1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/osThread.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/thread.hpp"
  38 #include "services/threadService.hpp"
  39 #include "trace/tracing.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/preserveException.hpp"
  43 #ifdef TARGET_OS_FAMILY_linux
  44 # include "os_linux.inline.hpp"
  45 # include "thread_linux.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_solaris
  48 # include "os_solaris.inline.hpp"
  49 # include "thread_solaris.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_windows
  52 # include "os_windows.inline.hpp"
  53 # include "thread_windows.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_FAMILY_bsd
  56 # include "os_bsd.inline.hpp"
  57 # include "thread_bsd.inline.hpp"
  58 #endif
  59 
  60 #if defined(__GNUC__) && !defined(IA64)
  61   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  62   #define ATTR __attribute__((noinline))
  63 #else
  64   #define ATTR
  65 #endif
  66 
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 
  74 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  75   char* bytes = NULL;                                                      \
  76   int len = 0;                                                             \
  77   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  78   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
  79   if (klassname != NULL) {                                                 \
  80     bytes = (char*)klassname->bytes();                                     \
  81     len = klassname->utf8_length();                                        \
  82   }
  83 
  84 #ifndef USDT2
  85 
  86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  87   jlong, uintptr_t, char*, int);
  88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  89   jlong, uintptr_t, char*, int);
  90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  91   jlong, uintptr_t, char*, int);
  92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  93   jlong, uintptr_t, char*, int);
  94 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  95   jlong, uintptr_t, char*, int);
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  98   {                                                                        \
  99     if (DTraceMonitorProbes) {                                            \
 100       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 101       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 102                        (monitor), bytes, len, (millis));                   \
 103     }                                                                      \
 104   }
 105 
 106 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 107   {                                                                        \
 108     if (DTraceMonitorProbes) {                                            \
 109       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 110       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 111                        (uintptr_t)(monitor), bytes, len);                  \
 112     }                                                                      \
 113   }
 114 
 115 #else /* USDT2 */
 116 
 117 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
 118   {                                                                        \
 119     if (DTraceMonitorProbes) {                                            \
 120       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 121       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 122                        (monitor), bytes, len, (millis));                   \
 123     }                                                                      \
 124   }
 125 
 126 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 127 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 128 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 129 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 130 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 131 
 132 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 133   {                                                                        \
 134     if (DTraceMonitorProbes) {                                            \
 135       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 136       HOTSPOT_MONITOR_##probe(jtid,                                               \
 137                        (uintptr_t)(monitor), bytes, len);                  \
 138     }                                                                      \
 139   }
 140 
 141 #endif /* USDT2 */
 142 #else //  ndef DTRACE_ENABLED
 143 
 144 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
 145 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
 146 
 147 #endif // ndef DTRACE_ENABLED
 148 
 149 // Tunables ...
 150 // The knob* variables are effectively final.  Once set they should
 151 // never be modified hence.  Consider using __read_mostly with GCC.
 152 
 153 int ObjectMonitor::Knob_Verbose    = 0 ;
 154 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 155 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 156 static int Knob_HandOff            = 0 ;
 157 static int Knob_ReportSettings     = 0 ;
 158 
 159 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 160 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 161 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 162 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 163 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 164 static int Knob_SpinEarly          = 1 ;
 165 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 166 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 167 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 168 static int Knob_Bonus              = 100 ;     // spin success bonus
 169 static int Knob_BonusB             = 100 ;     // spin success bonus
 170 static int Knob_Penalty            = 200 ;     // spin failure penalty
 171 static int Knob_Poverty            = 1000 ;
 172 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 173 static int Knob_FixedSpin          = 0 ;
 174 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 175 static int Knob_UsePause           = 1 ;
 176 static int Knob_ExitPolicy         = 0 ;
 177 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 178 static int Knob_ResetEvent         = 0 ;
 179 static int BackOffMask             = 0 ;
 180 
 181 static int Knob_FastHSSEC          = 0 ;
 182 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 183 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 184 static volatile int InitDone       = 0 ;
 185 
 186 #define TrySpin TrySpin_VaryDuration
 187 
 188 // -----------------------------------------------------------------------------
 189 // Theory of operations -- Monitors lists, thread residency, etc:
 190 //
 191 // * A thread acquires ownership of a monitor by successfully
 192 //   CAS()ing the _owner field from null to non-null.
 193 //
 194 // * Invariant: A thread appears on at most one monitor list --
 195 //   cxq, EntryList or WaitSet -- at any one time.
 196 //
 197 // * Contending threads "push" themselves onto the cxq with CAS
 198 //   and then spin/park.
 199 //
 200 // * After a contending thread eventually acquires the lock it must
 201 //   dequeue itself from either the EntryList or the cxq.
 202 //
 203 // * The exiting thread identifies and unparks an "heir presumptive"
 204 //   tentative successor thread on the EntryList.  Critically, the
 205 //   exiting thread doesn't unlink the successor thread from the EntryList.
 206 //   After having been unparked, the wakee will recontend for ownership of
 207 //   the monitor.   The successor (wakee) will either acquire the lock or
 208 //   re-park itself.
 209 //
 210 //   Succession is provided for by a policy of competitive handoff.
 211 //   The exiting thread does _not_ grant or pass ownership to the
 212 //   successor thread.  (This is also referred to as "handoff" succession").
 213 //   Instead the exiting thread releases ownership and possibly wakes
 214 //   a successor, so the successor can (re)compete for ownership of the lock.
 215 //   If the EntryList is empty but the cxq is populated the exiting
 216 //   thread will drain the cxq into the EntryList.  It does so by
 217 //   by detaching the cxq (installing null with CAS) and folding
 218 //   the threads from the cxq into the EntryList.  The EntryList is
 219 //   doubly linked, while the cxq is singly linked because of the
 220 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 221 //
 222 // * Concurrency invariants:
 223 //
 224 //   -- only the monitor owner may access or mutate the EntryList.
 225 //      The mutex property of the monitor itself protects the EntryList
 226 //      from concurrent interference.
 227 //   -- Only the monitor owner may detach the cxq.
 228 //
 229 // * The monitor entry list operations avoid locks, but strictly speaking
 230 //   they're not lock-free.  Enter is lock-free, exit is not.
 231 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 232 //
 233 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 234 //   detaching thread.  This mechanism is immune from the ABA corruption.
 235 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 236 //
 237 // * Taken together, the cxq and the EntryList constitute or form a
 238 //   single logical queue of threads stalled trying to acquire the lock.
 239 //   We use two distinct lists to improve the odds of a constant-time
 240 //   dequeue operation after acquisition (in the ::enter() epilog) and
 241 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 242 //   A key desideratum is to minimize queue & monitor metadata manipulation
 243 //   that occurs while holding the monitor lock -- that is, we want to
 244 //   minimize monitor lock holds times.  Note that even a small amount of
 245 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 246 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 247 //   locks and monitor metadata.
 248 //
 249 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 250 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 251 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 252 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 253 //
 254 //   The EntryList is ordered by the prevailing queue discipline and
 255 //   can be organized in any convenient fashion, such as a doubly-linked list or
 256 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 257 //   to operate in constant-time.  If we need a priority queue then something akin
 258 //   to Solaris' sleepq would work nicely.  Viz.,
 259 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 260 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 261 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 262 //   EntryList accordingly.
 263 //
 264 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 265 //   somewhat similar to an elevator-scan.
 266 //
 267 // * The monitor synchronization subsystem avoids the use of native
 268 //   synchronization primitives except for the narrow platform-specific
 269 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 270 //   the semantics of park-unpark.  Put another way, this monitor implementation
 271 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 272 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 273 //   underlying OS manages the READY<->RUN transitions.
 274 //
 275 // * Waiting threads reside on the WaitSet list -- wait() puts
 276 //   the caller onto the WaitSet.
 277 //
 278 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 279 //   either the EntryList or cxq.  Subsequent exit() operations will
 280 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 281 //   it's likely the notifyee would simply impale itself on the lock held
 282 //   by the notifier.
 283 //
 284 // * An interesting alternative is to encode cxq as (List,LockByte) where
 285 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 286 //   variable, like _recursions, in the scheme.  The threads or Events that form
 287 //   the list would have to be aligned in 256-byte addresses.  A thread would
 288 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 289 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 290 //   Note that is is *not* word-tearing, but it does presume that full-word
 291 //   CAS operations are coherent with intermix with STB operations.  That's true
 292 //   on most common processors.
 293 //
 294 // * See also http://blogs.sun.com/dave
 295 
 296 
 297 // -----------------------------------------------------------------------------
 298 // Enter support
 299 
 300 bool ObjectMonitor::try_enter(Thread* THREAD) {
 301   if (THREAD != _owner) {
 302     if (THREAD->is_lock_owned ((address)_owner)) {
 303        assert(_recursions == 0, "internal state error");
 304        _owner = THREAD ;
 305        _recursions = 1 ;
 306        OwnerIsThread = 1 ;
 307        return true;
 308     }
 309     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 310       return false;
 311     }
 312     return true;
 313   } else {
 314     _recursions++;
 315     return true;
 316   }
 317 }
 318 
 319 void ATTR ObjectMonitor::enter(TRAPS) {
 320   // The following code is ordered to check the most common cases first
 321   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 322   Thread * const Self = THREAD ;
 323   void * cur ;
 324 
 325   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 326   if (cur == NULL) {
 327      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 328      assert (_recursions == 0   , "invariant") ;
 329      assert (_owner      == Self, "invariant") ;
 330      // CONSIDER: set or assert OwnerIsThread == 1
 331      return ;
 332   }
 333 
 334   if (cur == Self) {
 335      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 336      _recursions ++ ;
 337      return ;
 338   }
 339 
 340   if (Self->is_lock_owned ((address)cur)) {
 341     assert (_recursions == 0, "internal state error");
 342     _recursions = 1 ;
 343     // Commute owner from a thread-specific on-stack BasicLockObject address to
 344     // a full-fledged "Thread *".
 345     _owner = Self ;
 346     OwnerIsThread = 1 ;
 347     return ;
 348   }
 349 
 350   // We've encountered genuine contention.
 351   assert (Self->_Stalled == 0, "invariant") ;
 352   Self->_Stalled = intptr_t(this) ;
 353 
 354   // Try one round of spinning *before* enqueueing Self
 355   // and before going through the awkward and expensive state
 356   // transitions.  The following spin is strictly optional ...
 357   // Note that if we acquire the monitor from an initial spin
 358   // we forgo posting JVMTI events and firing DTRACE probes.
 359   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 360      assert (_owner == Self      , "invariant") ;
 361      assert (_recursions == 0    , "invariant") ;
 362      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 363      Self->_Stalled = 0 ;
 364      return ;
 365   }
 366 
 367   assert (_owner != Self          , "invariant") ;
 368   assert (_succ  != Self          , "invariant") ;
 369   assert (Self->is_Java_thread()  , "invariant") ;
 370   JavaThread * jt = (JavaThread *) Self ;
 371   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 372   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 373   assert (this->object() != NULL  , "invariant") ;
 374   assert (_count >= 0, "invariant") ;
 375 
 376   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 377   // Ensure the object-monitor relationship remains stable while there's contention.
 378   Atomic::inc_ptr(&_count);
 379 
 380   EventJavaMonitorEnter event;
 381 
 382   { // Change java thread status to indicate blocked on monitor enter.
 383     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 384 
 385     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 386     if (JvmtiExport::should_post_monitor_contended_enter()) {
 387       JvmtiExport::post_monitor_contended_enter(jt, this);
 388     }
 389 
 390     OSThreadContendState osts(Self->osthread());
 391     ThreadBlockInVM tbivm(jt);
 392 
 393     Self->set_current_pending_monitor(this);
 394 
 395     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 396     for (;;) {
 397       jt->set_suspend_equivalent();
 398       // cleared by handle_special_suspend_equivalent_condition()
 399       // or java_suspend_self()
 400 
 401       EnterI (THREAD) ;
 402 
 403       if (!ExitSuspendEquivalent(jt)) break ;
 404 
 405       //
 406       // We have acquired the contended monitor, but while we were
 407       // waiting another thread suspended us. We don't want to enter
 408       // the monitor while suspended because that would surprise the
 409       // thread that suspended us.
 410       //
 411           _recursions = 0 ;
 412       _succ = NULL ;
 413       exit (false, Self) ;
 414 
 415       jt->java_suspend_self();
 416     }
 417     Self->set_current_pending_monitor(NULL);
 418   }
 419 
 420   Atomic::dec_ptr(&_count);
 421   assert (_count >= 0, "invariant") ;
 422   Self->_Stalled = 0 ;
 423 
 424   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 425   assert (_recursions == 0     , "invariant") ;
 426   assert (_owner == Self       , "invariant") ;
 427   assert (_succ  != Self       , "invariant") ;
 428   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 429 
 430   // The thread -- now the owner -- is back in vm mode.
 431   // Report the glorious news via TI,DTrace and jvmstat.
 432   // The probe effect is non-trivial.  All the reportage occurs
 433   // while we hold the monitor, increasing the length of the critical
 434   // section.  Amdahl's parallel speedup law comes vividly into play.
 435   //
 436   // Another option might be to aggregate the events (thread local or
 437   // per-monitor aggregation) and defer reporting until a more opportune
 438   // time -- such as next time some thread encounters contention but has
 439   // yet to acquire the lock.  While spinning that thread could
 440   // spinning we could increment JVMStat counters, etc.
 441 
 442   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 443   if (JvmtiExport::should_post_monitor_contended_entered()) {
 444     JvmtiExport::post_monitor_contended_entered(jt, this);
 445   }
 446 
 447   if (event.should_commit()) {
 448     event.set_klass(((oop)this->object())->klass());
 449     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 450     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 451     event.commit();
 452   }
 453 
 454   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 455      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 456   }
 457 }
 458 
 459 
 460 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 461 // Callers must compensate as needed.
 462 
 463 int ObjectMonitor::TryLock (Thread * Self) {
 464    for (;;) {
 465       void * own = _owner ;
 466       if (own != NULL) return 0 ;
 467       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 468          // Either guarantee _recursions == 0 or set _recursions = 0.
 469          assert (_recursions == 0, "invariant") ;
 470          assert (_owner == Self, "invariant") ;
 471          // CONSIDER: set or assert that OwnerIsThread == 1
 472          return 1 ;
 473       }
 474       // The lock had been free momentarily, but we lost the race to the lock.
 475       // Interference -- the CAS failed.
 476       // We can either return -1 or retry.
 477       // Retry doesn't make as much sense because the lock was just acquired.
 478       if (true) return -1 ;
 479    }
 480 }
 481 
 482 void ATTR ObjectMonitor::EnterI (TRAPS) {
 483     Thread * Self = THREAD ;
 484     assert (Self->is_Java_thread(), "invariant") ;
 485     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 486 
 487     // Try the lock - TATAS
 488     if (TryLock (Self) > 0) {
 489         assert (_succ != Self              , "invariant") ;
 490         assert (_owner == Self             , "invariant") ;
 491         assert (_Responsible != Self       , "invariant") ;
 492         return ;
 493     }
 494 
 495     DeferredInitialize () ;
 496 
 497     // We try one round of spinning *before* enqueueing Self.
 498     //
 499     // If the _owner is ready but OFFPROC we could use a YieldTo()
 500     // operation to donate the remainder of this thread's quantum
 501     // to the owner.  This has subtle but beneficial affinity
 502     // effects.
 503 
 504     if (TrySpin (Self) > 0) {
 505         assert (_owner == Self        , "invariant") ;
 506         assert (_succ != Self         , "invariant") ;
 507         assert (_Responsible != Self  , "invariant") ;
 508         return ;
 509     }
 510 
 511     // The Spin failed -- Enqueue and park the thread ...
 512     assert (_succ  != Self            , "invariant") ;
 513     assert (_owner != Self            , "invariant") ;
 514     assert (_Responsible != Self      , "invariant") ;
 515 
 516     // Enqueue "Self" on ObjectMonitor's _cxq.
 517     //
 518     // Node acts as a proxy for Self.
 519     // As an aside, if were to ever rewrite the synchronization code mostly
 520     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 521     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 522     // as well as eliminate a subset of ABA issues.
 523     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 524     //
 525 
 526     ObjectWaiter node(Self) ;
 527     Self->_ParkEvent->reset() ;
 528     node._prev   = (ObjectWaiter *) 0xBAD ;
 529     node.TState  = ObjectWaiter::TS_CXQ ;
 530 
 531     // Push "Self" onto the front of the _cxq.
 532     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 533     // Note that spinning tends to reduce the rate at which threads
 534     // enqueue and dequeue on EntryList|cxq.
 535     ObjectWaiter * nxt ;
 536     for (;;) {
 537         node._next = nxt = _cxq ;
 538         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 539 
 540         // Interference - the CAS failed because _cxq changed.  Just retry.
 541         // As an optional optimization we retry the lock.
 542         if (TryLock (Self) > 0) {
 543             assert (_succ != Self         , "invariant") ;
 544             assert (_owner == Self        , "invariant") ;
 545             assert (_Responsible != Self  , "invariant") ;
 546             return ;
 547         }
 548     }
 549 
 550     // Check for cxq|EntryList edge transition to non-null.  This indicates
 551     // the onset of contention.  While contention persists exiting threads
 552     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 553     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 554     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 555     // arrange for one of the contending thread to use a timed park() operations
 556     // to detect and recover from the race.  (Stranding is form of progress failure
 557     // where the monitor is unlocked but all the contending threads remain parked).
 558     // That is, at least one of the contended threads will periodically poll _owner.
 559     // One of the contending threads will become the designated "Responsible" thread.
 560     // The Responsible thread uses a timed park instead of a normal indefinite park
 561     // operation -- it periodically wakes and checks for and recovers from potential
 562     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 563     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 564     // be responsible for a monitor.
 565     //
 566     // Currently, one of the contended threads takes on the added role of "Responsible".
 567     // A viable alternative would be to use a dedicated "stranding checker" thread
 568     // that periodically iterated over all the threads (or active monitors) and unparked
 569     // successors where there was risk of stranding.  This would help eliminate the
 570     // timer scalability issues we see on some platforms as we'd only have one thread
 571     // -- the checker -- parked on a timer.
 572 
 573     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 574         // Try to assume the role of responsible thread for the monitor.
 575         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 576         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 577     }
 578 
 579     // The lock have been released while this thread was occupied queueing
 580     // itself onto _cxq.  To close the race and avoid "stranding" and
 581     // progress-liveness failure we must resample-retry _owner before parking.
 582     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 583     // In this case the ST-MEMBAR is accomplished with CAS().
 584     //
 585     // TODO: Defer all thread state transitions until park-time.
 586     // Since state transitions are heavy and inefficient we'd like
 587     // to defer the state transitions until absolutely necessary,
 588     // and in doing so avoid some transitions ...
 589 
 590     TEVENT (Inflated enter - Contention) ;
 591     int nWakeups = 0 ;
 592     int RecheckInterval = 1 ;
 593 
 594     for (;;) {
 595 
 596         if (TryLock (Self) > 0) break ;
 597         assert (_owner != Self, "invariant") ;
 598 
 599         if ((SyncFlags & 2) && _Responsible == NULL) {
 600            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 601         }
 602 
 603         // park self
 604         if (_Responsible == Self || (SyncFlags & 1)) {
 605             TEVENT (Inflated enter - park TIMED) ;
 606             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 607             // Increase the RecheckInterval, but clamp the value.
 608             RecheckInterval *= 8 ;
 609             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 610         } else {
 611             TEVENT (Inflated enter - park UNTIMED) ;
 612             Self->_ParkEvent->park() ;
 613         }
 614 
 615         if (TryLock(Self) > 0) break ;
 616 
 617         // The lock is still contested.
 618         // Keep a tally of the # of futile wakeups.
 619         // Note that the counter is not protected by a lock or updated by atomics.
 620         // That is by design - we trade "lossy" counters which are exposed to
 621         // races during updates for a lower probe effect.
 622         TEVENT (Inflated enter - Futile wakeup) ;
 623         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 624            ObjectMonitor::_sync_FutileWakeups->inc() ;
 625         }
 626         ++ nWakeups ;
 627 
 628         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 629         // We can defer clearing _succ until after the spin completes
 630         // TrySpin() must tolerate being called with _succ == Self.
 631         // Try yet another round of adaptive spinning.
 632         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 633 
 634         // We can find that we were unpark()ed and redesignated _succ while
 635         // we were spinning.  That's harmless.  If we iterate and call park(),
 636         // park() will consume the event and return immediately and we'll
 637         // just spin again.  This pattern can repeat, leaving _succ to simply
 638         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 639         // Alternately, we can sample fired() here, and if set, forgo spinning
 640         // in the next iteration.
 641 
 642         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 643            Self->_ParkEvent->reset() ;
 644            OrderAccess::fence() ;
 645         }
 646         if (_succ == Self) _succ = NULL ;
 647 
 648         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 649         OrderAccess::fence() ;
 650     }
 651 
 652     // Egress :
 653     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 654     // Normally we'll find Self on the EntryList .
 655     // From the perspective of the lock owner (this thread), the
 656     // EntryList is stable and cxq is prepend-only.
 657     // The head of cxq is volatile but the interior is stable.
 658     // In addition, Self.TState is stable.
 659 
 660     assert (_owner == Self      , "invariant") ;
 661     assert (object() != NULL    , "invariant") ;
 662     // I'd like to write:
 663     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 664     // but as we're at a safepoint that's not safe.
 665 
 666     UnlinkAfterAcquire (Self, &node) ;
 667     if (_succ == Self) _succ = NULL ;
 668 
 669     assert (_succ != Self, "invariant") ;
 670     if (_Responsible == Self) {
 671         _Responsible = NULL ;
 672         OrderAccess::fence(); // Dekker pivot-point
 673 
 674         // We may leave threads on cxq|EntryList without a designated
 675         // "Responsible" thread.  This is benign.  When this thread subsequently
 676         // exits the monitor it can "see" such preexisting "old" threads --
 677         // threads that arrived on the cxq|EntryList before the fence, above --
 678         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 679         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 680         // non-null and elect a new "Responsible" timer thread.
 681         //
 682         // This thread executes:
 683         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 684         //    LD cxq|EntryList               (in subsequent exit)
 685         //
 686         // Entering threads in the slow/contended path execute:
 687         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 688         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 689         //
 690         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 691         // exit operation from floating above the ST Responsible=null.
 692     }
 693 
 694     // We've acquired ownership with CAS().
 695     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 696     // But since the CAS() this thread may have also stored into _succ,
 697     // EntryList, cxq or Responsible.  These meta-data updates must be
 698     // visible __before this thread subsequently drops the lock.
 699     // Consider what could occur if we didn't enforce this constraint --
 700     // STs to monitor meta-data and user-data could reorder with (become
 701     // visible after) the ST in exit that drops ownership of the lock.
 702     // Some other thread could then acquire the lock, but observe inconsistent
 703     // or old monitor meta-data and heap data.  That violates the JMM.
 704     // To that end, the 1-0 exit() operation must have at least STST|LDST
 705     // "release" barrier semantics.  Specifically, there must be at least a
 706     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 707     // the lock.   The barrier ensures that changes to monitor meta-data and data
 708     // protected by the lock will be visible before we release the lock, and
 709     // therefore before some other thread (CPU) has a chance to acquire the lock.
 710     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 711     //
 712     // Critically, any prior STs to _succ or EntryList must be visible before
 713     // the ST of null into _owner in the *subsequent* (following) corresponding
 714     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 715     // execute a serializing instruction.
 716 
 717     if (SyncFlags & 8) {
 718        OrderAccess::fence() ;
 719     }
 720     return ;
 721 }
 722 
 723 // ReenterI() is a specialized inline form of the latter half of the
 724 // contended slow-path from EnterI().  We use ReenterI() only for
 725 // monitor reentry in wait().
 726 //
 727 // In the future we should reconcile EnterI() and ReenterI(), adding
 728 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 729 // loop accordingly.
 730 
 731 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 732     assert (Self != NULL                , "invariant") ;
 733     assert (SelfNode != NULL            , "invariant") ;
 734     assert (SelfNode->_thread == Self   , "invariant") ;
 735     assert (_waiters > 0                , "invariant") ;
 736     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 737     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 738     JavaThread * jt = (JavaThread *) Self ;
 739 
 740     int nWakeups = 0 ;
 741     for (;;) {
 742         ObjectWaiter::TStates v = SelfNode->TState ;
 743         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 744         assert    (_owner != Self, "invariant") ;
 745 
 746         if (TryLock (Self) > 0) break ;
 747         if (TrySpin (Self) > 0) break ;
 748 
 749         TEVENT (Wait Reentry - parking) ;
 750 
 751         // State transition wrappers around park() ...
 752         // ReenterI() wisely defers state transitions until
 753         // it's clear we must park the thread.
 754         {
 755            OSThreadContendState osts(Self->osthread());
 756            ThreadBlockInVM tbivm(jt);
 757 
 758            // cleared by handle_special_suspend_equivalent_condition()
 759            // or java_suspend_self()
 760            jt->set_suspend_equivalent();
 761            if (SyncFlags & 1) {
 762               Self->_ParkEvent->park ((jlong)1000) ;
 763            } else {
 764               Self->_ParkEvent->park () ;
 765            }
 766 
 767            // were we externally suspended while we were waiting?
 768            for (;;) {
 769               if (!ExitSuspendEquivalent (jt)) break ;
 770               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 771               jt->java_suspend_self();
 772               jt->set_suspend_equivalent();
 773            }
 774         }
 775 
 776         // Try again, but just so we distinguish between futile wakeups and
 777         // successful wakeups.  The following test isn't algorithmically
 778         // necessary, but it helps us maintain sensible statistics.
 779         if (TryLock(Self) > 0) break ;
 780 
 781         // The lock is still contested.
 782         // Keep a tally of the # of futile wakeups.
 783         // Note that the counter is not protected by a lock or updated by atomics.
 784         // That is by design - we trade "lossy" counters which are exposed to
 785         // races during updates for a lower probe effect.
 786         TEVENT (Wait Reentry - futile wakeup) ;
 787         ++ nWakeups ;
 788 
 789         // Assuming this is not a spurious wakeup we'll normally
 790         // find that _succ == Self.
 791         if (_succ == Self) _succ = NULL ;
 792 
 793         // Invariant: after clearing _succ a contending thread
 794         // *must* retry  _owner before parking.
 795         OrderAccess::fence() ;
 796 
 797         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 798           ObjectMonitor::_sync_FutileWakeups->inc() ;
 799         }
 800     }
 801 
 802     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 803     // Normally we'll find Self on the EntryList.
 804     // Unlinking from the EntryList is constant-time and atomic-free.
 805     // From the perspective of the lock owner (this thread), the
 806     // EntryList is stable and cxq is prepend-only.
 807     // The head of cxq is volatile but the interior is stable.
 808     // In addition, Self.TState is stable.
 809 
 810     assert (_owner == Self, "invariant") ;
 811     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 812     UnlinkAfterAcquire (Self, SelfNode) ;
 813     if (_succ == Self) _succ = NULL ;
 814     assert (_succ != Self, "invariant") ;
 815     SelfNode->TState = ObjectWaiter::TS_RUN ;
 816     OrderAccess::fence() ;      // see comments at the end of EnterI()
 817 }
 818 
 819 // after the thread acquires the lock in ::enter().  Equally, we could defer
 820 // unlinking the thread until ::exit()-time.
 821 
 822 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 823 {
 824     assert (_owner == Self, "invariant") ;
 825     assert (SelfNode->_thread == Self, "invariant") ;
 826 
 827     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 828         // Normal case: remove Self from the DLL EntryList .
 829         // This is a constant-time operation.
 830         ObjectWaiter * nxt = SelfNode->_next ;
 831         ObjectWaiter * prv = SelfNode->_prev ;
 832         if (nxt != NULL) nxt->_prev = prv ;
 833         if (prv != NULL) prv->_next = nxt ;
 834         if (SelfNode == _EntryList ) _EntryList = nxt ;
 835         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 836         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 837         TEVENT (Unlink from EntryList) ;
 838     } else {
 839         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 840         // Inopportune interleaving -- Self is still on the cxq.
 841         // This usually means the enqueue of self raced an exiting thread.
 842         // Normally we'll find Self near the front of the cxq, so
 843         // dequeueing is typically fast.  If needbe we can accelerate
 844         // this with some MCS/CHL-like bidirectional list hints and advisory
 845         // back-links so dequeueing from the interior will normally operate
 846         // in constant-time.
 847         // Dequeue Self from either the head (with CAS) or from the interior
 848         // with a linear-time scan and normal non-atomic memory operations.
 849         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 850         // and then unlink Self from EntryList.  We have to drain eventually,
 851         // so it might as well be now.
 852 
 853         ObjectWaiter * v = _cxq ;
 854         assert (v != NULL, "invariant") ;
 855         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 856             // The CAS above can fail from interference IFF a "RAT" arrived.
 857             // In that case Self must be in the interior and can no longer be
 858             // at the head of cxq.
 859             if (v == SelfNode) {
 860                 assert (_cxq != v, "invariant") ;
 861                 v = _cxq ;          // CAS above failed - start scan at head of list
 862             }
 863             ObjectWaiter * p ;
 864             ObjectWaiter * q = NULL ;
 865             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 866                 q = p ;
 867                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 868             }
 869             assert (v != SelfNode,  "invariant") ;
 870             assert (p == SelfNode,  "Node not found on cxq") ;
 871             assert (p != _cxq,      "invariant") ;
 872             assert (q != NULL,      "invariant") ;
 873             assert (q->_next == p,  "invariant") ;
 874             q->_next = p->_next ;
 875         }
 876         TEVENT (Unlink from cxq) ;
 877     }
 878 
 879     // Diagnostic hygiene ...
 880     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 881     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 882     SelfNode->TState = ObjectWaiter::TS_RUN ;
 883 }
 884 
 885 // -----------------------------------------------------------------------------
 886 // Exit support
 887 //
 888 // exit()
 889 // ~~~~~~
 890 // Note that the collector can't reclaim the objectMonitor or deflate
 891 // the object out from underneath the thread calling ::exit() as the
 892 // thread calling ::exit() never transitions to a stable state.
 893 // This inhibits GC, which in turn inhibits asynchronous (and
 894 // inopportune) reclamation of "this".
 895 //
 896 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 897 // There's one exception to the claim above, however.  EnterI() can call
 898 // exit() to drop a lock if the acquirer has been externally suspended.
 899 // In that case exit() is called with _thread_state as _thread_blocked,
 900 // but the monitor's _count field is > 0, which inhibits reclamation.
 901 //
 902 // 1-0 exit
 903 // ~~~~~~~~
 904 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 905 // the fast-path operators have been optimized so the common ::exit()
 906 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 907 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 908 // greatly improves latency -- MEMBAR and CAS having considerable local
 909 // latency on modern processors -- but at the cost of "stranding".  Absent the
 910 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 911 // ::enter() path, resulting in the entering thread being stranding
 912 // and a progress-liveness failure.   Stranding is extremely rare.
 913 // We use timers (timed park operations) & periodic polling to detect
 914 // and recover from stranding.  Potentially stranded threads periodically
 915 // wake up and poll the lock.  See the usage of the _Responsible variable.
 916 //
 917 // The CAS() in enter provides for safety and exclusion, while the CAS or
 918 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 919 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 920 // We detect and recover from stranding with timers.
 921 //
 922 // If a thread transiently strands it'll park until (a) another
 923 // thread acquires the lock and then drops the lock, at which time the
 924 // exiting thread will notice and unpark the stranded thread, or, (b)
 925 // the timer expires.  If the lock is high traffic then the stranding latency
 926 // will be low due to (a).  If the lock is low traffic then the odds of
 927 // stranding are lower, although the worst-case stranding latency
 928 // is longer.  Critically, we don't want to put excessive load in the
 929 // platform's timer subsystem.  We want to minimize both the timer injection
 930 // rate (timers created/sec) as well as the number of timers active at
 931 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 932 // the integral of the # of active timers at any instant over time).
 933 // Both impinge on OS scalability.  Given that, at most one thread parked on
 934 // a monitor will use a timer.
 935 
 936 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 937    Thread * Self = THREAD ;
 938    if (THREAD != _owner) {
 939      if (THREAD->is_lock_owned((address) _owner)) {
 940        // Transmute _owner from a BasicLock pointer to a Thread address.
 941        // We don't need to hold _mutex for this transition.
 942        // Non-null to Non-null is safe as long as all readers can
 943        // tolerate either flavor.
 944        assert (_recursions == 0, "invariant") ;
 945        _owner = THREAD ;
 946        _recursions = 0 ;
 947        OwnerIsThread = 1 ;
 948      } else {
 949        // NOTE: we need to handle unbalanced monitor enter/exit
 950        // in native code by throwing an exception.
 951        // TODO: Throw an IllegalMonitorStateException ?
 952        TEVENT (Exit - Throw IMSX) ;
 953        assert(false, "Non-balanced monitor enter/exit!");
 954        if (false) {
 955           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 956        }
 957        return;
 958      }
 959    }
 960 
 961    if (_recursions != 0) {
 962      _recursions--;        // this is simple recursive enter
 963      TEVENT (Inflated exit - recursive) ;
 964      return ;
 965    }
 966 
 967    // Invariant: after setting Responsible=null an thread must execute
 968    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 969    if ((SyncFlags & 4) == 0) {
 970       _Responsible = NULL ;
 971    }
 972 
 973 #if INCLUDE_TRACE
 974    // get the owner's thread id for the MonitorEnter event
 975    // if it is enabled and the thread isn't suspended
 976    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 977      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 978    }
 979 #endif
 980 
 981    for (;;) {
 982       assert (THREAD == _owner, "invariant") ;
 983 
 984 
 985       if (Knob_ExitPolicy == 0) {
 986          // release semantics: prior loads and stores from within the critical section
 987          // must not float (reorder) past the following store that drops the lock.
 988          // On SPARC that requires MEMBAR #loadstore|#storestore.
 989          // But of course in TSO #loadstore|#storestore is not required.
 990          // I'd like to write one of the following:
 991          // A.  OrderAccess::release() ; _owner = NULL
 992          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 993          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 994          // store into a _dummy variable.  That store is not needed, but can result
 995          // in massive wasteful coherency traffic on classic SMP systems.
 996          // Instead, I use release_store(), which is implemented as just a simple
 997          // ST on x64, x86 and SPARC.
 998          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 999          OrderAccess::storeload() ;                         // See if we need to wake a successor
1000          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1001             TEVENT (Inflated exit - simple egress) ;
1002             return ;
1003          }
1004          TEVENT (Inflated exit - complex egress) ;
1005 
1006          // Normally the exiting thread is responsible for ensuring succession,
1007          // but if other successors are ready or other entering threads are spinning
1008          // then this thread can simply store NULL into _owner and exit without
1009          // waking a successor.  The existence of spinners or ready successors
1010          // guarantees proper succession (liveness).  Responsibility passes to the
1011          // ready or running successors.  The exiting thread delegates the duty.
1012          // More precisely, if a successor already exists this thread is absolved
1013          // of the responsibility of waking (unparking) one.
1014          //
1015          // The _succ variable is critical to reducing futile wakeup frequency.
1016          // _succ identifies the "heir presumptive" thread that has been made
1017          // ready (unparked) but that has not yet run.  We need only one such
1018          // successor thread to guarantee progress.
1019          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1020          // section 3.3 "Futile Wakeup Throttling" for details.
1021          //
1022          // Note that spinners in Enter() also set _succ non-null.
1023          // In the current implementation spinners opportunistically set
1024          // _succ so that exiting threads might avoid waking a successor.
1025          // Another less appealing alternative would be for the exiting thread
1026          // to drop the lock and then spin briefly to see if a spinner managed
1027          // to acquire the lock.  If so, the exiting thread could exit
1028          // immediately without waking a successor, otherwise the exiting
1029          // thread would need to dequeue and wake a successor.
1030          // (Note that we'd need to make the post-drop spin short, but no
1031          // shorter than the worst-case round-trip cache-line migration time.
1032          // The dropped lock needs to become visible to the spinner, and then
1033          // the acquisition of the lock by the spinner must become visible to
1034          // the exiting thread).
1035          //
1036 
1037          // It appears that an heir-presumptive (successor) must be made ready.
1038          // Only the current lock owner can manipulate the EntryList or
1039          // drain _cxq, so we need to reacquire the lock.  If we fail
1040          // to reacquire the lock the responsibility for ensuring succession
1041          // falls to the new owner.
1042          //
1043          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1044             return ;
1045          }
1046          TEVENT (Exit - Reacquired) ;
1047       } else {
1048          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1049             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1050             OrderAccess::storeload() ;
1051             // Ratify the previously observed values.
1052             if (_cxq == NULL || _succ != NULL) {
1053                 TEVENT (Inflated exit - simple egress) ;
1054                 return ;
1055             }
1056 
1057             // inopportune interleaving -- the exiting thread (this thread)
1058             // in the fast-exit path raced an entering thread in the slow-enter
1059             // path.
1060             // We have two choices:
1061             // A.  Try to reacquire the lock.
1062             //     If the CAS() fails return immediately, otherwise
1063             //     we either restart/rerun the exit operation, or simply
1064             //     fall-through into the code below which wakes a successor.
1065             // B.  If the elements forming the EntryList|cxq are TSM
1066             //     we could simply unpark() the lead thread and return
1067             //     without having set _succ.
1068             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1069                TEVENT (Inflated exit - reacquired succeeded) ;
1070                return ;
1071             }
1072             TEVENT (Inflated exit - reacquired failed) ;
1073          } else {
1074             TEVENT (Inflated exit - complex egress) ;
1075          }
1076       }
1077 
1078       guarantee (_owner == THREAD, "invariant") ;
1079 
1080       ObjectWaiter * w = NULL ;
1081       int QMode = Knob_QMode ;
1082 
1083       if (QMode == 2 && _cxq != NULL) {
1084           // QMode == 2 : cxq has precedence over EntryList.
1085           // Try to directly wake a successor from the cxq.
1086           // If successful, the successor will need to unlink itself from cxq.
1087           w = _cxq ;
1088           assert (w != NULL, "invariant") ;
1089           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1090           ExitEpilog (Self, w) ;
1091           return ;
1092       }
1093 
1094       if (QMode == 3 && _cxq != NULL) {
1095           // Aggressively drain cxq into EntryList at the first opportunity.
1096           // This policy ensure that recently-run threads live at the head of EntryList.
1097           // Drain _cxq into EntryList - bulk transfer.
1098           // First, detach _cxq.
1099           // The following loop is tantamount to: w = swap (&cxq, NULL)
1100           w = _cxq ;
1101           for (;;) {
1102              assert (w != NULL, "Invariant") ;
1103              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1104              if (u == w) break ;
1105              w = u ;
1106           }
1107           assert (w != NULL              , "invariant") ;
1108 
1109           ObjectWaiter * q = NULL ;
1110           ObjectWaiter * p ;
1111           for (p = w ; p != NULL ; p = p->_next) {
1112               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1113               p->TState = ObjectWaiter::TS_ENTER ;
1114               p->_prev = q ;
1115               q = p ;
1116           }
1117 
1118           // Append the RATs to the EntryList
1119           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1120           ObjectWaiter * Tail ;
1121           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1122           if (Tail == NULL) {
1123               _EntryList = w ;
1124           } else {
1125               Tail->_next = w ;
1126               w->_prev = Tail ;
1127           }
1128 
1129           // Fall thru into code that tries to wake a successor from EntryList
1130       }
1131 
1132       if (QMode == 4 && _cxq != NULL) {
1133           // Aggressively drain cxq into EntryList at the first opportunity.
1134           // This policy ensure that recently-run threads live at the head of EntryList.
1135 
1136           // Drain _cxq into EntryList - bulk transfer.
1137           // First, detach _cxq.
1138           // The following loop is tantamount to: w = swap (&cxq, NULL)
1139           w = _cxq ;
1140           for (;;) {
1141              assert (w != NULL, "Invariant") ;
1142              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1143              if (u == w) break ;
1144              w = u ;
1145           }
1146           assert (w != NULL              , "invariant") ;
1147 
1148           ObjectWaiter * q = NULL ;
1149           ObjectWaiter * p ;
1150           for (p = w ; p != NULL ; p = p->_next) {
1151               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1152               p->TState = ObjectWaiter::TS_ENTER ;
1153               p->_prev = q ;
1154               q = p ;
1155           }
1156 
1157           // Prepend the RATs to the EntryList
1158           if (_EntryList != NULL) {
1159               q->_next = _EntryList ;
1160               _EntryList->_prev = q ;
1161           }
1162           _EntryList = w ;
1163 
1164           // Fall thru into code that tries to wake a successor from EntryList
1165       }
1166 
1167       w = _EntryList  ;
1168       if (w != NULL) {
1169           // I'd like to write: guarantee (w->_thread != Self).
1170           // But in practice an exiting thread may find itself on the EntryList.
1171           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1172           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1173           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1174           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1175           // release the lock "O".  T2 resumes immediately after the ST of null into
1176           // _owner, above.  T2 notices that the EntryList is populated, so it
1177           // reacquires the lock and then finds itself on the EntryList.
1178           // Given all that, we have to tolerate the circumstance where "w" is
1179           // associated with Self.
1180           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1181           ExitEpilog (Self, w) ;
1182           return ;
1183       }
1184 
1185       // If we find that both _cxq and EntryList are null then just
1186       // re-run the exit protocol from the top.
1187       w = _cxq ;
1188       if (w == NULL) continue ;
1189 
1190       // Drain _cxq into EntryList - bulk transfer.
1191       // First, detach _cxq.
1192       // The following loop is tantamount to: w = swap (&cxq, NULL)
1193       for (;;) {
1194           assert (w != NULL, "Invariant") ;
1195           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1196           if (u == w) break ;
1197           w = u ;
1198       }
1199       TEVENT (Inflated exit - drain cxq into EntryList) ;
1200 
1201       assert (w != NULL              , "invariant") ;
1202       assert (_EntryList  == NULL    , "invariant") ;
1203 
1204       // Convert the LIFO SLL anchored by _cxq into a DLL.
1205       // The list reorganization step operates in O(LENGTH(w)) time.
1206       // It's critical that this step operate quickly as
1207       // "Self" still holds the outer-lock, restricting parallelism
1208       // and effectively lengthening the critical section.
1209       // Invariant: s chases t chases u.
1210       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1211       // we have faster access to the tail.
1212 
1213       if (QMode == 1) {
1214          // QMode == 1 : drain cxq to EntryList, reversing order
1215          // We also reverse the order of the list.
1216          ObjectWaiter * s = NULL ;
1217          ObjectWaiter * t = w ;
1218          ObjectWaiter * u = NULL ;
1219          while (t != NULL) {
1220              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1221              t->TState = ObjectWaiter::TS_ENTER ;
1222              u = t->_next ;
1223              t->_prev = u ;
1224              t->_next = s ;
1225              s = t;
1226              t = u ;
1227          }
1228          _EntryList  = s ;
1229          assert (s != NULL, "invariant") ;
1230       } else {
1231          // QMode == 0 or QMode == 2
1232          _EntryList = w ;
1233          ObjectWaiter * q = NULL ;
1234          ObjectWaiter * p ;
1235          for (p = w ; p != NULL ; p = p->_next) {
1236              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1237              p->TState = ObjectWaiter::TS_ENTER ;
1238              p->_prev = q ;
1239              q = p ;
1240          }
1241       }
1242 
1243       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1244       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1245 
1246       // See if we can abdicate to a spinner instead of waking a thread.
1247       // A primary goal of the implementation is to reduce the
1248       // context-switch rate.
1249       if (_succ != NULL) continue;
1250 
1251       w = _EntryList  ;
1252       if (w != NULL) {
1253           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1254           ExitEpilog (Self, w) ;
1255           return ;
1256       }
1257    }
1258 }
1259 
1260 // ExitSuspendEquivalent:
1261 // A faster alternate to handle_special_suspend_equivalent_condition()
1262 //
1263 // handle_special_suspend_equivalent_condition() unconditionally
1264 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1265 // operations have high latency.  Note that in ::enter() we call HSSEC
1266 // while holding the monitor, so we effectively lengthen the critical sections.
1267 //
1268 // There are a number of possible solutions:
1269 //
1270 // A.  To ameliorate the problem we might also defer state transitions
1271 //     to as late as possible -- just prior to parking.
1272 //     Given that, we'd call HSSEC after having returned from park(),
1273 //     but before attempting to acquire the monitor.  This is only a
1274 //     partial solution.  It avoids calling HSSEC while holding the
1275 //     monitor (good), but it still increases successor reacquisition latency --
1276 //     the interval between unparking a successor and the time the successor
1277 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1278 //     If we use this technique we can also avoid EnterI()-exit() loop
1279 //     in ::enter() where we iteratively drop the lock and then attempt
1280 //     to reacquire it after suspending.
1281 //
1282 // B.  In the future we might fold all the suspend bits into a
1283 //     composite per-thread suspend flag and then update it with CAS().
1284 //     Alternately, a Dekker-like mechanism with multiple variables
1285 //     would suffice:
1286 //       ST Self->_suspend_equivalent = false
1287 //       MEMBAR
1288 //       LD Self_>_suspend_flags
1289 //
1290 
1291 
1292 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1293    int Mode = Knob_FastHSSEC ;
1294    if (Mode && !jSelf->is_external_suspend()) {
1295       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1296       jSelf->clear_suspend_equivalent() ;
1297       if (2 == Mode) OrderAccess::storeload() ;
1298       if (!jSelf->is_external_suspend()) return false ;
1299       // We raced a suspension -- fall thru into the slow path
1300       TEVENT (ExitSuspendEquivalent - raced) ;
1301       jSelf->set_suspend_equivalent() ;
1302    }
1303    return jSelf->handle_special_suspend_equivalent_condition() ;
1304 }
1305 
1306 
1307 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1308    assert (_owner == Self, "invariant") ;
1309 
1310    // Exit protocol:
1311    // 1. ST _succ = wakee
1312    // 2. membar #loadstore|#storestore;
1313    // 2. ST _owner = NULL
1314    // 3. unpark(wakee)
1315 
1316    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1317    ParkEvent * Trigger = Wakee->_event ;
1318 
1319    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1320    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1321    // out-of-scope (non-extant).
1322    Wakee  = NULL ;
1323 
1324    // Drop the lock
1325    OrderAccess::release_store_ptr (&_owner, NULL) ;
1326    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1327 
1328    if (SafepointSynchronize::do_call_back()) {
1329       TEVENT (unpark before SAFEPOINT) ;
1330    }
1331 
1332    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1333    Trigger->unpark() ;
1334 
1335    // Maintain stats and report events to JVMTI
1336    if (ObjectMonitor::_sync_Parks != NULL) {
1337       ObjectMonitor::_sync_Parks->inc() ;
1338    }
1339 }
1340 
1341 
1342 // -----------------------------------------------------------------------------
1343 // Class Loader deadlock handling.
1344 //
1345 // complete_exit exits a lock returning recursion count
1346 // complete_exit/reenter operate as a wait without waiting
1347 // complete_exit requires an inflated monitor
1348 // The _owner field is not always the Thread addr even with an
1349 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1350 // thread due to contention.
1351 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1352    Thread * const Self = THREAD;
1353    assert(Self->is_Java_thread(), "Must be Java thread!");
1354    JavaThread *jt = (JavaThread *)THREAD;
1355 
1356    DeferredInitialize();
1357 
1358    if (THREAD != _owner) {
1359     if (THREAD->is_lock_owned ((address)_owner)) {
1360        assert(_recursions == 0, "internal state error");
1361        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1362        _recursions = 0 ;
1363        OwnerIsThread = 1 ;
1364     }
1365    }
1366 
1367    guarantee(Self == _owner, "complete_exit not owner");
1368    intptr_t save = _recursions; // record the old recursion count
1369    _recursions = 0;        // set the recursion level to be 0
1370    exit (true, Self) ;           // exit the monitor
1371    guarantee (_owner != Self, "invariant");
1372    return save;
1373 }
1374 
1375 // reenter() enters a lock and sets recursion count
1376 // complete_exit/reenter operate as a wait without waiting
1377 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1378    Thread * const Self = THREAD;
1379    assert(Self->is_Java_thread(), "Must be Java thread!");
1380    JavaThread *jt = (JavaThread *)THREAD;
1381 
1382    guarantee(_owner != Self, "reenter already owner");
1383    enter (THREAD);       // enter the monitor
1384    guarantee (_recursions == 0, "reenter recursion");
1385    _recursions = recursions;
1386    return;
1387 }
1388 
1389 
1390 // -----------------------------------------------------------------------------
1391 // A macro is used below because there may already be a pending
1392 // exception which should not abort the execution of the routines
1393 // which use this (which is why we don't put this into check_slow and
1394 // call it with a CHECK argument).
1395 
1396 #define CHECK_OWNER()                                                             \
1397   do {                                                                            \
1398     if (THREAD != _owner) {                                                       \
1399       if (THREAD->is_lock_owned((address) _owner)) {                              \
1400         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1401         _recursions = 0;                                                          \
1402         OwnerIsThread = 1 ;                                                       \
1403       } else {                                                                    \
1404         TEVENT (Throw IMSX) ;                                                     \
1405         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1406       }                                                                           \
1407     }                                                                             \
1408   } while (false)
1409 
1410 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1411 // TODO-FIXME: remove check_slow() -- it's likely dead.
1412 
1413 void ObjectMonitor::check_slow(TRAPS) {
1414   TEVENT (check_slow - throw IMSX) ;
1415   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1416   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1417 }
1418 
1419 static int Adjust (volatile int * adr, int dx) {
1420   int v ;
1421   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1422   return v ;
1423 }
1424 
1425 // helper method for posting a monitor wait event
1426 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1427                                                            jlong notifier_tid,
1428                                                            jlong timeout,
1429                                                            bool timedout) {
1430   event->set_klass(((oop)this->object())->klass());
1431   event->set_timeout((TYPE_ULONG)timeout);
1432   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1433   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1434   event->set_timedOut((TYPE_BOOLEAN)timedout);
1435   event->commit();
1436 }
1437 
1438 // -----------------------------------------------------------------------------
1439 // Wait/Notify/NotifyAll
1440 //
1441 // Note: a subset of changes to ObjectMonitor::wait()
1442 // will need to be replicated in complete_exit above
1443 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1444    Thread * const Self = THREAD ;
1445    assert(Self->is_Java_thread(), "Must be Java thread!");
1446    JavaThread *jt = (JavaThread *)THREAD;
1447 
1448    DeferredInitialize () ;
1449 
1450    // Throw IMSX or IEX.
1451    CHECK_OWNER();
1452 
1453    EventJavaMonitorWait event;
1454 
1455    // check for a pending interrupt
1456    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1457      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1458      if (JvmtiExport::should_post_monitor_waited()) {
1459         // Note: 'false' parameter is passed here because the
1460         // wait was not timed out due to thread interrupt.
1461         JvmtiExport::post_monitor_waited(jt, this, false);
1462      }
1463      if (event.should_commit()) {
1464        post_monitor_wait_event(&event, 0, millis, false);
1465      }
1466      TEVENT (Wait - Throw IEX) ;
1467      THROW(vmSymbols::java_lang_InterruptedException());
1468      return ;
1469    }
1470 
1471    TEVENT (Wait) ;
1472 
1473    assert (Self->_Stalled == 0, "invariant") ;
1474    Self->_Stalled = intptr_t(this) ;
1475    jt->set_current_waiting_monitor(this);
1476 
1477    // create a node to be put into the queue
1478    // Critically, after we reset() the event but prior to park(), we must check
1479    // for a pending interrupt.
1480    ObjectWaiter node(Self);
1481    node.TState = ObjectWaiter::TS_WAIT ;
1482    Self->_ParkEvent->reset() ;
1483    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1484 
1485    // Enter the waiting queue, which is a circular doubly linked list in this case
1486    // but it could be a priority queue or any data structure.
1487    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1488    // by the the owner of the monitor *except* in the case where park()
1489    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1490    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1491 
1492    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1493    AddWaiter (&node) ;
1494    Thread::SpinRelease (&_WaitSetLock) ;
1495 
1496    if ((SyncFlags & 4) == 0) {
1497       _Responsible = NULL ;
1498    }
1499    intptr_t save = _recursions; // record the old recursion count
1500    _waiters++;                  // increment the number of waiters
1501    _recursions = 0;             // set the recursion level to be 1
1502    exit (true, Self) ;                    // exit the monitor
1503    guarantee (_owner != Self, "invariant") ;
1504 
1505    // As soon as the ObjectMonitor's ownership is dropped in the exit()
1506    // call above, another thread can enter() the ObjectMonitor, do the
1507    // notify(), and exit() the ObjectMonitor. If the other thread's
1508    // exit() call chooses this thread as the successor and the unpark()
1509    // call happens to occur while this thread is posting a
1510    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1511    // handler using RawMonitors and consuming the unpark().
1512    //
1513    // To avoid the problem, we re-post the event. This does no harm
1514    // even if the original unpark() was not consumed because we are the
1515    // chosen successor for this monitor.
1516    if (node._notified != 0 && _succ == Self) {
1517       node._event->unpark();
1518    }
1519 
1520    // The thread is on the WaitSet list - now park() it.
1521    // On MP systems it's conceivable that a brief spin before we park
1522    // could be profitable.
1523    //
1524    // TODO-FIXME: change the following logic to a loop of the form
1525    //   while (!timeout && !interrupted && _notified == 0) park()
1526 
1527    int ret = OS_OK ;
1528    int WasNotified = 0 ;
1529    { // State transition wrappers
1530      OSThread* osthread = Self->osthread();
1531      OSThreadWaitState osts(osthread, true);
1532      {
1533        ThreadBlockInVM tbivm(jt);
1534        // Thread is in thread_blocked state and oop access is unsafe.
1535        jt->set_suspend_equivalent();
1536 
1537        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1538            // Intentionally empty
1539        } else
1540        if (node._notified == 0) {
1541          if (millis <= 0) {
1542             Self->_ParkEvent->park () ;
1543          } else {
1544             ret = Self->_ParkEvent->park (millis) ;
1545          }
1546        }
1547 
1548        // were we externally suspended while we were waiting?
1549        if (ExitSuspendEquivalent (jt)) {
1550           // TODO-FIXME: add -- if succ == Self then succ = null.
1551           jt->java_suspend_self();
1552        }
1553 
1554      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1555 
1556 
1557      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1558      // from the WaitSet to the EntryList.
1559      // See if we need to remove Node from the WaitSet.
1560      // We use double-checked locking to avoid grabbing _WaitSetLock
1561      // if the thread is not on the wait queue.
1562      //
1563      // Note that we don't need a fence before the fetch of TState.
1564      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1565      // written by the is thread. (perhaps the fetch might even be satisfied
1566      // by a look-aside into the processor's own store buffer, although given
1567      // the length of the code path between the prior ST and this load that's
1568      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1569      // then we'll acquire the lock and then re-fetch a fresh TState value.
1570      // That is, we fail toward safety.
1571 
1572      if (node.TState == ObjectWaiter::TS_WAIT) {
1573          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1574          if (node.TState == ObjectWaiter::TS_WAIT) {
1575             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1576             assert(node._notified == 0, "invariant");
1577             node.TState = ObjectWaiter::TS_RUN ;
1578          }
1579          Thread::SpinRelease (&_WaitSetLock) ;
1580      }
1581 
1582      // The thread is now either on off-list (TS_RUN),
1583      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1584      // The Node's TState variable is stable from the perspective of this thread.
1585      // No other threads will asynchronously modify TState.
1586      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1587      OrderAccess::loadload() ;
1588      if (_succ == Self) _succ = NULL ;
1589      WasNotified = node._notified ;
1590 
1591      // Reentry phase -- reacquire the monitor.
1592      // re-enter contended monitor after object.wait().
1593      // retain OBJECT_WAIT state until re-enter successfully completes
1594      // Thread state is thread_in_vm and oop access is again safe,
1595      // although the raw address of the object may have changed.
1596      // (Don't cache naked oops over safepoints, of course).
1597 
1598      // post monitor waited event. Note that this is past-tense, we are done waiting.
1599      if (JvmtiExport::should_post_monitor_waited()) {
1600        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1601      }
1602 
1603      if (event.should_commit()) {
1604        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1605      }
1606 
1607      OrderAccess::fence() ;
1608 
1609      assert (Self->_Stalled != 0, "invariant") ;
1610      Self->_Stalled = 0 ;
1611 
1612      assert (_owner != Self, "invariant") ;
1613      ObjectWaiter::TStates v = node.TState ;
1614      if (v == ObjectWaiter::TS_RUN) {
1615          enter (Self) ;
1616      } else {
1617          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1618          ReenterI (Self, &node) ;
1619          node.wait_reenter_end(this);
1620      }
1621 
1622      // Self has reacquired the lock.
1623      // Lifecycle - the node representing Self must not appear on any queues.
1624      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1625      // want residual elements associated with this thread left on any lists.
1626      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1627      assert    (_owner == Self, "invariant") ;
1628      assert    (_succ != Self , "invariant") ;
1629    } // OSThreadWaitState()
1630 
1631    jt->set_current_waiting_monitor(NULL);
1632 
1633    guarantee (_recursions == 0, "invariant") ;
1634    _recursions = save;     // restore the old recursion count
1635    _waiters--;             // decrement the number of waiters
1636 
1637    // Verify a few postconditions
1638    assert (_owner == Self       , "invariant") ;
1639    assert (_succ  != Self       , "invariant") ;
1640    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1641 
1642    if (SyncFlags & 32) {
1643       OrderAccess::fence() ;
1644    }
1645 
1646    // check if the notification happened
1647    if (!WasNotified) {
1648      // no, it could be timeout or Thread.interrupt() or both
1649      // check for interrupt event, otherwise it is timeout
1650      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1651        TEVENT (Wait - throw IEX from epilog) ;
1652        THROW(vmSymbols::java_lang_InterruptedException());
1653      }
1654    }
1655 
1656    // NOTE: Spurious wake up will be consider as timeout.
1657    // Monitor notify has precedence over thread interrupt.
1658 }
1659 
1660 
1661 // Consider:
1662 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1663 // then instead of transferring a thread from the WaitSet to the EntryList
1664 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1665 
1666 void ObjectMonitor::notify(TRAPS) {
1667   CHECK_OWNER();
1668   if (_WaitSet == NULL) {
1669      TEVENT (Empty-Notify) ;
1670      return ;
1671   }
1672   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1673 
1674   int Policy = Knob_MoveNotifyee ;
1675 
1676   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1677   ObjectWaiter * iterator = DequeueWaiter() ;
1678   if (iterator != NULL) {
1679      TEVENT (Notify1 - Transfer) ;
1680      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1681      guarantee (iterator->_notified == 0, "invariant") ;
1682      if (Policy != 4) {
1683         iterator->TState = ObjectWaiter::TS_ENTER ;
1684      }
1685      iterator->_notified = 1 ;
1686      Thread * Self = THREAD;
1687      iterator->_notifier_tid = Self->osthread()->thread_id();
1688 
1689      ObjectWaiter * List = _EntryList ;
1690      if (List != NULL) {
1691         assert (List->_prev == NULL, "invariant") ;
1692         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1693         assert (List != iterator, "invariant") ;
1694      }
1695 
1696      if (Policy == 0) {       // prepend to EntryList
1697          if (List == NULL) {
1698              iterator->_next = iterator->_prev = NULL ;
1699              _EntryList = iterator ;
1700          } else {
1701              List->_prev = iterator ;
1702              iterator->_next = List ;
1703              iterator->_prev = NULL ;
1704              _EntryList = iterator ;
1705         }
1706      } else
1707      if (Policy == 1) {      // append to EntryList
1708          if (List == NULL) {
1709              iterator->_next = iterator->_prev = NULL ;
1710              _EntryList = iterator ;
1711          } else {
1712             // CONSIDER:  finding the tail currently requires a linear-time walk of
1713             // the EntryList.  We can make tail access constant-time by converting to
1714             // a CDLL instead of using our current DLL.
1715             ObjectWaiter * Tail ;
1716             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1717             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1718             Tail->_next = iterator ;
1719             iterator->_prev = Tail ;
1720             iterator->_next = NULL ;
1721         }
1722      } else
1723      if (Policy == 2) {      // prepend to cxq
1724          // prepend to cxq
1725          if (List == NULL) {
1726              iterator->_next = iterator->_prev = NULL ;
1727              _EntryList = iterator ;
1728          } else {
1729             iterator->TState = ObjectWaiter::TS_CXQ ;
1730             for (;;) {
1731                 ObjectWaiter * Front = _cxq ;
1732                 iterator->_next = Front ;
1733                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1734                     break ;
1735                 }
1736             }
1737          }
1738      } else
1739      if (Policy == 3) {      // append to cxq
1740         iterator->TState = ObjectWaiter::TS_CXQ ;
1741         for (;;) {
1742             ObjectWaiter * Tail ;
1743             Tail = _cxq ;
1744             if (Tail == NULL) {
1745                 iterator->_next = NULL ;
1746                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1747                    break ;
1748                 }
1749             } else {
1750                 while (Tail->_next != NULL) Tail = Tail->_next ;
1751                 Tail->_next = iterator ;
1752                 iterator->_prev = Tail ;
1753                 iterator->_next = NULL ;
1754                 break ;
1755             }
1756         }
1757      } else {
1758         ParkEvent * ev = iterator->_event ;
1759         iterator->TState = ObjectWaiter::TS_RUN ;
1760         OrderAccess::fence() ;
1761         ev->unpark() ;
1762      }
1763 
1764      if (Policy < 4) {
1765        iterator->wait_reenter_begin(this);
1766      }
1767 
1768      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1769      // move the add-to-EntryList operation, above, outside the critical section
1770      // protected by _WaitSetLock.  In practice that's not useful.  With the
1771      // exception of  wait() timeouts and interrupts the monitor owner
1772      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1773      // on _WaitSetLock so it's not profitable to reduce the length of the
1774      // critical section.
1775   }
1776 
1777   Thread::SpinRelease (&_WaitSetLock) ;
1778 
1779   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1780      ObjectMonitor::_sync_Notifications->inc() ;
1781   }
1782 }
1783 
1784 
1785 void ObjectMonitor::notifyAll(TRAPS) {
1786   CHECK_OWNER();
1787   ObjectWaiter* iterator;
1788   if (_WaitSet == NULL) {
1789       TEVENT (Empty-NotifyAll) ;
1790       return ;
1791   }
1792   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1793 
1794   int Policy = Knob_MoveNotifyee ;
1795   int Tally = 0 ;
1796   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1797 
1798   for (;;) {
1799      iterator = DequeueWaiter () ;
1800      if (iterator == NULL) break ;
1801      TEVENT (NotifyAll - Transfer1) ;
1802      ++Tally ;
1803 
1804      // Disposition - what might we do with iterator ?
1805      // a.  add it directly to the EntryList - either tail or head.
1806      // b.  push it onto the front of the _cxq.
1807      // For now we use (a).
1808 
1809      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1810      guarantee (iterator->_notified == 0, "invariant") ;
1811      iterator->_notified = 1 ;
1812      Thread * Self = THREAD;
1813      iterator->_notifier_tid = Self->osthread()->thread_id();
1814      if (Policy != 4) {
1815         iterator->TState = ObjectWaiter::TS_ENTER ;
1816      }
1817 
1818      ObjectWaiter * List = _EntryList ;
1819      if (List != NULL) {
1820         assert (List->_prev == NULL, "invariant") ;
1821         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1822         assert (List != iterator, "invariant") ;
1823      }
1824 
1825      if (Policy == 0) {       // prepend to EntryList
1826          if (List == NULL) {
1827              iterator->_next = iterator->_prev = NULL ;
1828              _EntryList = iterator ;
1829          } else {
1830              List->_prev = iterator ;
1831              iterator->_next = List ;
1832              iterator->_prev = NULL ;
1833              _EntryList = iterator ;
1834         }
1835      } else
1836      if (Policy == 1) {      // append to EntryList
1837          if (List == NULL) {
1838              iterator->_next = iterator->_prev = NULL ;
1839              _EntryList = iterator ;
1840          } else {
1841             // CONSIDER:  finding the tail currently requires a linear-time walk of
1842             // the EntryList.  We can make tail access constant-time by converting to
1843             // a CDLL instead of using our current DLL.
1844             ObjectWaiter * Tail ;
1845             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1846             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1847             Tail->_next = iterator ;
1848             iterator->_prev = Tail ;
1849             iterator->_next = NULL ;
1850         }
1851      } else
1852      if (Policy == 2) {      // prepend to cxq
1853          // prepend to cxq
1854          iterator->TState = ObjectWaiter::TS_CXQ ;
1855          for (;;) {
1856              ObjectWaiter * Front = _cxq ;
1857              iterator->_next = Front ;
1858              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1859                  break ;
1860              }
1861          }
1862      } else
1863      if (Policy == 3) {      // append to cxq
1864         iterator->TState = ObjectWaiter::TS_CXQ ;
1865         for (;;) {
1866             ObjectWaiter * Tail ;
1867             Tail = _cxq ;
1868             if (Tail == NULL) {
1869                 iterator->_next = NULL ;
1870                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1871                    break ;
1872                 }
1873             } else {
1874                 while (Tail->_next != NULL) Tail = Tail->_next ;
1875                 Tail->_next = iterator ;
1876                 iterator->_prev = Tail ;
1877                 iterator->_next = NULL ;
1878                 break ;
1879             }
1880         }
1881      } else {
1882         ParkEvent * ev = iterator->_event ;
1883         iterator->TState = ObjectWaiter::TS_RUN ;
1884         OrderAccess::fence() ;
1885         ev->unpark() ;
1886      }
1887 
1888      if (Policy < 4) {
1889        iterator->wait_reenter_begin(this);
1890      }
1891 
1892      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1893      // move the add-to-EntryList operation, above, outside the critical section
1894      // protected by _WaitSetLock.  In practice that's not useful.  With the
1895      // exception of  wait() timeouts and interrupts the monitor owner
1896      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1897      // on _WaitSetLock so it's not profitable to reduce the length of the
1898      // critical section.
1899   }
1900 
1901   Thread::SpinRelease (&_WaitSetLock) ;
1902 
1903   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1904      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1905   }
1906 }
1907 
1908 // -----------------------------------------------------------------------------
1909 // Adaptive Spinning Support
1910 //
1911 // Adaptive spin-then-block - rational spinning
1912 //
1913 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1914 // algorithm.  On high order SMP systems it would be better to start with
1915 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1916 // a contending thread could enqueue itself on the cxq and then spin locally
1917 // on a thread-specific variable such as its ParkEvent._Event flag.
1918 // That's left as an exercise for the reader.  Note that global spinning is
1919 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1920 // low latency and massive bandwidth.
1921 //
1922 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1923 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1924 // (duration) or we can fix the count at approximately the duration of
1925 // a context switch and vary the frequency.   Of course we could also
1926 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1927 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1928 //
1929 // This implementation varies the duration "D", where D varies with
1930 // the success rate of recent spin attempts. (D is capped at approximately
1931 // length of a round-trip context switch).  The success rate for recent
1932 // spin attempts is a good predictor of the success rate of future spin
1933 // attempts.  The mechanism adapts automatically to varying critical
1934 // section length (lock modality), system load and degree of parallelism.
1935 // D is maintained per-monitor in _SpinDuration and is initialized
1936 // optimistically.  Spin frequency is fixed at 100%.
1937 //
1938 // Note that _SpinDuration is volatile, but we update it without locks
1939 // or atomics.  The code is designed so that _SpinDuration stays within
1940 // a reasonable range even in the presence of races.  The arithmetic
1941 // operations on _SpinDuration are closed over the domain of legal values,
1942 // so at worst a race will install and older but still legal value.
1943 // At the very worst this introduces some apparent non-determinism.
1944 // We might spin when we shouldn't or vice-versa, but since the spin
1945 // count are relatively short, even in the worst case, the effect is harmless.
1946 //
1947 // Care must be taken that a low "D" value does not become an
1948 // an absorbing state.  Transient spinning failures -- when spinning
1949 // is overall profitable -- should not cause the system to converge
1950 // on low "D" values.  We want spinning to be stable and predictable
1951 // and fairly responsive to change and at the same time we don't want
1952 // it to oscillate, become metastable, be "too" non-deterministic,
1953 // or converge on or enter undesirable stable absorbing states.
1954 //
1955 // We implement a feedback-based control system -- using past behavior
1956 // to predict future behavior.  We face two issues: (a) if the
1957 // input signal is random then the spin predictor won't provide optimal
1958 // results, and (b) if the signal frequency is too high then the control
1959 // system, which has some natural response lag, will "chase" the signal.
1960 // (b) can arise from multimodal lock hold times.  Transient preemption
1961 // can also result in apparent bimodal lock hold times.
1962 // Although sub-optimal, neither condition is particularly harmful, as
1963 // in the worst-case we'll spin when we shouldn't or vice-versa.
1964 // The maximum spin duration is rather short so the failure modes aren't bad.
1965 // To be conservative, I've tuned the gain in system to bias toward
1966 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1967 // "rings" or oscillates between spinning and not spinning.  This happens
1968 // when spinning is just on the cusp of profitability, however, so the
1969 // situation is not dire.  The state is benign -- there's no need to add
1970 // hysteresis control to damp the transition rate between spinning and
1971 // not spinning.
1972 //
1973 
1974 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1975 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1976 
1977 // Spinning: Fixed frequency (100%), vary duration
1978 
1979 
1980 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1981 
1982     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1983     int ctr = Knob_FixedSpin ;
1984     if (ctr != 0) {
1985         while (--ctr >= 0) {
1986             if (TryLock (Self) > 0) return 1 ;
1987             SpinPause () ;
1988         }
1989         return 0 ;
1990     }
1991 
1992     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1993       if (TryLock(Self) > 0) {
1994         // Increase _SpinDuration ...
1995         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1996         // Raising _SpurDuration to the poverty line is key.
1997         int x = _SpinDuration ;
1998         if (x < Knob_SpinLimit) {
1999            if (x < Knob_Poverty) x = Knob_Poverty ;
2000            _SpinDuration = x + Knob_BonusB ;
2001         }
2002         return 1 ;
2003       }
2004       SpinPause () ;
2005     }
2006 
2007     // Admission control - verify preconditions for spinning
2008     //
2009     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2010     // becoming an absorbing state.  Put another way, we spin briefly to
2011     // sample, just in case the system load, parallelism, contention, or lock
2012     // modality changed.
2013     //
2014     // Consider the following alternative:
2015     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2016     // spin attempt.  "Periodically" might mean after a tally of
2017     // the # of failed spin attempts (or iterations) reaches some threshold.
2018     // This takes us into the realm of 1-out-of-N spinning, where we
2019     // hold the duration constant but vary the frequency.
2020 
2021     ctr = _SpinDuration  ;
2022     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2023     if (ctr <= 0) return 0 ;
2024 
2025     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2026     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2027        TEVENT (Spin abort - notrunnable [TOP]);
2028        return 0 ;
2029     }
2030 
2031     int MaxSpin = Knob_MaxSpinners ;
2032     if (MaxSpin >= 0) {
2033        if (_Spinner > MaxSpin) {
2034           TEVENT (Spin abort -- too many spinners) ;
2035           return 0 ;
2036        }
2037        // Slighty racy, but benign ...
2038        Adjust (&_Spinner, 1) ;
2039     }
2040 
2041     // We're good to spin ... spin ingress.
2042     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2043     // when preparing to LD...CAS _owner, etc and the CAS is likely
2044     // to succeed.
2045     int hits    = 0 ;
2046     int msk     = 0 ;
2047     int caspty  = Knob_CASPenalty ;
2048     int oxpty   = Knob_OXPenalty ;
2049     int sss     = Knob_SpinSetSucc ;
2050     if (sss && _succ == NULL ) _succ = Self ;
2051     Thread * prv = NULL ;
2052 
2053     // There are three ways to exit the following loop:
2054     // 1.  A successful spin where this thread has acquired the lock.
2055     // 2.  Spin failure with prejudice
2056     // 3.  Spin failure without prejudice
2057 
2058     while (--ctr >= 0) {
2059 
2060       // Periodic polling -- Check for pending GC
2061       // Threads may spin while they're unsafe.
2062       // We don't want spinning threads to delay the JVM from reaching
2063       // a stop-the-world safepoint or to steal cycles from GC.
2064       // If we detect a pending safepoint we abort in order that
2065       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2066       // this thread, if safe, doesn't steal cycles from GC.
2067       // This is in keeping with the "no loitering in runtime" rule.
2068       // We periodically check to see if there's a safepoint pending.
2069       if ((ctr & 0xFF) == 0) {
2070          if (SafepointSynchronize::do_call_back()) {
2071             TEVENT (Spin: safepoint) ;
2072             goto Abort ;           // abrupt spin egress
2073          }
2074          if (Knob_UsePause & 1) SpinPause () ;
2075 
2076          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2077          if (hits > 50 && scb != NULL) {
2078             int abend = (*scb)(SpinCallbackArgument, 0) ;
2079          }
2080       }
2081 
2082       if (Knob_UsePause & 2) SpinPause() ;
2083 
2084       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2085       // This is useful on classic SMP systems, but is of less utility on
2086       // N1-style CMT platforms.
2087       //
2088       // Trade-off: lock acquisition latency vs coherency bandwidth.
2089       // Lock hold times are typically short.  A histogram
2090       // of successful spin attempts shows that we usually acquire
2091       // the lock early in the spin.  That suggests we want to
2092       // sample _owner frequently in the early phase of the spin,
2093       // but then back-off and sample less frequently as the spin
2094       // progresses.  The back-off makes a good citizen on SMP big
2095       // SMP systems.  Oversampling _owner can consume excessive
2096       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2097       // can inadvertently interfere with the the ST m->owner=null.
2098       // executed by the lock owner.
2099       if (ctr & msk) continue ;
2100       ++hits ;
2101       if ((hits & 0xF) == 0) {
2102         // The 0xF, above, corresponds to the exponent.
2103         // Consider: (msk+1)|msk
2104         msk = ((msk << 2)|3) & BackOffMask ;
2105       }
2106 
2107       // Probe _owner with TATAS
2108       // If this thread observes the monitor transition or flicker
2109       // from locked to unlocked to locked, then the odds that this
2110       // thread will acquire the lock in this spin attempt go down
2111       // considerably.  The same argument applies if the CAS fails
2112       // or if we observe _owner change from one non-null value to
2113       // another non-null value.   In such cases we might abort
2114       // the spin without prejudice or apply a "penalty" to the
2115       // spin count-down variable "ctr", reducing it by 100, say.
2116 
2117       Thread * ox = (Thread *) _owner ;
2118       if (ox == NULL) {
2119          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2120          if (ox == NULL) {
2121             // The CAS succeeded -- this thread acquired ownership
2122             // Take care of some bookkeeping to exit spin state.
2123             if (sss && _succ == Self) {
2124                _succ = NULL ;
2125             }
2126             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2127 
2128             // Increase _SpinDuration :
2129             // The spin was successful (profitable) so we tend toward
2130             // longer spin attempts in the future.
2131             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2132             // If we acquired the lock early in the spin cycle it
2133             // makes sense to increase _SpinDuration proportionally.
2134             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2135             int x = _SpinDuration ;
2136             if (x < Knob_SpinLimit) {
2137                 if (x < Knob_Poverty) x = Knob_Poverty ;
2138                 _SpinDuration = x + Knob_Bonus ;
2139             }
2140             return 1 ;
2141          }
2142 
2143          // The CAS failed ... we can take any of the following actions:
2144          // * penalize: ctr -= Knob_CASPenalty
2145          // * exit spin with prejudice -- goto Abort;
2146          // * exit spin without prejudice.
2147          // * Since CAS is high-latency, retry again immediately.
2148          prv = ox ;
2149          TEVENT (Spin: cas failed) ;
2150          if (caspty == -2) break ;
2151          if (caspty == -1) goto Abort ;
2152          ctr -= caspty ;
2153          continue ;
2154       }
2155 
2156       // Did lock ownership change hands ?
2157       if (ox != prv && prv != NULL ) {
2158           TEVENT (spin: Owner changed)
2159           if (oxpty == -2) break ;
2160           if (oxpty == -1) goto Abort ;
2161           ctr -= oxpty ;
2162       }
2163       prv = ox ;
2164 
2165       // Abort the spin if the owner is not executing.
2166       // The owner must be executing in order to drop the lock.
2167       // Spinning while the owner is OFFPROC is idiocy.
2168       // Consider: ctr -= RunnablePenalty ;
2169       if (Knob_OState && NotRunnable (Self, ox)) {
2170          TEVENT (Spin abort - notrunnable);
2171          goto Abort ;
2172       }
2173       if (sss && _succ == NULL ) _succ = Self ;
2174    }
2175 
2176    // Spin failed with prejudice -- reduce _SpinDuration.
2177    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2178    // AIMD is globally stable.
2179    TEVENT (Spin failure) ;
2180    {
2181      int x = _SpinDuration ;
2182      if (x > 0) {
2183         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2184         // This is globally sample and tends to damp the response.
2185         x -= Knob_Penalty ;
2186         if (x < 0) x = 0 ;
2187         _SpinDuration = x ;
2188      }
2189    }
2190 
2191  Abort:
2192    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2193    if (sss && _succ == Self) {
2194       _succ = NULL ;
2195       // Invariant: after setting succ=null a contending thread
2196       // must recheck-retry _owner before parking.  This usually happens
2197       // in the normal usage of TrySpin(), but it's safest
2198       // to make TrySpin() as foolproof as possible.
2199       OrderAccess::fence() ;
2200       if (TryLock(Self) > 0) return 1 ;
2201    }
2202    return 0 ;
2203 }
2204 
2205 // NotRunnable() -- informed spinning
2206 //
2207 // Don't bother spinning if the owner is not eligible to drop the lock.
2208 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2209 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2210 // The thread must be runnable in order to drop the lock in timely fashion.
2211 // If the _owner is not runnable then spinning will not likely be
2212 // successful (profitable).
2213 //
2214 // Beware -- the thread referenced by _owner could have died
2215 // so a simply fetch from _owner->_thread_state might trap.
2216 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2217 // Because of the lifecycle issues the schedctl and _thread_state values
2218 // observed by NotRunnable() might be garbage.  NotRunnable must
2219 // tolerate this and consider the observed _thread_state value
2220 // as advisory.
2221 //
2222 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2223 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2224 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2225 // with the LSB of _owner.  Another option would be to probablistically probe
2226 // the putative _owner->TypeTag value.
2227 //
2228 // Checking _thread_state isn't perfect.  Even if the thread is
2229 // in_java it might be blocked on a page-fault or have been preempted
2230 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2231 // with schedctl.sc_state gives us a good picture of what the
2232 // thread is doing, however.
2233 //
2234 // TODO: check schedctl.sc_state.
2235 // We'll need to use SafeFetch32() to read from the schedctl block.
2236 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2237 //
2238 // The return value from NotRunnable() is *advisory* -- the
2239 // result is based on sampling and is not necessarily coherent.
2240 // The caller must tolerate false-negative and false-positive errors.
2241 // Spinning, in general, is probabilistic anyway.
2242 
2243 
2244 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2245     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2246     if (!OwnerIsThread) return 0 ;
2247 
2248     if (ox == NULL) return 0 ;
2249 
2250     // Avoid transitive spinning ...
2251     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2252     // Immediately after T1 acquires L it's possible that T2, also
2253     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2254     // This occurs transiently after T1 acquired L but before
2255     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2256     // its spin in this circumstance.
2257     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2258 
2259     if (BlockedOn == 1) return 1 ;
2260     if (BlockedOn != 0) {
2261       return BlockedOn != intptr_t(this) && _owner == ox ;
2262     }
2263 
2264     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2265     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2266     // consider also: jst != _thread_in_Java -- but that's overspecific.
2267     return jst == _thread_blocked || jst == _thread_in_native ;
2268 }
2269 
2270 
2271 // -----------------------------------------------------------------------------
2272 // WaitSet management ...
2273 
2274 ObjectWaiter::ObjectWaiter(Thread* thread) {
2275   _next     = NULL;
2276   _prev     = NULL;
2277   _notified = 0;
2278   TState    = TS_RUN ;
2279   _thread   = thread;
2280   _event    = thread->_ParkEvent ;
2281   _active   = false;
2282   assert (_event != NULL, "invariant") ;
2283 }
2284 
2285 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2286   JavaThread *jt = (JavaThread *)this->_thread;
2287   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2288 }
2289 
2290 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2291   JavaThread *jt = (JavaThread *)this->_thread;
2292   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2293 }
2294 
2295 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2296   assert(node != NULL, "should not dequeue NULL node");
2297   assert(node->_prev == NULL, "node already in list");
2298   assert(node->_next == NULL, "node already in list");
2299   // put node at end of queue (circular doubly linked list)
2300   if (_WaitSet == NULL) {
2301     _WaitSet = node;
2302     node->_prev = node;
2303     node->_next = node;
2304   } else {
2305     ObjectWaiter* head = _WaitSet ;
2306     ObjectWaiter* tail = head->_prev;
2307     assert(tail->_next == head, "invariant check");
2308     tail->_next = node;
2309     head->_prev = node;
2310     node->_next = head;
2311     node->_prev = tail;
2312   }
2313 }
2314 
2315 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2316   // dequeue the very first waiter
2317   ObjectWaiter* waiter = _WaitSet;
2318   if (waiter) {
2319     DequeueSpecificWaiter(waiter);
2320   }
2321   return waiter;
2322 }
2323 
2324 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2325   assert(node != NULL, "should not dequeue NULL node");
2326   assert(node->_prev != NULL, "node already removed from list");
2327   assert(node->_next != NULL, "node already removed from list");
2328   // when the waiter has woken up because of interrupt,
2329   // timeout or other spurious wake-up, dequeue the
2330   // waiter from waiting list
2331   ObjectWaiter* next = node->_next;
2332   if (next == node) {
2333     assert(node->_prev == node, "invariant check");
2334     _WaitSet = NULL;
2335   } else {
2336     ObjectWaiter* prev = node->_prev;
2337     assert(prev->_next == node, "invariant check");
2338     assert(next->_prev == node, "invariant check");
2339     next->_prev = prev;
2340     prev->_next = next;
2341     if (_WaitSet == node) {
2342       _WaitSet = next;
2343     }
2344   }
2345   node->_next = NULL;
2346   node->_prev = NULL;
2347 }
2348 
2349 // -----------------------------------------------------------------------------
2350 // PerfData support
2351 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2352 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2353 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2354 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2355 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2356 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2357 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2358 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2359 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2360 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2361 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2362 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2363 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2364 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2365 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2366 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2367 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2368 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2369 
2370 // One-shot global initialization for the sync subsystem.
2371 // We could also defer initialization and initialize on-demand
2372 // the first time we call inflate().  Initialization would
2373 // be protected - like so many things - by the MonitorCache_lock.
2374 
2375 void ObjectMonitor::Initialize () {
2376   static int InitializationCompleted = 0 ;
2377   assert (InitializationCompleted == 0, "invariant") ;
2378   InitializationCompleted = 1 ;
2379   if (UsePerfData) {
2380       EXCEPTION_MARK ;
2381       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2382       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2383       NEWPERFCOUNTER(_sync_Inflations) ;
2384       NEWPERFCOUNTER(_sync_Deflations) ;
2385       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2386       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2387       NEWPERFCOUNTER(_sync_Parks) ;
2388       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2389       NEWPERFCOUNTER(_sync_Notifications) ;
2390       NEWPERFCOUNTER(_sync_SlowEnter) ;
2391       NEWPERFCOUNTER(_sync_SlowExit) ;
2392       NEWPERFCOUNTER(_sync_SlowNotify) ;
2393       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2394       NEWPERFCOUNTER(_sync_FailedSpins) ;
2395       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2396       NEWPERFCOUNTER(_sync_PrivateA) ;
2397       NEWPERFCOUNTER(_sync_PrivateB) ;
2398       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2399       NEWPERFCOUNTER(_sync_MonScavenged) ;
2400       NEWPERFVARIABLE(_sync_MonExtant) ;
2401       #undef NEWPERFCOUNTER
2402   }
2403 }
2404 
2405 
2406 // Compile-time asserts
2407 // When possible, it's better to catch errors deterministically at
2408 // compile-time than at runtime.  The down-side to using compile-time
2409 // asserts is that error message -- often something about negative array
2410 // indices -- is opaque.
2411 
2412 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2413 
2414 void ObjectMonitor::ctAsserts() {
2415   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2416 }
2417 
2418 
2419 static char * kvGet (char * kvList, const char * Key) {
2420     if (kvList == NULL) return NULL ;
2421     size_t n = strlen (Key) ;
2422     char * Search ;
2423     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2424         if (strncmp (Search, Key, n) == 0) {
2425             if (Search[n] == '=') return Search + n + 1 ;
2426             if (Search[n] == 0)   return (char *) "1" ;
2427         }
2428     }
2429     return NULL ;
2430 }
2431 
2432 static int kvGetInt (char * kvList, const char * Key, int Default) {
2433     char * v = kvGet (kvList, Key) ;
2434     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2435     if (Knob_ReportSettings && v != NULL) {
2436         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2437         ::fflush (stdout) ;
2438     }
2439     return rslt ;
2440 }
2441 
2442 void ObjectMonitor::DeferredInitialize () {
2443   if (InitDone > 0) return ;
2444   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2445       while (InitDone != 1) ;
2446       return ;
2447   }
2448 
2449   // One-shot global initialization ...
2450   // The initialization is idempotent, so we don't need locks.
2451   // In the future consider doing this via os::init_2().
2452   // SyncKnobs consist of <Key>=<Value> pairs in the style
2453   // of environment variables.  Start by converting ':' to NUL.
2454 
2455   if (SyncKnobs == NULL) SyncKnobs = "" ;
2456 
2457   size_t sz = strlen (SyncKnobs) ;
2458   char * knobs = (char *) malloc (sz + 2) ;
2459   if (knobs == NULL) {
2460      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2461      guarantee (0, "invariant") ;
2462   }
2463   strcpy (knobs, SyncKnobs) ;
2464   knobs[sz+1] = 0 ;
2465   for (char * p = knobs ; *p ; p++) {
2466      if (*p == ':') *p = 0 ;
2467   }
2468 
2469   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2470   SETKNOB(ReportSettings) ;
2471   SETKNOB(Verbose) ;
2472   SETKNOB(FixedSpin) ;
2473   SETKNOB(SpinLimit) ;
2474   SETKNOB(SpinBase) ;
2475   SETKNOB(SpinBackOff);
2476   SETKNOB(CASPenalty) ;
2477   SETKNOB(OXPenalty) ;
2478   SETKNOB(LogSpins) ;
2479   SETKNOB(SpinSetSucc) ;
2480   SETKNOB(SuccEnabled) ;
2481   SETKNOB(SuccRestrict) ;
2482   SETKNOB(Penalty) ;
2483   SETKNOB(Bonus) ;
2484   SETKNOB(BonusB) ;
2485   SETKNOB(Poverty) ;
2486   SETKNOB(SpinAfterFutile) ;
2487   SETKNOB(UsePause) ;
2488   SETKNOB(SpinEarly) ;
2489   SETKNOB(OState) ;
2490   SETKNOB(MaxSpinners) ;
2491   SETKNOB(PreSpin) ;
2492   SETKNOB(ExitPolicy) ;
2493   SETKNOB(QMode);
2494   SETKNOB(ResetEvent) ;
2495   SETKNOB(MoveNotifyee) ;
2496   SETKNOB(FastHSSEC) ;
2497   #undef SETKNOB
2498 
2499   if (os::is_MP()) {
2500      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2501      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2502      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2503   } else {
2504      Knob_SpinLimit = 0 ;
2505      Knob_SpinBase  = 0 ;
2506      Knob_PreSpin   = 0 ;
2507      Knob_FixedSpin = -1 ;
2508   }
2509 
2510   if (Knob_LogSpins == 0) {
2511      ObjectMonitor::_sync_FailedSpins = NULL ;
2512   }
2513 
2514   free (knobs) ;
2515   OrderAccess::fence() ;
2516   InitDone = 1 ;
2517 }
2518 
2519 #ifndef PRODUCT
2520 void ObjectMonitor::verify() {
2521 }
2522 
2523 void ObjectMonitor::print() {
2524 }
2525 #endif