1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/safepointMechanism.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 
  43 
  44 void InterpreterMacroAssembler::narrow(Register result) {
  45 
  46   // Get method->_constMethod->_result_type
  47   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  48   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  49   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  50 
  51   Label done, notBool, notByte, notChar;
  52 
  53   // common case first
  54   cmpw(rscratch1, T_INT);
  55   br(Assembler::EQ, done);
  56 
  57   // mask integer result to narrower return type.
  58   cmpw(rscratch1, T_BOOLEAN);
  59   br(Assembler::NE, notBool);
  60   andw(result, result, 0x1);
  61   b(done);
  62 
  63   bind(notBool);
  64   cmpw(rscratch1, T_BYTE);
  65   br(Assembler::NE, notByte);
  66   sbfx(result, result, 0, 8);
  67   b(done);
  68 
  69   bind(notByte);
  70   cmpw(rscratch1, T_CHAR);
  71   br(Assembler::NE, notChar);
  72   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  73   b(done);
  74 
  75   bind(notChar);
  76   sbfx(result, result, 0, 16);     // sign-extend short
  77 
  78   // Nothing to do for T_INT
  79   bind(done);
  80 }
  81 
  82 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  83   assert(entry, "Entry must have been generated by now");
  84   b(entry);
  85 }
  86 
  87 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  88   if (JvmtiExport::can_pop_frame()) {
  89     Label L;
  90     // Initiate popframe handling only if it is not already being
  91     // processed.  If the flag has the popframe_processing bit set, it
  92     // means that this code is called *during* popframe handling - we
  93     // don't want to reenter.
  94     // This method is only called just after the call into the vm in
  95     // call_VM_base, so the arg registers are available.
  96     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  97     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  98     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  99     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 100     // address of the same-named entrypoint in the generated interpreter code.
 101     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 102     br(r0);
 103     bind(L);
 104   }
 105 }
 106 
 107 
 108 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 109   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 110   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 111   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 112   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 113   switch (state) {
 114     case atos: ldr(r0, oop_addr);
 115                str(zr, oop_addr);
 116                verify_oop(r0, state);               break;
 117     case ltos: ldr(r0, val_addr);                   break;
 118     case btos:                                   // fall through
 119     case ztos:                                   // fall through
 120     case ctos:                                   // fall through
 121     case stos:                                   // fall through
 122     case itos: ldrw(r0, val_addr);                  break;
 123     case ftos: ldrs(v0, val_addr);                  break;
 124     case dtos: ldrd(v0, val_addr);                  break;
 125     case vtos: /* nothing to do */                  break;
 126     default  : ShouldNotReachHere();
 127   }
 128   // Clean up tos value in the thread object
 129   movw(rscratch1, (int) ilgl);
 130   strw(rscratch1, tos_addr);
 131   strw(zr, val_addr);
 132 }
 133 
 134 
 135 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 136   if (JvmtiExport::can_force_early_return()) {
 137     Label L;
 138     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 139     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 140 
 141     // Initiate earlyret handling only if it is not already being processed.
 142     // If the flag has the earlyret_processing bit set, it means that this code
 143     // is called *during* earlyret handling - we don't want to reenter.
 144     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 145     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 146     br(Assembler::NE, L);
 147 
 148     // Call Interpreter::remove_activation_early_entry() to get the address of the
 149     // same-named entrypoint in the generated interpreter code.
 150     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 151     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 152     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 153     br(r0);
 154     bind(L);
 155   }
 156 }
 157 
 158 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 159   Register reg,
 160   int bcp_offset) {
 161   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 162   ldrh(reg, Address(rbcp, bcp_offset));
 163   rev16(reg, reg);
 164 }
 165 
 166 void InterpreterMacroAssembler::get_dispatch() {
 167   unsigned long offset;
 168   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 169   lea(rdispatch, Address(rdispatch, offset));
 170 }
 171 
 172 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 173                                                        int bcp_offset,
 174                                                        size_t index_size) {
 175   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 176   if (index_size == sizeof(u2)) {
 177     load_unsigned_short(index, Address(rbcp, bcp_offset));
 178   } else if (index_size == sizeof(u4)) {
 179     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 180     ldrw(index, Address(rbcp, bcp_offset));
 181     // Check if the secondary index definition is still ~x, otherwise
 182     // we have to change the following assembler code to calculate the
 183     // plain index.
 184     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 185     eonw(index, index, zr);  // convert to plain index
 186   } else if (index_size == sizeof(u1)) {
 187     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 188   } else {
 189     ShouldNotReachHere();
 190   }
 191 }
 192 
 193 // Return
 194 // Rindex: index into constant pool
 195 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 196 //
 197 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 198 // the true address of the cache entry.
 199 //
 200 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 201                                                            Register index,
 202                                                            int bcp_offset,
 203                                                            size_t index_size) {
 204   assert_different_registers(cache, index);
 205   assert_different_registers(cache, rcpool);
 206   get_cache_index_at_bcp(index, bcp_offset, index_size);
 207   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 208   // convert from field index to ConstantPoolCacheEntry
 209   // aarch64 already has the cache in rcpool so there is no need to
 210   // install it in cache. instead we pre-add the indexed offset to
 211   // rcpool and return it in cache. All clients of this method need to
 212   // be modified accordingly.
 213   add(cache, rcpool, index, Assembler::LSL, 5);
 214 }
 215 
 216 
 217 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 218                                                                         Register index,
 219                                                                         Register bytecode,
 220                                                                         int byte_no,
 221                                                                         int bcp_offset,
 222                                                                         size_t index_size) {
 223   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 224   // We use a 32-bit load here since the layout of 64-bit words on
 225   // little-endian machines allow us that.
 226   // n.b. unlike x86 cache already includes the index offset
 227   lea(bytecode, Address(cache,
 228                          ConstantPoolCache::base_offset()
 229                          + ConstantPoolCacheEntry::indices_offset()));
 230   ldarw(bytecode, bytecode);
 231   const int shift_count = (1 + byte_no) * BitsPerByte;
 232   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 233 }
 234 
 235 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 236                                                                Register tmp,
 237                                                                int bcp_offset,
 238                                                                size_t index_size) {
 239   assert(cache != tmp, "must use different register");
 240   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 241   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 242   // convert from field index to ConstantPoolCacheEntry index
 243   // and from word offset to byte offset
 244   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 245   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 246   // skip past the header
 247   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 248   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 249 }
 250 
 251 void InterpreterMacroAssembler::get_method_counters(Register method,
 252                                                     Register mcs, Label& skip) {
 253   Label has_counters;
 254   ldr(mcs, Address(method, Method::method_counters_offset()));
 255   cbnz(mcs, has_counters);
 256   call_VM(noreg, CAST_FROM_FN_PTR(address,
 257           InterpreterRuntime::build_method_counters), method);
 258   ldr(mcs, Address(method, Method::method_counters_offset()));
 259   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 260   bind(has_counters);
 261 }
 262 
 263 // Load object from cpool->resolved_references(index)
 264 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 265                                            Register result, Register index) {
 266   assert_different_registers(result, index);
 267   // convert from field index to resolved_references() index and from
 268   // word index to byte offset. Since this is a java object, it can be compressed
 269   Register tmp = index;  // reuse
 270   lslw(tmp, tmp, LogBytesPerHeapOop);
 271 
 272   get_constant_pool(result);
 273   // load pointer for resolved_references[] objArray
 274   ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 275   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 276   resolve_oop_handle(result);
 277   // Add in the index
 278   add(result, result, tmp);
 279   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 280 }
 281 
 282 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 283                              Register cpool, Register index, Register klass, Register temp) {
 284   add(temp, cpool, index, LSL, LogBytesPerWord);
 285   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 286   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
 287   add(klass, klass, temp, LSL, LogBytesPerWord);
 288   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 289 }
 290 
 291 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 292 // subtype of super_klass.
 293 //
 294 // Args:
 295 //      r0: superklass
 296 //      Rsub_klass: subklass
 297 //
 298 // Kills:
 299 //      r2, r5
 300 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 301                                                   Label& ok_is_subtype) {
 302   assert(Rsub_klass != r0, "r0 holds superklass");
 303   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 304   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 305 
 306   // Profile the not-null value's klass.
 307   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 308 
 309   // Do the check.
 310   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 311 
 312   // Profile the failure of the check.
 313   profile_typecheck_failed(r2); // blows r2
 314 }
 315 
 316 // Java Expression Stack
 317 
 318 void InterpreterMacroAssembler::pop_ptr(Register r) {
 319   ldr(r, post(esp, wordSize));
 320 }
 321 
 322 void InterpreterMacroAssembler::pop_i(Register r) {
 323   ldrw(r, post(esp, wordSize));
 324 }
 325 
 326 void InterpreterMacroAssembler::pop_l(Register r) {
 327   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 328 }
 329 
 330 void InterpreterMacroAssembler::push_ptr(Register r) {
 331   str(r, pre(esp, -wordSize));
 332  }
 333 
 334 void InterpreterMacroAssembler::push_i(Register r) {
 335   str(r, pre(esp, -wordSize));
 336 }
 337 
 338 void InterpreterMacroAssembler::push_l(Register r) {
 339   str(zr, pre(esp, -wordSize));
 340   str(r, pre(esp, - wordSize));
 341 }
 342 
 343 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 344   ldrs(r, post(esp, wordSize));
 345 }
 346 
 347 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 348   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 349 }
 350 
 351 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 352   strs(r, pre(esp, -wordSize));
 353 }
 354 
 355 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 356   strd(r, pre(esp, 2* -wordSize));
 357 }
 358 
 359 void InterpreterMacroAssembler::pop(TosState state) {
 360   switch (state) {
 361   case atos: pop_ptr();                 break;
 362   case btos:
 363   case ztos:
 364   case ctos:
 365   case stos:
 366   case itos: pop_i();                   break;
 367   case ltos: pop_l();                   break;
 368   case ftos: pop_f();                   break;
 369   case dtos: pop_d();                   break;
 370   case vtos: /* nothing to do */        break;
 371   default:   ShouldNotReachHere();
 372   }
 373   verify_oop(r0, state);
 374 }
 375 
 376 void InterpreterMacroAssembler::push(TosState state) {
 377   verify_oop(r0, state);
 378   switch (state) {
 379   case atos: push_ptr();                break;
 380   case btos:
 381   case ztos:
 382   case ctos:
 383   case stos:
 384   case itos: push_i();                  break;
 385   case ltos: push_l();                  break;
 386   case ftos: push_f();                  break;
 387   case dtos: push_d();                  break;
 388   case vtos: /* nothing to do */        break;
 389   default  : ShouldNotReachHere();
 390   }
 391 }
 392 
 393 // Helpers for swap and dup
 394 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 395   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 396 }
 397 
 398 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 399   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 400 }
 401 
 402 
 403 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 404   // set sender sp
 405   mov(r13, sp);
 406   // record last_sp
 407   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 408 }
 409 
 410 // Jump to from_interpreted entry of a call unless single stepping is possible
 411 // in this thread in which case we must call the i2i entry
 412 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 413   prepare_to_jump_from_interpreted();
 414 
 415   if (JvmtiExport::can_post_interpreter_events()) {
 416     Label run_compiled_code;
 417     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 418     // compiled code in threads for which the event is enabled.  Check here for
 419     // interp_only_mode if these events CAN be enabled.
 420     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 421     cbzw(rscratch1, run_compiled_code);
 422     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 423     br(rscratch1);
 424     bind(run_compiled_code);
 425   }
 426 
 427   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 428   br(rscratch1);
 429 }
 430 
 431 // The following two routines provide a hook so that an implementation
 432 // can schedule the dispatch in two parts.  amd64 does not do this.
 433 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 434 }
 435 
 436 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 437     dispatch_next(state, step);
 438 }
 439 
 440 void InterpreterMacroAssembler::dispatch_base(TosState state,
 441                                               address* table,
 442                                               bool verifyoop,
 443                                               bool generate_poll) {
 444   if (VerifyActivationFrameSize) {
 445     Unimplemented();
 446   }
 447   if (verifyoop) {
 448     verify_oop(r0, state);
 449   }
 450 
 451   Label safepoint;
 452   address* const safepoint_table = Interpreter::safept_table(state);
 453   bool needs_thread_local_poll = generate_poll &&
 454     SafepointMechanism::uses_thread_local_poll() && table != safepoint_table;
 455 
 456   if (needs_thread_local_poll) {
 457     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 458     ldr(rscratch2, Address(rthread, Thread::polling_page_offset()));
 459     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 460   }
 461 
 462   if (table == Interpreter::dispatch_table(state)) {
 463     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 464     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 465   } else {
 466     mov(rscratch2, (address)table);
 467     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 468   }
 469   br(rscratch2);
 470 
 471   if (needs_thread_local_poll) {
 472     bind(safepoint);
 473     lea(rscratch2, ExternalAddress((address)safepoint_table));
 474     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 475     br(rscratch2);
 476   }
 477 }
 478 
 479 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 480   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 481 }
 482 
 483 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 484   dispatch_base(state, Interpreter::normal_table(state));
 485 }
 486 
 487 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 488   dispatch_base(state, Interpreter::normal_table(state), false);
 489 }
 490 
 491 
 492 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 493   // load next bytecode
 494   ldrb(rscratch1, Address(pre(rbcp, step)));
 495   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
 496 }
 497 
 498 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 499   // load current bytecode
 500   ldrb(rscratch1, Address(rbcp, 0));
 501   dispatch_base(state, table);
 502 }
 503 
 504 // remove activation
 505 //
 506 // Unlock the receiver if this is a synchronized method.
 507 // Unlock any Java monitors from syncronized blocks.
 508 // Remove the activation from the stack.
 509 //
 510 // If there are locked Java monitors
 511 //    If throw_monitor_exception
 512 //       throws IllegalMonitorStateException
 513 //    Else if install_monitor_exception
 514 //       installs IllegalMonitorStateException
 515 //    Else
 516 //       no error processing
 517 void InterpreterMacroAssembler::remove_activation(
 518         TosState state,
 519         bool throw_monitor_exception,
 520         bool install_monitor_exception,
 521         bool notify_jvmdi) {
 522   // Note: Registers r3 xmm0 may be in use for the
 523   // result check if synchronized method
 524   Label unlocked, unlock, no_unlock;
 525 
 526   // get the value of _do_not_unlock_if_synchronized into r3
 527   const Address do_not_unlock_if_synchronized(rthread,
 528     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 529   ldrb(r3, do_not_unlock_if_synchronized);
 530   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 531 
 532  // get method access flags
 533   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 534   ldr(r2, Address(r1, Method::access_flags_offset()));
 535   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 536 
 537   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 538   // is set.
 539   cbnz(r3, no_unlock);
 540 
 541   // unlock monitor
 542   push(state); // save result
 543 
 544   // BasicObjectLock will be first in list, since this is a
 545   // synchronized method. However, need to check that the object has
 546   // not been unlocked by an explicit monitorexit bytecode.
 547   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 548                         wordSize - (int) sizeof(BasicObjectLock));
 549   // We use c_rarg1 so that if we go slow path it will be the correct
 550   // register for unlock_object to pass to VM directly
 551   lea(c_rarg1, monitor); // address of first monitor
 552 
 553   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 554   cbnz(r0, unlock);
 555 
 556   pop(state);
 557   if (throw_monitor_exception) {
 558     // Entry already unlocked, need to throw exception
 559     call_VM(noreg, CAST_FROM_FN_PTR(address,
 560                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 561     should_not_reach_here();
 562   } else {
 563     // Monitor already unlocked during a stack unroll. If requested,
 564     // install an illegal_monitor_state_exception.  Continue with
 565     // stack unrolling.
 566     if (install_monitor_exception) {
 567       call_VM(noreg, CAST_FROM_FN_PTR(address,
 568                      InterpreterRuntime::new_illegal_monitor_state_exception));
 569     }
 570     b(unlocked);
 571   }
 572 
 573   bind(unlock);
 574   unlock_object(c_rarg1);
 575   pop(state);
 576 
 577   // Check that for block-structured locking (i.e., that all locked
 578   // objects has been unlocked)
 579   bind(unlocked);
 580 
 581   // r0: Might contain return value
 582 
 583   // Check that all monitors are unlocked
 584   {
 585     Label loop, exception, entry, restart;
 586     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 587     const Address monitor_block_top(
 588         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 589     const Address monitor_block_bot(
 590         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 591 
 592     bind(restart);
 593     // We use c_rarg1 so that if we go slow path it will be the correct
 594     // register for unlock_object to pass to VM directly
 595     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 596                                      // with top-most entry
 597     lea(r19, monitor_block_bot);  // points to word before bottom of
 598                                   // monitor block
 599     b(entry);
 600 
 601     // Entry already locked, need to throw exception
 602     bind(exception);
 603 
 604     if (throw_monitor_exception) {
 605       // Throw exception
 606       MacroAssembler::call_VM(noreg,
 607                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 608                                    throw_illegal_monitor_state_exception));
 609       should_not_reach_here();
 610     } else {
 611       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 612       // Unlock does not block, so don't have to worry about the frame.
 613       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 614 
 615       push(state);
 616       unlock_object(c_rarg1);
 617       pop(state);
 618 
 619       if (install_monitor_exception) {
 620         call_VM(noreg, CAST_FROM_FN_PTR(address,
 621                                         InterpreterRuntime::
 622                                         new_illegal_monitor_state_exception));
 623       }
 624 
 625       b(restart);
 626     }
 627 
 628     bind(loop);
 629     // check if current entry is used
 630     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 631     cbnz(rscratch1, exception);
 632 
 633     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 634     bind(entry);
 635     cmp(c_rarg1, r19); // check if bottom reached
 636     br(Assembler::NE, loop); // if not at bottom then check this entry
 637   }
 638 
 639   bind(no_unlock);
 640 
 641   // jvmti support
 642   if (notify_jvmdi) {
 643     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 644   } else {
 645     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 646   }
 647 
 648   // remove activation
 649   // get sender esp
 650   ldr(esp,
 651       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 652   if (StackReservedPages > 0) {
 653     // testing if reserved zone needs to be re-enabled
 654     Label no_reserved_zone_enabling;
 655 
 656     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 657     cmp(esp, rscratch1);
 658     br(Assembler::LS, no_reserved_zone_enabling);
 659 
 660     call_VM_leaf(
 661       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 662     call_VM(noreg, CAST_FROM_FN_PTR(address,
 663                    InterpreterRuntime::throw_delayed_StackOverflowError));
 664     should_not_reach_here();
 665 
 666     bind(no_reserved_zone_enabling);
 667   }
 668   // remove frame anchor
 669   leave();
 670   // If we're returning to interpreted code we will shortly be
 671   // adjusting SP to allow some space for ESP.  If we're returning to
 672   // compiled code the saved sender SP was saved in sender_sp, so this
 673   // restores it.
 674   andr(sp, esp, -16);
 675 }
 676 
 677 // Lock object
 678 //
 679 // Args:
 680 //      c_rarg1: BasicObjectLock to be used for locking
 681 //
 682 // Kills:
 683 //      r0
 684 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 685 //      rscratch1, rscratch2 (scratch regs)
 686 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 687 {
 688   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 689   if (UseHeavyMonitors) {
 690     call_VM(noreg,
 691             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 692             lock_reg);
 693   } else {
 694     Label done;
 695 
 696     const Register swap_reg = r0;
 697     const Register tmp = c_rarg2;
 698     const Register obj_reg = c_rarg3; // Will contain the oop
 699 
 700     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 701     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 702     const int mark_offset = lock_offset +
 703                             BasicLock::displaced_header_offset_in_bytes();
 704 
 705     Label slow_case;
 706 
 707     // Load object pointer into obj_reg %c_rarg3
 708     ldr(obj_reg, Address(lock_reg, obj_offset));
 709 
 710     if (UseBiasedLocking) {
 711       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 712     }
 713 
 714     // Load (object->mark() | 1) into swap_reg
 715     ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 716     orr(swap_reg, rscratch1, 1);
 717 
 718     // Save (object->mark() | 1) into BasicLock's displaced header
 719     str(swap_reg, Address(lock_reg, mark_offset));
 720 
 721     assert(lock_offset == 0,
 722            "displached header must be first word in BasicObjectLock");
 723 
 724     Label fail;
 725     if (PrintBiasedLockingStatistics) {
 726       Label fast;
 727       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 728       bind(fast);
 729       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 730                   rscratch2, rscratch1, tmp);
 731       b(done);
 732       bind(fail);
 733     } else {
 734       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 735     }
 736 
 737     // Test if the oopMark is an obvious stack pointer, i.e.,
 738     //  1) (mark & 7) == 0, and
 739     //  2) rsp <= mark < mark + os::pagesize()
 740     //
 741     // These 3 tests can be done by evaluating the following
 742     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 743     // assuming both stack pointer and pagesize have their
 744     // least significant 3 bits clear.
 745     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 746     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 747     // copy
 748     mov(rscratch1, sp);
 749     sub(swap_reg, swap_reg, rscratch1);
 750     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 751 
 752     // Save the test result, for recursive case, the result is zero
 753     str(swap_reg, Address(lock_reg, mark_offset));
 754 
 755     if (PrintBiasedLockingStatistics) {
 756       br(Assembler::NE, slow_case);
 757       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 758                   rscratch2, rscratch1, tmp);
 759     }
 760     br(Assembler::EQ, done);
 761 
 762     bind(slow_case);
 763 
 764     // Call the runtime routine for slow case
 765     call_VM(noreg,
 766             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 767             lock_reg);
 768 
 769     bind(done);
 770   }
 771 }
 772 
 773 
 774 // Unlocks an object. Used in monitorexit bytecode and
 775 // remove_activation.  Throws an IllegalMonitorException if object is
 776 // not locked by current thread.
 777 //
 778 // Args:
 779 //      c_rarg1: BasicObjectLock for lock
 780 //
 781 // Kills:
 782 //      r0
 783 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 784 //      rscratch1, rscratch2 (scratch regs)
 785 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 786 {
 787   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 788 
 789   if (UseHeavyMonitors) {
 790     call_VM(noreg,
 791             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 792             lock_reg);
 793   } else {
 794     Label done;
 795 
 796     const Register swap_reg   = r0;
 797     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 798     const Register obj_reg    = c_rarg3;  // Will contain the oop
 799 
 800     save_bcp(); // Save in case of exception
 801 
 802     // Convert from BasicObjectLock structure to object and BasicLock
 803     // structure Store the BasicLock address into %r0
 804     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 805 
 806     // Load oop into obj_reg(%c_rarg3)
 807     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 808 
 809     // Free entry
 810     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 811 
 812     if (UseBiasedLocking) {
 813       biased_locking_exit(obj_reg, header_reg, done);
 814     }
 815 
 816     // Load the old header from BasicLock structure
 817     ldr(header_reg, Address(swap_reg,
 818                             BasicLock::displaced_header_offset_in_bytes()));
 819 
 820     // Test for recursion
 821     cbz(header_reg, done);
 822 
 823     // Atomic swap back the old header
 824     cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 825 
 826     // Call the runtime routine for slow case.
 827     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 828     call_VM(noreg,
 829             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 830             lock_reg);
 831 
 832     bind(done);
 833 
 834     restore_bcp();
 835   }
 836 }
 837 
 838 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 839                                                          Label& zero_continue) {
 840   assert(ProfileInterpreter, "must be profiling interpreter");
 841   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 842   cbz(mdp, zero_continue);
 843 }
 844 
 845 // Set the method data pointer for the current bcp.
 846 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 847   assert(ProfileInterpreter, "must be profiling interpreter");
 848   Label set_mdp;
 849   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 850 
 851   // Test MDO to avoid the call if it is NULL.
 852   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 853   cbz(r0, set_mdp);
 854   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 855   // r0: mdi
 856   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 857   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 858   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 859   add(r0, r1, r0);
 860   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 861   bind(set_mdp);
 862   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 863 }
 864 
 865 void InterpreterMacroAssembler::verify_method_data_pointer() {
 866   assert(ProfileInterpreter, "must be profiling interpreter");
 867 #ifdef ASSERT
 868   Label verify_continue;
 869   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 870   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 871   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 872   get_method(r1);
 873 
 874   // If the mdp is valid, it will point to a DataLayout header which is
 875   // consistent with the bcp.  The converse is highly probable also.
 876   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 877   ldr(rscratch1, Address(r1, Method::const_offset()));
 878   add(r2, r2, rscratch1, Assembler::LSL);
 879   lea(r2, Address(r2, ConstMethod::codes_offset()));
 880   cmp(r2, rbcp);
 881   br(Assembler::EQ, verify_continue);
 882   // r1: method
 883   // rbcp: bcp // rbcp == 22
 884   // r3: mdp
 885   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 886                r1, rbcp, r3);
 887   bind(verify_continue);
 888   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 889   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 890 #endif // ASSERT
 891 }
 892 
 893 
 894 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 895                                                 int constant,
 896                                                 Register value) {
 897   assert(ProfileInterpreter, "must be profiling interpreter");
 898   Address data(mdp_in, constant);
 899   str(value, data);
 900 }
 901 
 902 
 903 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 904                                                       int constant,
 905                                                       bool decrement) {
 906   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 907 }
 908 
 909 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 910                                                       Register reg,
 911                                                       int constant,
 912                                                       bool decrement) {
 913   assert(ProfileInterpreter, "must be profiling interpreter");
 914   // %%% this does 64bit counters at best it is wasting space
 915   // at worst it is a rare bug when counters overflow
 916 
 917   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 918 
 919   Address addr1(mdp_in, constant);
 920   Address addr2(rscratch2, reg, Address::lsl(0));
 921   Address &addr = addr1;
 922   if (reg != noreg) {
 923     lea(rscratch2, addr1);
 924     addr = addr2;
 925   }
 926 
 927   if (decrement) {
 928     // Decrement the register.  Set condition codes.
 929     // Intel does this
 930     // addptr(data, (int32_t) -DataLayout::counter_increment);
 931     // If the decrement causes the counter to overflow, stay negative
 932     // Label L;
 933     // jcc(Assembler::negative, L);
 934     // addptr(data, (int32_t) DataLayout::counter_increment);
 935     // so we do this
 936     ldr(rscratch1, addr);
 937     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 938     Label L;
 939     br(Assembler::LO, L);       // skip store if counter underflow
 940     str(rscratch1, addr);
 941     bind(L);
 942   } else {
 943     assert(DataLayout::counter_increment == 1,
 944            "flow-free idiom only works with 1");
 945     // Intel does this
 946     // Increment the register.  Set carry flag.
 947     // addptr(data, DataLayout::counter_increment);
 948     // If the increment causes the counter to overflow, pull back by 1.
 949     // sbbptr(data, (int32_t)0);
 950     // so we do this
 951     ldr(rscratch1, addr);
 952     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 953     Label L;
 954     br(Assembler::CS, L);       // skip store if counter overflow
 955     str(rscratch1, addr);
 956     bind(L);
 957   }
 958 }
 959 
 960 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 961                                                 int flag_byte_constant) {
 962   assert(ProfileInterpreter, "must be profiling interpreter");
 963   int header_offset = in_bytes(DataLayout::header_offset());
 964   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 965   // Set the flag
 966   ldr(rscratch1, Address(mdp_in, header_offset));
 967   orr(rscratch1, rscratch1, header_bits);
 968   str(rscratch1, Address(mdp_in, header_offset));
 969 }
 970 
 971 
 972 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 973                                                  int offset,
 974                                                  Register value,
 975                                                  Register test_value_out,
 976                                                  Label& not_equal_continue) {
 977   assert(ProfileInterpreter, "must be profiling interpreter");
 978   if (test_value_out == noreg) {
 979     ldr(rscratch1, Address(mdp_in, offset));
 980     cmp(value, rscratch1);
 981   } else {
 982     // Put the test value into a register, so caller can use it:
 983     ldr(test_value_out, Address(mdp_in, offset));
 984     cmp(value, test_value_out);
 985   }
 986   br(Assembler::NE, not_equal_continue);
 987 }
 988 
 989 
 990 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 991                                                      int offset_of_disp) {
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 994   add(mdp_in, mdp_in, rscratch1, LSL);
 995   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 996 }
 997 
 998 
 999 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1000                                                      Register reg,
1001                                                      int offset_of_disp) {
1002   assert(ProfileInterpreter, "must be profiling interpreter");
1003   lea(rscratch1, Address(mdp_in, offset_of_disp));
1004   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1005   add(mdp_in, mdp_in, rscratch1, LSL);
1006   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1007 }
1008 
1009 
1010 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1011                                                        int constant) {
1012   assert(ProfileInterpreter, "must be profiling interpreter");
1013   add(mdp_in, mdp_in, (unsigned)constant);
1014   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1015 }
1016 
1017 
1018 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1019   assert(ProfileInterpreter, "must be profiling interpreter");
1020   // save/restore across call_VM
1021   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1022   call_VM(noreg,
1023           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1024           return_bci);
1025   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1026 }
1027 
1028 
1029 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1030                                                      Register bumped_count) {
1031   if (ProfileInterpreter) {
1032     Label profile_continue;
1033 
1034     // If no method data exists, go to profile_continue.
1035     // Otherwise, assign to mdp
1036     test_method_data_pointer(mdp, profile_continue);
1037 
1038     // We are taking a branch.  Increment the taken count.
1039     // We inline increment_mdp_data_at to return bumped_count in a register
1040     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1041     Address data(mdp, in_bytes(JumpData::taken_offset()));
1042     ldr(bumped_count, data);
1043     assert(DataLayout::counter_increment == 1,
1044             "flow-free idiom only works with 1");
1045     // Intel does this to catch overflow
1046     // addptr(bumped_count, DataLayout::counter_increment);
1047     // sbbptr(bumped_count, 0);
1048     // so we do this
1049     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1050     Label L;
1051     br(Assembler::CS, L);       // skip store if counter overflow
1052     str(bumped_count, data);
1053     bind(L);
1054     // The method data pointer needs to be updated to reflect the new target.
1055     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1056     bind(profile_continue);
1057   }
1058 }
1059 
1060 
1061 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1062   if (ProfileInterpreter) {
1063     Label profile_continue;
1064 
1065     // If no method data exists, go to profile_continue.
1066     test_method_data_pointer(mdp, profile_continue);
1067 
1068     // We are taking a branch.  Increment the not taken count.
1069     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1070 
1071     // The method data pointer needs to be updated to correspond to
1072     // the next bytecode
1073     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1074     bind(profile_continue);
1075   }
1076 }
1077 
1078 
1079 void InterpreterMacroAssembler::profile_call(Register mdp) {
1080   if (ProfileInterpreter) {
1081     Label profile_continue;
1082 
1083     // If no method data exists, go to profile_continue.
1084     test_method_data_pointer(mdp, profile_continue);
1085 
1086     // We are making a call.  Increment the count.
1087     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1088 
1089     // The method data pointer needs to be updated to reflect the new target.
1090     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1091     bind(profile_continue);
1092   }
1093 }
1094 
1095 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1096   if (ProfileInterpreter) {
1097     Label profile_continue;
1098 
1099     // If no method data exists, go to profile_continue.
1100     test_method_data_pointer(mdp, profile_continue);
1101 
1102     // We are making a call.  Increment the count.
1103     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1104 
1105     // The method data pointer needs to be updated to reflect the new target.
1106     update_mdp_by_constant(mdp,
1107                            in_bytes(VirtualCallData::
1108                                     virtual_call_data_size()));
1109     bind(profile_continue);
1110   }
1111 }
1112 
1113 
1114 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1115                                                      Register mdp,
1116                                                      Register reg2,
1117                                                      bool receiver_can_be_null) {
1118   if (ProfileInterpreter) {
1119     Label profile_continue;
1120 
1121     // If no method data exists, go to profile_continue.
1122     test_method_data_pointer(mdp, profile_continue);
1123 
1124     Label skip_receiver_profile;
1125     if (receiver_can_be_null) {
1126       Label not_null;
1127       // We are making a call.  Increment the count for null receiver.
1128       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1129       b(skip_receiver_profile);
1130       bind(not_null);
1131     }
1132 
1133     // Record the receiver type.
1134     record_klass_in_profile(receiver, mdp, reg2, true);
1135     bind(skip_receiver_profile);
1136 
1137     // The method data pointer needs to be updated to reflect the new target.
1138 #if INCLUDE_JVMCI
1139     if (MethodProfileWidth == 0) {
1140       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1141     }
1142 #else // INCLUDE_JVMCI
1143     update_mdp_by_constant(mdp,
1144                            in_bytes(VirtualCallData::
1145                                     virtual_call_data_size()));
1146 #endif // INCLUDE_JVMCI
1147     bind(profile_continue);
1148   }
1149 }
1150 
1151 #if INCLUDE_JVMCI
1152 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1153   assert_different_registers(method, mdp, reg2);
1154   if (ProfileInterpreter && MethodProfileWidth > 0) {
1155     Label profile_continue;
1156 
1157     // If no method data exists, go to profile_continue.
1158     test_method_data_pointer(mdp, profile_continue);
1159 
1160     Label done;
1161     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1162       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1163     bind(done);
1164 
1165     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1166     bind(profile_continue);
1167   }
1168 }
1169 #endif // INCLUDE_JVMCI
1170 
1171 // This routine creates a state machine for updating the multi-row
1172 // type profile at a virtual call site (or other type-sensitive bytecode).
1173 // The machine visits each row (of receiver/count) until the receiver type
1174 // is found, or until it runs out of rows.  At the same time, it remembers
1175 // the location of the first empty row.  (An empty row records null for its
1176 // receiver, and can be allocated for a newly-observed receiver type.)
1177 // Because there are two degrees of freedom in the state, a simple linear
1178 // search will not work; it must be a decision tree.  Hence this helper
1179 // function is recursive, to generate the required tree structured code.
1180 // It's the interpreter, so we are trading off code space for speed.
1181 // See below for example code.
1182 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1183                                         Register receiver, Register mdp,
1184                                         Register reg2, int start_row,
1185                                         Label& done, bool is_virtual_call) {
1186   if (TypeProfileWidth == 0) {
1187     if (is_virtual_call) {
1188       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1189     }
1190 #if INCLUDE_JVMCI
1191     else if (EnableJVMCI) {
1192       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1193     }
1194 #endif // INCLUDE_JVMCI
1195   } else {
1196     int non_profiled_offset = -1;
1197     if (is_virtual_call) {
1198       non_profiled_offset = in_bytes(CounterData::count_offset());
1199     }
1200 #if INCLUDE_JVMCI
1201     else if (EnableJVMCI) {
1202       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1203     }
1204 #endif // INCLUDE_JVMCI
1205 
1206     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1207         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1208   }
1209 }
1210 
1211 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1212                                         Register reg2, int start_row, Label& done, int total_rows,
1213                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1214                                         int non_profiled_offset) {
1215   int last_row = total_rows - 1;
1216   assert(start_row <= last_row, "must be work left to do");
1217   // Test this row for both the item and for null.
1218   // Take any of three different outcomes:
1219   //   1. found item => increment count and goto done
1220   //   2. found null => keep looking for case 1, maybe allocate this cell
1221   //   3. found something else => keep looking for cases 1 and 2
1222   // Case 3 is handled by a recursive call.
1223   for (int row = start_row; row <= last_row; row++) {
1224     Label next_test;
1225     bool test_for_null_also = (row == start_row);
1226 
1227     // See if the item is item[n].
1228     int item_offset = in_bytes(item_offset_fn(row));
1229     test_mdp_data_at(mdp, item_offset, item,
1230                      (test_for_null_also ? reg2 : noreg),
1231                      next_test);
1232     // (Reg2 now contains the item from the CallData.)
1233 
1234     // The item is item[n].  Increment count[n].
1235     int count_offset = in_bytes(item_count_offset_fn(row));
1236     increment_mdp_data_at(mdp, count_offset);
1237     b(done);
1238     bind(next_test);
1239 
1240     if (test_for_null_also) {
1241       Label found_null;
1242       // Failed the equality check on item[n]...  Test for null.
1243       if (start_row == last_row) {
1244         // The only thing left to do is handle the null case.
1245         if (non_profiled_offset >= 0) {
1246           cbz(reg2, found_null);
1247           // Item did not match any saved item and there is no empty row for it.
1248           // Increment total counter to indicate polymorphic case.
1249           increment_mdp_data_at(mdp, non_profiled_offset);
1250           b(done);
1251           bind(found_null);
1252         } else {
1253           cbnz(reg2, done);
1254         }
1255         break;
1256       }
1257       // Since null is rare, make it be the branch-taken case.
1258       cbz(reg2, found_null);
1259 
1260       // Put all the "Case 3" tests here.
1261       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1262         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1263 
1264       // Found a null.  Keep searching for a matching item,
1265       // but remember that this is an empty (unused) slot.
1266       bind(found_null);
1267     }
1268   }
1269 
1270   // In the fall-through case, we found no matching item, but we
1271   // observed the item[start_row] is NULL.
1272 
1273   // Fill in the item field and increment the count.
1274   int item_offset = in_bytes(item_offset_fn(start_row));
1275   set_mdp_data_at(mdp, item_offset, item);
1276   int count_offset = in_bytes(item_count_offset_fn(start_row));
1277   mov(reg2, DataLayout::counter_increment);
1278   set_mdp_data_at(mdp, count_offset, reg2);
1279   if (start_row > 0) {
1280     b(done);
1281   }
1282 }
1283 
1284 // Example state machine code for three profile rows:
1285 //   // main copy of decision tree, rooted at row[1]
1286 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1287 //   if (row[0].rec != NULL) {
1288 //     // inner copy of decision tree, rooted at row[1]
1289 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1290 //     if (row[1].rec != NULL) {
1291 //       // degenerate decision tree, rooted at row[2]
1292 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1293 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1294 //       row[2].init(rec); goto done;
1295 //     } else {
1296 //       // remember row[1] is empty
1297 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1298 //       row[1].init(rec); goto done;
1299 //     }
1300 //   } else {
1301 //     // remember row[0] is empty
1302 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1303 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1304 //     row[0].init(rec); goto done;
1305 //   }
1306 //   done:
1307 
1308 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1309                                                         Register mdp, Register reg2,
1310                                                         bool is_virtual_call) {
1311   assert(ProfileInterpreter, "must be profiling");
1312   Label done;
1313 
1314   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1315 
1316   bind (done);
1317 }
1318 
1319 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1320                                             Register mdp) {
1321   if (ProfileInterpreter) {
1322     Label profile_continue;
1323     uint row;
1324 
1325     // If no method data exists, go to profile_continue.
1326     test_method_data_pointer(mdp, profile_continue);
1327 
1328     // Update the total ret count.
1329     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1330 
1331     for (row = 0; row < RetData::row_limit(); row++) {
1332       Label next_test;
1333 
1334       // See if return_bci is equal to bci[n]:
1335       test_mdp_data_at(mdp,
1336                        in_bytes(RetData::bci_offset(row)),
1337                        return_bci, noreg,
1338                        next_test);
1339 
1340       // return_bci is equal to bci[n].  Increment the count.
1341       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1342 
1343       // The method data pointer needs to be updated to reflect the new target.
1344       update_mdp_by_offset(mdp,
1345                            in_bytes(RetData::bci_displacement_offset(row)));
1346       b(profile_continue);
1347       bind(next_test);
1348     }
1349 
1350     update_mdp_for_ret(return_bci);
1351 
1352     bind(profile_continue);
1353   }
1354 }
1355 
1356 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1357   if (ProfileInterpreter) {
1358     Label profile_continue;
1359 
1360     // If no method data exists, go to profile_continue.
1361     test_method_data_pointer(mdp, profile_continue);
1362 
1363     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1364 
1365     // The method data pointer needs to be updated.
1366     int mdp_delta = in_bytes(BitData::bit_data_size());
1367     if (TypeProfileCasts) {
1368       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1369     }
1370     update_mdp_by_constant(mdp, mdp_delta);
1371 
1372     bind(profile_continue);
1373   }
1374 }
1375 
1376 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1377   if (ProfileInterpreter && TypeProfileCasts) {
1378     Label profile_continue;
1379 
1380     // If no method data exists, go to profile_continue.
1381     test_method_data_pointer(mdp, profile_continue);
1382 
1383     int count_offset = in_bytes(CounterData::count_offset());
1384     // Back up the address, since we have already bumped the mdp.
1385     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1386 
1387     // *Decrement* the counter.  We expect to see zero or small negatives.
1388     increment_mdp_data_at(mdp, count_offset, true);
1389 
1390     bind (profile_continue);
1391   }
1392 }
1393 
1394 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1395   if (ProfileInterpreter) {
1396     Label profile_continue;
1397 
1398     // If no method data exists, go to profile_continue.
1399     test_method_data_pointer(mdp, profile_continue);
1400 
1401     // The method data pointer needs to be updated.
1402     int mdp_delta = in_bytes(BitData::bit_data_size());
1403     if (TypeProfileCasts) {
1404       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1405 
1406       // Record the object type.
1407       record_klass_in_profile(klass, mdp, reg2, false);
1408     }
1409     update_mdp_by_constant(mdp, mdp_delta);
1410 
1411     bind(profile_continue);
1412   }
1413 }
1414 
1415 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1416   if (ProfileInterpreter) {
1417     Label profile_continue;
1418 
1419     // If no method data exists, go to profile_continue.
1420     test_method_data_pointer(mdp, profile_continue);
1421 
1422     // Update the default case count
1423     increment_mdp_data_at(mdp,
1424                           in_bytes(MultiBranchData::default_count_offset()));
1425 
1426     // The method data pointer needs to be updated.
1427     update_mdp_by_offset(mdp,
1428                          in_bytes(MultiBranchData::
1429                                   default_displacement_offset()));
1430 
1431     bind(profile_continue);
1432   }
1433 }
1434 
1435 void InterpreterMacroAssembler::profile_switch_case(Register index,
1436                                                     Register mdp,
1437                                                     Register reg2) {
1438   if (ProfileInterpreter) {
1439     Label profile_continue;
1440 
1441     // If no method data exists, go to profile_continue.
1442     test_method_data_pointer(mdp, profile_continue);
1443 
1444     // Build the base (index * per_case_size_in_bytes()) +
1445     // case_array_offset_in_bytes()
1446     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1447     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1448     Assembler::maddw(index, index, reg2, rscratch1);
1449 
1450     // Update the case count
1451     increment_mdp_data_at(mdp,
1452                           index,
1453                           in_bytes(MultiBranchData::relative_count_offset()));
1454 
1455     // The method data pointer needs to be updated.
1456     update_mdp_by_offset(mdp,
1457                          index,
1458                          in_bytes(MultiBranchData::
1459                                   relative_displacement_offset()));
1460 
1461     bind(profile_continue);
1462   }
1463 }
1464 
1465 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1466   if (state == atos) {
1467     MacroAssembler::verify_oop(reg);
1468   }
1469 }
1470 
1471 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1472 
1473 
1474 void InterpreterMacroAssembler::notify_method_entry() {
1475   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1476   // track stack depth.  If it is possible to enter interp_only_mode we add
1477   // the code to check if the event should be sent.
1478   if (JvmtiExport::can_post_interpreter_events()) {
1479     Label L;
1480     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1481     cbzw(r3, L);
1482     call_VM(noreg, CAST_FROM_FN_PTR(address,
1483                                     InterpreterRuntime::post_method_entry));
1484     bind(L);
1485   }
1486 
1487   {
1488     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1489     get_method(c_rarg1);
1490     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1491                  rthread, c_rarg1);
1492   }
1493 
1494   // RedefineClasses() tracing support for obsolete method entry
1495   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1496     get_method(c_rarg1);
1497     call_VM_leaf(
1498       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1499       rthread, c_rarg1);
1500   }
1501 
1502  }
1503 
1504 
1505 void InterpreterMacroAssembler::notify_method_exit(
1506     TosState state, NotifyMethodExitMode mode) {
1507   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1508   // track stack depth.  If it is possible to enter interp_only_mode we add
1509   // the code to check if the event should be sent.
1510   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1511     Label L;
1512     // Note: frame::interpreter_frame_result has a dependency on how the
1513     // method result is saved across the call to post_method_exit. If this
1514     // is changed then the interpreter_frame_result implementation will
1515     // need to be updated too.
1516 
1517     // template interpreter will leave the result on the top of the stack.
1518     push(state);
1519     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1520     cbz(r3, L);
1521     call_VM(noreg,
1522             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1523     bind(L);
1524     pop(state);
1525   }
1526 
1527   {
1528     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1529     push(state);
1530     get_method(c_rarg1);
1531     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1532                  rthread, c_rarg1);
1533     pop(state);
1534   }
1535 }
1536 
1537 
1538 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1539 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1540                                                         int increment, Address mask,
1541                                                         Register scratch, Register scratch2,
1542                                                         bool preloaded, Condition cond,
1543                                                         Label* where) {
1544   if (!preloaded) {
1545     ldrw(scratch, counter_addr);
1546   }
1547   add(scratch, scratch, increment);
1548   strw(scratch, counter_addr);
1549   ldrw(scratch2, mask);
1550   ands(scratch, scratch, scratch2);
1551   br(cond, *where);
1552 }
1553 
1554 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1555                                                   int number_of_arguments) {
1556   // interpreter specific
1557   //
1558   // Note: No need to save/restore rbcp & rlocals pointer since these
1559   //       are callee saved registers and no blocking/ GC can happen
1560   //       in leaf calls.
1561 #ifdef ASSERT
1562   {
1563     Label L;
1564     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1565     cbz(rscratch1, L);
1566     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1567          " last_sp != NULL");
1568     bind(L);
1569   }
1570 #endif /* ASSERT */
1571   // super call
1572   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1573 }
1574 
1575 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1576                                              Register java_thread,
1577                                              Register last_java_sp,
1578                                              address  entry_point,
1579                                              int      number_of_arguments,
1580                                              bool     check_exceptions) {
1581   // interpreter specific
1582   //
1583   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1584   //       really make a difference for these runtime calls, since they are
1585   //       slow anyway. Btw., bcp must be saved/restored since it may change
1586   //       due to GC.
1587   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1588   save_bcp();
1589 #ifdef ASSERT
1590   {
1591     Label L;
1592     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1593     cbz(rscratch1, L);
1594     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1595          " last_sp != NULL");
1596     bind(L);
1597   }
1598 #endif /* ASSERT */
1599   // super call
1600   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1601                                entry_point, number_of_arguments,
1602                      check_exceptions);
1603 // interpreter specific
1604   restore_bcp();
1605   restore_locals();
1606 }
1607 
1608 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1609   Label update, next, none;
1610 
1611   verify_oop(obj);
1612 
1613   cbnz(obj, update);
1614   orptr(mdo_addr, TypeEntries::null_seen);
1615   b(next);
1616 
1617   bind(update);
1618   load_klass(obj, obj);
1619 
1620   ldr(rscratch1, mdo_addr);
1621   eor(obj, obj, rscratch1);
1622   tst(obj, TypeEntries::type_klass_mask);
1623   br(Assembler::EQ, next); // klass seen before, nothing to
1624                            // do. The unknown bit may have been
1625                            // set already but no need to check.
1626 
1627   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1628   // already unknown. Nothing to do anymore.
1629 
1630   ldr(rscratch1, mdo_addr);
1631   cbz(rscratch1, none);
1632   cmp(rscratch1, TypeEntries::null_seen);
1633   br(Assembler::EQ, none);
1634   // There is a chance that the checks above (re-reading profiling
1635   // data from memory) fail if another thread has just set the
1636   // profiling to this obj's klass
1637   ldr(rscratch1, mdo_addr);
1638   eor(obj, obj, rscratch1);
1639   tst(obj, TypeEntries::type_klass_mask);
1640   br(Assembler::EQ, next);
1641 
1642   // different than before. Cannot keep accurate profile.
1643   orptr(mdo_addr, TypeEntries::type_unknown);
1644   b(next);
1645 
1646   bind(none);
1647   // first time here. Set profile type.
1648   str(obj, mdo_addr);
1649 
1650   bind(next);
1651 }
1652 
1653 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1654   if (!ProfileInterpreter) {
1655     return;
1656   }
1657 
1658   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1659     Label profile_continue;
1660 
1661     test_method_data_pointer(mdp, profile_continue);
1662 
1663     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1664 
1665     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1666     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1667     br(Assembler::NE, profile_continue);
1668 
1669     if (MethodData::profile_arguments()) {
1670       Label done;
1671       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1672 
1673       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1674         if (i > 0 || MethodData::profile_return()) {
1675           // If return value type is profiled we may have no argument to profile
1676           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1677           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1678           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1679           add(rscratch1, mdp, off_to_args);
1680           br(Assembler::LT, done);
1681         }
1682         ldr(tmp, Address(callee, Method::const_offset()));
1683         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1684         // stack offset o (zero based) from the start of the argument
1685         // list, for n arguments translates into offset n - o - 1 from
1686         // the end of the argument list
1687         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1688         sub(tmp, tmp, rscratch1);
1689         sub(tmp, tmp, 1);
1690         Address arg_addr = argument_address(tmp);
1691         ldr(tmp, arg_addr);
1692 
1693         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1694         profile_obj_type(tmp, mdo_arg_addr);
1695 
1696         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1697         off_to_args += to_add;
1698       }
1699 
1700       if (MethodData::profile_return()) {
1701         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1702         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1703       }
1704 
1705       add(rscratch1, mdp, off_to_args);
1706       bind(done);
1707       mov(mdp, rscratch1);
1708 
1709       if (MethodData::profile_return()) {
1710         // We're right after the type profile for the last
1711         // argument. tmp is the number of cells left in the
1712         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1713         // if there's a return to profile.
1714         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1715         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1716       }
1717       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1718     } else {
1719       assert(MethodData::profile_return(), "either profile call args or call ret");
1720       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1721     }
1722 
1723     // mdp points right after the end of the
1724     // CallTypeData/VirtualCallTypeData, right after the cells for the
1725     // return value type if there's one
1726 
1727     bind(profile_continue);
1728   }
1729 }
1730 
1731 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1732   assert_different_registers(mdp, ret, tmp, rbcp);
1733   if (ProfileInterpreter && MethodData::profile_return()) {
1734     Label profile_continue, done;
1735 
1736     test_method_data_pointer(mdp, profile_continue);
1737 
1738     if (MethodData::profile_return_jsr292_only()) {
1739       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1740 
1741       // If we don't profile all invoke bytecodes we must make sure
1742       // it's a bytecode we indeed profile. We can't go back to the
1743       // begining of the ProfileData we intend to update to check its
1744       // type because we're right after it and we don't known its
1745       // length
1746       Label do_profile;
1747       ldrb(rscratch1, Address(rbcp, 0));
1748       cmp(rscratch1, Bytecodes::_invokedynamic);
1749       br(Assembler::EQ, do_profile);
1750       cmp(rscratch1, Bytecodes::_invokehandle);
1751       br(Assembler::EQ, do_profile);
1752       get_method(tmp);
1753       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1754       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1755       br(Assembler::NE, profile_continue);
1756 
1757       bind(do_profile);
1758     }
1759 
1760     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1761     mov(tmp, ret);
1762     profile_obj_type(tmp, mdo_ret_addr);
1763 
1764     bind(profile_continue);
1765   }
1766 }
1767 
1768 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1769   if (ProfileInterpreter && MethodData::profile_parameters()) {
1770     Label profile_continue, done;
1771 
1772     test_method_data_pointer(mdp, profile_continue);
1773 
1774     // Load the offset of the area within the MDO used for
1775     // parameters. If it's negative we're not profiling any parameters
1776     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1777     tbnz(tmp1, 63, profile_continue);  // i.e. sign bit set
1778 
1779     // Compute a pointer to the area for parameters from the offset
1780     // and move the pointer to the slot for the last
1781     // parameters. Collect profiling from last parameter down.
1782     // mdo start + parameters offset + array length - 1
1783     add(mdp, mdp, tmp1);
1784     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1785     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1786 
1787     Label loop;
1788     bind(loop);
1789 
1790     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1791     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1792     int per_arg_scale = exact_log2(DataLayout::cell_size);
1793     add(rscratch1, mdp, off_base);
1794     add(rscratch2, mdp, type_base);
1795 
1796     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1797     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1798 
1799     // load offset on the stack from the slot for this parameter
1800     ldr(tmp2, arg_off);
1801     neg(tmp2, tmp2);
1802     // read the parameter from the local area
1803     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1804 
1805     // profile the parameter
1806     profile_obj_type(tmp2, arg_type);
1807 
1808     // go to next parameter
1809     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1810     br(Assembler::GE, loop);
1811 
1812     bind(profile_continue);
1813   }
1814 }