1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "prims/forte.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiRedefineClassesTrace.hpp"
  46 #include "prims/methodHandles.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "trace/tracing.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/hashtable.inline.hpp"
  65 #include "utilities/macros.hpp"
  66 #include "utilities/xmlstream.hpp"
  67 #ifdef COMPILER1
  68 #include "c1/c1_Runtime1.hpp"
  69 #endif
  70 
  71 // Shared stub locations
  72 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  73 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  74 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  77 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  78 
  79 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  82 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  83 
  84 #ifdef COMPILER2
  85 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  86 #endif // COMPILER2
  87 
  88 
  89 //----------------------------generate_stubs-----------------------------------
  90 void SharedRuntime::generate_stubs() {
  91   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  92   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  93   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  94   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  95   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  96   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  97 
  98 #if defined(COMPILER2) || INCLUDE_JVMCI
  99   // Vectors are generated only by C2 and JVMCI.
 100   bool support_wide = is_wide_vector(MaxVectorSize);
 101   if (support_wide) {
 102     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 103   }
 104 #endif // COMPILER2 || INCLUDE_JVMCI
 105   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 106   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 107 
 108   generate_deopt_blob();
 109 
 110 #ifdef COMPILER2
 111   generate_uncommon_trap_blob();
 112 #endif // COMPILER2
 113 }
 114 
 115 #include <math.h>
 116 
 117 // Implementation of SharedRuntime
 118 
 119 #ifndef PRODUCT
 120 // For statistics
 121 int SharedRuntime::_ic_miss_ctr = 0;
 122 int SharedRuntime::_wrong_method_ctr = 0;
 123 int SharedRuntime::_resolve_static_ctr = 0;
 124 int SharedRuntime::_resolve_virtual_ctr = 0;
 125 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 126 int SharedRuntime::_implicit_null_throws = 0;
 127 int SharedRuntime::_implicit_div0_throws = 0;
 128 int SharedRuntime::_throw_null_ctr = 0;
 129 
 130 int SharedRuntime::_nof_normal_calls = 0;
 131 int SharedRuntime::_nof_optimized_calls = 0;
 132 int SharedRuntime::_nof_inlined_calls = 0;
 133 int SharedRuntime::_nof_megamorphic_calls = 0;
 134 int SharedRuntime::_nof_static_calls = 0;
 135 int SharedRuntime::_nof_inlined_static_calls = 0;
 136 int SharedRuntime::_nof_interface_calls = 0;
 137 int SharedRuntime::_nof_optimized_interface_calls = 0;
 138 int SharedRuntime::_nof_inlined_interface_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 140 int SharedRuntime::_nof_removable_exceptions = 0;
 141 
 142 int SharedRuntime::_new_instance_ctr=0;
 143 int SharedRuntime::_new_array_ctr=0;
 144 int SharedRuntime::_multi1_ctr=0;
 145 int SharedRuntime::_multi2_ctr=0;
 146 int SharedRuntime::_multi3_ctr=0;
 147 int SharedRuntime::_multi4_ctr=0;
 148 int SharedRuntime::_multi5_ctr=0;
 149 int SharedRuntime::_mon_enter_stub_ctr=0;
 150 int SharedRuntime::_mon_exit_stub_ctr=0;
 151 int SharedRuntime::_mon_enter_ctr=0;
 152 int SharedRuntime::_mon_exit_ctr=0;
 153 int SharedRuntime::_partial_subtype_ctr=0;
 154 int SharedRuntime::_jbyte_array_copy_ctr=0;
 155 int SharedRuntime::_jshort_array_copy_ctr=0;
 156 int SharedRuntime::_jint_array_copy_ctr=0;
 157 int SharedRuntime::_jlong_array_copy_ctr=0;
 158 int SharedRuntime::_oop_array_copy_ctr=0;
 159 int SharedRuntime::_checkcast_array_copy_ctr=0;
 160 int SharedRuntime::_unsafe_array_copy_ctr=0;
 161 int SharedRuntime::_generic_array_copy_ctr=0;
 162 int SharedRuntime::_slow_array_copy_ctr=0;
 163 int SharedRuntime::_find_handler_ctr=0;
 164 int SharedRuntime::_rethrow_ctr=0;
 165 
 166 int     SharedRuntime::_ICmiss_index                    = 0;
 167 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 168 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 169 
 170 
 171 void SharedRuntime::trace_ic_miss(address at) {
 172   for (int i = 0; i < _ICmiss_index; i++) {
 173     if (_ICmiss_at[i] == at) {
 174       _ICmiss_count[i]++;
 175       return;
 176     }
 177   }
 178   int index = _ICmiss_index++;
 179   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 180   _ICmiss_at[index] = at;
 181   _ICmiss_count[index] = 1;
 182 }
 183 
 184 void SharedRuntime::print_ic_miss_histogram() {
 185   if (ICMissHistogram) {
 186     tty->print_cr("IC Miss Histogram:");
 187     int tot_misses = 0;
 188     for (int i = 0; i < _ICmiss_index; i++) {
 189       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 190       tot_misses += _ICmiss_count[i];
 191     }
 192     tty->print_cr("Total IC misses: %7d", tot_misses);
 193   }
 194 }
 195 #endif // PRODUCT
 196 
 197 #if INCLUDE_ALL_GCS
 198 
 199 // G1 write-barrier pre: executed before a pointer store.
 200 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 201   if (orig == NULL) {
 202     assert(false, "should be optimized out");
 203     return;
 204   }
 205   assert(orig->is_oop(true /* ignore mark word */), "Error");
 206   // store the original value that was in the field reference
 207   thread->satb_mark_queue().enqueue(orig);
 208 JRT_END
 209 
 210 // G1 write-barrier post: executed after a pointer store.
 211 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 212   thread->dirty_card_queue().enqueue(card_addr);
 213 JRT_END
 214 
 215 #endif // INCLUDE_ALL_GCS
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 219   return x * y;
 220 JRT_END
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 224   if (x == min_jlong && y == CONST64(-1)) {
 225     return x;
 226   } else {
 227     return x / y;
 228   }
 229 JRT_END
 230 
 231 
 232 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 233   if (x == min_jlong && y == CONST64(-1)) {
 234     return 0;
 235   } else {
 236     return x % y;
 237   }
 238 JRT_END
 239 
 240 
 241 const juint  float_sign_mask  = 0x7FFFFFFF;
 242 const juint  float_infinity   = 0x7F800000;
 243 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 244 const julong double_infinity  = CONST64(0x7FF0000000000000);
 245 
 246 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 247 #ifdef _WIN64
 248   // 64-bit Windows on amd64 returns the wrong values for
 249   // infinity operands.
 250   union { jfloat f; juint i; } xbits, ybits;
 251   xbits.f = x;
 252   ybits.f = y;
 253   // x Mod Infinity == x unless x is infinity
 254   if (((xbits.i & float_sign_mask) != float_infinity) &&
 255        ((ybits.i & float_sign_mask) == float_infinity) ) {
 256     return x;
 257   }
 258   return ((jfloat)fmod_winx64((double)x, (double)y));
 259 #else
 260   return ((jfloat)fmod((double)x,(double)y));
 261 #endif
 262 JRT_END
 263 
 264 
 265 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 266 #ifdef _WIN64
 267   union { jdouble d; julong l; } xbits, ybits;
 268   xbits.d = x;
 269   ybits.d = y;
 270   // x Mod Infinity == x unless x is infinity
 271   if (((xbits.l & double_sign_mask) != double_infinity) &&
 272        ((ybits.l & double_sign_mask) == double_infinity) ) {
 273     return x;
 274   }
 275   return ((jdouble)fmod_winx64((double)x, (double)y));
 276 #else
 277   return ((jdouble)fmod((double)x,(double)y));
 278 #endif
 279 JRT_END
 280 
 281 #ifdef __SOFTFP__
 282 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 283   return x + y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 287   return x - y;
 288 JRT_END
 289 
 290 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 291   return x * y;
 292 JRT_END
 293 
 294 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 295   return x / y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 299   return x + y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 303   return x - y;
 304 JRT_END
 305 
 306 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 307   return x * y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 311   return x / y;
 312 JRT_END
 313 
 314 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 315   return (jfloat)x;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 319   return (jdouble)x;
 320 JRT_END
 321 
 322 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 323   return (jdouble)x;
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 327   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 335   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 339   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 340 JRT_END
 341 
 342 // Functions to return the opposite of the aeabi functions for nan.
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 344   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 348   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 352   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 356   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 360   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 364   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 368   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 372   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 // Intrinsics make gcc generate code for these.
 376 float  SharedRuntime::fneg(float f)   {
 377   return -f;
 378 }
 379 
 380 double SharedRuntime::dneg(double f)  {
 381   return -f;
 382 }
 383 
 384 #endif // __SOFTFP__
 385 
 386 #if defined(__SOFTFP__) || defined(E500V2)
 387 // Intrinsics make gcc generate code for these.
 388 double SharedRuntime::dabs(double f)  {
 389   return (f <= (double)0.0) ? (double)0.0 - f : f;
 390 }
 391 
 392 #endif
 393 
 394 #if defined(__SOFTFP__) || defined(PPC)
 395 double SharedRuntime::dsqrt(double f) {
 396   return sqrt(f);
 397 }
 398 #endif
 399 
 400 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 401   if (g_isnan(x))
 402     return 0;
 403   if (x >= (jfloat) max_jint)
 404     return max_jint;
 405   if (x <= (jfloat) min_jint)
 406     return min_jint;
 407   return (jint) x;
 408 JRT_END
 409 
 410 
 411 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 412   if (g_isnan(x))
 413     return 0;
 414   if (x >= (jfloat) max_jlong)
 415     return max_jlong;
 416   if (x <= (jfloat) min_jlong)
 417     return min_jlong;
 418   return (jlong) x;
 419 JRT_END
 420 
 421 
 422 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 423   if (g_isnan(x))
 424     return 0;
 425   if (x >= (jdouble) max_jint)
 426     return max_jint;
 427   if (x <= (jdouble) min_jint)
 428     return min_jint;
 429   return (jint) x;
 430 JRT_END
 431 
 432 
 433 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 434   if (g_isnan(x))
 435     return 0;
 436   if (x >= (jdouble) max_jlong)
 437     return max_jlong;
 438   if (x <= (jdouble) min_jlong)
 439     return min_jlong;
 440   return (jlong) x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 450   return (jfloat)x;
 451 JRT_END
 452 
 453 
 454 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 455   return (jdouble)x;
 456 JRT_END
 457 
 458 // Exception handling across interpreter/compiler boundaries
 459 //
 460 // exception_handler_for_return_address(...) returns the continuation address.
 461 // The continuation address is the entry point of the exception handler of the
 462 // previous frame depending on the return address.
 463 
 464 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 465   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 466   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 467 
 468   // Reset method handle flag.
 469   thread->set_is_method_handle_return(false);
 470 
 471 #if INCLUDE_JVMCI
 472   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 473   // and other exception handler continuations do not read it
 474   thread->set_exception_pc(NULL);
 475 #endif
 476 
 477   // The fastest case first
 478   CodeBlob* blob = CodeCache::find_blob(return_address);
 479   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 480   if (nm != NULL) {
 481     // Set flag if return address is a method handle call site.
 482     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 483     // native nmethods don't have exception handlers
 484     assert(!nm->is_native_method(), "no exception handler");
 485     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 486     if (nm->is_deopt_pc(return_address)) {
 487       // If we come here because of a stack overflow, the stack may be
 488       // unguarded. Reguard the stack otherwise if we return to the
 489       // deopt blob and the stack bang causes a stack overflow we
 490       // crash.
 491       bool guard_pages_enabled = thread->stack_guards_enabled();
 492       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 493       if (thread->reserved_stack_activation() != thread->stack_base()) {
 494         thread->set_reserved_stack_activation(thread->stack_base());
 495       }
 496       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 497       return SharedRuntime::deopt_blob()->unpack_with_exception();
 498     } else {
 499       return nm->exception_begin();
 500     }
 501   }
 502 
 503   // Entry code
 504   if (StubRoutines::returns_to_call_stub(return_address)) {
 505     return StubRoutines::catch_exception_entry();
 506   }
 507   // Interpreted code
 508   if (Interpreter::contains(return_address)) {
 509     return Interpreter::rethrow_exception_entry();
 510   }
 511 
 512   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 513   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 514 
 515 #ifndef PRODUCT
 516   { ResourceMark rm;
 517     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 518     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 519     tty->print_cr("b) other problem");
 520   }
 521 #endif // PRODUCT
 522 
 523   ShouldNotReachHere();
 524   return NULL;
 525 }
 526 
 527 
 528 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 529   return raw_exception_handler_for_return_address(thread, return_address);
 530 JRT_END
 531 
 532 
 533 address SharedRuntime::get_poll_stub(address pc) {
 534   address stub;
 535   // Look up the code blob
 536   CodeBlob *cb = CodeCache::find_blob(pc);
 537 
 538   // Should be an nmethod
 539   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 540 
 541   // Look up the relocation information
 542   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 543     "safepoint polling: type must be poll");
 544 
 545 #ifdef ASSERT
 546   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 547     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 548     Disassembler::decode(cb);
 549     fatal("Only polling locations are used for safepoint");
 550   }
 551 #endif
 552 
 553   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 554   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 555   if (at_poll_return) {
 556     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 557            "polling page return stub not created yet");
 558     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 559   } else if (has_wide_vectors) {
 560     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 561            "polling page vectors safepoint stub not created yet");
 562     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 563   } else {
 564     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 565            "polling page safepoint stub not created yet");
 566     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 567   }
 568   log_debug(safepoint)("... found polling page %s exception at pc = "
 569                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 570                        at_poll_return ? "return" : "loop",
 571                        (intptr_t)pc, (intptr_t)stub);
 572   return stub;
 573 }
 574 
 575 
 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 577   assert(caller.is_interpreted_frame(), "");
 578   int args_size = ArgumentSizeComputer(sig).size() + 1;
 579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 580   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 582   return result;
 583 }
 584 
 585 
 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 587   if (JvmtiExport::can_post_on_exceptions()) {
 588     vframeStream vfst(thread, true);
 589     methodHandle method = methodHandle(thread, vfst.method());
 590     address bcp = method()->bcp_from(vfst.bci());
 591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 592   }
 593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 594 }
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 597   Handle h_exception = Exceptions::new_exception(thread, name, message);
 598   throw_and_post_jvmti_exception(thread, h_exception);
 599 }
 600 
 601 // The interpreter code to call this tracing function is only
 602 // called/generated when TraceRedefineClasses has the right bits
 603 // set. Since obsolete methods are never compiled, we don't have
 604 // to modify the compilers to generate calls to this function.
 605 //
 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 607     JavaThread* thread, Method* method))
 608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 609 
 610   if (method->is_obsolete()) {
 611     // We are calling an obsolete method, but this is not necessarily
 612     // an error. Our method could have been redefined just after we
 613     // fetched the Method* from the constant pool.
 614 
 615     // RC_TRACE macro has an embedded ResourceMark
 616     RC_TRACE_WITH_THREAD(0x00001000, thread,
 617                          ("calling obsolete method '%s'",
 618                           method->name_and_sig_as_C_string()));
 619     if (RC_TRACE_ENABLED(0x00002000)) {
 620       // this option is provided to debug calls to obsolete methods
 621       guarantee(false, "faulting at call to an obsolete method.");
 622     }
 623   }
 624   return 0;
 625 JRT_END
 626 
 627 // ret_pc points into caller; we are returning caller's exception handler
 628 // for given exception
 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 630                                                     bool force_unwind, bool top_frame_only) {
 631   assert(nm != NULL, "must exist");
 632   ResourceMark rm;
 633 
 634 #if INCLUDE_JVMCI
 635   if (nm->is_compiled_by_jvmci()) {
 636     // lookup exception handler for this pc
 637     int catch_pco = ret_pc - nm->code_begin();
 638     ExceptionHandlerTable table(nm);
 639     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 640     if (t != NULL) {
 641       return nm->code_begin() + t->pco();
 642     } else {
 643       // there is no exception handler for this pc => deoptimize
 644       nm->make_not_entrant();
 645 
 646       // Use Deoptimization::deoptimize for all of its side-effects:
 647       // revoking biases of monitors, gathering traps statistics, logging...
 648       // it also patches the return pc but we do not care about that
 649       // since we return a continuation to the deopt_blob below.
 650       JavaThread* thread = JavaThread::current();
 651       RegisterMap reg_map(thread, UseBiasedLocking);
 652       frame runtime_frame = thread->last_frame();
 653       frame caller_frame = runtime_frame.sender(&reg_map);
 654       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 655 
 656       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 657     }
 658   }
 659 #endif // INCLUDE_JVMCI
 660 
 661   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 662   // determine handler bci, if any
 663   EXCEPTION_MARK;
 664 
 665   int handler_bci = -1;
 666   int scope_depth = 0;
 667   if (!force_unwind) {
 668     int bci = sd->bci();
 669     bool recursive_exception = false;
 670     do {
 671       bool skip_scope_increment = false;
 672       // exception handler lookup
 673       KlassHandle ek (THREAD, exception->klass());
 674       methodHandle mh(THREAD, sd->method());
 675       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 676       if (HAS_PENDING_EXCEPTION) {
 677         recursive_exception = true;
 678         // We threw an exception while trying to find the exception handler.
 679         // Transfer the new exception to the exception handle which will
 680         // be set into thread local storage, and do another lookup for an
 681         // exception handler for this exception, this time starting at the
 682         // BCI of the exception handler which caused the exception to be
 683         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 684         // argument to ensure that the correct exception is thrown (4870175).
 685         exception = Handle(THREAD, PENDING_EXCEPTION);
 686         CLEAR_PENDING_EXCEPTION;
 687         if (handler_bci >= 0) {
 688           bci = handler_bci;
 689           handler_bci = -1;
 690           skip_scope_increment = true;
 691         }
 692       }
 693       else {
 694         recursive_exception = false;
 695       }
 696       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 697         sd = sd->sender();
 698         if (sd != NULL) {
 699           bci = sd->bci();
 700         }
 701         ++scope_depth;
 702       }
 703     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 704   }
 705 
 706   // found handling method => lookup exception handler
 707   int catch_pco = ret_pc - nm->code_begin();
 708 
 709   ExceptionHandlerTable table(nm);
 710   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 711   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 712     // Allow abbreviated catch tables.  The idea is to allow a method
 713     // to materialize its exceptions without committing to the exact
 714     // routing of exceptions.  In particular this is needed for adding
 715     // a synthetic handler to unlock monitors when inlining
 716     // synchronized methods since the unlock path isn't represented in
 717     // the bytecodes.
 718     t = table.entry_for(catch_pco, -1, 0);
 719   }
 720 
 721 #ifdef COMPILER1
 722   if (t == NULL && nm->is_compiled_by_c1()) {
 723     assert(nm->unwind_handler_begin() != NULL, "");
 724     return nm->unwind_handler_begin();
 725   }
 726 #endif
 727 
 728   if (t == NULL) {
 729     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 730     tty->print_cr("   Exception:");
 731     exception->print();
 732     tty->cr();
 733     tty->print_cr(" Compiled exception table :");
 734     table.print();
 735     nm->print_code();
 736     guarantee(false, "missing exception handler");
 737     return NULL;
 738   }
 739 
 740   return nm->code_begin() + t->pco();
 741 }
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 762   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 763   // cache sites (when the callee activation is not yet set up) so we are at a call site
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 768   throw_StackOverflowError_common(thread, false);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, true);
 773 JRT_END
 774 
 775 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 776   // We avoid using the normal exception construction in this case because
 777   // it performs an upcall to Java, and we're already out of stack space.
 778   Thread* THREAD = thread;
 779   Klass* k = SystemDictionary::StackOverflowError_klass();
 780   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 781   if (delayed) {
 782     java_lang_Throwable::set_message(exception_oop,
 783                                      Universe::delayed_stack_overflow_error_message());
 784   }
 785   Handle exception (thread, exception_oop);
 786   if (StackTraceInThrowable) {
 787     java_lang_Throwable::fill_in_stack_trace(exception);
 788   }
 789   // Increment counter for hs_err file reporting
 790   Atomic::inc(&Exceptions::_stack_overflow_errors);
 791   throw_and_post_jvmti_exception(thread, exception);
 792 }
 793 
 794 #if INCLUDE_JVMCI
 795 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 796   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 797   thread->set_jvmci_implicit_exception_pc(pc);
 798   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 799   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 800 }
 801 #endif // INCLUDE_JVMCI
 802 
 803 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 804                                                            address pc,
 805                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 806 {
 807   address target_pc = NULL;
 808 
 809   if (Interpreter::contains(pc)) {
 810 #ifdef CC_INTERP
 811     // C++ interpreter doesn't throw implicit exceptions
 812     ShouldNotReachHere();
 813 #else
 814     switch (exception_kind) {
 815       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 816       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 817       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 818       default:                      ShouldNotReachHere();
 819     }
 820 #endif // !CC_INTERP
 821   } else {
 822     switch (exception_kind) {
 823       case STACK_OVERFLOW: {
 824         // Stack overflow only occurs upon frame setup; the callee is
 825         // going to be unwound. Dispatch to a shared runtime stub
 826         // which will cause the StackOverflowError to be fabricated
 827         // and processed.
 828         // Stack overflow should never occur during deoptimization:
 829         // the compiled method bangs the stack by as much as the
 830         // interpreter would need in case of a deoptimization. The
 831         // deoptimization blob and uncommon trap blob bang the stack
 832         // in a debug VM to verify the correctness of the compiled
 833         // method stack banging.
 834         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 835         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 836         return StubRoutines::throw_StackOverflowError_entry();
 837       }
 838 
 839       case IMPLICIT_NULL: {
 840         if (VtableStubs::contains(pc)) {
 841           // We haven't yet entered the callee frame. Fabricate an
 842           // exception and begin dispatching it in the caller. Since
 843           // the caller was at a call site, it's safe to destroy all
 844           // caller-saved registers, as these entry points do.
 845           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 846 
 847           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 848           if (vt_stub == NULL) return NULL;
 849 
 850           if (vt_stub->is_abstract_method_error(pc)) {
 851             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 852             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 853             return StubRoutines::throw_AbstractMethodError_entry();
 854           } else {
 855             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858         } else {
 859           CodeBlob* cb = CodeCache::find_blob(pc);
 860 
 861           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 862           if (cb == NULL) return NULL;
 863 
 864           // Exception happened in CodeCache. Must be either:
 865           // 1. Inline-cache check in C2I handler blob,
 866           // 2. Inline-cache check in nmethod, or
 867           // 3. Implicit null exception in nmethod
 868 
 869           if (!cb->is_nmethod()) {
 870             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 871             if (!is_in_blob) {
 872               // Allow normal crash reporting to handle this
 873               return NULL;
 874             }
 875             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 876             // There is no handler here, so we will simply unwind.
 877             return StubRoutines::throw_NullPointerException_at_call_entry();
 878           }
 879 
 880           // Otherwise, it's an nmethod.  Consult its exception handlers.
 881           nmethod* nm = (nmethod*)cb;
 882           if (nm->inlinecache_check_contains(pc)) {
 883             // exception happened inside inline-cache check code
 884             // => the nmethod is not yet active (i.e., the frame
 885             // is not set up yet) => use return address pushed by
 886             // caller => don't push another return address
 887             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 888             return StubRoutines::throw_NullPointerException_at_call_entry();
 889           }
 890 
 891           if (nm->method()->is_method_handle_intrinsic()) {
 892             // exception happened inside MH dispatch code, similar to a vtable stub
 893             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897 #ifndef PRODUCT
 898           _implicit_null_throws++;
 899 #endif
 900 #if INCLUDE_JVMCI
 901           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 902             // If there's no PcDesc then we'll die way down inside of
 903             // deopt instead of just getting normal error reporting,
 904             // so only go there if it will succeed.
 905             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 906           } else {
 907 #endif // INCLUDE_JVMCI
 908           assert (nm->is_nmethod(), "Expect nmethod");
 909           target_pc = nm->continuation_for_implicit_exception(pc);
 910 #if INCLUDE_JVMCI
 911           }
 912 #endif // INCLUDE_JVMCI
 913           // If there's an unexpected fault, target_pc might be NULL,
 914           // in which case we want to fall through into the normal
 915           // error handling code.
 916         }
 917 
 918         break; // fall through
 919       }
 920 
 921 
 922       case IMPLICIT_DIVIDE_BY_ZERO: {
 923         nmethod* nm = CodeCache::find_nmethod(pc);
 924         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 925 #ifndef PRODUCT
 926         _implicit_div0_throws++;
 927 #endif
 928 #if INCLUDE_JVMCI
 929         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 930           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 931         } else {
 932 #endif // INCLUDE_JVMCI
 933         target_pc = nm->continuation_for_implicit_exception(pc);
 934 #if INCLUDE_JVMCI
 935         }
 936 #endif // INCLUDE_JVMCI
 937         // If there's an unexpected fault, target_pc might be NULL,
 938         // in which case we want to fall through into the normal
 939         // error handling code.
 940         break; // fall through
 941       }
 942 
 943       default: ShouldNotReachHere();
 944     }
 945 
 946     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 947 
 948     if (exception_kind == IMPLICIT_NULL) {
 949 #ifndef PRODUCT
 950       // for AbortVMOnException flag
 951       Exceptions::debug_check_abort("java.lang.NullPointerException");
 952 #endif //PRODUCT
 953       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 954     } else {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     }
 961     return target_pc;
 962   }
 963 
 964   ShouldNotReachHere();
 965   return NULL;
 966 }
 967 
 968 
 969 /**
 970  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 971  * installed in the native function entry of all native Java methods before
 972  * they get linked to their actual native methods.
 973  *
 974  * \note
 975  * This method actually never gets called!  The reason is because
 976  * the interpreter's native entries call NativeLookup::lookup() which
 977  * throws the exception when the lookup fails.  The exception is then
 978  * caught and forwarded on the return from NativeLookup::lookup() call
 979  * before the call to the native function.  This might change in the future.
 980  */
 981 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 982 {
 983   // We return a bad value here to make sure that the exception is
 984   // forwarded before we look at the return value.
 985   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 986 }
 987 JNI_END
 988 
 989 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 990   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 991 }
 992 
 993 
 994 #ifndef PRODUCT
 995 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 996   const frame f = thread->last_frame();
 997   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 998 #ifndef PRODUCT
 999   methodHandle mh(THREAD, f.interpreter_frame_method());
1000   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1001 #endif // !PRODUCT
1002   return preserve_this_value;
1003 JRT_END
1004 #endif // !PRODUCT
1005 
1006 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1007   assert(obj->is_oop(), "must be a valid oop");
1008 #if INCLUDE_JVMCI
1009   // This removes the requirement for JVMCI compilers to emit code
1010   // performing a dynamic check that obj has a finalizer before
1011   // calling this routine. There should be no performance impact
1012   // for C1 since it emits a dynamic check. C2 and the interpreter
1013   // uses other runtime routines for registering finalizers.
1014   if (!obj->klass()->has_finalizer()) {
1015     return;
1016   }
1017 #endif // INCLUDE_JVMCI
1018   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1019   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1020 JRT_END
1021 
1022 
1023 jlong SharedRuntime::get_java_tid(Thread* thread) {
1024   if (thread != NULL) {
1025     if (thread->is_Java_thread()) {
1026       oop obj = ((JavaThread*)thread)->threadObj();
1027       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1028     }
1029   }
1030   return 0;
1031 }
1032 
1033 /**
1034  * This function ought to be a void function, but cannot be because
1035  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1036  * 6254741.  Once that is fixed we can remove the dummy return value.
1037  */
1038 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1039   return dtrace_object_alloc_base(Thread::current(), o, size);
1040 }
1041 
1042 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1043   assert(DTraceAllocProbes, "wrong call");
1044   Klass* klass = o->klass();
1045   Symbol* name = klass->name();
1046   HOTSPOT_OBJECT_ALLOC(
1047                    get_java_tid(thread),
1048                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1049   return 0;
1050 }
1051 
1052 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1053     JavaThread* thread, Method* method))
1054   assert(DTraceMethodProbes, "wrong call");
1055   Symbol* kname = method->klass_name();
1056   Symbol* name = method->name();
1057   Symbol* sig = method->signature();
1058   HOTSPOT_METHOD_ENTRY(
1059       get_java_tid(thread),
1060       (char *) kname->bytes(), kname->utf8_length(),
1061       (char *) name->bytes(), name->utf8_length(),
1062       (char *) sig->bytes(), sig->utf8_length());
1063   return 0;
1064 JRT_END
1065 
1066 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1067     JavaThread* thread, Method* method))
1068   assert(DTraceMethodProbes, "wrong call");
1069   Symbol* kname = method->klass_name();
1070   Symbol* name = method->name();
1071   Symbol* sig = method->signature();
1072   HOTSPOT_METHOD_RETURN(
1073       get_java_tid(thread),
1074       (char *) kname->bytes(), kname->utf8_length(),
1075       (char *) name->bytes(), name->utf8_length(),
1076       (char *) sig->bytes(), sig->utf8_length());
1077   return 0;
1078 JRT_END
1079 
1080 
1081 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1082 // for a call current in progress, i.e., arguments has been pushed on stack
1083 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1084 // vtable updates, etc.  Caller frame must be compiled.
1085 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1086   ResourceMark rm(THREAD);
1087 
1088   // last java frame on stack (which includes native call frames)
1089   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1090 
1091   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1092 }
1093 
1094 
1095 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1096 // for a call current in progress, i.e., arguments has been pushed on stack
1097 // but callee has not been invoked yet.  Caller frame must be compiled.
1098 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1099                                               vframeStream& vfst,
1100                                               Bytecodes::Code& bc,
1101                                               CallInfo& callinfo, TRAPS) {
1102   Handle receiver;
1103   Handle nullHandle;  //create a handy null handle for exception returns
1104 
1105   assert(!vfst.at_end(), "Java frame must exist");
1106 
1107   // Find caller and bci from vframe
1108   methodHandle caller(THREAD, vfst.method());
1109   int          bci   = vfst.bci();
1110 
1111   // Find bytecode
1112   Bytecode_invoke bytecode(caller, bci);
1113   bc = bytecode.invoke_code();
1114   int bytecode_index = bytecode.index();
1115 
1116   // Find receiver for non-static call
1117   if (bc != Bytecodes::_invokestatic &&
1118       bc != Bytecodes::_invokedynamic &&
1119       bc != Bytecodes::_invokehandle) {
1120     // This register map must be update since we need to find the receiver for
1121     // compiled frames. The receiver might be in a register.
1122     RegisterMap reg_map2(thread);
1123     frame stubFrame   = thread->last_frame();
1124     // Caller-frame is a compiled frame
1125     frame callerFrame = stubFrame.sender(&reg_map2);
1126 
1127     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1128     if (callee.is_null()) {
1129       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1130     }
1131     // Retrieve from a compiled argument list
1132     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1133 
1134     if (receiver.is_null()) {
1135       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1136     }
1137   }
1138 
1139   // Resolve method. This is parameterized by bytecode.
1140   constantPoolHandle constants(THREAD, caller->constants());
1141   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1142   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1143 
1144 #ifdef ASSERT
1145   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1146   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1147     assert(receiver.not_null(), "should have thrown exception");
1148     KlassHandle receiver_klass(THREAD, receiver->klass());
1149     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1150                             // klass is already loaded
1151     KlassHandle static_receiver_klass(THREAD, rk);
1152     // Method handle invokes might have been optimized to a direct call
1153     // so don't check for the receiver class.
1154     // FIXME this weakens the assert too much
1155     methodHandle callee = callinfo.selected_method();
1156     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1157            callee->is_method_handle_intrinsic() ||
1158            callee->is_compiled_lambda_form(),
1159            "actual receiver must be subclass of static receiver klass");
1160     if (receiver_klass->is_instance_klass()) {
1161       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1162         tty->print_cr("ERROR: Klass not yet initialized!!");
1163         receiver_klass()->print();
1164       }
1165       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1166     }
1167   }
1168 #endif
1169 
1170   return receiver;
1171 }
1172 
1173 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1174   ResourceMark rm(THREAD);
1175   // We need first to check if any Java activations (compiled, interpreted)
1176   // exist on the stack since last JavaCall.  If not, we need
1177   // to get the target method from the JavaCall wrapper.
1178   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1179   methodHandle callee_method;
1180   if (vfst.at_end()) {
1181     // No Java frames were found on stack since we did the JavaCall.
1182     // Hence the stack can only contain an entry_frame.  We need to
1183     // find the target method from the stub frame.
1184     RegisterMap reg_map(thread, false);
1185     frame fr = thread->last_frame();
1186     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1187     fr = fr.sender(&reg_map);
1188     assert(fr.is_entry_frame(), "must be");
1189     // fr is now pointing to the entry frame.
1190     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1191     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1192   } else {
1193     Bytecodes::Code bc;
1194     CallInfo callinfo;
1195     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1196     callee_method = callinfo.selected_method();
1197   }
1198   assert(callee_method()->is_method(), "must be");
1199   return callee_method;
1200 }
1201 
1202 // Resolves a call.
1203 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1204                                            bool is_virtual,
1205                                            bool is_optimized, TRAPS) {
1206   methodHandle callee_method;
1207   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1208   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1209     int retry_count = 0;
1210     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1211            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1212       // If has a pending exception then there is no need to re-try to
1213       // resolve this method.
1214       // If the method has been redefined, we need to try again.
1215       // Hack: we have no way to update the vtables of arrays, so don't
1216       // require that java.lang.Object has been updated.
1217 
1218       // It is very unlikely that method is redefined more than 100 times
1219       // in the middle of resolve. If it is looping here more than 100 times
1220       // means then there could be a bug here.
1221       guarantee((retry_count++ < 100),
1222                 "Could not resolve to latest version of redefined method");
1223       // method is redefined in the middle of resolve so re-try.
1224       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1225     }
1226   }
1227   return callee_method;
1228 }
1229 
1230 // Resolves a call.  The compilers generate code for calls that go here
1231 // and are patched with the real destination of the call.
1232 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1233                                            bool is_virtual,
1234                                            bool is_optimized, TRAPS) {
1235 
1236   ResourceMark rm(thread);
1237   RegisterMap cbl_map(thread, false);
1238   frame caller_frame = thread->last_frame().sender(&cbl_map);
1239 
1240   CodeBlob* caller_cb = caller_frame.cb();
1241   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1242   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1243 
1244   // make sure caller is not getting deoptimized
1245   // and removed before we are done with it.
1246   // CLEANUP - with lazy deopt shouldn't need this lock
1247   nmethodLocker caller_lock(caller_nm);
1248 
1249   // determine call info & receiver
1250   // note: a) receiver is NULL for static calls
1251   //       b) an exception is thrown if receiver is NULL for non-static calls
1252   CallInfo call_info;
1253   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1254   Handle receiver = find_callee_info(thread, invoke_code,
1255                                      call_info, CHECK_(methodHandle()));
1256   methodHandle callee_method = call_info.selected_method();
1257 
1258   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1259          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1260          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1261          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1262          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1263 
1264   assert(caller_nm->is_alive(), "It should be alive");
1265 
1266 #ifndef PRODUCT
1267   // tracing/debugging/statistics
1268   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1269                 (is_virtual) ? (&_resolve_virtual_ctr) :
1270                                (&_resolve_static_ctr);
1271   Atomic::inc(addr);
1272 
1273   if (TraceCallFixup) {
1274     ResourceMark rm(thread);
1275     tty->print("resolving %s%s (%s) call to",
1276       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1277       Bytecodes::name(invoke_code));
1278     callee_method->print_short_name(tty);
1279     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1280                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1281   }
1282 #endif
1283 
1284   // JSR 292 key invariant:
1285   // If the resolved method is a MethodHandle invoke target, the call
1286   // site must be a MethodHandle call site, because the lambda form might tail-call
1287   // leaving the stack in a state unknown to either caller or callee
1288   // TODO detune for now but we might need it again
1289 //  assert(!callee_method->is_compiled_lambda_form() ||
1290 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1291 
1292   // Compute entry points. This might require generation of C2I converter
1293   // frames, so we cannot be holding any locks here. Furthermore, the
1294   // computation of the entry points is independent of patching the call.  We
1295   // always return the entry-point, but we only patch the stub if the call has
1296   // not been deoptimized.  Return values: For a virtual call this is an
1297   // (cached_oop, destination address) pair. For a static call/optimized
1298   // virtual this is just a destination address.
1299 
1300   StaticCallInfo static_call_info;
1301   CompiledICInfo virtual_call_info;
1302 
1303   // Make sure the callee nmethod does not get deoptimized and removed before
1304   // we are done patching the code.
1305   nmethod* callee_nm = callee_method->code();
1306   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1307     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1308     callee_nm = NULL;
1309   }
1310   nmethodLocker nl_callee(callee_nm);
1311 #ifdef ASSERT
1312   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1313 #endif
1314 
1315   if (is_virtual) {
1316     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1317     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1318     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1319     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1320                      is_optimized, static_bound, virtual_call_info,
1321                      CHECK_(methodHandle()));
1322   } else {
1323     // static call
1324     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1325   }
1326 
1327   // grab lock, check for deoptimization and potentially patch caller
1328   {
1329     MutexLocker ml_patch(CompiledIC_lock);
1330 
1331     // Lock blocks for safepoint during which both nmethods can change state.
1332 
1333     // Now that we are ready to patch if the Method* was redefined then
1334     // don't update call site and let the caller retry.
1335     // Don't update call site if callee nmethod was unloaded or deoptimized.
1336     // Don't update call site if callee nmethod was replaced by an other nmethod
1337     // which may happen when multiply alive nmethod (tiered compilation)
1338     // will be supported.
1339     if (!callee_method->is_old() &&
1340         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1341 #ifdef ASSERT
1342       // We must not try to patch to jump to an already unloaded method.
1343       if (dest_entry_point != 0) {
1344         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1345         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1346                "should not call unloaded nmethod");
1347       }
1348 #endif
1349       if (is_virtual) {
1350         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1351         if (inline_cache->is_clean()) {
1352           inline_cache->set_to_monomorphic(virtual_call_info);
1353         }
1354       } else {
1355         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1356         if (ssc->is_clean()) ssc->set(static_call_info);
1357       }
1358     }
1359 
1360   } // unlock CompiledIC_lock
1361 
1362   return callee_method;
1363 }
1364 
1365 
1366 // Inline caches exist only in compiled code
1367 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1368 #ifdef ASSERT
1369   RegisterMap reg_map(thread, false);
1370   frame stub_frame = thread->last_frame();
1371   assert(stub_frame.is_runtime_frame(), "sanity check");
1372   frame caller_frame = stub_frame.sender(&reg_map);
1373   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1374 #endif /* ASSERT */
1375 
1376   methodHandle callee_method;
1377   JRT_BLOCK
1378     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1379     // Return Method* through TLS
1380     thread->set_vm_result_2(callee_method());
1381   JRT_BLOCK_END
1382   // return compiled code entry point after potential safepoints
1383   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1384   return callee_method->verified_code_entry();
1385 JRT_END
1386 
1387 
1388 // Handle call site that has been made non-entrant
1389 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1390   // 6243940 We might end up in here if the callee is deoptimized
1391   // as we race to call it.  We don't want to take a safepoint if
1392   // the caller was interpreted because the caller frame will look
1393   // interpreted to the stack walkers and arguments are now
1394   // "compiled" so it is much better to make this transition
1395   // invisible to the stack walking code. The i2c path will
1396   // place the callee method in the callee_target. It is stashed
1397   // there because if we try and find the callee by normal means a
1398   // safepoint is possible and have trouble gc'ing the compiled args.
1399   RegisterMap reg_map(thread, false);
1400   frame stub_frame = thread->last_frame();
1401   assert(stub_frame.is_runtime_frame(), "sanity check");
1402   frame caller_frame = stub_frame.sender(&reg_map);
1403 
1404   if (caller_frame.is_interpreted_frame() ||
1405       caller_frame.is_entry_frame()) {
1406     Method* callee = thread->callee_target();
1407     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1408     thread->set_vm_result_2(callee);
1409     thread->set_callee_target(NULL);
1410     return callee->get_c2i_entry();
1411   }
1412 
1413   // Must be compiled to compiled path which is safe to stackwalk
1414   methodHandle callee_method;
1415   JRT_BLOCK
1416     // Force resolving of caller (if we called from compiled frame)
1417     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1418     thread->set_vm_result_2(callee_method());
1419   JRT_BLOCK_END
1420   // return compiled code entry point after potential safepoints
1421   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1422   return callee_method->verified_code_entry();
1423 JRT_END
1424 
1425 // Handle abstract method call
1426 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1427   return StubRoutines::throw_AbstractMethodError_entry();
1428 JRT_END
1429 
1430 
1431 // resolve a static call and patch code
1432 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1433   methodHandle callee_method;
1434   JRT_BLOCK
1435     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1436     thread->set_vm_result_2(callee_method());
1437   JRT_BLOCK_END
1438   // return compiled code entry point after potential safepoints
1439   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1440   return callee_method->verified_code_entry();
1441 JRT_END
1442 
1443 
1444 // resolve virtual call and update inline cache to monomorphic
1445 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1446   methodHandle callee_method;
1447   JRT_BLOCK
1448     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1449     thread->set_vm_result_2(callee_method());
1450   JRT_BLOCK_END
1451   // return compiled code entry point after potential safepoints
1452   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1453   return callee_method->verified_code_entry();
1454 JRT_END
1455 
1456 
1457 // Resolve a virtual call that can be statically bound (e.g., always
1458 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1459 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1460   methodHandle callee_method;
1461   JRT_BLOCK
1462     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1463     thread->set_vm_result_2(callee_method());
1464   JRT_BLOCK_END
1465   // return compiled code entry point after potential safepoints
1466   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1467   return callee_method->verified_code_entry();
1468 JRT_END
1469 
1470 
1471 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1472   ResourceMark rm(thread);
1473   CallInfo call_info;
1474   Bytecodes::Code bc;
1475 
1476   // receiver is NULL for static calls. An exception is thrown for NULL
1477   // receivers for non-static calls
1478   Handle receiver = find_callee_info(thread, bc, call_info,
1479                                      CHECK_(methodHandle()));
1480   // Compiler1 can produce virtual call sites that can actually be statically bound
1481   // If we fell thru to below we would think that the site was going megamorphic
1482   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1483   // we'd try and do a vtable dispatch however methods that can be statically bound
1484   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1485   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1486   // plain ic_miss) and the site will be converted to an optimized virtual call site
1487   // never to miss again. I don't believe C2 will produce code like this but if it
1488   // did this would still be the correct thing to do for it too, hence no ifdef.
1489   //
1490   if (call_info.resolved_method()->can_be_statically_bound()) {
1491     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1492     if (TraceCallFixup) {
1493       RegisterMap reg_map(thread, false);
1494       frame caller_frame = thread->last_frame().sender(&reg_map);
1495       ResourceMark rm(thread);
1496       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1497       callee_method->print_short_name(tty);
1498       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1499       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1500     }
1501     return callee_method;
1502   }
1503 
1504   methodHandle callee_method = call_info.selected_method();
1505 
1506   bool should_be_mono = false;
1507 
1508 #ifndef PRODUCT
1509   Atomic::inc(&_ic_miss_ctr);
1510 
1511   // Statistics & Tracing
1512   if (TraceCallFixup) {
1513     ResourceMark rm(thread);
1514     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1515     callee_method->print_short_name(tty);
1516     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1517   }
1518 
1519   if (ICMissHistogram) {
1520     MutexLocker m(VMStatistic_lock);
1521     RegisterMap reg_map(thread, false);
1522     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1523     // produce statistics under the lock
1524     trace_ic_miss(f.pc());
1525   }
1526 #endif
1527 
1528   // install an event collector so that when a vtable stub is created the
1529   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1530   // event can't be posted when the stub is created as locks are held
1531   // - instead the event will be deferred until the event collector goes
1532   // out of scope.
1533   JvmtiDynamicCodeEventCollector event_collector;
1534 
1535   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1536   { MutexLocker ml_patch (CompiledIC_lock);
1537     RegisterMap reg_map(thread, false);
1538     frame caller_frame = thread->last_frame().sender(&reg_map);
1539     CodeBlob* cb = caller_frame.cb();
1540     if (cb->is_nmethod()) {
1541       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1542       bool should_be_mono = false;
1543       if (inline_cache->is_optimized()) {
1544         if (TraceCallFixup) {
1545           ResourceMark rm(thread);
1546           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1547           callee_method->print_short_name(tty);
1548           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1549         }
1550         should_be_mono = true;
1551       } else if (inline_cache->is_icholder_call()) {
1552         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1553         if (ic_oop != NULL) {
1554 
1555           if (receiver()->klass() == ic_oop->holder_klass()) {
1556             // This isn't a real miss. We must have seen that compiled code
1557             // is now available and we want the call site converted to a
1558             // monomorphic compiled call site.
1559             // We can't assert for callee_method->code() != NULL because it
1560             // could have been deoptimized in the meantime
1561             if (TraceCallFixup) {
1562               ResourceMark rm(thread);
1563               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1564               callee_method->print_short_name(tty);
1565               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1566             }
1567             should_be_mono = true;
1568           }
1569         }
1570       }
1571 
1572       if (should_be_mono) {
1573 
1574         // We have a path that was monomorphic but was going interpreted
1575         // and now we have (or had) a compiled entry. We correct the IC
1576         // by using a new icBuffer.
1577         CompiledICInfo info;
1578         KlassHandle receiver_klass(THREAD, receiver()->klass());
1579         inline_cache->compute_monomorphic_entry(callee_method,
1580                                                 receiver_klass,
1581                                                 inline_cache->is_optimized(),
1582                                                 false,
1583                                                 info, CHECK_(methodHandle()));
1584         inline_cache->set_to_monomorphic(info);
1585       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1586         // Potential change to megamorphic
1587         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1588         if (!successful) {
1589           inline_cache->set_to_clean();
1590         }
1591       } else {
1592         // Either clean or megamorphic
1593       }
1594     } else {
1595       fatal("Unimplemented");
1596     }
1597   } // Release CompiledIC_lock
1598 
1599   return callee_method;
1600 }
1601 
1602 //
1603 // Resets a call-site in compiled code so it will get resolved again.
1604 // This routines handles both virtual call sites, optimized virtual call
1605 // sites, and static call sites. Typically used to change a call sites
1606 // destination from compiled to interpreted.
1607 //
1608 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1609   ResourceMark rm(thread);
1610   RegisterMap reg_map(thread, false);
1611   frame stub_frame = thread->last_frame();
1612   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1613   frame caller = stub_frame.sender(&reg_map);
1614 
1615   // Do nothing if the frame isn't a live compiled frame.
1616   // nmethod could be deoptimized by the time we get here
1617   // so no update to the caller is needed.
1618 
1619   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1620 
1621     address pc = caller.pc();
1622 
1623     // Check for static or virtual call
1624     bool is_static_call = false;
1625     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1626 
1627     // Default call_addr is the location of the "basic" call.
1628     // Determine the address of the call we a reresolving. With
1629     // Inline Caches we will always find a recognizable call.
1630     // With Inline Caches disabled we may or may not find a
1631     // recognizable call. We will always find a call for static
1632     // calls and for optimized virtual calls. For vanilla virtual
1633     // calls it depends on the state of the UseInlineCaches switch.
1634     //
1635     // With Inline Caches disabled we can get here for a virtual call
1636     // for two reasons:
1637     //   1 - calling an abstract method. The vtable for abstract methods
1638     //       will run us thru handle_wrong_method and we will eventually
1639     //       end up in the interpreter to throw the ame.
1640     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1641     //       call and between the time we fetch the entry address and
1642     //       we jump to it the target gets deoptimized. Similar to 1
1643     //       we will wind up in the interprter (thru a c2i with c2).
1644     //
1645     address call_addr = NULL;
1646     {
1647       // Get call instruction under lock because another thread may be
1648       // busy patching it.
1649       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1650       // Location of call instruction
1651       if (NativeCall::is_call_before(pc)) {
1652         NativeCall *ncall = nativeCall_before(pc);
1653         call_addr = ncall->instruction_address();
1654       }
1655     }
1656     // Make sure nmethod doesn't get deoptimized and removed until
1657     // this is done with it.
1658     // CLEANUP - with lazy deopt shouldn't need this lock
1659     nmethodLocker nmlock(caller_nm);
1660 
1661     if (call_addr != NULL) {
1662       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1663       int ret = iter.next(); // Get item
1664       if (ret) {
1665         assert(iter.addr() == call_addr, "must find call");
1666         if (iter.type() == relocInfo::static_call_type) {
1667           is_static_call = true;
1668         } else {
1669           assert(iter.type() == relocInfo::virtual_call_type ||
1670                  iter.type() == relocInfo::opt_virtual_call_type
1671                 , "unexpected relocInfo. type");
1672         }
1673       } else {
1674         assert(!UseInlineCaches, "relocation info. must exist for this address");
1675       }
1676 
1677       // Cleaning the inline cache will force a new resolve. This is more robust
1678       // than directly setting it to the new destination, since resolving of calls
1679       // is always done through the same code path. (experience shows that it
1680       // leads to very hard to track down bugs, if an inline cache gets updated
1681       // to a wrong method). It should not be performance critical, since the
1682       // resolve is only done once.
1683 
1684       MutexLocker ml(CompiledIC_lock);
1685       if (is_static_call) {
1686         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1687         ssc->set_to_clean();
1688       } else {
1689         // compiled, dispatched call (which used to call an interpreted method)
1690         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1691         inline_cache->set_to_clean();
1692       }
1693     }
1694 
1695   }
1696 
1697   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1698 
1699 
1700 #ifndef PRODUCT
1701   Atomic::inc(&_wrong_method_ctr);
1702 
1703   if (TraceCallFixup) {
1704     ResourceMark rm(thread);
1705     tty->print("handle_wrong_method reresolving call to");
1706     callee_method->print_short_name(tty);
1707     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1708   }
1709 #endif
1710 
1711   return callee_method;
1712 }
1713 
1714 #ifdef ASSERT
1715 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1716                                                                 const BasicType* sig_bt,
1717                                                                 const VMRegPair* regs) {
1718   ResourceMark rm;
1719   const int total_args_passed = method->size_of_parameters();
1720   const VMRegPair*    regs_with_member_name = regs;
1721         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1722 
1723   const int member_arg_pos = total_args_passed - 1;
1724   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1725   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1726 
1727   const bool is_outgoing = method->is_method_handle_intrinsic();
1728   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1729 
1730   for (int i = 0; i < member_arg_pos; i++) {
1731     VMReg a =    regs_with_member_name[i].first();
1732     VMReg b = regs_without_member_name[i].first();
1733     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1734   }
1735   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1736 }
1737 #endif
1738 
1739 // ---------------------------------------------------------------------------
1740 // We are calling the interpreter via a c2i. Normally this would mean that
1741 // we were called by a compiled method. However we could have lost a race
1742 // where we went int -> i2c -> c2i and so the caller could in fact be
1743 // interpreted. If the caller is compiled we attempt to patch the caller
1744 // so he no longer calls into the interpreter.
1745 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1746   Method* moop(method);
1747 
1748   address entry_point = moop->from_compiled_entry();
1749 
1750   // It's possible that deoptimization can occur at a call site which hasn't
1751   // been resolved yet, in which case this function will be called from
1752   // an nmethod that has been patched for deopt and we can ignore the
1753   // request for a fixup.
1754   // Also it is possible that we lost a race in that from_compiled_entry
1755   // is now back to the i2c in that case we don't need to patch and if
1756   // we did we'd leap into space because the callsite needs to use
1757   // "to interpreter" stub in order to load up the Method*. Don't
1758   // ask me how I know this...
1759 
1760   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1761   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1762     return;
1763   }
1764 
1765   // The check above makes sure this is a nmethod.
1766   nmethod* nm = cb->as_nmethod_or_null();
1767   assert(nm, "must be");
1768 
1769   // Get the return PC for the passed caller PC.
1770   address return_pc = caller_pc + frame::pc_return_offset;
1771 
1772   // There is a benign race here. We could be attempting to patch to a compiled
1773   // entry point at the same time the callee is being deoptimized. If that is
1774   // the case then entry_point may in fact point to a c2i and we'd patch the
1775   // call site with the same old data. clear_code will set code() to NULL
1776   // at the end of it. If we happen to see that NULL then we can skip trying
1777   // to patch. If we hit the window where the callee has a c2i in the
1778   // from_compiled_entry and the NULL isn't present yet then we lose the race
1779   // and patch the code with the same old data. Asi es la vida.
1780 
1781   if (moop->code() == NULL) return;
1782 
1783   if (nm->is_in_use()) {
1784 
1785     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1786     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1787     if (NativeCall::is_call_before(return_pc)) {
1788       NativeCall *call = nativeCall_before(return_pc);
1789       //
1790       // bug 6281185. We might get here after resolving a call site to a vanilla
1791       // virtual call. Because the resolvee uses the verified entry it may then
1792       // see compiled code and attempt to patch the site by calling us. This would
1793       // then incorrectly convert the call site to optimized and its downhill from
1794       // there. If you're lucky you'll get the assert in the bugid, if not you've
1795       // just made a call site that could be megamorphic into a monomorphic site
1796       // for the rest of its life! Just another racing bug in the life of
1797       // fixup_callers_callsite ...
1798       //
1799       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1800       iter.next();
1801       assert(iter.has_current(), "must have a reloc at java call site");
1802       relocInfo::relocType typ = iter.reloc()->type();
1803       if (typ != relocInfo::static_call_type &&
1804            typ != relocInfo::opt_virtual_call_type &&
1805            typ != relocInfo::static_stub_type) {
1806         return;
1807       }
1808       address destination = call->destination();
1809       if (destination != entry_point) {
1810         CodeBlob* callee = CodeCache::find_blob(destination);
1811         // callee == cb seems weird. It means calling interpreter thru stub.
1812         if (callee == cb || callee->is_adapter_blob()) {
1813           // static call or optimized virtual
1814           if (TraceCallFixup) {
1815             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1816             moop->print_short_name(tty);
1817             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1818           }
1819           call->set_destination_mt_safe(entry_point);
1820         } else {
1821           if (TraceCallFixup) {
1822             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1823             moop->print_short_name(tty);
1824             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1825           }
1826           // assert is too strong could also be resolve destinations.
1827           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1828         }
1829       } else {
1830           if (TraceCallFixup) {
1831             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1832             moop->print_short_name(tty);
1833             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1834           }
1835       }
1836     }
1837   }
1838 IRT_END
1839 
1840 
1841 // same as JVM_Arraycopy, but called directly from compiled code
1842 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1843                                                 oopDesc* dest, jint dest_pos,
1844                                                 jint length,
1845                                                 JavaThread* thread)) {
1846 #ifndef PRODUCT
1847   _slow_array_copy_ctr++;
1848 #endif
1849   // Check if we have null pointers
1850   if (src == NULL || dest == NULL) {
1851     THROW(vmSymbols::java_lang_NullPointerException());
1852   }
1853   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1854   // even though the copy_array API also performs dynamic checks to ensure
1855   // that src and dest are truly arrays (and are conformable).
1856   // The copy_array mechanism is awkward and could be removed, but
1857   // the compilers don't call this function except as a last resort,
1858   // so it probably doesn't matter.
1859   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1860                                         (arrayOopDesc*)dest, dest_pos,
1861                                         length, thread);
1862 }
1863 JRT_END
1864 
1865 char* SharedRuntime::generate_class_cast_message(
1866     JavaThread* thread, const char* objName) {
1867 
1868   // Get target class name from the checkcast instruction
1869   vframeStream vfst(thread, true);
1870   assert(!vfst.at_end(), "Java frame must exist");
1871   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1872   Klass* targetKlass = vfst.method()->constants()->klass_at(
1873     cc.index(), thread);
1874   return generate_class_cast_message(objName, targetKlass->external_name());
1875 }
1876 
1877 char* SharedRuntime::generate_class_cast_message(
1878     const char* objName, const char* targetKlassName, const char* desc) {
1879   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1880 
1881   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1882   if (NULL == message) {
1883     // Shouldn't happen, but don't cause even more problems if it does
1884     message = const_cast<char*>(objName);
1885   } else {
1886     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1887   }
1888   return message;
1889 }
1890 
1891 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1892   (void) JavaThread::current()->reguard_stack();
1893 JRT_END
1894 
1895 
1896 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1897 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1898   // Disable ObjectSynchronizer::quick_enter() in default config
1899   // until JDK-8077392 is resolved.
1900   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1901     // Only try quick_enter() if we're not trying to reach a safepoint
1902     // so that the calling thread reaches the safepoint more quickly.
1903     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1904   }
1905   // NO_ASYNC required because an async exception on the state transition destructor
1906   // would leave you with the lock held and it would never be released.
1907   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1908   // and the model is that an exception implies the method failed.
1909   JRT_BLOCK_NO_ASYNC
1910   oop obj(_obj);
1911   if (PrintBiasedLockingStatistics) {
1912     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1913   }
1914   Handle h_obj(THREAD, obj);
1915   if (UseBiasedLocking) {
1916     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1917     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1918   } else {
1919     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1920   }
1921   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1922   JRT_BLOCK_END
1923 JRT_END
1924 
1925 // Handles the uncommon cases of monitor unlocking in compiled code
1926 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1927    oop obj(_obj);
1928   assert(JavaThread::current() == THREAD, "invariant");
1929   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1930   // testing was unable to ever fire the assert that guarded it so I have removed it.
1931   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1932 #undef MIGHT_HAVE_PENDING
1933 #ifdef MIGHT_HAVE_PENDING
1934   // Save and restore any pending_exception around the exception mark.
1935   // While the slow_exit must not throw an exception, we could come into
1936   // this routine with one set.
1937   oop pending_excep = NULL;
1938   const char* pending_file;
1939   int pending_line;
1940   if (HAS_PENDING_EXCEPTION) {
1941     pending_excep = PENDING_EXCEPTION;
1942     pending_file  = THREAD->exception_file();
1943     pending_line  = THREAD->exception_line();
1944     CLEAR_PENDING_EXCEPTION;
1945   }
1946 #endif /* MIGHT_HAVE_PENDING */
1947 
1948   {
1949     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1950     EXCEPTION_MARK;
1951     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1952   }
1953 
1954 #ifdef MIGHT_HAVE_PENDING
1955   if (pending_excep != NULL) {
1956     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1957   }
1958 #endif /* MIGHT_HAVE_PENDING */
1959 JRT_END
1960 
1961 #ifndef PRODUCT
1962 
1963 void SharedRuntime::print_statistics() {
1964   ttyLocker ttyl;
1965   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1966 
1967   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1968 
1969   SharedRuntime::print_ic_miss_histogram();
1970 
1971   if (CountRemovableExceptions) {
1972     if (_nof_removable_exceptions > 0) {
1973       Unimplemented(); // this counter is not yet incremented
1974       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1975     }
1976   }
1977 
1978   // Dump the JRT_ENTRY counters
1979   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1980   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1981   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1982   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1983   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1984   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1985   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1986 
1987   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1988   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1989   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1990   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1991   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1992 
1993   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1994   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1995   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1996   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1997   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1998   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1999   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2000   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2001   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2002   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2003   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2004   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2005   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2006   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2007   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2008   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2009 
2010   AdapterHandlerLibrary::print_statistics();
2011 
2012   if (xtty != NULL)  xtty->tail("statistics");
2013 }
2014 
2015 inline double percent(int x, int y) {
2016   return 100.0 * x / MAX2(y, 1);
2017 }
2018 
2019 class MethodArityHistogram {
2020  public:
2021   enum { MAX_ARITY = 256 };
2022  private:
2023   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2024   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2025   static int _max_arity;                      // max. arity seen
2026   static int _max_size;                       // max. arg size seen
2027 
2028   static void add_method_to_histogram(nmethod* nm) {
2029     Method* m = nm->method();
2030     ArgumentCount args(m->signature());
2031     int arity   = args.size() + (m->is_static() ? 0 : 1);
2032     int argsize = m->size_of_parameters();
2033     arity   = MIN2(arity, MAX_ARITY-1);
2034     argsize = MIN2(argsize, MAX_ARITY-1);
2035     int count = nm->method()->compiled_invocation_count();
2036     _arity_histogram[arity]  += count;
2037     _size_histogram[argsize] += count;
2038     _max_arity = MAX2(_max_arity, arity);
2039     _max_size  = MAX2(_max_size, argsize);
2040   }
2041 
2042   void print_histogram_helper(int n, int* histo, const char* name) {
2043     const int N = MIN2(5, n);
2044     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2045     double sum = 0;
2046     double weighted_sum = 0;
2047     int i;
2048     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2049     double rest = sum;
2050     double percent = sum / 100;
2051     for (i = 0; i <= N; i++) {
2052       rest -= histo[i];
2053       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2054     }
2055     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2056     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2057   }
2058 
2059   void print_histogram() {
2060     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2061     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2062     tty->print_cr("\nSame for parameter size (in words):");
2063     print_histogram_helper(_max_size, _size_histogram, "size");
2064     tty->cr();
2065   }
2066 
2067  public:
2068   MethodArityHistogram() {
2069     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2070     _max_arity = _max_size = 0;
2071     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2072     CodeCache::nmethods_do(add_method_to_histogram);
2073     print_histogram();
2074   }
2075 };
2076 
2077 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2078 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2079 int MethodArityHistogram::_max_arity;
2080 int MethodArityHistogram::_max_size;
2081 
2082 void SharedRuntime::print_call_statistics(int comp_total) {
2083   tty->print_cr("Calls from compiled code:");
2084   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2085   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2086   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2087   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2088   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2089   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2090   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2091   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2092   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2093   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2094   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2095   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2096   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2097   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2098   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2099   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2100   tty->cr();
2101   tty->print_cr("Note 1: counter updates are not MT-safe.");
2102   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2103   tty->print_cr("        %% in nested categories are relative to their category");
2104   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2105   tty->cr();
2106 
2107   MethodArityHistogram h;
2108 }
2109 #endif
2110 
2111 
2112 // A simple wrapper class around the calling convention information
2113 // that allows sharing of adapters for the same calling convention.
2114 class AdapterFingerPrint : public CHeapObj<mtCode> {
2115  private:
2116   enum {
2117     _basic_type_bits = 4,
2118     _basic_type_mask = right_n_bits(_basic_type_bits),
2119     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2120     _compact_int_count = 3
2121   };
2122   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2123   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2124 
2125   union {
2126     int  _compact[_compact_int_count];
2127     int* _fingerprint;
2128   } _value;
2129   int _length; // A negative length indicates the fingerprint is in the compact form,
2130                // Otherwise _value._fingerprint is the array.
2131 
2132   // Remap BasicTypes that are handled equivalently by the adapters.
2133   // These are correct for the current system but someday it might be
2134   // necessary to make this mapping platform dependent.
2135   static int adapter_encoding(BasicType in) {
2136     switch (in) {
2137       case T_BOOLEAN:
2138       case T_BYTE:
2139       case T_SHORT:
2140       case T_CHAR:
2141         // There are all promoted to T_INT in the calling convention
2142         return T_INT;
2143 
2144       case T_OBJECT:
2145       case T_ARRAY:
2146         // In other words, we assume that any register good enough for
2147         // an int or long is good enough for a managed pointer.
2148 #ifdef _LP64
2149         return T_LONG;
2150 #else
2151         return T_INT;
2152 #endif
2153 
2154       case T_INT:
2155       case T_LONG:
2156       case T_FLOAT:
2157       case T_DOUBLE:
2158       case T_VOID:
2159         return in;
2160 
2161       default:
2162         ShouldNotReachHere();
2163         return T_CONFLICT;
2164     }
2165   }
2166 
2167  public:
2168   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2169     // The fingerprint is based on the BasicType signature encoded
2170     // into an array of ints with eight entries per int.
2171     int* ptr;
2172     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2173     if (len <= _compact_int_count) {
2174       assert(_compact_int_count == 3, "else change next line");
2175       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2176       // Storing the signature encoded as signed chars hits about 98%
2177       // of the time.
2178       _length = -len;
2179       ptr = _value._compact;
2180     } else {
2181       _length = len;
2182       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2183       ptr = _value._fingerprint;
2184     }
2185 
2186     // Now pack the BasicTypes with 8 per int
2187     int sig_index = 0;
2188     for (int index = 0; index < len; index++) {
2189       int value = 0;
2190       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2191         int bt = ((sig_index < total_args_passed)
2192                   ? adapter_encoding(sig_bt[sig_index++])
2193                   : 0);
2194         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2195         value = (value << _basic_type_bits) | bt;
2196       }
2197       ptr[index] = value;
2198     }
2199   }
2200 
2201   ~AdapterFingerPrint() {
2202     if (_length > 0) {
2203       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2204     }
2205   }
2206 
2207   int value(int index) {
2208     if (_length < 0) {
2209       return _value._compact[index];
2210     }
2211     return _value._fingerprint[index];
2212   }
2213   int length() {
2214     if (_length < 0) return -_length;
2215     return _length;
2216   }
2217 
2218   bool is_compact() {
2219     return _length <= 0;
2220   }
2221 
2222   unsigned int compute_hash() {
2223     int hash = 0;
2224     for (int i = 0; i < length(); i++) {
2225       int v = value(i);
2226       hash = (hash << 8) ^ v ^ (hash >> 5);
2227     }
2228     return (unsigned int)hash;
2229   }
2230 
2231   const char* as_string() {
2232     stringStream st;
2233     st.print("0x");
2234     for (int i = 0; i < length(); i++) {
2235       st.print("%08x", value(i));
2236     }
2237     return st.as_string();
2238   }
2239 
2240   bool equals(AdapterFingerPrint* other) {
2241     if (other->_length != _length) {
2242       return false;
2243     }
2244     if (_length < 0) {
2245       assert(_compact_int_count == 3, "else change next line");
2246       return _value._compact[0] == other->_value._compact[0] &&
2247              _value._compact[1] == other->_value._compact[1] &&
2248              _value._compact[2] == other->_value._compact[2];
2249     } else {
2250       for (int i = 0; i < _length; i++) {
2251         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2252           return false;
2253         }
2254       }
2255     }
2256     return true;
2257   }
2258 };
2259 
2260 
2261 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2262 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2263   friend class AdapterHandlerTableIterator;
2264 
2265  private:
2266 
2267 #ifndef PRODUCT
2268   static int _lookups; // number of calls to lookup
2269   static int _buckets; // number of buckets checked
2270   static int _equals;  // number of buckets checked with matching hash
2271   static int _hits;    // number of successful lookups
2272   static int _compact; // number of equals calls with compact signature
2273 #endif
2274 
2275   AdapterHandlerEntry* bucket(int i) {
2276     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2277   }
2278 
2279  public:
2280   AdapterHandlerTable()
2281     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2282 
2283   // Create a new entry suitable for insertion in the table
2284   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2285     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2286     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2287     return entry;
2288   }
2289 
2290   // Insert an entry into the table
2291   void add(AdapterHandlerEntry* entry) {
2292     int index = hash_to_index(entry->hash());
2293     add_entry(index, entry);
2294   }
2295 
2296   void free_entry(AdapterHandlerEntry* entry) {
2297     entry->deallocate();
2298     BasicHashtable<mtCode>::free_entry(entry);
2299   }
2300 
2301   // Find a entry with the same fingerprint if it exists
2302   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2303     NOT_PRODUCT(_lookups++);
2304     AdapterFingerPrint fp(total_args_passed, sig_bt);
2305     unsigned int hash = fp.compute_hash();
2306     int index = hash_to_index(hash);
2307     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2308       NOT_PRODUCT(_buckets++);
2309       if (e->hash() == hash) {
2310         NOT_PRODUCT(_equals++);
2311         if (fp.equals(e->fingerprint())) {
2312 #ifndef PRODUCT
2313           if (fp.is_compact()) _compact++;
2314           _hits++;
2315 #endif
2316           return e;
2317         }
2318       }
2319     }
2320     return NULL;
2321   }
2322 
2323 #ifndef PRODUCT
2324   void print_statistics() {
2325     ResourceMark rm;
2326     int longest = 0;
2327     int empty = 0;
2328     int total = 0;
2329     int nonempty = 0;
2330     for (int index = 0; index < table_size(); index++) {
2331       int count = 0;
2332       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2333         count++;
2334       }
2335       if (count != 0) nonempty++;
2336       if (count == 0) empty++;
2337       if (count > longest) longest = count;
2338       total += count;
2339     }
2340     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2341                   empty, longest, total, total / (double)nonempty);
2342     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2343                   _lookups, _buckets, _equals, _hits, _compact);
2344   }
2345 #endif
2346 };
2347 
2348 
2349 #ifndef PRODUCT
2350 
2351 int AdapterHandlerTable::_lookups;
2352 int AdapterHandlerTable::_buckets;
2353 int AdapterHandlerTable::_equals;
2354 int AdapterHandlerTable::_hits;
2355 int AdapterHandlerTable::_compact;
2356 
2357 #endif
2358 
2359 class AdapterHandlerTableIterator : public StackObj {
2360  private:
2361   AdapterHandlerTable* _table;
2362   int _index;
2363   AdapterHandlerEntry* _current;
2364 
2365   void scan() {
2366     while (_index < _table->table_size()) {
2367       AdapterHandlerEntry* a = _table->bucket(_index);
2368       _index++;
2369       if (a != NULL) {
2370         _current = a;
2371         return;
2372       }
2373     }
2374   }
2375 
2376  public:
2377   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2378     scan();
2379   }
2380   bool has_next() {
2381     return _current != NULL;
2382   }
2383   AdapterHandlerEntry* next() {
2384     if (_current != NULL) {
2385       AdapterHandlerEntry* result = _current;
2386       _current = _current->next();
2387       if (_current == NULL) scan();
2388       return result;
2389     } else {
2390       return NULL;
2391     }
2392   }
2393 };
2394 
2395 
2396 // ---------------------------------------------------------------------------
2397 // Implementation of AdapterHandlerLibrary
2398 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2399 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2400 const int AdapterHandlerLibrary_size = 16*K;
2401 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2402 
2403 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2404   // Should be called only when AdapterHandlerLibrary_lock is active.
2405   if (_buffer == NULL) // Initialize lazily
2406       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2407   return _buffer;
2408 }
2409 
2410 extern "C" void unexpected_adapter_call() {
2411   ShouldNotCallThis();
2412 }
2413 
2414 void AdapterHandlerLibrary::initialize() {
2415   if (_adapters != NULL) return;
2416   _adapters = new AdapterHandlerTable();
2417 
2418   if (!CodeCacheExtensions::skip_compiler_support()) {
2419     // Create a special handler for abstract methods.  Abstract methods
2420     // are never compiled so an i2c entry is somewhat meaningless, but
2421     // throw AbstractMethodError just in case.
2422     // Pass wrong_method_abstract for the c2i transitions to return
2423     // AbstractMethodError for invalid invocations.
2424     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2425     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2426                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2427                                                                 wrong_method_abstract, wrong_method_abstract);
2428   } else {
2429     // Adapters are not supposed to be used.
2430     // Generate a special one to cause an error if used (and store this
2431     // singleton in place of the useless _abstract_method_error adapter).
2432     address entry = (address) &unexpected_adapter_call;
2433     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2434                                                                 entry,
2435                                                                 entry,
2436                                                                 entry);
2437 
2438   }
2439 }
2440 
2441 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2442                                                       address i2c_entry,
2443                                                       address c2i_entry,
2444                                                       address c2i_unverified_entry) {
2445   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2446 }
2447 
2448 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2449   // Use customized signature handler.  Need to lock around updates to
2450   // the AdapterHandlerTable (it is not safe for concurrent readers
2451   // and a single writer: this could be fixed if it becomes a
2452   // problem).
2453 
2454   ResourceMark rm;
2455 
2456   NOT_PRODUCT(int insts_size);
2457   AdapterBlob* new_adapter = NULL;
2458   AdapterHandlerEntry* entry = NULL;
2459   AdapterFingerPrint* fingerprint = NULL;
2460   {
2461     MutexLocker mu(AdapterHandlerLibrary_lock);
2462     // make sure data structure is initialized
2463     initialize();
2464 
2465     if (CodeCacheExtensions::skip_compiler_support()) {
2466       // adapters are useless and should not be used, including the
2467       // abstract_method_handler. However, some callers check that
2468       // an adapter was installed.
2469       // Return the singleton adapter, stored into _abstract_method_handler
2470       // and modified to cause an error if we ever call it.
2471       return _abstract_method_handler;
2472     }
2473 
2474     if (method->is_abstract()) {
2475       return _abstract_method_handler;
2476     }
2477 
2478     // Fill in the signature array, for the calling-convention call.
2479     int total_args_passed = method->size_of_parameters(); // All args on stack
2480 
2481     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2482     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2483     int i = 0;
2484     if (!method->is_static())  // Pass in receiver first
2485       sig_bt[i++] = T_OBJECT;
2486     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2487       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2488       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2489         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2490     }
2491     assert(i == total_args_passed, "");
2492 
2493     // Lookup method signature's fingerprint
2494     entry = _adapters->lookup(total_args_passed, sig_bt);
2495 
2496 #ifdef ASSERT
2497     AdapterHandlerEntry* shared_entry = NULL;
2498     // Start adapter sharing verification only after the VM is booted.
2499     if (VerifyAdapterSharing && (entry != NULL)) {
2500       shared_entry = entry;
2501       entry = NULL;
2502     }
2503 #endif
2504 
2505     if (entry != NULL) {
2506       return entry;
2507     }
2508 
2509     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2510     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2511 
2512     // Make a C heap allocated version of the fingerprint to store in the adapter
2513     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2514 
2515     // StubRoutines::code2() is initialized after this function can be called. As a result,
2516     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2517     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2518     // stub that ensure that an I2C stub is called from an interpreter frame.
2519     bool contains_all_checks = StubRoutines::code2() != NULL;
2520 
2521     // Create I2C & C2I handlers
2522     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2523     if (buf != NULL) {
2524       CodeBuffer buffer(buf);
2525       short buffer_locs[20];
2526       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2527                                              sizeof(buffer_locs)/sizeof(relocInfo));
2528 
2529       MacroAssembler _masm(&buffer);
2530       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2531                                                      total_args_passed,
2532                                                      comp_args_on_stack,
2533                                                      sig_bt,
2534                                                      regs,
2535                                                      fingerprint);
2536 #ifdef ASSERT
2537       if (VerifyAdapterSharing) {
2538         if (shared_entry != NULL) {
2539           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2540           // Release the one just created and return the original
2541           _adapters->free_entry(entry);
2542           return shared_entry;
2543         } else  {
2544           entry->save_code(buf->code_begin(), buffer.insts_size());
2545         }
2546       }
2547 #endif
2548 
2549       new_adapter = AdapterBlob::create(&buffer);
2550       NOT_PRODUCT(insts_size = buffer.insts_size());
2551     }
2552     if (new_adapter == NULL) {
2553       // CodeCache is full, disable compilation
2554       // Ought to log this but compile log is only per compile thread
2555       // and we're some non descript Java thread.
2556       return NULL; // Out of CodeCache space
2557     }
2558     entry->relocate(new_adapter->content_begin());
2559 #ifndef PRODUCT
2560     // debugging suppport
2561     if (PrintAdapterHandlers || PrintStubCode) {
2562       ttyLocker ttyl;
2563       entry->print_adapter_on(tty);
2564       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2565                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2566                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2567       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2568       if (Verbose || PrintStubCode) {
2569         address first_pc = entry->base_address();
2570         if (first_pc != NULL) {
2571           Disassembler::decode(first_pc, first_pc + insts_size);
2572           tty->cr();
2573         }
2574       }
2575     }
2576 #endif
2577     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2578     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2579     if (contains_all_checks || !VerifyAdapterCalls) {
2580       _adapters->add(entry);
2581     }
2582   }
2583   // Outside of the lock
2584   if (new_adapter != NULL) {
2585     char blob_id[256];
2586     jio_snprintf(blob_id,
2587                  sizeof(blob_id),
2588                  "%s(%s)@" PTR_FORMAT,
2589                  new_adapter->name(),
2590                  fingerprint->as_string(),
2591                  new_adapter->content_begin());
2592     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2593 
2594     if (JvmtiExport::should_post_dynamic_code_generated()) {
2595       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2596     }
2597   }
2598   return entry;
2599 }
2600 
2601 address AdapterHandlerEntry::base_address() {
2602   address base = _i2c_entry;
2603   if (base == NULL)  base = _c2i_entry;
2604   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2605   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2606   return base;
2607 }
2608 
2609 void AdapterHandlerEntry::relocate(address new_base) {
2610   address old_base = base_address();
2611   assert(old_base != NULL, "");
2612   ptrdiff_t delta = new_base - old_base;
2613   if (_i2c_entry != NULL)
2614     _i2c_entry += delta;
2615   if (_c2i_entry != NULL)
2616     _c2i_entry += delta;
2617   if (_c2i_unverified_entry != NULL)
2618     _c2i_unverified_entry += delta;
2619   assert(base_address() == new_base, "");
2620 }
2621 
2622 
2623 void AdapterHandlerEntry::deallocate() {
2624   delete _fingerprint;
2625 #ifdef ASSERT
2626   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2627 #endif
2628 }
2629 
2630 
2631 #ifdef ASSERT
2632 // Capture the code before relocation so that it can be compared
2633 // against other versions.  If the code is captured after relocation
2634 // then relative instructions won't be equivalent.
2635 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2636   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2637   _saved_code_length = length;
2638   memcpy(_saved_code, buffer, length);
2639 }
2640 
2641 
2642 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2643   if (length != _saved_code_length) {
2644     return false;
2645   }
2646 
2647   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2648 }
2649 #endif
2650 
2651 
2652 /**
2653  * Create a native wrapper for this native method.  The wrapper converts the
2654  * Java-compiled calling convention to the native convention, handles
2655  * arguments, and transitions to native.  On return from the native we transition
2656  * back to java blocking if a safepoint is in progress.
2657  */
2658 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2659   ResourceMark rm;
2660   nmethod* nm = NULL;
2661 
2662   assert(method->is_native(), "must be native");
2663   assert(method->is_method_handle_intrinsic() ||
2664          method->has_native_function(), "must have something valid to call!");
2665 
2666   {
2667     // Perform the work while holding the lock, but perform any printing outside the lock
2668     MutexLocker mu(AdapterHandlerLibrary_lock);
2669     // See if somebody beat us to it
2670     if (method->code() != NULL) {
2671       return;
2672     }
2673 
2674     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2675     assert(compile_id > 0, "Must generate native wrapper");
2676 
2677 
2678     ResourceMark rm;
2679     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2680     if (buf != NULL) {
2681       CodeBuffer buffer(buf);
2682       double locs_buf[20];
2683       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2684       MacroAssembler _masm(&buffer);
2685 
2686       // Fill in the signature array, for the calling-convention call.
2687       const int total_args_passed = method->size_of_parameters();
2688 
2689       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2690       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2691       int i=0;
2692       if (!method->is_static())  // Pass in receiver first
2693         sig_bt[i++] = T_OBJECT;
2694       SignatureStream ss(method->signature());
2695       for (; !ss.at_return_type(); ss.next()) {
2696         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2697         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2698           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2699       }
2700       assert(i == total_args_passed, "");
2701       BasicType ret_type = ss.type();
2702 
2703       // Now get the compiled-Java layout as input (or output) arguments.
2704       // NOTE: Stubs for compiled entry points of method handle intrinsics
2705       // are just trampolines so the argument registers must be outgoing ones.
2706       const bool is_outgoing = method->is_method_handle_intrinsic();
2707       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2708 
2709       // Generate the compiled-to-native wrapper code
2710       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2711 
2712       if (nm != NULL) {
2713         method->set_code(method, nm);
2714 
2715         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2716         if (directive->PrintAssemblyOption) {
2717           Disassembler::decode(nm, tty);
2718         }
2719         DirectivesStack::release(directive);
2720       }
2721     }
2722   } // Unlock AdapterHandlerLibrary_lock
2723 
2724 
2725   // Install the generated code.
2726   if (nm != NULL) {
2727     if (PrintCompilation) {
2728       ttyLocker ttyl;
2729       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2730     }
2731     nm->post_compiled_method_load_event();
2732   }
2733 }
2734 
2735 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2736   assert(thread == JavaThread::current(), "must be");
2737   // The code is about to enter a JNI lazy critical native method and
2738   // _needs_gc is true, so if this thread is already in a critical
2739   // section then just return, otherwise this thread should block
2740   // until needs_gc has been cleared.
2741   if (thread->in_critical()) {
2742     return;
2743   }
2744   // Lock and unlock a critical section to give the system a chance to block
2745   GC_locker::lock_critical(thread);
2746   GC_locker::unlock_critical(thread);
2747 JRT_END
2748 
2749 // -------------------------------------------------------------------------
2750 // Java-Java calling convention
2751 // (what you use when Java calls Java)
2752 
2753 //------------------------------name_for_receiver----------------------------------
2754 // For a given signature, return the VMReg for parameter 0.
2755 VMReg SharedRuntime::name_for_receiver() {
2756   VMRegPair regs;
2757   BasicType sig_bt = T_OBJECT;
2758   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2759   // Return argument 0 register.  In the LP64 build pointers
2760   // take 2 registers, but the VM wants only the 'main' name.
2761   return regs.first();
2762 }
2763 
2764 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2765   // This method is returning a data structure allocating as a
2766   // ResourceObject, so do not put any ResourceMarks in here.
2767   char *s = sig->as_C_string();
2768   int len = (int)strlen(s);
2769   s++; len--;                   // Skip opening paren
2770   char *t = s+len;
2771   while (*(--t) != ')');      // Find close paren
2772 
2773   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2774   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2775   int cnt = 0;
2776   if (has_receiver) {
2777     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2778   }
2779 
2780   while (s < t) {
2781     switch (*s++) {            // Switch on signature character
2782     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2783     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2784     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2785     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2786     case 'I': sig_bt[cnt++] = T_INT;     break;
2787     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2788     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2789     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2790     case 'V': sig_bt[cnt++] = T_VOID;    break;
2791     case 'L':                   // Oop
2792       while (*s++ != ';');   // Skip signature
2793       sig_bt[cnt++] = T_OBJECT;
2794       break;
2795     case '[': {                 // Array
2796       do {                      // Skip optional size
2797         while (*s >= '0' && *s <= '9') s++;
2798       } while (*s++ == '[');   // Nested arrays?
2799       // Skip element type
2800       if (s[-1] == 'L')
2801         while (*s++ != ';'); // Skip signature
2802       sig_bt[cnt++] = T_ARRAY;
2803       break;
2804     }
2805     default : ShouldNotReachHere();
2806     }
2807   }
2808 
2809   if (has_appendix) {
2810     sig_bt[cnt++] = T_OBJECT;
2811   }
2812 
2813   assert(cnt < 256, "grow table size");
2814 
2815   int comp_args_on_stack;
2816   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2817 
2818   // the calling convention doesn't count out_preserve_stack_slots so
2819   // we must add that in to get "true" stack offsets.
2820 
2821   if (comp_args_on_stack) {
2822     for (int i = 0; i < cnt; i++) {
2823       VMReg reg1 = regs[i].first();
2824       if (reg1->is_stack()) {
2825         // Yuck
2826         reg1 = reg1->bias(out_preserve_stack_slots());
2827       }
2828       VMReg reg2 = regs[i].second();
2829       if (reg2->is_stack()) {
2830         // Yuck
2831         reg2 = reg2->bias(out_preserve_stack_slots());
2832       }
2833       regs[i].set_pair(reg2, reg1);
2834     }
2835   }
2836 
2837   // results
2838   *arg_size = cnt;
2839   return regs;
2840 }
2841 
2842 // OSR Migration Code
2843 //
2844 // This code is used convert interpreter frames into compiled frames.  It is
2845 // called from very start of a compiled OSR nmethod.  A temp array is
2846 // allocated to hold the interesting bits of the interpreter frame.  All
2847 // active locks are inflated to allow them to move.  The displaced headers and
2848 // active interpreter locals are copied into the temp buffer.  Then we return
2849 // back to the compiled code.  The compiled code then pops the current
2850 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2851 // copies the interpreter locals and displaced headers where it wants.
2852 // Finally it calls back to free the temp buffer.
2853 //
2854 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2855 
2856 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2857 
2858   //
2859   // This code is dependent on the memory layout of the interpreter local
2860   // array and the monitors. On all of our platforms the layout is identical
2861   // so this code is shared. If some platform lays the their arrays out
2862   // differently then this code could move to platform specific code or
2863   // the code here could be modified to copy items one at a time using
2864   // frame accessor methods and be platform independent.
2865 
2866   frame fr = thread->last_frame();
2867   assert(fr.is_interpreted_frame(), "");
2868   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2869 
2870   // Figure out how many monitors are active.
2871   int active_monitor_count = 0;
2872   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2873        kptr < fr.interpreter_frame_monitor_begin();
2874        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2875     if (kptr->obj() != NULL) active_monitor_count++;
2876   }
2877 
2878   // QQQ we could place number of active monitors in the array so that compiled code
2879   // could double check it.
2880 
2881   Method* moop = fr.interpreter_frame_method();
2882   int max_locals = moop->max_locals();
2883   // Allocate temp buffer, 1 word per local & 2 per active monitor
2884   int buf_size_words = max_locals + active_monitor_count*2;
2885   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2886 
2887   // Copy the locals.  Order is preserved so that loading of longs works.
2888   // Since there's no GC I can copy the oops blindly.
2889   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2890   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2891                        (HeapWord*)&buf[0],
2892                        max_locals);
2893 
2894   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2895   int i = max_locals;
2896   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2897        kptr2 < fr.interpreter_frame_monitor_begin();
2898        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2899     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2900       BasicLock *lock = kptr2->lock();
2901       // Inflate so the displaced header becomes position-independent
2902       if (lock->displaced_header()->is_unlocked())
2903         ObjectSynchronizer::inflate_helper(kptr2->obj());
2904       // Now the displaced header is free to move
2905       buf[i++] = (intptr_t)lock->displaced_header();
2906       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2907     }
2908   }
2909   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2910 
2911   return buf;
2912 JRT_END
2913 
2914 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2915   FREE_C_HEAP_ARRAY(intptr_t, buf);
2916 JRT_END
2917 
2918 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2919   AdapterHandlerTableIterator iter(_adapters);
2920   while (iter.has_next()) {
2921     AdapterHandlerEntry* a = iter.next();
2922     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2923   }
2924   return false;
2925 }
2926 
2927 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2928   AdapterHandlerTableIterator iter(_adapters);
2929   while (iter.has_next()) {
2930     AdapterHandlerEntry* a = iter.next();
2931     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2932       st->print("Adapter for signature: ");
2933       a->print_adapter_on(tty);
2934       return;
2935     }
2936   }
2937   assert(false, "Should have found handler");
2938 }
2939 
2940 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2941   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2942                p2i(this), fingerprint()->as_string(),
2943                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
2944 
2945 }
2946 
2947 #ifndef PRODUCT
2948 
2949 void AdapterHandlerLibrary::print_statistics() {
2950   _adapters->print_statistics();
2951 }
2952 
2953 #endif /* PRODUCT */
2954 
2955 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
2956   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
2957   thread->enable_stack_reserved_zone();
2958   thread->set_reserved_stack_activation(thread->stack_base());
2959 JRT_END
2960 
2961 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
2962   frame activation;
2963   int decode_offset = 0;
2964   nmethod* nm = NULL;
2965   frame prv_fr = fr;
2966   int count = 1;
2967 
2968   assert(fr.is_java_frame(), "Must start on Java frame");
2969 
2970   while (!fr.is_first_frame()) {
2971     Method* method = NULL;
2972     // Compiled java method case.
2973     if (decode_offset != 0) {
2974       DebugInfoReadStream stream(nm, decode_offset);
2975       decode_offset = stream.read_int();
2976       method = (Method*)nm->metadata_at(stream.read_int());
2977     } else {
2978       if (fr.is_first_java_frame()) break;
2979       address pc = fr.pc();
2980       prv_fr = fr;
2981       if (fr.is_interpreted_frame()) {
2982         method = fr.interpreter_frame_method();
2983         fr = fr.java_sender();
2984       } else {
2985         CodeBlob* cb = fr.cb();
2986         fr = fr.java_sender();
2987         if (cb == NULL || !cb->is_nmethod()) {
2988           continue;
2989         }
2990         nm = (nmethod*)cb;
2991         if (nm->method()->is_native()) {
2992           method = nm->method();
2993         } else {
2994           PcDesc* pd = nm->pc_desc_at(pc);
2995           assert(pd != NULL, "PcDesc must not be NULL");
2996           decode_offset = pd->scope_decode_offset();
2997           // if decode_offset is not equal to 0, it will execute the
2998           // "compiled java method case" at the beginning of the loop.
2999           continue;
3000         }
3001       }
3002     }
3003     if (method->has_reserved_stack_access()) {
3004       ResourceMark rm(thread);
3005       activation = prv_fr;
3006       warning("Potentially dangerous stack overflow in "
3007               "ReservedStackAccess annotated method %s [%d]",
3008               method->name_and_sig_as_C_string(), count++);
3009       EventReservedStackActivation event;
3010       if (event.should_commit()) {
3011         event.set_method(method);
3012         event.commit();
3013       }
3014     }
3015   }
3016   return activation;
3017 }
3018