1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc/serial/defNewGeneration.hpp"
  29 #include "gc/shared/blockOffsetTable.inline.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/genCollectedHeap.hpp"
  32 #include "gc/shared/genOopClosures.inline.hpp"
  33 #include "gc/shared/liveRange.hpp"
  34 #include "gc/shared/space.hpp"
  35 #include "gc/shared/space.inline.hpp"
  36 #include "gc/shared/spaceDecorator.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/java.hpp"
  41 #include "runtime/orderAccess.inline.hpp"
  42 #include "runtime/prefetch.inline.hpp"
  43 #include "runtime/safepoint.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/globalDefinitions.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  49                                                 HeapWord* top_obj) {
  50   if (top_obj != NULL) {
  51     if (_sp->block_is_obj(top_obj)) {
  52       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
  53         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  54           // An arrayOop is starting on the dirty card - since we do exact
  55           // store checks for objArrays we are done.
  56         } else {
  57           // Otherwise, it is possible that the object starting on the dirty
  58           // card spans the entire card, and that the store happened on a
  59           // later card.  Figure out where the object ends.
  60           // Use the block_size() method of the space over which
  61           // the iteration is being done.  That space (e.g. CMS) may have
  62           // specific requirements on object sizes which will
  63           // be reflected in the block_size() method.
  64           top = top_obj + oop(top_obj)->size();
  65         }
  66       }
  67     } else {
  68       top = top_obj;
  69     }
  70   } else {
  71     assert(top == _sp->end(), "only case where top_obj == NULL");
  72   }
  73   return top;
  74 }
  75 
  76 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  77                                             HeapWord* bottom,
  78                                             HeapWord* top) {
  79   // 1. Blocks may or may not be objects.
  80   // 2. Even when a block_is_obj(), it may not entirely
  81   //    occupy the block if the block quantum is larger than
  82   //    the object size.
  83   // We can and should try to optimize by calling the non-MemRegion
  84   // version of oop_iterate() for all but the extremal objects
  85   // (for which we need to call the MemRegion version of
  86   // oop_iterate()) To be done post-beta XXX
  87   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  88     // As in the case of contiguous space above, we'd like to
  89     // just use the value returned by oop_iterate to increment the
  90     // current pointer; unfortunately, that won't work in CMS because
  91     // we'd need an interface change (it seems) to have the space
  92     // "adjust the object size" (for instance pad it up to its
  93     // block alignment or minimum block size restrictions. XXX
  94     if (_sp->block_is_obj(bottom) &&
  95         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  96       oop(bottom)->oop_iterate(_cl, mr);
  97     }
  98   }
  99 }
 100 
 101 // We get called with "mr" representing the dirty region
 102 // that we want to process. Because of imprecise marking,
 103 // we may need to extend the incoming "mr" to the right,
 104 // and scan more. However, because we may already have
 105 // scanned some of that extended region, we may need to
 106 // trim its right-end back some so we do not scan what
 107 // we (or another worker thread) may already have scanned
 108 // or planning to scan.
 109 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 110 
 111   // Some collectors need to do special things whenever their dirty
 112   // cards are processed. For instance, CMS must remember mutator updates
 113   // (i.e. dirty cards) so as to re-scan mutated objects.
 114   // Such work can be piggy-backed here on dirty card scanning, so as to make
 115   // it slightly more efficient than doing a complete non-destructive pre-scan
 116   // of the card table.
 117   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 118   if (pCl != NULL) {
 119     pCl->do_MemRegion(mr);
 120   }
 121 
 122   HeapWord* bottom = mr.start();
 123   HeapWord* last = mr.last();
 124   HeapWord* top = mr.end();
 125   HeapWord* bottom_obj;
 126   HeapWord* top_obj;
 127 
 128   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
 129          _precision == CardTableModRefBS::Precise,
 130          "Only ones we deal with for now.");
 131 
 132   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 133          _cl->idempotent() || _last_bottom == NULL ||
 134          top <= _last_bottom,
 135          "Not decreasing");
 136   NOT_PRODUCT(_last_bottom = mr.start());
 137 
 138   bottom_obj = _sp->block_start(bottom);
 139   top_obj    = _sp->block_start(last);
 140 
 141   assert(bottom_obj <= bottom, "just checking");
 142   assert(top_obj    <= top,    "just checking");
 143 
 144   // Given what we think is the top of the memory region and
 145   // the start of the object at the top, get the actual
 146   // value of the top.
 147   top = get_actual_top(top, top_obj);
 148 
 149   // If the previous call did some part of this region, don't redo.
 150   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
 151       _min_done != NULL &&
 152       _min_done < top) {
 153     top = _min_done;
 154   }
 155 
 156   // Top may have been reset, and in fact may be below bottom,
 157   // e.g. the dirty card region is entirely in a now free object
 158   // -- something that could happen with a concurrent sweeper.
 159   bottom = MIN2(bottom, top);
 160   MemRegion extended_mr = MemRegion(bottom, top);
 161   assert(bottom <= top &&
 162          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 163           _min_done == NULL ||
 164           top <= _min_done),
 165          "overlap!");
 166 
 167   // Walk the region if it is not empty; otherwise there is nothing to do.
 168   if (!extended_mr.is_empty()) {
 169     walk_mem_region(extended_mr, bottom_obj, top);
 170   }
 171 
 172   // An idempotent closure might be applied in any order, so we don't
 173   // record a _min_done for it.
 174   if (!_cl->idempotent()) {
 175     _min_done = bottom;
 176   } else {
 177     assert(_min_done == _last_explicit_min_done,
 178            "Don't update _min_done for idempotent cl");
 179   }
 180 }
 181 
 182 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 183                                           CardTableModRefBS::PrecisionStyle precision,
 184                                           HeapWord* boundary,
 185                                           bool parallel) {
 186   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 187 }
 188 
 189 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 190                                                HeapWord* top_obj) {
 191   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 192     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
 193       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 194         // An arrayOop is starting on the dirty card - since we do exact
 195         // store checks for objArrays we are done.
 196       } else {
 197         // Otherwise, it is possible that the object starting on the dirty
 198         // card spans the entire card, and that the store happened on a
 199         // later card.  Figure out where the object ends.
 200         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 201           "Block size and object size mismatch");
 202         top = top_obj + oop(top_obj)->size();
 203       }
 204     }
 205   } else {
 206     top = (_sp->toContiguousSpace())->top();
 207   }
 208   return top;
 209 }
 210 
 211 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
 212                                       HeapWord* bottom,
 213                                       HeapWord* top) {
 214   // Note that this assumption won't hold if we have a concurrent
 215   // collector in this space, which may have freed up objects after
 216   // they were dirtied and before the stop-the-world GC that is
 217   // examining cards here.
 218   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 219 
 220   if (_boundary != NULL) {
 221     // We have a boundary outside of which we don't want to look
 222     // at objects, so create a filtering closure around the
 223     // oop closure before walking the region.
 224     FilteringClosure filter(_boundary, _cl);
 225     walk_mem_region_with_cl(mr, bottom, top, &filter);
 226   } else {
 227     // No boundary, simply walk the heap with the oop closure.
 228     walk_mem_region_with_cl(mr, bottom, top, _cl);
 229   }
 230 
 231 }
 232 
 233 // We must replicate this so that the static type of "FilteringClosure"
 234 // (see above) is apparent at the oop_iterate calls.
 235 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 236 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 237                                                    HeapWord* bottom,    \
 238                                                    HeapWord* top,       \
 239                                                    ClosureType* cl) {   \
 240   bottom += oop(bottom)->oop_iterate_size(cl, mr);                      \
 241   if (bottom < top) {                                                   \
 242     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 243     while (next_obj < top) {                                            \
 244       /* Bottom lies entirely below top, so we can call the */          \
 245       /* non-memRegion version of oop_iterate below. */                 \
 246       oop(bottom)->oop_iterate(cl);                                     \
 247       bottom = next_obj;                                                \
 248       next_obj = bottom + oop(bottom)->size();                          \
 249     }                                                                   \
 250     /* Last object. */                                                  \
 251     oop(bottom)->oop_iterate(cl, mr);                                   \
 252   }                                                                     \
 253 }
 254 
 255 // (There are only two of these, rather than N, because the split is due
 256 // only to the introduction of the FilteringClosure, a local part of the
 257 // impl of this abstraction.)
 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 260 
 261 DirtyCardToOopClosure*
 262 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 263                              CardTableModRefBS::PrecisionStyle precision,
 264                              HeapWord* boundary,
 265                              bool parallel) {
 266   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 267 }
 268 
 269 void Space::initialize(MemRegion mr,
 270                        bool clear_space,
 271                        bool mangle_space) {
 272   HeapWord* bottom = mr.start();
 273   HeapWord* end    = mr.end();
 274   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 275          "invalid space boundaries");
 276   set_bottom(bottom);
 277   set_end(end);
 278   if (clear_space) clear(mangle_space);
 279 }
 280 
 281 void Space::clear(bool mangle_space) {
 282   if (ZapUnusedHeapArea && mangle_space) {
 283     mangle_unused_area();
 284   }
 285 }
 286 
 287 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 288     _concurrent_iteration_safe_limit(NULL) {
 289   _mangler = new GenSpaceMangler(this);
 290 }
 291 
 292 ContiguousSpace::~ContiguousSpace() {
 293   delete _mangler;
 294 }
 295 
 296 void ContiguousSpace::initialize(MemRegion mr,
 297                                  bool clear_space,
 298                                  bool mangle_space)
 299 {
 300   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 301   set_concurrent_iteration_safe_limit(top());
 302 }
 303 
 304 void ContiguousSpace::clear(bool mangle_space) {
 305   set_top(bottom());
 306   set_saved_mark();
 307   CompactibleSpace::clear(mangle_space);
 308 }
 309 
 310 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 311   return p >= _top;
 312 }
 313 
 314 void OffsetTableContigSpace::clear(bool mangle_space) {
 315   ContiguousSpace::clear(mangle_space);
 316   _offsets.initialize_threshold();
 317 }
 318 
 319 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 320   Space::set_bottom(new_bottom);
 321   _offsets.set_bottom(new_bottom);
 322 }
 323 
 324 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 325   // Space should not advertise an increase in size
 326   // until after the underlying offset table has been enlarged.
 327   _offsets.resize(pointer_delta(new_end, bottom()));
 328   Space::set_end(new_end);
 329 }
 330 
 331 #ifndef PRODUCT
 332 
 333 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 334   mangler()->set_top_for_allocations(v);
 335 }
 336 void ContiguousSpace::set_top_for_allocations() {
 337   mangler()->set_top_for_allocations(top());
 338 }
 339 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 340   mangler()->check_mangled_unused_area(limit);
 341 }
 342 
 343 void ContiguousSpace::check_mangled_unused_area_complete() {
 344   mangler()->check_mangled_unused_area_complete();
 345 }
 346 
 347 // Mangled only the unused space that has not previously
 348 // been mangled and that has not been allocated since being
 349 // mangled.
 350 void ContiguousSpace::mangle_unused_area() {
 351   mangler()->mangle_unused_area();
 352 }
 353 void ContiguousSpace::mangle_unused_area_complete() {
 354   mangler()->mangle_unused_area_complete();
 355 }
 356 #endif  // NOT_PRODUCT
 357 
 358 void CompactibleSpace::initialize(MemRegion mr,
 359                                   bool clear_space,
 360                                   bool mangle_space) {
 361   Space::initialize(mr, clear_space, mangle_space);
 362   set_compaction_top(bottom());
 363   _next_compaction_space = NULL;
 364 }
 365 
 366 void CompactibleSpace::clear(bool mangle_space) {
 367   Space::clear(mangle_space);
 368   _compaction_top = bottom();
 369 }
 370 
 371 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 372                                     CompactPoint* cp, HeapWord* compact_top) {
 373   // q is alive
 374   // First check if we should switch compaction space
 375   assert(this == cp->space, "'this' should be current compaction space.");
 376   size_t compaction_max_size = pointer_delta(end(), compact_top);
 377   while (size > compaction_max_size) {
 378     // switch to next compaction space
 379     cp->space->set_compaction_top(compact_top);
 380     cp->space = cp->space->next_compaction_space();
 381     if (cp->space == NULL) {
 382       cp->gen = GenCollectedHeap::heap()->young_gen();
 383       assert(cp->gen != NULL, "compaction must succeed");
 384       cp->space = cp->gen->first_compaction_space();
 385       assert(cp->space != NULL, "generation must have a first compaction space");
 386     }
 387     compact_top = cp->space->bottom();
 388     cp->space->set_compaction_top(compact_top);
 389     cp->threshold = cp->space->initialize_threshold();
 390     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 391   }
 392 
 393   // store the forwarding pointer into the mark word
 394   if ((HeapWord*)q != compact_top) {
 395     q->forward_to(oop(compact_top));
 396     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 397   } else {
 398     // if the object isn't moving we can just set the mark to the default
 399     // mark and handle it specially later on.
 400     q->init_mark();
 401     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 402   }
 403 
 404   compact_top += size;
 405 
 406   // we need to update the offset table so that the beginnings of objects can be
 407   // found during scavenge.  Note that we are updating the offset table based on
 408   // where the object will be once the compaction phase finishes.
 409   if (compact_top > cp->threshold)
 410     cp->threshold =
 411       cp->space->cross_threshold(compact_top - size, compact_top);
 412   return compact_top;
 413 }
 414 
 415 
 416 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
 417                                         HeapWord* q, size_t deadlength) {
 418   if (allowed_deadspace_words >= deadlength) {
 419     allowed_deadspace_words -= deadlength;
 420     CollectedHeap::fill_with_object(q, deadlength);
 421     oop(q)->set_mark(oop(q)->mark()->set_marked());
 422     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 423     // Recall that we required "q == compaction_top".
 424     return true;
 425   } else {
 426     allowed_deadspace_words = 0;
 427     return false;
 428   }
 429 }
 430 
 431 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 432   scan_and_forward(this, cp);
 433 }
 434 
 435 void CompactibleSpace::adjust_pointers() {
 436   // Check first is there is any work to do.
 437   if (used() == 0) {
 438     return;   // Nothing to do.
 439   }
 440 
 441   scan_and_adjust_pointers(this);
 442 }
 443 
 444 void CompactibleSpace::compact() {
 445   scan_and_compact(this);
 446 }
 447 
 448 void Space::print_short() const { print_short_on(tty); }
 449 
 450 void Space::print_short_on(outputStream* st) const {
 451   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 452               (int) ((double) used() * 100 / capacity()));
 453 }
 454 
 455 void Space::print() const { print_on(tty); }
 456 
 457 void Space::print_on(outputStream* st) const {
 458   print_short_on(st);
 459   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 460                 p2i(bottom()), p2i(end()));
 461 }
 462 
 463 void ContiguousSpace::print_on(outputStream* st) const {
 464   print_short_on(st);
 465   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 466                 p2i(bottom()), p2i(top()), p2i(end()));
 467 }
 468 
 469 void OffsetTableContigSpace::print_on(outputStream* st) const {
 470   print_short_on(st);
 471   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 472                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 473               p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 474 }
 475 
 476 void ContiguousSpace::verify() const {
 477   HeapWord* p = bottom();
 478   HeapWord* t = top();
 479   HeapWord* prev_p = NULL;
 480   while (p < t) {
 481     oop(p)->verify();
 482     prev_p = p;
 483     p += oop(p)->size();
 484   }
 485   guarantee(p == top(), "end of last object must match end of space");
 486   if (top() != end()) {
 487     guarantee(top() == block_start_const(end()-1) &&
 488               top() == block_start_const(top()),
 489               "top should be start of unallocated block, if it exists");
 490   }
 491 }
 492 
 493 void Space::oop_iterate(ExtendedOopClosure* blk) {
 494   ObjectToOopClosure blk2(blk);
 495   object_iterate(&blk2);
 496 }
 497 
 498 bool Space::obj_is_alive(const HeapWord* p) const {
 499   assert (block_is_obj(p), "The address should point to an object");
 500   return true;
 501 }
 502 
 503 #if INCLUDE_ALL_GCS
 504 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 505                                                                             \
 506   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 507     HeapWord* obj_addr = mr.start();                                        \
 508     HeapWord* t = mr.end();                                                 \
 509     while (obj_addr < t) {                                                  \
 510       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
 511       obj_addr += oop(obj_addr)->oop_iterate_size(blk);                     \
 512     }                                                                       \
 513   }
 514 
 515   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 516 
 517 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 518 #endif // INCLUDE_ALL_GCS
 519 
 520 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 521   if (is_empty()) return;
 522   HeapWord* obj_addr = bottom();
 523   HeapWord* t = top();
 524   // Could call objects iterate, but this is easier.
 525   while (obj_addr < t) {
 526     obj_addr += oop(obj_addr)->oop_iterate_size(blk);
 527   }
 528 }
 529 
 530 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 531   if (is_empty()) return;
 532   object_iterate_from(bottom(), blk);
 533 }
 534 
 535 // For a ContiguousSpace object_iterate() and safe_object_iterate()
 536 // are the same.
 537 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 538   object_iterate(blk);
 539 }
 540 
 541 void ContiguousSpace::object_iterate_from(HeapWord* mark, ObjectClosure* blk) {
 542   while (mark < top()) {
 543     blk->do_object(oop(mark));
 544     mark += oop(mark)->size();
 545   }
 546 }
 547 
 548 HeapWord*
 549 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 550   HeapWord * limit = concurrent_iteration_safe_limit();
 551   assert(limit <= top(), "sanity check");
 552   for (HeapWord* p = bottom(); p < limit;) {
 553     size_t size = blk->do_object_careful(oop(p));
 554     if (size == 0) {
 555       return p;  // failed at p
 556     } else {
 557       p += size;
 558     }
 559   }
 560   return NULL; // all done
 561 }
 562 
 563 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 564                                                                           \
 565 void ContiguousSpace::                                                    \
 566 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 567   HeapWord* t;                                                            \
 568   HeapWord* p = saved_mark_word();                                        \
 569   assert(p != NULL, "expected saved mark");                               \
 570                                                                           \
 571   const intx interval = PrefetchScanIntervalInBytes;                      \
 572   do {                                                                    \
 573     t = top();                                                            \
 574     while (p < t) {                                                       \
 575       Prefetch::write(p, interval);                                       \
 576       debug_only(HeapWord* prev = p);                                     \
 577       oop m = oop(p);                                                     \
 578       p += m->oop_iterate_size(blk);                                      \
 579     }                                                                     \
 580   } while (t < top());                                                    \
 581                                                                           \
 582   set_saved_mark_word(p);                                                 \
 583 }
 584 
 585 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 586 
 587 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 588 
 589 // Very general, slow implementation.
 590 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 591   assert(MemRegion(bottom(), end()).contains(p),
 592          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 593          p2i(p), p2i(bottom()), p2i(end()));
 594   if (p >= top()) {
 595     return top();
 596   } else {
 597     HeapWord* last = bottom();
 598     HeapWord* cur = last;
 599     while (cur <= p) {
 600       last = cur;
 601       cur += oop(cur)->size();
 602     }
 603     assert(oop(last)->is_oop(), PTR_FORMAT " should be an object start", p2i(last));
 604     return last;
 605   }
 606 }
 607 
 608 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 609   assert(MemRegion(bottom(), end()).contains(p),
 610          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 611          p2i(p), p2i(bottom()), p2i(end()));
 612   HeapWord* current_top = top();
 613   assert(p <= current_top,
 614          "p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 615          p2i(p), p2i(current_top));
 616   assert(p == current_top || oop(p)->is_oop(),
 617          "p (" PTR_FORMAT ") is not a block start - "
 618          "current_top: " PTR_FORMAT ", is_oop: %s",
 619          p2i(p), p2i(current_top), BOOL_TO_STR(oop(p)->is_oop()));
 620   if (p < current_top) {
 621     return oop(p)->size();
 622   } else {
 623     assert(p == current_top, "just checking");
 624     return pointer_delta(end(), (HeapWord*) p);
 625   }
 626 }
 627 
 628 // This version requires locking.
 629 inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
 630   assert(Heap_lock->owned_by_self() ||
 631          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
 632          "not locked");
 633   HeapWord* obj = top();
 634   if (pointer_delta(end(), obj) >= size) {
 635     HeapWord* new_top = obj + size;
 636     set_top(new_top);
 637     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 638     return obj;
 639   } else {
 640     return NULL;
 641   }
 642 }
 643 
 644 // This version is lock-free.
 645 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
 646   do {
 647     HeapWord* obj = top();
 648     if (pointer_delta(end(), obj) >= size) {
 649       HeapWord* new_top = obj + size;
 650       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 651       // result can be one of two:
 652       //  the old top value: the exchange succeeded
 653       //  otherwise: the new value of the top is returned.
 654       if (result == obj) {
 655         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 656         return obj;
 657       }
 658     } else {
 659       return NULL;
 660     }
 661   } while (true);
 662 }
 663 
 664 HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
 665   assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
 666   HeapWord* end_value = end();
 667 
 668   HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
 669   if (obj == NULL) {
 670     return NULL;
 671   }
 672 
 673   if (pointer_delta(end_value, obj) >= size) {
 674     HeapWord* new_top = obj + size;
 675     set_top(new_top);
 676     assert(is_ptr_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
 677       "checking alignment");
 678     return obj;
 679   } else {
 680     set_top(obj);
 681     return NULL;
 682   }
 683 }
 684 
 685 // Requires locking.
 686 HeapWord* ContiguousSpace::allocate(size_t size) {
 687   return allocate_impl(size);
 688 }
 689 
 690 // Lock-free.
 691 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 692   return par_allocate_impl(size);
 693 }
 694 
 695 void ContiguousSpace::allocate_temporary_filler(int factor) {
 696   // allocate temporary type array decreasing free size with factor 'factor'
 697   assert(factor >= 0, "just checking");
 698   size_t size = pointer_delta(end(), top());
 699 
 700   // if space is full, return
 701   if (size == 0) return;
 702 
 703   if (factor > 0) {
 704     size -= size/factor;
 705   }
 706   size = align_object_size(size);
 707 
 708   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 709   if (size >= (size_t)align_object_size(array_header_size)) {
 710     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 711     // allocate uninitialized int array
 712     typeArrayOop t = (typeArrayOop) allocate(size);
 713     assert(t != NULL, "allocation should succeed");
 714     t->set_mark(markOopDesc::prototype());
 715     t->set_klass(Universe::intArrayKlassObj());
 716     t->set_length((int)length);
 717   } else {
 718     assert(size == CollectedHeap::min_fill_size(),
 719            "size for smallest fake object doesn't match");
 720     instanceOop obj = (instanceOop) allocate(size);
 721     obj->set_mark(markOopDesc::prototype());
 722     obj->set_klass_gap(0);
 723     obj->set_klass(SystemDictionary::Object_klass());
 724   }
 725 }
 726 
 727 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 728   return _offsets.initialize_threshold();
 729 }
 730 
 731 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 732   _offsets.alloc_block(start, end);
 733   return _offsets.threshold();
 734 }
 735 
 736 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 737                                                MemRegion mr) :
 738   _offsets(sharedOffsetArray, mr),
 739   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 740 {
 741   _offsets.set_contig_space(this);
 742   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 743 }
 744 
 745 #define OBJ_SAMPLE_INTERVAL 0
 746 #define BLOCK_SAMPLE_INTERVAL 100
 747 
 748 void OffsetTableContigSpace::verify() const {
 749   HeapWord* p = bottom();
 750   HeapWord* prev_p = NULL;
 751   int objs = 0;
 752   int blocks = 0;
 753 
 754   if (VerifyObjectStartArray) {
 755     _offsets.verify();
 756   }
 757 
 758   while (p < top()) {
 759     size_t size = oop(p)->size();
 760     // For a sampling of objects in the space, find it using the
 761     // block offset table.
 762     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 763       guarantee(p == block_start_const(p + (size/2)),
 764                 "check offset computation");
 765       blocks = 0;
 766     } else {
 767       blocks++;
 768     }
 769 
 770     if (objs == OBJ_SAMPLE_INTERVAL) {
 771       oop(p)->verify();
 772       objs = 0;
 773     } else {
 774       objs++;
 775     }
 776     prev_p = p;
 777     p += size;
 778   }
 779   guarantee(p == top(), "end of last object must match end of space");
 780 }
 781 
 782 
 783 size_t TenuredSpace::allowed_dead_ratio() const {
 784   return MarkSweepDeadRatio;
 785 }