1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 
  46 #ifdef ASSERT
  47 #define __ gen()->lir(__FILE__, __LINE__)->
  48 #else
  49 #define __ gen()->lir()->
  50 #endif
  51 
  52 #ifndef PATCHED_ADDR
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands().at(i);
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands().at(i);
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table().at_put(vreg_num, node);
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 309 #ifndef PRODUCT
 310   if (PrintIRWithLIR) {
 311     block->print();
 312   }
 313 #endif
 314 
 315   // set up the list of LIR instructions
 316   assert(block->lir() == NULL, "LIR list already computed for this block");
 317   _lir = new LIR_List(compilation(), block);
 318   block->set_lir(_lir);
 319 
 320   __ branch_destination(block->label());
 321 
 322   if (LIRTraceExecution &&
 323       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 324       !block->is_set(BlockBegin::exception_entry_flag)) {
 325     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 326     trace_block_entry(block);
 327   }
 328 }
 329 
 330 
 331 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 332 #ifndef PRODUCT
 333   if (PrintIRWithLIR) {
 334     tty->cr();
 335   }
 336 #endif
 337 
 338   // LIR_Opr for unpinned constants shouldn't be referenced by other
 339   // blocks so clear them out after processing the block.
 340   for (int i = 0; i < _unpinned_constants.length(); i++) {
 341     _unpinned_constants.at(i)->clear_operand();
 342   }
 343   _unpinned_constants.trunc_to(0);
 344 
 345   // clear our any registers for other local constants
 346   _constants.trunc_to(0);
 347   _reg_for_constants.trunc_to(0);
 348 }
 349 
 350 
 351 void LIRGenerator::block_do(BlockBegin* block) {
 352   CHECK_BAILOUT();
 353 
 354   block_do_prolog(block);
 355   set_block(block);
 356 
 357   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 358     if (instr->is_pinned()) do_root(instr);
 359   }
 360 
 361   set_block(NULL);
 362   block_do_epilog(block);
 363 }
 364 
 365 
 366 //-------------------------LIRGenerator-----------------------------
 367 
 368 // This is where the tree-walk starts; instr must be root;
 369 void LIRGenerator::do_root(Value instr) {
 370   CHECK_BAILOUT();
 371 
 372   InstructionMark im(compilation(), instr);
 373 
 374   assert(instr->is_pinned(), "use only with roots");
 375   assert(instr->subst() == instr, "shouldn't have missed substitution");
 376 
 377   instr->visit(this);
 378 
 379   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 380          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 381 }
 382 
 383 
 384 // This is called for each node in tree; the walk stops if a root is reached
 385 void LIRGenerator::walk(Value instr) {
 386   InstructionMark im(compilation(), instr);
 387   //stop walk when encounter a root
 388   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 389     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 390   } else {
 391     assert(instr->subst() == instr, "shouldn't have missed substitution");
 392     instr->visit(this);
 393     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 394   }
 395 }
 396 
 397 
 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 399   assert(state != NULL, "state must be defined");
 400 
 401 #ifndef PRODUCT
 402   state->verify();
 403 #endif
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 465   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 466    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 467    * the class. */
 468   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 469     assert(info != NULL, "info must be set if class is not loaded");
 470     __ klass2reg_patch(NULL, r, info);
 471   } else {
 472     // no patching needed
 473     __ metadata2reg(obj->constant_encoding(), r);
 474   }
 475 }
 476 
 477 
 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 479                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 480   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 481   if (index->is_constant()) {
 482     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 483                 index->as_jint(), null_check_info);
 484     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 485   } else {
 486     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 487                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 488     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 489   }
 490 }
 491 
 492 
 493 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 494   CodeStub* stub = new RangeCheckStub(info, index);
 495   if (index->is_constant()) {
 496     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 497     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 500                 java_nio_Buffer::limit_offset(), T_INT, info);
 501     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 502   }
 503   __ move(index, result);
 504 }
 505 
 506 
 507 
 508 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 509   LIR_Opr result_op = result;
 510   LIR_Opr left_op   = left;
 511   LIR_Opr right_op  = right;
 512 
 513   if (TwoOperandLIRForm && left_op != result_op) {
 514     assert(right_op != result_op, "malformed");
 515     __ move(left_op, result_op);
 516     left_op = result_op;
 517   }
 518 
 519   switch(code) {
 520     case Bytecodes::_dadd:
 521     case Bytecodes::_fadd:
 522     case Bytecodes::_ladd:
 523     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 524     case Bytecodes::_fmul:
 525     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 526 
 527     case Bytecodes::_dmul:
 528       {
 529         if (is_strictfp) {
 530           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 531         } else {
 532           __ mul(left_op, right_op, result_op); break;
 533         }
 534       }
 535       break;
 536 
 537     case Bytecodes::_imul:
 538       {
 539         bool did_strength_reduce = false;
 540 
 541         if (right->is_constant()) {
 542           jint c = right->as_jint();
 543           if (c > 0 && is_power_of_2(c)) {
 544             // do not need tmp here
 545             __ shift_left(left_op, exact_log2(c), result_op);
 546             did_strength_reduce = true;
 547           } else {
 548             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 549           }
 550         }
 551         // we couldn't strength reduce so just emit the multiply
 552         if (!did_strength_reduce) {
 553           __ mul(left_op, right_op, result_op);
 554         }
 555       }
 556       break;
 557 
 558     case Bytecodes::_dsub:
 559     case Bytecodes::_fsub:
 560     case Bytecodes::_lsub:
 561     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 562 
 563     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 564     // ldiv and lrem are implemented with a direct runtime call
 565 
 566     case Bytecodes::_ddiv:
 567       {
 568         if (is_strictfp) {
 569           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 570         } else {
 571           __ div (left_op, right_op, result_op); break;
 572         }
 573       }
 574       break;
 575 
 576     case Bytecodes::_drem:
 577     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 578 
 579     default: ShouldNotReachHere();
 580   }
 581 }
 582 
 583 
 584 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 585   arithmetic_op(code, result, left, right, false, tmp);
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 590   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 595   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 596 }
 597 
 598 
 599 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 600 
 601   if (TwoOperandLIRForm && value != result_op
 602       // Only 32bit right shifts require two operand form on S390.
 603       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 604     assert(count != result_op, "malformed");
 605     __ move(value, result_op);
 606     value = result_op;
 607   }
 608 
 609   assert(count->is_constant() || count->is_register(), "must be");
 610   switch(code) {
 611   case Bytecodes::_ishl:
 612   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 613   case Bytecodes::_ishr:
 614   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 615   case Bytecodes::_iushr:
 616   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 617   default: ShouldNotReachHere();
 618   }
 619 }
 620 
 621 
 622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 623   if (TwoOperandLIRForm && left_op != result_op) {
 624     assert(right_op != result_op, "malformed");
 625     __ move(left_op, result_op);
 626     left_op = result_op;
 627   }
 628 
 629   switch(code) {
 630     case Bytecodes::_iand:
 631     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 632 
 633     case Bytecodes::_ior:
 634     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 635 
 636     case Bytecodes::_ixor:
 637     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 638 
 639     default: ShouldNotReachHere();
 640   }
 641 }
 642 
 643 
 644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 645   if (!GenerateSynchronizationCode) return;
 646   // for slow path, use debug info for state after successful locking
 647   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 648   __ load_stack_address_monitor(monitor_no, lock);
 649   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 650   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 651 }
 652 
 653 
 654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 655   if (!GenerateSynchronizationCode) return;
 656   // setup registers
 657   LIR_Opr hdr = lock;
 658   lock = new_hdr;
 659   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 660   __ load_stack_address_monitor(monitor_no, lock);
 661   __ unlock_object(hdr, object, lock, scratch, slow_path);
 662 }
 663 
 664 #ifndef PRODUCT
 665 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 666   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 667     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 668   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 669     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 670   }
 671 }
 672 #endif
 673 
 674 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 675   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 676   // If klass is not loaded we do not know if the klass has finalizers:
 677   if (UseFastNewInstance && klass->is_loaded()
 678       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 679 
 680     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 681 
 682     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 683 
 684     assert(klass->is_loaded(), "must be loaded");
 685     // allocate space for instance
 686     assert(klass->size_helper() >= 0, "illegal instance size");
 687     const int instance_size = align_object_size(klass->size_helper());
 688     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 689                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 690   } else {
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 692     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 693     __ branch_destination(slow_path->continuation());
 694   }
 695 }
 696 
 697 
 698 static bool is_constant_zero(Instruction* inst) {
 699   IntConstant* c = inst->type()->as_IntConstant();
 700   if (c) {
 701     return (c->value() == 0);
 702   }
 703   return false;
 704 }
 705 
 706 
 707 static bool positive_constant(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() >= 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static ciArrayKlass* as_array_klass(ciType* type) {
 717   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 718     return (ciArrayKlass*)type;
 719   } else {
 720     return NULL;
 721   }
 722 }
 723 
 724 static ciType* phi_declared_type(Phi* phi) {
 725   ciType* t = phi->operand_at(0)->declared_type();
 726   if (t == NULL) {
 727     return NULL;
 728   }
 729   for(int i = 1; i < phi->operand_count(); i++) {
 730     if (t != phi->operand_at(i)->declared_type()) {
 731       return NULL;
 732     }
 733   }
 734   return t;
 735 }
 736 
 737 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 738   Instruction* src     = x->argument_at(0);
 739   Instruction* src_pos = x->argument_at(1);
 740   Instruction* dst     = x->argument_at(2);
 741   Instruction* dst_pos = x->argument_at(3);
 742   Instruction* length  = x->argument_at(4);
 743 
 744   // first try to identify the likely type of the arrays involved
 745   ciArrayKlass* expected_type = NULL;
 746   bool is_exact = false, src_objarray = false, dst_objarray = false;
 747   {
 748     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 749     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 750     Phi* phi;
 751     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 752       src_declared_type = as_array_klass(phi_declared_type(phi));
 753     }
 754     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 755     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 756     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 757       dst_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759 
 760     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 761       // the types exactly match so the type is fully known
 762       is_exact = true;
 763       expected_type = src_exact_type;
 764     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 765       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 766       ciArrayKlass* src_type = NULL;
 767       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_exact_type;
 769       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_declared_type;
 771       }
 772       if (src_type != NULL) {
 773         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 774           is_exact = true;
 775           expected_type = dst_type;
 776         }
 777       }
 778     }
 779     // at least pass along a good guess
 780     if (expected_type == NULL) expected_type = dst_exact_type;
 781     if (expected_type == NULL) expected_type = src_declared_type;
 782     if (expected_type == NULL) expected_type = dst_declared_type;
 783 
 784     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 785     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 786   }
 787 
 788   // if a probable array type has been identified, figure out if any
 789   // of the required checks for a fast case can be elided.
 790   int flags = LIR_OpArrayCopy::all_flags;
 791 
 792   if (!src_objarray)
 793     flags &= ~LIR_OpArrayCopy::src_objarray;
 794   if (!dst_objarray)
 795     flags &= ~LIR_OpArrayCopy::dst_objarray;
 796 
 797   if (!x->arg_needs_null_check(0))
 798     flags &= ~LIR_OpArrayCopy::src_null_check;
 799   if (!x->arg_needs_null_check(2))
 800     flags &= ~LIR_OpArrayCopy::dst_null_check;
 801 
 802 
 803   if (expected_type != NULL) {
 804     Value length_limit = NULL;
 805 
 806     IfOp* ifop = length->as_IfOp();
 807     if (ifop != NULL) {
 808       // look for expressions like min(v, a.length) which ends up as
 809       //   x > y ? y : x  or  x >= y ? y : x
 810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 811           ifop->x() == ifop->fval() &&
 812           ifop->y() == ifop->tval()) {
 813         length_limit = ifop->y();
 814       }
 815     }
 816 
 817     // try to skip null checks and range checks
 818     NewArray* src_array = src->as_NewArray();
 819     if (src_array != NULL) {
 820       flags &= ~LIR_OpArrayCopy::src_null_check;
 821       if (length_limit != NULL &&
 822           src_array->length() == length_limit &&
 823           is_constant_zero(src_pos)) {
 824         flags &= ~LIR_OpArrayCopy::src_range_check;
 825       }
 826     }
 827 
 828     NewArray* dst_array = dst->as_NewArray();
 829     if (dst_array != NULL) {
 830       flags &= ~LIR_OpArrayCopy::dst_null_check;
 831       if (length_limit != NULL &&
 832           dst_array->length() == length_limit &&
 833           is_constant_zero(dst_pos)) {
 834         flags &= ~LIR_OpArrayCopy::dst_range_check;
 835       }
 836     }
 837 
 838     // check from incoming constant values
 839     if (positive_constant(src_pos))
 840       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 841     if (positive_constant(dst_pos))
 842       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 843     if (positive_constant(length))
 844       flags &= ~LIR_OpArrayCopy::length_positive_check;
 845 
 846     // see if the range check can be elided, which might also imply
 847     // that src or dst is non-null.
 848     ArrayLength* al = length->as_ArrayLength();
 849     if (al != NULL) {
 850       if (al->array() == src) {
 851         // it's the length of the source array
 852         flags &= ~LIR_OpArrayCopy::length_positive_check;
 853         flags &= ~LIR_OpArrayCopy::src_null_check;
 854         if (is_constant_zero(src_pos))
 855           flags &= ~LIR_OpArrayCopy::src_range_check;
 856       }
 857       if (al->array() == dst) {
 858         // it's the length of the destination array
 859         flags &= ~LIR_OpArrayCopy::length_positive_check;
 860         flags &= ~LIR_OpArrayCopy::dst_null_check;
 861         if (is_constant_zero(dst_pos))
 862           flags &= ~LIR_OpArrayCopy::dst_range_check;
 863       }
 864     }
 865     if (is_exact) {
 866       flags &= ~LIR_OpArrayCopy::type_check;
 867     }
 868   }
 869 
 870   IntConstant* src_int = src_pos->type()->as_IntConstant();
 871   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 872   if (src_int && dst_int) {
 873     int s_offs = src_int->value();
 874     int d_offs = dst_int->value();
 875     if (src_int->value() >= dst_int->value()) {
 876       flags &= ~LIR_OpArrayCopy::overlapping;
 877     }
 878     if (expected_type != NULL) {
 879       BasicType t = expected_type->element_type()->basic_type();
 880       int element_size = type2aelembytes(t);
 881       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 882           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 883         flags &= ~LIR_OpArrayCopy::unaligned;
 884       }
 885     }
 886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 887     // src and dest positions are the same, or dst is zero so assume
 888     // nonoverlapping copy.
 889     flags &= ~LIR_OpArrayCopy::overlapping;
 890   }
 891 
 892   if (src == dst) {
 893     // moving within a single array so no type checks are needed
 894     if (flags & LIR_OpArrayCopy::type_check) {
 895       flags &= ~LIR_OpArrayCopy::type_check;
 896     }
 897   }
 898   *flagsp = flags;
 899   *expected_typep = (ciArrayKlass*)expected_type;
 900 }
 901 
 902 
 903 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 904   assert(opr->is_register(), "why spill if item is not register?");
 905 
 906   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 907     LIR_Opr result = new_register(T_FLOAT);
 908     set_vreg_flag(result, must_start_in_memory);
 909     assert(opr->is_register(), "only a register can be spilled");
 910     assert(opr->value_type()->is_float(), "rounding only for floats available");
 911     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 912     return result;
 913   }
 914   return opr;
 915 }
 916 
 917 
 918 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 919   assert(type2size[t] == type2size[value->type()],
 920          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 921   if (!value->is_register()) {
 922     // force into a register
 923     LIR_Opr r = new_register(value->type());
 924     __ move(value, r);
 925     value = r;
 926   }
 927 
 928   // create a spill location
 929   LIR_Opr tmp = new_register(t);
 930   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 931 
 932   // move from register to spill
 933   __ move(value, tmp);
 934   return tmp;
 935 }
 936 
 937 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 938   if (if_instr->should_profile()) {
 939     ciMethod* method = if_instr->profiled_method();
 940     assert(method != NULL, "method should be set if branch is profiled");
 941     ciMethodData* md = method->method_data_or_null();
 942     assert(md != NULL, "Sanity");
 943     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 944     assert(data != NULL, "must have profiling data");
 945     assert(data->is_BranchData(), "need BranchData for two-way branches");
 946     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 947     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 948     if (if_instr->is_swapped()) {
 949       int t = taken_count_offset;
 950       taken_count_offset = not_taken_count_offset;
 951       not_taken_count_offset = t;
 952     }
 953 
 954     LIR_Opr md_reg = new_register(T_METADATA);
 955     __ metadata2reg(md->constant_encoding(), md_reg);
 956 
 957     LIR_Opr data_offset_reg = new_pointer_register();
 958     __ cmove(lir_cond(cond),
 959              LIR_OprFact::intptrConst(taken_count_offset),
 960              LIR_OprFact::intptrConst(not_taken_count_offset),
 961              data_offset_reg, as_BasicType(if_instr->x()->type()));
 962 
 963     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 964     LIR_Opr data_reg = new_pointer_register();
 965     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 966     __ move(data_addr, data_reg);
 967     // Use leal instead of add to avoid destroying condition codes on x86
 968     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 969     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 970     __ move(data_reg, data_addr);
 971   }
 972 }
 973 
 974 // Phi technique:
 975 // This is about passing live values from one basic block to the other.
 976 // In code generated with Java it is rather rare that more than one
 977 // value is on the stack from one basic block to the other.
 978 // We optimize our technique for efficient passing of one value
 979 // (of type long, int, double..) but it can be extended.
 980 // When entering or leaving a basic block, all registers and all spill
 981 // slots are release and empty. We use the released registers
 982 // and spill slots to pass the live values from one block
 983 // to the other. The topmost value, i.e., the value on TOS of expression
 984 // stack is passed in registers. All other values are stored in spilling
 985 // area. Every Phi has an index which designates its spill slot
 986 // At exit of a basic block, we fill the register(s) and spill slots.
 987 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 988 // and locks necessary registers and spilling slots.
 989 
 990 
 991 // move current value to referenced phi function
 992 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 993   Phi* phi = sux_val->as_Phi();
 994   // cur_val can be null without phi being null in conjunction with inlining
 995   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 996     Phi* cur_phi = cur_val->as_Phi();
 997     if (cur_phi != NULL && cur_phi->is_illegal()) {
 998       // Phi and local would need to get invalidated
 999       // (which is unexpected for Linear Scan).
1000       // But this case is very rare so we simply bail out.
1001       bailout("propagation of illegal phi");
1002       return;
1003     }
1004     LIR_Opr operand = cur_val->operand();
1005     if (operand->is_illegal()) {
1006       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1007              "these can be produced lazily");
1008       operand = operand_for_instruction(cur_val);
1009     }
1010     resolver->move(operand, operand_for_instruction(phi));
1011   }
1012 }
1013 
1014 
1015 // Moves all stack values into their PHI position
1016 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1017   BlockBegin* bb = block();
1018   if (bb->number_of_sux() == 1) {
1019     BlockBegin* sux = bb->sux_at(0);
1020     assert(sux->number_of_preds() > 0, "invalid CFG");
1021 
1022     // a block with only one predecessor never has phi functions
1023     if (sux->number_of_preds() > 1) {
1024       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1025       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1026 
1027       ValueStack* sux_state = sux->state();
1028       Value sux_value;
1029       int index;
1030 
1031       assert(cur_state->scope() == sux_state->scope(), "not matching");
1032       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1033       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1034 
1035       for_each_stack_value(sux_state, index, sux_value) {
1036         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1037       }
1038 
1039       for_each_local_value(sux_state, index, sux_value) {
1040         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1041       }
1042 
1043       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1044     }
1045   }
1046 }
1047 
1048 
1049 LIR_Opr LIRGenerator::new_register(BasicType type) {
1050   int vreg = _virtual_register_number;
1051   // add a little fudge factor for the bailout, since the bailout is
1052   // only checked periodically.  This gives a few extra registers to
1053   // hand out before we really run out, which helps us keep from
1054   // tripping over assertions.
1055   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1056     bailout("out of virtual registers");
1057     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1058       // wrap it around
1059       _virtual_register_number = LIR_OprDesc::vreg_base;
1060     }
1061   }
1062   _virtual_register_number += 1;
1063   return LIR_OprFact::virtual_register(vreg, type);
1064 }
1065 
1066 
1067 // Try to lock using register in hint
1068 LIR_Opr LIRGenerator::rlock(Value instr) {
1069   return new_register(instr->type());
1070 }
1071 
1072 
1073 // does an rlock and sets result
1074 LIR_Opr LIRGenerator::rlock_result(Value x) {
1075   LIR_Opr reg = rlock(x);
1076   set_result(x, reg);
1077   return reg;
1078 }
1079 
1080 
1081 // does an rlock and sets result
1082 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1083   LIR_Opr reg;
1084   switch (type) {
1085   case T_BYTE:
1086   case T_BOOLEAN:
1087     reg = rlock_byte(type);
1088     break;
1089   default:
1090     reg = rlock(x);
1091     break;
1092   }
1093 
1094   set_result(x, reg);
1095   return reg;
1096 }
1097 
1098 
1099 //---------------------------------------------------------------------
1100 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1101   ObjectType* oc = value->type()->as_ObjectType();
1102   if (oc) {
1103     return oc->constant_value();
1104   }
1105   return NULL;
1106 }
1107 
1108 
1109 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1110   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1111   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1112 
1113   // no moves are created for phi functions at the begin of exception
1114   // handlers, so assign operands manually here
1115   for_each_phi_fun(block(), phi,
1116                    operand_for_instruction(phi));
1117 
1118   LIR_Opr thread_reg = getThreadPointer();
1119   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1120                exceptionOopOpr());
1121   __ move_wide(LIR_OprFact::oopConst(NULL),
1122                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1123   __ move_wide(LIR_OprFact::oopConst(NULL),
1124                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1125 
1126   LIR_Opr result = new_register(T_OBJECT);
1127   __ move(exceptionOopOpr(), result);
1128   set_result(x, result);
1129 }
1130 
1131 
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //                        visitor functions
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 
1142 void LIRGenerator::do_Phi(Phi* x) {
1143   // phi functions are never visited directly
1144   ShouldNotReachHere();
1145 }
1146 
1147 
1148 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1149 void LIRGenerator::do_Constant(Constant* x) {
1150   if (x->state_before() != NULL) {
1151     // Any constant with a ValueStack requires patching so emit the patch here
1152     LIR_Opr reg = rlock_result(x);
1153     CodeEmitInfo* info = state_for(x, x->state_before());
1154     __ oop2reg_patch(NULL, reg, info);
1155   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1156     if (!x->is_pinned()) {
1157       // unpinned constants are handled specially so that they can be
1158       // put into registers when they are used multiple times within a
1159       // block.  After the block completes their operand will be
1160       // cleared so that other blocks can't refer to that register.
1161       set_result(x, load_constant(x));
1162     } else {
1163       LIR_Opr res = x->operand();
1164       if (!res->is_valid()) {
1165         res = LIR_OprFact::value_type(x->type());
1166       }
1167       if (res->is_constant()) {
1168         LIR_Opr reg = rlock_result(x);
1169         __ move(res, reg);
1170       } else {
1171         set_result(x, res);
1172       }
1173     }
1174   } else {
1175     set_result(x, LIR_OprFact::value_type(x->type()));
1176   }
1177 }
1178 
1179 
1180 void LIRGenerator::do_Local(Local* x) {
1181   // operand_for_instruction has the side effect of setting the result
1182   // so there's no need to do it here.
1183   operand_for_instruction(x);
1184 }
1185 
1186 
1187 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1188   Unimplemented();
1189 }
1190 
1191 
1192 void LIRGenerator::do_Return(Return* x) {
1193   if (compilation()->env()->dtrace_method_probes()) {
1194     BasicTypeList signature;
1195     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1196     signature.append(T_METADATA); // Method*
1197     LIR_OprList* args = new LIR_OprList();
1198     args->append(getThreadPointer());
1199     LIR_Opr meth = new_register(T_METADATA);
1200     __ metadata2reg(method()->constant_encoding(), meth);
1201     args->append(meth);
1202     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1203   }
1204 
1205   if (x->type()->is_void()) {
1206     __ return_op(LIR_OprFact::illegalOpr);
1207   } else {
1208     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1209     LIRItem result(x->result(), this);
1210 
1211     result.load_item_force(reg);
1212     __ return_op(result.result());
1213   }
1214   set_no_result(x);
1215 }
1216 
1217 // Examble: ref.get()
1218 // Combination of LoadField and g1 pre-write barrier
1219 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1220 
1221   const int referent_offset = java_lang_ref_Reference::referent_offset;
1222   guarantee(referent_offset > 0, "referent offset not initialized");
1223 
1224   assert(x->number_of_arguments() == 1, "wrong type");
1225 
1226   LIRItem reference(x->argument_at(0), this);
1227   reference.load_item();
1228 
1229   // need to perform the null check on the reference objecy
1230   CodeEmitInfo* info = NULL;
1231   if (x->needs_null_check()) {
1232     info = state_for(x);
1233   }
1234 
1235   LIR_Opr result = rlock_result(x, T_OBJECT);
1236   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1237                  reference, LIR_OprFact::intConst(referent_offset), result);
1238 }
1239 
1240 // Example: clazz.isInstance(object)
1241 void LIRGenerator::do_isInstance(Intrinsic* x) {
1242   assert(x->number_of_arguments() == 2, "wrong type");
1243 
1244   // TODO could try to substitute this node with an equivalent InstanceOf
1245   // if clazz is known to be a constant Class. This will pick up newly found
1246   // constants after HIR construction. I'll leave this to a future change.
1247 
1248   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1249   // could follow the aastore example in a future change.
1250 
1251   LIRItem clazz(x->argument_at(0), this);
1252   LIRItem object(x->argument_at(1), this);
1253   clazz.load_item();
1254   object.load_item();
1255   LIR_Opr result = rlock_result(x);
1256 
1257   // need to perform null check on clazz
1258   if (x->needs_null_check()) {
1259     CodeEmitInfo* info = state_for(x);
1260     __ null_check(clazz.result(), info);
1261   }
1262 
1263   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1264                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1265                                      x->type(),
1266                                      NULL); // NULL CodeEmitInfo results in a leaf call
1267   __ move(call_result, result);
1268 }
1269 
1270 // Example: object.getClass ()
1271 void LIRGenerator::do_getClass(Intrinsic* x) {
1272   assert(x->number_of_arguments() == 1, "wrong type");
1273 
1274   LIRItem rcvr(x->argument_at(0), this);
1275   rcvr.load_item();
1276   LIR_Opr temp = new_register(T_METADATA);
1277   LIR_Opr result = rlock_result(x);
1278 
1279   // need to perform the null check on the rcvr
1280   CodeEmitInfo* info = NULL;
1281   if (x->needs_null_check()) {
1282     info = state_for(x);
1283   }
1284 
1285   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1286   // meaning of these two is mixed up (see JDK-8026837).
1287   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1288   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1289   // mirror = ((OopHandle)mirror)->resolve();
1290   access_load(IN_NATIVE, T_OBJECT,
1291               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1292 }
1293 
1294 // java.lang.Class::isPrimitive()
1295 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1296   assert(x->number_of_arguments() == 1, "wrong type");
1297 
1298   LIRItem rcvr(x->argument_at(0), this);
1299   rcvr.load_item();
1300   LIR_Opr temp = new_register(T_METADATA);
1301   LIR_Opr result = rlock_result(x);
1302 
1303   CodeEmitInfo* info = NULL;
1304   if (x->needs_null_check()) {
1305     info = state_for(x);
1306   }
1307 
1308   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1309   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1310   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1311 }
1312 
1313 
1314 // Example: Thread.currentThread()
1315 void LIRGenerator::do_currentThread(Intrinsic* x) {
1316   assert(x->number_of_arguments() == 0, "wrong type");
1317   LIR_Opr reg = rlock_result(x);
1318   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1319 }
1320 
1321 
1322 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1323   assert(x->number_of_arguments() == 1, "wrong type");
1324   LIRItem receiver(x->argument_at(0), this);
1325 
1326   receiver.load_item();
1327   BasicTypeList signature;
1328   signature.append(T_OBJECT); // receiver
1329   LIR_OprList* args = new LIR_OprList();
1330   args->append(receiver.result());
1331   CodeEmitInfo* info = state_for(x, x->state());
1332   call_runtime(&signature, args,
1333                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1334                voidType, info);
1335 
1336   set_no_result(x);
1337 }
1338 
1339 
1340 //------------------------local access--------------------------------------
1341 
1342 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1343   if (x->operand()->is_illegal()) {
1344     Constant* c = x->as_Constant();
1345     if (c != NULL) {
1346       x->set_operand(LIR_OprFact::value_type(c->type()));
1347     } else {
1348       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1349       // allocate a virtual register for this local or phi
1350       x->set_operand(rlock(x));
1351       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1352     }
1353   }
1354   return x->operand();
1355 }
1356 
1357 
1358 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1359   if (opr->is_virtual()) {
1360     return instruction_for_vreg(opr->vreg_number());
1361   }
1362   return NULL;
1363 }
1364 
1365 
1366 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1367   if (reg_num < _instruction_for_operand.length()) {
1368     return _instruction_for_operand.at(reg_num);
1369   }
1370   return NULL;
1371 }
1372 
1373 
1374 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1375   if (_vreg_flags.size_in_bits() == 0) {
1376     BitMap2D temp(100, num_vreg_flags);
1377     _vreg_flags = temp;
1378   }
1379   _vreg_flags.at_put_grow(vreg_num, f, true);
1380 }
1381 
1382 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1383   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1384     return false;
1385   }
1386   return _vreg_flags.at(vreg_num, f);
1387 }
1388 
1389 
1390 // Block local constant handling.  This code is useful for keeping
1391 // unpinned constants and constants which aren't exposed in the IR in
1392 // registers.  Unpinned Constant instructions have their operands
1393 // cleared when the block is finished so that other blocks can't end
1394 // up referring to their registers.
1395 
1396 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1397   assert(!x->is_pinned(), "only for unpinned constants");
1398   _unpinned_constants.append(x);
1399   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1400 }
1401 
1402 
1403 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1404   BasicType t = c->type();
1405   for (int i = 0; i < _constants.length(); i++) {
1406     LIR_Const* other = _constants.at(i);
1407     if (t == other->type()) {
1408       switch (t) {
1409       case T_INT:
1410       case T_FLOAT:
1411         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1412         break;
1413       case T_LONG:
1414       case T_DOUBLE:
1415         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1416         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1417         break;
1418       case T_OBJECT:
1419         if (c->as_jobject() != other->as_jobject()) continue;
1420         break;
1421       default:
1422         break;
1423       }
1424       return _reg_for_constants.at(i);
1425     }
1426   }
1427 
1428   LIR_Opr result = new_register(t);
1429   __ move((LIR_Opr)c, result);
1430   _constants.append(c);
1431   _reg_for_constants.append(result);
1432   return result;
1433 }
1434 
1435 //------------------------field access--------------------------------------
1436 
1437 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1438   assert(x->number_of_arguments() == 4, "wrong type");
1439   LIRItem obj   (x->argument_at(0), this);  // object
1440   LIRItem offset(x->argument_at(1), this);  // offset of field
1441   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1442   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1443   assert(obj.type()->tag() == objectTag, "invalid type");
1444 
1445   // In 64bit the type can be long, sparc doesn't have this assert
1446   // assert(offset.type()->tag() == intTag, "invalid type");
1447 
1448   assert(cmp.type()->tag() == type->tag(), "invalid type");
1449   assert(val.type()->tag() == type->tag(), "invalid type");
1450 
1451   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1452                                             obj, offset, cmp, val);
1453   set_result(x, result);
1454 }
1455 
1456 // Comment copied form templateTable_i486.cpp
1457 // ----------------------------------------------------------------------------
1458 // Volatile variables demand their effects be made known to all CPU's in
1459 // order.  Store buffers on most chips allow reads & writes to reorder; the
1460 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1461 // memory barrier (i.e., it's not sufficient that the interpreter does not
1462 // reorder volatile references, the hardware also must not reorder them).
1463 //
1464 // According to the new Java Memory Model (JMM):
1465 // (1) All volatiles are serialized wrt to each other.
1466 // ALSO reads & writes act as aquire & release, so:
1467 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1468 // the read float up to before the read.  It's OK for non-volatile memory refs
1469 // that happen before the volatile read to float down below it.
1470 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1471 // that happen BEFORE the write float down to after the write.  It's OK for
1472 // non-volatile memory refs that happen after the volatile write to float up
1473 // before it.
1474 //
1475 // We only put in barriers around volatile refs (they are expensive), not
1476 // _between_ memory refs (that would require us to track the flavor of the
1477 // previous memory refs).  Requirements (2) and (3) require some barriers
1478 // before volatile stores and after volatile loads.  These nearly cover
1479 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1480 // case is placed after volatile-stores although it could just as well go
1481 // before volatile-loads.
1482 
1483 
1484 void LIRGenerator::do_StoreField(StoreField* x) {
1485   bool needs_patching = x->needs_patching();
1486   bool is_volatile = x->field()->is_volatile();
1487   BasicType field_type = x->field_type();
1488 
1489   CodeEmitInfo* info = NULL;
1490   if (needs_patching) {
1491     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1492     info = state_for(x, x->state_before());
1493   } else if (x->needs_null_check()) {
1494     NullCheck* nc = x->explicit_null_check();
1495     if (nc == NULL) {
1496       info = state_for(x);
1497     } else {
1498       info = state_for(nc);
1499     }
1500   }
1501 
1502   LIRItem object(x->obj(), this);
1503   LIRItem value(x->value(),  this);
1504 
1505   object.load_item();
1506 
1507   if (is_volatile || needs_patching) {
1508     // load item if field is volatile (fewer special cases for volatiles)
1509     // load item if field not initialized
1510     // load item if field not constant
1511     // because of code patching we cannot inline constants
1512     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1513       value.load_byte_item();
1514     } else  {
1515       value.load_item();
1516     }
1517   } else {
1518     value.load_for_store(field_type);
1519   }
1520 
1521   set_no_result(x);
1522 
1523 #ifndef PRODUCT
1524   if (PrintNotLoaded && needs_patching) {
1525     tty->print_cr("   ###class not loaded at store_%s bci %d",
1526                   x->is_static() ?  "static" : "field", x->printable_bci());
1527   }
1528 #endif
1529 
1530   if (x->needs_null_check() &&
1531       (needs_patching ||
1532        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1533     // Emit an explicit null check because the offset is too large.
1534     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1535     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1536     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1537   }
1538 
1539   DecoratorSet decorators = IN_HEAP;
1540   if (is_volatile) {
1541     decorators |= MO_SEQ_CST;
1542   }
1543   if (needs_patching) {
1544     decorators |= C1_NEEDS_PATCHING;
1545   }
1546 
1547   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1548                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1549 }
1550 
1551 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1552   assert(x->is_pinned(),"");
1553   bool needs_range_check = x->compute_needs_range_check();
1554   bool use_length = x->length() != NULL;
1555   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1556   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1557                                          !get_jobject_constant(x->value())->is_null_object() ||
1558                                          x->should_profile());
1559 
1560   LIRItem array(x->array(), this);
1561   LIRItem index(x->index(), this);
1562   LIRItem value(x->value(), this);
1563   LIRItem length(this);
1564 
1565   array.load_item();
1566   index.load_nonconstant();
1567 
1568   if (use_length && needs_range_check) {
1569     length.set_instruction(x->length());
1570     length.load_item();
1571 
1572   }
1573   if (needs_store_check || x->check_boolean()) {
1574     value.load_item();
1575   } else {
1576     value.load_for_store(x->elt_type());
1577   }
1578 
1579   set_no_result(x);
1580 
1581   // the CodeEmitInfo must be duplicated for each different
1582   // LIR-instruction because spilling can occur anywhere between two
1583   // instructions and so the debug information must be different
1584   CodeEmitInfo* range_check_info = state_for(x);
1585   CodeEmitInfo* null_check_info = NULL;
1586   if (x->needs_null_check()) {
1587     null_check_info = new CodeEmitInfo(range_check_info);
1588   }
1589 
1590   if (GenerateRangeChecks && needs_range_check) {
1591     if (use_length) {
1592       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1593       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1594     } else {
1595       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1596       // range_check also does the null check
1597       null_check_info = NULL;
1598     }
1599   }
1600 
1601   if (GenerateArrayStoreCheck && needs_store_check) {
1602     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1603     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1604   }
1605 
1606   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1607   if (x->check_boolean()) {
1608     decorators |= C1_MASK_BOOLEAN;
1609   }
1610 
1611   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1612                   NULL, null_check_info);
1613 }
1614 
1615 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1616                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1617                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1618   decorators |= ACCESS_READ;
1619   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1620   if (access.is_raw()) {
1621     _barrier_set->BarrierSetC1::load_at(access, result);
1622   } else {
1623     _barrier_set->load_at(access, result);
1624   }
1625 }
1626 
1627 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1628                                LIR_Opr addr, LIR_Opr result) {
1629   decorators |= ACCESS_READ;
1630   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1631   access.set_resolved_addr(addr);
1632   if (access.is_raw()) {
1633     _barrier_set->BarrierSetC1::load(access, result);
1634   } else {
1635     _barrier_set->load(access, result);
1636   }
1637 }
1638 
1639 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1640                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1641                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1642   decorators |= ACCESS_WRITE;
1643   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1644   if (access.is_raw()) {
1645     _barrier_set->BarrierSetC1::store_at(access, value);
1646   } else {
1647     _barrier_set->store_at(access, value);
1648   }
1649 }
1650 
1651 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1652                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1653   decorators |= ACCESS_READ;
1654   decorators |= ACCESS_WRITE;
1655   // Atomic operations are SEQ_CST by default
1656   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1657   LIRAccess access(this, decorators, base, offset, type);
1658   if (access.is_raw()) {
1659     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1660   } else {
1661     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1662   }
1663 }
1664 
1665 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1666                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1667   decorators |= ACCESS_READ;
1668   decorators |= ACCESS_WRITE;
1669   // Atomic operations are SEQ_CST by default
1670   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1671   LIRAccess access(this, decorators, base, offset, type);
1672   if (access.is_raw()) {
1673     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1674   } else {
1675     return _barrier_set->atomic_xchg_at(access, value);
1676   }
1677 }
1678 
1679 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1680                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1681   decorators |= ACCESS_READ;
1682   decorators |= ACCESS_WRITE;
1683   // Atomic operations are SEQ_CST by default
1684   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1685   LIRAccess access(this, decorators, base, offset, type);
1686   if (access.is_raw()) {
1687     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1688   } else {
1689     return _barrier_set->atomic_add_at(access, value);
1690   }
1691 }
1692 
1693 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1694   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1695   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1696     decorators |= ACCESS_READ | ACCESS_WRITE;
1697   }
1698 
1699   return _barrier_set->resolve(this, decorators, obj);
1700 }
1701 
1702 void LIRGenerator::do_LoadField(LoadField* x) {
1703   bool needs_patching = x->needs_patching();
1704   bool is_volatile = x->field()->is_volatile();
1705   BasicType field_type = x->field_type();
1706 
1707   CodeEmitInfo* info = NULL;
1708   if (needs_patching) {
1709     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1710     info = state_for(x, x->state_before());
1711   } else if (x->needs_null_check()) {
1712     NullCheck* nc = x->explicit_null_check();
1713     if (nc == NULL) {
1714       info = state_for(x);
1715     } else {
1716       info = state_for(nc);
1717     }
1718   }
1719 
1720   LIRItem object(x->obj(), this);
1721 
1722   object.load_item();
1723 
1724 #ifndef PRODUCT
1725   if (PrintNotLoaded && needs_patching) {
1726     tty->print_cr("   ###class not loaded at load_%s bci %d",
1727                   x->is_static() ?  "static" : "field", x->printable_bci());
1728   }
1729 #endif
1730 
1731   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1732   if (x->needs_null_check() &&
1733       (needs_patching ||
1734        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1735        stress_deopt)) {
1736     LIR_Opr obj = object.result();
1737     if (stress_deopt) {
1738       obj = new_register(T_OBJECT);
1739       __ move(LIR_OprFact::oopConst(NULL), obj);
1740     }
1741     // Emit an explicit null check because the offset is too large.
1742     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1743     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1744     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1745   }
1746 
1747   DecoratorSet decorators = IN_HEAP;
1748   if (is_volatile) {
1749     decorators |= MO_SEQ_CST;
1750   }
1751   if (needs_patching) {
1752     decorators |= C1_NEEDS_PATCHING;
1753   }
1754 
1755   LIR_Opr result = rlock_result(x, field_type);
1756   access_load_at(decorators, field_type,
1757                  object, LIR_OprFact::intConst(x->offset()), result,
1758                  info ? new CodeEmitInfo(info) : NULL, info);
1759 }
1760 
1761 
1762 //------------------------java.nio.Buffer.checkIndex------------------------
1763 
1764 // int java.nio.Buffer.checkIndex(int)
1765 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1766   // NOTE: by the time we are in checkIndex() we are guaranteed that
1767   // the buffer is non-null (because checkIndex is package-private and
1768   // only called from within other methods in the buffer).
1769   assert(x->number_of_arguments() == 2, "wrong type");
1770   LIRItem buf  (x->argument_at(0), this);
1771   LIRItem index(x->argument_at(1), this);
1772   buf.load_item();
1773   index.load_item();
1774 
1775   LIR_Opr result = rlock_result(x);
1776   if (GenerateRangeChecks) {
1777     CodeEmitInfo* info = state_for(x);
1778     CodeStub* stub = new RangeCheckStub(info, index.result());
1779     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1780     if (index.result()->is_constant()) {
1781       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1782       __ branch(lir_cond_belowEqual, T_INT, stub);
1783     } else {
1784       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1785                   java_nio_Buffer::limit_offset(), T_INT, info);
1786       __ branch(lir_cond_aboveEqual, T_INT, stub);
1787     }
1788     __ move(index.result(), result);
1789   } else {
1790     // Just load the index into the result register
1791     __ move(index.result(), result);
1792   }
1793 }
1794 
1795 
1796 //------------------------array access--------------------------------------
1797 
1798 
1799 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1800   LIRItem array(x->array(), this);
1801   array.load_item();
1802   LIR_Opr reg = rlock_result(x);
1803 
1804   CodeEmitInfo* info = NULL;
1805   if (x->needs_null_check()) {
1806     NullCheck* nc = x->explicit_null_check();
1807     if (nc == NULL) {
1808       info = state_for(x);
1809     } else {
1810       info = state_for(nc);
1811     }
1812     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1813       LIR_Opr obj = new_register(T_OBJECT);
1814       __ move(LIR_OprFact::oopConst(NULL), obj);
1815       __ null_check(obj, new CodeEmitInfo(info));
1816     }
1817   }
1818   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1819 }
1820 
1821 
1822 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1823   bool use_length = x->length() != NULL;
1824   LIRItem array(x->array(), this);
1825   LIRItem index(x->index(), this);
1826   LIRItem length(this);
1827   bool needs_range_check = x->compute_needs_range_check();
1828 
1829   if (use_length && needs_range_check) {
1830     length.set_instruction(x->length());
1831     length.load_item();
1832   }
1833 
1834   array.load_item();
1835   if (index.is_constant() && can_inline_as_constant(x->index())) {
1836     // let it be a constant
1837     index.dont_load_item();
1838   } else {
1839     index.load_item();
1840   }
1841 
1842   CodeEmitInfo* range_check_info = state_for(x);
1843   CodeEmitInfo* null_check_info = NULL;
1844   if (x->needs_null_check()) {
1845     NullCheck* nc = x->explicit_null_check();
1846     if (nc != NULL) {
1847       null_check_info = state_for(nc);
1848     } else {
1849       null_check_info = range_check_info;
1850     }
1851     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1852       LIR_Opr obj = new_register(T_OBJECT);
1853       __ move(LIR_OprFact::oopConst(NULL), obj);
1854       __ null_check(obj, new CodeEmitInfo(null_check_info));
1855     }
1856   }
1857 
1858   if (GenerateRangeChecks && needs_range_check) {
1859     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1860       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
1861     } else if (use_length) {
1862       // TODO: use a (modified) version of array_range_check that does not require a
1863       //       constant length to be loaded to a register
1864       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1865       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1866     } else {
1867       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1868       // The range check performs the null check, so clear it out for the load
1869       null_check_info = NULL;
1870     }
1871   }
1872 
1873   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1874 
1875   LIR_Opr result = rlock_result(x, x->elt_type());
1876   access_load_at(decorators, x->elt_type(),
1877                  array, index.result(), result,
1878                  NULL, null_check_info);
1879 }
1880 
1881 
1882 void LIRGenerator::do_NullCheck(NullCheck* x) {
1883   if (x->can_trap()) {
1884     LIRItem value(x->obj(), this);
1885     value.load_item();
1886     CodeEmitInfo* info = state_for(x);
1887     __ null_check(value.result(), info);
1888   }
1889 }
1890 
1891 
1892 void LIRGenerator::do_TypeCast(TypeCast* x) {
1893   LIRItem value(x->obj(), this);
1894   value.load_item();
1895   // the result is the same as from the node we are casting
1896   set_result(x, value.result());
1897 }
1898 
1899 
1900 void LIRGenerator::do_Throw(Throw* x) {
1901   LIRItem exception(x->exception(), this);
1902   exception.load_item();
1903   set_no_result(x);
1904   LIR_Opr exception_opr = exception.result();
1905   CodeEmitInfo* info = state_for(x, x->state());
1906 
1907 #ifndef PRODUCT
1908   if (PrintC1Statistics) {
1909     increment_counter(Runtime1::throw_count_address(), T_INT);
1910   }
1911 #endif
1912 
1913   // check if the instruction has an xhandler in any of the nested scopes
1914   bool unwind = false;
1915   if (info->exception_handlers()->length() == 0) {
1916     // this throw is not inside an xhandler
1917     unwind = true;
1918   } else {
1919     // get some idea of the throw type
1920     bool type_is_exact = true;
1921     ciType* throw_type = x->exception()->exact_type();
1922     if (throw_type == NULL) {
1923       type_is_exact = false;
1924       throw_type = x->exception()->declared_type();
1925     }
1926     if (throw_type != NULL && throw_type->is_instance_klass()) {
1927       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1928       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1929     }
1930   }
1931 
1932   // do null check before moving exception oop into fixed register
1933   // to avoid a fixed interval with an oop during the null check.
1934   // Use a copy of the CodeEmitInfo because debug information is
1935   // different for null_check and throw.
1936   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
1937     // if the exception object wasn't created using new then it might be null.
1938     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1939   }
1940 
1941   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1942     // we need to go through the exception lookup path to get JVMTI
1943     // notification done
1944     unwind = false;
1945   }
1946 
1947   // move exception oop into fixed register
1948   __ move(exception_opr, exceptionOopOpr());
1949 
1950   if (unwind) {
1951     __ unwind_exception(exceptionOopOpr());
1952   } else {
1953     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1954   }
1955 }
1956 
1957 
1958 void LIRGenerator::do_RoundFP(RoundFP* x) {
1959   LIRItem input(x->input(), this);
1960   input.load_item();
1961   LIR_Opr input_opr = input.result();
1962   assert(input_opr->is_register(), "why round if value is not in a register?");
1963   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1964   if (input_opr->is_single_fpu()) {
1965     set_result(x, round_item(input_opr)); // This code path not currently taken
1966   } else {
1967     LIR_Opr result = new_register(T_DOUBLE);
1968     set_vreg_flag(result, must_start_in_memory);
1969     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1970     set_result(x, result);
1971   }
1972 }
1973 
1974 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
1975 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
1976 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1977   LIRItem base(x->base(), this);
1978   LIRItem idx(this);
1979 
1980   base.load_item();
1981   if (x->has_index()) {
1982     idx.set_instruction(x->index());
1983     idx.load_nonconstant();
1984   }
1985 
1986   LIR_Opr reg = rlock_result(x, x->basic_type());
1987 
1988   int   log2_scale = 0;
1989   if (x->has_index()) {
1990     log2_scale = x->log2_scale();
1991   }
1992 
1993   assert(!x->has_index() || idx.value() == x->index(), "should match");
1994 
1995   LIR_Opr base_op = base.result();
1996   LIR_Opr index_op = idx.result();
1997 #ifndef _LP64
1998   if (base_op->type() == T_LONG) {
1999     base_op = new_register(T_INT);
2000     __ convert(Bytecodes::_l2i, base.result(), base_op);
2001   }
2002   if (x->has_index()) {
2003     if (index_op->type() == T_LONG) {
2004       LIR_Opr long_index_op = index_op;
2005       if (index_op->is_constant()) {
2006         long_index_op = new_register(T_LONG);
2007         __ move(index_op, long_index_op);
2008       }
2009       index_op = new_register(T_INT);
2010       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2011     } else {
2012       assert(x->index()->type()->tag() == intTag, "must be");
2013     }
2014   }
2015   // At this point base and index should be all ints.
2016   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2017   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2018 #else
2019   if (x->has_index()) {
2020     if (index_op->type() == T_INT) {
2021       if (!index_op->is_constant()) {
2022         index_op = new_register(T_LONG);
2023         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2024       }
2025     } else {
2026       assert(index_op->type() == T_LONG, "must be");
2027       if (index_op->is_constant()) {
2028         index_op = new_register(T_LONG);
2029         __ move(idx.result(), index_op);
2030       }
2031     }
2032   }
2033   // At this point base is a long non-constant
2034   // Index is a long register or a int constant.
2035   // We allow the constant to stay an int because that would allow us a more compact encoding by
2036   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2037   // move it into a register first.
2038   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2039   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2040                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2041 #endif
2042 
2043   BasicType dst_type = x->basic_type();
2044 
2045   LIR_Address* addr;
2046   if (index_op->is_constant()) {
2047     assert(log2_scale == 0, "must not have a scale");
2048     assert(index_op->type() == T_INT, "only int constants supported");
2049     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2050   } else {
2051 #ifdef X86
2052     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2053 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2054     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2055 #else
2056     if (index_op->is_illegal() || log2_scale == 0) {
2057       addr = new LIR_Address(base_op, index_op, dst_type);
2058     } else {
2059       LIR_Opr tmp = new_pointer_register();
2060       __ shift_left(index_op, log2_scale, tmp);
2061       addr = new LIR_Address(base_op, tmp, dst_type);
2062     }
2063 #endif
2064   }
2065 
2066   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2067     __ unaligned_move(addr, reg);
2068   } else {
2069     if (dst_type == T_OBJECT && x->is_wide()) {
2070       __ move_wide(addr, reg);
2071     } else {
2072       __ move(addr, reg);
2073     }
2074   }
2075 }
2076 
2077 
2078 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2079   int  log2_scale = 0;
2080   BasicType type = x->basic_type();
2081 
2082   if (x->has_index()) {
2083     log2_scale = x->log2_scale();
2084   }
2085 
2086   LIRItem base(x->base(), this);
2087   LIRItem value(x->value(), this);
2088   LIRItem idx(this);
2089 
2090   base.load_item();
2091   if (x->has_index()) {
2092     idx.set_instruction(x->index());
2093     idx.load_item();
2094   }
2095 
2096   if (type == T_BYTE || type == T_BOOLEAN) {
2097     value.load_byte_item();
2098   } else {
2099     value.load_item();
2100   }
2101 
2102   set_no_result(x);
2103 
2104   LIR_Opr base_op = base.result();
2105   LIR_Opr index_op = idx.result();
2106 
2107 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2108   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2109 #else
2110 #ifndef _LP64
2111   if (base_op->type() == T_LONG) {
2112     base_op = new_register(T_INT);
2113     __ convert(Bytecodes::_l2i, base.result(), base_op);
2114   }
2115   if (x->has_index()) {
2116     if (index_op->type() == T_LONG) {
2117       index_op = new_register(T_INT);
2118       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2119     }
2120   }
2121   // At this point base and index should be all ints and not constants
2122   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2123   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2124 #else
2125   if (x->has_index()) {
2126     if (index_op->type() == T_INT) {
2127       index_op = new_register(T_LONG);
2128       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2129     }
2130   }
2131   // At this point base and index are long and non-constant
2132   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2133   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2134 #endif
2135 
2136   if (log2_scale != 0) {
2137     // temporary fix (platform dependent code without shift on Intel would be better)
2138     // TODO: ARM also allows embedded shift in the address
2139     LIR_Opr tmp = new_pointer_register();
2140     if (TwoOperandLIRForm) {
2141       __ move(index_op, tmp);
2142       index_op = tmp;
2143     }
2144     __ shift_left(index_op, log2_scale, tmp);
2145     if (!TwoOperandLIRForm) {
2146       index_op = tmp;
2147     }
2148   }
2149 
2150   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2151 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2152   __ move(value.result(), addr);
2153 }
2154 
2155 
2156 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2157   BasicType type = x->basic_type();
2158   LIRItem src(x->object(), this);
2159   LIRItem off(x->offset(), this);
2160 
2161   off.load_item();
2162   src.load_item();
2163 
2164   DecoratorSet decorators = IN_HEAP;
2165 
2166   if (x->is_volatile()) {
2167     decorators |= MO_SEQ_CST;
2168   }
2169   if (type == T_BOOLEAN) {
2170     decorators |= C1_MASK_BOOLEAN;
2171   }
2172   if (type == T_ARRAY || type == T_OBJECT) {
2173     decorators |= ON_UNKNOWN_OOP_REF;
2174   }
2175 
2176   LIR_Opr result = rlock_result(x, type);
2177   access_load_at(decorators, type,
2178                  src, off.result(), result);
2179 }
2180 
2181 
2182 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2183   BasicType type = x->basic_type();
2184   LIRItem src(x->object(), this);
2185   LIRItem off(x->offset(), this);
2186   LIRItem data(x->value(), this);
2187 
2188   src.load_item();
2189   if (type == T_BOOLEAN || type == T_BYTE) {
2190     data.load_byte_item();
2191   } else {
2192     data.load_item();
2193   }
2194   off.load_item();
2195 
2196   set_no_result(x);
2197 
2198   DecoratorSet decorators = IN_HEAP;
2199   if (type == T_ARRAY || type == T_OBJECT) {
2200     decorators |= ON_UNKNOWN_OOP_REF;
2201   }
2202   if (x->is_volatile()) {
2203     decorators |= MO_SEQ_CST;
2204   }
2205   access_store_at(decorators, type, src, off.result(), data.result());
2206 }
2207 
2208 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2209   BasicType type = x->basic_type();
2210   LIRItem src(x->object(), this);
2211   LIRItem off(x->offset(), this);
2212   LIRItem value(x->value(), this);
2213 
2214   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2215 
2216   if (type == T_ARRAY || type == T_OBJECT) {
2217     decorators |= ON_UNKNOWN_OOP_REF;
2218   }
2219 
2220   LIR_Opr result;
2221   if (x->is_add()) {
2222     result = access_atomic_add_at(decorators, type, src, off, value);
2223   } else {
2224     result = access_atomic_xchg_at(decorators, type, src, off, value);
2225   }
2226   set_result(x, result);
2227 }
2228 
2229 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2230   int lng = x->length();
2231 
2232   for (int i = 0; i < lng; i++) {
2233     SwitchRange* one_range = x->at(i);
2234     int low_key = one_range->low_key();
2235     int high_key = one_range->high_key();
2236     BlockBegin* dest = one_range->sux();
2237     if (low_key == high_key) {
2238       __ cmp(lir_cond_equal, value, low_key);
2239       __ branch(lir_cond_equal, T_INT, dest);
2240     } else if (high_key - low_key == 1) {
2241       __ cmp(lir_cond_equal, value, low_key);
2242       __ branch(lir_cond_equal, T_INT, dest);
2243       __ cmp(lir_cond_equal, value, high_key);
2244       __ branch(lir_cond_equal, T_INT, dest);
2245     } else {
2246       LabelObj* L = new LabelObj();
2247       __ cmp(lir_cond_less, value, low_key);
2248       __ branch(lir_cond_less, T_INT, L->label());
2249       __ cmp(lir_cond_lessEqual, value, high_key);
2250       __ branch(lir_cond_lessEqual, T_INT, dest);
2251       __ branch_destination(L->label());
2252     }
2253   }
2254   __ jump(default_sux);
2255 }
2256 
2257 
2258 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2259   SwitchRangeList* res = new SwitchRangeList();
2260   int len = x->length();
2261   if (len > 0) {
2262     BlockBegin* sux = x->sux_at(0);
2263     int key = x->lo_key();
2264     BlockBegin* default_sux = x->default_sux();
2265     SwitchRange* range = new SwitchRange(key, sux);
2266     for (int i = 0; i < len; i++, key++) {
2267       BlockBegin* new_sux = x->sux_at(i);
2268       if (sux == new_sux) {
2269         // still in same range
2270         range->set_high_key(key);
2271       } else {
2272         // skip tests which explicitly dispatch to the default
2273         if (sux != default_sux) {
2274           res->append(range);
2275         }
2276         range = new SwitchRange(key, new_sux);
2277       }
2278       sux = new_sux;
2279     }
2280     if (res->length() == 0 || res->last() != range)  res->append(range);
2281   }
2282   return res;
2283 }
2284 
2285 
2286 // we expect the keys to be sorted by increasing value
2287 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2288   SwitchRangeList* res = new SwitchRangeList();
2289   int len = x->length();
2290   if (len > 0) {
2291     BlockBegin* default_sux = x->default_sux();
2292     int key = x->key_at(0);
2293     BlockBegin* sux = x->sux_at(0);
2294     SwitchRange* range = new SwitchRange(key, sux);
2295     for (int i = 1; i < len; i++) {
2296       int new_key = x->key_at(i);
2297       BlockBegin* new_sux = x->sux_at(i);
2298       if (key+1 == new_key && sux == new_sux) {
2299         // still in same range
2300         range->set_high_key(new_key);
2301       } else {
2302         // skip tests which explicitly dispatch to the default
2303         if (range->sux() != default_sux) {
2304           res->append(range);
2305         }
2306         range = new SwitchRange(new_key, new_sux);
2307       }
2308       key = new_key;
2309       sux = new_sux;
2310     }
2311     if (res->length() == 0 || res->last() != range)  res->append(range);
2312   }
2313   return res;
2314 }
2315 
2316 
2317 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2318   LIRItem tag(x->tag(), this);
2319   tag.load_item();
2320   set_no_result(x);
2321 
2322   if (x->is_safepoint()) {
2323     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2324   }
2325 
2326   // move values into phi locations
2327   move_to_phi(x->state());
2328 
2329   int lo_key = x->lo_key();
2330   int len = x->length();
2331   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2332   LIR_Opr value = tag.result();
2333 
2334   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2335     ciMethod* method = x->state()->scope()->method();
2336     ciMethodData* md = method->method_data_or_null();
2337     assert(md != NULL, "Sanity");
2338     ciProfileData* data = md->bci_to_data(x->state()->bci());
2339     assert(data != NULL, "must have profiling data");
2340     assert(data->is_MultiBranchData(), "bad profile data?");
2341     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2342     LIR_Opr md_reg = new_register(T_METADATA);
2343     __ metadata2reg(md->constant_encoding(), md_reg);
2344     LIR_Opr data_offset_reg = new_pointer_register();
2345     LIR_Opr tmp_reg = new_pointer_register();
2346 
2347     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2348     for (int i = 0; i < len; i++) {
2349       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2350       __ cmp(lir_cond_equal, value, i + lo_key);
2351       __ move(data_offset_reg, tmp_reg);
2352       __ cmove(lir_cond_equal,
2353                LIR_OprFact::intptrConst(count_offset),
2354                tmp_reg,
2355                data_offset_reg, T_INT);
2356     }
2357 
2358     LIR_Opr data_reg = new_pointer_register();
2359     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2360     __ move(data_addr, data_reg);
2361     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2362     __ move(data_reg, data_addr);
2363   }
2364 
2365   if (UseTableRanges) {
2366     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2367   } else {
2368     for (int i = 0; i < len; i++) {
2369       __ cmp(lir_cond_equal, value, i + lo_key);
2370       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2371     }
2372     __ jump(x->default_sux());
2373   }
2374 }
2375 
2376 
2377 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2378   LIRItem tag(x->tag(), this);
2379   tag.load_item();
2380   set_no_result(x);
2381 
2382   if (x->is_safepoint()) {
2383     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2384   }
2385 
2386   // move values into phi locations
2387   move_to_phi(x->state());
2388 
2389   LIR_Opr value = tag.result();
2390   int len = x->length();
2391 
2392   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2393     ciMethod* method = x->state()->scope()->method();
2394     ciMethodData* md = method->method_data_or_null();
2395     assert(md != NULL, "Sanity");
2396     ciProfileData* data = md->bci_to_data(x->state()->bci());
2397     assert(data != NULL, "must have profiling data");
2398     assert(data->is_MultiBranchData(), "bad profile data?");
2399     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2400     LIR_Opr md_reg = new_register(T_METADATA);
2401     __ metadata2reg(md->constant_encoding(), md_reg);
2402     LIR_Opr data_offset_reg = new_pointer_register();
2403     LIR_Opr tmp_reg = new_pointer_register();
2404 
2405     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2406     for (int i = 0; i < len; i++) {
2407       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2408       __ cmp(lir_cond_equal, value, x->key_at(i));
2409       __ move(data_offset_reg, tmp_reg);
2410       __ cmove(lir_cond_equal,
2411                LIR_OprFact::intptrConst(count_offset),
2412                tmp_reg,
2413                data_offset_reg, T_INT);
2414     }
2415 
2416     LIR_Opr data_reg = new_pointer_register();
2417     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2418     __ move(data_addr, data_reg);
2419     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2420     __ move(data_reg, data_addr);
2421   }
2422 
2423   if (UseTableRanges) {
2424     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2425   } else {
2426     int len = x->length();
2427     for (int i = 0; i < len; i++) {
2428       __ cmp(lir_cond_equal, value, x->key_at(i));
2429       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2430     }
2431     __ jump(x->default_sux());
2432   }
2433 }
2434 
2435 
2436 void LIRGenerator::do_Goto(Goto* x) {
2437   set_no_result(x);
2438 
2439   if (block()->next()->as_OsrEntry()) {
2440     // need to free up storage used for OSR entry point
2441     LIR_Opr osrBuffer = block()->next()->operand();
2442     BasicTypeList signature;
2443     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2444     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2445     __ move(osrBuffer, cc->args()->at(0));
2446     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2447                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2448   }
2449 
2450   if (x->is_safepoint()) {
2451     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2452 
2453     // increment backedge counter if needed
2454     CodeEmitInfo* info = state_for(x, state);
2455     increment_backedge_counter(info, x->profiled_bci());
2456     CodeEmitInfo* safepoint_info = state_for(x, state);
2457     __ safepoint(safepoint_poll_register(), safepoint_info);
2458   }
2459 
2460   // Gotos can be folded Ifs, handle this case.
2461   if (x->should_profile()) {
2462     ciMethod* method = x->profiled_method();
2463     assert(method != NULL, "method should be set if branch is profiled");
2464     ciMethodData* md = method->method_data_or_null();
2465     assert(md != NULL, "Sanity");
2466     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2467     assert(data != NULL, "must have profiling data");
2468     int offset;
2469     if (x->direction() == Goto::taken) {
2470       assert(data->is_BranchData(), "need BranchData for two-way branches");
2471       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2472     } else if (x->direction() == Goto::not_taken) {
2473       assert(data->is_BranchData(), "need BranchData for two-way branches");
2474       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2475     } else {
2476       assert(data->is_JumpData(), "need JumpData for branches");
2477       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2478     }
2479     LIR_Opr md_reg = new_register(T_METADATA);
2480     __ metadata2reg(md->constant_encoding(), md_reg);
2481 
2482     increment_counter(new LIR_Address(md_reg, offset,
2483                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2484   }
2485 
2486   // emit phi-instruction move after safepoint since this simplifies
2487   // describing the state as the safepoint.
2488   move_to_phi(x->state());
2489 
2490   __ jump(x->default_sux());
2491 }
2492 
2493 /**
2494  * Emit profiling code if needed for arguments, parameters, return value types
2495  *
2496  * @param md                    MDO the code will update at runtime
2497  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2498  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2499  * @param profiled_k            current profile
2500  * @param obj                   IR node for the object to be profiled
2501  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2502  *                              Set once we find an update to make and use for next ones.
2503  * @param not_null              true if we know obj cannot be null
2504  * @param signature_at_call_k   signature at call for obj
2505  * @param callee_signature_k    signature of callee for obj
2506  *                              at call and callee signatures differ at method handle call
2507  * @return                      the only klass we know will ever be seen at this profile point
2508  */
2509 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2510                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2511                                     ciKlass* callee_signature_k) {
2512   ciKlass* result = NULL;
2513   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2514   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2515   // known not to be null or null bit already set and already set to
2516   // unknown: nothing we can do to improve profiling
2517   if (!do_null && !do_update) {
2518     return result;
2519   }
2520 
2521   ciKlass* exact_klass = NULL;
2522   Compilation* comp = Compilation::current();
2523   if (do_update) {
2524     // try to find exact type, using CHA if possible, so that loading
2525     // the klass from the object can be avoided
2526     ciType* type = obj->exact_type();
2527     if (type == NULL) {
2528       type = obj->declared_type();
2529       type = comp->cha_exact_type(type);
2530     }
2531     assert(type == NULL || type->is_klass(), "type should be class");
2532     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2533 
2534     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2535   }
2536 
2537   if (!do_null && !do_update) {
2538     return result;
2539   }
2540 
2541   ciKlass* exact_signature_k = NULL;
2542   if (do_update) {
2543     // Is the type from the signature exact (the only one possible)?
2544     exact_signature_k = signature_at_call_k->exact_klass();
2545     if (exact_signature_k == NULL) {
2546       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2547     } else {
2548       result = exact_signature_k;
2549       // Known statically. No need to emit any code: prevent
2550       // LIR_Assembler::emit_profile_type() from emitting useless code
2551       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2552     }
2553     // exact_klass and exact_signature_k can be both non NULL but
2554     // different if exact_klass is loaded after the ciObject for
2555     // exact_signature_k is created.
2556     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2557       // sometimes the type of the signature is better than the best type
2558       // the compiler has
2559       exact_klass = exact_signature_k;
2560     }
2561     if (callee_signature_k != NULL &&
2562         callee_signature_k != signature_at_call_k) {
2563       ciKlass* improved_klass = callee_signature_k->exact_klass();
2564       if (improved_klass == NULL) {
2565         improved_klass = comp->cha_exact_type(callee_signature_k);
2566       }
2567       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2568         exact_klass = exact_signature_k;
2569       }
2570     }
2571     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2572   }
2573 
2574   if (!do_null && !do_update) {
2575     return result;
2576   }
2577 
2578   if (mdp == LIR_OprFact::illegalOpr) {
2579     mdp = new_register(T_METADATA);
2580     __ metadata2reg(md->constant_encoding(), mdp);
2581     if (md_base_offset != 0) {
2582       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2583       mdp = new_pointer_register();
2584       __ leal(LIR_OprFact::address(base_type_address), mdp);
2585     }
2586   }
2587   LIRItem value(obj, this);
2588   value.load_item();
2589   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2590                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2591   return result;
2592 }
2593 
2594 // profile parameters on entry to the root of the compilation
2595 void LIRGenerator::profile_parameters(Base* x) {
2596   if (compilation()->profile_parameters()) {
2597     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2598     ciMethodData* md = scope()->method()->method_data_or_null();
2599     assert(md != NULL, "Sanity");
2600 
2601     if (md->parameters_type_data() != NULL) {
2602       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2603       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2604       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2605       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2606         LIR_Opr src = args->at(i);
2607         assert(!src->is_illegal(), "check");
2608         BasicType t = src->type();
2609         if (t == T_OBJECT || t == T_ARRAY) {
2610           intptr_t profiled_k = parameters->type(j);
2611           Local* local = x->state()->local_at(java_index)->as_Local();
2612           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2613                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2614                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2615           // If the profile is known statically set it once for all and do not emit any code
2616           if (exact != NULL) {
2617             md->set_parameter_type(j, exact);
2618           }
2619           j++;
2620         }
2621         java_index += type2size[t];
2622       }
2623     }
2624   }
2625 }
2626 
2627 void LIRGenerator::do_Base(Base* x) {
2628   __ std_entry(LIR_OprFact::illegalOpr);
2629   // Emit moves from physical registers / stack slots to virtual registers
2630   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2631   IRScope* irScope = compilation()->hir()->top_scope();
2632   int java_index = 0;
2633   for (int i = 0; i < args->length(); i++) {
2634     LIR_Opr src = args->at(i);
2635     assert(!src->is_illegal(), "check");
2636     BasicType t = src->type();
2637 
2638     // Types which are smaller than int are passed as int, so
2639     // correct the type which passed.
2640     switch (t) {
2641     case T_BYTE:
2642     case T_BOOLEAN:
2643     case T_SHORT:
2644     case T_CHAR:
2645       t = T_INT;
2646       break;
2647     default:
2648       break;
2649     }
2650 
2651     LIR_Opr dest = new_register(t);
2652     __ move(src, dest);
2653 
2654     // Assign new location to Local instruction for this local
2655     Local* local = x->state()->local_at(java_index)->as_Local();
2656     assert(local != NULL, "Locals for incoming arguments must have been created");
2657 #ifndef __SOFTFP__
2658     // The java calling convention passes double as long and float as int.
2659     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2660 #endif // __SOFTFP__
2661     local->set_operand(dest);
2662     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2663     java_index += type2size[t];
2664   }
2665 
2666   if (compilation()->env()->dtrace_method_probes()) {
2667     BasicTypeList signature;
2668     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2669     signature.append(T_METADATA); // Method*
2670     LIR_OprList* args = new LIR_OprList();
2671     args->append(getThreadPointer());
2672     LIR_Opr meth = new_register(T_METADATA);
2673     __ metadata2reg(method()->constant_encoding(), meth);
2674     args->append(meth);
2675     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2676   }
2677 
2678   if (method()->is_synchronized()) {
2679     LIR_Opr obj;
2680     if (method()->is_static()) {
2681       obj = new_register(T_OBJECT);
2682       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2683     } else {
2684       Local* receiver = x->state()->local_at(0)->as_Local();
2685       assert(receiver != NULL, "must already exist");
2686       obj = receiver->operand();
2687     }
2688     assert(obj->is_valid(), "must be valid");
2689 
2690     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2691       LIR_Opr lock = syncLockOpr();
2692       __ load_stack_address_monitor(0, lock);
2693 
2694       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2695       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2696 
2697       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2698       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2699     }
2700   }
2701   if (compilation()->age_code()) {
2702     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2703     decrement_age(info);
2704   }
2705   // increment invocation counters if needed
2706   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2707     profile_parameters(x);
2708     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2709     increment_invocation_counter(info);
2710   }
2711 
2712   // all blocks with a successor must end with an unconditional jump
2713   // to the successor even if they are consecutive
2714   __ jump(x->default_sux());
2715 }
2716 
2717 
2718 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2719   // construct our frame and model the production of incoming pointer
2720   // to the OSR buffer.
2721   __ osr_entry(LIR_Assembler::osrBufferPointer());
2722   LIR_Opr result = rlock_result(x);
2723   __ move(LIR_Assembler::osrBufferPointer(), result);
2724 }
2725 
2726 
2727 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2728   assert(args->length() == arg_list->length(),
2729          "args=%d, arg_list=%d", args->length(), arg_list->length());
2730   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2731     LIRItem* param = args->at(i);
2732     LIR_Opr loc = arg_list->at(i);
2733     if (loc->is_register()) {
2734       param->load_item_force(loc);
2735     } else {
2736       LIR_Address* addr = loc->as_address_ptr();
2737       param->load_for_store(addr->type());
2738       if (addr->type() == T_OBJECT) {
2739         __ move_wide(param->result(), addr);
2740       } else
2741         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2742           __ unaligned_move(param->result(), addr);
2743         } else {
2744           __ move(param->result(), addr);
2745         }
2746     }
2747   }
2748 
2749   if (x->has_receiver()) {
2750     LIRItem* receiver = args->at(0);
2751     LIR_Opr loc = arg_list->at(0);
2752     if (loc->is_register()) {
2753       receiver->load_item_force(loc);
2754     } else {
2755       assert(loc->is_address(), "just checking");
2756       receiver->load_for_store(T_OBJECT);
2757       __ move_wide(receiver->result(), loc->as_address_ptr());
2758     }
2759   }
2760 }
2761 
2762 
2763 // Visits all arguments, returns appropriate items without loading them
2764 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2765   LIRItemList* argument_items = new LIRItemList();
2766   if (x->has_receiver()) {
2767     LIRItem* receiver = new LIRItem(x->receiver(), this);
2768     argument_items->append(receiver);
2769   }
2770   for (int i = 0; i < x->number_of_arguments(); i++) {
2771     LIRItem* param = new LIRItem(x->argument_at(i), this);
2772     argument_items->append(param);
2773   }
2774   return argument_items;
2775 }
2776 
2777 
2778 // The invoke with receiver has following phases:
2779 //   a) traverse and load/lock receiver;
2780 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2781 //   c) push receiver on stack
2782 //   d) load each of the items and push on stack
2783 //   e) unlock receiver
2784 //   f) move receiver into receiver-register %o0
2785 //   g) lock result registers and emit call operation
2786 //
2787 // Before issuing a call, we must spill-save all values on stack
2788 // that are in caller-save register. "spill-save" moves those registers
2789 // either in a free callee-save register or spills them if no free
2790 // callee save register is available.
2791 //
2792 // The problem is where to invoke spill-save.
2793 // - if invoked between e) and f), we may lock callee save
2794 //   register in "spill-save" that destroys the receiver register
2795 //   before f) is executed
2796 // - if we rearrange f) to be earlier (by loading %o0) it
2797 //   may destroy a value on the stack that is currently in %o0
2798 //   and is waiting to be spilled
2799 // - if we keep the receiver locked while doing spill-save,
2800 //   we cannot spill it as it is spill-locked
2801 //
2802 void LIRGenerator::do_Invoke(Invoke* x) {
2803   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2804 
2805   LIR_OprList* arg_list = cc->args();
2806   LIRItemList* args = invoke_visit_arguments(x);
2807   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2808 
2809   // setup result register
2810   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2811   if (x->type() != voidType) {
2812     result_register = result_register_for(x->type());
2813   }
2814 
2815   CodeEmitInfo* info = state_for(x, x->state());
2816 
2817   invoke_load_arguments(x, args, arg_list);
2818 
2819   if (x->has_receiver()) {
2820     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2821     receiver = args->at(0)->result();
2822   }
2823 
2824   // emit invoke code
2825   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2826 
2827   // JSR 292
2828   // Preserve the SP over MethodHandle call sites, if needed.
2829   ciMethod* target = x->target();
2830   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2831                                   target->is_method_handle_intrinsic() ||
2832                                   target->is_compiled_lambda_form());
2833   if (is_method_handle_invoke) {
2834     info->set_is_method_handle_invoke(true);
2835     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2836         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2837     }
2838   }
2839 
2840   switch (x->code()) {
2841     case Bytecodes::_invokestatic:
2842       __ call_static(target, result_register,
2843                      SharedRuntime::get_resolve_static_call_stub(),
2844                      arg_list, info);
2845       break;
2846     case Bytecodes::_invokespecial:
2847     case Bytecodes::_invokevirtual:
2848     case Bytecodes::_invokeinterface:
2849       // for loaded and final (method or class) target we still produce an inline cache,
2850       // in order to be able to call mixed mode
2851       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2852         __ call_opt_virtual(target, receiver, result_register,
2853                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2854                             arg_list, info);
2855       } else if (x->vtable_index() < 0) {
2856         __ call_icvirtual(target, receiver, result_register,
2857                           SharedRuntime::get_resolve_virtual_call_stub(),
2858                           arg_list, info);
2859       } else {
2860         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2861         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2862         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2863       }
2864       break;
2865     case Bytecodes::_invokedynamic: {
2866       __ call_dynamic(target, receiver, result_register,
2867                       SharedRuntime::get_resolve_static_call_stub(),
2868                       arg_list, info);
2869       break;
2870     }
2871     default:
2872       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2873       break;
2874   }
2875 
2876   // JSR 292
2877   // Restore the SP after MethodHandle call sites, if needed.
2878   if (is_method_handle_invoke
2879       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2880     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2881   }
2882 
2883   if (x->type()->is_float() || x->type()->is_double()) {
2884     // Force rounding of results from non-strictfp when in strictfp
2885     // scope (or when we don't know the strictness of the callee, to
2886     // be safe.)
2887     if (method()->is_strict()) {
2888       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2889         result_register = round_item(result_register);
2890       }
2891     }
2892   }
2893 
2894   if (result_register->is_valid()) {
2895     LIR_Opr result = rlock_result(x);
2896     __ move(result_register, result);
2897   }
2898 }
2899 
2900 
2901 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2902   assert(x->number_of_arguments() == 1, "wrong type");
2903   LIRItem value       (x->argument_at(0), this);
2904   LIR_Opr reg = rlock_result(x);
2905   value.load_item();
2906   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2907   __ move(tmp, reg);
2908 }
2909 
2910 
2911 
2912 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2913 void LIRGenerator::do_IfOp(IfOp* x) {
2914 #ifdef ASSERT
2915   {
2916     ValueTag xtag = x->x()->type()->tag();
2917     ValueTag ttag = x->tval()->type()->tag();
2918     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2919     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2920     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2921   }
2922 #endif
2923 
2924   LIRItem left(x->x(), this);
2925   LIRItem right(x->y(), this);
2926   left.load_item();
2927   if (can_inline_as_constant(right.value())) {
2928     right.dont_load_item();
2929   } else {
2930     right.load_item();
2931   }
2932 
2933   LIRItem t_val(x->tval(), this);
2934   LIRItem f_val(x->fval(), this);
2935   t_val.dont_load_item();
2936   f_val.dont_load_item();
2937   LIR_Opr reg = rlock_result(x);
2938 
2939   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2940   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2941 }
2942 
2943 #ifdef JFR_HAVE_INTRINSICS
2944 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2945   CodeEmitInfo* info = state_for(x);
2946   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2947 
2948   assert(info != NULL, "must have info");
2949   LIRItem arg(x->argument_at(0), this);
2950 
2951   arg.load_item();
2952   LIR_Opr klass = new_register(T_METADATA);
2953   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
2954   LIR_Opr id = new_register(T_LONG);
2955   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2956   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2957 
2958   __ move(trace_id_addr, id);
2959   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2960   __ store(id, trace_id_addr);
2961 
2962 #ifdef TRACE_ID_META_BITS
2963   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
2964 #endif
2965 #ifdef TRACE_ID_SHIFT
2966   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
2967 #endif
2968 
2969   __ move(id, rlock_result(x));
2970 }
2971 
2972 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
2973   LabelObj* L_end = new LabelObj();
2974 
2975   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2976                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
2977                                            T_OBJECT);
2978   LIR_Opr result = rlock_result(x);
2979   __ move_wide(jobj_addr, result);
2980   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2981   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
2982 
2983   LIR_Opr jobj = new_register(T_OBJECT);
2984   __ move(result, jobj);
2985   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
2986 
2987   __ branch_destination(L_end->label());
2988 }
2989 
2990 #endif
2991 
2992 
2993 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2994   assert(x->number_of_arguments() == 0, "wrong type");
2995   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2996   BasicTypeList signature;
2997   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2998   LIR_Opr reg = result_register_for(x->type());
2999   __ call_runtime_leaf(routine, getThreadTemp(),
3000                        reg, new LIR_OprList());
3001   LIR_Opr result = rlock_result(x);
3002   __ move(reg, result);
3003 }
3004 
3005 
3006 
3007 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3008   switch (x->id()) {
3009   case vmIntrinsics::_intBitsToFloat      :
3010   case vmIntrinsics::_doubleToRawLongBits :
3011   case vmIntrinsics::_longBitsToDouble    :
3012   case vmIntrinsics::_floatToRawIntBits   : {
3013     do_FPIntrinsics(x);
3014     break;
3015   }
3016 
3017 #ifdef JFR_HAVE_INTRINSICS
3018   case vmIntrinsics::_getClassId:
3019     do_ClassIDIntrinsic(x);
3020     break;
3021   case vmIntrinsics::_getEventWriter:
3022     do_getEventWriter(x);
3023     break;
3024   case vmIntrinsics::_counterTime:
3025     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3026     break;
3027 #endif
3028 
3029   case vmIntrinsics::_currentTimeMillis:
3030     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3031     break;
3032 
3033   case vmIntrinsics::_nanoTime:
3034     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3035     break;
3036 
3037   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3038   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3039   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3040   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3041   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3042 
3043   case vmIntrinsics::_dlog:           // fall through
3044   case vmIntrinsics::_dlog10:         // fall through
3045   case vmIntrinsics::_dabs:           // fall through
3046   case vmIntrinsics::_dsqrt:          // fall through
3047   case vmIntrinsics::_dtan:           // fall through
3048   case vmIntrinsics::_dsin :          // fall through
3049   case vmIntrinsics::_dcos :          // fall through
3050   case vmIntrinsics::_dexp :          // fall through
3051   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3052   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3053 
3054   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3055   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3056 
3057   // java.nio.Buffer.checkIndex
3058   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3059 
3060   case vmIntrinsics::_compareAndSetObject:
3061     do_CompareAndSwap(x, objectType);
3062     break;
3063   case vmIntrinsics::_compareAndSetInt:
3064     do_CompareAndSwap(x, intType);
3065     break;
3066   case vmIntrinsics::_compareAndSetLong:
3067     do_CompareAndSwap(x, longType);
3068     break;
3069 
3070   case vmIntrinsics::_loadFence :
3071     if (os::is_MP()) __ membar_acquire();
3072     break;
3073   case vmIntrinsics::_storeFence:
3074     if (os::is_MP()) __ membar_release();
3075     break;
3076   case vmIntrinsics::_fullFence :
3077     if (os::is_MP()) __ membar();
3078     break;
3079   case vmIntrinsics::_onSpinWait:
3080     __ on_spin_wait();
3081     break;
3082   case vmIntrinsics::_Reference_get:
3083     do_Reference_get(x);
3084     break;
3085 
3086   case vmIntrinsics::_updateCRC32:
3087   case vmIntrinsics::_updateBytesCRC32:
3088   case vmIntrinsics::_updateByteBufferCRC32:
3089     do_update_CRC32(x);
3090     break;
3091 
3092   case vmIntrinsics::_updateBytesCRC32C:
3093   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3094     do_update_CRC32C(x);
3095     break;
3096 
3097   case vmIntrinsics::_vectorizedMismatch:
3098     do_vectorizedMismatch(x);
3099     break;
3100 
3101   default: ShouldNotReachHere(); break;
3102   }
3103 }
3104 
3105 void LIRGenerator::profile_arguments(ProfileCall* x) {
3106   if (compilation()->profile_arguments()) {
3107     int bci = x->bci_of_invoke();
3108     ciMethodData* md = x->method()->method_data_or_null();
3109     assert(md != NULL, "Sanity");
3110     ciProfileData* data = md->bci_to_data(bci);
3111     if (data != NULL) {
3112       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3113           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3114         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3115         int base_offset = md->byte_offset_of_slot(data, extra);
3116         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3117         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3118 
3119         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3120         int start = 0;
3121         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3122         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3123           // first argument is not profiled at call (method handle invoke)
3124           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3125           start = 1;
3126         }
3127         ciSignature* callee_signature = x->callee()->signature();
3128         // method handle call to virtual method
3129         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3130         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3131 
3132         bool ignored_will_link;
3133         ciSignature* signature_at_call = NULL;
3134         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3135         ciSignatureStream signature_at_call_stream(signature_at_call);
3136 
3137         // if called through method handle invoke, some arguments may have been popped
3138         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3139           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3140           ciKlass* exact = profile_type(md, base_offset, off,
3141               args->type(i), x->profiled_arg_at(i+start), mdp,
3142               !x->arg_needs_null_check(i+start),
3143               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3144           if (exact != NULL) {
3145             md->set_argument_type(bci, i, exact);
3146           }
3147         }
3148       } else {
3149 #ifdef ASSERT
3150         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3151         int n = x->nb_profiled_args();
3152         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3153             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3154             "only at JSR292 bytecodes");
3155 #endif
3156       }
3157     }
3158   }
3159 }
3160 
3161 // profile parameters on entry to an inlined method
3162 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3163   if (compilation()->profile_parameters() && x->inlined()) {
3164     ciMethodData* md = x->callee()->method_data_or_null();
3165     if (md != NULL) {
3166       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3167       if (parameters_type_data != NULL) {
3168         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3169         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3170         bool has_receiver = !x->callee()->is_static();
3171         ciSignature* sig = x->callee()->signature();
3172         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3173         int i = 0; // to iterate on the Instructions
3174         Value arg = x->recv();
3175         bool not_null = false;
3176         int bci = x->bci_of_invoke();
3177         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3178         // The first parameter is the receiver so that's what we start
3179         // with if it exists. One exception is method handle call to
3180         // virtual method: the receiver is in the args list
3181         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3182           i = 1;
3183           arg = x->profiled_arg_at(0);
3184           not_null = !x->arg_needs_null_check(0);
3185         }
3186         int k = 0; // to iterate on the profile data
3187         for (;;) {
3188           intptr_t profiled_k = parameters->type(k);
3189           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3190                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3191                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3192           // If the profile is known statically set it once for all and do not emit any code
3193           if (exact != NULL) {
3194             md->set_parameter_type(k, exact);
3195           }
3196           k++;
3197           if (k >= parameters_type_data->number_of_parameters()) {
3198 #ifdef ASSERT
3199             int extra = 0;
3200             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3201                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3202                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3203               extra += 1;
3204             }
3205             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3206 #endif
3207             break;
3208           }
3209           arg = x->profiled_arg_at(i);
3210           not_null = !x->arg_needs_null_check(i);
3211           i++;
3212         }
3213       }
3214     }
3215   }
3216 }
3217 
3218 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3219   // Need recv in a temporary register so it interferes with the other temporaries
3220   LIR_Opr recv = LIR_OprFact::illegalOpr;
3221   LIR_Opr mdo = new_register(T_METADATA);
3222   // tmp is used to hold the counters on SPARC
3223   LIR_Opr tmp = new_pointer_register();
3224 
3225   if (x->nb_profiled_args() > 0) {
3226     profile_arguments(x);
3227   }
3228 
3229   // profile parameters on inlined method entry including receiver
3230   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3231     profile_parameters_at_call(x);
3232   }
3233 
3234   if (x->recv() != NULL) {
3235     LIRItem value(x->recv(), this);
3236     value.load_item();
3237     recv = new_register(T_OBJECT);
3238     __ move(value.result(), recv);
3239   }
3240   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3241 }
3242 
3243 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3244   int bci = x->bci_of_invoke();
3245   ciMethodData* md = x->method()->method_data_or_null();
3246   assert(md != NULL, "Sanity");
3247   ciProfileData* data = md->bci_to_data(bci);
3248   if (data != NULL) {
3249     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3250     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3251     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3252 
3253     bool ignored_will_link;
3254     ciSignature* signature_at_call = NULL;
3255     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3256 
3257     // The offset within the MDO of the entry to update may be too large
3258     // to be used in load/store instructions on some platforms. So have
3259     // profile_type() compute the address of the profile in a register.
3260     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3261         ret->type(), x->ret(), mdp,
3262         !x->needs_null_check(),
3263         signature_at_call->return_type()->as_klass(),
3264         x->callee()->signature()->return_type()->as_klass());
3265     if (exact != NULL) {
3266       md->set_return_type(bci, exact);
3267     }
3268   }
3269 }
3270 
3271 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3272   // We can safely ignore accessors here, since c2 will inline them anyway,
3273   // accessors are also always mature.
3274   if (!x->inlinee()->is_accessor()) {
3275     CodeEmitInfo* info = state_for(x, x->state(), true);
3276     // Notify the runtime very infrequently only to take care of counter overflows
3277     int freq_log = Tier23InlineeNotifyFreqLog;
3278     double scale;
3279     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3280       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3281     }
3282     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3283   }
3284 }
3285 
3286 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3287   if (compilation()->count_backedges()) {
3288     __ cmp(cond, left, right);
3289     LIR_Opr step = new_register(T_INT);
3290     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3291     LIR_Opr zero = LIR_OprFact::intConst(0);
3292     __ cmove(cond,
3293         (left_bci < bci) ? plus_one : zero,
3294         (right_bci < bci) ? plus_one : zero,
3295         step, left->type());
3296     increment_backedge_counter(info, step, bci);
3297   }
3298 }
3299 
3300 
3301 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3302   int freq_log = 0;
3303   int level = compilation()->env()->comp_level();
3304   if (level == CompLevel_limited_profile) {
3305     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3306   } else if (level == CompLevel_full_profile) {
3307     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3308   } else {
3309     ShouldNotReachHere();
3310   }
3311   // Increment the appropriate invocation/backedge counter and notify the runtime.
3312   double scale;
3313   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3314     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3315   }
3316   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3317 }
3318 
3319 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3320   ciMethod* method = info->scope()->method();
3321   MethodCounters* mc_adr = method->ensure_method_counters();
3322   if (mc_adr != NULL) {
3323     LIR_Opr mc = new_pointer_register();
3324     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3325     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3326     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3327     LIR_Opr result = new_register(T_INT);
3328     __ load(counter, result);
3329     __ sub(result, LIR_OprFact::intConst(1), result);
3330     __ store(result, counter);
3331     // DeoptimizeStub will reexecute from the current state in code info.
3332     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3333                                          Deoptimization::Action_make_not_entrant);
3334     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3335     __ branch(lir_cond_lessEqual, T_INT, deopt);
3336   }
3337 }
3338 
3339 
3340 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3341                                                 ciMethod *method, LIR_Opr step, int frequency,
3342                                                 int bci, bool backedge, bool notify) {
3343   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3344   int level = _compilation->env()->comp_level();
3345   assert(level > CompLevel_simple, "Shouldn't be here");
3346 
3347   int offset = -1;
3348   LIR_Opr counter_holder = NULL;
3349   if (level == CompLevel_limited_profile) {
3350     MethodCounters* counters_adr = method->ensure_method_counters();
3351     if (counters_adr == NULL) {
3352       bailout("method counters allocation failed");
3353       return;
3354     }
3355     counter_holder = new_pointer_register();
3356     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3357     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3358                                  MethodCounters::invocation_counter_offset());
3359   } else if (level == CompLevel_full_profile) {
3360     counter_holder = new_register(T_METADATA);
3361     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3362                                  MethodData::invocation_counter_offset());
3363     ciMethodData* md = method->method_data_or_null();
3364     assert(md != NULL, "Sanity");
3365     __ metadata2reg(md->constant_encoding(), counter_holder);
3366   } else {
3367     ShouldNotReachHere();
3368   }
3369   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3370   LIR_Opr result = new_register(T_INT);
3371   __ load(counter, result);
3372   __ add(result, step, result);
3373   __ store(result, counter);
3374   if (notify && (!backedge || UseOnStackReplacement)) {
3375     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3376     // The bci for info can point to cmp for if's we want the if bci
3377     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3378     int freq = frequency << InvocationCounter::count_shift;
3379     if (freq == 0) {
3380       if (!step->is_constant()) {
3381         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3382         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3383       } else {
3384         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3385       }
3386     } else {
3387       LIR_Opr mask = load_immediate(freq, T_INT);
3388       if (!step->is_constant()) {
3389         // If step is 0, make sure the overflow check below always fails
3390         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3391         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3392       }
3393       __ logical_and(result, mask, result);
3394       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3395       __ branch(lir_cond_equal, T_INT, overflow);
3396     }
3397     __ branch_destination(overflow->continuation());
3398   }
3399 }
3400 
3401 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3402   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3403   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3404 
3405   if (x->pass_thread()) {
3406     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3407     args->append(getThreadPointer());
3408   }
3409 
3410   for (int i = 0; i < x->number_of_arguments(); i++) {
3411     Value a = x->argument_at(i);
3412     LIRItem* item = new LIRItem(a, this);
3413     item->load_item();
3414     args->append(item->result());
3415     signature->append(as_BasicType(a->type()));
3416   }
3417 
3418   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3419   if (x->type() == voidType) {
3420     set_no_result(x);
3421   } else {
3422     __ move(result, rlock_result(x));
3423   }
3424 }
3425 
3426 #ifdef ASSERT
3427 void LIRGenerator::do_Assert(Assert *x) {
3428   ValueTag tag = x->x()->type()->tag();
3429   If::Condition cond = x->cond();
3430 
3431   LIRItem xitem(x->x(), this);
3432   LIRItem yitem(x->y(), this);
3433   LIRItem* xin = &xitem;
3434   LIRItem* yin = &yitem;
3435 
3436   assert(tag == intTag, "Only integer assertions are valid!");
3437 
3438   xin->load_item();
3439   yin->dont_load_item();
3440 
3441   set_no_result(x);
3442 
3443   LIR_Opr left = xin->result();
3444   LIR_Opr right = yin->result();
3445 
3446   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3447 }
3448 #endif
3449 
3450 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3451 
3452 
3453   Instruction *a = x->x();
3454   Instruction *b = x->y();
3455   if (!a || StressRangeCheckElimination) {
3456     assert(!b || StressRangeCheckElimination, "B must also be null");
3457 
3458     CodeEmitInfo *info = state_for(x, x->state());
3459     CodeStub* stub = new PredicateFailedStub(info);
3460 
3461     __ jump(stub);
3462   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3463     int a_int = a->type()->as_IntConstant()->value();
3464     int b_int = b->type()->as_IntConstant()->value();
3465 
3466     bool ok = false;
3467 
3468     switch(x->cond()) {
3469       case Instruction::eql: ok = (a_int == b_int); break;
3470       case Instruction::neq: ok = (a_int != b_int); break;
3471       case Instruction::lss: ok = (a_int < b_int); break;
3472       case Instruction::leq: ok = (a_int <= b_int); break;
3473       case Instruction::gtr: ok = (a_int > b_int); break;
3474       case Instruction::geq: ok = (a_int >= b_int); break;
3475       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3476       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3477       default: ShouldNotReachHere();
3478     }
3479 
3480     if (ok) {
3481 
3482       CodeEmitInfo *info = state_for(x, x->state());
3483       CodeStub* stub = new PredicateFailedStub(info);
3484 
3485       __ jump(stub);
3486     }
3487   } else {
3488 
3489     ValueTag tag = x->x()->type()->tag();
3490     If::Condition cond = x->cond();
3491     LIRItem xitem(x->x(), this);
3492     LIRItem yitem(x->y(), this);
3493     LIRItem* xin = &xitem;
3494     LIRItem* yin = &yitem;
3495 
3496     assert(tag == intTag, "Only integer deoptimizations are valid!");
3497 
3498     xin->load_item();
3499     yin->dont_load_item();
3500     set_no_result(x);
3501 
3502     LIR_Opr left = xin->result();
3503     LIR_Opr right = yin->result();
3504 
3505     CodeEmitInfo *info = state_for(x, x->state());
3506     CodeStub* stub = new PredicateFailedStub(info);
3507 
3508     __ cmp(lir_cond(cond), left, right);
3509     __ branch(lir_cond(cond), right->type(), stub);
3510   }
3511 }
3512 
3513 
3514 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3515   LIRItemList args(1);
3516   LIRItem value(arg1, this);
3517   args.append(&value);
3518   BasicTypeList signature;
3519   signature.append(as_BasicType(arg1->type()));
3520 
3521   return call_runtime(&signature, &args, entry, result_type, info);
3522 }
3523 
3524 
3525 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3526   LIRItemList args(2);
3527   LIRItem value1(arg1, this);
3528   LIRItem value2(arg2, this);
3529   args.append(&value1);
3530   args.append(&value2);
3531   BasicTypeList signature;
3532   signature.append(as_BasicType(arg1->type()));
3533   signature.append(as_BasicType(arg2->type()));
3534 
3535   return call_runtime(&signature, &args, entry, result_type, info);
3536 }
3537 
3538 
3539 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3540                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3541   // get a result register
3542   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3543   LIR_Opr result = LIR_OprFact::illegalOpr;
3544   if (result_type->tag() != voidTag) {
3545     result = new_register(result_type);
3546     phys_reg = result_register_for(result_type);
3547   }
3548 
3549   // move the arguments into the correct location
3550   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3551   assert(cc->length() == args->length(), "argument mismatch");
3552   for (int i = 0; i < args->length(); i++) {
3553     LIR_Opr arg = args->at(i);
3554     LIR_Opr loc = cc->at(i);
3555     if (loc->is_register()) {
3556       __ move(arg, loc);
3557     } else {
3558       LIR_Address* addr = loc->as_address_ptr();
3559 //           if (!can_store_as_constant(arg)) {
3560 //             LIR_Opr tmp = new_register(arg->type());
3561 //             __ move(arg, tmp);
3562 //             arg = tmp;
3563 //           }
3564       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3565         __ unaligned_move(arg, addr);
3566       } else {
3567         __ move(arg, addr);
3568       }
3569     }
3570   }
3571 
3572   if (info) {
3573     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3574   } else {
3575     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3576   }
3577   if (result->is_valid()) {
3578     __ move(phys_reg, result);
3579   }
3580   return result;
3581 }
3582 
3583 
3584 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3585                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3586   // get a result register
3587   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3588   LIR_Opr result = LIR_OprFact::illegalOpr;
3589   if (result_type->tag() != voidTag) {
3590     result = new_register(result_type);
3591     phys_reg = result_register_for(result_type);
3592   }
3593 
3594   // move the arguments into the correct location
3595   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3596 
3597   assert(cc->length() == args->length(), "argument mismatch");
3598   for (int i = 0; i < args->length(); i++) {
3599     LIRItem* arg = args->at(i);
3600     LIR_Opr loc = cc->at(i);
3601     if (loc->is_register()) {
3602       arg->load_item_force(loc);
3603     } else {
3604       LIR_Address* addr = loc->as_address_ptr();
3605       arg->load_for_store(addr->type());
3606       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3607         __ unaligned_move(arg->result(), addr);
3608       } else {
3609         __ move(arg->result(), addr);
3610       }
3611     }
3612   }
3613 
3614   if (info) {
3615     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3616   } else {
3617     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3618   }
3619   if (result->is_valid()) {
3620     __ move(phys_reg, result);
3621   }
3622   return result;
3623 }
3624 
3625 void LIRGenerator::do_MemBar(MemBar* x) {
3626   if (os::is_MP()) {
3627     LIR_Code code = x->code();
3628     switch(code) {
3629       case lir_membar_acquire   : __ membar_acquire(); break;
3630       case lir_membar_release   : __ membar_release(); break;
3631       case lir_membar           : __ membar(); break;
3632       case lir_membar_loadload  : __ membar_loadload(); break;
3633       case lir_membar_storestore: __ membar_storestore(); break;
3634       case lir_membar_loadstore : __ membar_loadstore(); break;
3635       case lir_membar_storeload : __ membar_storeload(); break;
3636       default                   : ShouldNotReachHere(); break;
3637     }
3638   }
3639 }
3640 
3641 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3642   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3643   if (TwoOperandLIRForm) {
3644     __ move(value, value_fixed);
3645     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3646   } else {
3647     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3648   }
3649   LIR_Opr klass = new_register(T_METADATA);
3650   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3651   null_check_info = NULL;
3652   LIR_Opr layout = new_register(T_INT);
3653   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3654   int diffbit = Klass::layout_helper_boolean_diffbit();
3655   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3656   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3657   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3658   value = value_fixed;
3659   return value;
3660 }
3661 
3662 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3663   if (x->check_boolean()) {
3664     value = mask_boolean(array, value, null_check_info);
3665   }
3666   return value;
3667 }