1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/osThread.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/thread.hpp"
  38 #include "services/threadService.hpp"
  39 #include "trace/tracing.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/preserveException.hpp"
  43 #ifdef TARGET_OS_FAMILY_linux
  44 # include "os_linux.inline.hpp"
  45 # include "thread_linux.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_solaris
  48 # include "os_solaris.inline.hpp"
  49 # include "thread_solaris.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_windows
  52 # include "os_windows.inline.hpp"
  53 # include "thread_windows.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_FAMILY_bsd
  56 # include "os_bsd.inline.hpp"
  57 # include "thread_bsd.inline.hpp"
  58 #endif
  59 
  60 #if defined(__GNUC__) && !defined(IA64)
  61   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  62   #define ATTR __attribute__((noinline))
  63 #else
  64   #define ATTR
  65 #endif
  66 
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 
  74 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  75   char* bytes = NULL;                                                      \
  76   int len = 0;                                                             \
  77   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  78   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
  79   if (klassname != NULL) {                                                 \
  80     bytes = (char*)klassname->bytes();                                     \
  81     len = klassname->utf8_length();                                        \
  82   }
  83 
  84 #ifndef USDT2
  85 
  86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  87   jlong, uintptr_t, char*, int);
  88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  89   jlong, uintptr_t, char*, int);
  90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  91   jlong, uintptr_t, char*, int);
  92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  93   jlong, uintptr_t, char*, int);
  94 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  95   jlong, uintptr_t, char*, int);
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  98   {                                                                        \
  99     if (DTraceMonitorProbes) {                                            \
 100       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 101       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 102                        (monitor), bytes, len, (millis));                   \
 103     }                                                                      \
 104   }
 105 
 106 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 107   {                                                                        \
 108     if (DTraceMonitorProbes) {                                            \
 109       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 110       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 111                        (uintptr_t)(monitor), bytes, len);                  \
 112     }                                                                      \
 113   }
 114 
 115 #else /* USDT2 */
 116 
 117 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
 118   {                                                                        \
 119     if (DTraceMonitorProbes) {                                            \
 120       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 121       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 122                        (monitor), bytes, len, (millis));                   \
 123     }                                                                      \
 124   }
 125 
 126 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 127 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 128 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 129 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 130 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 131 
 132 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 133   {                                                                        \
 134     if (DTraceMonitorProbes) {                                            \
 135       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 136       HOTSPOT_MONITOR_##probe(jtid,                                               \
 137                        (uintptr_t)(monitor), bytes, len);                  \
 138     }                                                                      \
 139   }
 140 
 141 #endif /* USDT2 */
 142 #else //  ndef DTRACE_ENABLED
 143 
 144 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
 145 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
 146 
 147 #endif // ndef DTRACE_ENABLED
 148 
 149 // Tunables ...
 150 // The knob* variables are effectively final.  Once set they should
 151 // never be modified hence.  Consider using __read_mostly with GCC.
 152 
 153 int ObjectMonitor::Knob_Verbose    = 0 ;
 154 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 155 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 156 static int Knob_HandOff            = 0 ;
 157 static int Knob_ReportSettings     = 0 ;
 158 
 159 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 160 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 161 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 162 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 163 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 164 static int Knob_SpinEarly          = 1 ;
 165 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 166 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 167 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 168 static int Knob_Bonus              = 100 ;     // spin success bonus
 169 static int Knob_BonusB             = 100 ;     // spin success bonus
 170 static int Knob_Penalty            = 200 ;     // spin failure penalty
 171 static int Knob_Poverty            = 1000 ;
 172 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 173 static int Knob_FixedSpin          = 0 ;
 174 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 175 static int Knob_UsePause           = 1 ;
 176 static int Knob_ExitPolicy         = 0 ;
 177 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 178 static int Knob_ResetEvent         = 0 ;
 179 static int BackOffMask             = 0 ;
 180 
 181 static int Knob_FastHSSEC          = 0 ;
 182 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 183 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 184 static volatile int InitDone       = 0 ;
 185 
 186 #define TrySpin TrySpin_VaryDuration
 187 
 188 // -----------------------------------------------------------------------------
 189 // Theory of operations -- Monitors lists, thread residency, etc:
 190 //
 191 // * A thread acquires ownership of a monitor by successfully
 192 //   CAS()ing the _owner field from null to non-null.
 193 //
 194 // * Invariant: A thread appears on at most one monitor list --
 195 //   cxq, EntryList or WaitSet -- at any one time.
 196 //
 197 // * Contending threads "push" themselves onto the cxq with CAS
 198 //   and then spin/park.
 199 //
 200 // * After a contending thread eventually acquires the lock it must
 201 //   dequeue itself from either the EntryList or the cxq.
 202 //
 203 // * The exiting thread identifies and unparks an "heir presumptive"
 204 //   tentative successor thread on the EntryList.  Critically, the
 205 //   exiting thread doesn't unlink the successor thread from the EntryList.
 206 //   After having been unparked, the wakee will recontend for ownership of
 207 //   the monitor.   The successor (wakee) will either acquire the lock or
 208 //   re-park itself.
 209 //
 210 //   Succession is provided for by a policy of competitive handoff.
 211 //   The exiting thread does _not_ grant or pass ownership to the
 212 //   successor thread.  (This is also referred to as "handoff" succession").
 213 //   Instead the exiting thread releases ownership and possibly wakes
 214 //   a successor, so the successor can (re)compete for ownership of the lock.
 215 //   If the EntryList is empty but the cxq is populated the exiting
 216 //   thread will drain the cxq into the EntryList.  It does so by
 217 //   by detaching the cxq (installing null with CAS) and folding
 218 //   the threads from the cxq into the EntryList.  The EntryList is
 219 //   doubly linked, while the cxq is singly linked because of the
 220 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 221 //
 222 // * Concurrency invariants:
 223 //
 224 //   -- only the monitor owner may access or mutate the EntryList.
 225 //      The mutex property of the monitor itself protects the EntryList
 226 //      from concurrent interference.
 227 //   -- Only the monitor owner may detach the cxq.
 228 //
 229 // * The monitor entry list operations avoid locks, but strictly speaking
 230 //   they're not lock-free.  Enter is lock-free, exit is not.
 231 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 232 //
 233 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 234 //   detaching thread.  This mechanism is immune from the ABA corruption.
 235 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 236 //
 237 // * Taken together, the cxq and the EntryList constitute or form a
 238 //   single logical queue of threads stalled trying to acquire the lock.
 239 //   We use two distinct lists to improve the odds of a constant-time
 240 //   dequeue operation after acquisition (in the ::enter() epilog) and
 241 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 242 //   A key desideratum is to minimize queue & monitor metadata manipulation
 243 //   that occurs while holding the monitor lock -- that is, we want to
 244 //   minimize monitor lock holds times.  Note that even a small amount of
 245 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 246 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 247 //   locks and monitor metadata.
 248 //
 249 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 250 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 251 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 252 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 253 //
 254 //   The EntryList is ordered by the prevailing queue discipline and
 255 //   can be organized in any convenient fashion, such as a doubly-linked list or
 256 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 257 //   to operate in constant-time.  If we need a priority queue then something akin
 258 //   to Solaris' sleepq would work nicely.  Viz.,
 259 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 260 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 261 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 262 //   EntryList accordingly.
 263 //
 264 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 265 //   somewhat similar to an elevator-scan.
 266 //
 267 // * The monitor synchronization subsystem avoids the use of native
 268 //   synchronization primitives except for the narrow platform-specific
 269 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 270 //   the semantics of park-unpark.  Put another way, this monitor implementation
 271 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 272 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 273 //   underlying OS manages the READY<->RUN transitions.
 274 //
 275 // * Waiting threads reside on the WaitSet list -- wait() puts
 276 //   the caller onto the WaitSet.
 277 //
 278 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 279 //   either the EntryList or cxq.  Subsequent exit() operations will
 280 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 281 //   it's likely the notifyee would simply impale itself on the lock held
 282 //   by the notifier.
 283 //
 284 // * An interesting alternative is to encode cxq as (List,LockByte) where
 285 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 286 //   variable, like _recursions, in the scheme.  The threads or Events that form
 287 //   the list would have to be aligned in 256-byte addresses.  A thread would
 288 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 289 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 290 //   Note that is is *not* word-tearing, but it does presume that full-word
 291 //   CAS operations are coherent with intermix with STB operations.  That's true
 292 //   on most common processors.
 293 //
 294 // * See also http://blogs.sun.com/dave
 295 
 296 
 297 // -----------------------------------------------------------------------------
 298 // Enter support
 299 
 300 bool ObjectMonitor::try_enter(Thread* THREAD) {
 301   if (THREAD != _owner) {
 302     if (THREAD->is_lock_owned ((address)_owner)) {
 303        assert(_recursions == 0, "internal state error");
 304        _owner = THREAD ;
 305        _recursions = 1 ;
 306        OwnerIsThread = 1 ;
 307        return true;
 308     }
 309     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 310       return false;
 311     }
 312     return true;
 313   } else {
 314     _recursions++;
 315     return true;
 316   }
 317 }
 318 
 319 void ATTR ObjectMonitor::enter(TRAPS) {
 320   // The following code is ordered to check the most common cases first
 321   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 322   Thread * const Self = THREAD ;
 323   void * cur ;
 324 
 325   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 326   if (cur == NULL) {
 327      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 328      assert (_recursions == 0   , "invariant") ;
 329      assert (_owner      == Self, "invariant") ;
 330      // CONSIDER: set or assert OwnerIsThread == 1
 331      return ;
 332   }
 333 
 334   if (cur == Self) {
 335      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 336      _recursions ++ ;
 337      return ;
 338   }
 339 
 340   if (Self->is_lock_owned ((address)cur)) {
 341     assert (_recursions == 0, "internal state error");
 342     _recursions = 1 ;
 343     // Commute owner from a thread-specific on-stack BasicLockObject address to
 344     // a full-fledged "Thread *".
 345     _owner = Self ;
 346     OwnerIsThread = 1 ;
 347     return ;
 348   }
 349 
 350   // We've encountered genuine contention.
 351   assert (Self->_Stalled == 0, "invariant") ;
 352   Self->_Stalled = intptr_t(this) ;
 353 
 354   // Try one round of spinning *before* enqueueing Self
 355   // and before going through the awkward and expensive state
 356   // transitions.  The following spin is strictly optional ...
 357   // Note that if we acquire the monitor from an initial spin
 358   // we forgo posting JVMTI events and firing DTRACE probes.
 359   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 360      assert (_owner == Self      , "invariant") ;
 361      assert (_recursions == 0    , "invariant") ;
 362      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 363      Self->_Stalled = 0 ;
 364      return ;
 365   }
 366 
 367   assert (_owner != Self          , "invariant") ;
 368   assert (_succ  != Self          , "invariant") ;
 369   assert (Self->is_Java_thread()  , "invariant") ;
 370   JavaThread * jt = (JavaThread *) Self ;
 371   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 372   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 373   assert (this->object() != NULL  , "invariant") ;
 374   assert (_count >= 0, "invariant") ;
 375 
 376   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 377   // Ensure the object-monitor relationship remains stable while there's contention.
 378   Atomic::inc_ptr(&_count);
 379 
 380   EventJavaMonitorEnter event;
 381 
 382   { // Change java thread status to indicate blocked on monitor enter.
 383     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 384 
 385     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 386     if (JvmtiExport::should_post_monitor_contended_enter()) {
 387       JvmtiExport::post_monitor_contended_enter(jt, this);
 388 
 389       // The current thread does not yet own the monitor and does not
 390       // yet appear on any queues that would get it made the successor.
 391       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 392       // handler cannot accidentally consume an unpark() meant for the
 393       // ParkEvent associated with this ObjectMonitor.
 394     }
 395 
 396     OSThreadContendState osts(Self->osthread());
 397     ThreadBlockInVM tbivm(jt);
 398 
 399     Self->set_current_pending_monitor(this);
 400 
 401     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 402     for (;;) {
 403       jt->set_suspend_equivalent();
 404       // cleared by handle_special_suspend_equivalent_condition()
 405       // or java_suspend_self()
 406 
 407       EnterI (THREAD) ;
 408 
 409       if (!ExitSuspendEquivalent(jt)) break ;
 410 
 411       //
 412       // We have acquired the contended monitor, but while we were
 413       // waiting another thread suspended us. We don't want to enter
 414       // the monitor while suspended because that would surprise the
 415       // thread that suspended us.
 416       //
 417           _recursions = 0 ;
 418       _succ = NULL ;
 419       exit (false, Self) ;
 420 
 421       jt->java_suspend_self();
 422     }
 423     Self->set_current_pending_monitor(NULL);
 424   }
 425 
 426   Atomic::dec_ptr(&_count);
 427   assert (_count >= 0, "invariant") ;
 428   Self->_Stalled = 0 ;
 429 
 430   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 431   assert (_recursions == 0     , "invariant") ;
 432   assert (_owner == Self       , "invariant") ;
 433   assert (_succ  != Self       , "invariant") ;
 434   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 435 
 436   // The thread -- now the owner -- is back in vm mode.
 437   // Report the glorious news via TI,DTrace and jvmstat.
 438   // The probe effect is non-trivial.  All the reportage occurs
 439   // while we hold the monitor, increasing the length of the critical
 440   // section.  Amdahl's parallel speedup law comes vividly into play.
 441   //
 442   // Another option might be to aggregate the events (thread local or
 443   // per-monitor aggregation) and defer reporting until a more opportune
 444   // time -- such as next time some thread encounters contention but has
 445   // yet to acquire the lock.  While spinning that thread could
 446   // spinning we could increment JVMStat counters, etc.
 447 
 448   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 449   if (JvmtiExport::should_post_monitor_contended_entered()) {
 450     JvmtiExport::post_monitor_contended_entered(jt, this);
 451 
 452     // The current thread already owns the monitor and is not going to
 453     // call park() for the remainder of the monitor enter protocol. So
 454     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 455     // event handler consumed an unpark() issued by the thread that
 456     // just exited the monitor.
 457   }
 458 
 459   if (event.should_commit()) {
 460     event.set_klass(((oop)this->object())->klass());
 461     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 462     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 463     event.commit();
 464   }
 465 
 466   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 467      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 468   }
 469 }
 470 
 471 
 472 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 473 // Callers must compensate as needed.
 474 
 475 int ObjectMonitor::TryLock (Thread * Self) {
 476    for (;;) {
 477       void * own = _owner ;
 478       if (own != NULL) return 0 ;
 479       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 480          // Either guarantee _recursions == 0 or set _recursions = 0.
 481          assert (_recursions == 0, "invariant") ;
 482          assert (_owner == Self, "invariant") ;
 483          // CONSIDER: set or assert that OwnerIsThread == 1
 484          return 1 ;
 485       }
 486       // The lock had been free momentarily, but we lost the race to the lock.
 487       // Interference -- the CAS failed.
 488       // We can either return -1 or retry.
 489       // Retry doesn't make as much sense because the lock was just acquired.
 490       if (true) return -1 ;
 491    }
 492 }
 493 
 494 void ATTR ObjectMonitor::EnterI (TRAPS) {
 495     Thread * Self = THREAD ;
 496     assert (Self->is_Java_thread(), "invariant") ;
 497     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 498 
 499     // Try the lock - TATAS
 500     if (TryLock (Self) > 0) {
 501         assert (_succ != Self              , "invariant") ;
 502         assert (_owner == Self             , "invariant") ;
 503         assert (_Responsible != Self       , "invariant") ;
 504         return ;
 505     }
 506 
 507     DeferredInitialize () ;
 508 
 509     // We try one round of spinning *before* enqueueing Self.
 510     //
 511     // If the _owner is ready but OFFPROC we could use a YieldTo()
 512     // operation to donate the remainder of this thread's quantum
 513     // to the owner.  This has subtle but beneficial affinity
 514     // effects.
 515 
 516     if (TrySpin (Self) > 0) {
 517         assert (_owner == Self        , "invariant") ;
 518         assert (_succ != Self         , "invariant") ;
 519         assert (_Responsible != Self  , "invariant") ;
 520         return ;
 521     }
 522 
 523     // The Spin failed -- Enqueue and park the thread ...
 524     assert (_succ  != Self            , "invariant") ;
 525     assert (_owner != Self            , "invariant") ;
 526     assert (_Responsible != Self      , "invariant") ;
 527 
 528     // Enqueue "Self" on ObjectMonitor's _cxq.
 529     //
 530     // Node acts as a proxy for Self.
 531     // As an aside, if were to ever rewrite the synchronization code mostly
 532     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 533     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 534     // as well as eliminate a subset of ABA issues.
 535     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 536     //
 537 
 538     ObjectWaiter node(Self) ;
 539     Self->_ParkEvent->reset() ;
 540     node._prev   = (ObjectWaiter *) 0xBAD ;
 541     node.TState  = ObjectWaiter::TS_CXQ ;
 542 
 543     // Push "Self" onto the front of the _cxq.
 544     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 545     // Note that spinning tends to reduce the rate at which threads
 546     // enqueue and dequeue on EntryList|cxq.
 547     ObjectWaiter * nxt ;
 548     for (;;) {
 549         node._next = nxt = _cxq ;
 550         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 551 
 552         // Interference - the CAS failed because _cxq changed.  Just retry.
 553         // As an optional optimization we retry the lock.
 554         if (TryLock (Self) > 0) {
 555             assert (_succ != Self         , "invariant") ;
 556             assert (_owner == Self        , "invariant") ;
 557             assert (_Responsible != Self  , "invariant") ;
 558             return ;
 559         }
 560     }
 561 
 562     // Check for cxq|EntryList edge transition to non-null.  This indicates
 563     // the onset of contention.  While contention persists exiting threads
 564     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 565     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 566     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 567     // arrange for one of the contending thread to use a timed park() operations
 568     // to detect and recover from the race.  (Stranding is form of progress failure
 569     // where the monitor is unlocked but all the contending threads remain parked).
 570     // That is, at least one of the contended threads will periodically poll _owner.
 571     // One of the contending threads will become the designated "Responsible" thread.
 572     // The Responsible thread uses a timed park instead of a normal indefinite park
 573     // operation -- it periodically wakes and checks for and recovers from potential
 574     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 575     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 576     // be responsible for a monitor.
 577     //
 578     // Currently, one of the contended threads takes on the added role of "Responsible".
 579     // A viable alternative would be to use a dedicated "stranding checker" thread
 580     // that periodically iterated over all the threads (or active monitors) and unparked
 581     // successors where there was risk of stranding.  This would help eliminate the
 582     // timer scalability issues we see on some platforms as we'd only have one thread
 583     // -- the checker -- parked on a timer.
 584 
 585     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 586         // Try to assume the role of responsible thread for the monitor.
 587         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 588         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 589     }
 590 
 591     // The lock have been released while this thread was occupied queueing
 592     // itself onto _cxq.  To close the race and avoid "stranding" and
 593     // progress-liveness failure we must resample-retry _owner before parking.
 594     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 595     // In this case the ST-MEMBAR is accomplished with CAS().
 596     //
 597     // TODO: Defer all thread state transitions until park-time.
 598     // Since state transitions are heavy and inefficient we'd like
 599     // to defer the state transitions until absolutely necessary,
 600     // and in doing so avoid some transitions ...
 601 
 602     TEVENT (Inflated enter - Contention) ;
 603     int nWakeups = 0 ;
 604     int RecheckInterval = 1 ;
 605 
 606     for (;;) {
 607 
 608         if (TryLock (Self) > 0) break ;
 609         assert (_owner != Self, "invariant") ;
 610 
 611         if ((SyncFlags & 2) && _Responsible == NULL) {
 612            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 613         }
 614 
 615         // park self
 616         if (_Responsible == Self || (SyncFlags & 1)) {
 617             TEVENT (Inflated enter - park TIMED) ;
 618             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 619             // Increase the RecheckInterval, but clamp the value.
 620             RecheckInterval *= 8 ;
 621             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 622         } else {
 623             TEVENT (Inflated enter - park UNTIMED) ;
 624             Self->_ParkEvent->park() ;
 625         }
 626 
 627         if (TryLock(Self) > 0) break ;
 628 
 629         // The lock is still contested.
 630         // Keep a tally of the # of futile wakeups.
 631         // Note that the counter is not protected by a lock or updated by atomics.
 632         // That is by design - we trade "lossy" counters which are exposed to
 633         // races during updates for a lower probe effect.
 634         TEVENT (Inflated enter - Futile wakeup) ;
 635         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 636            ObjectMonitor::_sync_FutileWakeups->inc() ;
 637         }
 638         ++ nWakeups ;
 639 
 640         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 641         // We can defer clearing _succ until after the spin completes
 642         // TrySpin() must tolerate being called with _succ == Self.
 643         // Try yet another round of adaptive spinning.
 644         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 645 
 646         // We can find that we were unpark()ed and redesignated _succ while
 647         // we were spinning.  That's harmless.  If we iterate and call park(),
 648         // park() will consume the event and return immediately and we'll
 649         // just spin again.  This pattern can repeat, leaving _succ to simply
 650         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 651         // Alternately, we can sample fired() here, and if set, forgo spinning
 652         // in the next iteration.
 653 
 654         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 655            Self->_ParkEvent->reset() ;
 656            OrderAccess::fence() ;
 657         }
 658         if (_succ == Self) _succ = NULL ;
 659 
 660         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 661         OrderAccess::fence() ;
 662     }
 663 
 664     // Egress :
 665     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 666     // Normally we'll find Self on the EntryList .
 667     // From the perspective of the lock owner (this thread), the
 668     // EntryList is stable and cxq is prepend-only.
 669     // The head of cxq is volatile but the interior is stable.
 670     // In addition, Self.TState is stable.
 671 
 672     assert (_owner == Self      , "invariant") ;
 673     assert (object() != NULL    , "invariant") ;
 674     // I'd like to write:
 675     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 676     // but as we're at a safepoint that's not safe.
 677 
 678     UnlinkAfterAcquire (Self, &node) ;
 679     if (_succ == Self) _succ = NULL ;
 680 
 681     assert (_succ != Self, "invariant") ;
 682     if (_Responsible == Self) {
 683         _Responsible = NULL ;
 684         OrderAccess::fence(); // Dekker pivot-point
 685 
 686         // We may leave threads on cxq|EntryList without a designated
 687         // "Responsible" thread.  This is benign.  When this thread subsequently
 688         // exits the monitor it can "see" such preexisting "old" threads --
 689         // threads that arrived on the cxq|EntryList before the fence, above --
 690         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 691         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 692         // non-null and elect a new "Responsible" timer thread.
 693         //
 694         // This thread executes:
 695         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 696         //    LD cxq|EntryList               (in subsequent exit)
 697         //
 698         // Entering threads in the slow/contended path execute:
 699         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 700         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 701         //
 702         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 703         // exit operation from floating above the ST Responsible=null.
 704     }
 705 
 706     // We've acquired ownership with CAS().
 707     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 708     // But since the CAS() this thread may have also stored into _succ,
 709     // EntryList, cxq or Responsible.  These meta-data updates must be
 710     // visible __before this thread subsequently drops the lock.
 711     // Consider what could occur if we didn't enforce this constraint --
 712     // STs to monitor meta-data and user-data could reorder with (become
 713     // visible after) the ST in exit that drops ownership of the lock.
 714     // Some other thread could then acquire the lock, but observe inconsistent
 715     // or old monitor meta-data and heap data.  That violates the JMM.
 716     // To that end, the 1-0 exit() operation must have at least STST|LDST
 717     // "release" barrier semantics.  Specifically, there must be at least a
 718     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 719     // the lock.   The barrier ensures that changes to monitor meta-data and data
 720     // protected by the lock will be visible before we release the lock, and
 721     // therefore before some other thread (CPU) has a chance to acquire the lock.
 722     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 723     //
 724     // Critically, any prior STs to _succ or EntryList must be visible before
 725     // the ST of null into _owner in the *subsequent* (following) corresponding
 726     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 727     // execute a serializing instruction.
 728 
 729     if (SyncFlags & 8) {
 730        OrderAccess::fence() ;
 731     }
 732     return ;
 733 }
 734 
 735 // ReenterI() is a specialized inline form of the latter half of the
 736 // contended slow-path from EnterI().  We use ReenterI() only for
 737 // monitor reentry in wait().
 738 //
 739 // In the future we should reconcile EnterI() and ReenterI(), adding
 740 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 741 // loop accordingly.
 742 
 743 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 744     assert (Self != NULL                , "invariant") ;
 745     assert (SelfNode != NULL            , "invariant") ;
 746     assert (SelfNode->_thread == Self   , "invariant") ;
 747     assert (_waiters > 0                , "invariant") ;
 748     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 749     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 750     JavaThread * jt = (JavaThread *) Self ;
 751 
 752     int nWakeups = 0 ;
 753     for (;;) {
 754         ObjectWaiter::TStates v = SelfNode->TState ;
 755         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 756         assert    (_owner != Self, "invariant") ;
 757 
 758         if (TryLock (Self) > 0) break ;
 759         if (TrySpin (Self) > 0) break ;
 760 
 761         TEVENT (Wait Reentry - parking) ;
 762 
 763         // State transition wrappers around park() ...
 764         // ReenterI() wisely defers state transitions until
 765         // it's clear we must park the thread.
 766         {
 767            OSThreadContendState osts(Self->osthread());
 768            ThreadBlockInVM tbivm(jt);
 769 
 770            // cleared by handle_special_suspend_equivalent_condition()
 771            // or java_suspend_self()
 772            jt->set_suspend_equivalent();
 773            if (SyncFlags & 1) {
 774               Self->_ParkEvent->park ((jlong)1000) ;
 775            } else {
 776               Self->_ParkEvent->park () ;
 777            }
 778 
 779            // were we externally suspended while we were waiting?
 780            for (;;) {
 781               if (!ExitSuspendEquivalent (jt)) break ;
 782               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 783               jt->java_suspend_self();
 784               jt->set_suspend_equivalent();
 785            }
 786         }
 787 
 788         // Try again, but just so we distinguish between futile wakeups and
 789         // successful wakeups.  The following test isn't algorithmically
 790         // necessary, but it helps us maintain sensible statistics.
 791         if (TryLock(Self) > 0) break ;
 792 
 793         // The lock is still contested.
 794         // Keep a tally of the # of futile wakeups.
 795         // Note that the counter is not protected by a lock or updated by atomics.
 796         // That is by design - we trade "lossy" counters which are exposed to
 797         // races during updates for a lower probe effect.
 798         TEVENT (Wait Reentry - futile wakeup) ;
 799         ++ nWakeups ;
 800 
 801         // Assuming this is not a spurious wakeup we'll normally
 802         // find that _succ == Self.
 803         if (_succ == Self) _succ = NULL ;
 804 
 805         // Invariant: after clearing _succ a contending thread
 806         // *must* retry  _owner before parking.
 807         OrderAccess::fence() ;
 808 
 809         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 810           ObjectMonitor::_sync_FutileWakeups->inc() ;
 811         }
 812     }
 813 
 814     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 815     // Normally we'll find Self on the EntryList.
 816     // Unlinking from the EntryList is constant-time and atomic-free.
 817     // From the perspective of the lock owner (this thread), the
 818     // EntryList is stable and cxq is prepend-only.
 819     // The head of cxq is volatile but the interior is stable.
 820     // In addition, Self.TState is stable.
 821 
 822     assert (_owner == Self, "invariant") ;
 823     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 824     UnlinkAfterAcquire (Self, SelfNode) ;
 825     if (_succ == Self) _succ = NULL ;
 826     assert (_succ != Self, "invariant") ;
 827     SelfNode->TState = ObjectWaiter::TS_RUN ;
 828     OrderAccess::fence() ;      // see comments at the end of EnterI()
 829 }
 830 
 831 // after the thread acquires the lock in ::enter().  Equally, we could defer
 832 // unlinking the thread until ::exit()-time.
 833 
 834 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 835 {
 836     assert (_owner == Self, "invariant") ;
 837     assert (SelfNode->_thread == Self, "invariant") ;
 838 
 839     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 840         // Normal case: remove Self from the DLL EntryList .
 841         // This is a constant-time operation.
 842         ObjectWaiter * nxt = SelfNode->_next ;
 843         ObjectWaiter * prv = SelfNode->_prev ;
 844         if (nxt != NULL) nxt->_prev = prv ;
 845         if (prv != NULL) prv->_next = nxt ;
 846         if (SelfNode == _EntryList ) _EntryList = nxt ;
 847         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 848         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 849         TEVENT (Unlink from EntryList) ;
 850     } else {
 851         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 852         // Inopportune interleaving -- Self is still on the cxq.
 853         // This usually means the enqueue of self raced an exiting thread.
 854         // Normally we'll find Self near the front of the cxq, so
 855         // dequeueing is typically fast.  If needbe we can accelerate
 856         // this with some MCS/CHL-like bidirectional list hints and advisory
 857         // back-links so dequeueing from the interior will normally operate
 858         // in constant-time.
 859         // Dequeue Self from either the head (with CAS) or from the interior
 860         // with a linear-time scan and normal non-atomic memory operations.
 861         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 862         // and then unlink Self from EntryList.  We have to drain eventually,
 863         // so it might as well be now.
 864 
 865         ObjectWaiter * v = _cxq ;
 866         assert (v != NULL, "invariant") ;
 867         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 868             // The CAS above can fail from interference IFF a "RAT" arrived.
 869             // In that case Self must be in the interior and can no longer be
 870             // at the head of cxq.
 871             if (v == SelfNode) {
 872                 assert (_cxq != v, "invariant") ;
 873                 v = _cxq ;          // CAS above failed - start scan at head of list
 874             }
 875             ObjectWaiter * p ;
 876             ObjectWaiter * q = NULL ;
 877             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 878                 q = p ;
 879                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 880             }
 881             assert (v != SelfNode,  "invariant") ;
 882             assert (p == SelfNode,  "Node not found on cxq") ;
 883             assert (p != _cxq,      "invariant") ;
 884             assert (q != NULL,      "invariant") ;
 885             assert (q->_next == p,  "invariant") ;
 886             q->_next = p->_next ;
 887         }
 888         TEVENT (Unlink from cxq) ;
 889     }
 890 
 891     // Diagnostic hygiene ...
 892     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 893     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 894     SelfNode->TState = ObjectWaiter::TS_RUN ;
 895 }
 896 
 897 // -----------------------------------------------------------------------------
 898 // Exit support
 899 //
 900 // exit()
 901 // ~~~~~~
 902 // Note that the collector can't reclaim the objectMonitor or deflate
 903 // the object out from underneath the thread calling ::exit() as the
 904 // thread calling ::exit() never transitions to a stable state.
 905 // This inhibits GC, which in turn inhibits asynchronous (and
 906 // inopportune) reclamation of "this".
 907 //
 908 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 909 // There's one exception to the claim above, however.  EnterI() can call
 910 // exit() to drop a lock if the acquirer has been externally suspended.
 911 // In that case exit() is called with _thread_state as _thread_blocked,
 912 // but the monitor's _count field is > 0, which inhibits reclamation.
 913 //
 914 // 1-0 exit
 915 // ~~~~~~~~
 916 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 917 // the fast-path operators have been optimized so the common ::exit()
 918 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 919 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 920 // greatly improves latency -- MEMBAR and CAS having considerable local
 921 // latency on modern processors -- but at the cost of "stranding".  Absent the
 922 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 923 // ::enter() path, resulting in the entering thread being stranding
 924 // and a progress-liveness failure.   Stranding is extremely rare.
 925 // We use timers (timed park operations) & periodic polling to detect
 926 // and recover from stranding.  Potentially stranded threads periodically
 927 // wake up and poll the lock.  See the usage of the _Responsible variable.
 928 //
 929 // The CAS() in enter provides for safety and exclusion, while the CAS or
 930 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 931 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 932 // We detect and recover from stranding with timers.
 933 //
 934 // If a thread transiently strands it'll park until (a) another
 935 // thread acquires the lock and then drops the lock, at which time the
 936 // exiting thread will notice and unpark the stranded thread, or, (b)
 937 // the timer expires.  If the lock is high traffic then the stranding latency
 938 // will be low due to (a).  If the lock is low traffic then the odds of
 939 // stranding are lower, although the worst-case stranding latency
 940 // is longer.  Critically, we don't want to put excessive load in the
 941 // platform's timer subsystem.  We want to minimize both the timer injection
 942 // rate (timers created/sec) as well as the number of timers active at
 943 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 944 // the integral of the # of active timers at any instant over time).
 945 // Both impinge on OS scalability.  Given that, at most one thread parked on
 946 // a monitor will use a timer.
 947 
 948 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 949    Thread * Self = THREAD ;
 950    if (THREAD != _owner) {
 951      if (THREAD->is_lock_owned((address) _owner)) {
 952        // Transmute _owner from a BasicLock pointer to a Thread address.
 953        // We don't need to hold _mutex for this transition.
 954        // Non-null to Non-null is safe as long as all readers can
 955        // tolerate either flavor.
 956        assert (_recursions == 0, "invariant") ;
 957        _owner = THREAD ;
 958        _recursions = 0 ;
 959        OwnerIsThread = 1 ;
 960      } else {
 961        // NOTE: we need to handle unbalanced monitor enter/exit
 962        // in native code by throwing an exception.
 963        // TODO: Throw an IllegalMonitorStateException ?
 964        TEVENT (Exit - Throw IMSX) ;
 965        assert(false, "Non-balanced monitor enter/exit!");
 966        if (false) {
 967           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 968        }
 969        return;
 970      }
 971    }
 972 
 973    if (_recursions != 0) {
 974      _recursions--;        // this is simple recursive enter
 975      TEVENT (Inflated exit - recursive) ;
 976      return ;
 977    }
 978 
 979    // Invariant: after setting Responsible=null an thread must execute
 980    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 981    if ((SyncFlags & 4) == 0) {
 982       _Responsible = NULL ;
 983    }
 984 
 985 #if INCLUDE_TRACE
 986    // get the owner's thread id for the MonitorEnter event
 987    // if it is enabled and the thread isn't suspended
 988    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 989      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 990    }
 991 #endif
 992 
 993    for (;;) {
 994       assert (THREAD == _owner, "invariant") ;
 995 
 996 
 997       if (Knob_ExitPolicy == 0) {
 998          // release semantics: prior loads and stores from within the critical section
 999          // must not float (reorder) past the following store that drops the lock.
1000          // On SPARC that requires MEMBAR #loadstore|#storestore.
1001          // But of course in TSO #loadstore|#storestore is not required.
1002          // I'd like to write one of the following:
1003          // A.  OrderAccess::release() ; _owner = NULL
1004          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1005          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1006          // store into a _dummy variable.  That store is not needed, but can result
1007          // in massive wasteful coherency traffic on classic SMP systems.
1008          // Instead, I use release_store(), which is implemented as just a simple
1009          // ST on x64, x86 and SPARC.
1010          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1011          OrderAccess::storeload() ;                         // See if we need to wake a successor
1012          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1013             TEVENT (Inflated exit - simple egress) ;
1014             return ;
1015          }
1016          TEVENT (Inflated exit - complex egress) ;
1017 
1018          // Normally the exiting thread is responsible for ensuring succession,
1019          // but if other successors are ready or other entering threads are spinning
1020          // then this thread can simply store NULL into _owner and exit without
1021          // waking a successor.  The existence of spinners or ready successors
1022          // guarantees proper succession (liveness).  Responsibility passes to the
1023          // ready or running successors.  The exiting thread delegates the duty.
1024          // More precisely, if a successor already exists this thread is absolved
1025          // of the responsibility of waking (unparking) one.
1026          //
1027          // The _succ variable is critical to reducing futile wakeup frequency.
1028          // _succ identifies the "heir presumptive" thread that has been made
1029          // ready (unparked) but that has not yet run.  We need only one such
1030          // successor thread to guarantee progress.
1031          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1032          // section 3.3 "Futile Wakeup Throttling" for details.
1033          //
1034          // Note that spinners in Enter() also set _succ non-null.
1035          // In the current implementation spinners opportunistically set
1036          // _succ so that exiting threads might avoid waking a successor.
1037          // Another less appealing alternative would be for the exiting thread
1038          // to drop the lock and then spin briefly to see if a spinner managed
1039          // to acquire the lock.  If so, the exiting thread could exit
1040          // immediately without waking a successor, otherwise the exiting
1041          // thread would need to dequeue and wake a successor.
1042          // (Note that we'd need to make the post-drop spin short, but no
1043          // shorter than the worst-case round-trip cache-line migration time.
1044          // The dropped lock needs to become visible to the spinner, and then
1045          // the acquisition of the lock by the spinner must become visible to
1046          // the exiting thread).
1047          //
1048 
1049          // It appears that an heir-presumptive (successor) must be made ready.
1050          // Only the current lock owner can manipulate the EntryList or
1051          // drain _cxq, so we need to reacquire the lock.  If we fail
1052          // to reacquire the lock the responsibility for ensuring succession
1053          // falls to the new owner.
1054          //
1055          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1056             return ;
1057          }
1058          TEVENT (Exit - Reacquired) ;
1059       } else {
1060          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1061             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1062             OrderAccess::storeload() ;
1063             // Ratify the previously observed values.
1064             if (_cxq == NULL || _succ != NULL) {
1065                 TEVENT (Inflated exit - simple egress) ;
1066                 return ;
1067             }
1068 
1069             // inopportune interleaving -- the exiting thread (this thread)
1070             // in the fast-exit path raced an entering thread in the slow-enter
1071             // path.
1072             // We have two choices:
1073             // A.  Try to reacquire the lock.
1074             //     If the CAS() fails return immediately, otherwise
1075             //     we either restart/rerun the exit operation, or simply
1076             //     fall-through into the code below which wakes a successor.
1077             // B.  If the elements forming the EntryList|cxq are TSM
1078             //     we could simply unpark() the lead thread and return
1079             //     without having set _succ.
1080             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1081                TEVENT (Inflated exit - reacquired succeeded) ;
1082                return ;
1083             }
1084             TEVENT (Inflated exit - reacquired failed) ;
1085          } else {
1086             TEVENT (Inflated exit - complex egress) ;
1087          }
1088       }
1089 
1090       guarantee (_owner == THREAD, "invariant") ;
1091 
1092       ObjectWaiter * w = NULL ;
1093       int QMode = Knob_QMode ;
1094 
1095       if (QMode == 2 && _cxq != NULL) {
1096           // QMode == 2 : cxq has precedence over EntryList.
1097           // Try to directly wake a successor from the cxq.
1098           // If successful, the successor will need to unlink itself from cxq.
1099           w = _cxq ;
1100           assert (w != NULL, "invariant") ;
1101           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1102           ExitEpilog (Self, w) ;
1103           return ;
1104       }
1105 
1106       if (QMode == 3 && _cxq != NULL) {
1107           // Aggressively drain cxq into EntryList at the first opportunity.
1108           // This policy ensure that recently-run threads live at the head of EntryList.
1109           // Drain _cxq into EntryList - bulk transfer.
1110           // First, detach _cxq.
1111           // The following loop is tantamount to: w = swap (&cxq, NULL)
1112           w = _cxq ;
1113           for (;;) {
1114              assert (w != NULL, "Invariant") ;
1115              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1116              if (u == w) break ;
1117              w = u ;
1118           }
1119           assert (w != NULL              , "invariant") ;
1120 
1121           ObjectWaiter * q = NULL ;
1122           ObjectWaiter * p ;
1123           for (p = w ; p != NULL ; p = p->_next) {
1124               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1125               p->TState = ObjectWaiter::TS_ENTER ;
1126               p->_prev = q ;
1127               q = p ;
1128           }
1129 
1130           // Append the RATs to the EntryList
1131           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1132           ObjectWaiter * Tail ;
1133           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1134           if (Tail == NULL) {
1135               _EntryList = w ;
1136           } else {
1137               Tail->_next = w ;
1138               w->_prev = Tail ;
1139           }
1140 
1141           // Fall thru into code that tries to wake a successor from EntryList
1142       }
1143 
1144       if (QMode == 4 && _cxq != NULL) {
1145           // Aggressively drain cxq into EntryList at the first opportunity.
1146           // This policy ensure that recently-run threads live at the head of EntryList.
1147 
1148           // Drain _cxq into EntryList - bulk transfer.
1149           // First, detach _cxq.
1150           // The following loop is tantamount to: w = swap (&cxq, NULL)
1151           w = _cxq ;
1152           for (;;) {
1153              assert (w != NULL, "Invariant") ;
1154              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1155              if (u == w) break ;
1156              w = u ;
1157           }
1158           assert (w != NULL              , "invariant") ;
1159 
1160           ObjectWaiter * q = NULL ;
1161           ObjectWaiter * p ;
1162           for (p = w ; p != NULL ; p = p->_next) {
1163               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1164               p->TState = ObjectWaiter::TS_ENTER ;
1165               p->_prev = q ;
1166               q = p ;
1167           }
1168 
1169           // Prepend the RATs to the EntryList
1170           if (_EntryList != NULL) {
1171               q->_next = _EntryList ;
1172               _EntryList->_prev = q ;
1173           }
1174           _EntryList = w ;
1175 
1176           // Fall thru into code that tries to wake a successor from EntryList
1177       }
1178 
1179       w = _EntryList  ;
1180       if (w != NULL) {
1181           // I'd like to write: guarantee (w->_thread != Self).
1182           // But in practice an exiting thread may find itself on the EntryList.
1183           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1184           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1185           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1186           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1187           // release the lock "O".  T2 resumes immediately after the ST of null into
1188           // _owner, above.  T2 notices that the EntryList is populated, so it
1189           // reacquires the lock and then finds itself on the EntryList.
1190           // Given all that, we have to tolerate the circumstance where "w" is
1191           // associated with Self.
1192           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1193           ExitEpilog (Self, w) ;
1194           return ;
1195       }
1196 
1197       // If we find that both _cxq and EntryList are null then just
1198       // re-run the exit protocol from the top.
1199       w = _cxq ;
1200       if (w == NULL) continue ;
1201 
1202       // Drain _cxq into EntryList - bulk transfer.
1203       // First, detach _cxq.
1204       // The following loop is tantamount to: w = swap (&cxq, NULL)
1205       for (;;) {
1206           assert (w != NULL, "Invariant") ;
1207           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1208           if (u == w) break ;
1209           w = u ;
1210       }
1211       TEVENT (Inflated exit - drain cxq into EntryList) ;
1212 
1213       assert (w != NULL              , "invariant") ;
1214       assert (_EntryList  == NULL    , "invariant") ;
1215 
1216       // Convert the LIFO SLL anchored by _cxq into a DLL.
1217       // The list reorganization step operates in O(LENGTH(w)) time.
1218       // It's critical that this step operate quickly as
1219       // "Self" still holds the outer-lock, restricting parallelism
1220       // and effectively lengthening the critical section.
1221       // Invariant: s chases t chases u.
1222       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1223       // we have faster access to the tail.
1224 
1225       if (QMode == 1) {
1226          // QMode == 1 : drain cxq to EntryList, reversing order
1227          // We also reverse the order of the list.
1228          ObjectWaiter * s = NULL ;
1229          ObjectWaiter * t = w ;
1230          ObjectWaiter * u = NULL ;
1231          while (t != NULL) {
1232              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1233              t->TState = ObjectWaiter::TS_ENTER ;
1234              u = t->_next ;
1235              t->_prev = u ;
1236              t->_next = s ;
1237              s = t;
1238              t = u ;
1239          }
1240          _EntryList  = s ;
1241          assert (s != NULL, "invariant") ;
1242       } else {
1243          // QMode == 0 or QMode == 2
1244          _EntryList = w ;
1245          ObjectWaiter * q = NULL ;
1246          ObjectWaiter * p ;
1247          for (p = w ; p != NULL ; p = p->_next) {
1248              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1249              p->TState = ObjectWaiter::TS_ENTER ;
1250              p->_prev = q ;
1251              q = p ;
1252          }
1253       }
1254 
1255       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1256       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1257 
1258       // See if we can abdicate to a spinner instead of waking a thread.
1259       // A primary goal of the implementation is to reduce the
1260       // context-switch rate.
1261       if (_succ != NULL) continue;
1262 
1263       w = _EntryList  ;
1264       if (w != NULL) {
1265           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1266           ExitEpilog (Self, w) ;
1267           return ;
1268       }
1269    }
1270 }
1271 
1272 // ExitSuspendEquivalent:
1273 // A faster alternate to handle_special_suspend_equivalent_condition()
1274 //
1275 // handle_special_suspend_equivalent_condition() unconditionally
1276 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1277 // operations have high latency.  Note that in ::enter() we call HSSEC
1278 // while holding the monitor, so we effectively lengthen the critical sections.
1279 //
1280 // There are a number of possible solutions:
1281 //
1282 // A.  To ameliorate the problem we might also defer state transitions
1283 //     to as late as possible -- just prior to parking.
1284 //     Given that, we'd call HSSEC after having returned from park(),
1285 //     but before attempting to acquire the monitor.  This is only a
1286 //     partial solution.  It avoids calling HSSEC while holding the
1287 //     monitor (good), but it still increases successor reacquisition latency --
1288 //     the interval between unparking a successor and the time the successor
1289 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1290 //     If we use this technique we can also avoid EnterI()-exit() loop
1291 //     in ::enter() where we iteratively drop the lock and then attempt
1292 //     to reacquire it after suspending.
1293 //
1294 // B.  In the future we might fold all the suspend bits into a
1295 //     composite per-thread suspend flag and then update it with CAS().
1296 //     Alternately, a Dekker-like mechanism with multiple variables
1297 //     would suffice:
1298 //       ST Self->_suspend_equivalent = false
1299 //       MEMBAR
1300 //       LD Self_>_suspend_flags
1301 //
1302 
1303 
1304 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1305    int Mode = Knob_FastHSSEC ;
1306    if (Mode && !jSelf->is_external_suspend()) {
1307       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1308       jSelf->clear_suspend_equivalent() ;
1309       if (2 == Mode) OrderAccess::storeload() ;
1310       if (!jSelf->is_external_suspend()) return false ;
1311       // We raced a suspension -- fall thru into the slow path
1312       TEVENT (ExitSuspendEquivalent - raced) ;
1313       jSelf->set_suspend_equivalent() ;
1314    }
1315    return jSelf->handle_special_suspend_equivalent_condition() ;
1316 }
1317 
1318 
1319 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1320    assert (_owner == Self, "invariant") ;
1321 
1322    // Exit protocol:
1323    // 1. ST _succ = wakee
1324    // 2. membar #loadstore|#storestore;
1325    // 2. ST _owner = NULL
1326    // 3. unpark(wakee)
1327 
1328    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1329    ParkEvent * Trigger = Wakee->_event ;
1330 
1331    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1332    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1333    // out-of-scope (non-extant).
1334    Wakee  = NULL ;
1335 
1336    // Drop the lock
1337    OrderAccess::release_store_ptr (&_owner, NULL) ;
1338    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1339 
1340    if (SafepointSynchronize::do_call_back()) {
1341       TEVENT (unpark before SAFEPOINT) ;
1342    }
1343 
1344    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1345    Trigger->unpark() ;
1346 
1347    // Maintain stats and report events to JVMTI
1348    if (ObjectMonitor::_sync_Parks != NULL) {
1349       ObjectMonitor::_sync_Parks->inc() ;
1350    }
1351 }
1352 
1353 
1354 // -----------------------------------------------------------------------------
1355 // Class Loader deadlock handling.
1356 //
1357 // complete_exit exits a lock returning recursion count
1358 // complete_exit/reenter operate as a wait without waiting
1359 // complete_exit requires an inflated monitor
1360 // The _owner field is not always the Thread addr even with an
1361 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1362 // thread due to contention.
1363 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1364    Thread * const Self = THREAD;
1365    assert(Self->is_Java_thread(), "Must be Java thread!");
1366    JavaThread *jt = (JavaThread *)THREAD;
1367 
1368    DeferredInitialize();
1369 
1370    if (THREAD != _owner) {
1371     if (THREAD->is_lock_owned ((address)_owner)) {
1372        assert(_recursions == 0, "internal state error");
1373        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1374        _recursions = 0 ;
1375        OwnerIsThread = 1 ;
1376     }
1377    }
1378 
1379    guarantee(Self == _owner, "complete_exit not owner");
1380    intptr_t save = _recursions; // record the old recursion count
1381    _recursions = 0;        // set the recursion level to be 0
1382    exit (true, Self) ;           // exit the monitor
1383    guarantee (_owner != Self, "invariant");
1384    return save;
1385 }
1386 
1387 // reenter() enters a lock and sets recursion count
1388 // complete_exit/reenter operate as a wait without waiting
1389 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1390    Thread * const Self = THREAD;
1391    assert(Self->is_Java_thread(), "Must be Java thread!");
1392    JavaThread *jt = (JavaThread *)THREAD;
1393 
1394    guarantee(_owner != Self, "reenter already owner");
1395    enter (THREAD);       // enter the monitor
1396    guarantee (_recursions == 0, "reenter recursion");
1397    _recursions = recursions;
1398    return;
1399 }
1400 
1401 
1402 // -----------------------------------------------------------------------------
1403 // A macro is used below because there may already be a pending
1404 // exception which should not abort the execution of the routines
1405 // which use this (which is why we don't put this into check_slow and
1406 // call it with a CHECK argument).
1407 
1408 #define CHECK_OWNER()                                                             \
1409   do {                                                                            \
1410     if (THREAD != _owner) {                                                       \
1411       if (THREAD->is_lock_owned((address) _owner)) {                              \
1412         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1413         _recursions = 0;                                                          \
1414         OwnerIsThread = 1 ;                                                       \
1415       } else {                                                                    \
1416         TEVENT (Throw IMSX) ;                                                     \
1417         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1418       }                                                                           \
1419     }                                                                             \
1420   } while (false)
1421 
1422 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1423 // TODO-FIXME: remove check_slow() -- it's likely dead.
1424 
1425 void ObjectMonitor::check_slow(TRAPS) {
1426   TEVENT (check_slow - throw IMSX) ;
1427   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1428   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1429 }
1430 
1431 static int Adjust (volatile int * adr, int dx) {
1432   int v ;
1433   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1434   return v ;
1435 }
1436 
1437 // helper method for posting a monitor wait event
1438 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1439                                                            jlong notifier_tid,
1440                                                            jlong timeout,
1441                                                            bool timedout) {
1442   event->set_klass(((oop)this->object())->klass());
1443   event->set_timeout((TYPE_ULONG)timeout);
1444   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1445   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1446   event->set_timedOut((TYPE_BOOLEAN)timedout);
1447   event->commit();
1448 }
1449 
1450 // -----------------------------------------------------------------------------
1451 // Wait/Notify/NotifyAll
1452 //
1453 // Note: a subset of changes to ObjectMonitor::wait()
1454 // will need to be replicated in complete_exit above
1455 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1456    Thread * const Self = THREAD ;
1457    assert(Self->is_Java_thread(), "Must be Java thread!");
1458    JavaThread *jt = (JavaThread *)THREAD;
1459 
1460    DeferredInitialize () ;
1461 
1462    // Throw IMSX or IEX.
1463    CHECK_OWNER();
1464 
1465    EventJavaMonitorWait event;
1466 
1467    // check for a pending interrupt
1468    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1469      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1470      if (JvmtiExport::should_post_monitor_waited()) {
1471         // Note: 'false' parameter is passed here because the
1472         // wait was not timed out due to thread interrupt.
1473         JvmtiExport::post_monitor_waited(jt, this, false);
1474 
1475         // In this short circuit of the monitor wait protocol, the
1476         // current thread never drops ownership of the monitor and
1477         // never gets added to the wait queue so the current thread
1478         // cannot be made the successor. This means that the
1479         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1480         // consume an unpark() meant for the ParkEvent associated with
1481         // this ObjectMonitor.
1482      }
1483      if (event.should_commit()) {
1484        post_monitor_wait_event(&event, 0, millis, false);
1485      }
1486      TEVENT (Wait - Throw IEX) ;
1487      THROW(vmSymbols::java_lang_InterruptedException());
1488      return ;
1489    }
1490 
1491    TEVENT (Wait) ;
1492 
1493    assert (Self->_Stalled == 0, "invariant") ;
1494    Self->_Stalled = intptr_t(this) ;
1495    jt->set_current_waiting_monitor(this);
1496 
1497    // create a node to be put into the queue
1498    // Critically, after we reset() the event but prior to park(), we must check
1499    // for a pending interrupt.
1500    ObjectWaiter node(Self);
1501    node.TState = ObjectWaiter::TS_WAIT ;
1502    Self->_ParkEvent->reset() ;
1503    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1504 
1505    // Enter the waiting queue, which is a circular doubly linked list in this case
1506    // but it could be a priority queue or any data structure.
1507    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1508    // by the the owner of the monitor *except* in the case where park()
1509    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1510    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1511 
1512    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1513    AddWaiter (&node) ;
1514    Thread::SpinRelease (&_WaitSetLock) ;
1515 
1516    if ((SyncFlags & 4) == 0) {
1517       _Responsible = NULL ;
1518    }
1519    intptr_t save = _recursions; // record the old recursion count
1520    _waiters++;                  // increment the number of waiters
1521    _recursions = 0;             // set the recursion level to be 1
1522    exit (true, Self) ;                    // exit the monitor
1523    guarantee (_owner != Self, "invariant") ;
1524 
1525    // The thread is on the WaitSet list - now park() it.
1526    // On MP systems it's conceivable that a brief spin before we park
1527    // could be profitable.
1528    //
1529    // TODO-FIXME: change the following logic to a loop of the form
1530    //   while (!timeout && !interrupted && _notified == 0) park()
1531 
1532    int ret = OS_OK ;
1533    int WasNotified = 0 ;
1534    { // State transition wrappers
1535      OSThread* osthread = Self->osthread();
1536      OSThreadWaitState osts(osthread, true);
1537      {
1538        ThreadBlockInVM tbivm(jt);
1539        // Thread is in thread_blocked state and oop access is unsafe.
1540        jt->set_suspend_equivalent();
1541 
1542        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1543            // Intentionally empty
1544        } else
1545        if (node._notified == 0) {
1546          if (millis <= 0) {
1547             Self->_ParkEvent->park () ;
1548          } else {
1549             ret = Self->_ParkEvent->park (millis) ;
1550          }
1551        }
1552 
1553        // were we externally suspended while we were waiting?
1554        if (ExitSuspendEquivalent (jt)) {
1555           // TODO-FIXME: add -- if succ == Self then succ = null.
1556           jt->java_suspend_self();
1557        }
1558 
1559      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1560 
1561 
1562      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1563      // from the WaitSet to the EntryList.
1564      // See if we need to remove Node from the WaitSet.
1565      // We use double-checked locking to avoid grabbing _WaitSetLock
1566      // if the thread is not on the wait queue.
1567      //
1568      // Note that we don't need a fence before the fetch of TState.
1569      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1570      // written by the is thread. (perhaps the fetch might even be satisfied
1571      // by a look-aside into the processor's own store buffer, although given
1572      // the length of the code path between the prior ST and this load that's
1573      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1574      // then we'll acquire the lock and then re-fetch a fresh TState value.
1575      // That is, we fail toward safety.
1576 
1577      if (node.TState == ObjectWaiter::TS_WAIT) {
1578          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1579          if (node.TState == ObjectWaiter::TS_WAIT) {
1580             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1581             assert(node._notified == 0, "invariant");
1582             node.TState = ObjectWaiter::TS_RUN ;
1583          }
1584          Thread::SpinRelease (&_WaitSetLock) ;
1585      }
1586 
1587      // The thread is now either on off-list (TS_RUN),
1588      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1589      // The Node's TState variable is stable from the perspective of this thread.
1590      // No other threads will asynchronously modify TState.
1591      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1592      OrderAccess::loadload() ;
1593      if (_succ == Self) _succ = NULL ;
1594      WasNotified = node._notified ;
1595 
1596      // Reentry phase -- reacquire the monitor.
1597      // re-enter contended monitor after object.wait().
1598      // retain OBJECT_WAIT state until re-enter successfully completes
1599      // Thread state is thread_in_vm and oop access is again safe,
1600      // although the raw address of the object may have changed.
1601      // (Don't cache naked oops over safepoints, of course).
1602 
1603      // post monitor waited event. Note that this is past-tense, we are done waiting.
1604      if (JvmtiExport::should_post_monitor_waited()) {
1605        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1606      }
1607 
1608      // Without the fix for 8028280, it is possible for the above call:
1609      //
1610      //   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1611      //
1612      // to consume the unpark() that was done when the successor was set.
1613      // The solution for this very rare possibility is to redo the unpark()
1614      // outside of the JvmtiExport::should_post_monitor_waited() check.
1615      //
1616      if (node._notified != 0 && _succ == Self) {
1617        // In this part of the monitor wait-notify-reenter protocol it
1618        // is possible (and normal) for another thread to do a fastpath
1619        // monitor enter-exit while this thread is still trying to get
1620        // to the reenter portion of the protocol.
1621        //
1622        // The ObjectMonitor was notified and the current thread is
1623        // the successor which also means that an unpark() has already
1624        // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1625        // consume the unpark() that was done when the successor was
1626        // set because the same ParkEvent is shared between Java
1627        // monitors and JVM/TI RawMonitors (for now).
1628        //
1629        // We redo the unpark() to ensure forward progress, i.e., we
1630        // don't want all pending threads hanging (parked) with none
1631        // entering the unlocked monitor.
1632        node._event->unpark();
1633      }
1634 
1635      if (event.should_commit()) {
1636        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1637      }
1638 
1639      OrderAccess::fence() ;
1640 
1641      assert (Self->_Stalled != 0, "invariant") ;
1642      Self->_Stalled = 0 ;
1643 
1644      assert (_owner != Self, "invariant") ;
1645      ObjectWaiter::TStates v = node.TState ;
1646      if (v == ObjectWaiter::TS_RUN) {
1647          enter (Self) ;
1648      } else {
1649          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1650          ReenterI (Self, &node) ;
1651          node.wait_reenter_end(this);
1652      }
1653 
1654      // Self has reacquired the lock.
1655      // Lifecycle - the node representing Self must not appear on any queues.
1656      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1657      // want residual elements associated with this thread left on any lists.
1658      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1659      assert    (_owner == Self, "invariant") ;
1660      assert    (_succ != Self , "invariant") ;
1661    } // OSThreadWaitState()
1662 
1663    jt->set_current_waiting_monitor(NULL);
1664 
1665    guarantee (_recursions == 0, "invariant") ;
1666    _recursions = save;     // restore the old recursion count
1667    _waiters--;             // decrement the number of waiters
1668 
1669    // Verify a few postconditions
1670    assert (_owner == Self       , "invariant") ;
1671    assert (_succ  != Self       , "invariant") ;
1672    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1673 
1674    if (SyncFlags & 32) {
1675       OrderAccess::fence() ;
1676    }
1677 
1678    // check if the notification happened
1679    if (!WasNotified) {
1680      // no, it could be timeout or Thread.interrupt() or both
1681      // check for interrupt event, otherwise it is timeout
1682      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1683        TEVENT (Wait - throw IEX from epilog) ;
1684        THROW(vmSymbols::java_lang_InterruptedException());
1685      }
1686    }
1687 
1688    // NOTE: Spurious wake up will be consider as timeout.
1689    // Monitor notify has precedence over thread interrupt.
1690 }
1691 
1692 
1693 // Consider:
1694 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1695 // then instead of transferring a thread from the WaitSet to the EntryList
1696 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1697 
1698 void ObjectMonitor::notify(TRAPS) {
1699   CHECK_OWNER();
1700   if (_WaitSet == NULL) {
1701      TEVENT (Empty-Notify) ;
1702      return ;
1703   }
1704   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1705 
1706   int Policy = Knob_MoveNotifyee ;
1707 
1708   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1709   ObjectWaiter * iterator = DequeueWaiter() ;
1710   if (iterator != NULL) {
1711      TEVENT (Notify1 - Transfer) ;
1712      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1713      guarantee (iterator->_notified == 0, "invariant") ;
1714      if (Policy != 4) {
1715         iterator->TState = ObjectWaiter::TS_ENTER ;
1716      }
1717      iterator->_notified = 1 ;
1718      Thread * Self = THREAD;
1719      iterator->_notifier_tid = Self->osthread()->thread_id();
1720 
1721      ObjectWaiter * List = _EntryList ;
1722      if (List != NULL) {
1723         assert (List->_prev == NULL, "invariant") ;
1724         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1725         assert (List != iterator, "invariant") ;
1726      }
1727 
1728      if (Policy == 0) {       // prepend to EntryList
1729          if (List == NULL) {
1730              iterator->_next = iterator->_prev = NULL ;
1731              _EntryList = iterator ;
1732          } else {
1733              List->_prev = iterator ;
1734              iterator->_next = List ;
1735              iterator->_prev = NULL ;
1736              _EntryList = iterator ;
1737         }
1738      } else
1739      if (Policy == 1) {      // append to EntryList
1740          if (List == NULL) {
1741              iterator->_next = iterator->_prev = NULL ;
1742              _EntryList = iterator ;
1743          } else {
1744             // CONSIDER:  finding the tail currently requires a linear-time walk of
1745             // the EntryList.  We can make tail access constant-time by converting to
1746             // a CDLL instead of using our current DLL.
1747             ObjectWaiter * Tail ;
1748             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1749             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1750             Tail->_next = iterator ;
1751             iterator->_prev = Tail ;
1752             iterator->_next = NULL ;
1753         }
1754      } else
1755      if (Policy == 2) {      // prepend to cxq
1756          // prepend to cxq
1757          if (List == NULL) {
1758              iterator->_next = iterator->_prev = NULL ;
1759              _EntryList = iterator ;
1760          } else {
1761             iterator->TState = ObjectWaiter::TS_CXQ ;
1762             for (;;) {
1763                 ObjectWaiter * Front = _cxq ;
1764                 iterator->_next = Front ;
1765                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1766                     break ;
1767                 }
1768             }
1769          }
1770      } else
1771      if (Policy == 3) {      // append to cxq
1772         iterator->TState = ObjectWaiter::TS_CXQ ;
1773         for (;;) {
1774             ObjectWaiter * Tail ;
1775             Tail = _cxq ;
1776             if (Tail == NULL) {
1777                 iterator->_next = NULL ;
1778                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1779                    break ;
1780                 }
1781             } else {
1782                 while (Tail->_next != NULL) Tail = Tail->_next ;
1783                 Tail->_next = iterator ;
1784                 iterator->_prev = Tail ;
1785                 iterator->_next = NULL ;
1786                 break ;
1787             }
1788         }
1789      } else {
1790         ParkEvent * ev = iterator->_event ;
1791         iterator->TState = ObjectWaiter::TS_RUN ;
1792         OrderAccess::fence() ;
1793         ev->unpark() ;
1794      }
1795 
1796      if (Policy < 4) {
1797        iterator->wait_reenter_begin(this);
1798      }
1799 
1800      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1801      // move the add-to-EntryList operation, above, outside the critical section
1802      // protected by _WaitSetLock.  In practice that's not useful.  With the
1803      // exception of  wait() timeouts and interrupts the monitor owner
1804      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1805      // on _WaitSetLock so it's not profitable to reduce the length of the
1806      // critical section.
1807   }
1808 
1809   Thread::SpinRelease (&_WaitSetLock) ;
1810 
1811   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1812      ObjectMonitor::_sync_Notifications->inc() ;
1813   }
1814 }
1815 
1816 
1817 void ObjectMonitor::notifyAll(TRAPS) {
1818   CHECK_OWNER();
1819   ObjectWaiter* iterator;
1820   if (_WaitSet == NULL) {
1821       TEVENT (Empty-NotifyAll) ;
1822       return ;
1823   }
1824   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1825 
1826   int Policy = Knob_MoveNotifyee ;
1827   int Tally = 0 ;
1828   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1829 
1830   for (;;) {
1831      iterator = DequeueWaiter () ;
1832      if (iterator == NULL) break ;
1833      TEVENT (NotifyAll - Transfer1) ;
1834      ++Tally ;
1835 
1836      // Disposition - what might we do with iterator ?
1837      // a.  add it directly to the EntryList - either tail or head.
1838      // b.  push it onto the front of the _cxq.
1839      // For now we use (a).
1840 
1841      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1842      guarantee (iterator->_notified == 0, "invariant") ;
1843      iterator->_notified = 1 ;
1844      Thread * Self = THREAD;
1845      iterator->_notifier_tid = Self->osthread()->thread_id();
1846      if (Policy != 4) {
1847         iterator->TState = ObjectWaiter::TS_ENTER ;
1848      }
1849 
1850      ObjectWaiter * List = _EntryList ;
1851      if (List != NULL) {
1852         assert (List->_prev == NULL, "invariant") ;
1853         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1854         assert (List != iterator, "invariant") ;
1855      }
1856 
1857      if (Policy == 0) {       // prepend to EntryList
1858          if (List == NULL) {
1859              iterator->_next = iterator->_prev = NULL ;
1860              _EntryList = iterator ;
1861          } else {
1862              List->_prev = iterator ;
1863              iterator->_next = List ;
1864              iterator->_prev = NULL ;
1865              _EntryList = iterator ;
1866         }
1867      } else
1868      if (Policy == 1) {      // append to EntryList
1869          if (List == NULL) {
1870              iterator->_next = iterator->_prev = NULL ;
1871              _EntryList = iterator ;
1872          } else {
1873             // CONSIDER:  finding the tail currently requires a linear-time walk of
1874             // the EntryList.  We can make tail access constant-time by converting to
1875             // a CDLL instead of using our current DLL.
1876             ObjectWaiter * Tail ;
1877             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1878             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1879             Tail->_next = iterator ;
1880             iterator->_prev = Tail ;
1881             iterator->_next = NULL ;
1882         }
1883      } else
1884      if (Policy == 2) {      // prepend to cxq
1885          // prepend to cxq
1886          iterator->TState = ObjectWaiter::TS_CXQ ;
1887          for (;;) {
1888              ObjectWaiter * Front = _cxq ;
1889              iterator->_next = Front ;
1890              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1891                  break ;
1892              }
1893          }
1894      } else
1895      if (Policy == 3) {      // append to cxq
1896         iterator->TState = ObjectWaiter::TS_CXQ ;
1897         for (;;) {
1898             ObjectWaiter * Tail ;
1899             Tail = _cxq ;
1900             if (Tail == NULL) {
1901                 iterator->_next = NULL ;
1902                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1903                    break ;
1904                 }
1905             } else {
1906                 while (Tail->_next != NULL) Tail = Tail->_next ;
1907                 Tail->_next = iterator ;
1908                 iterator->_prev = Tail ;
1909                 iterator->_next = NULL ;
1910                 break ;
1911             }
1912         }
1913      } else {
1914         ParkEvent * ev = iterator->_event ;
1915         iterator->TState = ObjectWaiter::TS_RUN ;
1916         OrderAccess::fence() ;
1917         ev->unpark() ;
1918      }
1919 
1920      if (Policy < 4) {
1921        iterator->wait_reenter_begin(this);
1922      }
1923 
1924      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1925      // move the add-to-EntryList operation, above, outside the critical section
1926      // protected by _WaitSetLock.  In practice that's not useful.  With the
1927      // exception of  wait() timeouts and interrupts the monitor owner
1928      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1929      // on _WaitSetLock so it's not profitable to reduce the length of the
1930      // critical section.
1931   }
1932 
1933   Thread::SpinRelease (&_WaitSetLock) ;
1934 
1935   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1936      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1937   }
1938 }
1939 
1940 // -----------------------------------------------------------------------------
1941 // Adaptive Spinning Support
1942 //
1943 // Adaptive spin-then-block - rational spinning
1944 //
1945 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1946 // algorithm.  On high order SMP systems it would be better to start with
1947 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1948 // a contending thread could enqueue itself on the cxq and then spin locally
1949 // on a thread-specific variable such as its ParkEvent._Event flag.
1950 // That's left as an exercise for the reader.  Note that global spinning is
1951 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1952 // low latency and massive bandwidth.
1953 //
1954 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1955 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1956 // (duration) or we can fix the count at approximately the duration of
1957 // a context switch and vary the frequency.   Of course we could also
1958 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1959 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1960 //
1961 // This implementation varies the duration "D", where D varies with
1962 // the success rate of recent spin attempts. (D is capped at approximately
1963 // length of a round-trip context switch).  The success rate for recent
1964 // spin attempts is a good predictor of the success rate of future spin
1965 // attempts.  The mechanism adapts automatically to varying critical
1966 // section length (lock modality), system load and degree of parallelism.
1967 // D is maintained per-monitor in _SpinDuration and is initialized
1968 // optimistically.  Spin frequency is fixed at 100%.
1969 //
1970 // Note that _SpinDuration is volatile, but we update it without locks
1971 // or atomics.  The code is designed so that _SpinDuration stays within
1972 // a reasonable range even in the presence of races.  The arithmetic
1973 // operations on _SpinDuration are closed over the domain of legal values,
1974 // so at worst a race will install and older but still legal value.
1975 // At the very worst this introduces some apparent non-determinism.
1976 // We might spin when we shouldn't or vice-versa, but since the spin
1977 // count are relatively short, even in the worst case, the effect is harmless.
1978 //
1979 // Care must be taken that a low "D" value does not become an
1980 // an absorbing state.  Transient spinning failures -- when spinning
1981 // is overall profitable -- should not cause the system to converge
1982 // on low "D" values.  We want spinning to be stable and predictable
1983 // and fairly responsive to change and at the same time we don't want
1984 // it to oscillate, become metastable, be "too" non-deterministic,
1985 // or converge on or enter undesirable stable absorbing states.
1986 //
1987 // We implement a feedback-based control system -- using past behavior
1988 // to predict future behavior.  We face two issues: (a) if the
1989 // input signal is random then the spin predictor won't provide optimal
1990 // results, and (b) if the signal frequency is too high then the control
1991 // system, which has some natural response lag, will "chase" the signal.
1992 // (b) can arise from multimodal lock hold times.  Transient preemption
1993 // can also result in apparent bimodal lock hold times.
1994 // Although sub-optimal, neither condition is particularly harmful, as
1995 // in the worst-case we'll spin when we shouldn't or vice-versa.
1996 // The maximum spin duration is rather short so the failure modes aren't bad.
1997 // To be conservative, I've tuned the gain in system to bias toward
1998 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1999 // "rings" or oscillates between spinning and not spinning.  This happens
2000 // when spinning is just on the cusp of profitability, however, so the
2001 // situation is not dire.  The state is benign -- there's no need to add
2002 // hysteresis control to damp the transition rate between spinning and
2003 // not spinning.
2004 //
2005 
2006 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
2007 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
2008 
2009 // Spinning: Fixed frequency (100%), vary duration
2010 
2011 
2012 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2013 
2014     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2015     int ctr = Knob_FixedSpin ;
2016     if (ctr != 0) {
2017         while (--ctr >= 0) {
2018             if (TryLock (Self) > 0) return 1 ;
2019             SpinPause () ;
2020         }
2021         return 0 ;
2022     }
2023 
2024     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2025       if (TryLock(Self) > 0) {
2026         // Increase _SpinDuration ...
2027         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2028         // Raising _SpurDuration to the poverty line is key.
2029         int x = _SpinDuration ;
2030         if (x < Knob_SpinLimit) {
2031            if (x < Knob_Poverty) x = Knob_Poverty ;
2032            _SpinDuration = x + Knob_BonusB ;
2033         }
2034         return 1 ;
2035       }
2036       SpinPause () ;
2037     }
2038 
2039     // Admission control - verify preconditions for spinning
2040     //
2041     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2042     // becoming an absorbing state.  Put another way, we spin briefly to
2043     // sample, just in case the system load, parallelism, contention, or lock
2044     // modality changed.
2045     //
2046     // Consider the following alternative:
2047     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2048     // spin attempt.  "Periodically" might mean after a tally of
2049     // the # of failed spin attempts (or iterations) reaches some threshold.
2050     // This takes us into the realm of 1-out-of-N spinning, where we
2051     // hold the duration constant but vary the frequency.
2052 
2053     ctr = _SpinDuration  ;
2054     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2055     if (ctr <= 0) return 0 ;
2056 
2057     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2058     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2059        TEVENT (Spin abort - notrunnable [TOP]);
2060        return 0 ;
2061     }
2062 
2063     int MaxSpin = Knob_MaxSpinners ;
2064     if (MaxSpin >= 0) {
2065        if (_Spinner > MaxSpin) {
2066           TEVENT (Spin abort -- too many spinners) ;
2067           return 0 ;
2068        }
2069        // Slighty racy, but benign ...
2070        Adjust (&_Spinner, 1) ;
2071     }
2072 
2073     // We're good to spin ... spin ingress.
2074     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2075     // when preparing to LD...CAS _owner, etc and the CAS is likely
2076     // to succeed.
2077     int hits    = 0 ;
2078     int msk     = 0 ;
2079     int caspty  = Knob_CASPenalty ;
2080     int oxpty   = Knob_OXPenalty ;
2081     int sss     = Knob_SpinSetSucc ;
2082     if (sss && _succ == NULL ) _succ = Self ;
2083     Thread * prv = NULL ;
2084 
2085     // There are three ways to exit the following loop:
2086     // 1.  A successful spin where this thread has acquired the lock.
2087     // 2.  Spin failure with prejudice
2088     // 3.  Spin failure without prejudice
2089 
2090     while (--ctr >= 0) {
2091 
2092       // Periodic polling -- Check for pending GC
2093       // Threads may spin while they're unsafe.
2094       // We don't want spinning threads to delay the JVM from reaching
2095       // a stop-the-world safepoint or to steal cycles from GC.
2096       // If we detect a pending safepoint we abort in order that
2097       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2098       // this thread, if safe, doesn't steal cycles from GC.
2099       // This is in keeping with the "no loitering in runtime" rule.
2100       // We periodically check to see if there's a safepoint pending.
2101       if ((ctr & 0xFF) == 0) {
2102          if (SafepointSynchronize::do_call_back()) {
2103             TEVENT (Spin: safepoint) ;
2104             goto Abort ;           // abrupt spin egress
2105          }
2106          if (Knob_UsePause & 1) SpinPause () ;
2107 
2108          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2109          if (hits > 50 && scb != NULL) {
2110             int abend = (*scb)(SpinCallbackArgument, 0) ;
2111          }
2112       }
2113 
2114       if (Knob_UsePause & 2) SpinPause() ;
2115 
2116       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2117       // This is useful on classic SMP systems, but is of less utility on
2118       // N1-style CMT platforms.
2119       //
2120       // Trade-off: lock acquisition latency vs coherency bandwidth.
2121       // Lock hold times are typically short.  A histogram
2122       // of successful spin attempts shows that we usually acquire
2123       // the lock early in the spin.  That suggests we want to
2124       // sample _owner frequently in the early phase of the spin,
2125       // but then back-off and sample less frequently as the spin
2126       // progresses.  The back-off makes a good citizen on SMP big
2127       // SMP systems.  Oversampling _owner can consume excessive
2128       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2129       // can inadvertently interfere with the the ST m->owner=null.
2130       // executed by the lock owner.
2131       if (ctr & msk) continue ;
2132       ++hits ;
2133       if ((hits & 0xF) == 0) {
2134         // The 0xF, above, corresponds to the exponent.
2135         // Consider: (msk+1)|msk
2136         msk = ((msk << 2)|3) & BackOffMask ;
2137       }
2138 
2139       // Probe _owner with TATAS
2140       // If this thread observes the monitor transition or flicker
2141       // from locked to unlocked to locked, then the odds that this
2142       // thread will acquire the lock in this spin attempt go down
2143       // considerably.  The same argument applies if the CAS fails
2144       // or if we observe _owner change from one non-null value to
2145       // another non-null value.   In such cases we might abort
2146       // the spin without prejudice or apply a "penalty" to the
2147       // spin count-down variable "ctr", reducing it by 100, say.
2148 
2149       Thread * ox = (Thread *) _owner ;
2150       if (ox == NULL) {
2151          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2152          if (ox == NULL) {
2153             // The CAS succeeded -- this thread acquired ownership
2154             // Take care of some bookkeeping to exit spin state.
2155             if (sss && _succ == Self) {
2156                _succ = NULL ;
2157             }
2158             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2159 
2160             // Increase _SpinDuration :
2161             // The spin was successful (profitable) so we tend toward
2162             // longer spin attempts in the future.
2163             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2164             // If we acquired the lock early in the spin cycle it
2165             // makes sense to increase _SpinDuration proportionally.
2166             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2167             int x = _SpinDuration ;
2168             if (x < Knob_SpinLimit) {
2169                 if (x < Knob_Poverty) x = Knob_Poverty ;
2170                 _SpinDuration = x + Knob_Bonus ;
2171             }
2172             return 1 ;
2173          }
2174 
2175          // The CAS failed ... we can take any of the following actions:
2176          // * penalize: ctr -= Knob_CASPenalty
2177          // * exit spin with prejudice -- goto Abort;
2178          // * exit spin without prejudice.
2179          // * Since CAS is high-latency, retry again immediately.
2180          prv = ox ;
2181          TEVENT (Spin: cas failed) ;
2182          if (caspty == -2) break ;
2183          if (caspty == -1) goto Abort ;
2184          ctr -= caspty ;
2185          continue ;
2186       }
2187 
2188       // Did lock ownership change hands ?
2189       if (ox != prv && prv != NULL ) {
2190           TEVENT (spin: Owner changed)
2191           if (oxpty == -2) break ;
2192           if (oxpty == -1) goto Abort ;
2193           ctr -= oxpty ;
2194       }
2195       prv = ox ;
2196 
2197       // Abort the spin if the owner is not executing.
2198       // The owner must be executing in order to drop the lock.
2199       // Spinning while the owner is OFFPROC is idiocy.
2200       // Consider: ctr -= RunnablePenalty ;
2201       if (Knob_OState && NotRunnable (Self, ox)) {
2202          TEVENT (Spin abort - notrunnable);
2203          goto Abort ;
2204       }
2205       if (sss && _succ == NULL ) _succ = Self ;
2206    }
2207 
2208    // Spin failed with prejudice -- reduce _SpinDuration.
2209    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2210    // AIMD is globally stable.
2211    TEVENT (Spin failure) ;
2212    {
2213      int x = _SpinDuration ;
2214      if (x > 0) {
2215         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2216         // This is globally sample and tends to damp the response.
2217         x -= Knob_Penalty ;
2218         if (x < 0) x = 0 ;
2219         _SpinDuration = x ;
2220      }
2221    }
2222 
2223  Abort:
2224    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2225    if (sss && _succ == Self) {
2226       _succ = NULL ;
2227       // Invariant: after setting succ=null a contending thread
2228       // must recheck-retry _owner before parking.  This usually happens
2229       // in the normal usage of TrySpin(), but it's safest
2230       // to make TrySpin() as foolproof as possible.
2231       OrderAccess::fence() ;
2232       if (TryLock(Self) > 0) return 1 ;
2233    }
2234    return 0 ;
2235 }
2236 
2237 // NotRunnable() -- informed spinning
2238 //
2239 // Don't bother spinning if the owner is not eligible to drop the lock.
2240 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2241 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2242 // The thread must be runnable in order to drop the lock in timely fashion.
2243 // If the _owner is not runnable then spinning will not likely be
2244 // successful (profitable).
2245 //
2246 // Beware -- the thread referenced by _owner could have died
2247 // so a simply fetch from _owner->_thread_state might trap.
2248 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2249 // Because of the lifecycle issues the schedctl and _thread_state values
2250 // observed by NotRunnable() might be garbage.  NotRunnable must
2251 // tolerate this and consider the observed _thread_state value
2252 // as advisory.
2253 //
2254 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2255 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2256 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2257 // with the LSB of _owner.  Another option would be to probablistically probe
2258 // the putative _owner->TypeTag value.
2259 //
2260 // Checking _thread_state isn't perfect.  Even if the thread is
2261 // in_java it might be blocked on a page-fault or have been preempted
2262 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2263 // with schedctl.sc_state gives us a good picture of what the
2264 // thread is doing, however.
2265 //
2266 // TODO: check schedctl.sc_state.
2267 // We'll need to use SafeFetch32() to read from the schedctl block.
2268 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2269 //
2270 // The return value from NotRunnable() is *advisory* -- the
2271 // result is based on sampling and is not necessarily coherent.
2272 // The caller must tolerate false-negative and false-positive errors.
2273 // Spinning, in general, is probabilistic anyway.
2274 
2275 
2276 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2277     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2278     if (!OwnerIsThread) return 0 ;
2279 
2280     if (ox == NULL) return 0 ;
2281 
2282     // Avoid transitive spinning ...
2283     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2284     // Immediately after T1 acquires L it's possible that T2, also
2285     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2286     // This occurs transiently after T1 acquired L but before
2287     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2288     // its spin in this circumstance.
2289     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2290 
2291     if (BlockedOn == 1) return 1 ;
2292     if (BlockedOn != 0) {
2293       return BlockedOn != intptr_t(this) && _owner == ox ;
2294     }
2295 
2296     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2297     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2298     // consider also: jst != _thread_in_Java -- but that's overspecific.
2299     return jst == _thread_blocked || jst == _thread_in_native ;
2300 }
2301 
2302 
2303 // -----------------------------------------------------------------------------
2304 // WaitSet management ...
2305 
2306 ObjectWaiter::ObjectWaiter(Thread* thread) {
2307   _next     = NULL;
2308   _prev     = NULL;
2309   _notified = 0;
2310   TState    = TS_RUN ;
2311   _thread   = thread;
2312   _event    = thread->_ParkEvent ;
2313   _active   = false;
2314   assert (_event != NULL, "invariant") ;
2315 }
2316 
2317 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2318   JavaThread *jt = (JavaThread *)this->_thread;
2319   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2320 }
2321 
2322 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2323   JavaThread *jt = (JavaThread *)this->_thread;
2324   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2325 }
2326 
2327 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2328   assert(node != NULL, "should not dequeue NULL node");
2329   assert(node->_prev == NULL, "node already in list");
2330   assert(node->_next == NULL, "node already in list");
2331   // put node at end of queue (circular doubly linked list)
2332   if (_WaitSet == NULL) {
2333     _WaitSet = node;
2334     node->_prev = node;
2335     node->_next = node;
2336   } else {
2337     ObjectWaiter* head = _WaitSet ;
2338     ObjectWaiter* tail = head->_prev;
2339     assert(tail->_next == head, "invariant check");
2340     tail->_next = node;
2341     head->_prev = node;
2342     node->_next = head;
2343     node->_prev = tail;
2344   }
2345 }
2346 
2347 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2348   // dequeue the very first waiter
2349   ObjectWaiter* waiter = _WaitSet;
2350   if (waiter) {
2351     DequeueSpecificWaiter(waiter);
2352   }
2353   return waiter;
2354 }
2355 
2356 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2357   assert(node != NULL, "should not dequeue NULL node");
2358   assert(node->_prev != NULL, "node already removed from list");
2359   assert(node->_next != NULL, "node already removed from list");
2360   // when the waiter has woken up because of interrupt,
2361   // timeout or other spurious wake-up, dequeue the
2362   // waiter from waiting list
2363   ObjectWaiter* next = node->_next;
2364   if (next == node) {
2365     assert(node->_prev == node, "invariant check");
2366     _WaitSet = NULL;
2367   } else {
2368     ObjectWaiter* prev = node->_prev;
2369     assert(prev->_next == node, "invariant check");
2370     assert(next->_prev == node, "invariant check");
2371     next->_prev = prev;
2372     prev->_next = next;
2373     if (_WaitSet == node) {
2374       _WaitSet = next;
2375     }
2376   }
2377   node->_next = NULL;
2378   node->_prev = NULL;
2379 }
2380 
2381 // -----------------------------------------------------------------------------
2382 // PerfData support
2383 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2384 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2385 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2386 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2387 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2388 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2389 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2390 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2391 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2392 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2393 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2394 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2395 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2396 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2397 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2398 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2399 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2400 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2401 
2402 // One-shot global initialization for the sync subsystem.
2403 // We could also defer initialization and initialize on-demand
2404 // the first time we call inflate().  Initialization would
2405 // be protected - like so many things - by the MonitorCache_lock.
2406 
2407 void ObjectMonitor::Initialize () {
2408   static int InitializationCompleted = 0 ;
2409   assert (InitializationCompleted == 0, "invariant") ;
2410   InitializationCompleted = 1 ;
2411   if (UsePerfData) {
2412       EXCEPTION_MARK ;
2413       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2414       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2415       NEWPERFCOUNTER(_sync_Inflations) ;
2416       NEWPERFCOUNTER(_sync_Deflations) ;
2417       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2418       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2419       NEWPERFCOUNTER(_sync_Parks) ;
2420       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2421       NEWPERFCOUNTER(_sync_Notifications) ;
2422       NEWPERFCOUNTER(_sync_SlowEnter) ;
2423       NEWPERFCOUNTER(_sync_SlowExit) ;
2424       NEWPERFCOUNTER(_sync_SlowNotify) ;
2425       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2426       NEWPERFCOUNTER(_sync_FailedSpins) ;
2427       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2428       NEWPERFCOUNTER(_sync_PrivateA) ;
2429       NEWPERFCOUNTER(_sync_PrivateB) ;
2430       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2431       NEWPERFCOUNTER(_sync_MonScavenged) ;
2432       NEWPERFVARIABLE(_sync_MonExtant) ;
2433       #undef NEWPERFCOUNTER
2434   }
2435 }
2436 
2437 
2438 // Compile-time asserts
2439 // When possible, it's better to catch errors deterministically at
2440 // compile-time than at runtime.  The down-side to using compile-time
2441 // asserts is that error message -- often something about negative array
2442 // indices -- is opaque.
2443 
2444 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2445 
2446 void ObjectMonitor::ctAsserts() {
2447   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2448 }
2449 
2450 
2451 static char * kvGet (char * kvList, const char * Key) {
2452     if (kvList == NULL) return NULL ;
2453     size_t n = strlen (Key) ;
2454     char * Search ;
2455     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2456         if (strncmp (Search, Key, n) == 0) {
2457             if (Search[n] == '=') return Search + n + 1 ;
2458             if (Search[n] == 0)   return (char *) "1" ;
2459         }
2460     }
2461     return NULL ;
2462 }
2463 
2464 static int kvGetInt (char * kvList, const char * Key, int Default) {
2465     char * v = kvGet (kvList, Key) ;
2466     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2467     if (Knob_ReportSettings && v != NULL) {
2468         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2469         ::fflush (stdout) ;
2470     }
2471     return rslt ;
2472 }
2473 
2474 void ObjectMonitor::DeferredInitialize () {
2475   if (InitDone > 0) return ;
2476   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2477       while (InitDone != 1) ;
2478       return ;
2479   }
2480 
2481   // One-shot global initialization ...
2482   // The initialization is idempotent, so we don't need locks.
2483   // In the future consider doing this via os::init_2().
2484   // SyncKnobs consist of <Key>=<Value> pairs in the style
2485   // of environment variables.  Start by converting ':' to NUL.
2486 
2487   if (SyncKnobs == NULL) SyncKnobs = "" ;
2488 
2489   size_t sz = strlen (SyncKnobs) ;
2490   char * knobs = (char *) malloc (sz + 2) ;
2491   if (knobs == NULL) {
2492      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2493      guarantee (0, "invariant") ;
2494   }
2495   strcpy (knobs, SyncKnobs) ;
2496   knobs[sz+1] = 0 ;
2497   for (char * p = knobs ; *p ; p++) {
2498      if (*p == ':') *p = 0 ;
2499   }
2500 
2501   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2502   SETKNOB(ReportSettings) ;
2503   SETKNOB(Verbose) ;
2504   SETKNOB(FixedSpin) ;
2505   SETKNOB(SpinLimit) ;
2506   SETKNOB(SpinBase) ;
2507   SETKNOB(SpinBackOff);
2508   SETKNOB(CASPenalty) ;
2509   SETKNOB(OXPenalty) ;
2510   SETKNOB(LogSpins) ;
2511   SETKNOB(SpinSetSucc) ;
2512   SETKNOB(SuccEnabled) ;
2513   SETKNOB(SuccRestrict) ;
2514   SETKNOB(Penalty) ;
2515   SETKNOB(Bonus) ;
2516   SETKNOB(BonusB) ;
2517   SETKNOB(Poverty) ;
2518   SETKNOB(SpinAfterFutile) ;
2519   SETKNOB(UsePause) ;
2520   SETKNOB(SpinEarly) ;
2521   SETKNOB(OState) ;
2522   SETKNOB(MaxSpinners) ;
2523   SETKNOB(PreSpin) ;
2524   SETKNOB(ExitPolicy) ;
2525   SETKNOB(QMode);
2526   SETKNOB(ResetEvent) ;
2527   SETKNOB(MoveNotifyee) ;
2528   SETKNOB(FastHSSEC) ;
2529   #undef SETKNOB
2530 
2531   if (os::is_MP()) {
2532      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2533      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2534      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2535   } else {
2536      Knob_SpinLimit = 0 ;
2537      Knob_SpinBase  = 0 ;
2538      Knob_PreSpin   = 0 ;
2539      Knob_FixedSpin = -1 ;
2540   }
2541 
2542   if (Knob_LogSpins == 0) {
2543      ObjectMonitor::_sync_FailedSpins = NULL ;
2544   }
2545 
2546   free (knobs) ;
2547   OrderAccess::fence() ;
2548   InitDone = 1 ;
2549 }
2550 
2551 #ifndef PRODUCT
2552 void ObjectMonitor::verify() {
2553 }
2554 
2555 void ObjectMonitor::print() {
2556 }
2557 #endif