212       double start_strong_roots_sec = os::elapsedTime();
4213 
4214       _root_processor->evacuate_roots(pss->closures(), worker_id);
4215 
4216       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4217 
4218       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4219       // treating the nmethods visited to act as roots for concurrent marking.
4220       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4221       // objects copied by the current evacuation.
4222       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4223                                                                              pss->closures()->weak_codeblobs(),
4224                                                                              worker_id);
4225 
4226       _pss->add_cards_scanned(worker_id, cards_scanned);
4227 
4228       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4229 
4230       double term_sec = 0.0;
4231       size_t evac_term_attempts = 0;
4232       {
4233         double start = os::elapsedTime();
4234         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4235         evac.do_void();
4236 
4237         evac_term_attempts = evac.term_attempts();
4238         term_sec = evac.term_time();
4239         double elapsed_sec = os::elapsedTime() - start;
4240         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4241         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4242         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4243       }
4244 
4245       assert(pss->queue_is_empty(), "should be empty");
4246 
4247       if (PrintTerminationStats) {
4248         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4249         size_t lab_waste;
4250         size_t lab_undo_waste;
4251         pss->waste(lab_waste, lab_undo_waste);
4252         _g1h->print_termination_stats(gclog_or_tty,
4253                                       worker_id,
4254                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4255                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4256                                       term_sec * 1000.0,                          /* evac term time */
4257                                       evac_term_attempts,                         /* evac term attempts */
4258                                       lab_waste,                                  /* alloc buffer waste */
4259                                       lab_undo_waste                              /* undo waste */
4260                                       );
4261       }
4262 
4263       // Close the inner scope so that the ResourceMark and HandleMark
4264       // destructors are executed here and are included as part of the
4265       // "GC Worker Time".
4266     }
4267     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4268   }
4269 };
4270 
4271 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4272   st->print_raw_cr("GC Termination Stats");
4273   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4274   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4275   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4276 }
4277 
4278 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4279                                               uint worker_id,
4280                                               double elapsed_ms,
4281                                               double strong_roots_ms,
4282                                               double term_ms,
4283                                               size_t term_attempts,
4284                                               size_t alloc_buffer_waste,
4285                                               size_t undo_waste) const {
4286   st->print_cr("%3d %9.2f %9.2f %6.2f "
4287                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4288                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4289                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4290                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4291                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4292                alloc_buffer_waste * HeapWordSize / K,
4293                undo_waste * HeapWordSize / K);
4294 }
4295 
4296 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4297 private:
4298   BoolObjectClosure* _is_alive;
4299   int _initial_string_table_size;
4300   int _initial_symbol_table_size;
4301 
4302   bool  _process_strings;
4303   int _strings_processed;
4304   int _strings_removed;
4305 
4306   bool  _process_symbols;
4307   int _symbols_processed;
4308   int _symbols_removed;
4309 
4310 public:
4311   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4312     AbstractGangTask("String/Symbol Unlinking"),
4313     _is_alive(is_alive),
4314     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4315     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4316 
4317     _initial_string_table_size = StringTable::the_table()->table_size();
4318     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4319     if (process_strings) {
4320       StringTable::clear_parallel_claimed_index();
4321     }
4322     if (process_symbols) {
4323       SymbolTable::clear_parallel_claimed_index();
4324     }
4325   }
4326 
4327   ~G1StringSymbolTableUnlinkTask() {
4328     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4329               "claim value %d after unlink less than initial string table size %d",
4330               StringTable::parallel_claimed_index(), _initial_string_table_size);
4331     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4332               "claim value %d after unlink less than initial symbol table size %d",
4333               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4334 
4335     if (G1TraceStringSymbolTableScrubbing) {
4336       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4337                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4338                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4339                              strings_processed(), strings_removed(),
4340                              symbols_processed(), symbols_removed());
4341     }
4342   }
4343 
4344   void work(uint worker_id) {
4345     int strings_processed = 0;
4346     int strings_removed = 0;
4347     int symbols_processed = 0;
4348     int symbols_removed = 0;
4349     if (_process_strings) {
4350       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4351       Atomic::add(strings_processed, &_strings_processed);
4352       Atomic::add(strings_removed, &_strings_removed);
4353     }
4354     if (_process_symbols) {
4355       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4356       Atomic::add(symbols_processed, &_symbols_processed);
4357       Atomic::add(symbols_removed, &_symbols_removed);
4358     }
4359   }
4360 
4361   size_t strings_processed() const { return (size_t)_strings_processed; }
4362   size_t strings_removed()   const { return (size_t)_strings_removed; }
4363 
4364   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4365   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4366 };
4367 
4368 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4369 private:
4370   static Monitor* _lock;
4371 
4372   BoolObjectClosure* const _is_alive;
4373   const bool               _unloading_occurred;
4374   const uint               _num_workers;
4375 
4376   // Variables used to claim nmethods.
4377   nmethod* _first_nmethod;
4378   volatile nmethod* _claimed_nmethod;
4379 
4380   // The list of nmethods that need to be processed by the second pass.
4381   volatile nmethod* _postponed_list;
4382   volatile uint     _num_entered_barrier;
4383 
4384  public:
4385   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4386       _is_alive(is_alive),
4387       _unloading_occurred(unloading_occurred),
4388       _num_workers(num_workers),
4389       _first_nmethod(NULL),
4390       _claimed_nmethod(NULL),
4391       _postponed_list(NULL),
4392       _num_entered_barrier(0)
4393   {
4394     nmethod::increase_unloading_clock();
4395     // Get first alive nmethod
4396     NMethodIterator iter = NMethodIterator();
4397     if(iter.next_alive()) {
4398       _first_nmethod = iter.method();
4399     }
4400     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4401   }
4402 
4403   ~G1CodeCacheUnloadingTask() {
4404     CodeCache::verify_clean_inline_caches();
4405 
4406     CodeCache::set_needs_cache_clean(false);
4407     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4408 
4409     CodeCache::verify_icholder_relocations();
4410   }
4411 
4412  private:
4413   void add_to_postponed_list(nmethod* nm) {
4414       nmethod* old;
4415       do {
4416         old = (nmethod*)_postponed_list;
4417         nm->set_unloading_next(old);
4418       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4419   }
4420 
4421   void clean_nmethod(nmethod* nm) {
4422     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4423 
4424     if (postponed) {
4425       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4426       add_to_postponed_list(nm);
4427     }
4428 
4429     // Mark that this thread has been cleaned/unloaded.
4430     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4431     nm->set_unloading_clock(nmethod::global_unloading_clock());
4432   }
4433 
4434   void clean_nmethod_postponed(nmethod* nm) {
4435     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4436   }
4437 
4438   static const int MaxClaimNmethods = 16;
4439 
4440   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4441     nmethod* first;
4442     NMethodIterator last;
4443 
4444     do {
4445       *num_claimed_nmethods = 0;
4446 
4447       first = (nmethod*)_claimed_nmethod;
4448       last = NMethodIterator(first);
4449 
4450       if (first != NULL) {
4451 
4452         for (int i = 0; i < MaxClaimNmethods; i++) {
4453           if (!last.next_alive()) {
4454             break;
4455           }
4456           claimed_nmethods[i] = last.method();
4457           (*num_claimed_nmethods)++;
4458         }
4459       }
4460 
4461     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4462   }
4463 
4464   nmethod* claim_postponed_nmethod() {
4465     nmethod* claim;
4466     nmethod* next;
4467 
4468     do {
4469       claim = (nmethod*)_postponed_list;
4470       if (claim == NULL) {
4471         return NULL;
4472       }
4473 
4474       next = claim->unloading_next();
4475 
4476     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4477 
4478     return claim;
4479   }
4480 
4481  public:
4482   // Mark that we're done with the first pass of nmethod cleaning.
4483   void barrier_mark(uint worker_id) {
4484     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4485     _num_entered_barrier++;
4486     if (_num_entered_barrier == _num_workers) {
4487       ml.notify_all();
4488     }
4489   }
4490 
4491   // See if we have to wait for the other workers to
4492   // finish their first-pass nmethod cleaning work.
4493   void barrier_wait(uint worker_id) {
4494     if (_num_entered_barrier < _num_workers) {
4495       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4496       while (_num_entered_barrier < _num_workers) {
4497           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4498       }
4499     }
4500   }
4501 
4502   // Cleaning and unloading of nmethods. Some work has to be postponed
4503   // to the second pass, when we know which nmethods survive.
4504   void work_first_pass(uint worker_id) {
4505     // The first nmethods is claimed by the first worker.
4506     if (worker_id == 0 && _first_nmethod != NULL) {
4507       clean_nmethod(_first_nmethod);
4508       _first_nmethod = NULL;
4509     }
4510 
4511     int num_claimed_nmethods;
4512     nmethod* claimed_nmethods[MaxClaimNmethods];
4513 
4514     while (true) {
4515       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4516 
4517       if (num_claimed_nmethods == 0) {
4518         break;
4519       }
4520 
4521       for (int i = 0; i < num_claimed_nmethods; i++) {
4522         clean_nmethod(claimed_nmethods[i]);
4523       }
4524     }
4525   }
4526 
4527   void work_second_pass(uint worker_id) {
4528     nmethod* nm;
4529     // Take care of postponed nmethods.
4530     while ((nm = claim_postponed_nmethod()) != NULL) {
4531       clean_nmethod_postponed(nm);
4532     }
4533   }
4534 };
4535 
4536 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4537 
4538 class G1KlassCleaningTask : public StackObj {
4539   BoolObjectClosure*                      _is_alive;
4540   volatile jint                           _clean_klass_tree_claimed;
4541   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4542 
4543  public:
4544   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4545       _is_alive(is_alive),
4546       _clean_klass_tree_claimed(0),
4547       _klass_iterator() {
4548   }
4549 
4550  private:
4551   bool claim_clean_klass_tree_task() {
4552     if (_clean_klass_tree_claimed) {
4553       return false;
4554     }
4555 
4556     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4557   }
4558 
4559   InstanceKlass* claim_next_klass() {
4560     Klass* klass;
4561     do {
4562       klass =_klass_iterator.next_klass();
4563     } while (klass != NULL && !klass->is_instance_klass());
4564 
4565     // this can be null so don't call InstanceKlass::cast
4566     return static_cast<InstanceKlass*>(klass);
4567   }
4568 
4569 public:
4570 
4571   void clean_klass(InstanceKlass* ik) {
4572     ik->clean_weak_instanceklass_links(_is_alive);
4573   }
4574 
4575   void work() {
4576     ResourceMark rm;
4577 
4578     // One worker will clean the subklass/sibling klass tree.
4579     if (claim_clean_klass_tree_task()) {
4580       Klass::clean_subklass_tree(_is_alive);
4581     }
4582 
4583     // All workers will help cleaning the classes,
4584     InstanceKlass* klass;
4585     while ((klass = claim_next_klass()) != NULL) {
4586       clean_klass(klass);
4587     }
4588   }
4589 };
4590 
4591 // To minimize the remark pause times, the tasks below are done in parallel.
4592 class G1ParallelCleaningTask : public AbstractGangTask {
4593 private:
4594   G1StringSymbolTableUnlinkTask _string_symbol_task;
4595   G1CodeCacheUnloadingTask      _code_cache_task;
4596   G1KlassCleaningTask           _klass_cleaning_task;
4597 
4598 public:
4599   // The constructor is run in the VMThread.
4600   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4601       AbstractGangTask("Parallel Cleaning"),
4602       _string_symbol_task(is_alive, process_strings, process_symbols),
4603       _code_cache_task(num_workers, is_alive, unloading_occurred),
4604       _klass_cleaning_task(is_alive) {
4605   }
4606 
4607   // The parallel work done by all worker threads.
4608   void work(uint worker_id) {
4609     // Do first pass of code cache cleaning.
4610     _code_cache_task.work_first_pass(worker_id);
4611 
4612     // Let the threads mark that the first pass is done.
4613     _code_cache_task.barrier_mark(worker_id);
4614 
4615     // Clean the Strings and Symbols.
4616     _string_symbol_task.work(worker_id);
4617 
4618     // Wait for all workers to finish the first code cache cleaning pass.
4619     _code_cache_task.barrier_wait(worker_id);
4620 
4621     // Do the second code cache cleaning work, which realize on
4622     // the liveness information gathered during the first pass.
4623     _code_cache_task.work_second_pass(worker_id);
4624 
4625     // Clean all klasses that were not unloaded.
4626     _klass_cleaning_task.work();
4627   }
4628 };
4629 
4630 
4631 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4632                                         bool process_strings,
4633                                         bool process_symbols,
4634                                         bool class_unloading_occurred) {
4635   uint n_workers = workers()->active_workers();
4636 
4637   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4638                                         n_workers, class_unloading_occurred);
4639   workers()->run_task(&g1_unlink_task);
4640 }
4641 
4642 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4643                                                      bool process_strings, bool process_symbols) {
4644   {
4645     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4646     workers()->run_task(&g1_unlink_task);
4647   }
4648 
4649   if (G1StringDedup::is_enabled()) {
4650     G1StringDedup::unlink(is_alive);
4651   }
4652 }
4653 
4654 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4655  private:
4656   DirtyCardQueueSet* _queue;
4657  public:
4658   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4659 
4660   virtual void work(uint worker_id) {
4661     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4662     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4663 
4664     RedirtyLoggedCardTableEntryClosure cl;
4665     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4666 
4667     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4668   }
4669 };
4670 
4671 void G1CollectedHeap::redirty_logged_cards() {
4672   double redirty_logged_cards_start = os::elapsedTime();
4673 
4674   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4675   dirty_card_queue_set().reset_for_par_iteration();
4676   workers()->run_task(&redirty_task);
4677 
4678   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4679   dcq.merge_bufferlists(&dirty_card_queue_set());
4680   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4681 
4682   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4683 }
4684 
4685 // Weak Reference Processing support
4686 
4687 // An always "is_alive" closure that is used to preserve referents.
4688 // If the object is non-null then it's alive.  Used in the preservation
4689 // of referent objects that are pointed to by reference objects
4690 // discovered by the CM ref processor.
4691 class G1AlwaysAliveClosure: public BoolObjectClosure {
4692   G1CollectedHeap* _g1;
4693 public:
4694   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4695   bool do_object_b(oop p) {
4696     if (p != NULL) {
4697       return true;
4698     }
4699     return false;
4700   }
4701 };
4702 
4703 bool G1STWIsAliveClosure::do_object_b(oop p) {
4704   // An object is reachable if it is outside the collection set,
4705   // or is inside and copied.
4706   return !_g1->is_in_cset(p) || p->is_forwarded();
4707 }
4708 
4709 // Non Copying Keep Alive closure
4710 class G1KeepAliveClosure: public OopClosure {
4711   G1CollectedHeap* _g1;
4712 public:
4713   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4714   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4715   void do_oop(oop* p) {
4716     oop obj = *p;
4717     assert(obj != NULL, "the caller should have filtered out NULL values");
4718 
4719     const InCSetState cset_state = _g1->in_cset_state(obj);
4720     if (!cset_state.is_in_cset_or_humongous()) {
4721       return;
4722     }
4723     if (cset_state.is_in_cset()) {
4724       assert( obj->is_forwarded(), "invariant" );
4725       *p = obj->forwardee();
4726     } else {
4727       assert(!obj->is_forwarded(), "invariant" );
4728       assert(cset_state.is_humongous(),
4729              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4730       _g1->set_humongous_is_live(obj);
4731     }
4732   }
4733 };
4734 
4735 // Copying Keep Alive closure - can be called from both
4736 // serial and parallel code as long as different worker
4737 // threads utilize different G1ParScanThreadState instances
4738 // and different queues.
4739 
4740 class G1CopyingKeepAliveClosure: public OopClosure {
4741   G1CollectedHeap*         _g1h;
4742   OopClosure*              _copy_non_heap_obj_cl;
4743   G1ParScanThreadState*    _par_scan_state;
4744 
4745 public:
4746   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4747                             OopClosure* non_heap_obj_cl,
4748                             G1ParScanThreadState* pss):
4749     _g1h(g1h),
4750     _copy_non_heap_obj_cl(non_heap_obj_cl),
4751     _par_scan_state(pss)
4752   {}
4753 
4754   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4755   virtual void do_oop(      oop* p) { do_oop_work(p); }
4756 
4757   template <class T> void do_oop_work(T* p) {
4758     oop obj = oopDesc::load_decode_heap_oop(p);
4759 
4760     if (_g1h->is_in_cset_or_humongous(obj)) {
4761       // If the referent object has been forwarded (either copied
4762       // to a new location or to itself in the event of an
4763       // evacuation failure) then we need to update the reference
4764       // field and, if both reference and referent are in the G1
4765       // heap, update the RSet for the referent.
4766       //
4767       // If the referent has not been forwarded then we have to keep
4768       // it alive by policy. Therefore we have copy the referent.
4769       //
4770       // If the reference field is in the G1 heap then we can push
4771       // on the PSS queue. When the queue is drained (after each
4772       // phase of reference processing) the object and it's followers
4773       // will be copied, the reference field set to point to the
4774       // new location, and the RSet updated. Otherwise we need to
4775       // use the the non-heap or metadata closures directly to copy
4776       // the referent object and update the pointer, while avoiding
4777       // updating the RSet.
4778 
4779       if (_g1h->is_in_g1_reserved(p)) {
4780         _par_scan_state->push_on_queue(p);
4781       } else {
4782         assert(!Metaspace::contains((const void*)p),
4783                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4784         _copy_non_heap_obj_cl->do_oop(p);
4785       }
4786     }
4787   }
4788 };
4789 
4790 // Serial drain queue closure. Called as the 'complete_gc'
4791 // closure for each discovered list in some of the
4792 // reference processing phases.
4793 
4794 class G1STWDrainQueueClosure: public VoidClosure {
4795 protected:
4796   G1CollectedHeap* _g1h;
4797   G1ParScanThreadState* _par_scan_state;
4798 
4799   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4800 
4801 public:
4802   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4803     _g1h(g1h),
4804     _par_scan_state(pss)
4805   { }
4806 
4807   void do_void() {
4808     G1ParScanThreadState* const pss = par_scan_state();
4809     pss->trim_queue();
4810   }
4811 };
4812 
4813 // Parallel Reference Processing closures
4814 
4815 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4816 // processing during G1 evacuation pauses.
4817 
4818 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4819 private:
4820   G1CollectedHeap*          _g1h;
4821   G1ParScanThreadStateSet*  _pss;
4822   RefToScanQueueSet*        _queues;
4823   WorkGang*                 _workers;
4824   uint                      _active_workers;
4825 
4826 public:
4827   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4828                            G1ParScanThreadStateSet* per_thread_states,
4829                            WorkGang* workers,
4830                            RefToScanQueueSet *task_queues,
4831                            uint n_workers) :
4832     _g1h(g1h),
4833     _pss(per_thread_states),
4834     _queues(task_queues),
4835     _workers(workers),
4836     _active_workers(n_workers)
4837   {
4838     assert(n_workers > 0, "shouldn't call this otherwise");
4839   }
4840 
4841   // Executes the given task using concurrent marking worker threads.
4842   virtual void execute(ProcessTask& task);
4843   virtual void execute(EnqueueTask& task);
4844 };
4845 
4846 // Gang task for possibly parallel reference processing
4847 
4848 class G1STWRefProcTaskProxy: public AbstractGangTask {
4849   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4850   ProcessTask&     _proc_task;
4851   G1CollectedHeap* _g1h;
4852   G1ParScanThreadStateSet* _pss;
4853   RefToScanQueueSet* _task_queues;
4854   ParallelTaskTerminator* _terminator;
4855 
4856 public:
4857   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4858                         G1CollectedHeap* g1h,
4859                         G1ParScanThreadStateSet* per_thread_states,
4860                         RefToScanQueueSet *task_queues,
4861                         ParallelTaskTerminator* terminator) :
4862     AbstractGangTask("Process reference objects in parallel"),
4863     _proc_task(proc_task),
4864     _g1h(g1h),
4865     _pss(per_thread_states),
4866     _task_queues(task_queues),
4867     _terminator(terminator)
4868   {}
4869 
4870   virtual void work(uint worker_id) {
4871     // The reference processing task executed by a single worker.
4872     ResourceMark rm;
4873     HandleMark   hm;
4874 
4875     G1STWIsAliveClosure is_alive(_g1h);
4876 
4877     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4878     pss->set_ref_processor(NULL);
4879 
4880     // Keep alive closure.
4881     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4882 
4883     // Complete GC closure
4884     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4885 
4886     // Call the reference processing task's work routine.
4887     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4888 
4889     // Note we cannot assert that the refs array is empty here as not all
4890     // of the processing tasks (specifically phase2 - pp2_work) execute
4891     // the complete_gc closure (which ordinarily would drain the queue) so
4892     // the queue may not be empty.
4893   }
4894 };
4895 
4896 // Driver routine for parallel reference processing.
4897 // Creates an instance of the ref processing gang
4898 // task and has the worker threads execute it.
4899 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4900   assert(_workers != NULL, "Need parallel worker threads.");
4901 
4902   ParallelTaskTerminator terminator(_active_workers, _queues);
4903   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4904 
4905   _workers->run_task(&proc_task_proxy);
4906 }
4907 
4908 // Gang task for parallel reference enqueueing.
4909 
4910 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4911   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4912   EnqueueTask& _enq_task;
4913 
4914 public:
4915   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4916     AbstractGangTask("Enqueue reference objects in parallel"),
4917     _enq_task(enq_task)
4918   { }
4919 
4920   virtual void work(uint worker_id) {
4921     _enq_task.work(worker_id);
4922   }
4923 };
4924 
4925 // Driver routine for parallel reference enqueueing.
4926 // Creates an instance of the ref enqueueing gang
4927 // task and has the worker threads execute it.
4928 
4929 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4930   assert(_workers != NULL, "Need parallel worker threads.");
4931 
4932   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4933 
4934   _workers->run_task(&enq_task_proxy);
4935 }
4936 
4937 // End of weak reference support closures
4938 
4939 // Abstract task used to preserve (i.e. copy) any referent objects
4940 // that are in the collection set and are pointed to by reference
4941 // objects discovered by the CM ref processor.
4942 
4943 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4944 protected:
4945   G1CollectedHeap*         _g1h;
4946   G1ParScanThreadStateSet* _pss;
4947   RefToScanQueueSet*       _queues;
4948   ParallelTaskTerminator   _terminator;
4949   uint                     _n_workers;
4950 
4951 public:
4952   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4953     AbstractGangTask("ParPreserveCMReferents"),
4954     _g1h(g1h),
4955     _pss(per_thread_states),
4956     _queues(task_queues),
4957     _terminator(workers, _queues),
4958     _n_workers(workers)
4959   { }
4960 
4961   void work(uint worker_id) {
4962     ResourceMark rm;
4963     HandleMark   hm;
4964 
4965     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4966     pss->set_ref_processor(NULL);
4967     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4968 
4969     // Is alive closure
4970     G1AlwaysAliveClosure always_alive(_g1h);
4971 
4972     // Copying keep alive closure. Applied to referent objects that need
4973     // to be copied.
4974     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4975 
4976     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4977 
4978     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4979     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4980 
4981     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4982     // So this must be true - but assert just in case someone decides to
4983     // change the worker ids.
4984     assert(worker_id < limit, "sanity");
4985     assert(!rp->discovery_is_atomic(), "check this code");
4986 
4987     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4988     for (uint idx = worker_id; idx < limit; idx += stride) {
4989       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4990 
4991       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4992       while (iter.has_next()) {
4993         // Since discovery is not atomic for the CM ref processor, we
4994         // can see some null referent objects.
4995         iter.load_ptrs(DEBUG_ONLY(true));
4996         oop ref = iter.obj();
4997 
4998         // This will filter nulls.
4999         if (iter.is_referent_alive()) {
5000           iter.make_referent_alive();
5001         }
5002         iter.move_to_next();
5003       }
5004     }
5005 
5006     // Drain the queue - which may cause stealing
5007     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5008     drain_queue.do_void();
5009     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5010     assert(pss->queue_is_empty(), "should be");
5011   }
5012 };
5013 
5014 // Weak Reference processing during an evacuation pause (part 1).
5015 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5016   double ref_proc_start = os::elapsedTime();
5017 
5018   ReferenceProcessor* rp = _ref_processor_stw;
5019   assert(rp->discovery_enabled(), "should have been enabled");
5020 
5021   // Any reference objects, in the collection set, that were 'discovered'
5022   // by the CM ref processor should have already been copied (either by
5023   // applying the external root copy closure to the discovered lists, or
5024   // by following an RSet entry).
5025   //
5026   // But some of the referents, that are in the collection set, that these
5027   // reference objects point to may not have been copied: the STW ref
5028   // processor would have seen that the reference object had already
5029   // been 'discovered' and would have skipped discovering the reference,
5030   // but would not have treated the reference object as a regular oop.
5031   // As a result the copy closure would not have been applied to the
5032   // referent object.
5033   //
5034   // We need to explicitly copy these referent objects - the references
5035   // will be processed at the end of remarking.
5036   //
5037   // We also need to do this copying before we process the reference
5038   // objects discovered by the STW ref processor in case one of these
5039   // referents points to another object which is also referenced by an
5040   // object discovered by the STW ref processor.
5041 
5042   uint no_of_gc_workers = workers()->active_workers();
5043 
5044   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5045                                                  per_thread_states,
5046                                                  no_of_gc_workers,
5047                                                  _task_queues);
5048 
5049   workers()->run_task(&keep_cm_referents);
5050 
5051   // Closure to test whether a referent is alive.
5052   G1STWIsAliveClosure is_alive(this);
5053 
5054   // Even when parallel reference processing is enabled, the processing
5055   // of JNI refs is serial and performed serially by the current thread
5056   // rather than by a worker. The following PSS will be used for processing
5057   // JNI refs.
5058 
5059   // Use only a single queue for this PSS.
5060   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5061   pss->set_ref_processor(NULL);
5062   assert(pss->queue_is_empty(), "pre-condition");
5063 
5064   // Keep alive closure.
5065   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5066 
5067   // Serial Complete GC closure
5068   G1STWDrainQueueClosure drain_queue(this, pss);
5069 
5070   // Setup the soft refs policy...
5071   rp->setup_policy(false);
5072 
5073   ReferenceProcessorStats stats;
5074   if (!rp->processing_is_mt()) {
5075     // Serial reference processing...
5076     stats = rp->process_discovered_references(&is_alive,
5077                                               &keep_alive,
5078                                               &drain_queue,
5079                                               NULL,
5080                                               _gc_timer_stw);
5081   } else {
5082     // Parallel reference processing
5083     assert(rp->num_q() == no_of_gc_workers, "sanity");
5084     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5085 
5086     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5087     stats = rp->process_discovered_references(&is_alive,
5088                                               &keep_alive,
5089                                               &drain_queue,
5090                                               &par_task_executor,
5091                                               _gc_timer_stw);
5092   }
5093 
5094   _gc_tracer_stw->report_gc_reference_stats(stats);
5095 
5096   // We have completed copying any necessary live referent objects.
5097   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5098 
5099   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5100   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5101 }
5102 
5103 // Weak Reference processing during an evacuation pause (part 2).
5104 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5105   double ref_enq_start = os::elapsedTime();
5106 
5107   ReferenceProcessor* rp = _ref_processor_stw;
5108   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5109 
5110   // Now enqueue any remaining on the discovered lists on to
5111   // the pending list.
5112   if (!rp->processing_is_mt()) {
5113     // Serial reference processing...
5114     rp->enqueue_discovered_references();
5115   } else {
5116     // Parallel reference enqueueing
5117 
5118     uint n_workers = workers()->active_workers();
5119 
5120     assert(rp->num_q() == n_workers, "sanity");
5121     assert(n_workers <= rp->max_num_q(), "sanity");
5122 
5123     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5124     rp->enqueue_discovered_references(&par_task_executor);
5125   }
5126 
5127   rp->verify_no_references_recorded();
5128   assert(!rp->discovery_enabled(), "should have been disabled");
5129 
5130   // FIXME
5131   // CM's reference processing also cleans up the string and symbol tables.
5132   // Should we do that here also? We could, but it is a serial operation
5133   // and could significantly increase the pause time.
5134 
5135   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5136   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5137 }
5138 
5139 void G1CollectedHeap::pre_evacuate_collection_set() {
5140   _expand_heap_after_alloc_failure = true;
5141   _evacuation_failed = false;
5142 
5143   // Disable the hot card cache.
5144   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5145   hot_card_cache->reset_hot_cache_claimed_index();
5146   hot_card_cache->set_use_cache(false);
5147 
5148 }
5149 
5150 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5151   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5152 
5153   // Should G1EvacuationFailureALot be in effect for this GC?
5154   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5155 
5156   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5157   double start_par_time_sec = os::elapsedTime();
5158   double end_par_time_sec;
5159 
5160   {
5161     const uint n_workers = workers()->active_workers();
5162     G1RootProcessor root_processor(this, n_workers);
5163     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5164     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5165     if (collector_state()->during_initial_mark_pause()) {
5166       ClassLoaderDataGraph::clear_claimed_marks();
5167     }
5168 
5169     // The individual threads will set their evac-failure closures.
5170     if (PrintTerminationStats) {
5171       print_termination_stats_hdr(gclog_or_tty);
5172     }
5173 
5174     workers()->run_task(&g1_par_task);
5175     end_par_time_sec = os::elapsedTime();
5176 
5177     // Closing the inner scope will execute the destructor
5178     // for the G1RootProcessor object. We record the current
5179     // elapsed time before closing the scope so that time
5180     // taken for the destructor is NOT included in the
5181     // reported parallel time.
5182   }
5183 
5184   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5185 
5186   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5187   phase_times->record_par_time(par_time_ms);
5188 
5189   double code_root_fixup_time_ms =
5190         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5191   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5192 
5193   // Process any discovered reference objects - we have
5194   // to do this _before_ we retire the GC alloc regions
5195   // as we may have to copy some 'reachable' referent
5196   // objects (and their reachable sub-graphs) that were
5197   // not copied during the pause.
5198   process_discovered_references(per_thread_states);
5199 
5200   if (G1StringDedup::is_enabled()) {
5201     double fixup_start = os::elapsedTime();
5202 
5203     G1STWIsAliveClosure is_alive(this);
5204     G1KeepAliveClosure keep_alive(this);
5205     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5206 
5207     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5208     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5209   }
5210 
5211   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5212 
5213   if (evacuation_failed()) {
5214     remove_self_forwarding_pointers();
5215 
5216     // Reset the G1EvacuationFailureALot counters and flags
5217     // Note: the values are reset only when an actual
5218     // evacuation failure occurs.
5219     NOT_PRODUCT(reset_evacuation_should_fail();)
5220   }
5221 
5222   // Enqueue any remaining references remaining on the STW
5223   // reference processor's discovered lists. We need to do
5224   // this after the card table is cleaned (and verified) as
5225   // the act of enqueueing entries on to the pending list
5226   // will log these updates (and dirty their associated
5227   // cards). We need these updates logged to update any
5228   // RSets.
5229   enqueue_discovered_references(per_thread_states);
5230 }
5231 
5232 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5233   _allocator->release_gc_alloc_regions(evacuation_info);
5234 
5235   per_thread_states->flush();
5236 
5237   record_obj_copy_mem_stats();
5238 
5239   // Reset and re-enable the hot card cache.
5240   // Note the counts for the cards in the regions in the
5241   // collection set are reset when the collection set is freed.
5242   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5243   hot_card_cache->reset_hot_cache();
5244   hot_card_cache->set_use_cache(true);
5245 
5246   purge_code_root_memory();
5247 
5248   redirty_logged_cards();
5249 #if defined(COMPILER2) || INCLUDE_JVMCI
5250   DerivedPointerTable::update_pointers();
5251 #endif
5252 }
5253 
5254 void G1CollectedHeap::record_obj_copy_mem_stats() {
5255   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5256                                                create_g1_evac_summary(&_old_evac_stats));
5257 }
5258 
5259 void G1CollectedHeap::free_region(HeapRegion* hr,
5260                                   FreeRegionList* free_list,
5261                                   bool par,
5262                                   bool locked) {
5263   assert(!hr->is_free(), "the region should not be free");
5264   assert(!hr->is_empty(), "the region should not be empty");
5265   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5266   assert(free_list != NULL, "pre-condition");
5267 
5268   if (G1VerifyBitmaps) {
5269     MemRegion mr(hr->bottom(), hr->end());
5270     concurrent_mark()->clearRangePrevBitmap(mr);
5271   }
5272 
5273   // Clear the card counts for this region.
5274   // Note: we only need to do this if the region is not young
5275   // (since we don't refine cards in young regions).
5276   if (!hr->is_young()) {
5277     _cg1r->hot_card_cache()->reset_card_counts(hr);
5278   }
5279   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5280   free_list->add_ordered(hr);
5281 }
5282 
5283 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5284                                             FreeRegionList* free_list,
5285                                             bool par) {
5286   assert(hr->is_humongous(), "this is only for humongous regions");
5287   assert(free_list != NULL, "pre-condition");
5288   hr->clear_humongous();
5289   free_region(hr, free_list, par);
5290 }
5291 
5292 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5293                                            const HeapRegionSetCount& humongous_regions_removed) {
5294   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5295     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5296     _old_set.bulk_remove(old_regions_removed);
5297     _humongous_set.bulk_remove(humongous_regions_removed);
5298   }
5299 
5300 }
5301 
5302 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5303   assert(list != NULL, "list can't be null");
5304   if (!list->is_empty()) {
5305     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5306     _hrm.insert_list_into_free_list(list);
5307   }
5308 }
5309 
5310 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5311   decrease_used(bytes);
5312 }
5313 
5314 class G1ParCleanupCTTask : public AbstractGangTask {
5315   G1SATBCardTableModRefBS* _ct_bs;
5316   G1CollectedHeap* _g1h;
5317   HeapRegion* volatile _su_head;
5318 public:
5319   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5320                      G1CollectedHeap* g1h) :
5321     AbstractGangTask("G1 Par Cleanup CT Task"),
5322     _ct_bs(ct_bs), _g1h(g1h) { }
5323 
5324   void work(uint worker_id) {
5325     HeapRegion* r;
5326     while (r = _g1h->pop_dirty_cards_region()) {
5327       clear_cards(r);
5328     }
5329   }
5330 
5331   void clear_cards(HeapRegion* r) {
5332     // Cards of the survivors should have already been dirtied.
5333     if (!r->is_survivor()) {
5334       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5335     }
5336   }
5337 };
5338 
5339 #ifndef PRODUCT
5340 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5341   G1CollectedHeap* _g1h;
5342   G1SATBCardTableModRefBS* _ct_bs;
5343 public:
5344   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5345     : _g1h(g1h), _ct_bs(ct_bs) { }
5346   virtual bool doHeapRegion(HeapRegion* r) {
5347     if (r->is_survivor()) {
5348       _g1h->verify_dirty_region(r);
5349     } else {
5350       _g1h->verify_not_dirty_region(r);
5351     }
5352     return false;
5353   }
5354 };
5355 
5356 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5357   // All of the region should be clean.
5358   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5359   MemRegion mr(hr->bottom(), hr->end());
5360   ct_bs->verify_not_dirty_region(mr);
5361 }
5362 
5363 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5364   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5365   // dirty allocated blocks as they allocate them. The thread that
5366   // retires each region and replaces it with a new one will do a
5367   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5368   // not dirty that area (one less thing to have to do while holding
5369   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5370   // is dirty.
5371   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5372   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5373   if (hr->is_young()) {
5374     ct_bs->verify_g1_young_region(mr);
5375   } else {
5376     ct_bs->verify_dirty_region(mr);
5377   }
5378 }
5379 
5380 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5381   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5382   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5383     verify_dirty_region(hr);
5384   }
5385 }
5386 
5387 void G1CollectedHeap::verify_dirty_young_regions() {
5388   verify_dirty_young_list(_young_list->first_region());
5389 }
5390 
5391 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5392                                                HeapWord* tams, HeapWord* end) {
5393   guarantee(tams <= end,
5394             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5395   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5396   if (result < end) {
5397     gclog_or_tty->cr();
5398     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5399                            bitmap_name, p2i(result));
5400     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5401                            bitmap_name, p2i(tams), p2i(end));
5402     return false;
5403   }
5404   return true;
5405 }
5406 
5407 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5408   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5409   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5410 
5411   HeapWord* bottom = hr->bottom();
5412   HeapWord* ptams  = hr->prev_top_at_mark_start();
5413   HeapWord* ntams  = hr->next_top_at_mark_start();
5414   HeapWord* end    = hr->end();
5415 
5416   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5417 
5418   bool res_n = true;
5419   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5420   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5421   // if we happen to be in that state.
5422   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5423     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5424   }
5425   if (!res_p || !res_n) {
5426     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5427                            HR_FORMAT_PARAMS(hr));
5428     gclog_or_tty->print_cr("#### Caller: %s", caller);
5429     return false;
5430   }
5431   return true;
5432 }
5433 
5434 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5435   if (!G1VerifyBitmaps) return;
5436 
5437   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5438 }
5439 
5440 class G1VerifyBitmapClosure : public HeapRegionClosure {
5441 private:
5442   const char* _caller;
5443   G1CollectedHeap* _g1h;
5444   bool _failures;
5445 
5446 public:
5447   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5448     _caller(caller), _g1h(g1h), _failures(false) { }
5449 
5450   bool failures() { return _failures; }
5451 
5452   virtual bool doHeapRegion(HeapRegion* hr) {
5453     bool result = _g1h->verify_bitmaps(_caller, hr);
5454     if (!result) {
5455       _failures = true;
5456     }
5457     return false;
5458   }
5459 };
5460 
5461 void G1CollectedHeap::check_bitmaps(const char* caller) {
5462   if (!G1VerifyBitmaps) return;
5463 
5464   G1VerifyBitmapClosure cl(caller, this);
5465   heap_region_iterate(&cl);
5466   guarantee(!cl.failures(), "bitmap verification");
5467 }
5468 
5469 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5470  private:
5471   bool _failures;
5472  public:
5473   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5474 
5475   virtual bool doHeapRegion(HeapRegion* hr) {
5476     uint i = hr->hrm_index();
5477     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5478     if (hr->is_humongous()) {
5479       if (hr->in_collection_set()) {
5480         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5481         _failures = true;
5482         return true;
5483       }
5484       if (cset_state.is_in_cset()) {
5485         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5486         _failures = true;
5487         return true;
5488       }
5489       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5490         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5491         _failures = true;
5492         return true;
5493       }
5494     } else {
5495       if (cset_state.is_humongous()) {
5496         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5497         _failures = true;
5498         return true;
5499       }
5500       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5501         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5502                                hr->in_collection_set(), cset_state.value(), i);
5503         _failures = true;
5504         return true;
5505       }
5506       if (cset_state.is_in_cset()) {
5507         if (hr->is_young() != (cset_state.is_young())) {
5508           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5509                                  hr->is_young(), cset_state.value(), i);
5510           _failures = true;
5511           return true;
5512         }
5513         if (hr->is_old() != (cset_state.is_old())) {
5514           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5515                                  hr->is_old(), cset_state.value(), i);
5516           _failures = true;
5517           return true;
5518         }
5519       }
5520     }
5521     return false;
5522   }
5523 
5524   bool failures() const { return _failures; }
5525 };
5526 
5527 bool G1CollectedHeap::check_cset_fast_test() {
5528   G1CheckCSetFastTableClosure cl;
5529   _hrm.iterate(&cl);
5530   return !cl.failures();
5531 }
5532 #endif // PRODUCT
5533 
5534 void G1CollectedHeap::cleanUpCardTable() {
5535   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5536   double start = os::elapsedTime();
5537 
5538   {
5539     // Iterate over the dirty cards region list.
5540     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5541 
5542     workers()->run_task(&cleanup_task);
5543 #ifndef PRODUCT
5544     if (G1VerifyCTCleanup || VerifyAfterGC) {
5545       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5546       heap_region_iterate(&cleanup_verifier);
5547     }
5548 #endif
5549   }
5550 
5551   double elapsed = os::elapsedTime() - start;
5552   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5553 }
5554 
5555 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5556   size_t pre_used = 0;
5557   FreeRegionList local_free_list("Local List for CSet Freeing");
5558 
5559   double young_time_ms     = 0.0;
5560   double non_young_time_ms = 0.0;
5561 
5562   // Since the collection set is a superset of the the young list,
5563   // all we need to do to clear the young list is clear its
5564   // head and length, and unlink any young regions in the code below
5565   _young_list->clear();
5566 
5567   G1CollectorPolicy* policy = g1_policy();
5568 
5569   double start_sec = os::elapsedTime();
5570   bool non_young = true;
5571 
5572   HeapRegion* cur = cs_head;
5573   int age_bound = -1;
5574   size_t rs_lengths = 0;
5575 
5576   while (cur != NULL) {
5577     assert(!is_on_master_free_list(cur), "sanity");
5578     if (non_young) {
5579       if (cur->is_young()) {
5580         double end_sec = os::elapsedTime();
5581         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5582         non_young_time_ms += elapsed_ms;
5583 
5584         start_sec = os::elapsedTime();
5585         non_young = false;
5586       }
5587     } else {
5588       if (!cur->is_young()) {
5589         double end_sec = os::elapsedTime();
5590         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5591         young_time_ms += elapsed_ms;
5592 
5593         start_sec = os::elapsedTime();
5594         non_young = true;
5595       }
5596     }
5597 
5598     rs_lengths += cur->rem_set()->occupied_locked();
5599 
5600     HeapRegion* next = cur->next_in_collection_set();
5601     assert(cur->in_collection_set(), "bad CS");
5602     cur->set_next_in_collection_set(NULL);
5603     clear_in_cset(cur);
5604 
5605     if (cur->is_young()) {
5606       int index = cur->young_index_in_cset();
5607       assert(index != -1, "invariant");
5608       assert((uint) index < policy->young_cset_region_length(), "invariant");
5609       size_t words_survived = surviving_young_words[index];
5610       cur->record_surv_words_in_group(words_survived);
5611 
5612       // At this point the we have 'popped' cur from the collection set
5613       // (linked via next_in_collection_set()) but it is still in the
5614       // young list (linked via next_young_region()). Clear the
5615       // _next_young_region field.
5616       cur->set_next_young_region(NULL);
5617     } else {
5618       int index = cur->young_index_in_cset();
5619       assert(index == -1, "invariant");
5620     }
5621 
5622     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5623             (!cur->is_young() && cur->young_index_in_cset() == -1),
5624             "invariant" );
5625 
5626     if (!cur->evacuation_failed()) {
5627       MemRegion used_mr = cur->used_region();
5628 
5629       // And the region is empty.
5630       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5631       pre_used += cur->used();
5632       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5633     } else {
5634       cur->uninstall_surv_rate_group();
5635       if (cur->is_young()) {
5636         cur->set_young_index_in_cset(-1);
5637       }
5638       cur->set_evacuation_failed(false);
5639       // The region is now considered to be old.
5640       cur->set_old();
5641       // Do some allocation statistics accounting. Regions that failed evacuation
5642       // are always made old, so there is no need to update anything in the young
5643       // gen statistics, but we need to update old gen statistics.
5644       size_t used_words = cur->marked_bytes() / HeapWordSize;
5645       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5646       _old_set.add(cur);
5647       evacuation_info.increment_collectionset_used_after(cur->used());
5648     }
5649     cur = next;
5650   }
5651 
5652   evacuation_info.set_regions_freed(local_free_list.length());
5653   policy->record_max_rs_lengths(rs_lengths);
5654   policy->cset_regions_freed();
5655 
5656   double end_sec = os::elapsedTime();
5657   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5658 
5659   if (non_young) {
5660     non_young_time_ms += elapsed_ms;
5661   } else {
5662     young_time_ms += elapsed_ms;
5663   }
5664 
5665   prepend_to_freelist(&local_free_list);
5666   decrement_summary_bytes(pre_used);
5667   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5668   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5669 }
5670 
5671 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5672  private:
5673   FreeRegionList* _free_region_list;
5674   HeapRegionSet* _proxy_set;
5675   HeapRegionSetCount _humongous_regions_removed;
5676   size_t _freed_bytes;
5677  public:
5678 
5679   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5680     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5681   }
5682 
5683   virtual bool doHeapRegion(HeapRegion* r) {
5684     if (!r->is_starts_humongous()) {
5685       return false;
5686     }
5687 
5688     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5689 
5690     oop obj = (oop)r->bottom();
5691     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5692 
5693     // The following checks whether the humongous object is live are sufficient.
5694     // The main additional check (in addition to having a reference from the roots
5695     // or the young gen) is whether the humongous object has a remembered set entry.
5696     //
5697     // A humongous object cannot be live if there is no remembered set for it
5698     // because:
5699     // - there can be no references from within humongous starts regions referencing
5700     // the object because we never allocate other objects into them.
5701     // (I.e. there are no intra-region references that may be missed by the
5702     // remembered set)
5703     // - as soon there is a remembered set entry to the humongous starts region
5704     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5705     // until the end of a concurrent mark.
5706     //
5707     // It is not required to check whether the object has been found dead by marking
5708     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5709     // all objects allocated during that time are considered live.
5710     // SATB marking is even more conservative than the remembered set.
5711     // So if at this point in the collection there is no remembered set entry,
5712     // nobody has a reference to it.
5713     // At the start of collection we flush all refinement logs, and remembered sets
5714     // are completely up-to-date wrt to references to the humongous object.
5715     //
5716     // Other implementation considerations:
5717     // - never consider object arrays at this time because they would pose
5718     // considerable effort for cleaning up the the remembered sets. This is
5719     // required because stale remembered sets might reference locations that
5720     // are currently allocated into.
5721     uint region_idx = r->hrm_index();
5722     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5723         !r->rem_set()->is_empty()) {
5724 
5725       if (G1TraceEagerReclaimHumongousObjects) {
5726         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5727                                region_idx,
5728                                (size_t)obj->size() * HeapWordSize,
5729                                p2i(r->bottom()),
5730                                r->rem_set()->occupied(),
5731                                r->rem_set()->strong_code_roots_list_length(),
5732                                next_bitmap->isMarked(r->bottom()),
5733                                g1h->is_humongous_reclaim_candidate(region_idx),
5734                                obj->is_typeArray()
5735                               );
5736       }
5737 
5738       return false;
5739     }
5740 
5741     guarantee(obj->is_typeArray(),
5742               "Only eagerly reclaiming type arrays is supported, but the object "
5743               PTR_FORMAT " is not.", p2i(r->bottom()));
5744 
5745     if (G1TraceEagerReclaimHumongousObjects) {
5746       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5747                              region_idx,
5748                              (size_t)obj->size() * HeapWordSize,
5749                              p2i(r->bottom()),
5750                              r->rem_set()->occupied(),
5751                              r->rem_set()->strong_code_roots_list_length(),
5752                              next_bitmap->isMarked(r->bottom()),
5753                              g1h->is_humongous_reclaim_candidate(region_idx),
5754                              obj->is_typeArray()
5755                             );
5756     }
5757     // Need to clear mark bit of the humongous object if already set.
5758     if (next_bitmap->isMarked(r->bottom())) {
5759       next_bitmap->clear(r->bottom());
5760     }
5761     do {
5762       HeapRegion* next = g1h->next_humongous_region(r);
5763       _freed_bytes += r->used();
5764       r->set_containing_set(NULL);
5765       _humongous_regions_removed.increment(1u, r->capacity());
5766       g1h->free_humongous_region(r, _free_region_list, false);
5767       r = next;
5768     } while (r != NULL);
5769 
5770     return false;
5771   }
5772 
5773   HeapRegionSetCount& humongous_free_count() {
5774     return _humongous_regions_removed;
5775   }
5776 
5777   size_t bytes_freed() const {
5778     return _freed_bytes;
5779   }
5780 
5781   size_t humongous_reclaimed() const {
5782     return _humongous_regions_removed.length();
5783   }
5784 };
5785 
5786 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5787   assert_at_safepoint(true);
5788 
5789   if (!G1EagerReclaimHumongousObjects ||
5790       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5791     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5792     return;
5793   }
5794 
5795   double start_time = os::elapsedTime();
5796 
5797   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5798 
5799   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5800   heap_region_iterate(&cl);
5801 
5802   HeapRegionSetCount empty_set;
5803   remove_from_old_sets(empty_set, cl.humongous_free_count());
5804 
5805   G1HRPrinter* hrp = hr_printer();
5806   if (hrp->is_active()) {
5807     FreeRegionListIterator iter(&local_cleanup_list);
5808     while (iter.more_available()) {
5809       HeapRegion* hr = iter.get_next();
5810       hrp->cleanup(hr);
5811     }
5812   }
5813 
5814   prepend_to_freelist(&local_cleanup_list);
5815   decrement_summary_bytes(cl.bytes_freed());
5816 
5817   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5818                                                                     cl.humongous_reclaimed());
5819 }
5820 
5821 // This routine is similar to the above but does not record
5822 // any policy statistics or update free lists; we are abandoning
5823 // the current incremental collection set in preparation of a
5824 // full collection. After the full GC we will start to build up
5825 // the incremental collection set again.
5826 // This is only called when we're doing a full collection
5827 // and is immediately followed by the tearing down of the young list.
5828 
5829 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5830   HeapRegion* cur = cs_head;
5831 
5832   while (cur != NULL) {
5833     HeapRegion* next = cur->next_in_collection_set();
5834     assert(cur->in_collection_set(), "bad CS");
5835     cur->set_next_in_collection_set(NULL);
5836     clear_in_cset(cur);
5837     cur->set_young_index_in_cset(-1);
5838     cur = next;
5839   }
5840 }
5841 
5842 void G1CollectedHeap::set_free_regions_coming() {
5843   if (G1ConcRegionFreeingVerbose) {
5844     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5845                            "setting free regions coming");
5846   }
5847 
5848   assert(!free_regions_coming(), "pre-condition");
5849   _free_regions_coming = true;
5850 }
5851 
5852 void G1CollectedHeap::reset_free_regions_coming() {
5853   assert(free_regions_coming(), "pre-condition");
5854 
5855   {
5856     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5857     _free_regions_coming = false;
5858     SecondaryFreeList_lock->notify_all();
5859   }
5860 
5861   if (G1ConcRegionFreeingVerbose) {
5862     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5863                            "reset free regions coming");
5864   }
5865 }
5866 
5867 void G1CollectedHeap::wait_while_free_regions_coming() {
5868   // Most of the time we won't have to wait, so let's do a quick test
5869   // first before we take the lock.
5870   if (!free_regions_coming()) {
5871     return;
5872   }
5873 
5874   if (G1ConcRegionFreeingVerbose) {
5875     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5876                            "waiting for free regions");
5877   }
5878 
5879   {
5880     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5881     while (free_regions_coming()) {
5882       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5883     }
5884   }
5885 
5886   if (G1ConcRegionFreeingVerbose) {
5887     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5888                            "done waiting for free regions");
5889   }
5890 }
5891 
5892 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5893   return _allocator->is_retained_old_region(hr);
5894 }
5895 
5896 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5897   _young_list->push_region(hr);
5898 }
5899 
5900 class NoYoungRegionsClosure: public HeapRegionClosure {
5901 private:
5902   bool _success;
5903 public:
5904   NoYoungRegionsClosure() : _success(true) { }
5905   bool doHeapRegion(HeapRegion* r) {
5906     if (r->is_young()) {
5907       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5908                              p2i(r->bottom()), p2i(r->end()));
5909       _success = false;
5910     }
5911     return false;
5912   }
5913   bool success() { return _success; }
5914 };
5915 
5916 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5917   bool ret = _young_list->check_list_empty(check_sample);
5918 
5919   if (check_heap) {
5920     NoYoungRegionsClosure closure;
5921     heap_region_iterate(&closure);
5922     ret = ret && closure.success();
5923   }
5924 
5925   return ret;
5926 }
5927 
5928 class TearDownRegionSetsClosure : public HeapRegionClosure {
5929 private:
5930   HeapRegionSet *_old_set;
5931 
5932 public:
5933   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5934 
5935   bool doHeapRegion(HeapRegion* r) {
5936     if (r->is_old()) {
5937       _old_set->remove(r);
5938     } else {
5939       // We ignore free regions, we'll empty the free list afterwards.
5940       // We ignore young regions, we'll empty the young list afterwards.
5941       // We ignore humongous regions, we're not tearing down the
5942       // humongous regions set.
5943       assert(r->is_free() || r->is_young() || r->is_humongous(),
5944              "it cannot be another type");
5945     }
5946     return false;
5947   }
5948 
5949   ~TearDownRegionSetsClosure() {
5950     assert(_old_set->is_empty(), "post-condition");
5951   }
5952 };
5953 
5954 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5955   assert_at_safepoint(true /* should_be_vm_thread */);
5956 
5957   if (!free_list_only) {
5958     TearDownRegionSetsClosure cl(&_old_set);
5959     heap_region_iterate(&cl);
5960 
5961     // Note that emptying the _young_list is postponed and instead done as
5962     // the first step when rebuilding the regions sets again. The reason for
5963     // this is that during a full GC string deduplication needs to know if
5964     // a collected region was young or old when the full GC was initiated.
5965   }
5966   _hrm.remove_all_free_regions();
5967 }
5968 
5969 void G1CollectedHeap::increase_used(size_t bytes) {
5970   _summary_bytes_used += bytes;
5971 }
5972 
5973 void G1CollectedHeap::decrease_used(size_t bytes) {
5974   assert(_summary_bytes_used >= bytes,
5975          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5976          _summary_bytes_used, bytes);
5977   _summary_bytes_used -= bytes;
5978 }
5979 
5980 void G1CollectedHeap::set_used(size_t bytes) {
5981   _summary_bytes_used = bytes;
5982 }
5983 
5984 class RebuildRegionSetsClosure : public HeapRegionClosure {
5985 private:
5986   bool            _free_list_only;
5987   HeapRegionSet*   _old_set;
5988   HeapRegionManager*   _hrm;
5989   size_t          _total_used;
5990 
5991 public:
5992   RebuildRegionSetsClosure(bool free_list_only,
5993                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5994     _free_list_only(free_list_only),
5995     _old_set(old_set), _hrm(hrm), _total_used(0) {
5996     assert(_hrm->num_free_regions() == 0, "pre-condition");
5997     if (!free_list_only) {
5998       assert(_old_set->is_empty(), "pre-condition");
5999     }
6000   }
6001 
6002   bool doHeapRegion(HeapRegion* r) {
6003     if (r->is_empty()) {
6004       // Add free regions to the free list
6005       r->set_free();
6006       r->set_allocation_context(AllocationContext::system());
6007       _hrm->insert_into_free_list(r);
6008     } else if (!_free_list_only) {
6009       assert(!r->is_young(), "we should not come across young regions");
6010 
6011       if (r->is_humongous()) {
6012         // We ignore humongous regions. We left the humongous set unchanged.
6013       } else {
6014         // Objects that were compacted would have ended up on regions
6015         // that were previously old or free.  Archive regions (which are
6016         // old) will not have been touched.
6017         assert(r->is_free() || r->is_old(), "invariant");
6018         // We now consider them old, so register as such. Leave
6019         // archive regions set that way, however, while still adding
6020         // them to the old set.
6021         if (!r->is_archive()) {
6022           r->set_old();
6023         }
6024         _old_set->add(r);
6025       }
6026       _total_used += r->used();
6027     }
6028 
6029     return false;
6030   }
6031 
6032   size_t total_used() {
6033     return _total_used;
6034   }
6035 };
6036 
6037 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6038   assert_at_safepoint(true /* should_be_vm_thread */);
6039 
6040   if (!free_list_only) {
6041     _young_list->empty_list();
6042   }
6043 
6044   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6045   heap_region_iterate(&cl);
6046 
6047   if (!free_list_only) {
6048     set_used(cl.total_used());
6049     if (_archive_allocator != NULL) {
6050       _archive_allocator->clear_used();
6051     }
6052   }
6053   assert(used_unlocked() == recalculate_used(),
6054          "inconsistent used_unlocked(), "
6055          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6056          used_unlocked(), recalculate_used());
6057 }
6058 
6059 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6060   _refine_cte_cl->set_concurrent(concurrent);
6061 }
6062 
6063 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6064   HeapRegion* hr = heap_region_containing(p);
6065   return hr->is_in(p);
6066 }
6067 
6068 // Methods for the mutator alloc region
6069 
6070 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6071                                                       bool force) {
6072   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6073   assert(!force || g1_policy()->can_expand_young_list(),
6074          "if force is true we should be able to expand the young list");
6075   bool young_list_full = g1_policy()->is_young_list_full();
6076   if (force || !young_list_full) {
6077     HeapRegion* new_alloc_region = new_region(word_size,
6078                                               false /* is_old */,
6079                                               false /* do_expand */);
6080     if (new_alloc_region != NULL) {
6081       set_region_short_lived_locked(new_alloc_region);
6082       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6083       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6084       return new_alloc_region;
6085     }
6086   }
6087   return NULL;
6088 }
6089 
6090 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6091                                                   size_t allocated_bytes) {
6092   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6093   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6094 
6095   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6096   increase_used(allocated_bytes);
6097   _hr_printer.retire(alloc_region);
6098   // We update the eden sizes here, when the region is retired,
6099   // instead of when it's allocated, since this is the point that its
6100   // used space has been recored in _summary_bytes_used.
6101   g1mm()->update_eden_size();
6102 }
6103 
6104 // Methods for the GC alloc regions
6105 
6106 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6107                                                  uint count,
6108                                                  InCSetState dest) {
6109   assert(FreeList_lock->owned_by_self(), "pre-condition");
6110 
6111   if (count < g1_policy()->max_regions(dest)) {
6112     const bool is_survivor = (dest.is_young());
6113     HeapRegion* new_alloc_region = new_region(word_size,
6114                                               !is_survivor,
6115                                               true /* do_expand */);
6116     if (new_alloc_region != NULL) {
6117       // We really only need to do this for old regions given that we
6118       // should never scan survivors. But it doesn't hurt to do it
6119       // for survivors too.
6120       new_alloc_region->record_timestamp();
6121       if (is_survivor) {
6122         new_alloc_region->set_survivor();
6123         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6124         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6125       } else {
6126         new_alloc_region->set_old();
6127         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6128         check_bitmaps("Old Region Allocation", new_alloc_region);
6129       }
6130       bool during_im = collector_state()->during_initial_mark_pause();
6131       new_alloc_region->note_start_of_copying(during_im);
6132       return new_alloc_region;
6133     }
6134   }
6135   return NULL;
6136 }
6137 
6138 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6139                                              size_t allocated_bytes,
6140                                              InCSetState dest) {
6141   bool during_im = collector_state()->during_initial_mark_pause();
6142   alloc_region->note_end_of_copying(during_im);
6143   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6144   if (dest.is_young()) {
6145     young_list()->add_survivor_region(alloc_region);
6146   } else {
6147     _old_set.add(alloc_region);
6148   }
6149   _hr_printer.retire(alloc_region);
6150 }
6151 
6152 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6153   bool expanded = false;
6154   uint index = _hrm.find_highest_free(&expanded);
6155 
6156   if (index != G1_NO_HRM_INDEX) {
6157     if (expanded) {
6158       ergo_verbose1(ErgoHeapSizing,
6159                     "attempt heap expansion",
6160                     ergo_format_reason("requested address range outside heap bounds")
6161                     ergo_format_byte("region size"),
6162                     HeapRegion::GrainWords * HeapWordSize);
6163     }
6164     _hrm.allocate_free_regions_starting_at(index, 1);
6165     return region_at(index);
6166   }
6167   return NULL;
6168 }
6169 
6170 // Heap region set verification
6171 
6172 class VerifyRegionListsClosure : public HeapRegionClosure {
6173 private:
6174   HeapRegionSet*   _old_set;
6175   HeapRegionSet*   _humongous_set;
6176   HeapRegionManager*   _hrm;
6177 
6178 public:
6179   HeapRegionSetCount _old_count;
6180   HeapRegionSetCount _humongous_count;
6181   HeapRegionSetCount _free_count;
6182 
6183   VerifyRegionListsClosure(HeapRegionSet* old_set,
6184                            HeapRegionSet* humongous_set,
6185                            HeapRegionManager* hrm) :
6186     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6187     _old_count(), _humongous_count(), _free_count(){ }
6188 
6189   bool doHeapRegion(HeapRegion* hr) {
6190     if (hr->is_young()) {
6191       // TODO
6192     } else if (hr->is_humongous()) {
6193       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6194       _humongous_count.increment(1u, hr->capacity());
6195     } else if (hr->is_empty()) {
6196       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6197       _free_count.increment(1u, hr->capacity());
6198     } else if (hr->is_old()) {
6199       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6200       _old_count.increment(1u, hr->capacity());
6201     } else {
6202       // There are no other valid region types. Check for one invalid
6203       // one we can identify: pinned without old or humongous set.
6204       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6205       ShouldNotReachHere();
6206     }
6207     return false;
6208   }
6209 
6210   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6211     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6212     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6213               old_set->total_capacity_bytes(), _old_count.capacity());
6214 
6215     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6216     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6217               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6218 
6219     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6220     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6221               free_list->total_capacity_bytes(), _free_count.capacity());
6222   }
6223 };
6224 
6225 void G1CollectedHeap::verify_region_sets() {
6226   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6227 
6228   // First, check the explicit lists.
6229   _hrm.verify();
6230   {
6231     // Given that a concurrent operation might be adding regions to
6232     // the secondary free list we have to take the lock before
6233     // verifying it.
6234     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6235     _secondary_free_list.verify_list();
6236   }
6237 
6238   // If a concurrent region freeing operation is in progress it will
6239   // be difficult to correctly attributed any free regions we come
6240   // across to the correct free list given that they might belong to
6241   // one of several (free_list, secondary_free_list, any local lists,
6242   // etc.). So, if that's the case we will skip the rest of the
6243   // verification operation. Alternatively, waiting for the concurrent
6244   // operation to complete will have a non-trivial effect on the GC's
6245   // operation (no concurrent operation will last longer than the
6246   // interval between two calls to verification) and it might hide
6247   // any issues that we would like to catch during testing.
6248   if (free_regions_coming()) {
6249     return;
6250   }
6251 
6252   // Make sure we append the secondary_free_list on the free_list so
6253   // that all free regions we will come across can be safely
6254   // attributed to the free_list.
6255   append_secondary_free_list_if_not_empty_with_lock();
6256 
6257   // Finally, make sure that the region accounting in the lists is
6258   // consistent with what we see in the heap.
6259 
6260   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6261   heap_region_iterate(&cl);
6262   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6263 }
6264 
6265 // Optimized nmethod scanning
6266 
6267 class RegisterNMethodOopClosure: public OopClosure {
6268   G1CollectedHeap* _g1h;
6269   nmethod* _nm;
6270 
6271   template <class T> void do_oop_work(T* p) {
6272     T heap_oop = oopDesc::load_heap_oop(p);
6273     if (!oopDesc::is_null(heap_oop)) {
6274       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6275       HeapRegion* hr = _g1h->heap_region_containing(obj);
6276       assert(!hr->is_continues_humongous(),
6277              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6278              " starting at " HR_FORMAT,
6279              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6280 
6281       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6282       hr->add_strong_code_root_locked(_nm);
6283     }
6284   }
6285 
6286 public:
6287   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6288     _g1h(g1h), _nm(nm) {}
6289 
6290   void do_oop(oop* p)       { do_oop_work(p); }
6291   void do_oop(narrowOop* p) { do_oop_work(p); }
6292 };
6293 
6294 class UnregisterNMethodOopClosure: public OopClosure {
6295   G1CollectedHeap* _g1h;
6296   nmethod* _nm;
6297 
6298   template <class T> void do_oop_work(T* p) {
6299     T heap_oop = oopDesc::load_heap_oop(p);
6300     if (!oopDesc::is_null(heap_oop)) {
6301       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6302       HeapRegion* hr = _g1h->heap_region_containing(obj);
6303       assert(!hr->is_continues_humongous(),
6304              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6305              " starting at " HR_FORMAT,
6306              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6307 
6308       hr->remove_strong_code_root(_nm);
6309     }
6310   }
6311 
6312 public:
6313   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6314     _g1h(g1h), _nm(nm) {}
6315 
6316   void do_oop(oop* p)       { do_oop_work(p); }
6317   void do_oop(narrowOop* p) { do_oop_work(p); }
6318 };
6319 
6320 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6321   CollectedHeap::register_nmethod(nm);
6322 
6323   guarantee(nm != NULL, "sanity");
6324   RegisterNMethodOopClosure reg_cl(this, nm);
6325   nm->oops_do(&reg_cl);
6326 }
6327 
6328 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6329   CollectedHeap::unregister_nmethod(nm);
6330 
6331   guarantee(nm != NULL, "sanity");
6332   UnregisterNMethodOopClosure reg_cl(this, nm);
6333   nm->oops_do(&reg_cl, true);
6334 }
6335 
6336 void G1CollectedHeap::purge_code_root_memory() {
6337   double purge_start = os::elapsedTime();
6338   G1CodeRootSet::purge();
6339   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6340   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6341 }
6342 
6343 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6344   G1CollectedHeap* _g1h;
6345 
6346 public:
6347   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6348     _g1h(g1h) {}
6349 
6350   void do_code_blob(CodeBlob* cb) {
6351     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6352     if (nm == NULL) {
6353       return;
6354     }
6355 
6356     if (ScavengeRootsInCode) {
6357       _g1h->register_nmethod(nm);
6358     }
6359   }
6360 };
6361 
6362 void G1CollectedHeap::rebuild_strong_code_roots() {
6363   RebuildStrongCodeRootClosure blob_cl(this);
6364   CodeCache::blobs_do(&blob_cl);
6365 }