1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #elif defined TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #elif defined TARGET_ARCH_MODEL_ppc_64
  81 # include "adfiles/ad_ppc_64.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 static inline bool not_a_node(const Node* n) {
 320   if (n == NULL)                   return true;
 321   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 322   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 323   return false;
 324 }
 325 
 326 // Identify all nodes that are reachable from below, useful.
 327 // Use breadth-first pass that records state in a Unique_Node_List,
 328 // recursive traversal is slower.
 329 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 330   int estimated_worklist_size = live_nodes();
 331   useful.map( estimated_worklist_size, NULL );  // preallocate space
 332 
 333   // Initialize worklist
 334   if (root() != NULL)     { useful.push(root()); }
 335   // If 'top' is cached, declare it useful to preserve cached node
 336   if( cached_top_node() ) { useful.push(cached_top_node()); }
 337 
 338   // Push all useful nodes onto the list, breadthfirst
 339   for( uint next = 0; next < useful.size(); ++next ) {
 340     assert( next < unique(), "Unique useful nodes < total nodes");
 341     Node *n  = useful.at(next);
 342     uint max = n->len();
 343     for( uint i = 0; i < max; ++i ) {
 344       Node *m = n->in(i);
 345       if (not_a_node(m))  continue;
 346       useful.push(m);
 347     }
 348   }
 349 }
 350 
 351 // Update dead_node_list with any missing dead nodes using useful
 352 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 353 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 354   uint max_idx = unique();
 355   VectorSet& useful_node_set = useful.member_set();
 356 
 357   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 358     // If node with index node_idx is not in useful set,
 359     // mark it as dead in dead node list.
 360     if (! useful_node_set.test(node_idx) ) {
 361       record_dead_node(node_idx);
 362     }
 363   }
 364 }
 365 
 366 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 367   int shift = 0;
 368   for (int i = 0; i < inlines->length(); i++) {
 369     CallGenerator* cg = inlines->at(i);
 370     CallNode* call = cg->call_node();
 371     if (shift > 0) {
 372       inlines->at_put(i-shift, cg);
 373     }
 374     if (!useful.member(call)) {
 375       shift++;
 376     }
 377   }
 378   inlines->trunc_to(inlines->length()-shift);
 379 }
 380 
 381 // Disconnect all useless nodes by disconnecting those at the boundary.
 382 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 383   uint next = 0;
 384   while (next < useful.size()) {
 385     Node *n = useful.at(next++);
 386     if (n->is_SafePoint()) {
 387       // We're done with a parsing phase. Replaced nodes are not valid
 388       // beyond that point.
 389       n->as_SafePoint()->delete_replaced_nodes();
 390     }
 391     // Use raw traversal of out edges since this code removes out edges
 392     int max = n->outcnt();
 393     for (int j = 0; j < max; ++j) {
 394       Node* child = n->raw_out(j);
 395       if (! useful.member(child)) {
 396         assert(!child->is_top() || child != top(),
 397                "If top is cached in Compile object it is in useful list");
 398         // Only need to remove this out-edge to the useless node
 399         n->raw_del_out(j);
 400         --j;
 401         --max;
 402       }
 403     }
 404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 405       record_for_igvn(n->unique_out());
 406     }
 407   }
 408   // Remove useless macro and predicate opaq nodes
 409   for (int i = C->macro_count()-1; i >= 0; i--) {
 410     Node* n = C->macro_node(i);
 411     if (!useful.member(n)) {
 412       remove_macro_node(n);
 413     }
 414   }
 415   // Remove useless CastII nodes with range check dependency
 416   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 417     Node* cast = range_check_cast_node(i);
 418     if (!useful.member(cast)) {
 419       remove_range_check_cast(cast);
 420     }
 421   }
 422   // Remove useless expensive node
 423   for (int i = C->expensive_count()-1; i >= 0; i--) {
 424     Node* n = C->expensive_node(i);
 425     if (!useful.member(n)) {
 426       remove_expensive_node(n);
 427     }
 428   }
 429   // clean up the late inline lists
 430   remove_useless_late_inlines(&_string_late_inlines, useful);
 431   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 432   remove_useless_late_inlines(&_late_inlines, useful);
 433   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 434 }
 435 
 436 //------------------------------frame_size_in_words-----------------------------
 437 // frame_slots in units of words
 438 int Compile::frame_size_in_words() const {
 439   // shift is 0 in LP32 and 1 in LP64
 440   const int shift = (LogBytesPerWord - LogBytesPerInt);
 441   int words = _frame_slots >> shift;
 442   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 443   return words;
 444 }
 445 
 446 // To bang the stack of this compiled method we use the stack size
 447 // that the interpreter would need in case of a deoptimization. This
 448 // removes the need to bang the stack in the deoptimization blob which
 449 // in turn simplifies stack overflow handling.
 450 int Compile::bang_size_in_bytes() const {
 451   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 452 }
 453 
 454 // ============================================================================
 455 //------------------------------CompileWrapper---------------------------------
 456 class CompileWrapper : public StackObj {
 457   Compile *const _compile;
 458  public:
 459   CompileWrapper(Compile* compile);
 460 
 461   ~CompileWrapper();
 462 };
 463 
 464 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 465   // the Compile* pointer is stored in the current ciEnv:
 466   ciEnv* env = compile->env();
 467   assert(env == ciEnv::current(), "must already be a ciEnv active");
 468   assert(env->compiler_data() == NULL, "compile already active?");
 469   env->set_compiler_data(compile);
 470   assert(compile == Compile::current(), "sanity");
 471 
 472   compile->set_type_dict(NULL);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482 }
 483 CompileWrapper::~CompileWrapper() {
 484   _compile->end_method();
 485   if (_compile->scratch_buffer_blob() != NULL)
 486     BufferBlob::free(_compile->scratch_buffer_blob());
 487   _compile->env()->set_compiler_data(NULL);
 488 }
 489 
 490 
 491 //----------------------------print_compile_messages---------------------------
 492 void Compile::print_compile_messages() {
 493 #ifndef PRODUCT
 494   // Check if recompiling
 495   if (_subsume_loads == false && PrintOpto) {
 496     // Recompiling without allowing machine instructions to subsume loads
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 502     // Recompiling without escape analysis
 503     tty->print_cr("*********************************************************");
 504     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 505     tty->print_cr("*********************************************************");
 506   }
 507   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 508     // Recompiling without boxing elimination
 509     tty->print_cr("*********************************************************");
 510     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 511     tty->print_cr("*********************************************************");
 512   }
 513   if (env()->break_at_compile()) {
 514     // Open the debugger when compiling this method.
 515     tty->print("### Breaking when compiling: ");
 516     method()->print_short_name();
 517     tty->cr();
 518     BREAKPOINT;
 519   }
 520 
 521   if( PrintOpto ) {
 522     if (is_osr_compilation()) {
 523       tty->print("[OSR]%3d", _compile_id);
 524     } else {
 525       tty->print("%3d", _compile_id);
 526     }
 527   }
 528 #endif
 529 }
 530 
 531 
 532 //-----------------------init_scratch_buffer_blob------------------------------
 533 // Construct a temporary BufferBlob and cache it for this compile.
 534 void Compile::init_scratch_buffer_blob(int const_size) {
 535   // If there is already a scratch buffer blob allocated and the
 536   // constant section is big enough, use it.  Otherwise free the
 537   // current and allocate a new one.
 538   BufferBlob* blob = scratch_buffer_blob();
 539   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 540     // Use the current blob.
 541   } else {
 542     if (blob != NULL) {
 543       BufferBlob::free(blob);
 544     }
 545 
 546     ResourceMark rm;
 547     _scratch_const_size = const_size;
 548     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 549     blob = BufferBlob::create("Compile::scratch_buffer", size);
 550     // Record the buffer blob for next time.
 551     set_scratch_buffer_blob(blob);
 552     // Have we run out of code space?
 553     if (scratch_buffer_blob() == NULL) {
 554       // Let CompilerBroker disable further compilations.
 555       record_failure("Not enough space for scratch buffer in CodeCache");
 556       return;
 557     }
 558   }
 559 
 560   // Initialize the relocation buffers
 561   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 562   set_scratch_locs_memory(locs_buf);
 563 }
 564 
 565 
 566 //-----------------------scratch_emit_size-------------------------------------
 567 // Helper function that computes size by emitting code
 568 uint Compile::scratch_emit_size(const Node* n) {
 569   // Start scratch_emit_size section.
 570   set_in_scratch_emit_size(true);
 571 
 572   // Emit into a trash buffer and count bytes emitted.
 573   // This is a pretty expensive way to compute a size,
 574   // but it works well enough if seldom used.
 575   // All common fixed-size instructions are given a size
 576   // method by the AD file.
 577   // Note that the scratch buffer blob and locs memory are
 578   // allocated at the beginning of the compile task, and
 579   // may be shared by several calls to scratch_emit_size.
 580   // The allocation of the scratch buffer blob is particularly
 581   // expensive, since it has to grab the code cache lock.
 582   BufferBlob* blob = this->scratch_buffer_blob();
 583   assert(blob != NULL, "Initialize BufferBlob at start");
 584   assert(blob->size() > MAX_inst_size, "sanity");
 585   relocInfo* locs_buf = scratch_locs_memory();
 586   address blob_begin = blob->content_begin();
 587   address blob_end   = (address)locs_buf;
 588   assert(blob->content_contains(blob_end), "sanity");
 589   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 590   buf.initialize_consts_size(_scratch_const_size);
 591   buf.initialize_stubs_size(MAX_stubs_size);
 592   assert(locs_buf != NULL, "sanity");
 593   int lsize = MAX_locs_size / 3;
 594   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 595   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 596   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 597 
 598   // Do the emission.
 599 
 600   Label fakeL; // Fake label for branch instructions.
 601   Label*   saveL = NULL;
 602   uint save_bnum = 0;
 603   bool is_branch = n->is_MachBranch();
 604   if (is_branch) {
 605     MacroAssembler masm(&buf);
 606     masm.bind(fakeL);
 607     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 608     n->as_MachBranch()->label_set(&fakeL, 0);
 609   }
 610   n->emit(buf, this->regalloc());
 611 
 612   // Emitting into the scratch buffer should not fail
 613   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 614 
 615   if (is_branch) // Restore label.
 616     n->as_MachBranch()->label_set(saveL, save_bnum);
 617 
 618   // End scratch_emit_size section.
 619   set_in_scratch_emit_size(false);
 620 
 621   return buf.insts_size();
 622 }
 623 
 624 
 625 // ============================================================================
 626 //------------------------------Compile standard-------------------------------
 627 debug_only( int Compile::_debug_idx = 100000; )
 628 
 629 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 630 // the continuation bci for on stack replacement.
 631 
 632 
 633 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 634                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 635                 : Phase(Compiler),
 636                   _env(ci_env),
 637                   _log(ci_env->log()),
 638                   _compile_id(ci_env->compile_id()),
 639                   _save_argument_registers(false),
 640                   _stub_name(NULL),
 641                   _stub_function(NULL),
 642                   _stub_entry_point(NULL),
 643                   _method(target),
 644                   _entry_bci(osr_bci),
 645                   _initial_gvn(NULL),
 646                   _for_igvn(NULL),
 647                   _warm_calls(NULL),
 648                   _subsume_loads(subsume_loads),
 649                   _do_escape_analysis(do_escape_analysis),
 650                   _eliminate_boxing(eliminate_boxing),
 651                   _failure_reason(NULL),
 652                   _code_buffer("Compile::Fill_buffer"),
 653                   _orig_pc_slot(0),
 654                   _orig_pc_slot_offset_in_bytes(0),
 655                   _has_method_handle_invokes(false),
 656                   _mach_constant_base_node(NULL),
 657                   _node_bundling_limit(0),
 658                   _node_bundling_base(NULL),
 659                   _java_calls(0),
 660                   _inner_loops(0),
 661                   _scratch_const_size(-1),
 662                   _in_scratch_emit_size(false),
 663                   _dead_node_list(comp_arena()),
 664                   _dead_node_count(0),
 665 #ifndef PRODUCT
 666                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 667                   _in_dump_cnt(0),
 668                   _printer(IdealGraphPrinter::printer()),
 669 #endif
 670                   _congraph(NULL),
 671                   _comp_arena(mtCompiler),
 672                   _node_arena(mtCompiler),
 673                   _old_arena(mtCompiler),
 674                   _Compile_types(mtCompiler),
 675                   _replay_inline_data(NULL),
 676                   _late_inlines(comp_arena(), 2, 0, NULL),
 677                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 679                   _late_inlines_pos(0),
 680                   _number_of_mh_late_inlines(0),
 681                   _inlining_progress(false),
 682                   _inlining_incrementally(false),
 683                   _print_inlining_list(NULL),
 684                   _print_inlining_idx(0),
 685                   _interpreter_frame_size(0),
 686                   _max_node_limit(MaxNodeLimit) {
 687   C = this;
 688 
 689   CompileWrapper cw(this);
 690 #ifndef PRODUCT
 691   if (TimeCompiler2) {
 692     tty->print(" ");
 693     target->holder()->name()->print();
 694     tty->print(".");
 695     target->print_short_name();
 696     tty->print("  ");
 697   }
 698   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 699   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 700   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 701   if (!print_opto_assembly) {
 702     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 703     if (print_assembly && !Disassembler::can_decode()) {
 704       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 705       print_opto_assembly = true;
 706     }
 707   }
 708   set_print_assembly(print_opto_assembly);
 709   set_parsed_irreducible_loop(false);
 710 
 711   if (method()->has_option("ReplayInline")) {
 712     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 713   }
 714 #endif
 715   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 716   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 717   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 718 
 719   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 720     // Make sure the method being compiled gets its own MDO,
 721     // so we can at least track the decompile_count().
 722     // Need MDO to record RTM code generation state.
 723     method()->ensure_method_data();
 724   }
 725 
 726   Init(::AliasLevel);
 727 
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737   // Node list that Iterative GVN will start with
 738   Unique_Node_List for_igvn(comp_arena());
 739   set_for_igvn(&for_igvn);
 740 
 741   // GVN that will be run immediately on new nodes
 742   uint estimated_size = method()->code_size()*4+64;
 743   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 744   PhaseGVN gvn(node_arena(), estimated_size);
 745   set_initial_gvn(&gvn);
 746 
 747   if (print_inlining() || print_intrinsics()) {
 748     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 749   }
 750   { // Scope for timing the parser
 751     TracePhase t3("parse", &_t_parser, true);
 752 
 753     // Put top into the hash table ASAP.
 754     initial_gvn()->transform_no_reclaim(top());
 755 
 756     // Set up tf(), start(), and find a CallGenerator.
 757     CallGenerator* cg = NULL;
 758     if (is_osr_compilation()) {
 759       const TypeTuple *domain = StartOSRNode::osr_domain();
 760       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 761       init_tf(TypeFunc::make(domain, range));
 762       StartNode* s = new (this) StartOSRNode(root(), domain);
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       cg = CallGenerator::for_osr(method(), entry_bci());
 766     } else {
 767       // Normal case.
 768       init_tf(TypeFunc::make(method()));
 769       StartNode* s = new (this) StartNode(root(), tf()->domain());
 770       initial_gvn()->set_type_bottom(s);
 771       init_start(s);
 772       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 773         // With java.lang.ref.reference.get() we must go through the
 774         // intrinsic when G1 is enabled - even when get() is the root
 775         // method of the compile - so that, if necessary, the value in
 776         // the referent field of the reference object gets recorded by
 777         // the pre-barrier code.
 778         // Specifically, if G1 is enabled, the value in the referent
 779         // field is recorded by the G1 SATB pre barrier. This will
 780         // result in the referent being marked live and the reference
 781         // object removed from the list of discovered references during
 782         // reference processing.
 783         cg = find_intrinsic(method(), false);
 784       }
 785       if (cg == NULL) {
 786         float past_uses = method()->interpreter_invocation_count();
 787         float expected_uses = past_uses;
 788         cg = CallGenerator::for_inline(method(), expected_uses);
 789       }
 790     }
 791     if (failing())  return;
 792     if (cg == NULL) {
 793       record_method_not_compilable_all_tiers("cannot parse method");
 794       return;
 795     }
 796     JVMState* jvms = build_start_state(start(), tf());
 797     if ((jvms = cg->generate(jvms)) == NULL) {
 798       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 799         record_method_not_compilable("method parse failed");
 800       }
 801       return;
 802     }
 803     GraphKit kit(jvms);
 804 
 805     if (!kit.stopped()) {
 806       // Accept return values, and transfer control we know not where.
 807       // This is done by a special, unique ReturnNode bound to root.
 808       return_values(kit.jvms());
 809     }
 810 
 811     if (kit.has_exceptions()) {
 812       // Any exceptions that escape from this call must be rethrown
 813       // to whatever caller is dynamically above us on the stack.
 814       // This is done by a special, unique RethrowNode bound to root.
 815       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 816     }
 817 
 818     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 819 
 820     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 821       inline_string_calls(true);
 822     }
 823 
 824     if (failing())  return;
 825 
 826     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 827 
 828     // Remove clutter produced by parsing.
 829     if (!failing()) {
 830       ResourceMark rm;
 831       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 832     }
 833   }
 834 
 835   // Note:  Large methods are capped off in do_one_bytecode().
 836   if (failing())  return;
 837 
 838   // After parsing, node notes are no longer automagic.
 839   // They must be propagated by register_new_node_with_optimizer(),
 840   // clone(), or the like.
 841   set_default_node_notes(NULL);
 842 
 843   for (;;) {
 844     int successes = Inline_Warm();
 845     if (failing())  return;
 846     if (successes == 0)  break;
 847   }
 848 
 849   // Drain the list.
 850   Finish_Warm();
 851 #ifndef PRODUCT
 852   if (_printer) {
 853     _printer->print_inlining(this);
 854   }
 855 #endif
 856 
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860   // Now optimize
 861   Optimize();
 862   if (failing())  return;
 863   NOT_PRODUCT( verify_graph_edges(); )
 864 
 865 #ifndef PRODUCT
 866   if (PrintIdeal) {
 867     ttyLocker ttyl;  // keep the following output all in one block
 868     // This output goes directly to the tty, not the compiler log.
 869     // To enable tools to match it up with the compilation activity,
 870     // be sure to tag this tty output with the compile ID.
 871     if (xtty != NULL) {
 872       xtty->head("ideal compile_id='%d'%s", compile_id(),
 873                  is_osr_compilation()    ? " compile_kind='osr'" :
 874                  "");
 875     }
 876     root()->dump(9999);
 877     if (xtty != NULL) {
 878       xtty->tail("ideal");
 879     }
 880   }
 881 #endif
 882 
 883   NOT_PRODUCT( verify_barriers(); )
 884 
 885   // Dump compilation data to replay it.
 886   if (method()->has_option("DumpReplay")) {
 887     env()->dump_replay_data(_compile_id);
 888   }
 889   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 890     env()->dump_inline_data(_compile_id);
 891   }
 892 
 893   // Now that we know the size of all the monitors we can add a fixed slot
 894   // for the original deopt pc.
 895 
 896   _orig_pc_slot =  fixed_slots();
 897   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 898   set_fixed_slots(next_slot);
 899 
 900   // Compute when to use implicit null checks. Used by matching trap based
 901   // nodes and NullCheck optimization.
 902   set_allowed_deopt_reasons();
 903 
 904   // Now generate code
 905   Code_Gen();
 906   if (failing())  return;
 907 
 908   // Check if we want to skip execution of all compiled code.
 909   {
 910 #ifndef PRODUCT
 911     if (OptoNoExecute) {
 912       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 913       return;
 914     }
 915     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 916 #endif
 917 
 918     if (is_osr_compilation()) {
 919       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 920       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 921     } else {
 922       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 923       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 924     }
 925 
 926     env()->register_method(_method, _entry_bci,
 927                            &_code_offsets,
 928                            _orig_pc_slot_offset_in_bytes,
 929                            code_buffer(),
 930                            frame_size_in_words(), _oop_map_set,
 931                            &_handler_table, &_inc_table,
 932                            compiler,
 933                            env()->comp_level(),
 934                            has_unsafe_access(),
 935                            SharedRuntime::is_wide_vector(max_vector_size()),
 936                            rtm_state()
 937                            );
 938 
 939     if (log() != NULL) // Print code cache state into compiler log
 940       log()->code_cache_state();
 941   }
 942 }
 943 
 944 //------------------------------Compile----------------------------------------
 945 // Compile a runtime stub
 946 Compile::Compile( ciEnv* ci_env,
 947                   TypeFunc_generator generator,
 948                   address stub_function,
 949                   const char *stub_name,
 950                   int is_fancy_jump,
 951                   bool pass_tls,
 952                   bool save_arg_registers,
 953                   bool return_pc )
 954   : Phase(Compiler),
 955     _env(ci_env),
 956     _log(ci_env->log()),
 957     _compile_id(0),
 958     _save_argument_registers(save_arg_registers),
 959     _method(NULL),
 960     _stub_name(stub_name),
 961     _stub_function(stub_function),
 962     _stub_entry_point(NULL),
 963     _entry_bci(InvocationEntryBci),
 964     _initial_gvn(NULL),
 965     _for_igvn(NULL),
 966     _warm_calls(NULL),
 967     _orig_pc_slot(0),
 968     _orig_pc_slot_offset_in_bytes(0),
 969     _subsume_loads(true),
 970     _do_escape_analysis(false),
 971     _eliminate_boxing(false),
 972     _failure_reason(NULL),
 973     _code_buffer("Compile::Fill_buffer"),
 974     _has_method_handle_invokes(false),
 975     _mach_constant_base_node(NULL),
 976     _node_bundling_limit(0),
 977     _node_bundling_base(NULL),
 978     _java_calls(0),
 979     _inner_loops(0),
 980 #ifndef PRODUCT
 981     _trace_opto_output(TraceOptoOutput),
 982     _in_dump_cnt(0),
 983     _printer(NULL),
 984 #endif
 985     _comp_arena(mtCompiler),
 986     _node_arena(mtCompiler),
 987     _old_arena(mtCompiler),
 988     _Compile_types(mtCompiler),
 989     _dead_node_list(comp_arena()),
 990     _dead_node_count(0),
 991     _congraph(NULL),
 992     _replay_inline_data(NULL),
 993     _number_of_mh_late_inlines(0),
 994     _inlining_progress(false),
 995     _inlining_incrementally(false),
 996     _print_inlining_list(NULL),
 997     _print_inlining_idx(0),
 998     _allowed_reasons(0),
 999     _interpreter_frame_size(0),
1000     _max_node_limit(MaxNodeLimit) {
1001   C = this;
1002 
1003 #ifndef PRODUCT
1004   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1005   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1006   set_print_assembly(PrintFrameConverterAssembly);
1007   set_parsed_irreducible_loop(false);
1008 #endif
1009   set_has_irreducible_loop(false); // no loops
1010 
1011   CompileWrapper cw(this);
1012   Init(/*AliasLevel=*/ 0);
1013   init_tf((*generator)());
1014 
1015   {
1016     // The following is a dummy for the sake of GraphKit::gen_stub
1017     Unique_Node_List for_igvn(comp_arena());
1018     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1019     PhaseGVN gvn(Thread::current()->resource_area(),255);
1020     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1021     gvn.transform_no_reclaim(top());
1022 
1023     GraphKit kit;
1024     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1025   }
1026 
1027   NOT_PRODUCT( verify_graph_edges(); )
1028   Code_Gen();
1029   if (failing())  return;
1030 
1031 
1032   // Entry point will be accessed using compile->stub_entry_point();
1033   if (code_buffer() == NULL) {
1034     Matcher::soft_match_failure();
1035   } else {
1036     if (PrintAssembly && (WizardMode || Verbose))
1037       tty->print_cr("### Stub::%s", stub_name);
1038 
1039     if (!failing()) {
1040       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1041 
1042       // Make the NMethod
1043       // For now we mark the frame as never safe for profile stackwalking
1044       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1045                                                       code_buffer(),
1046                                                       CodeOffsets::frame_never_safe,
1047                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1048                                                       frame_size_in_words(),
1049                                                       _oop_map_set,
1050                                                       save_arg_registers);
1051       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1052 
1053       _stub_entry_point = rs->entry_point();
1054     }
1055   }
1056 }
1057 
1058 //------------------------------Init-------------------------------------------
1059 // Prepare for a single compilation
1060 void Compile::Init(int aliaslevel) {
1061   _unique  = 0;
1062   _regalloc = NULL;
1063 
1064   _tf      = NULL;  // filled in later
1065   _top     = NULL;  // cached later
1066   _matcher = NULL;  // filled in later
1067   _cfg     = NULL;  // filled in later
1068 
1069   set_24_bit_selection_and_mode(Use24BitFP, false);
1070 
1071   _node_note_array = NULL;
1072   _default_node_notes = NULL;
1073 
1074   _immutable_memory = NULL; // filled in at first inquiry
1075 
1076   // Globally visible Nodes
1077   // First set TOP to NULL to give safe behavior during creation of RootNode
1078   set_cached_top_node(NULL);
1079   set_root(new (this) RootNode());
1080   // Now that you have a Root to point to, create the real TOP
1081   set_cached_top_node( new (this) ConNode(Type::TOP) );
1082   set_recent_alloc(NULL, NULL);
1083 
1084   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1085   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1086   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1087   env()->set_dependencies(new Dependencies(env()));
1088 
1089   _fixed_slots = 0;
1090   set_has_split_ifs(false);
1091   set_has_loops(has_method() && method()->has_loops()); // first approximation
1092   set_has_stringbuilder(false);
1093   set_has_boxed_value(false);
1094   _trap_can_recompile = false;  // no traps emitted yet
1095   _major_progress = true; // start out assuming good things will happen
1096   set_has_unsafe_access(false);
1097   set_max_vector_size(0);
1098   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1099   set_decompile_count(0);
1100 
1101   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1102   set_num_loop_opts(LoopOptsCount);
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107   set_do_count_invocations(false);
1108   set_do_method_data_update(false);
1109   set_rtm_state(NoRTM); // No RTM lock eliding by default
1110   method_has_option_value("MaxNodeLimit", _max_node_limit);
1111 #if INCLUDE_RTM_OPT
1112   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1113     int rtm_state = method()->method_data()->rtm_state();
1114     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1115       // Don't generate RTM lock eliding code.
1116       set_rtm_state(NoRTM);
1117     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1118       // Generate RTM lock eliding code without abort ratio calculation code.
1119       set_rtm_state(UseRTM);
1120     } else if (UseRTMDeopt) {
1121       // Generate RTM lock eliding code and include abort ratio calculation
1122       // code if UseRTMDeopt is on.
1123       set_rtm_state(ProfileRTM);
1124     }
1125   }
1126 #endif
1127   if (debug_info()->recording_non_safepoints()) {
1128     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1129                         (comp_arena(), 8, 0, NULL));
1130     set_default_node_notes(Node_Notes::make(this));
1131   }
1132 
1133   // // -- Initialize types before each compile --
1134   // // Update cached type information
1135   // if( _method && _method->constants() )
1136   //   Type::update_loaded_types(_method, _method->constants());
1137 
1138   // Init alias_type map.
1139   if (!_do_escape_analysis && aliaslevel == 3)
1140     aliaslevel = 2;  // No unique types without escape analysis
1141   _AliasLevel = aliaslevel;
1142   const int grow_ats = 16;
1143   _max_alias_types = grow_ats;
1144   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1145   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1146   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1147   {
1148     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1149   }
1150   // Initialize the first few types.
1151   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1152   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1153   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1154   _num_alias_types = AliasIdxRaw+1;
1155   // Zero out the alias type cache.
1156   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1157   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1158   probe_alias_cache(NULL)->_index = AliasIdxTop;
1159 
1160   _intrinsics = NULL;
1161   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1162   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1165   register_library_intrinsics();
1166 }
1167 
1168 //---------------------------init_start----------------------------------------
1169 // Install the StartNode on this compile object.
1170 void Compile::init_start(StartNode* s) {
1171   if (failing())
1172     return; // already failing
1173   assert(s == start(), "");
1174 }
1175 
1176 StartNode* Compile::start() const {
1177   assert(!failing(), "");
1178   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1179     Node* start = root()->fast_out(i);
1180     if( start->is_Start() )
1181       return start->as_Start();
1182   }
1183   fatal("Did not find Start node!");
1184   return NULL;
1185 }
1186 
1187 //-------------------------------immutable_memory-------------------------------------
1188 // Access immutable memory
1189 Node* Compile::immutable_memory() {
1190   if (_immutable_memory != NULL) {
1191     return _immutable_memory;
1192   }
1193   StartNode* s = start();
1194   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1195     Node *p = s->fast_out(i);
1196     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1197       _immutable_memory = p;
1198       return _immutable_memory;
1199     }
1200   }
1201   ShouldNotReachHere();
1202   return NULL;
1203 }
1204 
1205 //----------------------set_cached_top_node------------------------------------
1206 // Install the cached top node, and make sure Node::is_top works correctly.
1207 void Compile::set_cached_top_node(Node* tn) {
1208   if (tn != NULL)  verify_top(tn);
1209   Node* old_top = _top;
1210   _top = tn;
1211   // Calling Node::setup_is_top allows the nodes the chance to adjust
1212   // their _out arrays.
1213   if (_top != NULL)     _top->setup_is_top();
1214   if (old_top != NULL)  old_top->setup_is_top();
1215   assert(_top == NULL || top()->is_top(), "");
1216 }
1217 
1218 #ifdef ASSERT
1219 uint Compile::count_live_nodes_by_graph_walk() {
1220   Unique_Node_List useful(comp_arena());
1221   // Get useful node list by walking the graph.
1222   identify_useful_nodes(useful);
1223   return useful.size();
1224 }
1225 
1226 void Compile::print_missing_nodes() {
1227 
1228   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1229   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1230     return;
1231   }
1232 
1233   // This is an expensive function. It is executed only when the user
1234   // specifies VerifyIdealNodeCount option or otherwise knows the
1235   // additional work that needs to be done to identify reachable nodes
1236   // by walking the flow graph and find the missing ones using
1237   // _dead_node_list.
1238 
1239   Unique_Node_List useful(comp_arena());
1240   // Get useful node list by walking the graph.
1241   identify_useful_nodes(useful);
1242 
1243   uint l_nodes = C->live_nodes();
1244   uint l_nodes_by_walk = useful.size();
1245 
1246   if (l_nodes != l_nodes_by_walk) {
1247     if (_log != NULL) {
1248       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1249       _log->stamp();
1250       _log->end_head();
1251     }
1252     VectorSet& useful_member_set = useful.member_set();
1253     int last_idx = l_nodes_by_walk;
1254     for (int i = 0; i < last_idx; i++) {
1255       if (useful_member_set.test(i)) {
1256         if (_dead_node_list.test(i)) {
1257           if (_log != NULL) {
1258             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1259           }
1260           if (PrintIdealNodeCount) {
1261             // Print the log message to tty
1262               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1263               useful.at(i)->dump();
1264           }
1265         }
1266       }
1267       else if (! _dead_node_list.test(i)) {
1268         if (_log != NULL) {
1269           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1270         }
1271         if (PrintIdealNodeCount) {
1272           // Print the log message to tty
1273           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1274         }
1275       }
1276     }
1277     if (_log != NULL) {
1278       _log->tail("mismatched_nodes");
1279     }
1280   }
1281 }
1282 #endif
1283 
1284 #ifndef PRODUCT
1285 void Compile::verify_top(Node* tn) const {
1286   if (tn != NULL) {
1287     assert(tn->is_Con(), "top node must be a constant");
1288     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1289     assert(tn->in(0) != NULL, "must have live top node");
1290   }
1291 }
1292 #endif
1293 
1294 
1295 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1296 
1297 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1298   guarantee(arr != NULL, "");
1299   int num_blocks = arr->length();
1300   if (grow_by < num_blocks)  grow_by = num_blocks;
1301   int num_notes = grow_by * _node_notes_block_size;
1302   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1303   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1304   while (num_notes > 0) {
1305     arr->append(notes);
1306     notes     += _node_notes_block_size;
1307     num_notes -= _node_notes_block_size;
1308   }
1309   assert(num_notes == 0, "exact multiple, please");
1310 }
1311 
1312 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1313   if (source == NULL || dest == NULL)  return false;
1314 
1315   if (dest->is_Con())
1316     return false;               // Do not push debug info onto constants.
1317 
1318 #ifdef ASSERT
1319   // Leave a bread crumb trail pointing to the original node:
1320   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1321     dest->set_debug_orig(source);
1322   }
1323 #endif
1324 
1325   if (node_note_array() == NULL)
1326     return false;               // Not collecting any notes now.
1327 
1328   // This is a copy onto a pre-existing node, which may already have notes.
1329   // If both nodes have notes, do not overwrite any pre-existing notes.
1330   Node_Notes* source_notes = node_notes_at(source->_idx);
1331   if (source_notes == NULL || source_notes->is_clear())  return false;
1332   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1333   if (dest_notes == NULL || dest_notes->is_clear()) {
1334     return set_node_notes_at(dest->_idx, source_notes);
1335   }
1336 
1337   Node_Notes merged_notes = (*source_notes);
1338   // The order of operations here ensures that dest notes will win...
1339   merged_notes.update_from(dest_notes);
1340   return set_node_notes_at(dest->_idx, &merged_notes);
1341 }
1342 
1343 
1344 //--------------------------allow_range_check_smearing-------------------------
1345 // Gating condition for coalescing similar range checks.
1346 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1347 // single covering check that is at least as strong as any of them.
1348 // If the optimization succeeds, the simplified (strengthened) range check
1349 // will always succeed.  If it fails, we will deopt, and then give up
1350 // on the optimization.
1351 bool Compile::allow_range_check_smearing() const {
1352   // If this method has already thrown a range-check,
1353   // assume it was because we already tried range smearing
1354   // and it failed.
1355   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1356   return !already_trapped;
1357 }
1358 
1359 
1360 //------------------------------flatten_alias_type-----------------------------
1361 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1362   int offset = tj->offset();
1363   TypePtr::PTR ptr = tj->ptr();
1364 
1365   // Known instance (scalarizable allocation) alias only with itself.
1366   bool is_known_inst = tj->isa_oopptr() != NULL &&
1367                        tj->is_oopptr()->is_known_instance();
1368 
1369   // Process weird unsafe references.
1370   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1371     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1372     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1373     tj = TypeOopPtr::BOTTOM;
1374     ptr = tj->ptr();
1375     offset = tj->offset();
1376   }
1377 
1378   // Array pointers need some flattening
1379   const TypeAryPtr *ta = tj->isa_aryptr();
1380   if (ta && ta->is_stable()) {
1381     // Erase stability property for alias analysis.
1382     tj = ta = ta->cast_to_stable(false);
1383   }
1384   if( ta && is_known_inst ) {
1385     if ( offset != Type::OffsetBot &&
1386          offset > arrayOopDesc::length_offset_in_bytes() ) {
1387       offset = Type::OffsetBot; // Flatten constant access into array body only
1388       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1389     }
1390   } else if( ta && _AliasLevel >= 2 ) {
1391     // For arrays indexed by constant indices, we flatten the alias
1392     // space to include all of the array body.  Only the header, klass
1393     // and array length can be accessed un-aliased.
1394     if( offset != Type::OffsetBot ) {
1395       if( ta->const_oop() ) { // MethodData* or Method*
1396         offset = Type::OffsetBot;   // Flatten constant access into array body
1397         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1398       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1399         // range is OK as-is.
1400         tj = ta = TypeAryPtr::RANGE;
1401       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1402         tj = TypeInstPtr::KLASS; // all klass loads look alike
1403         ta = TypeAryPtr::RANGE; // generic ignored junk
1404         ptr = TypePtr::BotPTR;
1405       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1406         tj = TypeInstPtr::MARK;
1407         ta = TypeAryPtr::RANGE; // generic ignored junk
1408         ptr = TypePtr::BotPTR;
1409       } else {                  // Random constant offset into array body
1410         offset = Type::OffsetBot;   // Flatten constant access into array body
1411         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1412       }
1413     }
1414     // Arrays of fixed size alias with arrays of unknown size.
1415     if (ta->size() != TypeInt::POS) {
1416       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1417       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1418     }
1419     // Arrays of known objects become arrays of unknown objects.
1420     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1421       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1423     }
1424     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1425       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1426       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1427     }
1428     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1429     // cannot be distinguished by bytecode alone.
1430     if (ta->elem() == TypeInt::BOOL) {
1431       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1432       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1433       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1434     }
1435     // During the 2nd round of IterGVN, NotNull castings are removed.
1436     // Make sure the Bottom and NotNull variants alias the same.
1437     // Also, make sure exact and non-exact variants alias the same.
1438     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1439       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1440     }
1441   }
1442 
1443   // Oop pointers need some flattening
1444   const TypeInstPtr *to = tj->isa_instptr();
1445   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1446     ciInstanceKlass *k = to->klass()->as_instance_klass();
1447     if( ptr == TypePtr::Constant ) {
1448       if (to->klass() != ciEnv::current()->Class_klass() ||
1449           offset < k->size_helper() * wordSize) {
1450         // No constant oop pointers (such as Strings); they alias with
1451         // unknown strings.
1452         assert(!is_known_inst, "not scalarizable allocation");
1453         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1454       }
1455     } else if( is_known_inst ) {
1456       tj = to; // Keep NotNull and klass_is_exact for instance type
1457     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1458       // During the 2nd round of IterGVN, NotNull castings are removed.
1459       // Make sure the Bottom and NotNull variants alias the same.
1460       // Also, make sure exact and non-exact variants alias the same.
1461       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1462     }
1463     if (to->speculative() != NULL) {
1464       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1465     }
1466     // Canonicalize the holder of this field
1467     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1468       // First handle header references such as a LoadKlassNode, even if the
1469       // object's klass is unloaded at compile time (4965979).
1470       if (!is_known_inst) { // Do it only for non-instance types
1471         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1472       }
1473     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1474       // Static fields are in the space above the normal instance
1475       // fields in the java.lang.Class instance.
1476       if (to->klass() != ciEnv::current()->Class_klass()) {
1477         to = NULL;
1478         tj = TypeOopPtr::BOTTOM;
1479         offset = tj->offset();
1480       }
1481     } else {
1482       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1483       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1484         if( is_known_inst ) {
1485           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1486         } else {
1487           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1488         }
1489       }
1490     }
1491   }
1492 
1493   // Klass pointers to object array klasses need some flattening
1494   const TypeKlassPtr *tk = tj->isa_klassptr();
1495   if( tk ) {
1496     // If we are referencing a field within a Klass, we need
1497     // to assume the worst case of an Object.  Both exact and
1498     // inexact types must flatten to the same alias class so
1499     // use NotNull as the PTR.
1500     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1501 
1502       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1503                                    TypeKlassPtr::OBJECT->klass(),
1504                                    offset);
1505     }
1506 
1507     ciKlass* klass = tk->klass();
1508     if( klass->is_obj_array_klass() ) {
1509       ciKlass* k = TypeAryPtr::OOPS->klass();
1510       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1511         k = TypeInstPtr::BOTTOM->klass();
1512       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1513     }
1514 
1515     // Check for precise loads from the primary supertype array and force them
1516     // to the supertype cache alias index.  Check for generic array loads from
1517     // the primary supertype array and also force them to the supertype cache
1518     // alias index.  Since the same load can reach both, we need to merge
1519     // these 2 disparate memories into the same alias class.  Since the
1520     // primary supertype array is read-only, there's no chance of confusion
1521     // where we bypass an array load and an array store.
1522     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1523     if (offset == Type::OffsetBot ||
1524         (offset >= primary_supers_offset &&
1525          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1526         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1527       offset = in_bytes(Klass::secondary_super_cache_offset());
1528       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1529     }
1530   }
1531 
1532   // Flatten all Raw pointers together.
1533   if (tj->base() == Type::RawPtr)
1534     tj = TypeRawPtr::BOTTOM;
1535 
1536   if (tj->base() == Type::AnyPtr)
1537     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1538 
1539   // Flatten all to bottom for now
1540   switch( _AliasLevel ) {
1541   case 0:
1542     tj = TypePtr::BOTTOM;
1543     break;
1544   case 1:                       // Flatten to: oop, static, field or array
1545     switch (tj->base()) {
1546     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1547     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1548     case Type::AryPtr:   // do not distinguish arrays at all
1549     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1550     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1551     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1552     default: ShouldNotReachHere();
1553     }
1554     break;
1555   case 2:                       // No collapsing at level 2; keep all splits
1556   case 3:                       // No collapsing at level 3; keep all splits
1557     break;
1558   default:
1559     Unimplemented();
1560   }
1561 
1562   offset = tj->offset();
1563   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1564 
1565   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1566           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1568           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1569           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1570           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1572           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1573   assert( tj->ptr() != TypePtr::TopPTR &&
1574           tj->ptr() != TypePtr::AnyNull &&
1575           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1576 //    assert( tj->ptr() != TypePtr::Constant ||
1577 //            tj->base() == Type::RawPtr ||
1578 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1579 
1580   return tj;
1581 }
1582 
1583 void Compile::AliasType::Init(int i, const TypePtr* at) {
1584   _index = i;
1585   _adr_type = at;
1586   _field = NULL;
1587   _element = NULL;
1588   _is_rewritable = true; // default
1589   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1590   if (atoop != NULL && atoop->is_known_instance()) {
1591     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1592     _general_index = Compile::current()->get_alias_index(gt);
1593   } else {
1594     _general_index = 0;
1595   }
1596 }
1597 
1598 BasicType Compile::AliasType::basic_type() const {
1599   if (element() != NULL) {
1600     const Type* element = adr_type()->is_aryptr()->elem();
1601     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1602   } if (field() != NULL) {
1603     return field()->layout_type();
1604   } else {
1605     return T_ILLEGAL; // unknown
1606   }
1607 }
1608 
1609 //---------------------------------print_on------------------------------------
1610 #ifndef PRODUCT
1611 void Compile::AliasType::print_on(outputStream* st) {
1612   if (index() < 10)
1613         st->print("@ <%d> ", index());
1614   else  st->print("@ <%d>",  index());
1615   st->print(is_rewritable() ? "   " : " RO");
1616   int offset = adr_type()->offset();
1617   if (offset == Type::OffsetBot)
1618         st->print(" +any");
1619   else  st->print(" +%-3d", offset);
1620   st->print(" in ");
1621   adr_type()->dump_on(st);
1622   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1623   if (field() != NULL && tjp) {
1624     if (tjp->klass()  != field()->holder() ||
1625         tjp->offset() != field()->offset_in_bytes()) {
1626       st->print(" != ");
1627       field()->print();
1628       st->print(" ***");
1629     }
1630   }
1631 }
1632 
1633 void print_alias_types() {
1634   Compile* C = Compile::current();
1635   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1636   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1637     C->alias_type(idx)->print_on(tty);
1638     tty->cr();
1639   }
1640 }
1641 #endif
1642 
1643 
1644 //----------------------------probe_alias_cache--------------------------------
1645 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1646   intptr_t key = (intptr_t) adr_type;
1647   key ^= key >> logAliasCacheSize;
1648   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1649 }
1650 
1651 
1652 //-----------------------------grow_alias_types--------------------------------
1653 void Compile::grow_alias_types() {
1654   const int old_ats  = _max_alias_types; // how many before?
1655   const int new_ats  = old_ats;          // how many more?
1656   const int grow_ats = old_ats+new_ats;  // how many now?
1657   _max_alias_types = grow_ats;
1658   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1659   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1660   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1661   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1662 }
1663 
1664 
1665 //--------------------------------find_alias_type------------------------------
1666 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1667   if (_AliasLevel == 0)
1668     return alias_type(AliasIdxBot);
1669 
1670   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1671   if (ace->_adr_type == adr_type) {
1672     return alias_type(ace->_index);
1673   }
1674 
1675   // Handle special cases.
1676   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1677   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1678 
1679   // Do it the slow way.
1680   const TypePtr* flat = flatten_alias_type(adr_type);
1681 
1682 #ifdef ASSERT
1683   {
1684     ResourceMark rm;
1685     assert(flat == flatten_alias_type(flat),
1686            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1687                    Type::str(flat), Type::str(flatten_alias_type(flat))));
1688     assert(flat != TypePtr::BOTTOM,
1689            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1690     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1691       const TypeOopPtr* foop = flat->is_oopptr();
1692       // Scalarizable allocations have exact klass always.
1693       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1694       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1695       assert(foop == flatten_alias_type(xoop),
1696              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1697                      Type::str(foop), Type::str(xoop)));
1698     }
1699   }
1700 #endif
1701 
1702   int idx = AliasIdxTop;
1703   for (int i = 0; i < num_alias_types(); i++) {
1704     if (alias_type(i)->adr_type() == flat) {
1705       idx = i;
1706       break;
1707     }
1708   }
1709 
1710   if (idx == AliasIdxTop) {
1711     if (no_create)  return NULL;
1712     // Grow the array if necessary.
1713     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1714     // Add a new alias type.
1715     idx = _num_alias_types++;
1716     _alias_types[idx]->Init(idx, flat);
1717     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1718     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1719     if (flat->isa_instptr()) {
1720       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1721           && flat->is_instptr()->klass() == env()->Class_klass())
1722         alias_type(idx)->set_rewritable(false);
1723     }
1724     if (flat->isa_aryptr()) {
1725 #ifdef ASSERT
1726       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1727       // (T_BYTE has the weakest alignment and size restrictions...)
1728       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1729 #endif
1730       if (flat->offset() == TypePtr::OffsetBot) {
1731         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1732       }
1733     }
1734     if (flat->isa_klassptr()) {
1735       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1736         alias_type(idx)->set_rewritable(false);
1737       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1738         alias_type(idx)->set_rewritable(false);
1739       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1740         alias_type(idx)->set_rewritable(false);
1741       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1742         alias_type(idx)->set_rewritable(false);
1743     }
1744     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1745     // but the base pointer type is not distinctive enough to identify
1746     // references into JavaThread.)
1747 
1748     // Check for final fields.
1749     const TypeInstPtr* tinst = flat->isa_instptr();
1750     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1751       ciField* field;
1752       if (tinst->const_oop() != NULL &&
1753           tinst->klass() == ciEnv::current()->Class_klass() &&
1754           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1755         // static field
1756         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1757         field = k->get_field_by_offset(tinst->offset(), true);
1758       } else {
1759         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1760         field = k->get_field_by_offset(tinst->offset(), false);
1761       }
1762       assert(field == NULL ||
1763              original_field == NULL ||
1764              (field->holder() == original_field->holder() &&
1765               field->offset() == original_field->offset() &&
1766               field->is_static() == original_field->is_static()), "wrong field?");
1767       // Set field() and is_rewritable() attributes.
1768       if (field != NULL)  alias_type(idx)->set_field(field);
1769     }
1770   }
1771 
1772   // Fill the cache for next time.
1773   ace->_adr_type = adr_type;
1774   ace->_index    = idx;
1775   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1776 
1777   // Might as well try to fill the cache for the flattened version, too.
1778   AliasCacheEntry* face = probe_alias_cache(flat);
1779   if (face->_adr_type == NULL) {
1780     face->_adr_type = flat;
1781     face->_index    = idx;
1782     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1783   }
1784 
1785   return alias_type(idx);
1786 }
1787 
1788 
1789 Compile::AliasType* Compile::alias_type(ciField* field) {
1790   const TypeOopPtr* t;
1791   if (field->is_static())
1792     t = TypeInstPtr::make(field->holder()->java_mirror());
1793   else
1794     t = TypeOopPtr::make_from_klass_raw(field->holder());
1795   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1796   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1797   return atp;
1798 }
1799 
1800 
1801 //------------------------------have_alias_type--------------------------------
1802 bool Compile::have_alias_type(const TypePtr* adr_type) {
1803   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1804   if (ace->_adr_type == adr_type) {
1805     return true;
1806   }
1807 
1808   // Handle special cases.
1809   if (adr_type == NULL)             return true;
1810   if (adr_type == TypePtr::BOTTOM)  return true;
1811 
1812   return find_alias_type(adr_type, true, NULL) != NULL;
1813 }
1814 
1815 //-----------------------------must_alias--------------------------------------
1816 // True if all values of the given address type are in the given alias category.
1817 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1818   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1819   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1820   if (alias_idx == AliasIdxTop)         return false; // the empty category
1821   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1822 
1823   // the only remaining possible overlap is identity
1824   int adr_idx = get_alias_index(adr_type);
1825   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1826   assert(adr_idx == alias_idx ||
1827          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1828           && adr_type                       != TypeOopPtr::BOTTOM),
1829          "should not be testing for overlap with an unsafe pointer");
1830   return adr_idx == alias_idx;
1831 }
1832 
1833 //------------------------------can_alias--------------------------------------
1834 // True if any values of the given address type are in the given alias category.
1835 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1836   if (alias_idx == AliasIdxTop)         return false; // the empty category
1837   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1838   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1839   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1840 
1841   // the only remaining possible overlap is identity
1842   int adr_idx = get_alias_index(adr_type);
1843   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1844   return adr_idx == alias_idx;
1845 }
1846 
1847 
1848 
1849 //---------------------------pop_warm_call-------------------------------------
1850 WarmCallInfo* Compile::pop_warm_call() {
1851   WarmCallInfo* wci = _warm_calls;
1852   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1853   return wci;
1854 }
1855 
1856 //----------------------------Inline_Warm--------------------------------------
1857 int Compile::Inline_Warm() {
1858   // If there is room, try to inline some more warm call sites.
1859   // %%% Do a graph index compaction pass when we think we're out of space?
1860   if (!InlineWarmCalls)  return 0;
1861 
1862   int calls_made_hot = 0;
1863   int room_to_grow   = NodeCountInliningCutoff - unique();
1864   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1865   int amount_grown   = 0;
1866   WarmCallInfo* call;
1867   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1868     int est_size = (int)call->size();
1869     if (est_size > (room_to_grow - amount_grown)) {
1870       // This one won't fit anyway.  Get rid of it.
1871       call->make_cold();
1872       continue;
1873     }
1874     call->make_hot();
1875     calls_made_hot++;
1876     amount_grown   += est_size;
1877     amount_to_grow -= est_size;
1878   }
1879 
1880   if (calls_made_hot > 0)  set_major_progress();
1881   return calls_made_hot;
1882 }
1883 
1884 
1885 //----------------------------Finish_Warm--------------------------------------
1886 void Compile::Finish_Warm() {
1887   if (!InlineWarmCalls)  return;
1888   if (failing())  return;
1889   if (warm_calls() == NULL)  return;
1890 
1891   // Clean up loose ends, if we are out of space for inlining.
1892   WarmCallInfo* call;
1893   while ((call = pop_warm_call()) != NULL) {
1894     call->make_cold();
1895   }
1896 }
1897 
1898 //---------------------cleanup_loop_predicates-----------------------
1899 // Remove the opaque nodes that protect the predicates so that all unused
1900 // checks and uncommon_traps will be eliminated from the ideal graph
1901 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1902   if (predicate_count()==0) return;
1903   for (int i = predicate_count(); i > 0; i--) {
1904     Node * n = predicate_opaque1_node(i-1);
1905     assert(n->Opcode() == Op_Opaque1, "must be");
1906     igvn.replace_node(n, n->in(1));
1907   }
1908   assert(predicate_count()==0, "should be clean!");
1909 }
1910 
1911 void Compile::add_range_check_cast(Node* n) {
1912   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1913   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1914   _range_check_casts->append(n);
1915 }
1916 
1917 // Remove all range check dependent CastIINodes.
1918 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1919   for (int i = range_check_cast_count(); i > 0; i--) {
1920     Node* cast = range_check_cast_node(i-1);
1921     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1922     igvn.replace_node(cast, cast->in(1));
1923   }
1924   assert(range_check_cast_count() == 0, "should be empty");
1925 }
1926 
1927 // StringOpts and late inlining of string methods
1928 void Compile::inline_string_calls(bool parse_time) {
1929   {
1930     // remove useless nodes to make the usage analysis simpler
1931     ResourceMark rm;
1932     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1933   }
1934 
1935   {
1936     ResourceMark rm;
1937     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1938     PhaseStringOpts pso(initial_gvn(), for_igvn());
1939     print_method(PHASE_AFTER_STRINGOPTS, 3);
1940   }
1941 
1942   // now inline anything that we skipped the first time around
1943   if (!parse_time) {
1944     _late_inlines_pos = _late_inlines.length();
1945   }
1946 
1947   while (_string_late_inlines.length() > 0) {
1948     CallGenerator* cg = _string_late_inlines.pop();
1949     cg->do_late_inline();
1950     if (failing())  return;
1951   }
1952   _string_late_inlines.trunc_to(0);
1953 }
1954 
1955 // Late inlining of boxing methods
1956 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1957   if (_boxing_late_inlines.length() > 0) {
1958     assert(has_boxed_value(), "inconsistent");
1959 
1960     PhaseGVN* gvn = initial_gvn();
1961     set_inlining_incrementally(true);
1962 
1963     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1964     for_igvn()->clear();
1965     gvn->replace_with(&igvn);
1966 
1967     _late_inlines_pos = _late_inlines.length();
1968 
1969     while (_boxing_late_inlines.length() > 0) {
1970       CallGenerator* cg = _boxing_late_inlines.pop();
1971       cg->do_late_inline();
1972       if (failing())  return;
1973     }
1974     _boxing_late_inlines.trunc_to(0);
1975 
1976     {
1977       ResourceMark rm;
1978       PhaseRemoveUseless pru(gvn, for_igvn());
1979     }
1980 
1981     igvn = PhaseIterGVN(gvn);
1982     igvn.optimize();
1983 
1984     set_inlining_progress(false);
1985     set_inlining_incrementally(false);
1986   }
1987 }
1988 
1989 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1990   assert(IncrementalInline, "incremental inlining should be on");
1991   PhaseGVN* gvn = initial_gvn();
1992 
1993   set_inlining_progress(false);
1994   for_igvn()->clear();
1995   gvn->replace_with(&igvn);
1996 
1997   int i = 0;
1998 
1999   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2000     CallGenerator* cg = _late_inlines.at(i);
2001     _late_inlines_pos = i+1;
2002     cg->do_late_inline();
2003     if (failing())  return;
2004   }
2005   int j = 0;
2006   for (; i < _late_inlines.length(); i++, j++) {
2007     _late_inlines.at_put(j, _late_inlines.at(i));
2008   }
2009   _late_inlines.trunc_to(j);
2010 
2011   {
2012     ResourceMark rm;
2013     PhaseRemoveUseless pru(gvn, for_igvn());
2014   }
2015 
2016   igvn = PhaseIterGVN(gvn);
2017 }
2018 
2019 // Perform incremental inlining until bound on number of live nodes is reached
2020 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2021   PhaseGVN* gvn = initial_gvn();
2022 
2023   set_inlining_incrementally(true);
2024   set_inlining_progress(true);
2025   uint low_live_nodes = 0;
2026 
2027   while(inlining_progress() && _late_inlines.length() > 0) {
2028 
2029     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2030       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2031         // PhaseIdealLoop is expensive so we only try it once we are
2032         // out of live nodes and we only try it again if the previous
2033         // helped got the number of nodes down significantly
2034         PhaseIdealLoop ideal_loop( igvn, false, true );
2035         if (failing())  return;
2036         low_live_nodes = live_nodes();
2037         _major_progress = true;
2038       }
2039 
2040       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2041         break;
2042       }
2043     }
2044 
2045     inline_incrementally_one(igvn);
2046 
2047     if (failing())  return;
2048 
2049     igvn.optimize();
2050 
2051     if (failing())  return;
2052   }
2053 
2054   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2055 
2056   if (_string_late_inlines.length() > 0) {
2057     assert(has_stringbuilder(), "inconsistent");
2058     for_igvn()->clear();
2059     initial_gvn()->replace_with(&igvn);
2060 
2061     inline_string_calls(false);
2062 
2063     if (failing())  return;
2064 
2065     {
2066       ResourceMark rm;
2067       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2068     }
2069 
2070     igvn = PhaseIterGVN(gvn);
2071 
2072     igvn.optimize();
2073   }
2074 
2075   set_inlining_incrementally(false);
2076 }
2077 
2078 
2079 //------------------------------Optimize---------------------------------------
2080 // Given a graph, optimize it.
2081 void Compile::Optimize() {
2082   TracePhase t1("optimizer", &_t_optimizer, true);
2083 
2084 #ifndef PRODUCT
2085   if (env()->break_at_compile()) {
2086     BREAKPOINT;
2087   }
2088 
2089 #endif
2090 
2091   ResourceMark rm;
2092   int          loop_opts_cnt;
2093 
2094   NOT_PRODUCT( verify_graph_edges(); )
2095 
2096   print_method(PHASE_AFTER_PARSING);
2097 
2098  {
2099   // Iterative Global Value Numbering, including ideal transforms
2100   // Initialize IterGVN with types and values from parse-time GVN
2101   PhaseIterGVN igvn(initial_gvn());
2102   {
2103     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2104     igvn.optimize();
2105   }
2106 
2107   print_method(PHASE_ITER_GVN1, 2);
2108 
2109   if (failing())  return;
2110 
2111   {
2112     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2113     inline_incrementally(igvn);
2114   }
2115 
2116   print_method(PHASE_INCREMENTAL_INLINE, 2);
2117 
2118   if (failing())  return;
2119 
2120   if (eliminate_boxing()) {
2121     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2122     // Inline valueOf() methods now.
2123     inline_boxing_calls(igvn);
2124 
2125     if (AlwaysIncrementalInline) {
2126       inline_incrementally(igvn);
2127     }
2128 
2129     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2130 
2131     if (failing())  return;
2132   }
2133 
2134   // Remove the speculative part of types and clean up the graph from
2135   // the extra CastPP nodes whose only purpose is to carry them. Do
2136   // that early so that optimizations are not disrupted by the extra
2137   // CastPP nodes.
2138   remove_speculative_types(igvn);
2139 
2140   // No more new expensive nodes will be added to the list from here
2141   // so keep only the actual candidates for optimizations.
2142   cleanup_expensive_nodes(igvn);
2143 
2144   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2145     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2146     initial_gvn()->replace_with(&igvn);
2147     for_igvn()->clear();
2148     Unique_Node_List new_worklist(C->comp_arena());
2149     {
2150       ResourceMark rm;
2151       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2152     }
2153     set_for_igvn(&new_worklist);
2154     igvn = PhaseIterGVN(initial_gvn());
2155     igvn.optimize();
2156   }
2157 
2158   // Perform escape analysis
2159   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2160     if (has_loops()) {
2161       // Cleanup graph (remove dead nodes).
2162       TracePhase t2("idealLoop", &_t_idealLoop, true);
2163       PhaseIdealLoop ideal_loop( igvn, false, true );
2164       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2165       if (failing())  return;
2166     }
2167     ConnectionGraph::do_analysis(this, &igvn);
2168 
2169     if (failing())  return;
2170 
2171     // Optimize out fields loads from scalar replaceable allocations.
2172     igvn.optimize();
2173     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2174 
2175     if (failing())  return;
2176 
2177     if (congraph() != NULL && macro_count() > 0) {
2178       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2179       PhaseMacroExpand mexp(igvn);
2180       mexp.eliminate_macro_nodes();
2181       igvn.set_delay_transform(false);
2182 
2183       igvn.optimize();
2184       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2185 
2186       if (failing())  return;
2187     }
2188   }
2189 
2190   // Loop transforms on the ideal graph.  Range Check Elimination,
2191   // peeling, unrolling, etc.
2192 
2193   // Set loop opts counter
2194   loop_opts_cnt = num_loop_opts();
2195   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2196     {
2197       TracePhase t2("idealLoop", &_t_idealLoop, true);
2198       PhaseIdealLoop ideal_loop( igvn, true );
2199       loop_opts_cnt--;
2200       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2201       if (failing())  return;
2202     }
2203     // Loop opts pass if partial peeling occurred in previous pass
2204     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2205       TracePhase t3("idealLoop", &_t_idealLoop, true);
2206       PhaseIdealLoop ideal_loop( igvn, false );
2207       loop_opts_cnt--;
2208       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2209       if (failing())  return;
2210     }
2211     // Loop opts pass for loop-unrolling before CCP
2212     if(major_progress() && (loop_opts_cnt > 0)) {
2213       TracePhase t4("idealLoop", &_t_idealLoop, true);
2214       PhaseIdealLoop ideal_loop( igvn, false );
2215       loop_opts_cnt--;
2216       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2217     }
2218     if (!failing()) {
2219       // Verify that last round of loop opts produced a valid graph
2220       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2221       PhaseIdealLoop::verify(igvn);
2222     }
2223   }
2224   if (failing())  return;
2225 
2226   // Conditional Constant Propagation;
2227   PhaseCCP ccp( &igvn );
2228   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2229   {
2230     TracePhase t2("ccp", &_t_ccp, true);
2231     ccp.do_transform();
2232   }
2233   print_method(PHASE_CPP1, 2);
2234 
2235   assert( true, "Break here to ccp.dump_old2new_map()");
2236 
2237   // Iterative Global Value Numbering, including ideal transforms
2238   {
2239     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2240     igvn = ccp;
2241     igvn.optimize();
2242   }
2243 
2244   print_method(PHASE_ITER_GVN2, 2);
2245 
2246   if (failing())  return;
2247 
2248   // Loop transforms on the ideal graph.  Range Check Elimination,
2249   // peeling, unrolling, etc.
2250   if(loop_opts_cnt > 0) {
2251     debug_only( int cnt = 0; );
2252     while(major_progress() && (loop_opts_cnt > 0)) {
2253       TracePhase t2("idealLoop", &_t_idealLoop, true);
2254       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2255       PhaseIdealLoop ideal_loop( igvn, true);
2256       loop_opts_cnt--;
2257       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2258       if (failing())  return;
2259     }
2260   }
2261 
2262   {
2263     // Verify that all previous optimizations produced a valid graph
2264     // at least to this point, even if no loop optimizations were done.
2265     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2266     PhaseIdealLoop::verify(igvn);
2267   }
2268 
2269   if (range_check_cast_count() > 0) {
2270     // No more loop optimizations. Remove all range check dependent CastIINodes.
2271     C->remove_range_check_casts(igvn);
2272     igvn.optimize();
2273   }
2274 
2275   {
2276     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2277     PhaseMacroExpand  mex(igvn);
2278     if (mex.expand_macro_nodes()) {
2279       assert(failing(), "must bail out w/ explicit message");
2280       return;
2281     }
2282   }
2283 
2284  } // (End scope of igvn; run destructor if necessary for asserts.)
2285 
2286   dump_inlining();
2287   // A method with only infinite loops has no edges entering loops from root
2288   {
2289     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2290     if (final_graph_reshaping()) {
2291       assert(failing(), "must bail out w/ explicit message");
2292       return;
2293     }
2294   }
2295 
2296   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2297 }
2298 
2299 
2300 //------------------------------Code_Gen---------------------------------------
2301 // Given a graph, generate code for it
2302 void Compile::Code_Gen() {
2303   if (failing()) {
2304     return;
2305   }
2306 
2307   // Perform instruction selection.  You might think we could reclaim Matcher
2308   // memory PDQ, but actually the Matcher is used in generating spill code.
2309   // Internals of the Matcher (including some VectorSets) must remain live
2310   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2311   // set a bit in reclaimed memory.
2312 
2313   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2314   // nodes.  Mapping is only valid at the root of each matched subtree.
2315   NOT_PRODUCT( verify_graph_edges(); )
2316 
2317   Matcher matcher;
2318   _matcher = &matcher;
2319   {
2320     TracePhase t2("matcher", &_t_matcher, true);
2321     matcher.match();
2322   }
2323   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2324   // nodes.  Mapping is only valid at the root of each matched subtree.
2325   NOT_PRODUCT( verify_graph_edges(); )
2326 
2327   // If you have too many nodes, or if matching has failed, bail out
2328   check_node_count(0, "out of nodes matching instructions");
2329   if (failing()) {
2330     return;
2331   }
2332 
2333   // Build a proper-looking CFG
2334   PhaseCFG cfg(node_arena(), root(), matcher);
2335   _cfg = &cfg;
2336   {
2337     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2338     bool success = cfg.do_global_code_motion();
2339     if (!success) {
2340       return;
2341     }
2342 
2343     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2344     NOT_PRODUCT( verify_graph_edges(); )
2345     debug_only( cfg.verify(); )
2346   }
2347 
2348   PhaseChaitin regalloc(unique(), cfg, matcher);
2349   _regalloc = &regalloc;
2350   {
2351     TracePhase t2("regalloc", &_t_registerAllocation, true);
2352     // Perform register allocation.  After Chaitin, use-def chains are
2353     // no longer accurate (at spill code) and so must be ignored.
2354     // Node->LRG->reg mappings are still accurate.
2355     _regalloc->Register_Allocate();
2356 
2357     // Bail out if the allocator builds too many nodes
2358     if (failing()) {
2359       return;
2360     }
2361   }
2362 
2363   // Prior to register allocation we kept empty basic blocks in case the
2364   // the allocator needed a place to spill.  After register allocation we
2365   // are not adding any new instructions.  If any basic block is empty, we
2366   // can now safely remove it.
2367   {
2368     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2369     cfg.remove_empty_blocks();
2370     if (do_freq_based_layout()) {
2371       PhaseBlockLayout layout(cfg);
2372     } else {
2373       cfg.set_loop_alignment();
2374     }
2375     cfg.fixup_flow();
2376   }
2377 
2378   // Apply peephole optimizations
2379   if( OptoPeephole ) {
2380     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2381     PhasePeephole peep( _regalloc, cfg);
2382     peep.do_transform();
2383   }
2384 
2385   // Do late expand if CPU requires this.
2386   if (Matcher::require_postalloc_expand) {
2387     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2388     cfg.postalloc_expand(_regalloc);
2389   }
2390 
2391   // Convert Nodes to instruction bits in a buffer
2392   {
2393     // %%%% workspace merge brought two timers together for one job
2394     TracePhase t2a("output", &_t_output, true);
2395     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2396     Output();
2397   }
2398 
2399   print_method(PHASE_FINAL_CODE);
2400 
2401   // He's dead, Jim.
2402   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2403   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2404 }
2405 
2406 
2407 //------------------------------dump_asm---------------------------------------
2408 // Dump formatted assembly
2409 #ifndef PRODUCT
2410 void Compile::dump_asm(int *pcs, uint pc_limit) {
2411   bool cut_short = false;
2412   tty->print_cr("#");
2413   tty->print("#  ");  _tf->dump();  tty->cr();
2414   tty->print_cr("#");
2415 
2416   // For all blocks
2417   int pc = 0x0;                 // Program counter
2418   char starts_bundle = ' ';
2419   _regalloc->dump_frame();
2420 
2421   Node *n = NULL;
2422   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2423     if (VMThread::should_terminate()) {
2424       cut_short = true;
2425       break;
2426     }
2427     Block* block = _cfg->get_block(i);
2428     if (block->is_connector() && !Verbose) {
2429       continue;
2430     }
2431     n = block->head();
2432     if (pcs && n->_idx < pc_limit) {
2433       tty->print("%3.3x   ", pcs[n->_idx]);
2434     } else {
2435       tty->print("      ");
2436     }
2437     block->dump_head(_cfg);
2438     if (block->is_connector()) {
2439       tty->print_cr("        # Empty connector block");
2440     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2441       tty->print_cr("        # Block is sole successor of call");
2442     }
2443 
2444     // For all instructions
2445     Node *delay = NULL;
2446     for (uint j = 0; j < block->number_of_nodes(); j++) {
2447       if (VMThread::should_terminate()) {
2448         cut_short = true;
2449         break;
2450       }
2451       n = block->get_node(j);
2452       if (valid_bundle_info(n)) {
2453         Bundle* bundle = node_bundling(n);
2454         if (bundle->used_in_unconditional_delay()) {
2455           delay = n;
2456           continue;
2457         }
2458         if (bundle->starts_bundle()) {
2459           starts_bundle = '+';
2460         }
2461       }
2462 
2463       if (WizardMode) {
2464         n->dump();
2465       }
2466 
2467       if( !n->is_Region() &&    // Dont print in the Assembly
2468           !n->is_Phi() &&       // a few noisely useless nodes
2469           !n->is_Proj() &&
2470           !n->is_MachTemp() &&
2471           !n->is_SafePointScalarObject() &&
2472           !n->is_Catch() &&     // Would be nice to print exception table targets
2473           !n->is_MergeMem() &&  // Not very interesting
2474           !n->is_top() &&       // Debug info table constants
2475           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2476           ) {
2477         if (pcs && n->_idx < pc_limit)
2478           tty->print("%3.3x", pcs[n->_idx]);
2479         else
2480           tty->print("   ");
2481         tty->print(" %c ", starts_bundle);
2482         starts_bundle = ' ';
2483         tty->print("\t");
2484         n->format(_regalloc, tty);
2485         tty->cr();
2486       }
2487 
2488       // If we have an instruction with a delay slot, and have seen a delay,
2489       // then back up and print it
2490       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2491         assert(delay != NULL, "no unconditional delay instruction");
2492         if (WizardMode) delay->dump();
2493 
2494         if (node_bundling(delay)->starts_bundle())
2495           starts_bundle = '+';
2496         if (pcs && n->_idx < pc_limit)
2497           tty->print("%3.3x", pcs[n->_idx]);
2498         else
2499           tty->print("   ");
2500         tty->print(" %c ", starts_bundle);
2501         starts_bundle = ' ';
2502         tty->print("\t");
2503         delay->format(_regalloc, tty);
2504         tty->cr();
2505         delay = NULL;
2506       }
2507 
2508       // Dump the exception table as well
2509       if( n->is_Catch() && (Verbose || WizardMode) ) {
2510         // Print the exception table for this offset
2511         _handler_table.print_subtable_for(pc);
2512       }
2513     }
2514 
2515     if (pcs && n->_idx < pc_limit)
2516       tty->print_cr("%3.3x", pcs[n->_idx]);
2517     else
2518       tty->cr();
2519 
2520     assert(cut_short || delay == NULL, "no unconditional delay branch");
2521 
2522   } // End of per-block dump
2523   tty->cr();
2524 
2525   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2526 }
2527 #endif
2528 
2529 //------------------------------Final_Reshape_Counts---------------------------
2530 // This class defines counters to help identify when a method
2531 // may/must be executed using hardware with only 24-bit precision.
2532 struct Final_Reshape_Counts : public StackObj {
2533   int  _call_count;             // count non-inlined 'common' calls
2534   int  _float_count;            // count float ops requiring 24-bit precision
2535   int  _double_count;           // count double ops requiring more precision
2536   int  _java_call_count;        // count non-inlined 'java' calls
2537   int  _inner_loop_count;       // count loops which need alignment
2538   VectorSet _visited;           // Visitation flags
2539   Node_List _tests;             // Set of IfNodes & PCTableNodes
2540 
2541   Final_Reshape_Counts() :
2542     _call_count(0), _float_count(0), _double_count(0),
2543     _java_call_count(0), _inner_loop_count(0),
2544     _visited( Thread::current()->resource_area() ) { }
2545 
2546   void inc_call_count  () { _call_count  ++; }
2547   void inc_float_count () { _float_count ++; }
2548   void inc_double_count() { _double_count++; }
2549   void inc_java_call_count() { _java_call_count++; }
2550   void inc_inner_loop_count() { _inner_loop_count++; }
2551 
2552   int  get_call_count  () const { return _call_count  ; }
2553   int  get_float_count () const { return _float_count ; }
2554   int  get_double_count() const { return _double_count; }
2555   int  get_java_call_count() const { return _java_call_count; }
2556   int  get_inner_loop_count() const { return _inner_loop_count; }
2557 };
2558 
2559 #ifdef ASSERT
2560 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2561   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2562   // Make sure the offset goes inside the instance layout.
2563   return k->contains_field_offset(tp->offset());
2564   // Note that OffsetBot and OffsetTop are very negative.
2565 }
2566 #endif
2567 
2568 // Eliminate trivially redundant StoreCMs and accumulate their
2569 // precedence edges.
2570 void Compile::eliminate_redundant_card_marks(Node* n) {
2571   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2572   if (n->in(MemNode::Address)->outcnt() > 1) {
2573     // There are multiple users of the same address so it might be
2574     // possible to eliminate some of the StoreCMs
2575     Node* mem = n->in(MemNode::Memory);
2576     Node* adr = n->in(MemNode::Address);
2577     Node* val = n->in(MemNode::ValueIn);
2578     Node* prev = n;
2579     bool done = false;
2580     // Walk the chain of StoreCMs eliminating ones that match.  As
2581     // long as it's a chain of single users then the optimization is
2582     // safe.  Eliminating partially redundant StoreCMs would require
2583     // cloning copies down the other paths.
2584     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2585       if (adr == mem->in(MemNode::Address) &&
2586           val == mem->in(MemNode::ValueIn)) {
2587         // redundant StoreCM
2588         if (mem->req() > MemNode::OopStore) {
2589           // Hasn't been processed by this code yet.
2590           n->add_prec(mem->in(MemNode::OopStore));
2591         } else {
2592           // Already converted to precedence edge
2593           for (uint i = mem->req(); i < mem->len(); i++) {
2594             // Accumulate any precedence edges
2595             if (mem->in(i) != NULL) {
2596               n->add_prec(mem->in(i));
2597             }
2598           }
2599           // Everything above this point has been processed.
2600           done = true;
2601         }
2602         // Eliminate the previous StoreCM
2603         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2604         assert(mem->outcnt() == 0, "should be dead");
2605         mem->disconnect_inputs(NULL, this);
2606       } else {
2607         prev = mem;
2608       }
2609       mem = prev->in(MemNode::Memory);
2610     }
2611   }
2612 }
2613 
2614 //------------------------------final_graph_reshaping_impl----------------------
2615 // Implement items 1-5 from final_graph_reshaping below.
2616 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2617 
2618   if ( n->outcnt() == 0 ) return; // dead node
2619   uint nop = n->Opcode();
2620 
2621   // Check for 2-input instruction with "last use" on right input.
2622   // Swap to left input.  Implements item (2).
2623   if( n->req() == 3 &&          // two-input instruction
2624       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2625       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2626       n->in(2)->outcnt() == 1 &&// right use IS a last use
2627       !n->in(2)->is_Con() ) {   // right use is not a constant
2628     // Check for commutative opcode
2629     switch( nop ) {
2630     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2631     case Op_MaxI:  case Op_MinI:
2632     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2633     case Op_AndL:  case Op_XorL:  case Op_OrL:
2634     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2635       // Move "last use" input to left by swapping inputs
2636       n->swap_edges(1, 2);
2637       break;
2638     }
2639     default:
2640       break;
2641     }
2642   }
2643 
2644 #ifdef ASSERT
2645   if( n->is_Mem() ) {
2646     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2647     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2648             // oop will be recorded in oop map if load crosses safepoint
2649             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2650                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2651             "raw memory operations should have control edge");
2652   }
2653 #endif
2654   // Count FPU ops and common calls, implements item (3)
2655   switch( nop ) {
2656   // Count all float operations that may use FPU
2657   case Op_AddF:
2658   case Op_SubF:
2659   case Op_MulF:
2660   case Op_DivF:
2661   case Op_NegF:
2662   case Op_ModF:
2663   case Op_ConvI2F:
2664   case Op_ConF:
2665   case Op_CmpF:
2666   case Op_CmpF3:
2667   // case Op_ConvL2F: // longs are split into 32-bit halves
2668     frc.inc_float_count();
2669     break;
2670 
2671   case Op_ConvF2D:
2672   case Op_ConvD2F:
2673     frc.inc_float_count();
2674     frc.inc_double_count();
2675     break;
2676 
2677   // Count all double operations that may use FPU
2678   case Op_AddD:
2679   case Op_SubD:
2680   case Op_MulD:
2681   case Op_DivD:
2682   case Op_NegD:
2683   case Op_ModD:
2684   case Op_ConvI2D:
2685   case Op_ConvD2I:
2686   // case Op_ConvL2D: // handled by leaf call
2687   // case Op_ConvD2L: // handled by leaf call
2688   case Op_ConD:
2689   case Op_CmpD:
2690   case Op_CmpD3:
2691     frc.inc_double_count();
2692     break;
2693   case Op_Opaque1:              // Remove Opaque Nodes before matching
2694   case Op_Opaque2:              // Remove Opaque Nodes before matching
2695   case Op_Opaque3:
2696     n->subsume_by(n->in(1), this);
2697     break;
2698   case Op_CallStaticJava:
2699   case Op_CallJava:
2700   case Op_CallDynamicJava:
2701     frc.inc_java_call_count(); // Count java call site;
2702   case Op_CallRuntime:
2703   case Op_CallLeaf:
2704   case Op_CallLeafNoFP: {
2705     assert( n->is_Call(), "" );
2706     CallNode *call = n->as_Call();
2707     // Count call sites where the FP mode bit would have to be flipped.
2708     // Do not count uncommon runtime calls:
2709     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2710     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2711     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2712       frc.inc_call_count();   // Count the call site
2713     } else {                  // See if uncommon argument is shared
2714       Node *n = call->in(TypeFunc::Parms);
2715       int nop = n->Opcode();
2716       // Clone shared simple arguments to uncommon calls, item (1).
2717       if( n->outcnt() > 1 &&
2718           !n->is_Proj() &&
2719           nop != Op_CreateEx &&
2720           nop != Op_CheckCastPP &&
2721           nop != Op_DecodeN &&
2722           nop != Op_DecodeNKlass &&
2723           !n->is_Mem() ) {
2724         Node *x = n->clone();
2725         call->set_req( TypeFunc::Parms, x );
2726       }
2727     }
2728     break;
2729   }
2730 
2731   case Op_StoreD:
2732   case Op_LoadD:
2733   case Op_LoadD_unaligned:
2734     frc.inc_double_count();
2735     goto handle_mem;
2736   case Op_StoreF:
2737   case Op_LoadF:
2738     frc.inc_float_count();
2739     goto handle_mem;
2740 
2741   case Op_StoreCM:
2742     {
2743       // Convert OopStore dependence into precedence edge
2744       Node* prec = n->in(MemNode::OopStore);
2745       n->del_req(MemNode::OopStore);
2746       n->add_prec(prec);
2747       eliminate_redundant_card_marks(n);
2748     }
2749 
2750     // fall through
2751 
2752   case Op_StoreB:
2753   case Op_StoreC:
2754   case Op_StorePConditional:
2755   case Op_StoreI:
2756   case Op_StoreL:
2757   case Op_StoreIConditional:
2758   case Op_StoreLConditional:
2759   case Op_CompareAndSwapI:
2760   case Op_CompareAndSwapL:
2761   case Op_CompareAndSwapP:
2762   case Op_CompareAndSwapN:
2763   case Op_GetAndAddI:
2764   case Op_GetAndAddL:
2765   case Op_GetAndSetI:
2766   case Op_GetAndSetL:
2767   case Op_GetAndSetP:
2768   case Op_GetAndSetN:
2769   case Op_StoreP:
2770   case Op_StoreN:
2771   case Op_StoreNKlass:
2772   case Op_LoadB:
2773   case Op_LoadUB:
2774   case Op_LoadUS:
2775   case Op_LoadI:
2776   case Op_LoadKlass:
2777   case Op_LoadNKlass:
2778   case Op_LoadL:
2779   case Op_LoadL_unaligned:
2780   case Op_LoadPLocked:
2781   case Op_LoadP:
2782   case Op_LoadN:
2783   case Op_LoadRange:
2784   case Op_LoadS: {
2785   handle_mem:
2786 #ifdef ASSERT
2787     if( VerifyOptoOopOffsets ) {
2788       assert( n->is_Mem(), "" );
2789       MemNode *mem  = (MemNode*)n;
2790       // Check to see if address types have grounded out somehow.
2791       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2792       assert( !tp || oop_offset_is_sane(tp), "" );
2793     }
2794 #endif
2795     break;
2796   }
2797 
2798   case Op_AddP: {               // Assert sane base pointers
2799     Node *addp = n->in(AddPNode::Address);
2800     assert( !addp->is_AddP() ||
2801             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2802             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2803             "Base pointers must match" );
2804 #ifdef _LP64
2805     if ((UseCompressedOops || UseCompressedClassPointers) &&
2806         addp->Opcode() == Op_ConP &&
2807         addp == n->in(AddPNode::Base) &&
2808         n->in(AddPNode::Offset)->is_Con()) {
2809       // Use addressing with narrow klass to load with offset on x86.
2810       // On sparc loading 32-bits constant and decoding it have less
2811       // instructions (4) then load 64-bits constant (7).
2812       // Do this transformation here since IGVN will convert ConN back to ConP.
2813       const Type* t = addp->bottom_type();
2814       if (t->isa_oopptr() || t->isa_klassptr()) {
2815         Node* nn = NULL;
2816 
2817         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2818 
2819         // Look for existing ConN node of the same exact type.
2820         Node* r  = root();
2821         uint cnt = r->outcnt();
2822         for (uint i = 0; i < cnt; i++) {
2823           Node* m = r->raw_out(i);
2824           if (m!= NULL && m->Opcode() == op &&
2825               m->bottom_type()->make_ptr() == t) {
2826             nn = m;
2827             break;
2828           }
2829         }
2830         if (nn != NULL) {
2831           // Decode a narrow oop to match address
2832           // [R12 + narrow_oop_reg<<3 + offset]
2833           if (t->isa_oopptr()) {
2834             nn = new (this) DecodeNNode(nn, t);
2835           } else {
2836             nn = new (this) DecodeNKlassNode(nn, t);
2837           }
2838           n->set_req(AddPNode::Base, nn);
2839           n->set_req(AddPNode::Address, nn);
2840           if (addp->outcnt() == 0) {
2841             addp->disconnect_inputs(NULL, this);
2842           }
2843         }
2844       }
2845     }
2846 #endif
2847     break;
2848   }
2849 
2850 #ifdef _LP64
2851   case Op_CastPP:
2852     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2853       Node* in1 = n->in(1);
2854       const Type* t = n->bottom_type();
2855       Node* new_in1 = in1->clone();
2856       new_in1->as_DecodeN()->set_type(t);
2857 
2858       if (!Matcher::narrow_oop_use_complex_address()) {
2859         //
2860         // x86, ARM and friends can handle 2 adds in addressing mode
2861         // and Matcher can fold a DecodeN node into address by using
2862         // a narrow oop directly and do implicit NULL check in address:
2863         //
2864         // [R12 + narrow_oop_reg<<3 + offset]
2865         // NullCheck narrow_oop_reg
2866         //
2867         // On other platforms (Sparc) we have to keep new DecodeN node and
2868         // use it to do implicit NULL check in address:
2869         //
2870         // decode_not_null narrow_oop_reg, base_reg
2871         // [base_reg + offset]
2872         // NullCheck base_reg
2873         //
2874         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2875         // to keep the information to which NULL check the new DecodeN node
2876         // corresponds to use it as value in implicit_null_check().
2877         //
2878         new_in1->set_req(0, n->in(0));
2879       }
2880 
2881       n->subsume_by(new_in1, this);
2882       if (in1->outcnt() == 0) {
2883         in1->disconnect_inputs(NULL, this);
2884       }
2885     }
2886     break;
2887 
2888   case Op_CmpP:
2889     // Do this transformation here to preserve CmpPNode::sub() and
2890     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2891     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2892       Node* in1 = n->in(1);
2893       Node* in2 = n->in(2);
2894       if (!in1->is_DecodeNarrowPtr()) {
2895         in2 = in1;
2896         in1 = n->in(2);
2897       }
2898       assert(in1->is_DecodeNarrowPtr(), "sanity");
2899 
2900       Node* new_in2 = NULL;
2901       if (in2->is_DecodeNarrowPtr()) {
2902         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2903         new_in2 = in2->in(1);
2904       } else if (in2->Opcode() == Op_ConP) {
2905         const Type* t = in2->bottom_type();
2906         if (t == TypePtr::NULL_PTR) {
2907           assert(in1->is_DecodeN(), "compare klass to null?");
2908           // Don't convert CmpP null check into CmpN if compressed
2909           // oops implicit null check is not generated.
2910           // This will allow to generate normal oop implicit null check.
2911           if (Matcher::gen_narrow_oop_implicit_null_checks())
2912             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2913           //
2914           // This transformation together with CastPP transformation above
2915           // will generated code for implicit NULL checks for compressed oops.
2916           //
2917           // The original code after Optimize()
2918           //
2919           //    LoadN memory, narrow_oop_reg
2920           //    decode narrow_oop_reg, base_reg
2921           //    CmpP base_reg, NULL
2922           //    CastPP base_reg // NotNull
2923           //    Load [base_reg + offset], val_reg
2924           //
2925           // after these transformations will be
2926           //
2927           //    LoadN memory, narrow_oop_reg
2928           //    CmpN narrow_oop_reg, NULL
2929           //    decode_not_null narrow_oop_reg, base_reg
2930           //    Load [base_reg + offset], val_reg
2931           //
2932           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2933           // since narrow oops can be used in debug info now (see the code in
2934           // final_graph_reshaping_walk()).
2935           //
2936           // At the end the code will be matched to
2937           // on x86:
2938           //
2939           //    Load_narrow_oop memory, narrow_oop_reg
2940           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2941           //    NullCheck narrow_oop_reg
2942           //
2943           // and on sparc:
2944           //
2945           //    Load_narrow_oop memory, narrow_oop_reg
2946           //    decode_not_null narrow_oop_reg, base_reg
2947           //    Load [base_reg + offset], val_reg
2948           //    NullCheck base_reg
2949           //
2950         } else if (t->isa_oopptr()) {
2951           new_in2 = ConNode::make(this, t->make_narrowoop());
2952         } else if (t->isa_klassptr()) {
2953           new_in2 = ConNode::make(this, t->make_narrowklass());
2954         }
2955       }
2956       if (new_in2 != NULL) {
2957         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2958         n->subsume_by(cmpN, this);
2959         if (in1->outcnt() == 0) {
2960           in1->disconnect_inputs(NULL, this);
2961         }
2962         if (in2->outcnt() == 0) {
2963           in2->disconnect_inputs(NULL, this);
2964         }
2965       }
2966     }
2967     break;
2968 
2969   case Op_DecodeN:
2970   case Op_DecodeNKlass:
2971     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2972     // DecodeN could be pinned when it can't be fold into
2973     // an address expression, see the code for Op_CastPP above.
2974     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2975     break;
2976 
2977   case Op_EncodeP:
2978   case Op_EncodePKlass: {
2979     Node* in1 = n->in(1);
2980     if (in1->is_DecodeNarrowPtr()) {
2981       n->subsume_by(in1->in(1), this);
2982     } else if (in1->Opcode() == Op_ConP) {
2983       const Type* t = in1->bottom_type();
2984       if (t == TypePtr::NULL_PTR) {
2985         assert(t->isa_oopptr(), "null klass?");
2986         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2987       } else if (t->isa_oopptr()) {
2988         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2989       } else if (t->isa_klassptr()) {
2990         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2991       }
2992     }
2993     if (in1->outcnt() == 0) {
2994       in1->disconnect_inputs(NULL, this);
2995     }
2996     break;
2997   }
2998 
2999   case Op_Proj: {
3000     if (OptimizeStringConcat) {
3001       ProjNode* p = n->as_Proj();
3002       if (p->_is_io_use) {
3003         // Separate projections were used for the exception path which
3004         // are normally removed by a late inline.  If it wasn't inlined
3005         // then they will hang around and should just be replaced with
3006         // the original one.
3007         Node* proj = NULL;
3008         // Replace with just one
3009         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3010           Node *use = i.get();
3011           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3012             proj = use;
3013             break;
3014           }
3015         }
3016         assert(proj != NULL, "must be found");
3017         p->subsume_by(proj, this);
3018       }
3019     }
3020     break;
3021   }
3022 
3023   case Op_Phi:
3024     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3025       // The EncodeP optimization may create Phi with the same edges
3026       // for all paths. It is not handled well by Register Allocator.
3027       Node* unique_in = n->in(1);
3028       assert(unique_in != NULL, "");
3029       uint cnt = n->req();
3030       for (uint i = 2; i < cnt; i++) {
3031         Node* m = n->in(i);
3032         assert(m != NULL, "");
3033         if (unique_in != m)
3034           unique_in = NULL;
3035       }
3036       if (unique_in != NULL) {
3037         n->subsume_by(unique_in, this);
3038       }
3039     }
3040     break;
3041 
3042 #endif
3043 
3044 #ifdef ASSERT
3045   case Op_CastII:
3046     // Verify that all range check dependent CastII nodes were removed.
3047     if (n->isa_CastII()->has_range_check()) {
3048       n->dump(3);
3049       assert(false, "Range check dependent CastII node was not removed");
3050     }
3051     break;
3052 #endif
3053 
3054   case Op_ModI:
3055     if (UseDivMod) {
3056       // Check if a%b and a/b both exist
3057       Node* d = n->find_similar(Op_DivI);
3058       if (d) {
3059         // Replace them with a fused divmod if supported
3060         if (Matcher::has_match_rule(Op_DivModI)) {
3061           DivModINode* divmod = DivModINode::make(this, n);
3062           d->subsume_by(divmod->div_proj(), this);
3063           n->subsume_by(divmod->mod_proj(), this);
3064         } else {
3065           // replace a%b with a-((a/b)*b)
3066           Node* mult = new (this) MulINode(d, d->in(2));
3067           Node* sub  = new (this) SubINode(d->in(1), mult);
3068           n->subsume_by(sub, this);
3069         }
3070       }
3071     }
3072     break;
3073 
3074   case Op_ModL:
3075     if (UseDivMod) {
3076       // Check if a%b and a/b both exist
3077       Node* d = n->find_similar(Op_DivL);
3078       if (d) {
3079         // Replace them with a fused divmod if supported
3080         if (Matcher::has_match_rule(Op_DivModL)) {
3081           DivModLNode* divmod = DivModLNode::make(this, n);
3082           d->subsume_by(divmod->div_proj(), this);
3083           n->subsume_by(divmod->mod_proj(), this);
3084         } else {
3085           // replace a%b with a-((a/b)*b)
3086           Node* mult = new (this) MulLNode(d, d->in(2));
3087           Node* sub  = new (this) SubLNode(d->in(1), mult);
3088           n->subsume_by(sub, this);
3089         }
3090       }
3091     }
3092     break;
3093 
3094   case Op_LoadVector:
3095   case Op_StoreVector:
3096     break;
3097 
3098   case Op_PackB:
3099   case Op_PackS:
3100   case Op_PackI:
3101   case Op_PackF:
3102   case Op_PackL:
3103   case Op_PackD:
3104     if (n->req()-1 > 2) {
3105       // Replace many operand PackNodes with a binary tree for matching
3106       PackNode* p = (PackNode*) n;
3107       Node* btp = p->binary_tree_pack(this, 1, n->req());
3108       n->subsume_by(btp, this);
3109     }
3110     break;
3111   case Op_Loop:
3112   case Op_CountedLoop:
3113     if (n->as_Loop()->is_inner_loop()) {
3114       frc.inc_inner_loop_count();
3115     }
3116     break;
3117   case Op_LShiftI:
3118   case Op_RShiftI:
3119   case Op_URShiftI:
3120   case Op_LShiftL:
3121   case Op_RShiftL:
3122   case Op_URShiftL:
3123     if (Matcher::need_masked_shift_count) {
3124       // The cpu's shift instructions don't restrict the count to the
3125       // lower 5/6 bits. We need to do the masking ourselves.
3126       Node* in2 = n->in(2);
3127       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3128       const TypeInt* t = in2->find_int_type();
3129       if (t != NULL && t->is_con()) {
3130         juint shift = t->get_con();
3131         if (shift > mask) { // Unsigned cmp
3132           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3133         }
3134       } else {
3135         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3136           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3137           n->set_req(2, shift);
3138         }
3139       }
3140       if (in2->outcnt() == 0) { // Remove dead node
3141         in2->disconnect_inputs(NULL, this);
3142       }
3143     }
3144     break;
3145   case Op_MemBarStoreStore:
3146   case Op_MemBarRelease:
3147     // Break the link with AllocateNode: it is no longer useful and
3148     // confuses register allocation.
3149     if (n->req() > MemBarNode::Precedent) {
3150       n->set_req(MemBarNode::Precedent, top());
3151     }
3152     break;
3153   default:
3154     assert( !n->is_Call(), "" );
3155     assert( !n->is_Mem(), "" );
3156     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3157     break;
3158   }
3159 
3160   // Collect CFG split points
3161   if (n->is_MultiBranch())
3162     frc._tests.push(n);
3163 }
3164 
3165 //------------------------------final_graph_reshaping_walk---------------------
3166 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3167 // requires that the walk visits a node's inputs before visiting the node.
3168 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3169   ResourceArea *area = Thread::current()->resource_area();
3170   Unique_Node_List sfpt(area);
3171 
3172   frc._visited.set(root->_idx); // first, mark node as visited
3173   uint cnt = root->req();
3174   Node *n = root;
3175   uint  i = 0;
3176   while (true) {
3177     if (i < cnt) {
3178       // Place all non-visited non-null inputs onto stack
3179       Node* m = n->in(i);
3180       ++i;
3181       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3182         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3183           // compute worst case interpreter size in case of a deoptimization
3184           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3185 
3186           sfpt.push(m);
3187         }
3188         cnt = m->req();
3189         nstack.push(n, i); // put on stack parent and next input's index
3190         n = m;
3191         i = 0;
3192       }
3193     } else {
3194       // Now do post-visit work
3195       final_graph_reshaping_impl( n, frc );
3196       if (nstack.is_empty())
3197         break;             // finished
3198       n = nstack.node();   // Get node from stack
3199       cnt = n->req();
3200       i = nstack.index();
3201       nstack.pop();        // Shift to the next node on stack
3202     }
3203   }
3204 
3205   // Skip next transformation if compressed oops are not used.
3206   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3207       (!UseCompressedOops && !UseCompressedClassPointers))
3208     return;
3209 
3210   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3211   // It could be done for an uncommon traps or any safepoints/calls
3212   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3213   while (sfpt.size() > 0) {
3214     n = sfpt.pop();
3215     JVMState *jvms = n->as_SafePoint()->jvms();
3216     assert(jvms != NULL, "sanity");
3217     int start = jvms->debug_start();
3218     int end   = n->req();
3219     bool is_uncommon = (n->is_CallStaticJava() &&
3220                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3221     for (int j = start; j < end; j++) {
3222       Node* in = n->in(j);
3223       if (in->is_DecodeNarrowPtr()) {
3224         bool safe_to_skip = true;
3225         if (!is_uncommon ) {
3226           // Is it safe to skip?
3227           for (uint i = 0; i < in->outcnt(); i++) {
3228             Node* u = in->raw_out(i);
3229             if (!u->is_SafePoint() ||
3230                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3231               safe_to_skip = false;
3232             }
3233           }
3234         }
3235         if (safe_to_skip) {
3236           n->set_req(j, in->in(1));
3237         }
3238         if (in->outcnt() == 0) {
3239           in->disconnect_inputs(NULL, this);
3240         }
3241       }
3242     }
3243   }
3244 }
3245 
3246 //------------------------------final_graph_reshaping--------------------------
3247 // Final Graph Reshaping.
3248 //
3249 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3250 //     and not commoned up and forced early.  Must come after regular
3251 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3252 //     inputs to Loop Phis; these will be split by the allocator anyways.
3253 //     Remove Opaque nodes.
3254 // (2) Move last-uses by commutative operations to the left input to encourage
3255 //     Intel update-in-place two-address operations and better register usage
3256 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3257 //     calls canonicalizing them back.
3258 // (3) Count the number of double-precision FP ops, single-precision FP ops
3259 //     and call sites.  On Intel, we can get correct rounding either by
3260 //     forcing singles to memory (requires extra stores and loads after each
3261 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3262 //     clearing the mode bit around call sites).  The mode bit is only used
3263 //     if the relative frequency of single FP ops to calls is low enough.
3264 //     This is a key transform for SPEC mpeg_audio.
3265 // (4) Detect infinite loops; blobs of code reachable from above but not
3266 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3267 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3268 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3269 //     Detection is by looking for IfNodes where only 1 projection is
3270 //     reachable from below or CatchNodes missing some targets.
3271 // (5) Assert for insane oop offsets in debug mode.
3272 
3273 bool Compile::final_graph_reshaping() {
3274   // an infinite loop may have been eliminated by the optimizer,
3275   // in which case the graph will be empty.
3276   if (root()->req() == 1) {
3277     record_method_not_compilable("trivial infinite loop");
3278     return true;
3279   }
3280 
3281   // Expensive nodes have their control input set to prevent the GVN
3282   // from freely commoning them. There's no GVN beyond this point so
3283   // no need to keep the control input. We want the expensive nodes to
3284   // be freely moved to the least frequent code path by gcm.
3285   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3286   for (int i = 0; i < expensive_count(); i++) {
3287     _expensive_nodes->at(i)->set_req(0, NULL);
3288   }
3289 
3290   Final_Reshape_Counts frc;
3291 
3292   // Visit everybody reachable!
3293   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3294   Node_Stack nstack(live_nodes() >> 1);
3295   final_graph_reshaping_walk(nstack, root(), frc);
3296 
3297   // Check for unreachable (from below) code (i.e., infinite loops).
3298   for( uint i = 0; i < frc._tests.size(); i++ ) {
3299     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3300     // Get number of CFG targets.
3301     // Note that PCTables include exception targets after calls.
3302     uint required_outcnt = n->required_outcnt();
3303     if (n->outcnt() != required_outcnt) {
3304       // Check for a few special cases.  Rethrow Nodes never take the
3305       // 'fall-thru' path, so expected kids is 1 less.
3306       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3307         if (n->in(0)->in(0)->is_Call()) {
3308           CallNode *call = n->in(0)->in(0)->as_Call();
3309           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3310             required_outcnt--;      // Rethrow always has 1 less kid
3311           } else if (call->req() > TypeFunc::Parms &&
3312                      call->is_CallDynamicJava()) {
3313             // Check for null receiver. In such case, the optimizer has
3314             // detected that the virtual call will always result in a null
3315             // pointer exception. The fall-through projection of this CatchNode
3316             // will not be populated.
3317             Node *arg0 = call->in(TypeFunc::Parms);
3318             if (arg0->is_Type() &&
3319                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3320               required_outcnt--;
3321             }
3322           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3323                      call->req() > TypeFunc::Parms+1 &&
3324                      call->is_CallStaticJava()) {
3325             // Check for negative array length. In such case, the optimizer has
3326             // detected that the allocation attempt will always result in an
3327             // exception. There is no fall-through projection of this CatchNode .
3328             Node *arg1 = call->in(TypeFunc::Parms+1);
3329             if (arg1->is_Type() &&
3330                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3331               required_outcnt--;
3332             }
3333           }
3334         }
3335       }
3336       // Recheck with a better notion of 'required_outcnt'
3337       if (n->outcnt() != required_outcnt) {
3338         record_method_not_compilable("malformed control flow");
3339         return true;            // Not all targets reachable!
3340       }
3341     }
3342     // Check that I actually visited all kids.  Unreached kids
3343     // must be infinite loops.
3344     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3345       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3346         record_method_not_compilable("infinite loop");
3347         return true;            // Found unvisited kid; must be unreach
3348       }
3349   }
3350 
3351   // If original bytecodes contained a mixture of floats and doubles
3352   // check if the optimizer has made it homogenous, item (3).
3353   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3354       frc.get_float_count() > 32 &&
3355       frc.get_double_count() == 0 &&
3356       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3357     set_24_bit_selection_and_mode( false,  true );
3358   }
3359 
3360   set_java_calls(frc.get_java_call_count());
3361   set_inner_loops(frc.get_inner_loop_count());
3362 
3363   // No infinite loops, no reason to bail out.
3364   return false;
3365 }
3366 
3367 //-----------------------------too_many_traps----------------------------------
3368 // Report if there are too many traps at the current method and bci.
3369 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3370 bool Compile::too_many_traps(ciMethod* method,
3371                              int bci,
3372                              Deoptimization::DeoptReason reason) {
3373   ciMethodData* md = method->method_data();
3374   if (md->is_empty()) {
3375     // Assume the trap has not occurred, or that it occurred only
3376     // because of a transient condition during start-up in the interpreter.
3377     return false;
3378   }
3379   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3380   if (md->has_trap_at(bci, m, reason) != 0) {
3381     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3382     // Also, if there are multiple reasons, or if there is no per-BCI record,
3383     // assume the worst.
3384     if (log())
3385       log()->elem("observe trap='%s' count='%d'",
3386                   Deoptimization::trap_reason_name(reason),
3387                   md->trap_count(reason));
3388     return true;
3389   } else {
3390     // Ignore method/bci and see if there have been too many globally.
3391     return too_many_traps(reason, md);
3392   }
3393 }
3394 
3395 // Less-accurate variant which does not require a method and bci.
3396 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3397                              ciMethodData* logmd) {
3398   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3399     // Too many traps globally.
3400     // Note that we use cumulative trap_count, not just md->trap_count.
3401     if (log()) {
3402       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3403       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3404                   Deoptimization::trap_reason_name(reason),
3405                   mcount, trap_count(reason));
3406     }
3407     return true;
3408   } else {
3409     // The coast is clear.
3410     return false;
3411   }
3412 }
3413 
3414 //--------------------------too_many_recompiles--------------------------------
3415 // Report if there are too many recompiles at the current method and bci.
3416 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3417 // Is not eager to return true, since this will cause the compiler to use
3418 // Action_none for a trap point, to avoid too many recompilations.
3419 bool Compile::too_many_recompiles(ciMethod* method,
3420                                   int bci,
3421                                   Deoptimization::DeoptReason reason) {
3422   ciMethodData* md = method->method_data();
3423   if (md->is_empty()) {
3424     // Assume the trap has not occurred, or that it occurred only
3425     // because of a transient condition during start-up in the interpreter.
3426     return false;
3427   }
3428   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3429   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3430   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3431   Deoptimization::DeoptReason per_bc_reason
3432     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3433   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3434   if ((per_bc_reason == Deoptimization::Reason_none
3435        || md->has_trap_at(bci, m, reason) != 0)
3436       // The trap frequency measure we care about is the recompile count:
3437       && md->trap_recompiled_at(bci, m)
3438       && md->overflow_recompile_count() >= bc_cutoff) {
3439     // Do not emit a trap here if it has already caused recompilations.
3440     // Also, if there are multiple reasons, or if there is no per-BCI record,
3441     // assume the worst.
3442     if (log())
3443       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3444                   Deoptimization::trap_reason_name(reason),
3445                   md->trap_count(reason),
3446                   md->overflow_recompile_count());
3447     return true;
3448   } else if (trap_count(reason) != 0
3449              && decompile_count() >= m_cutoff) {
3450     // Too many recompiles globally, and we have seen this sort of trap.
3451     // Use cumulative decompile_count, not just md->decompile_count.
3452     if (log())
3453       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3454                   Deoptimization::trap_reason_name(reason),
3455                   md->trap_count(reason), trap_count(reason),
3456                   md->decompile_count(), decompile_count());
3457     return true;
3458   } else {
3459     // The coast is clear.
3460     return false;
3461   }
3462 }
3463 
3464 // Compute when not to trap. Used by matching trap based nodes and
3465 // NullCheck optimization.
3466 void Compile::set_allowed_deopt_reasons() {
3467   _allowed_reasons = 0;
3468   if (is_method_compilation()) {
3469     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3470       assert(rs < BitsPerInt, "recode bit map");
3471       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3472         _allowed_reasons |= nth_bit(rs);
3473       }
3474     }
3475   }
3476 }
3477 
3478 #ifndef PRODUCT
3479 //------------------------------verify_graph_edges---------------------------
3480 // Walk the Graph and verify that there is a one-to-one correspondence
3481 // between Use-Def edges and Def-Use edges in the graph.
3482 void Compile::verify_graph_edges(bool no_dead_code) {
3483   if (VerifyGraphEdges) {
3484     ResourceArea *area = Thread::current()->resource_area();
3485     Unique_Node_List visited(area);
3486     // Call recursive graph walk to check edges
3487     _root->verify_edges(visited);
3488     if (no_dead_code) {
3489       // Now make sure that no visited node is used by an unvisited node.
3490       bool dead_nodes = false;
3491       Unique_Node_List checked(area);
3492       while (visited.size() > 0) {
3493         Node* n = visited.pop();
3494         checked.push(n);
3495         for (uint i = 0; i < n->outcnt(); i++) {
3496           Node* use = n->raw_out(i);
3497           if (checked.member(use))  continue;  // already checked
3498           if (visited.member(use))  continue;  // already in the graph
3499           if (use->is_Con())        continue;  // a dead ConNode is OK
3500           // At this point, we have found a dead node which is DU-reachable.
3501           if (!dead_nodes) {
3502             tty->print_cr("*** Dead nodes reachable via DU edges:");
3503             dead_nodes = true;
3504           }
3505           use->dump(2);
3506           tty->print_cr("---");
3507           checked.push(use);  // No repeats; pretend it is now checked.
3508         }
3509       }
3510       assert(!dead_nodes, "using nodes must be reachable from root");
3511     }
3512   }
3513 }
3514 
3515 // Verify GC barriers consistency
3516 // Currently supported:
3517 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3518 void Compile::verify_barriers() {
3519   if (UseG1GC) {
3520     // Verify G1 pre-barriers
3521     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3522 
3523     ResourceArea *area = Thread::current()->resource_area();
3524     Unique_Node_List visited(area);
3525     Node_List worklist(area);
3526     // We're going to walk control flow backwards starting from the Root
3527     worklist.push(_root);
3528     while (worklist.size() > 0) {
3529       Node* x = worklist.pop();
3530       if (x == NULL || x == top()) continue;
3531       if (visited.member(x)) {
3532         continue;
3533       } else {
3534         visited.push(x);
3535       }
3536 
3537       if (x->is_Region()) {
3538         for (uint i = 1; i < x->req(); i++) {
3539           worklist.push(x->in(i));
3540         }
3541       } else {
3542         worklist.push(x->in(0));
3543         // We are looking for the pattern:
3544         //                            /->ThreadLocal
3545         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3546         //              \->ConI(0)
3547         // We want to verify that the If and the LoadB have the same control
3548         // See GraphKit::g1_write_barrier_pre()
3549         if (x->is_If()) {
3550           IfNode *iff = x->as_If();
3551           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3552             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3553             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3554                 && cmp->in(1)->is_Load()) {
3555               LoadNode* load = cmp->in(1)->as_Load();
3556               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3557                   && load->in(2)->in(3)->is_Con()
3558                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3559 
3560                 Node* if_ctrl = iff->in(0);
3561                 Node* load_ctrl = load->in(0);
3562 
3563                 if (if_ctrl != load_ctrl) {
3564                   // Skip possible CProj->NeverBranch in infinite loops
3565                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3566                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3567                     if_ctrl = if_ctrl->in(0)->in(0);
3568                   }
3569                 }
3570                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3571               }
3572             }
3573           }
3574         }
3575       }
3576     }
3577   }
3578 }
3579 
3580 #endif
3581 
3582 // The Compile object keeps track of failure reasons separately from the ciEnv.
3583 // This is required because there is not quite a 1-1 relation between the
3584 // ciEnv and its compilation task and the Compile object.  Note that one
3585 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3586 // to backtrack and retry without subsuming loads.  Other than this backtracking
3587 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3588 // by the logic in C2Compiler.
3589 void Compile::record_failure(const char* reason) {
3590   if (log() != NULL) {
3591     log()->elem("failure reason='%s' phase='compile'", reason);
3592   }
3593   if (_failure_reason == NULL) {
3594     // Record the first failure reason.
3595     _failure_reason = reason;
3596   }
3597 
3598   EventCompilerFailure event;
3599   if (event.should_commit()) {
3600     event.set_compileID(Compile::compile_id());
3601     event.set_failure(reason);
3602     event.commit();
3603   }
3604 
3605   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3606     C->print_method(PHASE_FAILURE);
3607   }
3608   _root = NULL;  // flush the graph, too
3609 }
3610 
3611 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3612   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3613     _phase_name(name), _dolog(dolog)
3614 {
3615   if (dolog) {
3616     C = Compile::current();
3617     _log = C->log();
3618   } else {
3619     C = NULL;
3620     _log = NULL;
3621   }
3622   if (_log != NULL) {
3623     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3624     _log->stamp();
3625     _log->end_head();
3626   }
3627 }
3628 
3629 Compile::TracePhase::~TracePhase() {
3630 
3631   C = Compile::current();
3632   if (_dolog) {
3633     _log = C->log();
3634   } else {
3635     _log = NULL;
3636   }
3637 
3638 #ifdef ASSERT
3639   if (PrintIdealNodeCount) {
3640     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3641                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3642   }
3643 
3644   if (VerifyIdealNodeCount) {
3645     Compile::current()->print_missing_nodes();
3646   }
3647 #endif
3648 
3649   if (_log != NULL) {
3650     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3651   }
3652 }
3653 
3654 //=============================================================================
3655 // Two Constant's are equal when the type and the value are equal.
3656 bool Compile::Constant::operator==(const Constant& other) {
3657   if (type()          != other.type()         )  return false;
3658   if (can_be_reused() != other.can_be_reused())  return false;
3659   // For floating point values we compare the bit pattern.
3660   switch (type()) {
3661   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3662   case T_LONG:
3663   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3664   case T_OBJECT:
3665   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3666   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3667   case T_METADATA: return (_v._metadata == other._v._metadata);
3668   default: ShouldNotReachHere();
3669   }
3670   return false;
3671 }
3672 
3673 static int type_to_size_in_bytes(BasicType t) {
3674   switch (t) {
3675   case T_LONG:    return sizeof(jlong  );
3676   case T_FLOAT:   return sizeof(jfloat );
3677   case T_DOUBLE:  return sizeof(jdouble);
3678   case T_METADATA: return sizeof(Metadata*);
3679     // We use T_VOID as marker for jump-table entries (labels) which
3680     // need an internal word relocation.
3681   case T_VOID:
3682   case T_ADDRESS:
3683   case T_OBJECT:  return sizeof(jobject);
3684   }
3685 
3686   ShouldNotReachHere();
3687   return -1;
3688 }
3689 
3690 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3691   // sort descending
3692   if (a->freq() > b->freq())  return -1;
3693   if (a->freq() < b->freq())  return  1;
3694   return 0;
3695 }
3696 
3697 void Compile::ConstantTable::calculate_offsets_and_size() {
3698   // First, sort the array by frequencies.
3699   _constants.sort(qsort_comparator);
3700 
3701 #ifdef ASSERT
3702   // Make sure all jump-table entries were sorted to the end of the
3703   // array (they have a negative frequency).
3704   bool found_void = false;
3705   for (int i = 0; i < _constants.length(); i++) {
3706     Constant con = _constants.at(i);
3707     if (con.type() == T_VOID)
3708       found_void = true;  // jump-tables
3709     else
3710       assert(!found_void, "wrong sorting");
3711   }
3712 #endif
3713 
3714   int offset = 0;
3715   for (int i = 0; i < _constants.length(); i++) {
3716     Constant* con = _constants.adr_at(i);
3717 
3718     // Align offset for type.
3719     int typesize = type_to_size_in_bytes(con->type());
3720     offset = align_size_up(offset, typesize);
3721     con->set_offset(offset);   // set constant's offset
3722 
3723     if (con->type() == T_VOID) {
3724       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3725       offset = offset + typesize * n->outcnt();  // expand jump-table
3726     } else {
3727       offset = offset + typesize;
3728     }
3729   }
3730 
3731   // Align size up to the next section start (which is insts; see
3732   // CodeBuffer::align_at_start).
3733   assert(_size == -1, "already set?");
3734   _size = align_size_up(offset, CodeEntryAlignment);
3735 }
3736 
3737 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3738   MacroAssembler _masm(&cb);
3739   for (int i = 0; i < _constants.length(); i++) {
3740     Constant con = _constants.at(i);
3741     address constant_addr = NULL;
3742     switch (con.type()) {
3743     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3744     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3745     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3746     case T_OBJECT: {
3747       jobject obj = con.get_jobject();
3748       int oop_index = _masm.oop_recorder()->find_index(obj);
3749       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3750       break;
3751     }
3752     case T_ADDRESS: {
3753       address addr = (address) con.get_jobject();
3754       constant_addr = _masm.address_constant(addr);
3755       break;
3756     }
3757     // We use T_VOID as marker for jump-table entries (labels) which
3758     // need an internal word relocation.
3759     case T_VOID: {
3760       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3761       // Fill the jump-table with a dummy word.  The real value is
3762       // filled in later in fill_jump_table.
3763       address dummy = (address) n;
3764       constant_addr = _masm.address_constant(dummy);
3765       // Expand jump-table
3766       for (uint i = 1; i < n->outcnt(); i++) {
3767         address temp_addr = _masm.address_constant(dummy + i);
3768         assert(temp_addr, "consts section too small");
3769       }
3770       break;
3771     }
3772     case T_METADATA: {
3773       Metadata* obj = con.get_metadata();
3774       int metadata_index = _masm.oop_recorder()->find_index(obj);
3775       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3776       break;
3777     }
3778     default: ShouldNotReachHere();
3779     }
3780     assert(constant_addr, "consts section too small");
3781     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3782             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3783   }
3784 }
3785 
3786 int Compile::ConstantTable::find_offset(Constant& con) const {
3787   int idx = _constants.find(con);
3788   assert(idx != -1, "constant must be in constant table");
3789   int offset = _constants.at(idx).offset();
3790   assert(offset != -1, "constant table not emitted yet?");
3791   return offset;
3792 }
3793 
3794 void Compile::ConstantTable::add(Constant& con) {
3795   if (con.can_be_reused()) {
3796     int idx = _constants.find(con);
3797     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3798       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3799       return;
3800     }
3801   }
3802   (void) _constants.append(con);
3803 }
3804 
3805 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3806   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3807   Constant con(type, value, b->_freq);
3808   add(con);
3809   return con;
3810 }
3811 
3812 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3813   Constant con(metadata);
3814   add(con);
3815   return con;
3816 }
3817 
3818 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3819   jvalue value;
3820   BasicType type = oper->type()->basic_type();
3821   switch (type) {
3822   case T_LONG:    value.j = oper->constantL(); break;
3823   case T_FLOAT:   value.f = oper->constantF(); break;
3824   case T_DOUBLE:  value.d = oper->constantD(); break;
3825   case T_OBJECT:
3826   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3827   case T_METADATA: return add((Metadata*)oper->constant()); break;
3828   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3829   }
3830   return add(n, type, value);
3831 }
3832 
3833 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3834   jvalue value;
3835   // We can use the node pointer here to identify the right jump-table
3836   // as this method is called from Compile::Fill_buffer right before
3837   // the MachNodes are emitted and the jump-table is filled (means the
3838   // MachNode pointers do not change anymore).
3839   value.l = (jobject) n;
3840   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3841   add(con);
3842   return con;
3843 }
3844 
3845 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3846   // If called from Compile::scratch_emit_size do nothing.
3847   if (Compile::current()->in_scratch_emit_size())  return;
3848 
3849   assert(labels.is_nonempty(), "must be");
3850   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3851 
3852   // Since MachConstantNode::constant_offset() also contains
3853   // table_base_offset() we need to subtract the table_base_offset()
3854   // to get the plain offset into the constant table.
3855   int offset = n->constant_offset() - table_base_offset();
3856 
3857   MacroAssembler _masm(&cb);
3858   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3859 
3860   for (uint i = 0; i < n->outcnt(); i++) {
3861     address* constant_addr = &jump_table_base[i];
3862     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3863     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3864     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3865   }
3866 }
3867 
3868 void Compile::dump_inlining() {
3869   if (print_inlining() || print_intrinsics()) {
3870     // Print inlining message for candidates that we couldn't inline
3871     // for lack of space or non constant receiver
3872     for (int i = 0; i < _late_inlines.length(); i++) {
3873       CallGenerator* cg = _late_inlines.at(i);
3874       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3875     }
3876     Unique_Node_List useful;
3877     useful.push(root());
3878     for (uint next = 0; next < useful.size(); ++next) {
3879       Node* n  = useful.at(next);
3880       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3881         CallNode* call = n->as_Call();
3882         CallGenerator* cg = call->generator();
3883         cg->print_inlining_late("receiver not constant");
3884       }
3885       uint max = n->len();
3886       for ( uint i = 0; i < max; ++i ) {
3887         Node *m = n->in(i);
3888         if ( m == NULL ) continue;
3889         useful.push(m);
3890       }
3891     }
3892     for (int i = 0; i < _print_inlining_list->length(); i++) {
3893       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3894     }
3895   }
3896 }
3897 
3898 // Dump inlining replay data to the stream.
3899 // Don't change thread state and acquire any locks.
3900 void Compile::dump_inline_data(outputStream* out) {
3901   InlineTree* inl_tree = ilt();
3902   if (inl_tree != NULL) {
3903     out->print(" inline %d", inl_tree->count());
3904     inl_tree->dump_replay_data(out);
3905   }
3906 }
3907 
3908 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3909   if (n1->Opcode() < n2->Opcode())      return -1;
3910   else if (n1->Opcode() > n2->Opcode()) return 1;
3911 
3912   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3913   for (uint i = 1; i < n1->req(); i++) {
3914     if (n1->in(i) < n2->in(i))      return -1;
3915     else if (n1->in(i) > n2->in(i)) return 1;
3916   }
3917 
3918   return 0;
3919 }
3920 
3921 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3922   Node* n1 = *n1p;
3923   Node* n2 = *n2p;
3924 
3925   return cmp_expensive_nodes(n1, n2);
3926 }
3927 
3928 void Compile::sort_expensive_nodes() {
3929   if (!expensive_nodes_sorted()) {
3930     _expensive_nodes->sort(cmp_expensive_nodes);
3931   }
3932 }
3933 
3934 bool Compile::expensive_nodes_sorted() const {
3935   for (int i = 1; i < _expensive_nodes->length(); i++) {
3936     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3937       return false;
3938     }
3939   }
3940   return true;
3941 }
3942 
3943 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3944   if (_expensive_nodes->length() == 0) {
3945     return false;
3946   }
3947 
3948   assert(OptimizeExpensiveOps, "optimization off?");
3949 
3950   // Take this opportunity to remove dead nodes from the list
3951   int j = 0;
3952   for (int i = 0; i < _expensive_nodes->length(); i++) {
3953     Node* n = _expensive_nodes->at(i);
3954     if (!n->is_unreachable(igvn)) {
3955       assert(n->is_expensive(), "should be expensive");
3956       _expensive_nodes->at_put(j, n);
3957       j++;
3958     }
3959   }
3960   _expensive_nodes->trunc_to(j);
3961 
3962   // Then sort the list so that similar nodes are next to each other
3963   // and check for at least two nodes of identical kind with same data
3964   // inputs.
3965   sort_expensive_nodes();
3966 
3967   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3968     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3969       return true;
3970     }
3971   }
3972 
3973   return false;
3974 }
3975 
3976 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3977   if (_expensive_nodes->length() == 0) {
3978     return;
3979   }
3980 
3981   assert(OptimizeExpensiveOps, "optimization off?");
3982 
3983   // Sort to bring similar nodes next to each other and clear the
3984   // control input of nodes for which there's only a single copy.
3985   sort_expensive_nodes();
3986 
3987   int j = 0;
3988   int identical = 0;
3989   int i = 0;
3990   for (; i < _expensive_nodes->length()-1; i++) {
3991     assert(j <= i, "can't write beyond current index");
3992     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3993       identical++;
3994       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3995       continue;
3996     }
3997     if (identical > 0) {
3998       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3999       identical = 0;
4000     } else {
4001       Node* n = _expensive_nodes->at(i);
4002       igvn.hash_delete(n);
4003       n->set_req(0, NULL);
4004       igvn.hash_insert(n);
4005     }
4006   }
4007   if (identical > 0) {
4008     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4009   } else if (_expensive_nodes->length() >= 1) {
4010     Node* n = _expensive_nodes->at(i);
4011     igvn.hash_delete(n);
4012     n->set_req(0, NULL);
4013     igvn.hash_insert(n);
4014   }
4015   _expensive_nodes->trunc_to(j);
4016 }
4017 
4018 void Compile::add_expensive_node(Node * n) {
4019   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4020   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4021   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4022   if (OptimizeExpensiveOps) {
4023     _expensive_nodes->append(n);
4024   } else {
4025     // Clear control input and let IGVN optimize expensive nodes if
4026     // OptimizeExpensiveOps is off.
4027     n->set_req(0, NULL);
4028   }
4029 }
4030 
4031 /**
4032  * Remove the speculative part of types and clean up the graph
4033  */
4034 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4035   if (UseTypeSpeculation) {
4036     Unique_Node_List worklist;
4037     worklist.push(root());
4038     int modified = 0;
4039     // Go over all type nodes that carry a speculative type, drop the
4040     // speculative part of the type and enqueue the node for an igvn
4041     // which may optimize it out.
4042     for (uint next = 0; next < worklist.size(); ++next) {
4043       Node *n  = worklist.at(next);
4044       if (n->is_Type()) {
4045         TypeNode* tn = n->as_Type();
4046         const Type* t = tn->type();
4047         const Type* t_no_spec = t->remove_speculative();
4048         if (t_no_spec != t) {
4049           bool in_hash = igvn.hash_delete(n);
4050           assert(in_hash, "node should be in igvn hash table");
4051           tn->set_type(t_no_spec);
4052           igvn.hash_insert(n);
4053           igvn._worklist.push(n); // give it a chance to go away
4054           modified++;
4055         }
4056       }
4057       uint max = n->len();
4058       for( uint i = 0; i < max; ++i ) {
4059         Node *m = n->in(i);
4060         if (not_a_node(m))  continue;
4061         worklist.push(m);
4062       }
4063     }
4064     // Drop the speculative part of all types in the igvn's type table
4065     igvn.remove_speculative_types();
4066     if (modified > 0) {
4067       igvn.optimize();
4068     }
4069 #ifdef ASSERT
4070     // Verify that after the IGVN is over no speculative type has resurfaced
4071     worklist.clear();
4072     worklist.push(root());
4073     for (uint next = 0; next < worklist.size(); ++next) {
4074       Node *n  = worklist.at(next);
4075       const Type* t = igvn.type_or_null(n);
4076       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4077       if (n->is_Type()) {
4078         t = n->as_Type()->type();
4079         assert(t == t->remove_speculative(), "no more speculative types");
4080       }
4081       uint max = n->len();
4082       for( uint i = 0; i < max; ++i ) {
4083         Node *m = n->in(i);
4084         if (not_a_node(m))  continue;
4085         worklist.push(m);
4086       }
4087     }
4088     igvn.check_no_speculative_types();
4089 #endif
4090   }
4091 }
4092 
4093 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4094 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4095   if (ctrl != NULL) {
4096     // Express control dependency by a CastII node with a narrow type.
4097     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4098     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4099     // node from floating above the range check during loop optimizations. Otherwise, the
4100     // ConvI2L node may be eliminated independently of the range check, causing the data path
4101     // to become TOP while the control path is still there (although it's unreachable).
4102     value->set_req(0, ctrl);
4103     // Save CastII node to remove it after loop optimizations.
4104     phase->C->add_range_check_cast(value);
4105     value = phase->transform(value);
4106   }
4107   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4108   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4109 }
4110 
4111 // Auxiliary method to support randomized stressing/fuzzing.
4112 //
4113 // This method can be called the arbitrary number of times, with current count
4114 // as the argument. The logic allows selecting a single candidate from the
4115 // running list of candidates as follows:
4116 //    int count = 0;
4117 //    Cand* selected = null;
4118 //    while(cand = cand->next()) {
4119 //      if (randomized_select(++count)) {
4120 //        selected = cand;
4121 //      }
4122 //    }
4123 //
4124 // Including count equalizes the chances any candidate is "selected".
4125 // This is useful when we don't have the complete list of candidates to choose
4126 // from uniformly. In this case, we need to adjust the randomicity of the
4127 // selection, or else we will end up biasing the selection towards the latter
4128 // candidates.
4129 //
4130 // Quick back-envelope calculation shows that for the list of n candidates
4131 // the equal probability for the candidate to persist as "best" can be
4132 // achieved by replacing it with "next" k-th candidate with the probability
4133 // of 1/k. It can be easily shown that by the end of the run, the
4134 // probability for any candidate is converged to 1/n, thus giving the
4135 // uniform distribution among all the candidates.
4136 //
4137 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4138 #define RANDOMIZED_DOMAIN_POW 29
4139 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4140 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4141 bool Compile::randomized_select(int count) {
4142   assert(count > 0, "only positive");
4143   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4144 }