1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   }
 431   fatal("DEBUG MESSAGE: %s", msg);
 432 }
 433 
 434 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 435   ttyLocker ttyl;
 436   FlagSetting fs(Debugging, true);
 437   tty->print_cr("eip = 0x%08x", eip);
 438 #ifndef PRODUCT
 439   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 440     tty->cr();
 441     findpc(eip);
 442     tty->cr();
 443   }
 444 #endif
 445 #define PRINT_REG(rax) \
 446   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 447   PRINT_REG(rax);
 448   PRINT_REG(rbx);
 449   PRINT_REG(rcx);
 450   PRINT_REG(rdx);
 451   PRINT_REG(rdi);
 452   PRINT_REG(rsi);
 453   PRINT_REG(rbp);
 454   PRINT_REG(rsp);
 455 #undef PRINT_REG
 456   // Print some words near top of staack.
 457   int* dump_sp = (int*) rsp;
 458   for (int col1 = 0; col1 < 8; col1++) {
 459     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 460     os::print_location(tty, *dump_sp++);
 461   }
 462   for (int row = 0; row < 16; row++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     for (int col = 0; col < 8; col++) {
 465       tty->print(" 0x%08x", *dump_sp++);
 466     }
 467     tty->cr();
 468   }
 469   // Print some instructions around pc:
 470   Disassembler::decode((address)eip-64, (address)eip);
 471   tty->print_cr("--------");
 472   Disassembler::decode((address)eip, (address)eip+32);
 473 }
 474 
 475 void MacroAssembler::stop(const char* msg) {
 476   ExternalAddress message((address)msg);
 477   // push address of message
 478   pushptr(message.addr());
 479   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 480   pusha();                                            // push registers
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 482   hlt();
 483 }
 484 
 485 void MacroAssembler::warn(const char* msg) {
 486   push_CPU_state();
 487 
 488   ExternalAddress message((address) msg);
 489   // push address of message
 490   pushptr(message.addr());
 491 
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 493   addl(rsp, wordSize);       // discard argument
 494   pop_CPU_state();
 495 }
 496 
 497 void MacroAssembler::print_state() {
 498   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 499   pusha();                                            // push registers
 500 
 501   push_CPU_state();
 502   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 503   pop_CPU_state();
 504 
 505   popa();
 506   addl(rsp, wordSize);
 507 }
 508 
 509 #else // _LP64
 510 
 511 // 64 bit versions
 512 
 513 Address MacroAssembler::as_Address(AddressLiteral adr) {
 514   // amd64 always does this as a pc-rel
 515   // we can be absolute or disp based on the instruction type
 516   // jmp/call are displacements others are absolute
 517   assert(!adr.is_lval(), "must be rval");
 518   assert(reachable(adr), "must be");
 519   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 520 
 521 }
 522 
 523 Address MacroAssembler::as_Address(ArrayAddress adr) {
 524   AddressLiteral base = adr.base();
 525   lea(rscratch1, base);
 526   Address index = adr.index();
 527   assert(index._disp == 0, "must not have disp"); // maybe it can?
 528   Address array(rscratch1, index._index, index._scale, index._disp);
 529   return array;
 530 }
 531 
 532 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 533   Label L, E;
 534 
 535 #ifdef _WIN64
 536   // Windows always allocates space for it's register args
 537   assert(num_args <= 4, "only register arguments supported");
 538   subq(rsp,  frame::arg_reg_save_area_bytes);
 539 #endif
 540 
 541   // Align stack if necessary
 542   testl(rsp, 15);
 543   jcc(Assembler::zero, L);
 544 
 545   subq(rsp, 8);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549   addq(rsp, 8);
 550   jmp(E);
 551 
 552   bind(L);
 553   {
 554     call(RuntimeAddress(entry_point));
 555   }
 556 
 557   bind(E);
 558 
 559 #ifdef _WIN64
 560   // restore stack pointer
 561   addq(rsp, frame::arg_reg_save_area_bytes);
 562 #endif
 563 
 564 }
 565 
 566 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 567   assert(!src2.is_lval(), "should use cmpptr");
 568 
 569   if (reachable(src2)) {
 570     cmpq(src1, as_Address(src2));
 571   } else {
 572     lea(rscratch1, src2);
 573     Assembler::cmpq(src1, Address(rscratch1, 0));
 574   }
 575 }
 576 
 577 int MacroAssembler::corrected_idivq(Register reg) {
 578   // Full implementation of Java ldiv and lrem; checks for special
 579   // case as described in JVM spec., p.243 & p.271.  The function
 580   // returns the (pc) offset of the idivl instruction - may be needed
 581   // for implicit exceptions.
 582   //
 583   //         normal case                           special case
 584   //
 585   // input : rax: dividend                         min_long
 586   //         reg: divisor   (may not be eax/edx)   -1
 587   //
 588   // output: rax: quotient  (= rax idiv reg)       min_long
 589   //         rdx: remainder (= rax irem reg)       0
 590   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 591   static const int64_t min_long = 0x8000000000000000;
 592   Label normal_case, special_case;
 593 
 594   // check for special case
 595   cmp64(rax, ExternalAddress((address) &min_long));
 596   jcc(Assembler::notEqual, normal_case);
 597   xorl(rdx, rdx); // prepare rdx for possible special case (where
 598                   // remainder = 0)
 599   cmpq(reg, -1);
 600   jcc(Assembler::equal, special_case);
 601 
 602   // handle normal case
 603   bind(normal_case);
 604   cdqq();
 605   int idivq_offset = offset();
 606   idivq(reg);
 607 
 608   // normal and special case exit
 609   bind(special_case);
 610 
 611   return idivq_offset;
 612 }
 613 
 614 void MacroAssembler::decrementq(Register reg, int value) {
 615   if (value == min_jint) { subq(reg, value); return; }
 616   if (value <  0) { incrementq(reg, -value); return; }
 617   if (value == 0) {                        ; return; }
 618   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 619   /* else */      { subq(reg, value)       ; return; }
 620 }
 621 
 622 void MacroAssembler::decrementq(Address dst, int value) {
 623   if (value == min_jint) { subq(dst, value); return; }
 624   if (value <  0) { incrementq(dst, -value); return; }
 625   if (value == 0) {                        ; return; }
 626   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 627   /* else */      { subq(dst, value)       ; return; }
 628 }
 629 
 630 void MacroAssembler::incrementq(AddressLiteral dst) {
 631   if (reachable(dst)) {
 632     incrementq(as_Address(dst));
 633   } else {
 634     lea(rscratch1, dst);
 635     incrementq(Address(rscratch1, 0));
 636   }
 637 }
 638 
 639 void MacroAssembler::incrementq(Register reg, int value) {
 640   if (value == min_jint) { addq(reg, value); return; }
 641   if (value <  0) { decrementq(reg, -value); return; }
 642   if (value == 0) {                        ; return; }
 643   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 644   /* else */      { addq(reg, value)       ; return; }
 645 }
 646 
 647 void MacroAssembler::incrementq(Address dst, int value) {
 648   if (value == min_jint) { addq(dst, value); return; }
 649   if (value <  0) { decrementq(dst, -value); return; }
 650   if (value == 0) {                        ; return; }
 651   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 652   /* else */      { addq(dst, value)       ; return; }
 653 }
 654 
 655 // 32bit can do a case table jump in one instruction but we no longer allow the base
 656 // to be installed in the Address class
 657 void MacroAssembler::jump(ArrayAddress entry) {
 658   lea(rscratch1, entry.base());
 659   Address dispatch = entry.index();
 660   assert(dispatch._base == noreg, "must be");
 661   dispatch._base = rscratch1;
 662   jmp(dispatch);
 663 }
 664 
 665 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 666   ShouldNotReachHere(); // 64bit doesn't use two regs
 667   cmpq(x_lo, y_lo);
 668 }
 669 
 670 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 671     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 672 }
 673 
 674 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 675   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 676   movptr(dst, rscratch1);
 677 }
 678 
 679 void MacroAssembler::leave() {
 680   // %%% is this really better? Why not on 32bit too?
 681   emit_int8((unsigned char)0xC9); // LEAVE
 682 }
 683 
 684 void MacroAssembler::lneg(Register hi, Register lo) {
 685   ShouldNotReachHere(); // 64bit doesn't use two regs
 686   negq(lo);
 687 }
 688 
 689 void MacroAssembler::movoop(Register dst, jobject obj) {
 690   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::movoop(Address dst, jobject obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 699   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 703   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704   movq(dst, rscratch1);
 705 }
 706 
 707 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 708   if (src.is_lval()) {
 709     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 710   } else {
 711     if (reachable(src)) {
 712       movq(dst, as_Address(src));
 713     } else {
 714       lea(scratch, src);
 715       movq(dst, Address(scratch, 0));
 716     }
 717   }
 718 }
 719 
 720 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 721   movq(as_Address(dst), src);
 722 }
 723 
 724 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 725   movq(dst, as_Address(src));
 726 }
 727 
 728 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 729 void MacroAssembler::movptr(Address dst, intptr_t src) {
 730   mov64(rscratch1, src);
 731   movq(dst, rscratch1);
 732 }
 733 
 734 // These are mostly for initializing NULL
 735 void MacroAssembler::movptr(Address dst, int32_t src) {
 736   movslq(dst, src);
 737 }
 738 
 739 void MacroAssembler::movptr(Register dst, int32_t src) {
 740   mov64(dst, (intptr_t)src);
 741 }
 742 
 743 void MacroAssembler::pushoop(jobject obj) {
 744   movoop(rscratch1, obj);
 745   push(rscratch1);
 746 }
 747 
 748 void MacroAssembler::pushklass(Metadata* obj) {
 749   mov_metadata(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushptr(AddressLiteral src) {
 754   lea(rscratch1, src);
 755   if (src.is_lval()) {
 756     push(rscratch1);
 757   } else {
 758     pushq(Address(rscratch1, 0));
 759   }
 760 }
 761 
 762 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 763   // we must set sp to zero to clear frame
 764   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 765   // must clear fp, so that compiled frames are not confused; it is
 766   // possible that we need it only for debugging
 767   if (clear_fp) {
 768     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 769   }
 770 
 771   // Always clear the pc because it could have been set by make_walkable()
 772   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 773   vzeroupper();
 774 }
 775 
 776 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 777                                          Register last_java_fp,
 778                                          address  last_java_pc) {
 779   vzeroupper();
 780   // determine last_java_sp register
 781   if (!last_java_sp->is_valid()) {
 782     last_java_sp = rsp;
 783   }
 784 
 785   // last_java_fp is optional
 786   if (last_java_fp->is_valid()) {
 787     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 788            last_java_fp);
 789   }
 790 
 791   // last_java_pc is optional
 792   if (last_java_pc != NULL) {
 793     Address java_pc(r15_thread,
 794                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 795     lea(rscratch1, InternalAddress(last_java_pc));
 796     movptr(java_pc, rscratch1);
 797   }
 798 
 799   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 800 }
 801 
 802 static void pass_arg0(MacroAssembler* masm, Register arg) {
 803   if (c_rarg0 != arg ) {
 804     masm->mov(c_rarg0, arg);
 805   }
 806 }
 807 
 808 static void pass_arg1(MacroAssembler* masm, Register arg) {
 809   if (c_rarg1 != arg ) {
 810     masm->mov(c_rarg1, arg);
 811   }
 812 }
 813 
 814 static void pass_arg2(MacroAssembler* masm, Register arg) {
 815   if (c_rarg2 != arg ) {
 816     masm->mov(c_rarg2, arg);
 817   }
 818 }
 819 
 820 static void pass_arg3(MacroAssembler* masm, Register arg) {
 821   if (c_rarg3 != arg ) {
 822     masm->mov(c_rarg3, arg);
 823   }
 824 }
 825 
 826 void MacroAssembler::stop(const char* msg) {
 827   if (ShowMessageBoxOnError) {
 828     address rip = pc();
 829     pusha(); // get regs on stack
 830     lea(c_rarg1, InternalAddress(rip));
 831     movq(c_rarg2, rsp); // pass pointer to regs array
 832   }
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   andq(rsp, -16); // align stack as required by ABI
 835   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 836   hlt();
 837 }
 838 
 839 void MacroAssembler::warn(const char* msg) {
 840   push(rbp);
 841   movq(rbp, rsp);
 842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 843   push_CPU_state();   // keeps alignment at 16 bytes
 844   lea(c_rarg0, ExternalAddress((address) msg));
 845   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 846   call(rax);
 847   pop_CPU_state();
 848   mov(rsp, rbp);
 849   pop(rbp);
 850 }
 851 
 852 void MacroAssembler::print_state() {
 853   address rip = pc();
 854   pusha();            // get regs on stack
 855   push(rbp);
 856   movq(rbp, rsp);
 857   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 858   push_CPU_state();   // keeps alignment at 16 bytes
 859 
 860   lea(c_rarg0, InternalAddress(rip));
 861   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 862   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 863 
 864   pop_CPU_state();
 865   mov(rsp, rbp);
 866   pop(rbp);
 867   popa();
 868 }
 869 
 870 #ifndef PRODUCT
 871 extern "C" void findpc(intptr_t x);
 872 #endif
 873 
 874 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 875   // In order to get locks to work, we need to fake a in_VM state
 876   if (ShowMessageBoxOnError) {
 877     JavaThread* thread = JavaThread::current();
 878     JavaThreadState saved_state = thread->thread_state();
 879     thread->set_thread_state(_thread_in_vm);
 880 #ifndef PRODUCT
 881     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 882       ttyLocker ttyl;
 883       BytecodeCounter::print();
 884     }
 885 #endif
 886     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 887     // XXX correct this offset for amd64
 888     // This is the value of eip which points to where verify_oop will return.
 889     if (os::message_box(msg, "Execution stopped, print registers?")) {
 890       print_state64(pc, regs);
 891       BREAKPOINT;
 892     }
 893   }
 894   fatal("DEBUG MESSAGE: %s", msg);
 895 }
 896 
 897 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 898   ttyLocker ttyl;
 899   FlagSetting fs(Debugging, true);
 900   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 901 #ifndef PRODUCT
 902   tty->cr();
 903   findpc(pc);
 904   tty->cr();
 905 #endif
 906 #define PRINT_REG(rax, value) \
 907   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 908   PRINT_REG(rax, regs[15]);
 909   PRINT_REG(rbx, regs[12]);
 910   PRINT_REG(rcx, regs[14]);
 911   PRINT_REG(rdx, regs[13]);
 912   PRINT_REG(rdi, regs[8]);
 913   PRINT_REG(rsi, regs[9]);
 914   PRINT_REG(rbp, regs[10]);
 915   PRINT_REG(rsp, regs[11]);
 916   PRINT_REG(r8 , regs[7]);
 917   PRINT_REG(r9 , regs[6]);
 918   PRINT_REG(r10, regs[5]);
 919   PRINT_REG(r11, regs[4]);
 920   PRINT_REG(r12, regs[3]);
 921   PRINT_REG(r13, regs[2]);
 922   PRINT_REG(r14, regs[1]);
 923   PRINT_REG(r15, regs[0]);
 924 #undef PRINT_REG
 925   // Print some words near top of staack.
 926   int64_t* rsp = (int64_t*) regs[11];
 927   int64_t* dump_sp = rsp;
 928   for (int col1 = 0; col1 < 8; col1++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 930     os::print_location(tty, *dump_sp++);
 931   }
 932   for (int row = 0; row < 25; row++) {
 933     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 934     for (int col = 0; col < 4; col++) {
 935       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 936     }
 937     tty->cr();
 938   }
 939   // Print some instructions around pc:
 940   Disassembler::decode((address)pc-64, (address)pc);
 941   tty->print_cr("--------");
 942   Disassembler::decode((address)pc, (address)pc+32);
 943 }
 944 
 945 #endif // _LP64
 946 
 947 // Now versions that are common to 32/64 bit
 948 
 949 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 950   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 951 }
 952 
 953 void MacroAssembler::addptr(Register dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addptr(Address dst, Register src) {
 958   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 959 }
 960 
 961 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 962   if (reachable(src)) {
 963     Assembler::addsd(dst, as_Address(src));
 964   } else {
 965     lea(rscratch1, src);
 966     Assembler::addsd(dst, Address(rscratch1, 0));
 967   }
 968 }
 969 
 970 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     addss(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     addss(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     Assembler::addpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::addpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::align(int modulus) {
 989   align(modulus, offset());
 990 }
 991 
 992 void MacroAssembler::align(int modulus, int target) {
 993   if (target % modulus != 0) {
 994     nop(modulus - (target % modulus));
 995   }
 996 }
 997 
 998 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
 999   // Used in sign-masking with aligned address.
1000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1001   if (reachable(src)) {
1002     Assembler::andpd(dst, as_Address(src));
1003   } else {
1004     lea(scratch_reg, src);
1005     Assembler::andpd(dst, Address(scratch_reg, 0));
1006   }
1007 }
1008 
1009 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andps(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andps(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
1020 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1021   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1022 }
1023 
1024 void MacroAssembler::atomic_incl(Address counter_addr) {
1025   lock();
1026   incrementl(counter_addr);
1027 }
1028 
1029 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1030   if (reachable(counter_addr)) {
1031     atomic_incl(as_Address(counter_addr));
1032   } else {
1033     lea(scr, counter_addr);
1034     atomic_incl(Address(scr, 0));
1035   }
1036 }
1037 
1038 #ifdef _LP64
1039 void MacroAssembler::atomic_incq(Address counter_addr) {
1040   lock();
1041   incrementq(counter_addr);
1042 }
1043 
1044 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1045   if (reachable(counter_addr)) {
1046     atomic_incq(as_Address(counter_addr));
1047   } else {
1048     lea(scr, counter_addr);
1049     atomic_incq(Address(scr, 0));
1050   }
1051 }
1052 #endif
1053 
1054 // Writes to stack successive pages until offset reached to check for
1055 // stack overflow + shadow pages.  This clobbers tmp.
1056 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1057   movptr(tmp, rsp);
1058   // Bang stack for total size given plus shadow page size.
1059   // Bang one page at a time because large size can bang beyond yellow and
1060   // red zones.
1061   Label loop;
1062   bind(loop);
1063   movl(Address(tmp, (-os::vm_page_size())), size );
1064   subptr(tmp, os::vm_page_size());
1065   subl(size, os::vm_page_size());
1066   jcc(Assembler::greater, loop);
1067 
1068   // Bang down shadow pages too.
1069   // At this point, (tmp-0) is the last address touched, so don't
1070   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1071   // was post-decremented.)  Skip this address by starting at i=1, and
1072   // touch a few more pages below.  N.B.  It is important to touch all
1073   // the way down including all pages in the shadow zone.
1074   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1075     // this could be any sized move but this is can be a debugging crumb
1076     // so the bigger the better.
1077     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1078   }
1079 }
1080 
1081 void MacroAssembler::reserved_stack_check() {
1082     // testing if reserved zone needs to be enabled
1083     Label no_reserved_zone_enabling;
1084     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1085     NOT_LP64(get_thread(rsi);)
1086 
1087     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::below, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1091     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1092     should_not_reach_here();
1093 
1094     bind(no_reserved_zone_enabling);
1095 }
1096 
1097 int MacroAssembler::biased_locking_enter(Register lock_reg,
1098                                          Register obj_reg,
1099                                          Register swap_reg,
1100                                          Register tmp_reg,
1101                                          bool swap_reg_contains_mark,
1102                                          Label& done,
1103                                          Label* slow_case,
1104                                          BiasedLockingCounters* counters) {
1105   assert(UseBiasedLocking, "why call this otherwise?");
1106   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1107   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1108   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1109   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
1110   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1111   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1112 
1113   if (PrintBiasedLockingStatistics && counters == NULL) {
1114     counters = BiasedLocking::counters();
1115   }
1116   // Biased locking
1117   // See whether the lock is currently biased toward our thread and
1118   // whether the epoch is still valid
1119   // Note that the runtime guarantees sufficient alignment of JavaThread
1120   // pointers to allow age to be placed into low bits
1121   // First check to see whether biasing is even enabled for this object
1122   Label cas_label;
1123   int null_check_offset = -1;
1124   if (!swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126     movptr(swap_reg, mark_addr);
1127   }
1128   movptr(tmp_reg, swap_reg);
1129   andptr(tmp_reg, markWord::biased_lock_mask_in_place);
1130   cmpptr(tmp_reg, markWord::biased_lock_pattern);
1131   jcc(Assembler::notEqual, cas_label);
1132   // The bias pattern is present in the object's header. Need to check
1133   // whether the bias owner and the epoch are both still current.
1134 #ifndef _LP64
1135   // Note that because there is no current thread register on x86_32 we
1136   // need to store off the mark word we read out of the object to
1137   // avoid reloading it and needing to recheck invariants below. This
1138   // store is unfortunate but it makes the overall code shorter and
1139   // simpler.
1140   movptr(saved_mark_addr, swap_reg);
1141 #endif
1142   if (swap_reg_contains_mark) {
1143     null_check_offset = offset();
1144   }
1145   load_prototype_header(tmp_reg, obj_reg);
1146 #ifdef _LP64
1147   orptr(tmp_reg, r15_thread);
1148   xorptr(tmp_reg, swap_reg);
1149   Register header_reg = tmp_reg;
1150 #else
1151   xorptr(tmp_reg, swap_reg);
1152   get_thread(swap_reg);
1153   xorptr(swap_reg, tmp_reg);
1154   Register header_reg = swap_reg;
1155 #endif
1156   andptr(header_reg, ~((int) markWord::age_mask_in_place));
1157   if (counters != NULL) {
1158     cond_inc32(Assembler::zero,
1159                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1160   }
1161   jcc(Assembler::equal, done);
1162 
1163   Label try_revoke_bias;
1164   Label try_rebias;
1165 
1166   // At this point we know that the header has the bias pattern and
1167   // that we are not the bias owner in the current epoch. We need to
1168   // figure out more details about the state of the header in order to
1169   // know what operations can be legally performed on the object's
1170   // header.
1171 
1172   // If the low three bits in the xor result aren't clear, that means
1173   // the prototype header is no longer biased and we have to revoke
1174   // the bias on this object.
1175   testptr(header_reg, markWord::biased_lock_mask_in_place);
1176   jccb(Assembler::notZero, try_revoke_bias);
1177 
1178   // Biasing is still enabled for this data type. See whether the
1179   // epoch of the current bias is still valid, meaning that the epoch
1180   // bits of the mark word are equal to the epoch bits of the
1181   // prototype header. (Note that the prototype header's epoch bits
1182   // only change at a safepoint.) If not, attempt to rebias the object
1183   // toward the current thread. Note that we must be absolutely sure
1184   // that the current epoch is invalid in order to do this because
1185   // otherwise the manipulations it performs on the mark word are
1186   // illegal.
1187   testptr(header_reg, markWord::epoch_mask_in_place);
1188   jccb(Assembler::notZero, try_rebias);
1189 
1190   // The epoch of the current bias is still valid but we know nothing
1191   // about the owner; it might be set or it might be clear. Try to
1192   // acquire the bias of the object using an atomic operation. If this
1193   // fails we will go in to the runtime to revoke the object's bias.
1194   // Note that we first construct the presumed unbiased header so we
1195   // don't accidentally blow away another thread's valid bias.
1196   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1197   andptr(swap_reg,
1198          markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
1199 #ifdef _LP64
1200   movptr(tmp_reg, swap_reg);
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(tmp_reg);
1204   orptr(tmp_reg, swap_reg);
1205 #endif
1206   lock();
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   lock();
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   lock();
1268   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1269   // Fall through to the normal CAS-based lock, because no matter what
1270   // the result of the above CAS, some thread must have succeeded in
1271   // removing the bias bit from the object's header.
1272   if (counters != NULL) {
1273     cond_inc32(Assembler::zero,
1274                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1275   }
1276 
1277   bind(cas_label);
1278 
1279   return null_check_offset;
1280 }
1281 
1282 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1283   assert(UseBiasedLocking, "why call this otherwise?");
1284 
1285   // Check for biased locking unlock case, which is a no-op
1286   // Note: we do not have to check the thread ID for two reasons.
1287   // First, the interpreter checks for IllegalMonitorStateException at
1288   // a higher level. Second, if the bias was revoked while we held the
1289   // lock, the object could not be rebiased toward another thread, so
1290   // the bias bit would be clear.
1291   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1292   andptr(temp_reg, markWord::biased_lock_mask_in_place);
1293   cmpptr(temp_reg, markWord::biased_lock_pattern);
1294   jcc(Assembler::equal, done);
1295 }
1296 
1297 #ifdef COMPILER2
1298 
1299 #if INCLUDE_RTM_OPT
1300 
1301 // Update rtm_counters based on abort status
1302 // input: abort_status
1303 //        rtm_counters (RTMLockingCounters*)
1304 // flags are killed
1305 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1306 
1307   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1308   if (PrintPreciseRTMLockingStatistics) {
1309     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1310       Label check_abort;
1311       testl(abort_status, (1<<i));
1312       jccb(Assembler::equal, check_abort);
1313       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1314       bind(check_abort);
1315     }
1316   }
1317 }
1318 
1319 // Branch if (random & (count-1) != 0), count is 2^n
1320 // tmp, scr and flags are killed
1321 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1322   assert(tmp == rax, "");
1323   assert(scr == rdx, "");
1324   rdtsc(); // modifies EDX:EAX
1325   andptr(tmp, count-1);
1326   jccb(Assembler::notZero, brLabel);
1327 }
1328 
1329 // Perform abort ratio calculation, set no_rtm bit if high ratio
1330 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1331 // tmpReg, rtm_counters_Reg and flags are killed
1332 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1333                                                  Register rtm_counters_Reg,
1334                                                  RTMLockingCounters* rtm_counters,
1335                                                  Metadata* method_data) {
1336   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1337 
1338   if (RTMLockingCalculationDelay > 0) {
1339     // Delay calculation
1340     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1341     testptr(tmpReg, tmpReg);
1342     jccb(Assembler::equal, L_done);
1343   }
1344   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1345   //   Aborted transactions = abort_count * 100
1346   //   All transactions = total_count *  RTMTotalCountIncrRate
1347   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1348 
1349   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1350   cmpptr(tmpReg, RTMAbortThreshold);
1351   jccb(Assembler::below, L_check_always_rtm2);
1352   imulptr(tmpReg, tmpReg, 100);
1353 
1354   Register scrReg = rtm_counters_Reg;
1355   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1356   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1357   imulptr(scrReg, scrReg, RTMAbortRatio);
1358   cmpptr(tmpReg, scrReg);
1359   jccb(Assembler::below, L_check_always_rtm1);
1360   if (method_data != NULL) {
1361     // set rtm_state to "no rtm" in MDO
1362     mov_metadata(tmpReg, method_data);
1363     lock();
1364     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1365   }
1366   jmpb(L_done);
1367   bind(L_check_always_rtm1);
1368   // Reload RTMLockingCounters* address
1369   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1370   bind(L_check_always_rtm2);
1371   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1373   jccb(Assembler::below, L_done);
1374   if (method_data != NULL) {
1375     // set rtm_state to "always rtm" in MDO
1376     mov_metadata(tmpReg, method_data);
1377     lock();
1378     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1379   }
1380   bind(L_done);
1381 }
1382 
1383 // Update counters and perform abort ratio calculation
1384 // input:  abort_status_Reg
1385 // rtm_counters_Reg, flags are killed
1386 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1387                                    Register rtm_counters_Reg,
1388                                    RTMLockingCounters* rtm_counters,
1389                                    Metadata* method_data,
1390                                    bool profile_rtm) {
1391 
1392   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1393   // update rtm counters based on rax value at abort
1394   // reads abort_status_Reg, updates flags
1395   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1396   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1397   if (profile_rtm) {
1398     // Save abort status because abort_status_Reg is used by following code.
1399     if (RTMRetryCount > 0) {
1400       push(abort_status_Reg);
1401     }
1402     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1403     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1404     // restore abort status
1405     if (RTMRetryCount > 0) {
1406       pop(abort_status_Reg);
1407     }
1408   }
1409 }
1410 
1411 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1412 // inputs: retry_count_Reg
1413 //       : abort_status_Reg
1414 // output: retry_count_Reg decremented by 1
1415 // flags are killed
1416 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1417   Label doneRetry;
1418   assert(abort_status_Reg == rax, "");
1419   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1420   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1421   // if reason is in 0x6 and retry count != 0 then retry
1422   andptr(abort_status_Reg, 0x6);
1423   jccb(Assembler::zero, doneRetry);
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   pause();
1427   decrementl(retry_count_Reg);
1428   jmp(retryLabel);
1429   bind(doneRetry);
1430 }
1431 
1432 // Spin and retry if lock is busy,
1433 // inputs: box_Reg (monitor address)
1434 //       : retry_count_Reg
1435 // output: retry_count_Reg decremented by 1
1436 //       : clear z flag if retry count exceeded
1437 // tmp_Reg, scr_Reg, flags are killed
1438 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1439                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1440   Label SpinLoop, SpinExit, doneRetry;
1441   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1442 
1443   testl(retry_count_Reg, retry_count_Reg);
1444   jccb(Assembler::zero, doneRetry);
1445   decrementl(retry_count_Reg);
1446   movptr(scr_Reg, RTMSpinLoopCount);
1447 
1448   bind(SpinLoop);
1449   pause();
1450   decrementl(scr_Reg);
1451   jccb(Assembler::lessEqual, SpinExit);
1452   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1453   testptr(tmp_Reg, tmp_Reg);
1454   jccb(Assembler::notZero, SpinLoop);
1455 
1456   bind(SpinExit);
1457   jmp(retryLabel);
1458   bind(doneRetry);
1459   incrementl(retry_count_Reg); // clear z flag
1460 }
1461 
1462 // Use RTM for normal stack locks
1463 // Input: objReg (object to lock)
1464 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1465                                        Register retry_on_abort_count_Reg,
1466                                        RTMLockingCounters* stack_rtm_counters,
1467                                        Metadata* method_data, bool profile_rtm,
1468                                        Label& DONE_LABEL, Label& IsInflated) {
1469   assert(UseRTMForStackLocks, "why call this otherwise?");
1470   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1471   assert(tmpReg == rax, "");
1472   assert(scrReg == rdx, "");
1473   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1474 
1475   if (RTMRetryCount > 0) {
1476     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1477     bind(L_rtm_retry);
1478   }
1479   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1480   testptr(tmpReg, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
1481   jcc(Assembler::notZero, IsInflated);
1482 
1483   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1484     Label L_noincrement;
1485     if (RTMTotalCountIncrRate > 1) {
1486       // tmpReg, scrReg and flags are killed
1487       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1488     }
1489     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1490     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1491     bind(L_noincrement);
1492   }
1493   xbegin(L_on_abort);
1494   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1495   andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
1496   cmpptr(tmpReg, markWord::unlocked_value);            // bits = 001 unlocked
1497   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1498 
1499   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1500   if (UseRTMXendForLockBusy) {
1501     xend();
1502     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1503     jmp(L_decrement_retry);
1504   }
1505   else {
1506     xabort(0);
1507   }
1508   bind(L_on_abort);
1509   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1510     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1511   }
1512   bind(L_decrement_retry);
1513   if (RTMRetryCount > 0) {
1514     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1515     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1516   }
1517 }
1518 
1519 // Use RTM for inflating locks
1520 // inputs: objReg (object to lock)
1521 //         boxReg (on-stack box address (displaced header location) - KILLED)
1522 //         tmpReg (ObjectMonitor address + markWord::monitor_value)
1523 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1524                                           Register scrReg, Register retry_on_busy_count_Reg,
1525                                           Register retry_on_abort_count_Reg,
1526                                           RTMLockingCounters* rtm_counters,
1527                                           Metadata* method_data, bool profile_rtm,
1528                                           Label& DONE_LABEL) {
1529   assert(UseRTMLocking, "why call this otherwise?");
1530   assert(tmpReg == rax, "");
1531   assert(scrReg == rdx, "");
1532   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1533   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1534 
1535   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1536   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1537   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1538 
1539   if (RTMRetryCount > 0) {
1540     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1541     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1542     bind(L_rtm_retry);
1543   }
1544   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1545     Label L_noincrement;
1546     if (RTMTotalCountIncrRate > 1) {
1547       // tmpReg, scrReg and flags are killed
1548       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1549     }
1550     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1551     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1552     bind(L_noincrement);
1553   }
1554   xbegin(L_on_abort);
1555   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1556   movptr(tmpReg, Address(tmpReg, owner_offset));
1557   testptr(tmpReg, tmpReg);
1558   jcc(Assembler::zero, DONE_LABEL);
1559   if (UseRTMXendForLockBusy) {
1560     xend();
1561     jmp(L_decrement_retry);
1562   }
1563   else {
1564     xabort(0);
1565   }
1566   bind(L_on_abort);
1567   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1568   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1569     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1570   }
1571   if (RTMRetryCount > 0) {
1572     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1573     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1574   }
1575 
1576   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1577   testptr(tmpReg, tmpReg) ;
1578   jccb(Assembler::notZero, L_decrement_retry) ;
1579 
1580   // Appears unlocked - try to swing _owner from null to non-null.
1581   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1582 #ifdef _LP64
1583   Register threadReg = r15_thread;
1584 #else
1585   get_thread(scrReg);
1586   Register threadReg = scrReg;
1587 #endif
1588   lock();
1589   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1590 
1591   if (RTMRetryCount > 0) {
1592     // success done else retry
1593     jccb(Assembler::equal, DONE_LABEL) ;
1594     bind(L_decrement_retry);
1595     // Spin and retry if lock is busy.
1596     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1597   }
1598   else {
1599     bind(L_decrement_retry);
1600   }
1601 }
1602 
1603 #endif //  INCLUDE_RTM_OPT
1604 
1605 // Fast_Lock and Fast_Unlock used by C2
1606 
1607 // Because the transitions from emitted code to the runtime
1608 // monitorenter/exit helper stubs are so slow it's critical that
1609 // we inline both the stack-locking fast-path and the inflated fast path.
1610 //
1611 // See also: cmpFastLock and cmpFastUnlock.
1612 //
1613 // What follows is a specialized inline transliteration of the code
1614 // in enter() and exit(). If we're concerned about I$ bloat another
1615 // option would be to emit TrySlowEnter and TrySlowExit methods
1616 // at startup-time.  These methods would accept arguments as
1617 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1618 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1619 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1620 // In practice, however, the # of lock sites is bounded and is usually small.
1621 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1622 // if the processor uses simple bimodal branch predictors keyed by EIP
1623 // Since the helper routines would be called from multiple synchronization
1624 // sites.
1625 //
1626 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1627 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1628 // to those specialized methods.  That'd give us a mostly platform-independent
1629 // implementation that the JITs could optimize and inline at their pleasure.
1630 // Done correctly, the only time we'd need to cross to native could would be
1631 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1632 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1633 // (b) explicit barriers or fence operations.
1634 //
1635 // TODO:
1636 //
1637 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1638 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1639 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1640 //    the lock operators would typically be faster than reifying Self.
1641 //
1642 // *  Ideally I'd define the primitives as:
1643 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1644 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1645 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1646 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1647 //    Furthermore the register assignments are overconstrained, possibly resulting in
1648 //    sub-optimal code near the synchronization site.
1649 //
1650 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1651 //    Alternately, use a better sp-proximity test.
1652 //
1653 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1654 //    Either one is sufficient to uniquely identify a thread.
1655 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1656 //
1657 // *  Intrinsify notify() and notifyAll() for the common cases where the
1658 //    object is locked by the calling thread but the waitlist is empty.
1659 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1660 //
1661 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1662 //    But beware of excessive branch density on AMD Opterons.
1663 //
1664 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1665 //    or failure of the fast-path.  If the fast-path fails then we pass
1666 //    control to the slow-path, typically in C.  In Fast_Lock and
1667 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1668 //    will emit a conditional branch immediately after the node.
1669 //    So we have branches to branches and lots of ICC.ZF games.
1670 //    Instead, it might be better to have C2 pass a "FailureLabel"
1671 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1672 //    will drop through the node.  ICC.ZF is undefined at exit.
1673 //    In the case of failure, the node will branch directly to the
1674 //    FailureLabel
1675 
1676 
1677 // obj: object to lock
1678 // box: on-stack box address (displaced header location) - KILLED
1679 // rax,: tmp -- KILLED
1680 // scr: tmp -- KILLED
1681 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1682                                Register scrReg, Register cx1Reg, Register cx2Reg,
1683                                BiasedLockingCounters* counters,
1684                                RTMLockingCounters* rtm_counters,
1685                                RTMLockingCounters* stack_rtm_counters,
1686                                Metadata* method_data,
1687                                bool use_rtm, bool profile_rtm) {
1688   // Ensure the register assignments are disjoint
1689   assert(tmpReg == rax, "");
1690 
1691   if (use_rtm) {
1692     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1693   } else {
1694     assert(cx1Reg == noreg, "");
1695     assert(cx2Reg == noreg, "");
1696     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1697   }
1698 
1699   if (counters != NULL) {
1700     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1701   }
1702 
1703   // Possible cases that we'll encounter in fast_lock
1704   // ------------------------------------------------
1705   // * Inflated
1706   //    -- unlocked
1707   //    -- Locked
1708   //       = by self
1709   //       = by other
1710   // * biased
1711   //    -- by Self
1712   //    -- by other
1713   // * neutral
1714   // * stack-locked
1715   //    -- by self
1716   //       = sp-proximity test hits
1717   //       = sp-proximity test generates false-negative
1718   //    -- by other
1719   //
1720 
1721   Label IsInflated, DONE_LABEL;
1722 
1723   // it's stack-locked, biased or neutral
1724   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1725   // order to reduce the number of conditional branches in the most common cases.
1726   // Beware -- there's a subtle invariant that fetch of the markword
1727   // at [FETCH], below, will never observe a biased encoding (*101b).
1728   // If this invariant is not held we risk exclusion (safety) failure.
1729   if (UseBiasedLocking && !UseOptoBiasInlining) {
1730     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1731   }
1732 
1733 #if INCLUDE_RTM_OPT
1734   if (UseRTMForStackLocks && use_rtm) {
1735     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1736                       stack_rtm_counters, method_data, profile_rtm,
1737                       DONE_LABEL, IsInflated);
1738   }
1739 #endif // INCLUDE_RTM_OPT
1740 
1741   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1742   testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
1743   jccb(Assembler::notZero, IsInflated);
1744 
1745   // Attempt stack-locking ...
1746   orptr (tmpReg, markWord::unlocked_value);
1747   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1748   lock();
1749   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1750   if (counters != NULL) {
1751     cond_inc32(Assembler::equal,
1752                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1753   }
1754   jcc(Assembler::equal, DONE_LABEL);           // Success
1755 
1756   // Recursive locking.
1757   // The object is stack-locked: markword contains stack pointer to BasicLock.
1758   // Locked by current thread if difference with current SP is less than one page.
1759   subptr(tmpReg, rsp);
1760   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1761   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1762   movptr(Address(boxReg, 0), tmpReg);
1763   if (counters != NULL) {
1764     cond_inc32(Assembler::equal,
1765                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1766   }
1767   jmp(DONE_LABEL);
1768 
1769   bind(IsInflated);
1770   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
1771 
1772 #if INCLUDE_RTM_OPT
1773   // Use the same RTM locking code in 32- and 64-bit VM.
1774   if (use_rtm) {
1775     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1776                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1777   } else {
1778 #endif // INCLUDE_RTM_OPT
1779 
1780 #ifndef _LP64
1781   // The object is inflated.
1782 
1783   // boxReg refers to the on-stack BasicLock in the current frame.
1784   // We'd like to write:
1785   //   set box->_displaced_header = markWord::unused_mark().  Any non-0 value suffices.
1786   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1787   // additional latency as we have another ST in the store buffer that must drain.
1788 
1789   // avoid ST-before-CAS
1790   // register juggle because we need tmpReg for cmpxchgptr below
1791   movptr(scrReg, boxReg);
1792   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794   // Optimistic form: consider XORL tmpReg,tmpReg
1795   movptr(tmpReg, NULL_WORD);
1796 
1797   // Appears unlocked - try to swing _owner from null to non-null.
1798   // Ideally, I'd manifest "Self" with get_thread and then attempt
1799   // to CAS the register containing Self into m->Owner.
1800   // But we don't have enough registers, so instead we can either try to CAS
1801   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1802   // we later store "Self" into m->Owner.  Transiently storing a stack address
1803   // (rsp or the address of the box) into  m->owner is harmless.
1804   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1805   lock();
1806   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1807   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1808   // If we weren't able to swing _owner from NULL to the BasicLock
1809   // then take the slow path.
1810   jccb  (Assembler::notZero, DONE_LABEL);
1811   // update _owner from BasicLock to thread
1812   get_thread (scrReg);                    // beware: clobbers ICCs
1813   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1814   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1815 
1816   // If the CAS fails we can either retry or pass control to the slow-path.
1817   // We use the latter tactic.
1818   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1819   // If the CAS was successful ...
1820   //   Self has acquired the lock
1821   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1822   // Intentional fall-through into DONE_LABEL ...
1823 #else // _LP64
1824   // It's inflated
1825   movq(scrReg, tmpReg);
1826   xorq(tmpReg, tmpReg);
1827 
1828   lock();
1829   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1830   // Unconditionally set box->_displaced_header = markWord::unused_mark().
1831   // Without cast to int32_t movptr will destroy r10 which is typically obj.
1832   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1833   // Intentional fall-through into DONE_LABEL ...
1834   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1835 #endif // _LP64
1836 #if INCLUDE_RTM_OPT
1837   } // use_rtm()
1838 #endif
1839   // DONE_LABEL is a hot target - we'd really like to place it at the
1840   // start of cache line by padding with NOPs.
1841   // See the AMD and Intel software optimization manuals for the
1842   // most efficient "long" NOP encodings.
1843   // Unfortunately none of our alignment mechanisms suffice.
1844   bind(DONE_LABEL);
1845 
1846   // At DONE_LABEL the icc ZFlag is set as follows ...
1847   // Fast_Unlock uses the same protocol.
1848   // ZFlag == 1 -> Success
1849   // ZFlag == 0 -> Failure - force control through the slow-path
1850 }
1851 
1852 // obj: object to unlock
1853 // box: box address (displaced header location), killed.  Must be EAX.
1854 // tmp: killed, cannot be obj nor box.
1855 //
1856 // Some commentary on balanced locking:
1857 //
1858 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1859 // Methods that don't have provably balanced locking are forced to run in the
1860 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1861 // The interpreter provides two properties:
1862 // I1:  At return-time the interpreter automatically and quietly unlocks any
1863 //      objects acquired the current activation (frame).  Recall that the
1864 //      interpreter maintains an on-stack list of locks currently held by
1865 //      a frame.
1866 // I2:  If a method attempts to unlock an object that is not held by the
1867 //      the frame the interpreter throws IMSX.
1868 //
1869 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1870 // B() doesn't have provably balanced locking so it runs in the interpreter.
1871 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1872 // is still locked by A().
1873 //
1874 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1875 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1876 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1877 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1878 // Arguably given that the spec legislates the JNI case as undefined our implementation
1879 // could reasonably *avoid* checking owner in Fast_Unlock().
1880 // In the interest of performance we elide m->Owner==Self check in unlock.
1881 // A perfectly viable alternative is to elide the owner check except when
1882 // Xcheck:jni is enabled.
1883 
1884 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1885   assert(boxReg == rax, "");
1886   assert_different_registers(objReg, boxReg, tmpReg);
1887 
1888   Label DONE_LABEL, Stacked, CheckSucc;
1889 
1890   // Critically, the biased locking test must have precedence over
1891   // and appear before the (box->dhw == 0) recursive stack-lock test.
1892   if (UseBiasedLocking && !UseOptoBiasInlining) {
1893     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1894   }
1895 
1896 #if INCLUDE_RTM_OPT
1897   if (UseRTMForStackLocks && use_rtm) {
1898     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1899     Label L_regular_unlock;
1900     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
1901     andptr(tmpReg, markWord::biased_lock_mask_in_place);              // look at 3 lock bits
1902     cmpptr(tmpReg, markWord::unlocked_value);                         // bits = 001 unlocked
1903     jccb(Assembler::notEqual, L_regular_unlock);                      // if !HLE RegularLock
1904     xend();                                                           // otherwise end...
1905     jmp(DONE_LABEL);                                                  // ... and we're done
1906     bind(L_regular_unlock);
1907   }
1908 #endif
1909 
1910   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD);                   // Examine the displaced header
1911   jcc   (Assembler::zero, DONE_LABEL);                              // 0 indicates recursive stack-lock
1912   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
1913   testptr(tmpReg, markWord::monitor_value);                         // Inflated?
1914   jccb  (Assembler::zero, Stacked);
1915 
1916   // It's inflated.
1917 #if INCLUDE_RTM_OPT
1918   if (use_rtm) {
1919     Label L_regular_inflated_unlock;
1920     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1921     movptr(boxReg, Address(tmpReg, owner_offset));
1922     testptr(boxReg, boxReg);
1923     jccb(Assembler::notZero, L_regular_inflated_unlock);
1924     xend();
1925     jmpb(DONE_LABEL);
1926     bind(L_regular_inflated_unlock);
1927   }
1928 #endif
1929 
1930   // Despite our balanced locking property we still check that m->_owner == Self
1931   // as java routines or native JNI code called by this thread might
1932   // have released the lock.
1933   // Refer to the comments in synchronizer.cpp for how we might encode extra
1934   // state in _succ so we can avoid fetching EntryList|cxq.
1935   //
1936   // I'd like to add more cases in fast_lock() and fast_unlock() --
1937   // such as recursive enter and exit -- but we have to be wary of
1938   // I$ bloat, T$ effects and BP$ effects.
1939   //
1940   // If there's no contention try a 1-0 exit.  That is, exit without
1941   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1942   // we detect and recover from the race that the 1-0 exit admits.
1943   //
1944   // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1945   // before it STs null into _owner, releasing the lock.  Updates
1946   // to data protected by the critical section must be visible before
1947   // we drop the lock (and thus before any other thread could acquire
1948   // the lock and observe the fields protected by the lock).
1949   // IA32's memory-model is SPO, so STs are ordered with respect to
1950   // each other and there's no need for an explicit barrier (fence).
1951   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1952 #ifndef _LP64
1953   get_thread (boxReg);
1954 
1955   // Note that we could employ various encoding schemes to reduce
1956   // the number of loads below (currently 4) to just 2 or 3.
1957   // Refer to the comments in synchronizer.cpp.
1958   // In practice the chain of fetches doesn't seem to impact performance, however.
1959   xorptr(boxReg, boxReg);
1960   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1961   jccb  (Assembler::notZero, DONE_LABEL);
1962   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1963   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1964   jccb  (Assembler::notZero, CheckSucc);
1965   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1966   jmpb  (DONE_LABEL);
1967 
1968   bind (Stacked);
1969   // It's not inflated and it's not recursively stack-locked and it's not biased.
1970   // It must be stack-locked.
1971   // Try to reset the header to displaced header.
1972   // The "box" value on the stack is stable, so we can reload
1973   // and be assured we observe the same value as above.
1974   movptr(tmpReg, Address(boxReg, 0));
1975   lock();
1976   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1977   // Intention fall-thru into DONE_LABEL
1978 
1979   // DONE_LABEL is a hot target - we'd really like to place it at the
1980   // start of cache line by padding with NOPs.
1981   // See the AMD and Intel software optimization manuals for the
1982   // most efficient "long" NOP encodings.
1983   // Unfortunately none of our alignment mechanisms suffice.
1984   bind (CheckSucc);
1985 #else // _LP64
1986   // It's inflated
1987   xorptr(boxReg, boxReg);
1988   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1989   jccb  (Assembler::notZero, DONE_LABEL);
1990   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1991   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1992   jccb  (Assembler::notZero, CheckSucc);
1993   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
1994   jmpb  (DONE_LABEL);
1995 
1996   // Try to avoid passing control into the slow_path ...
1997   Label LSuccess, LGoSlowPath ;
1998   bind  (CheckSucc);
1999 
2000   // The following optional optimization can be elided if necessary
2001   // Effectively: if (succ == null) goto SlowPath
2002   // The code reduces the window for a race, however,
2003   // and thus benefits performance.
2004   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2005   jccb  (Assembler::zero, LGoSlowPath);
2006 
2007   xorptr(boxReg, boxReg);
2008   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2009 
2010   // Memory barrier/fence
2011   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2012   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2013   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2014   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2015   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2016   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2017   lock(); addl(Address(rsp, 0), 0);
2018 
2019   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2020   jccb  (Assembler::notZero, LSuccess);
2021 
2022   // Rare inopportune interleaving - race.
2023   // The successor vanished in the small window above.
2024   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2025   // We need to ensure progress and succession.
2026   // Try to reacquire the lock.
2027   // If that fails then the new owner is responsible for succession and this
2028   // thread needs to take no further action and can exit via the fast path (success).
2029   // If the re-acquire succeeds then pass control into the slow path.
2030   // As implemented, this latter mode is horrible because we generated more
2031   // coherence traffic on the lock *and* artifically extended the critical section
2032   // length while by virtue of passing control into the slow path.
2033 
2034   // box is really RAX -- the following CMPXCHG depends on that binding
2035   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2036   lock();
2037   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2038   // There's no successor so we tried to regrab the lock.
2039   // If that didn't work, then another thread grabbed the
2040   // lock so we're done (and exit was a success).
2041   jccb  (Assembler::notEqual, LSuccess);
2042   // Intentional fall-through into slow-path
2043 
2044   bind  (LGoSlowPath);
2045   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2046   jmpb  (DONE_LABEL);
2047 
2048   bind  (LSuccess);
2049   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2050   jmpb  (DONE_LABEL);
2051 
2052   bind  (Stacked);
2053   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2054   lock();
2055   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2056 
2057 #endif
2058   bind(DONE_LABEL);
2059 }
2060 #endif // COMPILER2
2061 
2062 void MacroAssembler::c2bool(Register x) {
2063   // implements x == 0 ? 0 : 1
2064   // note: must only look at least-significant byte of x
2065   //       since C-style booleans are stored in one byte
2066   //       only! (was bug)
2067   andl(x, 0xFF);
2068   setb(Assembler::notZero, x);
2069 }
2070 
2071 // Wouldn't need if AddressLiteral version had new name
2072 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2073   Assembler::call(L, rtype);
2074 }
2075 
2076 void MacroAssembler::call(Register entry) {
2077   Assembler::call(entry);
2078 }
2079 
2080 void MacroAssembler::call(AddressLiteral entry) {
2081   if (reachable(entry)) {
2082     Assembler::call_literal(entry.target(), entry.rspec());
2083   } else {
2084     lea(rscratch1, entry);
2085     Assembler::call(rscratch1);
2086   }
2087 }
2088 
2089 void MacroAssembler::ic_call(address entry, jint method_index) {
2090   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2091   movptr(rax, (intptr_t)Universe::non_oop_word());
2092   call(AddressLiteral(entry, rh));
2093 }
2094 
2095 // Implementation of call_VM versions
2096 
2097 void MacroAssembler::call_VM(Register oop_result,
2098                              address entry_point,
2099                              bool check_exceptions) {
2100   Label C, E;
2101   call(C, relocInfo::none);
2102   jmp(E);
2103 
2104   bind(C);
2105   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2106   ret(0);
2107 
2108   bind(E);
2109 }
2110 
2111 void MacroAssembler::call_VM(Register oop_result,
2112                              address entry_point,
2113                              Register arg_1,
2114                              bool check_exceptions) {
2115   Label C, E;
2116   call(C, relocInfo::none);
2117   jmp(E);
2118 
2119   bind(C);
2120   pass_arg1(this, arg_1);
2121   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2122   ret(0);
2123 
2124   bind(E);
2125 }
2126 
2127 void MacroAssembler::call_VM(Register oop_result,
2128                              address entry_point,
2129                              Register arg_1,
2130                              Register arg_2,
2131                              bool check_exceptions) {
2132   Label C, E;
2133   call(C, relocInfo::none);
2134   jmp(E);
2135 
2136   bind(C);
2137 
2138   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2139 
2140   pass_arg2(this, arg_2);
2141   pass_arg1(this, arg_1);
2142   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2143   ret(0);
2144 
2145   bind(E);
2146 }
2147 
2148 void MacroAssembler::call_VM(Register oop_result,
2149                              address entry_point,
2150                              Register arg_1,
2151                              Register arg_2,
2152                              Register arg_3,
2153                              bool check_exceptions) {
2154   Label C, E;
2155   call(C, relocInfo::none);
2156   jmp(E);
2157 
2158   bind(C);
2159 
2160   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2161   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2162   pass_arg3(this, arg_3);
2163 
2164   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2165   pass_arg2(this, arg_2);
2166 
2167   pass_arg1(this, arg_1);
2168   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2169   ret(0);
2170 
2171   bind(E);
2172 }
2173 
2174 void MacroAssembler::call_VM(Register oop_result,
2175                              Register last_java_sp,
2176                              address entry_point,
2177                              int number_of_arguments,
2178                              bool check_exceptions) {
2179   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2180   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2181 }
2182 
2183 void MacroAssembler::call_VM(Register oop_result,
2184                              Register last_java_sp,
2185                              address entry_point,
2186                              Register arg_1,
2187                              bool check_exceptions) {
2188   pass_arg1(this, arg_1);
2189   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2190 }
2191 
2192 void MacroAssembler::call_VM(Register oop_result,
2193                              Register last_java_sp,
2194                              address entry_point,
2195                              Register arg_1,
2196                              Register arg_2,
2197                              bool check_exceptions) {
2198 
2199   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2200   pass_arg2(this, arg_2);
2201   pass_arg1(this, arg_1);
2202   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2203 }
2204 
2205 void MacroAssembler::call_VM(Register oop_result,
2206                              Register last_java_sp,
2207                              address entry_point,
2208                              Register arg_1,
2209                              Register arg_2,
2210                              Register arg_3,
2211                              bool check_exceptions) {
2212   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2213   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2214   pass_arg3(this, arg_3);
2215   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2216   pass_arg2(this, arg_2);
2217   pass_arg1(this, arg_1);
2218   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2219 }
2220 
2221 void MacroAssembler::super_call_VM(Register oop_result,
2222                                    Register last_java_sp,
2223                                    address entry_point,
2224                                    int number_of_arguments,
2225                                    bool check_exceptions) {
2226   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2227   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2228 }
2229 
2230 void MacroAssembler::super_call_VM(Register oop_result,
2231                                    Register last_java_sp,
2232                                    address entry_point,
2233                                    Register arg_1,
2234                                    bool check_exceptions) {
2235   pass_arg1(this, arg_1);
2236   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2237 }
2238 
2239 void MacroAssembler::super_call_VM(Register oop_result,
2240                                    Register last_java_sp,
2241                                    address entry_point,
2242                                    Register arg_1,
2243                                    Register arg_2,
2244                                    bool check_exceptions) {
2245 
2246   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2247   pass_arg2(this, arg_2);
2248   pass_arg1(this, arg_1);
2249   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2250 }
2251 
2252 void MacroAssembler::super_call_VM(Register oop_result,
2253                                    Register last_java_sp,
2254                                    address entry_point,
2255                                    Register arg_1,
2256                                    Register arg_2,
2257                                    Register arg_3,
2258                                    bool check_exceptions) {
2259   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2260   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2261   pass_arg3(this, arg_3);
2262   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2263   pass_arg2(this, arg_2);
2264   pass_arg1(this, arg_1);
2265   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2266 }
2267 
2268 void MacroAssembler::call_VM_base(Register oop_result,
2269                                   Register java_thread,
2270                                   Register last_java_sp,
2271                                   address  entry_point,
2272                                   int      number_of_arguments,
2273                                   bool     check_exceptions) {
2274   // determine java_thread register
2275   if (!java_thread->is_valid()) {
2276 #ifdef _LP64
2277     java_thread = r15_thread;
2278 #else
2279     java_thread = rdi;
2280     get_thread(java_thread);
2281 #endif // LP64
2282   }
2283   // determine last_java_sp register
2284   if (!last_java_sp->is_valid()) {
2285     last_java_sp = rsp;
2286   }
2287   // debugging support
2288   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2289   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2290 #ifdef ASSERT
2291   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2292   // r12 is the heapbase.
2293   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2294 #endif // ASSERT
2295 
2296   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2297   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2298 
2299   // push java thread (becomes first argument of C function)
2300 
2301   NOT_LP64(push(java_thread); number_of_arguments++);
2302   LP64_ONLY(mov(c_rarg0, r15_thread));
2303 
2304   // set last Java frame before call
2305   assert(last_java_sp != rbp, "can't use ebp/rbp");
2306 
2307   // Only interpreter should have to set fp
2308   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2309 
2310   // do the call, remove parameters
2311   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2312 
2313   // restore the thread (cannot use the pushed argument since arguments
2314   // may be overwritten by C code generated by an optimizing compiler);
2315   // however can use the register value directly if it is callee saved.
2316   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2317     // rdi & rsi (also r15) are callee saved -> nothing to do
2318 #ifdef ASSERT
2319     guarantee(java_thread != rax, "change this code");
2320     push(rax);
2321     { Label L;
2322       get_thread(rax);
2323       cmpptr(java_thread, rax);
2324       jcc(Assembler::equal, L);
2325       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2326       bind(L);
2327     }
2328     pop(rax);
2329 #endif
2330   } else {
2331     get_thread(java_thread);
2332   }
2333   // reset last Java frame
2334   // Only interpreter should have to clear fp
2335   reset_last_Java_frame(java_thread, true);
2336 
2337    // C++ interp handles this in the interpreter
2338   check_and_handle_popframe(java_thread);
2339   check_and_handle_earlyret(java_thread);
2340 
2341   if (check_exceptions) {
2342     // check for pending exceptions (java_thread is set upon return)
2343     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2344 #ifndef _LP64
2345     jump_cc(Assembler::notEqual,
2346             RuntimeAddress(StubRoutines::forward_exception_entry()));
2347 #else
2348     // This used to conditionally jump to forward_exception however it is
2349     // possible if we relocate that the branch will not reach. So we must jump
2350     // around so we can always reach
2351 
2352     Label ok;
2353     jcc(Assembler::equal, ok);
2354     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2355     bind(ok);
2356 #endif // LP64
2357   }
2358 
2359   // get oop result if there is one and reset the value in the thread
2360   if (oop_result->is_valid()) {
2361     get_vm_result(oop_result, java_thread);
2362   }
2363 }
2364 
2365 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2366 
2367   // Calculate the value for last_Java_sp
2368   // somewhat subtle. call_VM does an intermediate call
2369   // which places a return address on the stack just under the
2370   // stack pointer as the user finsihed with it. This allows
2371   // use to retrieve last_Java_pc from last_Java_sp[-1].
2372   // On 32bit we then have to push additional args on the stack to accomplish
2373   // the actual requested call. On 64bit call_VM only can use register args
2374   // so the only extra space is the return address that call_VM created.
2375   // This hopefully explains the calculations here.
2376 
2377 #ifdef _LP64
2378   // We've pushed one address, correct last_Java_sp
2379   lea(rax, Address(rsp, wordSize));
2380 #else
2381   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2382 #endif // LP64
2383 
2384   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2385 
2386 }
2387 
2388 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2389 void MacroAssembler::call_VM_leaf0(address entry_point) {
2390   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2391 }
2392 
2393 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2394   call_VM_leaf_base(entry_point, number_of_arguments);
2395 }
2396 
2397 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2398   pass_arg0(this, arg_0);
2399   call_VM_leaf(entry_point, 1);
2400 }
2401 
2402 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2403 
2404   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2405   pass_arg1(this, arg_1);
2406   pass_arg0(this, arg_0);
2407   call_VM_leaf(entry_point, 2);
2408 }
2409 
2410 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2411   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2412   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2413   pass_arg2(this, arg_2);
2414   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2415   pass_arg1(this, arg_1);
2416   pass_arg0(this, arg_0);
2417   call_VM_leaf(entry_point, 3);
2418 }
2419 
2420 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2421   pass_arg0(this, arg_0);
2422   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2423 }
2424 
2425 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2426 
2427   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2428   pass_arg1(this, arg_1);
2429   pass_arg0(this, arg_0);
2430   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2431 }
2432 
2433 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2434   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2435   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2436   pass_arg2(this, arg_2);
2437   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2438   pass_arg1(this, arg_1);
2439   pass_arg0(this, arg_0);
2440   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2441 }
2442 
2443 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2444   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2445   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2446   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2447   pass_arg3(this, arg_3);
2448   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2449   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2450   pass_arg2(this, arg_2);
2451   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2452   pass_arg1(this, arg_1);
2453   pass_arg0(this, arg_0);
2454   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2455 }
2456 
2457 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2458   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2459   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2460   verify_oop(oop_result, "broken oop in call_VM_base");
2461 }
2462 
2463 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2464   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2465   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2466 }
2467 
2468 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2469 }
2470 
2471 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2472 }
2473 
2474 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2475   if (reachable(src1)) {
2476     cmpl(as_Address(src1), imm);
2477   } else {
2478     lea(rscratch1, src1);
2479     cmpl(Address(rscratch1, 0), imm);
2480   }
2481 }
2482 
2483 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2484   assert(!src2.is_lval(), "use cmpptr");
2485   if (reachable(src2)) {
2486     cmpl(src1, as_Address(src2));
2487   } else {
2488     lea(rscratch1, src2);
2489     cmpl(src1, Address(rscratch1, 0));
2490   }
2491 }
2492 
2493 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2494   Assembler::cmpl(src1, imm);
2495 }
2496 
2497 void MacroAssembler::cmp32(Register src1, Address src2) {
2498   Assembler::cmpl(src1, src2);
2499 }
2500 
2501 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2502   ucomisd(opr1, opr2);
2503 
2504   Label L;
2505   if (unordered_is_less) {
2506     movl(dst, -1);
2507     jcc(Assembler::parity, L);
2508     jcc(Assembler::below , L);
2509     movl(dst, 0);
2510     jcc(Assembler::equal , L);
2511     increment(dst);
2512   } else { // unordered is greater
2513     movl(dst, 1);
2514     jcc(Assembler::parity, L);
2515     jcc(Assembler::above , L);
2516     movl(dst, 0);
2517     jcc(Assembler::equal , L);
2518     decrementl(dst);
2519   }
2520   bind(L);
2521 }
2522 
2523 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2524   ucomiss(opr1, opr2);
2525 
2526   Label L;
2527   if (unordered_is_less) {
2528     movl(dst, -1);
2529     jcc(Assembler::parity, L);
2530     jcc(Assembler::below , L);
2531     movl(dst, 0);
2532     jcc(Assembler::equal , L);
2533     increment(dst);
2534   } else { // unordered is greater
2535     movl(dst, 1);
2536     jcc(Assembler::parity, L);
2537     jcc(Assembler::above , L);
2538     movl(dst, 0);
2539     jcc(Assembler::equal , L);
2540     decrementl(dst);
2541   }
2542   bind(L);
2543 }
2544 
2545 
2546 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2547   if (reachable(src1)) {
2548     cmpb(as_Address(src1), imm);
2549   } else {
2550     lea(rscratch1, src1);
2551     cmpb(Address(rscratch1, 0), imm);
2552   }
2553 }
2554 
2555 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2556 #ifdef _LP64
2557   if (src2.is_lval()) {
2558     movptr(rscratch1, src2);
2559     Assembler::cmpq(src1, rscratch1);
2560   } else if (reachable(src2)) {
2561     cmpq(src1, as_Address(src2));
2562   } else {
2563     lea(rscratch1, src2);
2564     Assembler::cmpq(src1, Address(rscratch1, 0));
2565   }
2566 #else
2567   if (src2.is_lval()) {
2568     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2569   } else {
2570     cmpl(src1, as_Address(src2));
2571   }
2572 #endif // _LP64
2573 }
2574 
2575 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2576   assert(src2.is_lval(), "not a mem-mem compare");
2577 #ifdef _LP64
2578   // moves src2's literal address
2579   movptr(rscratch1, src2);
2580   Assembler::cmpq(src1, rscratch1);
2581 #else
2582   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2583 #endif // _LP64
2584 }
2585 
2586 void MacroAssembler::cmpoop(Register src1, Register src2) {
2587   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2588   bs->obj_equals(this, src1, src2);
2589 }
2590 
2591 void MacroAssembler::cmpoop(Register src1, Address src2) {
2592   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2593   bs->obj_equals(this, src1, src2);
2594 }
2595 
2596 #ifdef _LP64
2597 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2598   movoop(rscratch1, src2);
2599   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2600   bs->obj_equals(this, src1, rscratch1);
2601 }
2602 #endif
2603 
2604 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2605   if (reachable(adr)) {
2606     lock();
2607     cmpxchgptr(reg, as_Address(adr));
2608   } else {
2609     lea(rscratch1, adr);
2610     lock();
2611     cmpxchgptr(reg, Address(rscratch1, 0));
2612   }
2613 }
2614 
2615 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2616   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2617 }
2618 
2619 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2620   if (reachable(src)) {
2621     Assembler::comisd(dst, as_Address(src));
2622   } else {
2623     lea(rscratch1, src);
2624     Assembler::comisd(dst, Address(rscratch1, 0));
2625   }
2626 }
2627 
2628 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2629   if (reachable(src)) {
2630     Assembler::comiss(dst, as_Address(src));
2631   } else {
2632     lea(rscratch1, src);
2633     Assembler::comiss(dst, Address(rscratch1, 0));
2634   }
2635 }
2636 
2637 
2638 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2639   Condition negated_cond = negate_condition(cond);
2640   Label L;
2641   jcc(negated_cond, L);
2642   pushf(); // Preserve flags
2643   atomic_incl(counter_addr);
2644   popf();
2645   bind(L);
2646 }
2647 
2648 int MacroAssembler::corrected_idivl(Register reg) {
2649   // Full implementation of Java idiv and irem; checks for
2650   // special case as described in JVM spec., p.243 & p.271.
2651   // The function returns the (pc) offset of the idivl
2652   // instruction - may be needed for implicit exceptions.
2653   //
2654   //         normal case                           special case
2655   //
2656   // input : rax,: dividend                         min_int
2657   //         reg: divisor   (may not be rax,/rdx)   -1
2658   //
2659   // output: rax,: quotient  (= rax, idiv reg)       min_int
2660   //         rdx: remainder (= rax, irem reg)       0
2661   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2662   const int min_int = 0x80000000;
2663   Label normal_case, special_case;
2664 
2665   // check for special case
2666   cmpl(rax, min_int);
2667   jcc(Assembler::notEqual, normal_case);
2668   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2669   cmpl(reg, -1);
2670   jcc(Assembler::equal, special_case);
2671 
2672   // handle normal case
2673   bind(normal_case);
2674   cdql();
2675   int idivl_offset = offset();
2676   idivl(reg);
2677 
2678   // normal and special case exit
2679   bind(special_case);
2680 
2681   return idivl_offset;
2682 }
2683 
2684 
2685 
2686 void MacroAssembler::decrementl(Register reg, int value) {
2687   if (value == min_jint) {subl(reg, value) ; return; }
2688   if (value <  0) { incrementl(reg, -value); return; }
2689   if (value == 0) {                        ; return; }
2690   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2691   /* else */      { subl(reg, value)       ; return; }
2692 }
2693 
2694 void MacroAssembler::decrementl(Address dst, int value) {
2695   if (value == min_jint) {subl(dst, value) ; return; }
2696   if (value <  0) { incrementl(dst, -value); return; }
2697   if (value == 0) {                        ; return; }
2698   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2699   /* else */      { subl(dst, value)       ; return; }
2700 }
2701 
2702 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2703   assert (shift_value > 0, "illegal shift value");
2704   Label _is_positive;
2705   testl (reg, reg);
2706   jcc (Assembler::positive, _is_positive);
2707   int offset = (1 << shift_value) - 1 ;
2708 
2709   if (offset == 1) {
2710     incrementl(reg);
2711   } else {
2712     addl(reg, offset);
2713   }
2714 
2715   bind (_is_positive);
2716   sarl(reg, shift_value);
2717 }
2718 
2719 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2720   if (reachable(src)) {
2721     Assembler::divsd(dst, as_Address(src));
2722   } else {
2723     lea(rscratch1, src);
2724     Assembler::divsd(dst, Address(rscratch1, 0));
2725   }
2726 }
2727 
2728 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2729   if (reachable(src)) {
2730     Assembler::divss(dst, as_Address(src));
2731   } else {
2732     lea(rscratch1, src);
2733     Assembler::divss(dst, Address(rscratch1, 0));
2734   }
2735 }
2736 
2737 // !defined(COMPILER2) is because of stupid core builds
2738 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2739 void MacroAssembler::empty_FPU_stack() {
2740   if (VM_Version::supports_mmx()) {
2741     emms();
2742   } else {
2743     for (int i = 8; i-- > 0; ) ffree(i);
2744   }
2745 }
2746 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2747 
2748 
2749 void MacroAssembler::enter() {
2750   push(rbp);
2751   mov(rbp, rsp);
2752 }
2753 
2754 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2755 void MacroAssembler::fat_nop() {
2756   if (UseAddressNop) {
2757     addr_nop_5();
2758   } else {
2759     emit_int8(0x26); // es:
2760     emit_int8(0x2e); // cs:
2761     emit_int8(0x64); // fs:
2762     emit_int8(0x65); // gs:
2763     emit_int8((unsigned char)0x90);
2764   }
2765 }
2766 
2767 void MacroAssembler::fcmp(Register tmp) {
2768   fcmp(tmp, 1, true, true);
2769 }
2770 
2771 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2772   assert(!pop_right || pop_left, "usage error");
2773   if (VM_Version::supports_cmov()) {
2774     assert(tmp == noreg, "unneeded temp");
2775     if (pop_left) {
2776       fucomip(index);
2777     } else {
2778       fucomi(index);
2779     }
2780     if (pop_right) {
2781       fpop();
2782     }
2783   } else {
2784     assert(tmp != noreg, "need temp");
2785     if (pop_left) {
2786       if (pop_right) {
2787         fcompp();
2788       } else {
2789         fcomp(index);
2790       }
2791     } else {
2792       fcom(index);
2793     }
2794     // convert FPU condition into eflags condition via rax,
2795     save_rax(tmp);
2796     fwait(); fnstsw_ax();
2797     sahf();
2798     restore_rax(tmp);
2799   }
2800   // condition codes set as follows:
2801   //
2802   // CF (corresponds to C0) if x < y
2803   // PF (corresponds to C2) if unordered
2804   // ZF (corresponds to C3) if x = y
2805 }
2806 
2807 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2808   fcmp2int(dst, unordered_is_less, 1, true, true);
2809 }
2810 
2811 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2812   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2813   Label L;
2814   if (unordered_is_less) {
2815     movl(dst, -1);
2816     jcc(Assembler::parity, L);
2817     jcc(Assembler::below , L);
2818     movl(dst, 0);
2819     jcc(Assembler::equal , L);
2820     increment(dst);
2821   } else { // unordered is greater
2822     movl(dst, 1);
2823     jcc(Assembler::parity, L);
2824     jcc(Assembler::above , L);
2825     movl(dst, 0);
2826     jcc(Assembler::equal , L);
2827     decrementl(dst);
2828   }
2829   bind(L);
2830 }
2831 
2832 void MacroAssembler::fld_d(AddressLiteral src) {
2833   fld_d(as_Address(src));
2834 }
2835 
2836 void MacroAssembler::fld_s(AddressLiteral src) {
2837   fld_s(as_Address(src));
2838 }
2839 
2840 void MacroAssembler::fld_x(AddressLiteral src) {
2841   Assembler::fld_x(as_Address(src));
2842 }
2843 
2844 void MacroAssembler::fldcw(AddressLiteral src) {
2845   Assembler::fldcw(as_Address(src));
2846 }
2847 
2848 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2849   if (reachable(src)) {
2850     Assembler::mulpd(dst, as_Address(src));
2851   } else {
2852     lea(rscratch1, src);
2853     Assembler::mulpd(dst, Address(rscratch1, 0));
2854   }
2855 }
2856 
2857 void MacroAssembler::increase_precision() {
2858   subptr(rsp, BytesPerWord);
2859   fnstcw(Address(rsp, 0));
2860   movl(rax, Address(rsp, 0));
2861   orl(rax, 0x300);
2862   push(rax);
2863   fldcw(Address(rsp, 0));
2864   pop(rax);
2865 }
2866 
2867 void MacroAssembler::restore_precision() {
2868   fldcw(Address(rsp, 0));
2869   addptr(rsp, BytesPerWord);
2870 }
2871 
2872 void MacroAssembler::fpop() {
2873   ffree();
2874   fincstp();
2875 }
2876 
2877 void MacroAssembler::load_float(Address src) {
2878   if (UseSSE >= 1) {
2879     movflt(xmm0, src);
2880   } else {
2881     LP64_ONLY(ShouldNotReachHere());
2882     NOT_LP64(fld_s(src));
2883   }
2884 }
2885 
2886 void MacroAssembler::store_float(Address dst) {
2887   if (UseSSE >= 1) {
2888     movflt(dst, xmm0);
2889   } else {
2890     LP64_ONLY(ShouldNotReachHere());
2891     NOT_LP64(fstp_s(dst));
2892   }
2893 }
2894 
2895 void MacroAssembler::load_double(Address src) {
2896   if (UseSSE >= 2) {
2897     movdbl(xmm0, src);
2898   } else {
2899     LP64_ONLY(ShouldNotReachHere());
2900     NOT_LP64(fld_d(src));
2901   }
2902 }
2903 
2904 void MacroAssembler::store_double(Address dst) {
2905   if (UseSSE >= 2) {
2906     movdbl(dst, xmm0);
2907   } else {
2908     LP64_ONLY(ShouldNotReachHere());
2909     NOT_LP64(fstp_d(dst));
2910   }
2911 }
2912 
2913 void MacroAssembler::fremr(Register tmp) {
2914   save_rax(tmp);
2915   { Label L;
2916     bind(L);
2917     fprem();
2918     fwait(); fnstsw_ax();
2919 #ifdef _LP64
2920     testl(rax, 0x400);
2921     jcc(Assembler::notEqual, L);
2922 #else
2923     sahf();
2924     jcc(Assembler::parity, L);
2925 #endif // _LP64
2926   }
2927   restore_rax(tmp);
2928   // Result is in ST0.
2929   // Note: fxch & fpop to get rid of ST1
2930   // (otherwise FPU stack could overflow eventually)
2931   fxch(1);
2932   fpop();
2933 }
2934 
2935 // dst = c = a * b + c
2936 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2937   Assembler::vfmadd231sd(c, a, b);
2938   if (dst != c) {
2939     movdbl(dst, c);
2940   }
2941 }
2942 
2943 // dst = c = a * b + c
2944 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2945   Assembler::vfmadd231ss(c, a, b);
2946   if (dst != c) {
2947     movflt(dst, c);
2948   }
2949 }
2950 
2951 // dst = c = a * b + c
2952 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2953   Assembler::vfmadd231pd(c, a, b, vector_len);
2954   if (dst != c) {
2955     vmovdqu(dst, c);
2956   }
2957 }
2958 
2959 // dst = c = a * b + c
2960 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2961   Assembler::vfmadd231ps(c, a, b, vector_len);
2962   if (dst != c) {
2963     vmovdqu(dst, c);
2964   }
2965 }
2966 
2967 // dst = c = a * b + c
2968 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2969   Assembler::vfmadd231pd(c, a, b, vector_len);
2970   if (dst != c) {
2971     vmovdqu(dst, c);
2972   }
2973 }
2974 
2975 // dst = c = a * b + c
2976 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2977   Assembler::vfmadd231ps(c, a, b, vector_len);
2978   if (dst != c) {
2979     vmovdqu(dst, c);
2980   }
2981 }
2982 
2983 void MacroAssembler::incrementl(AddressLiteral dst) {
2984   if (reachable(dst)) {
2985     incrementl(as_Address(dst));
2986   } else {
2987     lea(rscratch1, dst);
2988     incrementl(Address(rscratch1, 0));
2989   }
2990 }
2991 
2992 void MacroAssembler::incrementl(ArrayAddress dst) {
2993   incrementl(as_Address(dst));
2994 }
2995 
2996 void MacroAssembler::incrementl(Register reg, int value) {
2997   if (value == min_jint) {addl(reg, value) ; return; }
2998   if (value <  0) { decrementl(reg, -value); return; }
2999   if (value == 0) {                        ; return; }
3000   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3001   /* else */      { addl(reg, value)       ; return; }
3002 }
3003 
3004 void MacroAssembler::incrementl(Address dst, int value) {
3005   if (value == min_jint) {addl(dst, value) ; return; }
3006   if (value <  0) { decrementl(dst, -value); return; }
3007   if (value == 0) {                        ; return; }
3008   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3009   /* else */      { addl(dst, value)       ; return; }
3010 }
3011 
3012 void MacroAssembler::jump(AddressLiteral dst) {
3013   if (reachable(dst)) {
3014     jmp_literal(dst.target(), dst.rspec());
3015   } else {
3016     lea(rscratch1, dst);
3017     jmp(rscratch1);
3018   }
3019 }
3020 
3021 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3022   if (reachable(dst)) {
3023     InstructionMark im(this);
3024     relocate(dst.reloc());
3025     const int short_size = 2;
3026     const int long_size = 6;
3027     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3028     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3029       // 0111 tttn #8-bit disp
3030       emit_int8(0x70 | cc);
3031       emit_int8((offs - short_size) & 0xFF);
3032     } else {
3033       // 0000 1111 1000 tttn #32-bit disp
3034       emit_int8(0x0F);
3035       emit_int8((unsigned char)(0x80 | cc));
3036       emit_int32(offs - long_size);
3037     }
3038   } else {
3039 #ifdef ASSERT
3040     warning("reversing conditional branch");
3041 #endif /* ASSERT */
3042     Label skip;
3043     jccb(reverse[cc], skip);
3044     lea(rscratch1, dst);
3045     Assembler::jmp(rscratch1);
3046     bind(skip);
3047   }
3048 }
3049 
3050 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3051   if (reachable(src)) {
3052     Assembler::ldmxcsr(as_Address(src));
3053   } else {
3054     lea(rscratch1, src);
3055     Assembler::ldmxcsr(Address(rscratch1, 0));
3056   }
3057 }
3058 
3059 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3060   int off;
3061   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3062     off = offset();
3063     movsbl(dst, src); // movsxb
3064   } else {
3065     off = load_unsigned_byte(dst, src);
3066     shll(dst, 24);
3067     sarl(dst, 24);
3068   }
3069   return off;
3070 }
3071 
3072 // Note: load_signed_short used to be called load_signed_word.
3073 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3074 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3075 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3076 int MacroAssembler::load_signed_short(Register dst, Address src) {
3077   int off;
3078   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3079     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3080     // version but this is what 64bit has always done. This seems to imply
3081     // that users are only using 32bits worth.
3082     off = offset();
3083     movswl(dst, src); // movsxw
3084   } else {
3085     off = load_unsigned_short(dst, src);
3086     shll(dst, 16);
3087     sarl(dst, 16);
3088   }
3089   return off;
3090 }
3091 
3092 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3093   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3094   // and "3.9 Partial Register Penalties", p. 22).
3095   int off;
3096   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3097     off = offset();
3098     movzbl(dst, src); // movzxb
3099   } else {
3100     xorl(dst, dst);
3101     off = offset();
3102     movb(dst, src);
3103   }
3104   return off;
3105 }
3106 
3107 // Note: load_unsigned_short used to be called load_unsigned_word.
3108 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3109   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3110   // and "3.9 Partial Register Penalties", p. 22).
3111   int off;
3112   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3113     off = offset();
3114     movzwl(dst, src); // movzxw
3115   } else {
3116     xorl(dst, dst);
3117     off = offset();
3118     movw(dst, src);
3119   }
3120   return off;
3121 }
3122 
3123 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3124   switch (size_in_bytes) {
3125 #ifndef _LP64
3126   case  8:
3127     assert(dst2 != noreg, "second dest register required");
3128     movl(dst,  src);
3129     movl(dst2, src.plus_disp(BytesPerInt));
3130     break;
3131 #else
3132   case  8:  movq(dst, src); break;
3133 #endif
3134   case  4:  movl(dst, src); break;
3135   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3136   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3137   default:  ShouldNotReachHere();
3138   }
3139 }
3140 
3141 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3142   switch (size_in_bytes) {
3143 #ifndef _LP64
3144   case  8:
3145     assert(src2 != noreg, "second source register required");
3146     movl(dst,                        src);
3147     movl(dst.plus_disp(BytesPerInt), src2);
3148     break;
3149 #else
3150   case  8:  movq(dst, src); break;
3151 #endif
3152   case  4:  movl(dst, src); break;
3153   case  2:  movw(dst, src); break;
3154   case  1:  movb(dst, src); break;
3155   default:  ShouldNotReachHere();
3156   }
3157 }
3158 
3159 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3160   if (reachable(dst)) {
3161     movl(as_Address(dst), src);
3162   } else {
3163     lea(rscratch1, dst);
3164     movl(Address(rscratch1, 0), src);
3165   }
3166 }
3167 
3168 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3169   if (reachable(src)) {
3170     movl(dst, as_Address(src));
3171   } else {
3172     lea(rscratch1, src);
3173     movl(dst, Address(rscratch1, 0));
3174   }
3175 }
3176 
3177 // C++ bool manipulation
3178 
3179 void MacroAssembler::movbool(Register dst, Address src) {
3180   if(sizeof(bool) == 1)
3181     movb(dst, src);
3182   else if(sizeof(bool) == 2)
3183     movw(dst, src);
3184   else if(sizeof(bool) == 4)
3185     movl(dst, src);
3186   else
3187     // unsupported
3188     ShouldNotReachHere();
3189 }
3190 
3191 void MacroAssembler::movbool(Address dst, bool boolconst) {
3192   if(sizeof(bool) == 1)
3193     movb(dst, (int) boolconst);
3194   else if(sizeof(bool) == 2)
3195     movw(dst, (int) boolconst);
3196   else if(sizeof(bool) == 4)
3197     movl(dst, (int) boolconst);
3198   else
3199     // unsupported
3200     ShouldNotReachHere();
3201 }
3202 
3203 void MacroAssembler::movbool(Address dst, Register src) {
3204   if(sizeof(bool) == 1)
3205     movb(dst, src);
3206   else if(sizeof(bool) == 2)
3207     movw(dst, src);
3208   else if(sizeof(bool) == 4)
3209     movl(dst, src);
3210   else
3211     // unsupported
3212     ShouldNotReachHere();
3213 }
3214 
3215 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3216   movb(as_Address(dst), src);
3217 }
3218 
3219 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3220   if (reachable(src)) {
3221     movdl(dst, as_Address(src));
3222   } else {
3223     lea(rscratch1, src);
3224     movdl(dst, Address(rscratch1, 0));
3225   }
3226 }
3227 
3228 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3229   if (reachable(src)) {
3230     movq(dst, as_Address(src));
3231   } else {
3232     lea(rscratch1, src);
3233     movq(dst, Address(rscratch1, 0));
3234   }
3235 }
3236 
3237 #ifdef COMPILER2
3238 void MacroAssembler::setvectmask(Register dst, Register src) {
3239   guarantee(PostLoopMultiversioning, "must be");
3240   Assembler::movl(dst, 1);
3241   Assembler::shlxl(dst, dst, src);
3242   Assembler::decl(dst);
3243   Assembler::kmovdl(k1, dst);
3244   Assembler::movl(dst, src);
3245 }
3246 
3247 void MacroAssembler::restorevectmask() {
3248   guarantee(PostLoopMultiversioning, "must be");
3249   Assembler::knotwl(k1, k0);
3250 }
3251 #endif // COMPILER2
3252 
3253 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3254   if (reachable(src)) {
3255     if (UseXmmLoadAndClearUpper) {
3256       movsd (dst, as_Address(src));
3257     } else {
3258       movlpd(dst, as_Address(src));
3259     }
3260   } else {
3261     lea(rscratch1, src);
3262     if (UseXmmLoadAndClearUpper) {
3263       movsd (dst, Address(rscratch1, 0));
3264     } else {
3265       movlpd(dst, Address(rscratch1, 0));
3266     }
3267   }
3268 }
3269 
3270 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3271   if (reachable(src)) {
3272     movss(dst, as_Address(src));
3273   } else {
3274     lea(rscratch1, src);
3275     movss(dst, Address(rscratch1, 0));
3276   }
3277 }
3278 
3279 void MacroAssembler::movptr(Register dst, Register src) {
3280   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3281 }
3282 
3283 void MacroAssembler::movptr(Register dst, Address src) {
3284   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3285 }
3286 
3287 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3288 void MacroAssembler::movptr(Register dst, intptr_t src) {
3289   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3290 }
3291 
3292 void MacroAssembler::movptr(Address dst, Register src) {
3293   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3294 }
3295 
3296 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3297     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3298     Assembler::movdqu(dst, src);
3299 }
3300 
3301 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3302     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3303     Assembler::movdqu(dst, src);
3304 }
3305 
3306 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3307     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3308     Assembler::movdqu(dst, src);
3309 }
3310 
3311 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3312   if (reachable(src)) {
3313     movdqu(dst, as_Address(src));
3314   } else {
3315     lea(scratchReg, src);
3316     movdqu(dst, Address(scratchReg, 0));
3317   }
3318 }
3319 
3320 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3321     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3322     Assembler::vmovdqu(dst, src);
3323 }
3324 
3325 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3326     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3327     Assembler::vmovdqu(dst, src);
3328 }
3329 
3330 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3331     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3332     Assembler::vmovdqu(dst, src);
3333 }
3334 
3335 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3336   if (reachable(src)) {
3337     vmovdqu(dst, as_Address(src));
3338   }
3339   else {
3340     lea(scratch_reg, src);
3341     vmovdqu(dst, Address(scratch_reg, 0));
3342   }
3343 }
3344 
3345 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3346   if (reachable(src)) {
3347     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3348   } else {
3349     lea(rscratch, src);
3350     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3351   }
3352 }
3353 
3354 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3355   if (reachable(src)) {
3356     Assembler::movdqa(dst, as_Address(src));
3357   } else {
3358     lea(rscratch1, src);
3359     Assembler::movdqa(dst, Address(rscratch1, 0));
3360   }
3361 }
3362 
3363 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3364   if (reachable(src)) {
3365     Assembler::movsd(dst, as_Address(src));
3366   } else {
3367     lea(rscratch1, src);
3368     Assembler::movsd(dst, Address(rscratch1, 0));
3369   }
3370 }
3371 
3372 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3373   if (reachable(src)) {
3374     Assembler::movss(dst, as_Address(src));
3375   } else {
3376     lea(rscratch1, src);
3377     Assembler::movss(dst, Address(rscratch1, 0));
3378   }
3379 }
3380 
3381 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3382   if (reachable(src)) {
3383     Assembler::mulsd(dst, as_Address(src));
3384   } else {
3385     lea(rscratch1, src);
3386     Assembler::mulsd(dst, Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3391   if (reachable(src)) {
3392     Assembler::mulss(dst, as_Address(src));
3393   } else {
3394     lea(rscratch1, src);
3395     Assembler::mulss(dst, Address(rscratch1, 0));
3396   }
3397 }
3398 
3399 void MacroAssembler::null_check(Register reg, int offset) {
3400   if (needs_explicit_null_check(offset)) {
3401     // provoke OS NULL exception if reg = NULL by
3402     // accessing M[reg] w/o changing any (non-CC) registers
3403     // NOTE: cmpl is plenty here to provoke a segv
3404     cmpptr(rax, Address(reg, 0));
3405     // Note: should probably use testl(rax, Address(reg, 0));
3406     //       may be shorter code (however, this version of
3407     //       testl needs to be implemented first)
3408   } else {
3409     // nothing to do, (later) access of M[reg + offset]
3410     // will provoke OS NULL exception if reg = NULL
3411   }
3412 }
3413 
3414 void MacroAssembler::os_breakpoint() {
3415   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3416   // (e.g., MSVC can't call ps() otherwise)
3417   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3418 }
3419 
3420 void MacroAssembler::unimplemented(const char* what) {
3421   const char* buf = NULL;
3422   {
3423     ResourceMark rm;
3424     stringStream ss;
3425     ss.print("unimplemented: %s", what);
3426     buf = code_string(ss.as_string());
3427   }
3428   stop(buf);
3429 }
3430 
3431 #ifdef _LP64
3432 #define XSTATE_BV 0x200
3433 #endif
3434 
3435 void MacroAssembler::pop_CPU_state() {
3436   pop_FPU_state();
3437   pop_IU_state();
3438 }
3439 
3440 void MacroAssembler::pop_FPU_state() {
3441 #ifndef _LP64
3442   frstor(Address(rsp, 0));
3443 #else
3444   fxrstor(Address(rsp, 0));
3445 #endif
3446   addptr(rsp, FPUStateSizeInWords * wordSize);
3447 }
3448 
3449 void MacroAssembler::pop_IU_state() {
3450   popa();
3451   LP64_ONLY(addq(rsp, 8));
3452   popf();
3453 }
3454 
3455 // Save Integer and Float state
3456 // Warning: Stack must be 16 byte aligned (64bit)
3457 void MacroAssembler::push_CPU_state() {
3458   push_IU_state();
3459   push_FPU_state();
3460 }
3461 
3462 void MacroAssembler::push_FPU_state() {
3463   subptr(rsp, FPUStateSizeInWords * wordSize);
3464 #ifndef _LP64
3465   fnsave(Address(rsp, 0));
3466   fwait();
3467 #else
3468   fxsave(Address(rsp, 0));
3469 #endif // LP64
3470 }
3471 
3472 void MacroAssembler::push_IU_state() {
3473   // Push flags first because pusha kills them
3474   pushf();
3475   // Make sure rsp stays 16-byte aligned
3476   LP64_ONLY(subq(rsp, 8));
3477   pusha();
3478 }
3479 
3480 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3481   if (!java_thread->is_valid()) {
3482     java_thread = rdi;
3483     get_thread(java_thread);
3484   }
3485   // we must set sp to zero to clear frame
3486   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3487   if (clear_fp) {
3488     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3489   }
3490 
3491   // Always clear the pc because it could have been set by make_walkable()
3492   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3493 
3494   vzeroupper();
3495 }
3496 
3497 void MacroAssembler::restore_rax(Register tmp) {
3498   if (tmp == noreg) pop(rax);
3499   else if (tmp != rax) mov(rax, tmp);
3500 }
3501 
3502 void MacroAssembler::round_to(Register reg, int modulus) {
3503   addptr(reg, modulus - 1);
3504   andptr(reg, -modulus);
3505 }
3506 
3507 void MacroAssembler::save_rax(Register tmp) {
3508   if (tmp == noreg) push(rax);
3509   else if (tmp != rax) mov(tmp, rax);
3510 }
3511 
3512 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3513   if (SafepointMechanism::uses_thread_local_poll()) {
3514 #ifdef _LP64
3515     assert(thread_reg == r15_thread, "should be");
3516 #else
3517     if (thread_reg == noreg) {
3518       thread_reg = temp_reg;
3519       get_thread(thread_reg);
3520     }
3521 #endif
3522     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3523     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3524   } else {
3525     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3526         SafepointSynchronize::_not_synchronized);
3527     jcc(Assembler::notEqual, slow_path);
3528   }
3529 }
3530 
3531 // Calls to C land
3532 //
3533 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3534 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3535 // has to be reset to 0. This is required to allow proper stack traversal.
3536 void MacroAssembler::set_last_Java_frame(Register java_thread,
3537                                          Register last_java_sp,
3538                                          Register last_java_fp,
3539                                          address  last_java_pc) {
3540   vzeroupper();
3541   // determine java_thread register
3542   if (!java_thread->is_valid()) {
3543     java_thread = rdi;
3544     get_thread(java_thread);
3545   }
3546   // determine last_java_sp register
3547   if (!last_java_sp->is_valid()) {
3548     last_java_sp = rsp;
3549   }
3550 
3551   // last_java_fp is optional
3552 
3553   if (last_java_fp->is_valid()) {
3554     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3555   }
3556 
3557   // last_java_pc is optional
3558 
3559   if (last_java_pc != NULL) {
3560     lea(Address(java_thread,
3561                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3562         InternalAddress(last_java_pc));
3563 
3564   }
3565   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3566 }
3567 
3568 void MacroAssembler::shlptr(Register dst, int imm8) {
3569   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3570 }
3571 
3572 void MacroAssembler::shrptr(Register dst, int imm8) {
3573   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3574 }
3575 
3576 void MacroAssembler::sign_extend_byte(Register reg) {
3577   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3578     movsbl(reg, reg); // movsxb
3579   } else {
3580     shll(reg, 24);
3581     sarl(reg, 24);
3582   }
3583 }
3584 
3585 void MacroAssembler::sign_extend_short(Register reg) {
3586   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3587     movswl(reg, reg); // movsxw
3588   } else {
3589     shll(reg, 16);
3590     sarl(reg, 16);
3591   }
3592 }
3593 
3594 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3595   assert(reachable(src), "Address should be reachable");
3596   testl(dst, as_Address(src));
3597 }
3598 
3599 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3600   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3601   Assembler::pcmpeqb(dst, src);
3602 }
3603 
3604 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3605   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3606   Assembler::pcmpeqw(dst, src);
3607 }
3608 
3609 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3610   assert((dst->encoding() < 16),"XMM register should be 0-15");
3611   Assembler::pcmpestri(dst, src, imm8);
3612 }
3613 
3614 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3615   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3616   Assembler::pcmpestri(dst, src, imm8);
3617 }
3618 
3619 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3620   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3621   Assembler::pmovzxbw(dst, src);
3622 }
3623 
3624 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3625   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3626   Assembler::pmovzxbw(dst, src);
3627 }
3628 
3629 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3630   assert((src->encoding() < 16),"XMM register should be 0-15");
3631   Assembler::pmovmskb(dst, src);
3632 }
3633 
3634 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3635   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3636   Assembler::ptest(dst, src);
3637 }
3638 
3639 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3640   if (reachable(src)) {
3641     Assembler::sqrtsd(dst, as_Address(src));
3642   } else {
3643     lea(rscratch1, src);
3644     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3645   }
3646 }
3647 
3648 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3649   if (reachable(src)) {
3650     Assembler::sqrtss(dst, as_Address(src));
3651   } else {
3652     lea(rscratch1, src);
3653     Assembler::sqrtss(dst, Address(rscratch1, 0));
3654   }
3655 }
3656 
3657 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3658   if (reachable(src)) {
3659     Assembler::subsd(dst, as_Address(src));
3660   } else {
3661     lea(rscratch1, src);
3662     Assembler::subsd(dst, Address(rscratch1, 0));
3663   }
3664 }
3665 
3666 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3667   if (reachable(src)) {
3668     Assembler::roundsd(dst, as_Address(src), rmode);
3669   } else {
3670     lea(scratch_reg, src);
3671     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3672   }
3673 }
3674 
3675 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3676   if (reachable(src)) {
3677     Assembler::subss(dst, as_Address(src));
3678   } else {
3679     lea(rscratch1, src);
3680     Assembler::subss(dst, Address(rscratch1, 0));
3681   }
3682 }
3683 
3684 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3685   if (reachable(src)) {
3686     Assembler::ucomisd(dst, as_Address(src));
3687   } else {
3688     lea(rscratch1, src);
3689     Assembler::ucomisd(dst, Address(rscratch1, 0));
3690   }
3691 }
3692 
3693 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3694   if (reachable(src)) {
3695     Assembler::ucomiss(dst, as_Address(src));
3696   } else {
3697     lea(rscratch1, src);
3698     Assembler::ucomiss(dst, Address(rscratch1, 0));
3699   }
3700 }
3701 
3702 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3703   // Used in sign-bit flipping with aligned address.
3704   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3705   if (reachable(src)) {
3706     Assembler::xorpd(dst, as_Address(src));
3707   } else {
3708     lea(scratch_reg, src);
3709     Assembler::xorpd(dst, Address(scratch_reg, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3714   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3715     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3716   }
3717   else {
3718     Assembler::xorpd(dst, src);
3719   }
3720 }
3721 
3722 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3723   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3724     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3725   } else {
3726     Assembler::xorps(dst, src);
3727   }
3728 }
3729 
3730 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3731   // Used in sign-bit flipping with aligned address.
3732   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3733   if (reachable(src)) {
3734     Assembler::xorps(dst, as_Address(src));
3735   } else {
3736     lea(scratch_reg, src);
3737     Assembler::xorps(dst, Address(scratch_reg, 0));
3738   }
3739 }
3740 
3741 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3742   // Used in sign-bit flipping with aligned address.
3743   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3744   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3745   if (reachable(src)) {
3746     Assembler::pshufb(dst, as_Address(src));
3747   } else {
3748     lea(rscratch1, src);
3749     Assembler::pshufb(dst, Address(rscratch1, 0));
3750   }
3751 }
3752 
3753 // AVX 3-operands instructions
3754 
3755 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3756   if (reachable(src)) {
3757     vaddsd(dst, nds, as_Address(src));
3758   } else {
3759     lea(rscratch1, src);
3760     vaddsd(dst, nds, Address(rscratch1, 0));
3761   }
3762 }
3763 
3764 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3765   if (reachable(src)) {
3766     vaddss(dst, nds, as_Address(src));
3767   } else {
3768     lea(rscratch1, src);
3769     vaddss(dst, nds, Address(rscratch1, 0));
3770   }
3771 }
3772 
3773 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3774   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3775   vandps(dst, nds, negate_field, vector_len);
3776 }
3777 
3778 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3779   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3780   vandpd(dst, nds, negate_field, vector_len);
3781 }
3782 
3783 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3784   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3785   Assembler::vpaddb(dst, nds, src, vector_len);
3786 }
3787 
3788 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3789   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3790   Assembler::vpaddb(dst, nds, src, vector_len);
3791 }
3792 
3793 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3794   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3795   Assembler::vpaddw(dst, nds, src, vector_len);
3796 }
3797 
3798 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3799   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3800   Assembler::vpaddw(dst, nds, src, vector_len);
3801 }
3802 
3803 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3804   if (reachable(src)) {
3805     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3806   } else {
3807     lea(scratch_reg, src);
3808     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3809   }
3810 }
3811 
3812 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3813   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3814   Assembler::vpbroadcastw(dst, src, vector_len);
3815 }
3816 
3817 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3818   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3819   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3820 }
3821 
3822 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3823   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3824   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3825 }
3826 
3827 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3828   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3829   Assembler::vpmovzxbw(dst, src, vector_len);
3830 }
3831 
3832 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3833   assert((src->encoding() < 16),"XMM register should be 0-15");
3834   Assembler::vpmovmskb(dst, src);
3835 }
3836 
3837 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3838   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3839   Assembler::vpmullw(dst, nds, src, vector_len);
3840 }
3841 
3842 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3843   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3844   Assembler::vpmullw(dst, nds, src, vector_len);
3845 }
3846 
3847 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3848   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3849   Assembler::vpsubb(dst, nds, src, vector_len);
3850 }
3851 
3852 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3853   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3854   Assembler::vpsubb(dst, nds, src, vector_len);
3855 }
3856 
3857 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3858   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3859   Assembler::vpsubw(dst, nds, src, vector_len);
3860 }
3861 
3862 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3863   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3864   Assembler::vpsubw(dst, nds, src, vector_len);
3865 }
3866 
3867 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3868   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3869   Assembler::vpsraw(dst, nds, shift, vector_len);
3870 }
3871 
3872 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3873   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3874   Assembler::vpsraw(dst, nds, shift, vector_len);
3875 }
3876 
3877 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3878   assert(UseAVX > 2,"");
3879   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3880      vector_len = 2;
3881   }
3882   Assembler::evpsraq(dst, nds, shift, vector_len);
3883 }
3884 
3885 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3886   assert(UseAVX > 2,"");
3887   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3888      vector_len = 2;
3889   }
3890   Assembler::evpsraq(dst, nds, shift, vector_len);
3891 }
3892 
3893 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3894   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3895   Assembler::vpsrlw(dst, nds, shift, vector_len);
3896 }
3897 
3898 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3899   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3900   Assembler::vpsrlw(dst, nds, shift, vector_len);
3901 }
3902 
3903 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3904   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3905   Assembler::vpsllw(dst, nds, shift, vector_len);
3906 }
3907 
3908 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3909   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3910   Assembler::vpsllw(dst, nds, shift, vector_len);
3911 }
3912 
3913 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3914   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3915   Assembler::vptest(dst, src);
3916 }
3917 
3918 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3919   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3920   Assembler::punpcklbw(dst, src);
3921 }
3922 
3923 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3924   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3925   Assembler::pshufd(dst, src, mode);
3926 }
3927 
3928 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3929   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3930   Assembler::pshuflw(dst, src, mode);
3931 }
3932 
3933 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3934   if (reachable(src)) {
3935     vandpd(dst, nds, as_Address(src), vector_len);
3936   } else {
3937     lea(scratch_reg, src);
3938     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3939   }
3940 }
3941 
3942 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3943   if (reachable(src)) {
3944     vandps(dst, nds, as_Address(src), vector_len);
3945   } else {
3946     lea(scratch_reg, src);
3947     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3948   }
3949 }
3950 
3951 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3952   if (reachable(src)) {
3953     vdivsd(dst, nds, as_Address(src));
3954   } else {
3955     lea(rscratch1, src);
3956     vdivsd(dst, nds, Address(rscratch1, 0));
3957   }
3958 }
3959 
3960 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3961   if (reachable(src)) {
3962     vdivss(dst, nds, as_Address(src));
3963   } else {
3964     lea(rscratch1, src);
3965     vdivss(dst, nds, Address(rscratch1, 0));
3966   }
3967 }
3968 
3969 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3970   if (reachable(src)) {
3971     vmulsd(dst, nds, as_Address(src));
3972   } else {
3973     lea(rscratch1, src);
3974     vmulsd(dst, nds, Address(rscratch1, 0));
3975   }
3976 }
3977 
3978 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3979   if (reachable(src)) {
3980     vmulss(dst, nds, as_Address(src));
3981   } else {
3982     lea(rscratch1, src);
3983     vmulss(dst, nds, Address(rscratch1, 0));
3984   }
3985 }
3986 
3987 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3988   if (reachable(src)) {
3989     vsubsd(dst, nds, as_Address(src));
3990   } else {
3991     lea(rscratch1, src);
3992     vsubsd(dst, nds, Address(rscratch1, 0));
3993   }
3994 }
3995 
3996 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3997   if (reachable(src)) {
3998     vsubss(dst, nds, as_Address(src));
3999   } else {
4000     lea(rscratch1, src);
4001     vsubss(dst, nds, Address(rscratch1, 0));
4002   }
4003 }
4004 
4005 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4006   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4007   vxorps(dst, nds, src, Assembler::AVX_128bit);
4008 }
4009 
4010 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4011   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4012   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4013 }
4014 
4015 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4016   if (reachable(src)) {
4017     vxorpd(dst, nds, as_Address(src), vector_len);
4018   } else {
4019     lea(scratch_reg, src);
4020     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4021   }
4022 }
4023 
4024 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4025   if (reachable(src)) {
4026     vxorps(dst, nds, as_Address(src), vector_len);
4027   } else {
4028     lea(scratch_reg, src);
4029     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4030   }
4031 }
4032 
4033 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4034   if (UseAVX > 1 || (vector_len < 1)) {
4035     if (reachable(src)) {
4036       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4037     } else {
4038       lea(scratch_reg, src);
4039       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4040     }
4041   }
4042   else {
4043     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4044   }
4045 }
4046 
4047 //-------------------------------------------------------------------------------------------
4048 #ifdef COMPILER2
4049 // Generic instructions support for use in .ad files C2 code generation
4050 
4051 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4052   if (opcode == Op_AbsVD) {
4053     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4054   } else {
4055     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4056     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4057   }
4058 }
4059 
4060 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4061   if (opcode == Op_AbsVD) {
4062     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4063   } else {
4064     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4065     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4066   }
4067 }
4068 
4069 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4070   if (opcode == Op_AbsVF) {
4071     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4072   } else {
4073     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4074     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4075   }
4076 }
4077 
4078 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4079   if (opcode == Op_AbsVF) {
4080     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4081   } else {
4082     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4083     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4084   }
4085 }
4086 
4087 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4088   if (sign) {
4089     pmovsxbw(dst, src);
4090   } else {
4091     pmovzxbw(dst, src);
4092   }
4093 }
4094 
4095 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4096   if (sign) {
4097     vpmovsxbw(dst, src, vector_len);
4098   } else {
4099     vpmovzxbw(dst, src, vector_len);
4100   }
4101 }
4102 
4103 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4104   if (opcode == Op_RShiftVI) {
4105     psrad(dst, src);
4106   } else if (opcode == Op_LShiftVI) {
4107     pslld(dst, src);
4108   } else {
4109     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4110     psrld(dst, src);
4111   }
4112 }
4113 
4114 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4115   if (opcode == Op_RShiftVI) {
4116     vpsrad(dst, nds, src, vector_len);
4117   } else if (opcode == Op_LShiftVI) {
4118     vpslld(dst, nds, src, vector_len);
4119   } else {
4120     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4121     vpsrld(dst, nds, src, vector_len);
4122   }
4123 }
4124 
4125 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4126   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4127     psraw(dst, src);
4128   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4129     psllw(dst, src);
4130   } else {
4131     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4132     psrlw(dst, src);
4133   }
4134 }
4135 
4136 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4137   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4138     vpsraw(dst, nds, src, vector_len);
4139   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4140     vpsllw(dst, nds, src, vector_len);
4141   } else {
4142     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4143     vpsrlw(dst, nds, src, vector_len);
4144   }
4145 }
4146 
4147 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4148   if (opcode == Op_RShiftVL) {
4149     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4150   } else if (opcode == Op_LShiftVL) {
4151     psllq(dst, src);
4152   } else {
4153     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4154     psrlq(dst, src);
4155   }
4156 }
4157 
4158 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4159   if (opcode == Op_RShiftVL) {
4160     evpsraq(dst, nds, src, vector_len);
4161   } else if (opcode == Op_LShiftVL) {
4162     vpsllq(dst, nds, src, vector_len);
4163   } else {
4164     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4165     vpsrlq(dst, nds, src, vector_len);
4166   }
4167 }
4168 #endif
4169 //-------------------------------------------------------------------------------------------
4170 
4171 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4172   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4173   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4174   // The inverted mask is sign-extended
4175   andptr(possibly_jweak, inverted_jweak_mask);
4176 }
4177 
4178 void MacroAssembler::resolve_jobject(Register value,
4179                                      Register thread,
4180                                      Register tmp) {
4181   assert_different_registers(value, thread, tmp);
4182   Label done, not_weak;
4183   testptr(value, value);
4184   jcc(Assembler::zero, done);                // Use NULL as-is.
4185   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4186   jcc(Assembler::zero, not_weak);
4187   // Resolve jweak.
4188   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4189                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4190   verify_oop(value);
4191   jmp(done);
4192   bind(not_weak);
4193   // Resolve (untagged) jobject.
4194   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4195   verify_oop(value);
4196   bind(done);
4197 }
4198 
4199 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4200   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4201 }
4202 
4203 // Force generation of a 4 byte immediate value even if it fits into 8bit
4204 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4205   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4206 }
4207 
4208 void MacroAssembler::subptr(Register dst, Register src) {
4209   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4210 }
4211 
4212 // C++ bool manipulation
4213 void MacroAssembler::testbool(Register dst) {
4214   if(sizeof(bool) == 1)
4215     testb(dst, 0xff);
4216   else if(sizeof(bool) == 2) {
4217     // testw implementation needed for two byte bools
4218     ShouldNotReachHere();
4219   } else if(sizeof(bool) == 4)
4220     testl(dst, dst);
4221   else
4222     // unsupported
4223     ShouldNotReachHere();
4224 }
4225 
4226 void MacroAssembler::testptr(Register dst, Register src) {
4227   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4228 }
4229 
4230 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4231 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4232                                    Register var_size_in_bytes,
4233                                    int con_size_in_bytes,
4234                                    Register t1,
4235                                    Register t2,
4236                                    Label& slow_case) {
4237   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4238   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4239 }
4240 
4241 // Defines obj, preserves var_size_in_bytes
4242 void MacroAssembler::eden_allocate(Register thread, Register obj,
4243                                    Register var_size_in_bytes,
4244                                    int con_size_in_bytes,
4245                                    Register t1,
4246                                    Label& slow_case) {
4247   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4248   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4249 }
4250 
4251 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4252 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4253   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4254   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4255   Label done;
4256 
4257   testptr(length_in_bytes, length_in_bytes);
4258   jcc(Assembler::zero, done);
4259 
4260   // initialize topmost word, divide index by 2, check if odd and test if zero
4261   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4262 #ifdef ASSERT
4263   {
4264     Label L;
4265     testptr(length_in_bytes, BytesPerWord - 1);
4266     jcc(Assembler::zero, L);
4267     stop("length must be a multiple of BytesPerWord");
4268     bind(L);
4269   }
4270 #endif
4271   Register index = length_in_bytes;
4272   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4273   if (UseIncDec) {
4274     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4275   } else {
4276     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4277     shrptr(index, 1);
4278   }
4279 #ifndef _LP64
4280   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4281   {
4282     Label even;
4283     // note: if index was a multiple of 8, then it cannot
4284     //       be 0 now otherwise it must have been 0 before
4285     //       => if it is even, we don't need to check for 0 again
4286     jcc(Assembler::carryClear, even);
4287     // clear topmost word (no jump would be needed if conditional assignment worked here)
4288     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4289     // index could be 0 now, must check again
4290     jcc(Assembler::zero, done);
4291     bind(even);
4292   }
4293 #endif // !_LP64
4294   // initialize remaining object fields: index is a multiple of 2 now
4295   {
4296     Label loop;
4297     bind(loop);
4298     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4299     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4300     decrement(index);
4301     jcc(Assembler::notZero, loop);
4302   }
4303 
4304   bind(done);
4305 }
4306 
4307 // Look up the method for a megamorphic invokeinterface call.
4308 // The target method is determined by <intf_klass, itable_index>.
4309 // The receiver klass is in recv_klass.
4310 // On success, the result will be in method_result, and execution falls through.
4311 // On failure, execution transfers to the given label.
4312 void MacroAssembler::lookup_interface_method(Register recv_klass,
4313                                              Register intf_klass,
4314                                              RegisterOrConstant itable_index,
4315                                              Register method_result,
4316                                              Register scan_temp,
4317                                              Label& L_no_such_interface,
4318                                              bool return_method) {
4319   assert_different_registers(recv_klass, intf_klass, scan_temp);
4320   assert_different_registers(method_result, intf_klass, scan_temp);
4321   assert(recv_klass != method_result || !return_method,
4322          "recv_klass can be destroyed when method isn't needed");
4323 
4324   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4325          "caller must use same register for non-constant itable index as for method");
4326 
4327   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4328   int vtable_base = in_bytes(Klass::vtable_start_offset());
4329   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4330   int scan_step   = itableOffsetEntry::size() * wordSize;
4331   int vte_size    = vtableEntry::size_in_bytes();
4332   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4333   assert(vte_size == wordSize, "else adjust times_vte_scale");
4334 
4335   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4336 
4337   // %%% Could store the aligned, prescaled offset in the klassoop.
4338   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4339 
4340   if (return_method) {
4341     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4342     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4343     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4344   }
4345 
4346   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4347   //   if (scan->interface() == intf) {
4348   //     result = (klass + scan->offset() + itable_index);
4349   //   }
4350   // }
4351   Label search, found_method;
4352 
4353   for (int peel = 1; peel >= 0; peel--) {
4354     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4355     cmpptr(intf_klass, method_result);
4356 
4357     if (peel) {
4358       jccb(Assembler::equal, found_method);
4359     } else {
4360       jccb(Assembler::notEqual, search);
4361       // (invert the test to fall through to found_method...)
4362     }
4363 
4364     if (!peel)  break;
4365 
4366     bind(search);
4367 
4368     // Check that the previous entry is non-null.  A null entry means that
4369     // the receiver class doesn't implement the interface, and wasn't the
4370     // same as when the caller was compiled.
4371     testptr(method_result, method_result);
4372     jcc(Assembler::zero, L_no_such_interface);
4373     addptr(scan_temp, scan_step);
4374   }
4375 
4376   bind(found_method);
4377 
4378   if (return_method) {
4379     // Got a hit.
4380     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4381     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4382   }
4383 }
4384 
4385 
4386 // virtual method calling
4387 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4388                                            RegisterOrConstant vtable_index,
4389                                            Register method_result) {
4390   const int base = in_bytes(Klass::vtable_start_offset());
4391   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4392   Address vtable_entry_addr(recv_klass,
4393                             vtable_index, Address::times_ptr,
4394                             base + vtableEntry::method_offset_in_bytes());
4395   movptr(method_result, vtable_entry_addr);
4396 }
4397 
4398 
4399 void MacroAssembler::check_klass_subtype(Register sub_klass,
4400                            Register super_klass,
4401                            Register temp_reg,
4402                            Label& L_success) {
4403   Label L_failure;
4404   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4405   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4406   bind(L_failure);
4407 }
4408 
4409 
4410 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4411                                                    Register super_klass,
4412                                                    Register temp_reg,
4413                                                    Label* L_success,
4414                                                    Label* L_failure,
4415                                                    Label* L_slow_path,
4416                                         RegisterOrConstant super_check_offset) {
4417   assert_different_registers(sub_klass, super_klass, temp_reg);
4418   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4419   if (super_check_offset.is_register()) {
4420     assert_different_registers(sub_klass, super_klass,
4421                                super_check_offset.as_register());
4422   } else if (must_load_sco) {
4423     assert(temp_reg != noreg, "supply either a temp or a register offset");
4424   }
4425 
4426   Label L_fallthrough;
4427   int label_nulls = 0;
4428   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4429   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4430   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4431   assert(label_nulls <= 1, "at most one NULL in the batch");
4432 
4433   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4434   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4435   Address super_check_offset_addr(super_klass, sco_offset);
4436 
4437   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4438   // range of a jccb.  If this routine grows larger, reconsider at
4439   // least some of these.
4440 #define local_jcc(assembler_cond, label)                                \
4441   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4442   else                             jcc( assembler_cond, label) /*omit semi*/
4443 
4444   // Hacked jmp, which may only be used just before L_fallthrough.
4445 #define final_jmp(label)                                                \
4446   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4447   else                            jmp(label)                /*omit semi*/
4448 
4449   // If the pointers are equal, we are done (e.g., String[] elements).
4450   // This self-check enables sharing of secondary supertype arrays among
4451   // non-primary types such as array-of-interface.  Otherwise, each such
4452   // type would need its own customized SSA.
4453   // We move this check to the front of the fast path because many
4454   // type checks are in fact trivially successful in this manner,
4455   // so we get a nicely predicted branch right at the start of the check.
4456   cmpptr(sub_klass, super_klass);
4457   local_jcc(Assembler::equal, *L_success);
4458 
4459   // Check the supertype display:
4460   if (must_load_sco) {
4461     // Positive movl does right thing on LP64.
4462     movl(temp_reg, super_check_offset_addr);
4463     super_check_offset = RegisterOrConstant(temp_reg);
4464   }
4465   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4466   cmpptr(super_klass, super_check_addr); // load displayed supertype
4467 
4468   // This check has worked decisively for primary supers.
4469   // Secondary supers are sought in the super_cache ('super_cache_addr').
4470   // (Secondary supers are interfaces and very deeply nested subtypes.)
4471   // This works in the same check above because of a tricky aliasing
4472   // between the super_cache and the primary super display elements.
4473   // (The 'super_check_addr' can address either, as the case requires.)
4474   // Note that the cache is updated below if it does not help us find
4475   // what we need immediately.
4476   // So if it was a primary super, we can just fail immediately.
4477   // Otherwise, it's the slow path for us (no success at this point).
4478 
4479   if (super_check_offset.is_register()) {
4480     local_jcc(Assembler::equal, *L_success);
4481     cmpl(super_check_offset.as_register(), sc_offset);
4482     if (L_failure == &L_fallthrough) {
4483       local_jcc(Assembler::equal, *L_slow_path);
4484     } else {
4485       local_jcc(Assembler::notEqual, *L_failure);
4486       final_jmp(*L_slow_path);
4487     }
4488   } else if (super_check_offset.as_constant() == sc_offset) {
4489     // Need a slow path; fast failure is impossible.
4490     if (L_slow_path == &L_fallthrough) {
4491       local_jcc(Assembler::equal, *L_success);
4492     } else {
4493       local_jcc(Assembler::notEqual, *L_slow_path);
4494       final_jmp(*L_success);
4495     }
4496   } else {
4497     // No slow path; it's a fast decision.
4498     if (L_failure == &L_fallthrough) {
4499       local_jcc(Assembler::equal, *L_success);
4500     } else {
4501       local_jcc(Assembler::notEqual, *L_failure);
4502       final_jmp(*L_success);
4503     }
4504   }
4505 
4506   bind(L_fallthrough);
4507 
4508 #undef local_jcc
4509 #undef final_jmp
4510 }
4511 
4512 
4513 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4514                                                    Register super_klass,
4515                                                    Register temp_reg,
4516                                                    Register temp2_reg,
4517                                                    Label* L_success,
4518                                                    Label* L_failure,
4519                                                    bool set_cond_codes) {
4520   assert_different_registers(sub_klass, super_klass, temp_reg);
4521   if (temp2_reg != noreg)
4522     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4523 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4524 
4525   Label L_fallthrough;
4526   int label_nulls = 0;
4527   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4528   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4529   assert(label_nulls <= 1, "at most one NULL in the batch");
4530 
4531   // a couple of useful fields in sub_klass:
4532   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4533   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4534   Address secondary_supers_addr(sub_klass, ss_offset);
4535   Address super_cache_addr(     sub_klass, sc_offset);
4536 
4537   // Do a linear scan of the secondary super-klass chain.
4538   // This code is rarely used, so simplicity is a virtue here.
4539   // The repne_scan instruction uses fixed registers, which we must spill.
4540   // Don't worry too much about pre-existing connections with the input regs.
4541 
4542   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4543   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4544 
4545   // Get super_klass value into rax (even if it was in rdi or rcx).
4546   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4547   if (super_klass != rax || UseCompressedOops) {
4548     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4549     mov(rax, super_klass);
4550   }
4551   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4552   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4553 
4554 #ifndef PRODUCT
4555   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4556   ExternalAddress pst_counter_addr((address) pst_counter);
4557   NOT_LP64(  incrementl(pst_counter_addr) );
4558   LP64_ONLY( lea(rcx, pst_counter_addr) );
4559   LP64_ONLY( incrementl(Address(rcx, 0)) );
4560 #endif //PRODUCT
4561 
4562   // We will consult the secondary-super array.
4563   movptr(rdi, secondary_supers_addr);
4564   // Load the array length.  (Positive movl does right thing on LP64.)
4565   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4566   // Skip to start of data.
4567   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4568 
4569   // Scan RCX words at [RDI] for an occurrence of RAX.
4570   // Set NZ/Z based on last compare.
4571   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4572   // not change flags (only scas instruction which is repeated sets flags).
4573   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4574 
4575     testptr(rax,rax); // Set Z = 0
4576     repne_scan();
4577 
4578   // Unspill the temp. registers:
4579   if (pushed_rdi)  pop(rdi);
4580   if (pushed_rcx)  pop(rcx);
4581   if (pushed_rax)  pop(rax);
4582 
4583   if (set_cond_codes) {
4584     // Special hack for the AD files:  rdi is guaranteed non-zero.
4585     assert(!pushed_rdi, "rdi must be left non-NULL");
4586     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4587   }
4588 
4589   if (L_failure == &L_fallthrough)
4590         jccb(Assembler::notEqual, *L_failure);
4591   else  jcc(Assembler::notEqual, *L_failure);
4592 
4593   // Success.  Cache the super we found and proceed in triumph.
4594   movptr(super_cache_addr, super_klass);
4595 
4596   if (L_success != &L_fallthrough) {
4597     jmp(*L_success);
4598   }
4599 
4600 #undef IS_A_TEMP
4601 
4602   bind(L_fallthrough);
4603 }
4604 
4605 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4606   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4607 
4608   Label L_fallthrough;
4609   if (L_fast_path == NULL) {
4610     L_fast_path = &L_fallthrough;
4611   } else if (L_slow_path == NULL) {
4612     L_slow_path = &L_fallthrough;
4613   }
4614 
4615   // Fast path check: class is fully initialized
4616   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4617   jcc(Assembler::equal, *L_fast_path);
4618 
4619   // Fast path check: current thread is initializer thread
4620   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4621   if (L_slow_path == &L_fallthrough) {
4622     jcc(Assembler::equal, *L_fast_path);
4623     bind(*L_slow_path);
4624   } else if (L_fast_path == &L_fallthrough) {
4625     jcc(Assembler::notEqual, *L_slow_path);
4626     bind(*L_fast_path);
4627   } else {
4628     Unimplemented();
4629   }
4630 }
4631 
4632 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4633   if (VM_Version::supports_cmov()) {
4634     cmovl(cc, dst, src);
4635   } else {
4636     Label L;
4637     jccb(negate_condition(cc), L);
4638     movl(dst, src);
4639     bind(L);
4640   }
4641 }
4642 
4643 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4644   if (VM_Version::supports_cmov()) {
4645     cmovl(cc, dst, src);
4646   } else {
4647     Label L;
4648     jccb(negate_condition(cc), L);
4649     movl(dst, src);
4650     bind(L);
4651   }
4652 }
4653 
4654 void MacroAssembler::verify_oop(Register reg, const char* s) {
4655   if (!VerifyOops) return;
4656 
4657   // Pass register number to verify_oop_subroutine
4658   const char* b = NULL;
4659   {
4660     ResourceMark rm;
4661     stringStream ss;
4662     ss.print("verify_oop: %s: %s", reg->name(), s);
4663     b = code_string(ss.as_string());
4664   }
4665   BLOCK_COMMENT("verify_oop {");
4666 #ifdef _LP64
4667   push(rscratch1);                    // save r10, trashed by movptr()
4668 #endif
4669   push(rax);                          // save rax,
4670   push(reg);                          // pass register argument
4671   ExternalAddress buffer((address) b);
4672   // avoid using pushptr, as it modifies scratch registers
4673   // and our contract is not to modify anything
4674   movptr(rax, buffer.addr());
4675   push(rax);
4676   // call indirectly to solve generation ordering problem
4677   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4678   call(rax);
4679   // Caller pops the arguments (oop, message) and restores rax, r10
4680   BLOCK_COMMENT("} verify_oop");
4681 }
4682 
4683 
4684 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4685                                                       Register tmp,
4686                                                       int offset) {
4687   intptr_t value = *delayed_value_addr;
4688   if (value != 0)
4689     return RegisterOrConstant(value + offset);
4690 
4691   // load indirectly to solve generation ordering problem
4692   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4693 
4694 #ifdef ASSERT
4695   { Label L;
4696     testptr(tmp, tmp);
4697     if (WizardMode) {
4698       const char* buf = NULL;
4699       {
4700         ResourceMark rm;
4701         stringStream ss;
4702         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4703         buf = code_string(ss.as_string());
4704       }
4705       jcc(Assembler::notZero, L);
4706       STOP(buf);
4707     } else {
4708       jccb(Assembler::notZero, L);
4709       hlt();
4710     }
4711     bind(L);
4712   }
4713 #endif
4714 
4715   if (offset != 0)
4716     addptr(tmp, offset);
4717 
4718   return RegisterOrConstant(tmp);
4719 }
4720 
4721 
4722 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4723                                          int extra_slot_offset) {
4724   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4725   int stackElementSize = Interpreter::stackElementSize;
4726   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4727 #ifdef ASSERT
4728   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4729   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4730 #endif
4731   Register             scale_reg    = noreg;
4732   Address::ScaleFactor scale_factor = Address::no_scale;
4733   if (arg_slot.is_constant()) {
4734     offset += arg_slot.as_constant() * stackElementSize;
4735   } else {
4736     scale_reg    = arg_slot.as_register();
4737     scale_factor = Address::times(stackElementSize);
4738   }
4739   offset += wordSize;           // return PC is on stack
4740   return Address(rsp, scale_reg, scale_factor, offset);
4741 }
4742 
4743 
4744 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4745   if (!VerifyOops) return;
4746 
4747   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4748   // Pass register number to verify_oop_subroutine
4749   const char* b = NULL;
4750   {
4751     ResourceMark rm;
4752     stringStream ss;
4753     ss.print("verify_oop_addr: %s", s);
4754     b = code_string(ss.as_string());
4755   }
4756 #ifdef _LP64
4757   push(rscratch1);                    // save r10, trashed by movptr()
4758 #endif
4759   push(rax);                          // save rax,
4760   // addr may contain rsp so we will have to adjust it based on the push
4761   // we just did (and on 64 bit we do two pushes)
4762   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4763   // stores rax into addr which is backwards of what was intended.
4764   if (addr.uses(rsp)) {
4765     lea(rax, addr);
4766     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4767   } else {
4768     pushptr(addr);
4769   }
4770 
4771   ExternalAddress buffer((address) b);
4772   // pass msg argument
4773   // avoid using pushptr, as it modifies scratch registers
4774   // and our contract is not to modify anything
4775   movptr(rax, buffer.addr());
4776   push(rax);
4777 
4778   // call indirectly to solve generation ordering problem
4779   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4780   call(rax);
4781   // Caller pops the arguments (addr, message) and restores rax, r10.
4782 }
4783 
4784 void MacroAssembler::verify_tlab() {
4785 #ifdef ASSERT
4786   if (UseTLAB && VerifyOops) {
4787     Label next, ok;
4788     Register t1 = rsi;
4789     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4790 
4791     push(t1);
4792     NOT_LP64(push(thread_reg));
4793     NOT_LP64(get_thread(thread_reg));
4794 
4795     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4796     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4797     jcc(Assembler::aboveEqual, next);
4798     STOP("assert(top >= start)");
4799     should_not_reach_here();
4800 
4801     bind(next);
4802     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4803     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4804     jcc(Assembler::aboveEqual, ok);
4805     STOP("assert(top <= end)");
4806     should_not_reach_here();
4807 
4808     bind(ok);
4809     NOT_LP64(pop(thread_reg));
4810     pop(t1);
4811   }
4812 #endif
4813 }
4814 
4815 class ControlWord {
4816  public:
4817   int32_t _value;
4818 
4819   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4820   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4821   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4822   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4823   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4824   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4825   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4826   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4827 
4828   void print() const {
4829     // rounding control
4830     const char* rc;
4831     switch (rounding_control()) {
4832       case 0: rc = "round near"; break;
4833       case 1: rc = "round down"; break;
4834       case 2: rc = "round up  "; break;
4835       case 3: rc = "chop      "; break;
4836     };
4837     // precision control
4838     const char* pc;
4839     switch (precision_control()) {
4840       case 0: pc = "24 bits "; break;
4841       case 1: pc = "reserved"; break;
4842       case 2: pc = "53 bits "; break;
4843       case 3: pc = "64 bits "; break;
4844     };
4845     // flags
4846     char f[9];
4847     f[0] = ' ';
4848     f[1] = ' ';
4849     f[2] = (precision   ()) ? 'P' : 'p';
4850     f[3] = (underflow   ()) ? 'U' : 'u';
4851     f[4] = (overflow    ()) ? 'O' : 'o';
4852     f[5] = (zero_divide ()) ? 'Z' : 'z';
4853     f[6] = (denormalized()) ? 'D' : 'd';
4854     f[7] = (invalid     ()) ? 'I' : 'i';
4855     f[8] = '\x0';
4856     // output
4857     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4858   }
4859 
4860 };
4861 
4862 class StatusWord {
4863  public:
4864   int32_t _value;
4865 
4866   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4867   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4868   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4869   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4870   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4871   int  top() const                     { return  (_value >> 11) & 7      ; }
4872   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4873   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4874   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4875   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4876   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4877   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4878   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4879   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4880 
4881   void print() const {
4882     // condition codes
4883     char c[5];
4884     c[0] = (C3()) ? '3' : '-';
4885     c[1] = (C2()) ? '2' : '-';
4886     c[2] = (C1()) ? '1' : '-';
4887     c[3] = (C0()) ? '0' : '-';
4888     c[4] = '\x0';
4889     // flags
4890     char f[9];
4891     f[0] = (error_status()) ? 'E' : '-';
4892     f[1] = (stack_fault ()) ? 'S' : '-';
4893     f[2] = (precision   ()) ? 'P' : '-';
4894     f[3] = (underflow   ()) ? 'U' : '-';
4895     f[4] = (overflow    ()) ? 'O' : '-';
4896     f[5] = (zero_divide ()) ? 'Z' : '-';
4897     f[6] = (denormalized()) ? 'D' : '-';
4898     f[7] = (invalid     ()) ? 'I' : '-';
4899     f[8] = '\x0';
4900     // output
4901     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4902   }
4903 
4904 };
4905 
4906 class TagWord {
4907  public:
4908   int32_t _value;
4909 
4910   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4911 
4912   void print() const {
4913     printf("%04x", _value & 0xFFFF);
4914   }
4915 
4916 };
4917 
4918 class FPU_Register {
4919  public:
4920   int32_t _m0;
4921   int32_t _m1;
4922   int16_t _ex;
4923 
4924   bool is_indefinite() const           {
4925     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4926   }
4927 
4928   void print() const {
4929     char  sign = (_ex < 0) ? '-' : '+';
4930     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4931     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4932   };
4933 
4934 };
4935 
4936 class FPU_State {
4937  public:
4938   enum {
4939     register_size       = 10,
4940     number_of_registers =  8,
4941     register_mask       =  7
4942   };
4943 
4944   ControlWord  _control_word;
4945   StatusWord   _status_word;
4946   TagWord      _tag_word;
4947   int32_t      _error_offset;
4948   int32_t      _error_selector;
4949   int32_t      _data_offset;
4950   int32_t      _data_selector;
4951   int8_t       _register[register_size * number_of_registers];
4952 
4953   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4954   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4955 
4956   const char* tag_as_string(int tag) const {
4957     switch (tag) {
4958       case 0: return "valid";
4959       case 1: return "zero";
4960       case 2: return "special";
4961       case 3: return "empty";
4962     }
4963     ShouldNotReachHere();
4964     return NULL;
4965   }
4966 
4967   void print() const {
4968     // print computation registers
4969     { int t = _status_word.top();
4970       for (int i = 0; i < number_of_registers; i++) {
4971         int j = (i - t) & register_mask;
4972         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4973         st(j)->print();
4974         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4975       }
4976     }
4977     printf("\n");
4978     // print control registers
4979     printf("ctrl = "); _control_word.print(); printf("\n");
4980     printf("stat = "); _status_word .print(); printf("\n");
4981     printf("tags = "); _tag_word    .print(); printf("\n");
4982   }
4983 
4984 };
4985 
4986 class Flag_Register {
4987  public:
4988   int32_t _value;
4989 
4990   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
4991   bool direction() const               { return ((_value >> 10) & 1) != 0; }
4992   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
4993   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
4994   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
4995   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
4996   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
4997 
4998   void print() const {
4999     // flags
5000     char f[8];
5001     f[0] = (overflow       ()) ? 'O' : '-';
5002     f[1] = (direction      ()) ? 'D' : '-';
5003     f[2] = (sign           ()) ? 'S' : '-';
5004     f[3] = (zero           ()) ? 'Z' : '-';
5005     f[4] = (auxiliary_carry()) ? 'A' : '-';
5006     f[5] = (parity         ()) ? 'P' : '-';
5007     f[6] = (carry          ()) ? 'C' : '-';
5008     f[7] = '\x0';
5009     // output
5010     printf("%08x  flags = %s", _value, f);
5011   }
5012 
5013 };
5014 
5015 class IU_Register {
5016  public:
5017   int32_t _value;
5018 
5019   void print() const {
5020     printf("%08x  %11d", _value, _value);
5021   }
5022 
5023 };
5024 
5025 class IU_State {
5026  public:
5027   Flag_Register _eflags;
5028   IU_Register   _rdi;
5029   IU_Register   _rsi;
5030   IU_Register   _rbp;
5031   IU_Register   _rsp;
5032   IU_Register   _rbx;
5033   IU_Register   _rdx;
5034   IU_Register   _rcx;
5035   IU_Register   _rax;
5036 
5037   void print() const {
5038     // computation registers
5039     printf("rax,  = "); _rax.print(); printf("\n");
5040     printf("rbx,  = "); _rbx.print(); printf("\n");
5041     printf("rcx  = "); _rcx.print(); printf("\n");
5042     printf("rdx  = "); _rdx.print(); printf("\n");
5043     printf("rdi  = "); _rdi.print(); printf("\n");
5044     printf("rsi  = "); _rsi.print(); printf("\n");
5045     printf("rbp,  = "); _rbp.print(); printf("\n");
5046     printf("rsp  = "); _rsp.print(); printf("\n");
5047     printf("\n");
5048     // control registers
5049     printf("flgs = "); _eflags.print(); printf("\n");
5050   }
5051 };
5052 
5053 
5054 class CPU_State {
5055  public:
5056   FPU_State _fpu_state;
5057   IU_State  _iu_state;
5058 
5059   void print() const {
5060     printf("--------------------------------------------------\n");
5061     _iu_state .print();
5062     printf("\n");
5063     _fpu_state.print();
5064     printf("--------------------------------------------------\n");
5065   }
5066 
5067 };
5068 
5069 
5070 static void _print_CPU_state(CPU_State* state) {
5071   state->print();
5072 };
5073 
5074 
5075 void MacroAssembler::print_CPU_state() {
5076   push_CPU_state();
5077   push(rsp);                // pass CPU state
5078   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5079   addptr(rsp, wordSize);       // discard argument
5080   pop_CPU_state();
5081 }
5082 
5083 
5084 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5085   static int counter = 0;
5086   FPU_State* fs = &state->_fpu_state;
5087   counter++;
5088   // For leaf calls, only verify that the top few elements remain empty.
5089   // We only need 1 empty at the top for C2 code.
5090   if( stack_depth < 0 ) {
5091     if( fs->tag_for_st(7) != 3 ) {
5092       printf("FPR7 not empty\n");
5093       state->print();
5094       assert(false, "error");
5095       return false;
5096     }
5097     return true;                // All other stack states do not matter
5098   }
5099 
5100   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5101          "bad FPU control word");
5102 
5103   // compute stack depth
5104   int i = 0;
5105   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5106   int d = i;
5107   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5108   // verify findings
5109   if (i != FPU_State::number_of_registers) {
5110     // stack not contiguous
5111     printf("%s: stack not contiguous at ST%d\n", s, i);
5112     state->print();
5113     assert(false, "error");
5114     return false;
5115   }
5116   // check if computed stack depth corresponds to expected stack depth
5117   if (stack_depth < 0) {
5118     // expected stack depth is -stack_depth or less
5119     if (d > -stack_depth) {
5120       // too many elements on the stack
5121       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5122       state->print();
5123       assert(false, "error");
5124       return false;
5125     }
5126   } else {
5127     // expected stack depth is stack_depth
5128     if (d != stack_depth) {
5129       // wrong stack depth
5130       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5131       state->print();
5132       assert(false, "error");
5133       return false;
5134     }
5135   }
5136   // everything is cool
5137   return true;
5138 }
5139 
5140 
5141 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5142   if (!VerifyFPU) return;
5143   push_CPU_state();
5144   push(rsp);                // pass CPU state
5145   ExternalAddress msg((address) s);
5146   // pass message string s
5147   pushptr(msg.addr());
5148   push(stack_depth);        // pass stack depth
5149   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5150   addptr(rsp, 3 * wordSize);   // discard arguments
5151   // check for error
5152   { Label L;
5153     testl(rax, rax);
5154     jcc(Assembler::notZero, L);
5155     int3();                  // break if error condition
5156     bind(L);
5157   }
5158   pop_CPU_state();
5159 }
5160 
5161 void MacroAssembler::restore_cpu_control_state_after_jni() {
5162   // Either restore the MXCSR register after returning from the JNI Call
5163   // or verify that it wasn't changed (with -Xcheck:jni flag).
5164   if (VM_Version::supports_sse()) {
5165     if (RestoreMXCSROnJNICalls) {
5166       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5167     } else if (CheckJNICalls) {
5168       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5169     }
5170   }
5171   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5172   vzeroupper();
5173   // Reset k1 to 0xffff.
5174 
5175 #ifdef COMPILER2
5176   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5177     push(rcx);
5178     movl(rcx, 0xffff);
5179     kmovwl(k1, rcx);
5180     pop(rcx);
5181   }
5182 #endif // COMPILER2
5183 
5184 #ifndef _LP64
5185   // Either restore the x87 floating pointer control word after returning
5186   // from the JNI call or verify that it wasn't changed.
5187   if (CheckJNICalls) {
5188     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5189   }
5190 #endif // _LP64
5191 }
5192 
5193 // ((OopHandle)result).resolve();
5194 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5195   assert_different_registers(result, tmp);
5196 
5197   // Only 64 bit platforms support GCs that require a tmp register
5198   // Only IN_HEAP loads require a thread_tmp register
5199   // OopHandle::resolve is an indirection like jobject.
5200   access_load_at(T_OBJECT, IN_NATIVE,
5201                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5202 }
5203 
5204 // ((WeakHandle)result).resolve();
5205 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5206   assert_different_registers(rresult, rtmp);
5207   Label resolved;
5208 
5209   // A null weak handle resolves to null.
5210   cmpptr(rresult, 0);
5211   jcc(Assembler::equal, resolved);
5212 
5213   // Only 64 bit platforms support GCs that require a tmp register
5214   // Only IN_HEAP loads require a thread_tmp register
5215   // WeakHandle::resolve is an indirection like jweak.
5216   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5217                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5218   bind(resolved);
5219 }
5220 
5221 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5222   // get mirror
5223   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5224   load_method_holder(mirror, method);
5225   movptr(mirror, Address(mirror, mirror_offset));
5226   resolve_oop_handle(mirror, tmp);
5227 }
5228 
5229 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5230   load_method_holder(rresult, rmethod);
5231   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5232 }
5233 
5234 void MacroAssembler::load_method_holder(Register holder, Register method) {
5235   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5236   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5237   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5238 }
5239 
5240 void MacroAssembler::load_klass(Register dst, Register src) {
5241 #ifdef _LP64
5242   if (UseCompressedClassPointers) {
5243     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5244     decode_klass_not_null(dst);
5245   } else
5246 #endif
5247     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5248 }
5249 
5250 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5251   load_klass(dst, src);
5252   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5253 }
5254 
5255 void MacroAssembler::store_klass(Register dst, Register src) {
5256 #ifdef _LP64
5257   if (UseCompressedClassPointers) {
5258     encode_klass_not_null(src);
5259     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5260   } else
5261 #endif
5262     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5263 }
5264 
5265 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5266                                     Register tmp1, Register thread_tmp) {
5267   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5268   decorators = AccessInternal::decorator_fixup(decorators);
5269   bool as_raw = (decorators & AS_RAW) != 0;
5270   if (as_raw) {
5271     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5272   } else {
5273     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5274   }
5275 }
5276 
5277 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5278                                      Register tmp1, Register tmp2) {
5279   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5280   decorators = AccessInternal::decorator_fixup(decorators);
5281   bool as_raw = (decorators & AS_RAW) != 0;
5282   if (as_raw) {
5283     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5284   } else {
5285     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5286   }
5287 }
5288 
5289 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5290   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5291   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5292     decorators |= ACCESS_READ | ACCESS_WRITE;
5293   }
5294   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5295   return bs->resolve(this, decorators, obj);
5296 }
5297 
5298 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5299                                    Register thread_tmp, DecoratorSet decorators) {
5300   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5301 }
5302 
5303 // Doesn't do verfication, generates fixed size code
5304 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5305                                             Register thread_tmp, DecoratorSet decorators) {
5306   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5307 }
5308 
5309 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5310                                     Register tmp2, DecoratorSet decorators) {
5311   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5312 }
5313 
5314 // Used for storing NULLs.
5315 void MacroAssembler::store_heap_oop_null(Address dst) {
5316   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5317 }
5318 
5319 #ifdef _LP64
5320 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5321   if (UseCompressedClassPointers) {
5322     // Store to klass gap in destination
5323     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5324   }
5325 }
5326 
5327 #ifdef ASSERT
5328 void MacroAssembler::verify_heapbase(const char* msg) {
5329   assert (UseCompressedOops, "should be compressed");
5330   assert (Universe::heap() != NULL, "java heap should be initialized");
5331   if (CheckCompressedOops) {
5332     Label ok;
5333     push(rscratch1); // cmpptr trashes rscratch1
5334     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5335     jcc(Assembler::equal, ok);
5336     STOP(msg);
5337     bind(ok);
5338     pop(rscratch1);
5339   }
5340 }
5341 #endif
5342 
5343 // Algorithm must match oop.inline.hpp encode_heap_oop.
5344 void MacroAssembler::encode_heap_oop(Register r) {
5345 #ifdef ASSERT
5346   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5347 #endif
5348   verify_oop(r, "broken oop in encode_heap_oop");
5349   if (CompressedOops::base() == NULL) {
5350     if (CompressedOops::shift() != 0) {
5351       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5352       shrq(r, LogMinObjAlignmentInBytes);
5353     }
5354     return;
5355   }
5356   testq(r, r);
5357   cmovq(Assembler::equal, r, r12_heapbase);
5358   subq(r, r12_heapbase);
5359   shrq(r, LogMinObjAlignmentInBytes);
5360 }
5361 
5362 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5363 #ifdef ASSERT
5364   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5365   if (CheckCompressedOops) {
5366     Label ok;
5367     testq(r, r);
5368     jcc(Assembler::notEqual, ok);
5369     STOP("null oop passed to encode_heap_oop_not_null");
5370     bind(ok);
5371   }
5372 #endif
5373   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5374   if (CompressedOops::base() != NULL) {
5375     subq(r, r12_heapbase);
5376   }
5377   if (CompressedOops::shift() != 0) {
5378     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5379     shrq(r, LogMinObjAlignmentInBytes);
5380   }
5381 }
5382 
5383 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5384 #ifdef ASSERT
5385   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5386   if (CheckCompressedOops) {
5387     Label ok;
5388     testq(src, src);
5389     jcc(Assembler::notEqual, ok);
5390     STOP("null oop passed to encode_heap_oop_not_null2");
5391     bind(ok);
5392   }
5393 #endif
5394   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5395   if (dst != src) {
5396     movq(dst, src);
5397   }
5398   if (CompressedOops::base() != NULL) {
5399     subq(dst, r12_heapbase);
5400   }
5401   if (CompressedOops::shift() != 0) {
5402     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5403     shrq(dst, LogMinObjAlignmentInBytes);
5404   }
5405 }
5406 
5407 void  MacroAssembler::decode_heap_oop(Register r) {
5408 #ifdef ASSERT
5409   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5410 #endif
5411   if (CompressedOops::base() == NULL) {
5412     if (CompressedOops::shift() != 0) {
5413       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5414       shlq(r, LogMinObjAlignmentInBytes);
5415     }
5416   } else {
5417     Label done;
5418     shlq(r, LogMinObjAlignmentInBytes);
5419     jccb(Assembler::equal, done);
5420     addq(r, r12_heapbase);
5421     bind(done);
5422   }
5423   verify_oop(r, "broken oop in decode_heap_oop");
5424 }
5425 
5426 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5427   // Note: it will change flags
5428   assert (UseCompressedOops, "should only be used for compressed headers");
5429   assert (Universe::heap() != NULL, "java heap should be initialized");
5430   // Cannot assert, unverified entry point counts instructions (see .ad file)
5431   // vtableStubs also counts instructions in pd_code_size_limit.
5432   // Also do not verify_oop as this is called by verify_oop.
5433   if (CompressedOops::shift() != 0) {
5434     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5435     shlq(r, LogMinObjAlignmentInBytes);
5436     if (CompressedOops::base() != NULL) {
5437       addq(r, r12_heapbase);
5438     }
5439   } else {
5440     assert (CompressedOops::base() == NULL, "sanity");
5441   }
5442 }
5443 
5444 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5445   // Note: it will change flags
5446   assert (UseCompressedOops, "should only be used for compressed headers");
5447   assert (Universe::heap() != NULL, "java heap should be initialized");
5448   // Cannot assert, unverified entry point counts instructions (see .ad file)
5449   // vtableStubs also counts instructions in pd_code_size_limit.
5450   // Also do not verify_oop as this is called by verify_oop.
5451   if (CompressedOops::shift() != 0) {
5452     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5453     if (LogMinObjAlignmentInBytes == Address::times_8) {
5454       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5455     } else {
5456       if (dst != src) {
5457         movq(dst, src);
5458       }
5459       shlq(dst, LogMinObjAlignmentInBytes);
5460       if (CompressedOops::base() != NULL) {
5461         addq(dst, r12_heapbase);
5462       }
5463     }
5464   } else {
5465     assert (CompressedOops::base() == NULL, "sanity");
5466     if (dst != src) {
5467       movq(dst, src);
5468     }
5469   }
5470 }
5471 
5472 void MacroAssembler::encode_klass_not_null(Register r) {
5473   if (CompressedKlassPointers::base() != NULL) {
5474     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5475     assert(r != r12_heapbase, "Encoding a klass in r12");
5476     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5477     subq(r, r12_heapbase);
5478   }
5479   if (CompressedKlassPointers::shift() != 0) {
5480     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5481     shrq(r, LogKlassAlignmentInBytes);
5482   }
5483   if (CompressedKlassPointers::base() != NULL) {
5484     reinit_heapbase();
5485   }
5486 }
5487 
5488 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5489   if (dst == src) {
5490     encode_klass_not_null(src);
5491   } else {
5492     if (CompressedKlassPointers::base() != NULL) {
5493       mov64(dst, (int64_t)CompressedKlassPointers::base());
5494       negq(dst);
5495       addq(dst, src);
5496     } else {
5497       movptr(dst, src);
5498     }
5499     if (CompressedKlassPointers::shift() != 0) {
5500       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5501       shrq(dst, LogKlassAlignmentInBytes);
5502     }
5503   }
5504 }
5505 
5506 // Function instr_size_for_decode_klass_not_null() counts the instructions
5507 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5508 // when (Universe::heap() != NULL).  Hence, if the instructions they
5509 // generate change, then this method needs to be updated.
5510 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5511   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5512   if (CompressedKlassPointers::base() != NULL) {
5513     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5514     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5515   } else {
5516     // longest load decode klass function, mov64, leaq
5517     return 16;
5518   }
5519 }
5520 
5521 // !!! If the instructions that get generated here change then function
5522 // instr_size_for_decode_klass_not_null() needs to get updated.
5523 void  MacroAssembler::decode_klass_not_null(Register r) {
5524   // Note: it will change flags
5525   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5526   assert(r != r12_heapbase, "Decoding a klass in r12");
5527   // Cannot assert, unverified entry point counts instructions (see .ad file)
5528   // vtableStubs also counts instructions in pd_code_size_limit.
5529   // Also do not verify_oop as this is called by verify_oop.
5530   if (CompressedKlassPointers::shift() != 0) {
5531     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5532     shlq(r, LogKlassAlignmentInBytes);
5533   }
5534   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5535   if (CompressedKlassPointers::base() != NULL) {
5536     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5537     addq(r, r12_heapbase);
5538     reinit_heapbase();
5539   }
5540 }
5541 
5542 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5543   // Note: it will change flags
5544   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5545   if (dst == src) {
5546     decode_klass_not_null(dst);
5547   } else {
5548     // Cannot assert, unverified entry point counts instructions (see .ad file)
5549     // vtableStubs also counts instructions in pd_code_size_limit.
5550     // Also do not verify_oop as this is called by verify_oop.
5551     mov64(dst, (int64_t)CompressedKlassPointers::base());
5552     if (CompressedKlassPointers::shift() != 0) {
5553       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5554       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5555       leaq(dst, Address(dst, src, Address::times_8, 0));
5556     } else {
5557       addq(dst, src);
5558     }
5559   }
5560 }
5561 
5562 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5563   assert (UseCompressedOops, "should only be used for compressed headers");
5564   assert (Universe::heap() != NULL, "java heap should be initialized");
5565   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5566   int oop_index = oop_recorder()->find_index(obj);
5567   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5568   mov_narrow_oop(dst, oop_index, rspec);
5569 }
5570 
5571 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5572   assert (UseCompressedOops, "should only be used for compressed headers");
5573   assert (Universe::heap() != NULL, "java heap should be initialized");
5574   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5575   int oop_index = oop_recorder()->find_index(obj);
5576   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5577   mov_narrow_oop(dst, oop_index, rspec);
5578 }
5579 
5580 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5581   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5582   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5583   int klass_index = oop_recorder()->find_index(k);
5584   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5585   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5586 }
5587 
5588 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5589   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5590   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5591   int klass_index = oop_recorder()->find_index(k);
5592   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5593   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5594 }
5595 
5596 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5597   assert (UseCompressedOops, "should only be used for compressed headers");
5598   assert (Universe::heap() != NULL, "java heap should be initialized");
5599   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5600   int oop_index = oop_recorder()->find_index(obj);
5601   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5602   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5603 }
5604 
5605 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5606   assert (UseCompressedOops, "should only be used for compressed headers");
5607   assert (Universe::heap() != NULL, "java heap should be initialized");
5608   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5609   int oop_index = oop_recorder()->find_index(obj);
5610   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5611   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5612 }
5613 
5614 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5615   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5616   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5617   int klass_index = oop_recorder()->find_index(k);
5618   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5619   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5620 }
5621 
5622 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5623   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5624   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5625   int klass_index = oop_recorder()->find_index(k);
5626   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5627   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5628 }
5629 
5630 void MacroAssembler::reinit_heapbase() {
5631   if (UseCompressedOops || UseCompressedClassPointers) {
5632     if (Universe::heap() != NULL) {
5633       if (CompressedOops::base() == NULL) {
5634         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5635       } else {
5636         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5637       }
5638     } else {
5639       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5640     }
5641   }
5642 }
5643 
5644 #endif // _LP64
5645 
5646 // C2 compiled method's prolog code.
5647 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5648 
5649   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5650   // NativeJump::patch_verified_entry will be able to patch out the entry
5651   // code safely. The push to verify stack depth is ok at 5 bytes,
5652   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5653   // stack bang then we must use the 6 byte frame allocation even if
5654   // we have no frame. :-(
5655   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5656 
5657   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5658   // Remove word for return addr
5659   framesize -= wordSize;
5660   stack_bang_size -= wordSize;
5661 
5662   // Calls to C2R adapters often do not accept exceptional returns.
5663   // We require that their callers must bang for them.  But be careful, because
5664   // some VM calls (such as call site linkage) can use several kilobytes of
5665   // stack.  But the stack safety zone should account for that.
5666   // See bugs 4446381, 4468289, 4497237.
5667   if (stack_bang_size > 0) {
5668     generate_stack_overflow_check(stack_bang_size);
5669 
5670     // We always push rbp, so that on return to interpreter rbp, will be
5671     // restored correctly and we can correct the stack.
5672     push(rbp);
5673     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5674     if (PreserveFramePointer) {
5675       mov(rbp, rsp);
5676     }
5677     // Remove word for ebp
5678     framesize -= wordSize;
5679 
5680     // Create frame
5681     if (framesize) {
5682       subptr(rsp, framesize);
5683     }
5684   } else {
5685     // Create frame (force generation of a 4 byte immediate value)
5686     subptr_imm32(rsp, framesize);
5687 
5688     // Save RBP register now.
5689     framesize -= wordSize;
5690     movptr(Address(rsp, framesize), rbp);
5691     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5692     if (PreserveFramePointer) {
5693       movptr(rbp, rsp);
5694       if (framesize > 0) {
5695         addptr(rbp, framesize);
5696       }
5697     }
5698   }
5699 
5700   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5701     framesize -= wordSize;
5702     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5703   }
5704 
5705 #ifndef _LP64
5706   // If method sets FPU control word do it now
5707   if (fp_mode_24b) {
5708     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5709   }
5710   if (UseSSE >= 2 && VerifyFPU) {
5711     verify_FPU(0, "FPU stack must be clean on entry");
5712   }
5713 #endif
5714 
5715 #ifdef ASSERT
5716   if (VerifyStackAtCalls) {
5717     Label L;
5718     push(rax);
5719     mov(rax, rsp);
5720     andptr(rax, StackAlignmentInBytes-1);
5721     cmpptr(rax, StackAlignmentInBytes-wordSize);
5722     pop(rax);
5723     jcc(Assembler::equal, L);
5724     STOP("Stack is not properly aligned!");
5725     bind(L);
5726   }
5727 #endif
5728 
5729   if (!is_stub) {
5730     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5731     bs->nmethod_entry_barrier(this);
5732   }
5733 }
5734 
5735 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5736 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5737   // cnt - number of qwords (8-byte words).
5738   // base - start address, qword aligned.
5739   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5740   if (UseAVX >= 2) {
5741     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5742   } else {
5743     pxor(xtmp, xtmp);
5744   }
5745   jmp(L_zero_64_bytes);
5746 
5747   BIND(L_loop);
5748   if (UseAVX >= 2) {
5749     vmovdqu(Address(base,  0), xtmp);
5750     vmovdqu(Address(base, 32), xtmp);
5751   } else {
5752     movdqu(Address(base,  0), xtmp);
5753     movdqu(Address(base, 16), xtmp);
5754     movdqu(Address(base, 32), xtmp);
5755     movdqu(Address(base, 48), xtmp);
5756   }
5757   addptr(base, 64);
5758 
5759   BIND(L_zero_64_bytes);
5760   subptr(cnt, 8);
5761   jccb(Assembler::greaterEqual, L_loop);
5762   addptr(cnt, 4);
5763   jccb(Assembler::less, L_tail);
5764   // Copy trailing 32 bytes
5765   if (UseAVX >= 2) {
5766     vmovdqu(Address(base, 0), xtmp);
5767   } else {
5768     movdqu(Address(base,  0), xtmp);
5769     movdqu(Address(base, 16), xtmp);
5770   }
5771   addptr(base, 32);
5772   subptr(cnt, 4);
5773 
5774   BIND(L_tail);
5775   addptr(cnt, 4);
5776   jccb(Assembler::lessEqual, L_end);
5777   decrement(cnt);
5778 
5779   BIND(L_sloop);
5780   movq(Address(base, 0), xtmp);
5781   addptr(base, 8);
5782   decrement(cnt);
5783   jccb(Assembler::greaterEqual, L_sloop);
5784   BIND(L_end);
5785 }
5786 
5787 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5788   // cnt - number of qwords (8-byte words).
5789   // base - start address, qword aligned.
5790   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5791   assert(base==rdi, "base register must be edi for rep stos");
5792   assert(tmp==rax,   "tmp register must be eax for rep stos");
5793   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5794   assert(InitArrayShortSize % BytesPerLong == 0,
5795     "InitArrayShortSize should be the multiple of BytesPerLong");
5796 
5797   Label DONE;
5798 
5799   if (!is_large || !UseXMMForObjInit) {
5800     xorptr(tmp, tmp);
5801   }
5802 
5803   if (!is_large) {
5804     Label LOOP, LONG;
5805     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5806     jccb(Assembler::greater, LONG);
5807 
5808     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5809 
5810     decrement(cnt);
5811     jccb(Assembler::negative, DONE); // Zero length
5812 
5813     // Use individual pointer-sized stores for small counts:
5814     BIND(LOOP);
5815     movptr(Address(base, cnt, Address::times_ptr), tmp);
5816     decrement(cnt);
5817     jccb(Assembler::greaterEqual, LOOP);
5818     jmpb(DONE);
5819 
5820     BIND(LONG);
5821   }
5822 
5823   // Use longer rep-prefixed ops for non-small counts:
5824   if (UseFastStosb) {
5825     shlptr(cnt, 3); // convert to number of bytes
5826     rep_stosb();
5827   } else if (UseXMMForObjInit) {
5828     movptr(tmp, base);
5829     xmm_clear_mem(tmp, cnt, xtmp);
5830   } else {
5831     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5832     rep_stos();
5833   }
5834 
5835   BIND(DONE);
5836 }
5837 
5838 #ifdef COMPILER2
5839 
5840 // IndexOf for constant substrings with size >= 8 chars
5841 // which don't need to be loaded through stack.
5842 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5843                                       Register cnt1, Register cnt2,
5844                                       int int_cnt2,  Register result,
5845                                       XMMRegister vec, Register tmp,
5846                                       int ae) {
5847   ShortBranchVerifier sbv(this);
5848   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5849   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5850 
5851   // This method uses the pcmpestri instruction with bound registers
5852   //   inputs:
5853   //     xmm - substring
5854   //     rax - substring length (elements count)
5855   //     mem - scanned string
5856   //     rdx - string length (elements count)
5857   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5858   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5859   //   outputs:
5860   //     rcx - matched index in string
5861   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5862   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5863   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5864   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5865   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5866 
5867   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5868         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5869         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5870 
5871   // Note, inline_string_indexOf() generates checks:
5872   // if (substr.count > string.count) return -1;
5873   // if (substr.count == 0) return 0;
5874   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5875 
5876   // Load substring.
5877   if (ae == StrIntrinsicNode::UL) {
5878     pmovzxbw(vec, Address(str2, 0));
5879   } else {
5880     movdqu(vec, Address(str2, 0));
5881   }
5882   movl(cnt2, int_cnt2);
5883   movptr(result, str1); // string addr
5884 
5885   if (int_cnt2 > stride) {
5886     jmpb(SCAN_TO_SUBSTR);
5887 
5888     // Reload substr for rescan, this code
5889     // is executed only for large substrings (> 8 chars)
5890     bind(RELOAD_SUBSTR);
5891     if (ae == StrIntrinsicNode::UL) {
5892       pmovzxbw(vec, Address(str2, 0));
5893     } else {
5894       movdqu(vec, Address(str2, 0));
5895     }
5896     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5897 
5898     bind(RELOAD_STR);
5899     // We came here after the beginning of the substring was
5900     // matched but the rest of it was not so we need to search
5901     // again. Start from the next element after the previous match.
5902 
5903     // cnt2 is number of substring reminding elements and
5904     // cnt1 is number of string reminding elements when cmp failed.
5905     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5906     subl(cnt1, cnt2);
5907     addl(cnt1, int_cnt2);
5908     movl(cnt2, int_cnt2); // Now restore cnt2
5909 
5910     decrementl(cnt1);     // Shift to next element
5911     cmpl(cnt1, cnt2);
5912     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5913 
5914     addptr(result, (1<<scale1));
5915 
5916   } // (int_cnt2 > 8)
5917 
5918   // Scan string for start of substr in 16-byte vectors
5919   bind(SCAN_TO_SUBSTR);
5920   pcmpestri(vec, Address(result, 0), mode);
5921   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5922   subl(cnt1, stride);
5923   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5924   cmpl(cnt1, cnt2);
5925   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5926   addptr(result, 16);
5927   jmpb(SCAN_TO_SUBSTR);
5928 
5929   // Found a potential substr
5930   bind(FOUND_CANDIDATE);
5931   // Matched whole vector if first element matched (tmp(rcx) == 0).
5932   if (int_cnt2 == stride) {
5933     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5934   } else { // int_cnt2 > 8
5935     jccb(Assembler::overflow, FOUND_SUBSTR);
5936   }
5937   // After pcmpestri tmp(rcx) contains matched element index
5938   // Compute start addr of substr
5939   lea(result, Address(result, tmp, scale1));
5940 
5941   // Make sure string is still long enough
5942   subl(cnt1, tmp);
5943   cmpl(cnt1, cnt2);
5944   if (int_cnt2 == stride) {
5945     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5946   } else { // int_cnt2 > 8
5947     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5948   }
5949   // Left less then substring.
5950 
5951   bind(RET_NOT_FOUND);
5952   movl(result, -1);
5953   jmp(EXIT);
5954 
5955   if (int_cnt2 > stride) {
5956     // This code is optimized for the case when whole substring
5957     // is matched if its head is matched.
5958     bind(MATCH_SUBSTR_HEAD);
5959     pcmpestri(vec, Address(result, 0), mode);
5960     // Reload only string if does not match
5961     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5962 
5963     Label CONT_SCAN_SUBSTR;
5964     // Compare the rest of substring (> 8 chars).
5965     bind(FOUND_SUBSTR);
5966     // First 8 chars are already matched.
5967     negptr(cnt2);
5968     addptr(cnt2, stride);
5969 
5970     bind(SCAN_SUBSTR);
5971     subl(cnt1, stride);
5972     cmpl(cnt2, -stride); // Do not read beyond substring
5973     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5974     // Back-up strings to avoid reading beyond substring:
5975     // cnt1 = cnt1 - cnt2 + 8
5976     addl(cnt1, cnt2); // cnt2 is negative
5977     addl(cnt1, stride);
5978     movl(cnt2, stride); negptr(cnt2);
5979     bind(CONT_SCAN_SUBSTR);
5980     if (int_cnt2 < (int)G) {
5981       int tail_off1 = int_cnt2<<scale1;
5982       int tail_off2 = int_cnt2<<scale2;
5983       if (ae == StrIntrinsicNode::UL) {
5984         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5985       } else {
5986         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5987       }
5988       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
5989     } else {
5990       // calculate index in register to avoid integer overflow (int_cnt2*2)
5991       movl(tmp, int_cnt2);
5992       addptr(tmp, cnt2);
5993       if (ae == StrIntrinsicNode::UL) {
5994         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
5995       } else {
5996         movdqu(vec, Address(str2, tmp, scale2, 0));
5997       }
5998       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
5999     }
6000     // Need to reload strings pointers if not matched whole vector
6001     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6002     addptr(cnt2, stride);
6003     jcc(Assembler::negative, SCAN_SUBSTR);
6004     // Fall through if found full substring
6005 
6006   } // (int_cnt2 > 8)
6007 
6008   bind(RET_FOUND);
6009   // Found result if we matched full small substring.
6010   // Compute substr offset
6011   subptr(result, str1);
6012   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6013     shrl(result, 1); // index
6014   }
6015   bind(EXIT);
6016 
6017 } // string_indexofC8
6018 
6019 // Small strings are loaded through stack if they cross page boundary.
6020 void MacroAssembler::string_indexof(Register str1, Register str2,
6021                                     Register cnt1, Register cnt2,
6022                                     int int_cnt2,  Register result,
6023                                     XMMRegister vec, Register tmp,
6024                                     int ae) {
6025   ShortBranchVerifier sbv(this);
6026   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6027   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6028 
6029   //
6030   // int_cnt2 is length of small (< 8 chars) constant substring
6031   // or (-1) for non constant substring in which case its length
6032   // is in cnt2 register.
6033   //
6034   // Note, inline_string_indexOf() generates checks:
6035   // if (substr.count > string.count) return -1;
6036   // if (substr.count == 0) return 0;
6037   //
6038   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6039   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6040   // This method uses the pcmpestri instruction with bound registers
6041   //   inputs:
6042   //     xmm - substring
6043   //     rax - substring length (elements count)
6044   //     mem - scanned string
6045   //     rdx - string length (elements count)
6046   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6047   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6048   //   outputs:
6049   //     rcx - matched index in string
6050   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6051   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6052   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6053   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6054 
6055   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6056         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6057         FOUND_CANDIDATE;
6058 
6059   { //========================================================
6060     // We don't know where these strings are located
6061     // and we can't read beyond them. Load them through stack.
6062     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6063 
6064     movptr(tmp, rsp); // save old SP
6065 
6066     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6067       if (int_cnt2 == (1>>scale2)) { // One byte
6068         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6069         load_unsigned_byte(result, Address(str2, 0));
6070         movdl(vec, result); // move 32 bits
6071       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6072         // Not enough header space in 32-bit VM: 12+3 = 15.
6073         movl(result, Address(str2, -1));
6074         shrl(result, 8);
6075         movdl(vec, result); // move 32 bits
6076       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6077         load_unsigned_short(result, Address(str2, 0));
6078         movdl(vec, result); // move 32 bits
6079       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6080         movdl(vec, Address(str2, 0)); // move 32 bits
6081       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6082         movq(vec, Address(str2, 0));  // move 64 bits
6083       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6084         // Array header size is 12 bytes in 32-bit VM
6085         // + 6 bytes for 3 chars == 18 bytes,
6086         // enough space to load vec and shift.
6087         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6088         if (ae == StrIntrinsicNode::UL) {
6089           int tail_off = int_cnt2-8;
6090           pmovzxbw(vec, Address(str2, tail_off));
6091           psrldq(vec, -2*tail_off);
6092         }
6093         else {
6094           int tail_off = int_cnt2*(1<<scale2);
6095           movdqu(vec, Address(str2, tail_off-16));
6096           psrldq(vec, 16-tail_off);
6097         }
6098       }
6099     } else { // not constant substring
6100       cmpl(cnt2, stride);
6101       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6102 
6103       // We can read beyond string if srt+16 does not cross page boundary
6104       // since heaps are aligned and mapped by pages.
6105       assert(os::vm_page_size() < (int)G, "default page should be small");
6106       movl(result, str2); // We need only low 32 bits
6107       andl(result, (os::vm_page_size()-1));
6108       cmpl(result, (os::vm_page_size()-16));
6109       jccb(Assembler::belowEqual, CHECK_STR);
6110 
6111       // Move small strings to stack to allow load 16 bytes into vec.
6112       subptr(rsp, 16);
6113       int stk_offset = wordSize-(1<<scale2);
6114       push(cnt2);
6115 
6116       bind(COPY_SUBSTR);
6117       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6118         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6119         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6120       } else if (ae == StrIntrinsicNode::UU) {
6121         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6122         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6123       }
6124       decrement(cnt2);
6125       jccb(Assembler::notZero, COPY_SUBSTR);
6126 
6127       pop(cnt2);
6128       movptr(str2, rsp);  // New substring address
6129     } // non constant
6130 
6131     bind(CHECK_STR);
6132     cmpl(cnt1, stride);
6133     jccb(Assembler::aboveEqual, BIG_STRINGS);
6134 
6135     // Check cross page boundary.
6136     movl(result, str1); // We need only low 32 bits
6137     andl(result, (os::vm_page_size()-1));
6138     cmpl(result, (os::vm_page_size()-16));
6139     jccb(Assembler::belowEqual, BIG_STRINGS);
6140 
6141     subptr(rsp, 16);
6142     int stk_offset = -(1<<scale1);
6143     if (int_cnt2 < 0) { // not constant
6144       push(cnt2);
6145       stk_offset += wordSize;
6146     }
6147     movl(cnt2, cnt1);
6148 
6149     bind(COPY_STR);
6150     if (ae == StrIntrinsicNode::LL) {
6151       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6152       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6153     } else {
6154       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6155       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6156     }
6157     decrement(cnt2);
6158     jccb(Assembler::notZero, COPY_STR);
6159 
6160     if (int_cnt2 < 0) { // not constant
6161       pop(cnt2);
6162     }
6163     movptr(str1, rsp);  // New string address
6164 
6165     bind(BIG_STRINGS);
6166     // Load substring.
6167     if (int_cnt2 < 0) { // -1
6168       if (ae == StrIntrinsicNode::UL) {
6169         pmovzxbw(vec, Address(str2, 0));
6170       } else {
6171         movdqu(vec, Address(str2, 0));
6172       }
6173       push(cnt2);       // substr count
6174       push(str2);       // substr addr
6175       push(str1);       // string addr
6176     } else {
6177       // Small (< 8 chars) constant substrings are loaded already.
6178       movl(cnt2, int_cnt2);
6179     }
6180     push(tmp);  // original SP
6181 
6182   } // Finished loading
6183 
6184   //========================================================
6185   // Start search
6186   //
6187 
6188   movptr(result, str1); // string addr
6189 
6190   if (int_cnt2  < 0) {  // Only for non constant substring
6191     jmpb(SCAN_TO_SUBSTR);
6192 
6193     // SP saved at sp+0
6194     // String saved at sp+1*wordSize
6195     // Substr saved at sp+2*wordSize
6196     // Substr count saved at sp+3*wordSize
6197 
6198     // Reload substr for rescan, this code
6199     // is executed only for large substrings (> 8 chars)
6200     bind(RELOAD_SUBSTR);
6201     movptr(str2, Address(rsp, 2*wordSize));
6202     movl(cnt2, Address(rsp, 3*wordSize));
6203     if (ae == StrIntrinsicNode::UL) {
6204       pmovzxbw(vec, Address(str2, 0));
6205     } else {
6206       movdqu(vec, Address(str2, 0));
6207     }
6208     // We came here after the beginning of the substring was
6209     // matched but the rest of it was not so we need to search
6210     // again. Start from the next element after the previous match.
6211     subptr(str1, result); // Restore counter
6212     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6213       shrl(str1, 1);
6214     }
6215     addl(cnt1, str1);
6216     decrementl(cnt1);   // Shift to next element
6217     cmpl(cnt1, cnt2);
6218     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6219 
6220     addptr(result, (1<<scale1));
6221   } // non constant
6222 
6223   // Scan string for start of substr in 16-byte vectors
6224   bind(SCAN_TO_SUBSTR);
6225   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6226   pcmpestri(vec, Address(result, 0), mode);
6227   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6228   subl(cnt1, stride);
6229   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6230   cmpl(cnt1, cnt2);
6231   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6232   addptr(result, 16);
6233 
6234   bind(ADJUST_STR);
6235   cmpl(cnt1, stride); // Do not read beyond string
6236   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6237   // Back-up string to avoid reading beyond string.
6238   lea(result, Address(result, cnt1, scale1, -16));
6239   movl(cnt1, stride);
6240   jmpb(SCAN_TO_SUBSTR);
6241 
6242   // Found a potential substr
6243   bind(FOUND_CANDIDATE);
6244   // After pcmpestri tmp(rcx) contains matched element index
6245 
6246   // Make sure string is still long enough
6247   subl(cnt1, tmp);
6248   cmpl(cnt1, cnt2);
6249   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6250   // Left less then substring.
6251 
6252   bind(RET_NOT_FOUND);
6253   movl(result, -1);
6254   jmp(CLEANUP);
6255 
6256   bind(FOUND_SUBSTR);
6257   // Compute start addr of substr
6258   lea(result, Address(result, tmp, scale1));
6259   if (int_cnt2 > 0) { // Constant substring
6260     // Repeat search for small substring (< 8 chars)
6261     // from new point without reloading substring.
6262     // Have to check that we don't read beyond string.
6263     cmpl(tmp, stride-int_cnt2);
6264     jccb(Assembler::greater, ADJUST_STR);
6265     // Fall through if matched whole substring.
6266   } else { // non constant
6267     assert(int_cnt2 == -1, "should be != 0");
6268 
6269     addl(tmp, cnt2);
6270     // Found result if we matched whole substring.
6271     cmpl(tmp, stride);
6272     jcc(Assembler::lessEqual, RET_FOUND);
6273 
6274     // Repeat search for small substring (<= 8 chars)
6275     // from new point 'str1' without reloading substring.
6276     cmpl(cnt2, stride);
6277     // Have to check that we don't read beyond string.
6278     jccb(Assembler::lessEqual, ADJUST_STR);
6279 
6280     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6281     // Compare the rest of substring (> 8 chars).
6282     movptr(str1, result);
6283 
6284     cmpl(tmp, cnt2);
6285     // First 8 chars are already matched.
6286     jccb(Assembler::equal, CHECK_NEXT);
6287 
6288     bind(SCAN_SUBSTR);
6289     pcmpestri(vec, Address(str1, 0), mode);
6290     // Need to reload strings pointers if not matched whole vector
6291     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6292 
6293     bind(CHECK_NEXT);
6294     subl(cnt2, stride);
6295     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6296     addptr(str1, 16);
6297     if (ae == StrIntrinsicNode::UL) {
6298       addptr(str2, 8);
6299     } else {
6300       addptr(str2, 16);
6301     }
6302     subl(cnt1, stride);
6303     cmpl(cnt2, stride); // Do not read beyond substring
6304     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6305     // Back-up strings to avoid reading beyond substring.
6306 
6307     if (ae == StrIntrinsicNode::UL) {
6308       lea(str2, Address(str2, cnt2, scale2, -8));
6309       lea(str1, Address(str1, cnt2, scale1, -16));
6310     } else {
6311       lea(str2, Address(str2, cnt2, scale2, -16));
6312       lea(str1, Address(str1, cnt2, scale1, -16));
6313     }
6314     subl(cnt1, cnt2);
6315     movl(cnt2, stride);
6316     addl(cnt1, stride);
6317     bind(CONT_SCAN_SUBSTR);
6318     if (ae == StrIntrinsicNode::UL) {
6319       pmovzxbw(vec, Address(str2, 0));
6320     } else {
6321       movdqu(vec, Address(str2, 0));
6322     }
6323     jmp(SCAN_SUBSTR);
6324 
6325     bind(RET_FOUND_LONG);
6326     movptr(str1, Address(rsp, wordSize));
6327   } // non constant
6328 
6329   bind(RET_FOUND);
6330   // Compute substr offset
6331   subptr(result, str1);
6332   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6333     shrl(result, 1); // index
6334   }
6335   bind(CLEANUP);
6336   pop(rsp); // restore SP
6337 
6338 } // string_indexof
6339 
6340 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6341                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6342   ShortBranchVerifier sbv(this);
6343   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6344 
6345   int stride = 8;
6346 
6347   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6348         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6349         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6350         FOUND_SEQ_CHAR, DONE_LABEL;
6351 
6352   movptr(result, str1);
6353   if (UseAVX >= 2) {
6354     cmpl(cnt1, stride);
6355     jcc(Assembler::less, SCAN_TO_CHAR);
6356     cmpl(cnt1, 2*stride);
6357     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6358     movdl(vec1, ch);
6359     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6360     vpxor(vec2, vec2);
6361     movl(tmp, cnt1);
6362     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6363     andl(cnt1,0x0000000F);  //tail count (in chars)
6364 
6365     bind(SCAN_TO_16_CHAR_LOOP);
6366     vmovdqu(vec3, Address(result, 0));
6367     vpcmpeqw(vec3, vec3, vec1, 1);
6368     vptest(vec2, vec3);
6369     jcc(Assembler::carryClear, FOUND_CHAR);
6370     addptr(result, 32);
6371     subl(tmp, 2*stride);
6372     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6373     jmp(SCAN_TO_8_CHAR);
6374     bind(SCAN_TO_8_CHAR_INIT);
6375     movdl(vec1, ch);
6376     pshuflw(vec1, vec1, 0x00);
6377     pshufd(vec1, vec1, 0);
6378     pxor(vec2, vec2);
6379   }
6380   bind(SCAN_TO_8_CHAR);
6381   cmpl(cnt1, stride);
6382   jcc(Assembler::less, SCAN_TO_CHAR);
6383   if (UseAVX < 2) {
6384     movdl(vec1, ch);
6385     pshuflw(vec1, vec1, 0x00);
6386     pshufd(vec1, vec1, 0);
6387     pxor(vec2, vec2);
6388   }
6389   movl(tmp, cnt1);
6390   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6391   andl(cnt1,0x00000007);  //tail count (in chars)
6392 
6393   bind(SCAN_TO_8_CHAR_LOOP);
6394   movdqu(vec3, Address(result, 0));
6395   pcmpeqw(vec3, vec1);
6396   ptest(vec2, vec3);
6397   jcc(Assembler::carryClear, FOUND_CHAR);
6398   addptr(result, 16);
6399   subl(tmp, stride);
6400   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6401   bind(SCAN_TO_CHAR);
6402   testl(cnt1, cnt1);
6403   jcc(Assembler::zero, RET_NOT_FOUND);
6404   bind(SCAN_TO_CHAR_LOOP);
6405   load_unsigned_short(tmp, Address(result, 0));
6406   cmpl(ch, tmp);
6407   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6408   addptr(result, 2);
6409   subl(cnt1, 1);
6410   jccb(Assembler::zero, RET_NOT_FOUND);
6411   jmp(SCAN_TO_CHAR_LOOP);
6412 
6413   bind(RET_NOT_FOUND);
6414   movl(result, -1);
6415   jmpb(DONE_LABEL);
6416 
6417   bind(FOUND_CHAR);
6418   if (UseAVX >= 2) {
6419     vpmovmskb(tmp, vec3);
6420   } else {
6421     pmovmskb(tmp, vec3);
6422   }
6423   bsfl(ch, tmp);
6424   addl(result, ch);
6425 
6426   bind(FOUND_SEQ_CHAR);
6427   subptr(result, str1);
6428   shrl(result, 1);
6429 
6430   bind(DONE_LABEL);
6431 } // string_indexof_char
6432 
6433 // helper function for string_compare
6434 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6435                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6436                                         Address::ScaleFactor scale2, Register index, int ae) {
6437   if (ae == StrIntrinsicNode::LL) {
6438     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6439     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6440   } else if (ae == StrIntrinsicNode::UU) {
6441     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6442     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6443   } else {
6444     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6445     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6446   }
6447 }
6448 
6449 // Compare strings, used for char[] and byte[].
6450 void MacroAssembler::string_compare(Register str1, Register str2,
6451                                     Register cnt1, Register cnt2, Register result,
6452                                     XMMRegister vec1, int ae) {
6453   ShortBranchVerifier sbv(this);
6454   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6455   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6456   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6457   int stride2x2 = 0x40;
6458   Address::ScaleFactor scale = Address::no_scale;
6459   Address::ScaleFactor scale1 = Address::no_scale;
6460   Address::ScaleFactor scale2 = Address::no_scale;
6461 
6462   if (ae != StrIntrinsicNode::LL) {
6463     stride2x2 = 0x20;
6464   }
6465 
6466   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6467     shrl(cnt2, 1);
6468   }
6469   // Compute the minimum of the string lengths and the
6470   // difference of the string lengths (stack).
6471   // Do the conditional move stuff
6472   movl(result, cnt1);
6473   subl(cnt1, cnt2);
6474   push(cnt1);
6475   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6476 
6477   // Is the minimum length zero?
6478   testl(cnt2, cnt2);
6479   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6480   if (ae == StrIntrinsicNode::LL) {
6481     // Load first bytes
6482     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6483     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6484   } else if (ae == StrIntrinsicNode::UU) {
6485     // Load first characters
6486     load_unsigned_short(result, Address(str1, 0));
6487     load_unsigned_short(cnt1, Address(str2, 0));
6488   } else {
6489     load_unsigned_byte(result, Address(str1, 0));
6490     load_unsigned_short(cnt1, Address(str2, 0));
6491   }
6492   subl(result, cnt1);
6493   jcc(Assembler::notZero,  POP_LABEL);
6494 
6495   if (ae == StrIntrinsicNode::UU) {
6496     // Divide length by 2 to get number of chars
6497     shrl(cnt2, 1);
6498   }
6499   cmpl(cnt2, 1);
6500   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6501 
6502   // Check if the strings start at the same location and setup scale and stride
6503   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6504     cmpptr(str1, str2);
6505     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6506     if (ae == StrIntrinsicNode::LL) {
6507       scale = Address::times_1;
6508       stride = 16;
6509     } else {
6510       scale = Address::times_2;
6511       stride = 8;
6512     }
6513   } else {
6514     scale1 = Address::times_1;
6515     scale2 = Address::times_2;
6516     // scale not used
6517     stride = 8;
6518   }
6519 
6520   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6521     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6522     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6523     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6524     Label COMPARE_TAIL_LONG;
6525     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6526 
6527     int pcmpmask = 0x19;
6528     if (ae == StrIntrinsicNode::LL) {
6529       pcmpmask &= ~0x01;
6530     }
6531 
6532     // Setup to compare 16-chars (32-bytes) vectors,
6533     // start from first character again because it has aligned address.
6534     if (ae == StrIntrinsicNode::LL) {
6535       stride2 = 32;
6536     } else {
6537       stride2 = 16;
6538     }
6539     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6540       adr_stride = stride << scale;
6541     } else {
6542       adr_stride1 = 8;  //stride << scale1;
6543       adr_stride2 = 16; //stride << scale2;
6544     }
6545 
6546     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6547     // rax and rdx are used by pcmpestri as elements counters
6548     movl(result, cnt2);
6549     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6550     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6551 
6552     // fast path : compare first 2 8-char vectors.
6553     bind(COMPARE_16_CHARS);
6554     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6555       movdqu(vec1, Address(str1, 0));
6556     } else {
6557       pmovzxbw(vec1, Address(str1, 0));
6558     }
6559     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6560     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6561 
6562     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6563       movdqu(vec1, Address(str1, adr_stride));
6564       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6565     } else {
6566       pmovzxbw(vec1, Address(str1, adr_stride1));
6567       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6568     }
6569     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6570     addl(cnt1, stride);
6571 
6572     // Compare the characters at index in cnt1
6573     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6574     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6575     subl(result, cnt2);
6576     jmp(POP_LABEL);
6577 
6578     // Setup the registers to start vector comparison loop
6579     bind(COMPARE_WIDE_VECTORS);
6580     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6581       lea(str1, Address(str1, result, scale));
6582       lea(str2, Address(str2, result, scale));
6583     } else {
6584       lea(str1, Address(str1, result, scale1));
6585       lea(str2, Address(str2, result, scale2));
6586     }
6587     subl(result, stride2);
6588     subl(cnt2, stride2);
6589     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6590     negptr(result);
6591 
6592     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6593     bind(COMPARE_WIDE_VECTORS_LOOP);
6594 
6595 #ifdef _LP64
6596     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6597       cmpl(cnt2, stride2x2);
6598       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6599       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6600       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6601 
6602       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6603       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6604         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6605         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6606       } else {
6607         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6608         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6609       }
6610       kortestql(k7, k7);
6611       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6612       addptr(result, stride2x2);  // update since we already compared at this addr
6613       subl(cnt2, stride2x2);      // and sub the size too
6614       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6615 
6616       vpxor(vec1, vec1);
6617       jmpb(COMPARE_WIDE_TAIL);
6618     }//if (VM_Version::supports_avx512vlbw())
6619 #endif // _LP64
6620 
6621 
6622     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6623     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6624       vmovdqu(vec1, Address(str1, result, scale));
6625       vpxor(vec1, Address(str2, result, scale));
6626     } else {
6627       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6628       vpxor(vec1, Address(str2, result, scale2));
6629     }
6630     vptest(vec1, vec1);
6631     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6632     addptr(result, stride2);
6633     subl(cnt2, stride2);
6634     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6635     // clean upper bits of YMM registers
6636     vpxor(vec1, vec1);
6637 
6638     // compare wide vectors tail
6639     bind(COMPARE_WIDE_TAIL);
6640     testptr(result, result);
6641     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6642 
6643     movl(result, stride2);
6644     movl(cnt2, result);
6645     negptr(result);
6646     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6647 
6648     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6649     bind(VECTOR_NOT_EQUAL);
6650     // clean upper bits of YMM registers
6651     vpxor(vec1, vec1);
6652     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6653       lea(str1, Address(str1, result, scale));
6654       lea(str2, Address(str2, result, scale));
6655     } else {
6656       lea(str1, Address(str1, result, scale1));
6657       lea(str2, Address(str2, result, scale2));
6658     }
6659     jmp(COMPARE_16_CHARS);
6660 
6661     // Compare tail chars, length between 1 to 15 chars
6662     bind(COMPARE_TAIL_LONG);
6663     movl(cnt2, result);
6664     cmpl(cnt2, stride);
6665     jcc(Assembler::less, COMPARE_SMALL_STR);
6666 
6667     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6668       movdqu(vec1, Address(str1, 0));
6669     } else {
6670       pmovzxbw(vec1, Address(str1, 0));
6671     }
6672     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6673     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6674     subptr(cnt2, stride);
6675     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6676     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6677       lea(str1, Address(str1, result, scale));
6678       lea(str2, Address(str2, result, scale));
6679     } else {
6680       lea(str1, Address(str1, result, scale1));
6681       lea(str2, Address(str2, result, scale2));
6682     }
6683     negptr(cnt2);
6684     jmpb(WHILE_HEAD_LABEL);
6685 
6686     bind(COMPARE_SMALL_STR);
6687   } else if (UseSSE42Intrinsics) {
6688     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6689     int pcmpmask = 0x19;
6690     // Setup to compare 8-char (16-byte) vectors,
6691     // start from first character again because it has aligned address.
6692     movl(result, cnt2);
6693     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6694     if (ae == StrIntrinsicNode::LL) {
6695       pcmpmask &= ~0x01;
6696     }
6697     jcc(Assembler::zero, COMPARE_TAIL);
6698     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6699       lea(str1, Address(str1, result, scale));
6700       lea(str2, Address(str2, result, scale));
6701     } else {
6702       lea(str1, Address(str1, result, scale1));
6703       lea(str2, Address(str2, result, scale2));
6704     }
6705     negptr(result);
6706 
6707     // pcmpestri
6708     //   inputs:
6709     //     vec1- substring
6710     //     rax - negative string length (elements count)
6711     //     mem - scanned string
6712     //     rdx - string length (elements count)
6713     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6714     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6715     //   outputs:
6716     //     rcx - first mismatched element index
6717     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6718 
6719     bind(COMPARE_WIDE_VECTORS);
6720     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6721       movdqu(vec1, Address(str1, result, scale));
6722       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6723     } else {
6724       pmovzxbw(vec1, Address(str1, result, scale1));
6725       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6726     }
6727     // After pcmpestri cnt1(rcx) contains mismatched element index
6728 
6729     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6730     addptr(result, stride);
6731     subptr(cnt2, stride);
6732     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6733 
6734     // compare wide vectors tail
6735     testptr(result, result);
6736     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6737 
6738     movl(cnt2, stride);
6739     movl(result, stride);
6740     negptr(result);
6741     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6742       movdqu(vec1, Address(str1, result, scale));
6743       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6744     } else {
6745       pmovzxbw(vec1, Address(str1, result, scale1));
6746       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6747     }
6748     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6749 
6750     // Mismatched characters in the vectors
6751     bind(VECTOR_NOT_EQUAL);
6752     addptr(cnt1, result);
6753     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6754     subl(result, cnt2);
6755     jmpb(POP_LABEL);
6756 
6757     bind(COMPARE_TAIL); // limit is zero
6758     movl(cnt2, result);
6759     // Fallthru to tail compare
6760   }
6761   // Shift str2 and str1 to the end of the arrays, negate min
6762   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6763     lea(str1, Address(str1, cnt2, scale));
6764     lea(str2, Address(str2, cnt2, scale));
6765   } else {
6766     lea(str1, Address(str1, cnt2, scale1));
6767     lea(str2, Address(str2, cnt2, scale2));
6768   }
6769   decrementl(cnt2);  // first character was compared already
6770   negptr(cnt2);
6771 
6772   // Compare the rest of the elements
6773   bind(WHILE_HEAD_LABEL);
6774   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6775   subl(result, cnt1);
6776   jccb(Assembler::notZero, POP_LABEL);
6777   increment(cnt2);
6778   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6779 
6780   // Strings are equal up to min length.  Return the length difference.
6781   bind(LENGTH_DIFF_LABEL);
6782   pop(result);
6783   if (ae == StrIntrinsicNode::UU) {
6784     // Divide diff by 2 to get number of chars
6785     sarl(result, 1);
6786   }
6787   jmpb(DONE_LABEL);
6788 
6789 #ifdef _LP64
6790   if (VM_Version::supports_avx512vlbw()) {
6791 
6792     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6793 
6794     kmovql(cnt1, k7);
6795     notq(cnt1);
6796     bsfq(cnt2, cnt1);
6797     if (ae != StrIntrinsicNode::LL) {
6798       // Divide diff by 2 to get number of chars
6799       sarl(cnt2, 1);
6800     }
6801     addq(result, cnt2);
6802     if (ae == StrIntrinsicNode::LL) {
6803       load_unsigned_byte(cnt1, Address(str2, result));
6804       load_unsigned_byte(result, Address(str1, result));
6805     } else if (ae == StrIntrinsicNode::UU) {
6806       load_unsigned_short(cnt1, Address(str2, result, scale));
6807       load_unsigned_short(result, Address(str1, result, scale));
6808     } else {
6809       load_unsigned_short(cnt1, Address(str2, result, scale2));
6810       load_unsigned_byte(result, Address(str1, result, scale1));
6811     }
6812     subl(result, cnt1);
6813     jmpb(POP_LABEL);
6814   }//if (VM_Version::supports_avx512vlbw())
6815 #endif // _LP64
6816 
6817   // Discard the stored length difference
6818   bind(POP_LABEL);
6819   pop(cnt1);
6820 
6821   // That's it
6822   bind(DONE_LABEL);
6823   if(ae == StrIntrinsicNode::UL) {
6824     negl(result);
6825   }
6826 
6827 }
6828 
6829 // Search for Non-ASCII character (Negative byte value) in a byte array,
6830 // return true if it has any and false otherwise.
6831 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6832 //   @HotSpotIntrinsicCandidate
6833 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6834 //     for (int i = off; i < off + len; i++) {
6835 //       if (ba[i] < 0) {
6836 //         return true;
6837 //       }
6838 //     }
6839 //     return false;
6840 //   }
6841 void MacroAssembler::has_negatives(Register ary1, Register len,
6842   Register result, Register tmp1,
6843   XMMRegister vec1, XMMRegister vec2) {
6844   // rsi: byte array
6845   // rcx: len
6846   // rax: result
6847   ShortBranchVerifier sbv(this);
6848   assert_different_registers(ary1, len, result, tmp1);
6849   assert_different_registers(vec1, vec2);
6850   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6851 
6852   // len == 0
6853   testl(len, len);
6854   jcc(Assembler::zero, FALSE_LABEL);
6855 
6856   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6857     VM_Version::supports_avx512vlbw() &&
6858     VM_Version::supports_bmi2()) {
6859 
6860     Label test_64_loop, test_tail;
6861     Register tmp3_aliased = len;
6862 
6863     movl(tmp1, len);
6864     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6865 
6866     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6867     andl(len, ~(64 - 1));    // vector count (in chars)
6868     jccb(Assembler::zero, test_tail);
6869 
6870     lea(ary1, Address(ary1, len, Address::times_1));
6871     negptr(len);
6872 
6873     bind(test_64_loop);
6874     // Check whether our 64 elements of size byte contain negatives
6875     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6876     kortestql(k2, k2);
6877     jcc(Assembler::notZero, TRUE_LABEL);
6878 
6879     addptr(len, 64);
6880     jccb(Assembler::notZero, test_64_loop);
6881 
6882 
6883     bind(test_tail);
6884     // bail out when there is nothing to be done
6885     testl(tmp1, -1);
6886     jcc(Assembler::zero, FALSE_LABEL);
6887 
6888     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6889 #ifdef _LP64
6890     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6891     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6892     notq(tmp3_aliased);
6893     kmovql(k3, tmp3_aliased);
6894 #else
6895     Label k_init;
6896     jmp(k_init);
6897 
6898     // We could not read 64-bits from a general purpose register thus we move
6899     // data required to compose 64 1's to the instruction stream
6900     // We emit 64 byte wide series of elements from 0..63 which later on would
6901     // be used as a compare targets with tail count contained in tmp1 register.
6902     // Result would be a k register having tmp1 consecutive number or 1
6903     // counting from least significant bit.
6904     address tmp = pc();
6905     emit_int64(0x0706050403020100);
6906     emit_int64(0x0F0E0D0C0B0A0908);
6907     emit_int64(0x1716151413121110);
6908     emit_int64(0x1F1E1D1C1B1A1918);
6909     emit_int64(0x2726252423222120);
6910     emit_int64(0x2F2E2D2C2B2A2928);
6911     emit_int64(0x3736353433323130);
6912     emit_int64(0x3F3E3D3C3B3A3938);
6913 
6914     bind(k_init);
6915     lea(len, InternalAddress(tmp));
6916     // create mask to test for negative byte inside a vector
6917     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6918     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6919 
6920 #endif
6921     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6922     ktestq(k2, k3);
6923     jcc(Assembler::notZero, TRUE_LABEL);
6924 
6925     jmp(FALSE_LABEL);
6926   } else {
6927     movl(result, len); // copy
6928 
6929     if (UseAVX >= 2 && UseSSE >= 2) {
6930       // With AVX2, use 32-byte vector compare
6931       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6932 
6933       // Compare 32-byte vectors
6934       andl(result, 0x0000001f);  //   tail count (in bytes)
6935       andl(len, 0xffffffe0);   // vector count (in bytes)
6936       jccb(Assembler::zero, COMPARE_TAIL);
6937 
6938       lea(ary1, Address(ary1, len, Address::times_1));
6939       negptr(len);
6940 
6941       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6942       movdl(vec2, tmp1);
6943       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6944 
6945       bind(COMPARE_WIDE_VECTORS);
6946       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6947       vptest(vec1, vec2);
6948       jccb(Assembler::notZero, TRUE_LABEL);
6949       addptr(len, 32);
6950       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6951 
6952       testl(result, result);
6953       jccb(Assembler::zero, FALSE_LABEL);
6954 
6955       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6956       vptest(vec1, vec2);
6957       jccb(Assembler::notZero, TRUE_LABEL);
6958       jmpb(FALSE_LABEL);
6959 
6960       bind(COMPARE_TAIL); // len is zero
6961       movl(len, result);
6962       // Fallthru to tail compare
6963     } else if (UseSSE42Intrinsics) {
6964       // With SSE4.2, use double quad vector compare
6965       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6966 
6967       // Compare 16-byte vectors
6968       andl(result, 0x0000000f);  //   tail count (in bytes)
6969       andl(len, 0xfffffff0);   // vector count (in bytes)
6970       jcc(Assembler::zero, COMPARE_TAIL);
6971 
6972       lea(ary1, Address(ary1, len, Address::times_1));
6973       negptr(len);
6974 
6975       movl(tmp1, 0x80808080);
6976       movdl(vec2, tmp1);
6977       pshufd(vec2, vec2, 0);
6978 
6979       bind(COMPARE_WIDE_VECTORS);
6980       movdqu(vec1, Address(ary1, len, Address::times_1));
6981       ptest(vec1, vec2);
6982       jcc(Assembler::notZero, TRUE_LABEL);
6983       addptr(len, 16);
6984       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6985 
6986       testl(result, result);
6987       jcc(Assembler::zero, FALSE_LABEL);
6988 
6989       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6990       ptest(vec1, vec2);
6991       jccb(Assembler::notZero, TRUE_LABEL);
6992       jmpb(FALSE_LABEL);
6993 
6994       bind(COMPARE_TAIL); // len is zero
6995       movl(len, result);
6996       // Fallthru to tail compare
6997     }
6998   }
6999   // Compare 4-byte vectors
7000   andl(len, 0xfffffffc); // vector count (in bytes)
7001   jccb(Assembler::zero, COMPARE_CHAR);
7002 
7003   lea(ary1, Address(ary1, len, Address::times_1));
7004   negptr(len);
7005 
7006   bind(COMPARE_VECTORS);
7007   movl(tmp1, Address(ary1, len, Address::times_1));
7008   andl(tmp1, 0x80808080);
7009   jccb(Assembler::notZero, TRUE_LABEL);
7010   addptr(len, 4);
7011   jcc(Assembler::notZero, COMPARE_VECTORS);
7012 
7013   // Compare trailing char (final 2 bytes), if any
7014   bind(COMPARE_CHAR);
7015   testl(result, 0x2);   // tail  char
7016   jccb(Assembler::zero, COMPARE_BYTE);
7017   load_unsigned_short(tmp1, Address(ary1, 0));
7018   andl(tmp1, 0x00008080);
7019   jccb(Assembler::notZero, TRUE_LABEL);
7020   subptr(result, 2);
7021   lea(ary1, Address(ary1, 2));
7022 
7023   bind(COMPARE_BYTE);
7024   testl(result, 0x1);   // tail  byte
7025   jccb(Assembler::zero, FALSE_LABEL);
7026   load_unsigned_byte(tmp1, Address(ary1, 0));
7027   andl(tmp1, 0x00000080);
7028   jccb(Assembler::notEqual, TRUE_LABEL);
7029   jmpb(FALSE_LABEL);
7030 
7031   bind(TRUE_LABEL);
7032   movl(result, 1);   // return true
7033   jmpb(DONE);
7034 
7035   bind(FALSE_LABEL);
7036   xorl(result, result); // return false
7037 
7038   // That's it
7039   bind(DONE);
7040   if (UseAVX >= 2 && UseSSE >= 2) {
7041     // clean upper bits of YMM registers
7042     vpxor(vec1, vec1);
7043     vpxor(vec2, vec2);
7044   }
7045 }
7046 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7047 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7048                                    Register limit, Register result, Register chr,
7049                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7050   ShortBranchVerifier sbv(this);
7051   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7052 
7053   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7054   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7055 
7056   if (is_array_equ) {
7057     // Check the input args
7058     cmpoop(ary1, ary2);
7059     jcc(Assembler::equal, TRUE_LABEL);
7060 
7061     // Need additional checks for arrays_equals.
7062     testptr(ary1, ary1);
7063     jcc(Assembler::zero, FALSE_LABEL);
7064     testptr(ary2, ary2);
7065     jcc(Assembler::zero, FALSE_LABEL);
7066 
7067     // Check the lengths
7068     movl(limit, Address(ary1, length_offset));
7069     cmpl(limit, Address(ary2, length_offset));
7070     jcc(Assembler::notEqual, FALSE_LABEL);
7071   }
7072 
7073   // count == 0
7074   testl(limit, limit);
7075   jcc(Assembler::zero, TRUE_LABEL);
7076 
7077   if (is_array_equ) {
7078     // Load array address
7079     lea(ary1, Address(ary1, base_offset));
7080     lea(ary2, Address(ary2, base_offset));
7081   }
7082 
7083   if (is_array_equ && is_char) {
7084     // arrays_equals when used for char[].
7085     shll(limit, 1);      // byte count != 0
7086   }
7087   movl(result, limit); // copy
7088 
7089   if (UseAVX >= 2) {
7090     // With AVX2, use 32-byte vector compare
7091     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7092 
7093     // Compare 32-byte vectors
7094     andl(result, 0x0000001f);  //   tail count (in bytes)
7095     andl(limit, 0xffffffe0);   // vector count (in bytes)
7096     jcc(Assembler::zero, COMPARE_TAIL);
7097 
7098     lea(ary1, Address(ary1, limit, Address::times_1));
7099     lea(ary2, Address(ary2, limit, Address::times_1));
7100     negptr(limit);
7101 
7102 #ifdef _LP64
7103     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7104       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7105 
7106       cmpl(limit, -64);
7107       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7108 
7109       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7110 
7111       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7112       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7113       kortestql(k7, k7);
7114       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7115       addptr(limit, 64);  // update since we already compared at this addr
7116       cmpl(limit, -64);
7117       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7118 
7119       // At this point we may still need to compare -limit+result bytes.
7120       // We could execute the next two instruction and just continue via non-wide path:
7121       //  cmpl(limit, 0);
7122       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7123       // But since we stopped at the points ary{1,2}+limit which are
7124       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7125       // (|limit| <= 32 and result < 32),
7126       // we may just compare the last 64 bytes.
7127       //
7128       addptr(result, -64);   // it is safe, bc we just came from this area
7129       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7130       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7131       kortestql(k7, k7);
7132       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7133 
7134       jmp(TRUE_LABEL);
7135 
7136       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7137 
7138     }//if (VM_Version::supports_avx512vlbw())
7139 #endif //_LP64
7140     bind(COMPARE_WIDE_VECTORS);
7141     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7142     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7143     vpxor(vec1, vec2);
7144 
7145     vptest(vec1, vec1);
7146     jcc(Assembler::notZero, FALSE_LABEL);
7147     addptr(limit, 32);
7148     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7149 
7150     testl(result, result);
7151     jcc(Assembler::zero, TRUE_LABEL);
7152 
7153     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7154     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7155     vpxor(vec1, vec2);
7156 
7157     vptest(vec1, vec1);
7158     jccb(Assembler::notZero, FALSE_LABEL);
7159     jmpb(TRUE_LABEL);
7160 
7161     bind(COMPARE_TAIL); // limit is zero
7162     movl(limit, result);
7163     // Fallthru to tail compare
7164   } else if (UseSSE42Intrinsics) {
7165     // With SSE4.2, use double quad vector compare
7166     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7167 
7168     // Compare 16-byte vectors
7169     andl(result, 0x0000000f);  //   tail count (in bytes)
7170     andl(limit, 0xfffffff0);   // vector count (in bytes)
7171     jcc(Assembler::zero, COMPARE_TAIL);
7172 
7173     lea(ary1, Address(ary1, limit, Address::times_1));
7174     lea(ary2, Address(ary2, limit, Address::times_1));
7175     negptr(limit);
7176 
7177     bind(COMPARE_WIDE_VECTORS);
7178     movdqu(vec1, Address(ary1, limit, Address::times_1));
7179     movdqu(vec2, Address(ary2, limit, Address::times_1));
7180     pxor(vec1, vec2);
7181 
7182     ptest(vec1, vec1);
7183     jcc(Assembler::notZero, FALSE_LABEL);
7184     addptr(limit, 16);
7185     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7186 
7187     testl(result, result);
7188     jcc(Assembler::zero, TRUE_LABEL);
7189 
7190     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7191     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7192     pxor(vec1, vec2);
7193 
7194     ptest(vec1, vec1);
7195     jccb(Assembler::notZero, FALSE_LABEL);
7196     jmpb(TRUE_LABEL);
7197 
7198     bind(COMPARE_TAIL); // limit is zero
7199     movl(limit, result);
7200     // Fallthru to tail compare
7201   }
7202 
7203   // Compare 4-byte vectors
7204   andl(limit, 0xfffffffc); // vector count (in bytes)
7205   jccb(Assembler::zero, COMPARE_CHAR);
7206 
7207   lea(ary1, Address(ary1, limit, Address::times_1));
7208   lea(ary2, Address(ary2, limit, Address::times_1));
7209   negptr(limit);
7210 
7211   bind(COMPARE_VECTORS);
7212   movl(chr, Address(ary1, limit, Address::times_1));
7213   cmpl(chr, Address(ary2, limit, Address::times_1));
7214   jccb(Assembler::notEqual, FALSE_LABEL);
7215   addptr(limit, 4);
7216   jcc(Assembler::notZero, COMPARE_VECTORS);
7217 
7218   // Compare trailing char (final 2 bytes), if any
7219   bind(COMPARE_CHAR);
7220   testl(result, 0x2);   // tail  char
7221   jccb(Assembler::zero, COMPARE_BYTE);
7222   load_unsigned_short(chr, Address(ary1, 0));
7223   load_unsigned_short(limit, Address(ary2, 0));
7224   cmpl(chr, limit);
7225   jccb(Assembler::notEqual, FALSE_LABEL);
7226 
7227   if (is_array_equ && is_char) {
7228     bind(COMPARE_BYTE);
7229   } else {
7230     lea(ary1, Address(ary1, 2));
7231     lea(ary2, Address(ary2, 2));
7232 
7233     bind(COMPARE_BYTE);
7234     testl(result, 0x1);   // tail  byte
7235     jccb(Assembler::zero, TRUE_LABEL);
7236     load_unsigned_byte(chr, Address(ary1, 0));
7237     load_unsigned_byte(limit, Address(ary2, 0));
7238     cmpl(chr, limit);
7239     jccb(Assembler::notEqual, FALSE_LABEL);
7240   }
7241   bind(TRUE_LABEL);
7242   movl(result, 1);   // return true
7243   jmpb(DONE);
7244 
7245   bind(FALSE_LABEL);
7246   xorl(result, result); // return false
7247 
7248   // That's it
7249   bind(DONE);
7250   if (UseAVX >= 2) {
7251     // clean upper bits of YMM registers
7252     vpxor(vec1, vec1);
7253     vpxor(vec2, vec2);
7254   }
7255 }
7256 
7257 #endif
7258 
7259 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7260                                    Register to, Register value, Register count,
7261                                    Register rtmp, XMMRegister xtmp) {
7262   ShortBranchVerifier sbv(this);
7263   assert_different_registers(to, value, count, rtmp);
7264   Label L_exit;
7265   Label L_fill_2_bytes, L_fill_4_bytes;
7266 
7267   int shift = -1;
7268   switch (t) {
7269     case T_BYTE:
7270       shift = 2;
7271       break;
7272     case T_SHORT:
7273       shift = 1;
7274       break;
7275     case T_INT:
7276       shift = 0;
7277       break;
7278     default: ShouldNotReachHere();
7279   }
7280 
7281   if (t == T_BYTE) {
7282     andl(value, 0xff);
7283     movl(rtmp, value);
7284     shll(rtmp, 8);
7285     orl(value, rtmp);
7286   }
7287   if (t == T_SHORT) {
7288     andl(value, 0xffff);
7289   }
7290   if (t == T_BYTE || t == T_SHORT) {
7291     movl(rtmp, value);
7292     shll(rtmp, 16);
7293     orl(value, rtmp);
7294   }
7295 
7296   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7297   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7298   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7299     Label L_skip_align2;
7300     // align source address at 4 bytes address boundary
7301     if (t == T_BYTE) {
7302       Label L_skip_align1;
7303       // One byte misalignment happens only for byte arrays
7304       testptr(to, 1);
7305       jccb(Assembler::zero, L_skip_align1);
7306       movb(Address(to, 0), value);
7307       increment(to);
7308       decrement(count);
7309       BIND(L_skip_align1);
7310     }
7311     // Two bytes misalignment happens only for byte and short (char) arrays
7312     testptr(to, 2);
7313     jccb(Assembler::zero, L_skip_align2);
7314     movw(Address(to, 0), value);
7315     addptr(to, 2);
7316     subl(count, 1<<(shift-1));
7317     BIND(L_skip_align2);
7318   }
7319   if (UseSSE < 2) {
7320     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7321     // Fill 32-byte chunks
7322     subl(count, 8 << shift);
7323     jcc(Assembler::less, L_check_fill_8_bytes);
7324     align(16);
7325 
7326     BIND(L_fill_32_bytes_loop);
7327 
7328     for (int i = 0; i < 32; i += 4) {
7329       movl(Address(to, i), value);
7330     }
7331 
7332     addptr(to, 32);
7333     subl(count, 8 << shift);
7334     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7335     BIND(L_check_fill_8_bytes);
7336     addl(count, 8 << shift);
7337     jccb(Assembler::zero, L_exit);
7338     jmpb(L_fill_8_bytes);
7339 
7340     //
7341     // length is too short, just fill qwords
7342     //
7343     BIND(L_fill_8_bytes_loop);
7344     movl(Address(to, 0), value);
7345     movl(Address(to, 4), value);
7346     addptr(to, 8);
7347     BIND(L_fill_8_bytes);
7348     subl(count, 1 << (shift + 1));
7349     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7350     // fall through to fill 4 bytes
7351   } else {
7352     Label L_fill_32_bytes;
7353     if (!UseUnalignedLoadStores) {
7354       // align to 8 bytes, we know we are 4 byte aligned to start
7355       testptr(to, 4);
7356       jccb(Assembler::zero, L_fill_32_bytes);
7357       movl(Address(to, 0), value);
7358       addptr(to, 4);
7359       subl(count, 1<<shift);
7360     }
7361     BIND(L_fill_32_bytes);
7362     {
7363       assert( UseSSE >= 2, "supported cpu only" );
7364       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7365       movdl(xtmp, value);
7366       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7367         Label L_check_fill_32_bytes;
7368         if (UseAVX > 2) {
7369           // Fill 64-byte chunks
7370           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7371 
7372           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7373           cmpl(count, AVX3Threshold);
7374           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7375 
7376           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7377 
7378           subl(count, 16 << shift);
7379           jccb(Assembler::less, L_check_fill_32_bytes);
7380           align(16);
7381 
7382           BIND(L_fill_64_bytes_loop_avx3);
7383           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7384           addptr(to, 64);
7385           subl(count, 16 << shift);
7386           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7387           jmpb(L_check_fill_32_bytes);
7388 
7389           BIND(L_check_fill_64_bytes_avx2);
7390         }
7391         // Fill 64-byte chunks
7392         Label L_fill_64_bytes_loop;
7393         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7394 
7395         subl(count, 16 << shift);
7396         jcc(Assembler::less, L_check_fill_32_bytes);
7397         align(16);
7398 
7399         BIND(L_fill_64_bytes_loop);
7400         vmovdqu(Address(to, 0), xtmp);
7401         vmovdqu(Address(to, 32), xtmp);
7402         addptr(to, 64);
7403         subl(count, 16 << shift);
7404         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7405 
7406         BIND(L_check_fill_32_bytes);
7407         addl(count, 8 << shift);
7408         jccb(Assembler::less, L_check_fill_8_bytes);
7409         vmovdqu(Address(to, 0), xtmp);
7410         addptr(to, 32);
7411         subl(count, 8 << shift);
7412 
7413         BIND(L_check_fill_8_bytes);
7414         // clean upper bits of YMM registers
7415         movdl(xtmp, value);
7416         pshufd(xtmp, xtmp, 0);
7417       } else {
7418         // Fill 32-byte chunks
7419         pshufd(xtmp, xtmp, 0);
7420 
7421         subl(count, 8 << shift);
7422         jcc(Assembler::less, L_check_fill_8_bytes);
7423         align(16);
7424 
7425         BIND(L_fill_32_bytes_loop);
7426 
7427         if (UseUnalignedLoadStores) {
7428           movdqu(Address(to, 0), xtmp);
7429           movdqu(Address(to, 16), xtmp);
7430         } else {
7431           movq(Address(to, 0), xtmp);
7432           movq(Address(to, 8), xtmp);
7433           movq(Address(to, 16), xtmp);
7434           movq(Address(to, 24), xtmp);
7435         }
7436 
7437         addptr(to, 32);
7438         subl(count, 8 << shift);
7439         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7440 
7441         BIND(L_check_fill_8_bytes);
7442       }
7443       addl(count, 8 << shift);
7444       jccb(Assembler::zero, L_exit);
7445       jmpb(L_fill_8_bytes);
7446 
7447       //
7448       // length is too short, just fill qwords
7449       //
7450       BIND(L_fill_8_bytes_loop);
7451       movq(Address(to, 0), xtmp);
7452       addptr(to, 8);
7453       BIND(L_fill_8_bytes);
7454       subl(count, 1 << (shift + 1));
7455       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7456     }
7457   }
7458   // fill trailing 4 bytes
7459   BIND(L_fill_4_bytes);
7460   testl(count, 1<<shift);
7461   jccb(Assembler::zero, L_fill_2_bytes);
7462   movl(Address(to, 0), value);
7463   if (t == T_BYTE || t == T_SHORT) {
7464     Label L_fill_byte;
7465     addptr(to, 4);
7466     BIND(L_fill_2_bytes);
7467     // fill trailing 2 bytes
7468     testl(count, 1<<(shift-1));
7469     jccb(Assembler::zero, L_fill_byte);
7470     movw(Address(to, 0), value);
7471     if (t == T_BYTE) {
7472       addptr(to, 2);
7473       BIND(L_fill_byte);
7474       // fill trailing byte
7475       testl(count, 1);
7476       jccb(Assembler::zero, L_exit);
7477       movb(Address(to, 0), value);
7478     } else {
7479       BIND(L_fill_byte);
7480     }
7481   } else {
7482     BIND(L_fill_2_bytes);
7483   }
7484   BIND(L_exit);
7485 }
7486 
7487 // encode char[] to byte[] in ISO_8859_1
7488    //@HotSpotIntrinsicCandidate
7489    //private static int implEncodeISOArray(byte[] sa, int sp,
7490    //byte[] da, int dp, int len) {
7491    //  int i = 0;
7492    //  for (; i < len; i++) {
7493    //    char c = StringUTF16.getChar(sa, sp++);
7494    //    if (c > '\u00FF')
7495    //      break;
7496    //    da[dp++] = (byte)c;
7497    //  }
7498    //  return i;
7499    //}
7500 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7501   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7502   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7503   Register tmp5, Register result) {
7504 
7505   // rsi: src
7506   // rdi: dst
7507   // rdx: len
7508   // rcx: tmp5
7509   // rax: result
7510   ShortBranchVerifier sbv(this);
7511   assert_different_registers(src, dst, len, tmp5, result);
7512   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7513 
7514   // set result
7515   xorl(result, result);
7516   // check for zero length
7517   testl(len, len);
7518   jcc(Assembler::zero, L_done);
7519 
7520   movl(result, len);
7521 
7522   // Setup pointers
7523   lea(src, Address(src, len, Address::times_2)); // char[]
7524   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7525   negptr(len);
7526 
7527   if (UseSSE42Intrinsics || UseAVX >= 2) {
7528     Label L_copy_8_chars, L_copy_8_chars_exit;
7529     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7530 
7531     if (UseAVX >= 2) {
7532       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7533       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7534       movdl(tmp1Reg, tmp5);
7535       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7536       jmp(L_chars_32_check);
7537 
7538       bind(L_copy_32_chars);
7539       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7540       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7541       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7542       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7543       jccb(Assembler::notZero, L_copy_32_chars_exit);
7544       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7545       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7546       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7547 
7548       bind(L_chars_32_check);
7549       addptr(len, 32);
7550       jcc(Assembler::lessEqual, L_copy_32_chars);
7551 
7552       bind(L_copy_32_chars_exit);
7553       subptr(len, 16);
7554       jccb(Assembler::greater, L_copy_16_chars_exit);
7555 
7556     } else if (UseSSE42Intrinsics) {
7557       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7558       movdl(tmp1Reg, tmp5);
7559       pshufd(tmp1Reg, tmp1Reg, 0);
7560       jmpb(L_chars_16_check);
7561     }
7562 
7563     bind(L_copy_16_chars);
7564     if (UseAVX >= 2) {
7565       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7566       vptest(tmp2Reg, tmp1Reg);
7567       jcc(Assembler::notZero, L_copy_16_chars_exit);
7568       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7569       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7570     } else {
7571       if (UseAVX > 0) {
7572         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7573         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7574         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7575       } else {
7576         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7577         por(tmp2Reg, tmp3Reg);
7578         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7579         por(tmp2Reg, tmp4Reg);
7580       }
7581       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7582       jccb(Assembler::notZero, L_copy_16_chars_exit);
7583       packuswb(tmp3Reg, tmp4Reg);
7584     }
7585     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7586 
7587     bind(L_chars_16_check);
7588     addptr(len, 16);
7589     jcc(Assembler::lessEqual, L_copy_16_chars);
7590 
7591     bind(L_copy_16_chars_exit);
7592     if (UseAVX >= 2) {
7593       // clean upper bits of YMM registers
7594       vpxor(tmp2Reg, tmp2Reg);
7595       vpxor(tmp3Reg, tmp3Reg);
7596       vpxor(tmp4Reg, tmp4Reg);
7597       movdl(tmp1Reg, tmp5);
7598       pshufd(tmp1Reg, tmp1Reg, 0);
7599     }
7600     subptr(len, 8);
7601     jccb(Assembler::greater, L_copy_8_chars_exit);
7602 
7603     bind(L_copy_8_chars);
7604     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7605     ptest(tmp3Reg, tmp1Reg);
7606     jccb(Assembler::notZero, L_copy_8_chars_exit);
7607     packuswb(tmp3Reg, tmp1Reg);
7608     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7609     addptr(len, 8);
7610     jccb(Assembler::lessEqual, L_copy_8_chars);
7611 
7612     bind(L_copy_8_chars_exit);
7613     subptr(len, 8);
7614     jccb(Assembler::zero, L_done);
7615   }
7616 
7617   bind(L_copy_1_char);
7618   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7619   testl(tmp5, 0xff00);      // check if Unicode char
7620   jccb(Assembler::notZero, L_copy_1_char_exit);
7621   movb(Address(dst, len, Address::times_1, 0), tmp5);
7622   addptr(len, 1);
7623   jccb(Assembler::less, L_copy_1_char);
7624 
7625   bind(L_copy_1_char_exit);
7626   addptr(result, len); // len is negative count of not processed elements
7627 
7628   bind(L_done);
7629 }
7630 
7631 #ifdef _LP64
7632 /**
7633  * Helper for multiply_to_len().
7634  */
7635 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7636   addq(dest_lo, src1);
7637   adcq(dest_hi, 0);
7638   addq(dest_lo, src2);
7639   adcq(dest_hi, 0);
7640 }
7641 
7642 /**
7643  * Multiply 64 bit by 64 bit first loop.
7644  */
7645 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7646                                            Register y, Register y_idx, Register z,
7647                                            Register carry, Register product,
7648                                            Register idx, Register kdx) {
7649   //
7650   //  jlong carry, x[], y[], z[];
7651   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7652   //    huge_128 product = y[idx] * x[xstart] + carry;
7653   //    z[kdx] = (jlong)product;
7654   //    carry  = (jlong)(product >>> 64);
7655   //  }
7656   //  z[xstart] = carry;
7657   //
7658 
7659   Label L_first_loop, L_first_loop_exit;
7660   Label L_one_x, L_one_y, L_multiply;
7661 
7662   decrementl(xstart);
7663   jcc(Assembler::negative, L_one_x);
7664 
7665   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7666   rorq(x_xstart, 32); // convert big-endian to little-endian
7667 
7668   bind(L_first_loop);
7669   decrementl(idx);
7670   jcc(Assembler::negative, L_first_loop_exit);
7671   decrementl(idx);
7672   jcc(Assembler::negative, L_one_y);
7673   movq(y_idx, Address(y, idx, Address::times_4,  0));
7674   rorq(y_idx, 32); // convert big-endian to little-endian
7675   bind(L_multiply);
7676   movq(product, x_xstart);
7677   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7678   addq(product, carry);
7679   adcq(rdx, 0);
7680   subl(kdx, 2);
7681   movl(Address(z, kdx, Address::times_4,  4), product);
7682   shrq(product, 32);
7683   movl(Address(z, kdx, Address::times_4,  0), product);
7684   movq(carry, rdx);
7685   jmp(L_first_loop);
7686 
7687   bind(L_one_y);
7688   movl(y_idx, Address(y,  0));
7689   jmp(L_multiply);
7690 
7691   bind(L_one_x);
7692   movl(x_xstart, Address(x,  0));
7693   jmp(L_first_loop);
7694 
7695   bind(L_first_loop_exit);
7696 }
7697 
7698 /**
7699  * Multiply 64 bit by 64 bit and add 128 bit.
7700  */
7701 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7702                                             Register yz_idx, Register idx,
7703                                             Register carry, Register product, int offset) {
7704   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7705   //     z[kdx] = (jlong)product;
7706 
7707   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7708   rorq(yz_idx, 32); // convert big-endian to little-endian
7709   movq(product, x_xstart);
7710   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7711   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7712   rorq(yz_idx, 32); // convert big-endian to little-endian
7713 
7714   add2_with_carry(rdx, product, carry, yz_idx);
7715 
7716   movl(Address(z, idx, Address::times_4,  offset+4), product);
7717   shrq(product, 32);
7718   movl(Address(z, idx, Address::times_4,  offset), product);
7719 
7720 }
7721 
7722 /**
7723  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7724  */
7725 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7726                                              Register yz_idx, Register idx, Register jdx,
7727                                              Register carry, Register product,
7728                                              Register carry2) {
7729   //   jlong carry, x[], y[], z[];
7730   //   int kdx = ystart+1;
7731   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7732   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7733   //     z[kdx+idx+1] = (jlong)product;
7734   //     jlong carry2  = (jlong)(product >>> 64);
7735   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7736   //     z[kdx+idx] = (jlong)product;
7737   //     carry  = (jlong)(product >>> 64);
7738   //   }
7739   //   idx += 2;
7740   //   if (idx > 0) {
7741   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7742   //     z[kdx+idx] = (jlong)product;
7743   //     carry  = (jlong)(product >>> 64);
7744   //   }
7745   //
7746 
7747   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7748 
7749   movl(jdx, idx);
7750   andl(jdx, 0xFFFFFFFC);
7751   shrl(jdx, 2);
7752 
7753   bind(L_third_loop);
7754   subl(jdx, 1);
7755   jcc(Assembler::negative, L_third_loop_exit);
7756   subl(idx, 4);
7757 
7758   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7759   movq(carry2, rdx);
7760 
7761   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7762   movq(carry, rdx);
7763   jmp(L_third_loop);
7764 
7765   bind (L_third_loop_exit);
7766 
7767   andl (idx, 0x3);
7768   jcc(Assembler::zero, L_post_third_loop_done);
7769 
7770   Label L_check_1;
7771   subl(idx, 2);
7772   jcc(Assembler::negative, L_check_1);
7773 
7774   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7775   movq(carry, rdx);
7776 
7777   bind (L_check_1);
7778   addl (idx, 0x2);
7779   andl (idx, 0x1);
7780   subl(idx, 1);
7781   jcc(Assembler::negative, L_post_third_loop_done);
7782 
7783   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7784   movq(product, x_xstart);
7785   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7786   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7787 
7788   add2_with_carry(rdx, product, yz_idx, carry);
7789 
7790   movl(Address(z, idx, Address::times_4,  0), product);
7791   shrq(product, 32);
7792 
7793   shlq(rdx, 32);
7794   orq(product, rdx);
7795   movq(carry, product);
7796 
7797   bind(L_post_third_loop_done);
7798 }
7799 
7800 /**
7801  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7802  *
7803  */
7804 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7805                                                   Register carry, Register carry2,
7806                                                   Register idx, Register jdx,
7807                                                   Register yz_idx1, Register yz_idx2,
7808                                                   Register tmp, Register tmp3, Register tmp4) {
7809   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7810 
7811   //   jlong carry, x[], y[], z[];
7812   //   int kdx = ystart+1;
7813   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7814   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7815   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7816   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7817   //     carry  = (jlong)(tmp4 >>> 64);
7818   //     z[kdx+idx+1] = (jlong)tmp3;
7819   //     z[kdx+idx] = (jlong)tmp4;
7820   //   }
7821   //   idx += 2;
7822   //   if (idx > 0) {
7823   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7824   //     z[kdx+idx] = (jlong)yz_idx1;
7825   //     carry  = (jlong)(yz_idx1 >>> 64);
7826   //   }
7827   //
7828 
7829   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7830 
7831   movl(jdx, idx);
7832   andl(jdx, 0xFFFFFFFC);
7833   shrl(jdx, 2);
7834 
7835   bind(L_third_loop);
7836   subl(jdx, 1);
7837   jcc(Assembler::negative, L_third_loop_exit);
7838   subl(idx, 4);
7839 
7840   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7841   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7842   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7843   rorxq(yz_idx2, yz_idx2, 32);
7844 
7845   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7846   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7847 
7848   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7849   rorxq(yz_idx1, yz_idx1, 32);
7850   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7851   rorxq(yz_idx2, yz_idx2, 32);
7852 
7853   if (VM_Version::supports_adx()) {
7854     adcxq(tmp3, carry);
7855     adoxq(tmp3, yz_idx1);
7856 
7857     adcxq(tmp4, tmp);
7858     adoxq(tmp4, yz_idx2);
7859 
7860     movl(carry, 0); // does not affect flags
7861     adcxq(carry2, carry);
7862     adoxq(carry2, carry);
7863   } else {
7864     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7865     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7866   }
7867   movq(carry, carry2);
7868 
7869   movl(Address(z, idx, Address::times_4, 12), tmp3);
7870   shrq(tmp3, 32);
7871   movl(Address(z, idx, Address::times_4,  8), tmp3);
7872 
7873   movl(Address(z, idx, Address::times_4,  4), tmp4);
7874   shrq(tmp4, 32);
7875   movl(Address(z, idx, Address::times_4,  0), tmp4);
7876 
7877   jmp(L_third_loop);
7878 
7879   bind (L_third_loop_exit);
7880 
7881   andl (idx, 0x3);
7882   jcc(Assembler::zero, L_post_third_loop_done);
7883 
7884   Label L_check_1;
7885   subl(idx, 2);
7886   jcc(Assembler::negative, L_check_1);
7887 
7888   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7889   rorxq(yz_idx1, yz_idx1, 32);
7890   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7891   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7892   rorxq(yz_idx2, yz_idx2, 32);
7893 
7894   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7895 
7896   movl(Address(z, idx, Address::times_4,  4), tmp3);
7897   shrq(tmp3, 32);
7898   movl(Address(z, idx, Address::times_4,  0), tmp3);
7899   movq(carry, tmp4);
7900 
7901   bind (L_check_1);
7902   addl (idx, 0x2);
7903   andl (idx, 0x1);
7904   subl(idx, 1);
7905   jcc(Assembler::negative, L_post_third_loop_done);
7906   movl(tmp4, Address(y, idx, Address::times_4,  0));
7907   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7908   movl(tmp4, Address(z, idx, Address::times_4,  0));
7909 
7910   add2_with_carry(carry2, tmp3, tmp4, carry);
7911 
7912   movl(Address(z, idx, Address::times_4,  0), tmp3);
7913   shrq(tmp3, 32);
7914 
7915   shlq(carry2, 32);
7916   orq(tmp3, carry2);
7917   movq(carry, tmp3);
7918 
7919   bind(L_post_third_loop_done);
7920 }
7921 
7922 /**
7923  * Code for BigInteger::multiplyToLen() instrinsic.
7924  *
7925  * rdi: x
7926  * rax: xlen
7927  * rsi: y
7928  * rcx: ylen
7929  * r8:  z
7930  * r11: zlen
7931  * r12: tmp1
7932  * r13: tmp2
7933  * r14: tmp3
7934  * r15: tmp4
7935  * rbx: tmp5
7936  *
7937  */
7938 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7939                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7940   ShortBranchVerifier sbv(this);
7941   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7942 
7943   push(tmp1);
7944   push(tmp2);
7945   push(tmp3);
7946   push(tmp4);
7947   push(tmp5);
7948 
7949   push(xlen);
7950   push(zlen);
7951 
7952   const Register idx = tmp1;
7953   const Register kdx = tmp2;
7954   const Register xstart = tmp3;
7955 
7956   const Register y_idx = tmp4;
7957   const Register carry = tmp5;
7958   const Register product  = xlen;
7959   const Register x_xstart = zlen;  // reuse register
7960 
7961   // First Loop.
7962   //
7963   //  final static long LONG_MASK = 0xffffffffL;
7964   //  int xstart = xlen - 1;
7965   //  int ystart = ylen - 1;
7966   //  long carry = 0;
7967   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7968   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7969   //    z[kdx] = (int)product;
7970   //    carry = product >>> 32;
7971   //  }
7972   //  z[xstart] = (int)carry;
7973   //
7974 
7975   movl(idx, ylen);      // idx = ylen;
7976   movl(kdx, zlen);      // kdx = xlen+ylen;
7977   xorq(carry, carry);   // carry = 0;
7978 
7979   Label L_done;
7980 
7981   movl(xstart, xlen);
7982   decrementl(xstart);
7983   jcc(Assembler::negative, L_done);
7984 
7985   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7986 
7987   Label L_second_loop;
7988   testl(kdx, kdx);
7989   jcc(Assembler::zero, L_second_loop);
7990 
7991   Label L_carry;
7992   subl(kdx, 1);
7993   jcc(Assembler::zero, L_carry);
7994 
7995   movl(Address(z, kdx, Address::times_4,  0), carry);
7996   shrq(carry, 32);
7997   subl(kdx, 1);
7998 
7999   bind(L_carry);
8000   movl(Address(z, kdx, Address::times_4,  0), carry);
8001 
8002   // Second and third (nested) loops.
8003   //
8004   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8005   //   carry = 0;
8006   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8007   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8008   //                    (z[k] & LONG_MASK) + carry;
8009   //     z[k] = (int)product;
8010   //     carry = product >>> 32;
8011   //   }
8012   //   z[i] = (int)carry;
8013   // }
8014   //
8015   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8016 
8017   const Register jdx = tmp1;
8018 
8019   bind(L_second_loop);
8020   xorl(carry, carry);    // carry = 0;
8021   movl(jdx, ylen);       // j = ystart+1
8022 
8023   subl(xstart, 1);       // i = xstart-1;
8024   jcc(Assembler::negative, L_done);
8025 
8026   push (z);
8027 
8028   Label L_last_x;
8029   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8030   subl(xstart, 1);       // i = xstart-1;
8031   jcc(Assembler::negative, L_last_x);
8032 
8033   if (UseBMI2Instructions) {
8034     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8035     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8036   } else {
8037     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8038     rorq(x_xstart, 32);  // convert big-endian to little-endian
8039   }
8040 
8041   Label L_third_loop_prologue;
8042   bind(L_third_loop_prologue);
8043 
8044   push (x);
8045   push (xstart);
8046   push (ylen);
8047 
8048 
8049   if (UseBMI2Instructions) {
8050     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8051   } else { // !UseBMI2Instructions
8052     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8053   }
8054 
8055   pop(ylen);
8056   pop(xlen);
8057   pop(x);
8058   pop(z);
8059 
8060   movl(tmp3, xlen);
8061   addl(tmp3, 1);
8062   movl(Address(z, tmp3, Address::times_4,  0), carry);
8063   subl(tmp3, 1);
8064   jccb(Assembler::negative, L_done);
8065 
8066   shrq(carry, 32);
8067   movl(Address(z, tmp3, Address::times_4,  0), carry);
8068   jmp(L_second_loop);
8069 
8070   // Next infrequent code is moved outside loops.
8071   bind(L_last_x);
8072   if (UseBMI2Instructions) {
8073     movl(rdx, Address(x,  0));
8074   } else {
8075     movl(x_xstart, Address(x,  0));
8076   }
8077   jmp(L_third_loop_prologue);
8078 
8079   bind(L_done);
8080 
8081   pop(zlen);
8082   pop(xlen);
8083 
8084   pop(tmp5);
8085   pop(tmp4);
8086   pop(tmp3);
8087   pop(tmp2);
8088   pop(tmp1);
8089 }
8090 
8091 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8092   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8093   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8094   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8095   Label VECTOR8_TAIL, VECTOR4_TAIL;
8096   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8097   Label SAME_TILL_END, DONE;
8098   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8099 
8100   //scale is in rcx in both Win64 and Unix
8101   ShortBranchVerifier sbv(this);
8102 
8103   shlq(length);
8104   xorq(result, result);
8105 
8106   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8107       VM_Version::supports_avx512vlbw()) {
8108     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8109 
8110     cmpq(length, 64);
8111     jcc(Assembler::less, VECTOR32_TAIL);
8112 
8113     movq(tmp1, length);
8114     andq(tmp1, 0x3F);      // tail count
8115     andq(length, ~(0x3F)); //vector count
8116 
8117     bind(VECTOR64_LOOP);
8118     // AVX512 code to compare 64 byte vectors.
8119     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8120     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8121     kortestql(k7, k7);
8122     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8123     addq(result, 64);
8124     subq(length, 64);
8125     jccb(Assembler::notZero, VECTOR64_LOOP);
8126 
8127     //bind(VECTOR64_TAIL);
8128     testq(tmp1, tmp1);
8129     jcc(Assembler::zero, SAME_TILL_END);
8130 
8131     //bind(VECTOR64_TAIL);
8132     // AVX512 code to compare upto 63 byte vectors.
8133     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8134     shlxq(tmp2, tmp2, tmp1);
8135     notq(tmp2);
8136     kmovql(k3, tmp2);
8137 
8138     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8139     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8140 
8141     ktestql(k7, k3);
8142     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8143 
8144     bind(VECTOR64_NOT_EQUAL);
8145     kmovql(tmp1, k7);
8146     notq(tmp1);
8147     tzcntq(tmp1, tmp1);
8148     addq(result, tmp1);
8149     shrq(result);
8150     jmp(DONE);
8151     bind(VECTOR32_TAIL);
8152   }
8153 
8154   cmpq(length, 8);
8155   jcc(Assembler::equal, VECTOR8_LOOP);
8156   jcc(Assembler::less, VECTOR4_TAIL);
8157 
8158   if (UseAVX >= 2) {
8159     Label VECTOR16_TAIL, VECTOR32_LOOP;
8160 
8161     cmpq(length, 16);
8162     jcc(Assembler::equal, VECTOR16_LOOP);
8163     jcc(Assembler::less, VECTOR8_LOOP);
8164 
8165     cmpq(length, 32);
8166     jccb(Assembler::less, VECTOR16_TAIL);
8167 
8168     subq(length, 32);
8169     bind(VECTOR32_LOOP);
8170     vmovdqu(rymm0, Address(obja, result));
8171     vmovdqu(rymm1, Address(objb, result));
8172     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8173     vptest(rymm2, rymm2);
8174     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8175     addq(result, 32);
8176     subq(length, 32);
8177     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8178     addq(length, 32);
8179     jcc(Assembler::equal, SAME_TILL_END);
8180     //falling through if less than 32 bytes left //close the branch here.
8181 
8182     bind(VECTOR16_TAIL);
8183     cmpq(length, 16);
8184     jccb(Assembler::less, VECTOR8_TAIL);
8185     bind(VECTOR16_LOOP);
8186     movdqu(rymm0, Address(obja, result));
8187     movdqu(rymm1, Address(objb, result));
8188     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8189     ptest(rymm2, rymm2);
8190     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8191     addq(result, 16);
8192     subq(length, 16);
8193     jcc(Assembler::equal, SAME_TILL_END);
8194     //falling through if less than 16 bytes left
8195   } else {//regular intrinsics
8196 
8197     cmpq(length, 16);
8198     jccb(Assembler::less, VECTOR8_TAIL);
8199 
8200     subq(length, 16);
8201     bind(VECTOR16_LOOP);
8202     movdqu(rymm0, Address(obja, result));
8203     movdqu(rymm1, Address(objb, result));
8204     pxor(rymm0, rymm1);
8205     ptest(rymm0, rymm0);
8206     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8207     addq(result, 16);
8208     subq(length, 16);
8209     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8210     addq(length, 16);
8211     jcc(Assembler::equal, SAME_TILL_END);
8212     //falling through if less than 16 bytes left
8213   }
8214 
8215   bind(VECTOR8_TAIL);
8216   cmpq(length, 8);
8217   jccb(Assembler::less, VECTOR4_TAIL);
8218   bind(VECTOR8_LOOP);
8219   movq(tmp1, Address(obja, result));
8220   movq(tmp2, Address(objb, result));
8221   xorq(tmp1, tmp2);
8222   testq(tmp1, tmp1);
8223   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8224   addq(result, 8);
8225   subq(length, 8);
8226   jcc(Assembler::equal, SAME_TILL_END);
8227   //falling through if less than 8 bytes left
8228 
8229   bind(VECTOR4_TAIL);
8230   cmpq(length, 4);
8231   jccb(Assembler::less, BYTES_TAIL);
8232   bind(VECTOR4_LOOP);
8233   movl(tmp1, Address(obja, result));
8234   xorl(tmp1, Address(objb, result));
8235   testl(tmp1, tmp1);
8236   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8237   addq(result, 4);
8238   subq(length, 4);
8239   jcc(Assembler::equal, SAME_TILL_END);
8240   //falling through if less than 4 bytes left
8241 
8242   bind(BYTES_TAIL);
8243   bind(BYTES_LOOP);
8244   load_unsigned_byte(tmp1, Address(obja, result));
8245   load_unsigned_byte(tmp2, Address(objb, result));
8246   xorl(tmp1, tmp2);
8247   testl(tmp1, tmp1);
8248   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8249   decq(length);
8250   jcc(Assembler::zero, SAME_TILL_END);
8251   incq(result);
8252   load_unsigned_byte(tmp1, Address(obja, result));
8253   load_unsigned_byte(tmp2, Address(objb, result));
8254   xorl(tmp1, tmp2);
8255   testl(tmp1, tmp1);
8256   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8257   decq(length);
8258   jcc(Assembler::zero, SAME_TILL_END);
8259   incq(result);
8260   load_unsigned_byte(tmp1, Address(obja, result));
8261   load_unsigned_byte(tmp2, Address(objb, result));
8262   xorl(tmp1, tmp2);
8263   testl(tmp1, tmp1);
8264   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8265   jmp(SAME_TILL_END);
8266 
8267   if (UseAVX >= 2) {
8268     bind(VECTOR32_NOT_EQUAL);
8269     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8270     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8271     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8272     vpmovmskb(tmp1, rymm0);
8273     bsfq(tmp1, tmp1);
8274     addq(result, tmp1);
8275     shrq(result);
8276     jmp(DONE);
8277   }
8278 
8279   bind(VECTOR16_NOT_EQUAL);
8280   if (UseAVX >= 2) {
8281     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8282     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8283     pxor(rymm0, rymm2);
8284   } else {
8285     pcmpeqb(rymm2, rymm2);
8286     pxor(rymm0, rymm1);
8287     pcmpeqb(rymm0, rymm1);
8288     pxor(rymm0, rymm2);
8289   }
8290   pmovmskb(tmp1, rymm0);
8291   bsfq(tmp1, tmp1);
8292   addq(result, tmp1);
8293   shrq(result);
8294   jmpb(DONE);
8295 
8296   bind(VECTOR8_NOT_EQUAL);
8297   bind(VECTOR4_NOT_EQUAL);
8298   bsfq(tmp1, tmp1);
8299   shrq(tmp1, 3);
8300   addq(result, tmp1);
8301   bind(BYTES_NOT_EQUAL);
8302   shrq(result);
8303   jmpb(DONE);
8304 
8305   bind(SAME_TILL_END);
8306   mov64(result, -1);
8307 
8308   bind(DONE);
8309 }
8310 
8311 //Helper functions for square_to_len()
8312 
8313 /**
8314  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8315  * Preserves x and z and modifies rest of the registers.
8316  */
8317 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8318   // Perform square and right shift by 1
8319   // Handle odd xlen case first, then for even xlen do the following
8320   // jlong carry = 0;
8321   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8322   //     huge_128 product = x[j:j+1] * x[j:j+1];
8323   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8324   //     z[i+2:i+3] = (jlong)(product >>> 1);
8325   //     carry = (jlong)product;
8326   // }
8327 
8328   xorq(tmp5, tmp5);     // carry
8329   xorq(rdxReg, rdxReg);
8330   xorl(tmp1, tmp1);     // index for x
8331   xorl(tmp4, tmp4);     // index for z
8332 
8333   Label L_first_loop, L_first_loop_exit;
8334 
8335   testl(xlen, 1);
8336   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8337 
8338   // Square and right shift by 1 the odd element using 32 bit multiply
8339   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8340   imulq(raxReg, raxReg);
8341   shrq(raxReg, 1);
8342   adcq(tmp5, 0);
8343   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8344   incrementl(tmp1);
8345   addl(tmp4, 2);
8346 
8347   // Square and  right shift by 1 the rest using 64 bit multiply
8348   bind(L_first_loop);
8349   cmpptr(tmp1, xlen);
8350   jccb(Assembler::equal, L_first_loop_exit);
8351 
8352   // Square
8353   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8354   rorq(raxReg, 32);    // convert big-endian to little-endian
8355   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8356 
8357   // Right shift by 1 and save carry
8358   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8359   rcrq(rdxReg, 1);
8360   rcrq(raxReg, 1);
8361   adcq(tmp5, 0);
8362 
8363   // Store result in z
8364   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8365   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8366 
8367   // Update indices for x and z
8368   addl(tmp1, 2);
8369   addl(tmp4, 4);
8370   jmp(L_first_loop);
8371 
8372   bind(L_first_loop_exit);
8373 }
8374 
8375 
8376 /**
8377  * Perform the following multiply add operation using BMI2 instructions
8378  * carry:sum = sum + op1*op2 + carry
8379  * op2 should be in rdx
8380  * op2 is preserved, all other registers are modified
8381  */
8382 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8383   // assert op2 is rdx
8384   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8385   addq(sum, carry);
8386   adcq(tmp2, 0);
8387   addq(sum, op1);
8388   adcq(tmp2, 0);
8389   movq(carry, tmp2);
8390 }
8391 
8392 /**
8393  * Perform the following multiply add operation:
8394  * carry:sum = sum + op1*op2 + carry
8395  * Preserves op1, op2 and modifies rest of registers
8396  */
8397 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8398   // rdx:rax = op1 * op2
8399   movq(raxReg, op2);
8400   mulq(op1);
8401 
8402   //  rdx:rax = sum + carry + rdx:rax
8403   addq(sum, carry);
8404   adcq(rdxReg, 0);
8405   addq(sum, raxReg);
8406   adcq(rdxReg, 0);
8407 
8408   // carry:sum = rdx:sum
8409   movq(carry, rdxReg);
8410 }
8411 
8412 /**
8413  * Add 64 bit long carry into z[] with carry propogation.
8414  * Preserves z and carry register values and modifies rest of registers.
8415  *
8416  */
8417 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8418   Label L_fourth_loop, L_fourth_loop_exit;
8419 
8420   movl(tmp1, 1);
8421   subl(zlen, 2);
8422   addq(Address(z, zlen, Address::times_4, 0), carry);
8423 
8424   bind(L_fourth_loop);
8425   jccb(Assembler::carryClear, L_fourth_loop_exit);
8426   subl(zlen, 2);
8427   jccb(Assembler::negative, L_fourth_loop_exit);
8428   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8429   jmp(L_fourth_loop);
8430   bind(L_fourth_loop_exit);
8431 }
8432 
8433 /**
8434  * Shift z[] left by 1 bit.
8435  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8436  *
8437  */
8438 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8439 
8440   Label L_fifth_loop, L_fifth_loop_exit;
8441 
8442   // Fifth loop
8443   // Perform primitiveLeftShift(z, zlen, 1)
8444 
8445   const Register prev_carry = tmp1;
8446   const Register new_carry = tmp4;
8447   const Register value = tmp2;
8448   const Register zidx = tmp3;
8449 
8450   // int zidx, carry;
8451   // long value;
8452   // carry = 0;
8453   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8454   //    (carry:value)  = (z[i] << 1) | carry ;
8455   //    z[i] = value;
8456   // }
8457 
8458   movl(zidx, zlen);
8459   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8460 
8461   bind(L_fifth_loop);
8462   decl(zidx);  // Use decl to preserve carry flag
8463   decl(zidx);
8464   jccb(Assembler::negative, L_fifth_loop_exit);
8465 
8466   if (UseBMI2Instructions) {
8467      movq(value, Address(z, zidx, Address::times_4, 0));
8468      rclq(value, 1);
8469      rorxq(value, value, 32);
8470      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8471   }
8472   else {
8473     // clear new_carry
8474     xorl(new_carry, new_carry);
8475 
8476     // Shift z[i] by 1, or in previous carry and save new carry
8477     movq(value, Address(z, zidx, Address::times_4, 0));
8478     shlq(value, 1);
8479     adcl(new_carry, 0);
8480 
8481     orq(value, prev_carry);
8482     rorq(value, 0x20);
8483     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8484 
8485     // Set previous carry = new carry
8486     movl(prev_carry, new_carry);
8487   }
8488   jmp(L_fifth_loop);
8489 
8490   bind(L_fifth_loop_exit);
8491 }
8492 
8493 
8494 /**
8495  * Code for BigInteger::squareToLen() intrinsic
8496  *
8497  * rdi: x
8498  * rsi: len
8499  * r8:  z
8500  * rcx: zlen
8501  * r12: tmp1
8502  * r13: tmp2
8503  * r14: tmp3
8504  * r15: tmp4
8505  * rbx: tmp5
8506  *
8507  */
8508 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8509 
8510   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8511   push(tmp1);
8512   push(tmp2);
8513   push(tmp3);
8514   push(tmp4);
8515   push(tmp5);
8516 
8517   // First loop
8518   // Store the squares, right shifted one bit (i.e., divided by 2).
8519   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8520 
8521   // Add in off-diagonal sums.
8522   //
8523   // Second, third (nested) and fourth loops.
8524   // zlen +=2;
8525   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8526   //    carry = 0;
8527   //    long op2 = x[xidx:xidx+1];
8528   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8529   //       k -= 2;
8530   //       long op1 = x[j:j+1];
8531   //       long sum = z[k:k+1];
8532   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8533   //       z[k:k+1] = sum;
8534   //    }
8535   //    add_one_64(z, k, carry, tmp_regs);
8536   // }
8537 
8538   const Register carry = tmp5;
8539   const Register sum = tmp3;
8540   const Register op1 = tmp4;
8541   Register op2 = tmp2;
8542 
8543   push(zlen);
8544   push(len);
8545   addl(zlen,2);
8546   bind(L_second_loop);
8547   xorq(carry, carry);
8548   subl(zlen, 4);
8549   subl(len, 2);
8550   push(zlen);
8551   push(len);
8552   cmpl(len, 0);
8553   jccb(Assembler::lessEqual, L_second_loop_exit);
8554 
8555   // Multiply an array by one 64 bit long.
8556   if (UseBMI2Instructions) {
8557     op2 = rdxReg;
8558     movq(op2, Address(x, len, Address::times_4,  0));
8559     rorxq(op2, op2, 32);
8560   }
8561   else {
8562     movq(op2, Address(x, len, Address::times_4,  0));
8563     rorq(op2, 32);
8564   }
8565 
8566   bind(L_third_loop);
8567   decrementl(len);
8568   jccb(Assembler::negative, L_third_loop_exit);
8569   decrementl(len);
8570   jccb(Assembler::negative, L_last_x);
8571 
8572   movq(op1, Address(x, len, Address::times_4,  0));
8573   rorq(op1, 32);
8574 
8575   bind(L_multiply);
8576   subl(zlen, 2);
8577   movq(sum, Address(z, zlen, Address::times_4,  0));
8578 
8579   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8580   if (UseBMI2Instructions) {
8581     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8582   }
8583   else {
8584     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8585   }
8586 
8587   movq(Address(z, zlen, Address::times_4, 0), sum);
8588 
8589   jmp(L_third_loop);
8590   bind(L_third_loop_exit);
8591 
8592   // Fourth loop
8593   // Add 64 bit long carry into z with carry propogation.
8594   // Uses offsetted zlen.
8595   add_one_64(z, zlen, carry, tmp1);
8596 
8597   pop(len);
8598   pop(zlen);
8599   jmp(L_second_loop);
8600 
8601   // Next infrequent code is moved outside loops.
8602   bind(L_last_x);
8603   movl(op1, Address(x, 0));
8604   jmp(L_multiply);
8605 
8606   bind(L_second_loop_exit);
8607   pop(len);
8608   pop(zlen);
8609   pop(len);
8610   pop(zlen);
8611 
8612   // Fifth loop
8613   // Shift z left 1 bit.
8614   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8615 
8616   // z[zlen-1] |= x[len-1] & 1;
8617   movl(tmp3, Address(x, len, Address::times_4, -4));
8618   andl(tmp3, 1);
8619   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8620 
8621   pop(tmp5);
8622   pop(tmp4);
8623   pop(tmp3);
8624   pop(tmp2);
8625   pop(tmp1);
8626 }
8627 
8628 /**
8629  * Helper function for mul_add()
8630  * Multiply the in[] by int k and add to out[] starting at offset offs using
8631  * 128 bit by 32 bit multiply and return the carry in tmp5.
8632  * Only quad int aligned length of in[] is operated on in this function.
8633  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8634  * This function preserves out, in and k registers.
8635  * len and offset point to the appropriate index in "in" & "out" correspondingly
8636  * tmp5 has the carry.
8637  * other registers are temporary and are modified.
8638  *
8639  */
8640 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8641   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8642   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8643 
8644   Label L_first_loop, L_first_loop_exit;
8645 
8646   movl(tmp1, len);
8647   shrl(tmp1, 2);
8648 
8649   bind(L_first_loop);
8650   subl(tmp1, 1);
8651   jccb(Assembler::negative, L_first_loop_exit);
8652 
8653   subl(len, 4);
8654   subl(offset, 4);
8655 
8656   Register op2 = tmp2;
8657   const Register sum = tmp3;
8658   const Register op1 = tmp4;
8659   const Register carry = tmp5;
8660 
8661   if (UseBMI2Instructions) {
8662     op2 = rdxReg;
8663   }
8664 
8665   movq(op1, Address(in, len, Address::times_4,  8));
8666   rorq(op1, 32);
8667   movq(sum, Address(out, offset, Address::times_4,  8));
8668   rorq(sum, 32);
8669   if (UseBMI2Instructions) {
8670     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8671   }
8672   else {
8673     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8674   }
8675   // Store back in big endian from little endian
8676   rorq(sum, 0x20);
8677   movq(Address(out, offset, Address::times_4,  8), sum);
8678 
8679   movq(op1, Address(in, len, Address::times_4,  0));
8680   rorq(op1, 32);
8681   movq(sum, Address(out, offset, Address::times_4,  0));
8682   rorq(sum, 32);
8683   if (UseBMI2Instructions) {
8684     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8685   }
8686   else {
8687     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8688   }
8689   // Store back in big endian from little endian
8690   rorq(sum, 0x20);
8691   movq(Address(out, offset, Address::times_4,  0), sum);
8692 
8693   jmp(L_first_loop);
8694   bind(L_first_loop_exit);
8695 }
8696 
8697 /**
8698  * Code for BigInteger::mulAdd() intrinsic
8699  *
8700  * rdi: out
8701  * rsi: in
8702  * r11: offs (out.length - offset)
8703  * rcx: len
8704  * r8:  k
8705  * r12: tmp1
8706  * r13: tmp2
8707  * r14: tmp3
8708  * r15: tmp4
8709  * rbx: tmp5
8710  * Multiply the in[] by word k and add to out[], return the carry in rax
8711  */
8712 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8713    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8714    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8715 
8716   Label L_carry, L_last_in, L_done;
8717 
8718 // carry = 0;
8719 // for (int j=len-1; j >= 0; j--) {
8720 //    long product = (in[j] & LONG_MASK) * kLong +
8721 //                   (out[offs] & LONG_MASK) + carry;
8722 //    out[offs--] = (int)product;
8723 //    carry = product >>> 32;
8724 // }
8725 //
8726   push(tmp1);
8727   push(tmp2);
8728   push(tmp3);
8729   push(tmp4);
8730   push(tmp5);
8731 
8732   Register op2 = tmp2;
8733   const Register sum = tmp3;
8734   const Register op1 = tmp4;
8735   const Register carry =  tmp5;
8736 
8737   if (UseBMI2Instructions) {
8738     op2 = rdxReg;
8739     movl(op2, k);
8740   }
8741   else {
8742     movl(op2, k);
8743   }
8744 
8745   xorq(carry, carry);
8746 
8747   //First loop
8748 
8749   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8750   //The carry is in tmp5
8751   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8752 
8753   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8754   decrementl(len);
8755   jccb(Assembler::negative, L_carry);
8756   decrementl(len);
8757   jccb(Assembler::negative, L_last_in);
8758 
8759   movq(op1, Address(in, len, Address::times_4,  0));
8760   rorq(op1, 32);
8761 
8762   subl(offs, 2);
8763   movq(sum, Address(out, offs, Address::times_4,  0));
8764   rorq(sum, 32);
8765 
8766   if (UseBMI2Instructions) {
8767     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8768   }
8769   else {
8770     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8771   }
8772 
8773   // Store back in big endian from little endian
8774   rorq(sum, 0x20);
8775   movq(Address(out, offs, Address::times_4,  0), sum);
8776 
8777   testl(len, len);
8778   jccb(Assembler::zero, L_carry);
8779 
8780   //Multiply the last in[] entry, if any
8781   bind(L_last_in);
8782   movl(op1, Address(in, 0));
8783   movl(sum, Address(out, offs, Address::times_4,  -4));
8784 
8785   movl(raxReg, k);
8786   mull(op1); //tmp4 * eax -> edx:eax
8787   addl(sum, carry);
8788   adcl(rdxReg, 0);
8789   addl(sum, raxReg);
8790   adcl(rdxReg, 0);
8791   movl(carry, rdxReg);
8792 
8793   movl(Address(out, offs, Address::times_4,  -4), sum);
8794 
8795   bind(L_carry);
8796   //return tmp5/carry as carry in rax
8797   movl(rax, carry);
8798 
8799   bind(L_done);
8800   pop(tmp5);
8801   pop(tmp4);
8802   pop(tmp3);
8803   pop(tmp2);
8804   pop(tmp1);
8805 }
8806 #endif
8807 
8808 /**
8809  * Emits code to update CRC-32 with a byte value according to constants in table
8810  *
8811  * @param [in,out]crc   Register containing the crc.
8812  * @param [in]val       Register containing the byte to fold into the CRC.
8813  * @param [in]table     Register containing the table of crc constants.
8814  *
8815  * uint32_t crc;
8816  * val = crc_table[(val ^ crc) & 0xFF];
8817  * crc = val ^ (crc >> 8);
8818  *
8819  */
8820 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8821   xorl(val, crc);
8822   andl(val, 0xFF);
8823   shrl(crc, 8); // unsigned shift
8824   xorl(crc, Address(table, val, Address::times_4, 0));
8825 }
8826 
8827 /**
8828 * Fold four 128-bit data chunks
8829 */
8830 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8831   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8832   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8833   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8834   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8835 }
8836 
8837 /**
8838  * Fold 128-bit data chunk
8839  */
8840 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8841   if (UseAVX > 0) {
8842     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8843     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8844     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8845     pxor(xcrc, xtmp);
8846   } else {
8847     movdqa(xtmp, xcrc);
8848     pclmulhdq(xtmp, xK);   // [123:64]
8849     pclmulldq(xcrc, xK);   // [63:0]
8850     pxor(xcrc, xtmp);
8851     movdqu(xtmp, Address(buf, offset));
8852     pxor(xcrc, xtmp);
8853   }
8854 }
8855 
8856 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8857   if (UseAVX > 0) {
8858     vpclmulhdq(xtmp, xK, xcrc);
8859     vpclmulldq(xcrc, xK, xcrc);
8860     pxor(xcrc, xbuf);
8861     pxor(xcrc, xtmp);
8862   } else {
8863     movdqa(xtmp, xcrc);
8864     pclmulhdq(xtmp, xK);
8865     pclmulldq(xcrc, xK);
8866     pxor(xcrc, xbuf);
8867     pxor(xcrc, xtmp);
8868   }
8869 }
8870 
8871 /**
8872  * 8-bit folds to compute 32-bit CRC
8873  *
8874  * uint64_t xcrc;
8875  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8876  */
8877 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8878   movdl(tmp, xcrc);
8879   andl(tmp, 0xFF);
8880   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8881   psrldq(xcrc, 1); // unsigned shift one byte
8882   pxor(xcrc, xtmp);
8883 }
8884 
8885 /**
8886  * uint32_t crc;
8887  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8888  */
8889 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8890   movl(tmp, crc);
8891   andl(tmp, 0xFF);
8892   shrl(crc, 8);
8893   xorl(crc, Address(table, tmp, Address::times_4, 0));
8894 }
8895 
8896 /**
8897  * @param crc   register containing existing CRC (32-bit)
8898  * @param buf   register pointing to input byte buffer (byte*)
8899  * @param len   register containing number of bytes
8900  * @param table register that will contain address of CRC table
8901  * @param tmp   scratch register
8902  */
8903 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8904   assert_different_registers(crc, buf, len, table, tmp, rax);
8905 
8906   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8907   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8908 
8909   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8910   // context for the registers used, where all instructions below are using 128-bit mode
8911   // On EVEX without VL and BW, these instructions will all be AVX.
8912   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8913   notl(crc); // ~crc
8914   cmpl(len, 16);
8915   jcc(Assembler::less, L_tail);
8916 
8917   // Align buffer to 16 bytes
8918   movl(tmp, buf);
8919   andl(tmp, 0xF);
8920   jccb(Assembler::zero, L_aligned);
8921   subl(tmp,  16);
8922   addl(len, tmp);
8923 
8924   align(4);
8925   BIND(L_align_loop);
8926   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8927   update_byte_crc32(crc, rax, table);
8928   increment(buf);
8929   incrementl(tmp);
8930   jccb(Assembler::less, L_align_loop);
8931 
8932   BIND(L_aligned);
8933   movl(tmp, len); // save
8934   shrl(len, 4);
8935   jcc(Assembler::zero, L_tail_restore);
8936 
8937   // Fold total 512 bits of polynomial on each iteration
8938   if (VM_Version::supports_vpclmulqdq()) {
8939     Label Parallel_loop, L_No_Parallel;
8940 
8941     cmpl(len, 8);
8942     jccb(Assembler::less, L_No_Parallel);
8943 
8944     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8945     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8946     movdl(xmm5, crc);
8947     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8948     addptr(buf, 64);
8949     subl(len, 7);
8950     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8951 
8952     BIND(Parallel_loop);
8953     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8954     addptr(buf, 64);
8955     subl(len, 4);
8956     jcc(Assembler::greater, Parallel_loop);
8957 
8958     vextracti64x2(xmm2, xmm1, 0x01);
8959     vextracti64x2(xmm3, xmm1, 0x02);
8960     vextracti64x2(xmm4, xmm1, 0x03);
8961     jmp(L_fold_512b);
8962 
8963     BIND(L_No_Parallel);
8964   }
8965   // Fold crc into first bytes of vector
8966   movdqa(xmm1, Address(buf, 0));
8967   movdl(rax, xmm1);
8968   xorl(crc, rax);
8969   if (VM_Version::supports_sse4_1()) {
8970     pinsrd(xmm1, crc, 0);
8971   } else {
8972     pinsrw(xmm1, crc, 0);
8973     shrl(crc, 16);
8974     pinsrw(xmm1, crc, 1);
8975   }
8976   addptr(buf, 16);
8977   subl(len, 4); // len > 0
8978   jcc(Assembler::less, L_fold_tail);
8979 
8980   movdqa(xmm2, Address(buf,  0));
8981   movdqa(xmm3, Address(buf, 16));
8982   movdqa(xmm4, Address(buf, 32));
8983   addptr(buf, 48);
8984   subl(len, 3);
8985   jcc(Assembler::lessEqual, L_fold_512b);
8986 
8987   // Fold total 512 bits of polynomial on each iteration,
8988   // 128 bits per each of 4 parallel streams.
8989   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8990 
8991   align(32);
8992   BIND(L_fold_512b_loop);
8993   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8994   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8995   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8996   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8997   addptr(buf, 64);
8998   subl(len, 4);
8999   jcc(Assembler::greater, L_fold_512b_loop);
9000 
9001   // Fold 512 bits to 128 bits.
9002   BIND(L_fold_512b);
9003   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9004   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9005   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9006   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9007 
9008   // Fold the rest of 128 bits data chunks
9009   BIND(L_fold_tail);
9010   addl(len, 3);
9011   jccb(Assembler::lessEqual, L_fold_128b);
9012   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9013 
9014   BIND(L_fold_tail_loop);
9015   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9016   addptr(buf, 16);
9017   decrementl(len);
9018   jccb(Assembler::greater, L_fold_tail_loop);
9019 
9020   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9021   BIND(L_fold_128b);
9022   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9023   if (UseAVX > 0) {
9024     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9025     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9026     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9027   } else {
9028     movdqa(xmm2, xmm0);
9029     pclmulqdq(xmm2, xmm1, 0x1);
9030     movdqa(xmm3, xmm0);
9031     pand(xmm3, xmm2);
9032     pclmulqdq(xmm0, xmm3, 0x1);
9033   }
9034   psrldq(xmm1, 8);
9035   psrldq(xmm2, 4);
9036   pxor(xmm0, xmm1);
9037   pxor(xmm0, xmm2);
9038 
9039   // 8 8-bit folds to compute 32-bit CRC.
9040   for (int j = 0; j < 4; j++) {
9041     fold_8bit_crc32(xmm0, table, xmm1, rax);
9042   }
9043   movdl(crc, xmm0); // mov 32 bits to general register
9044   for (int j = 0; j < 4; j++) {
9045     fold_8bit_crc32(crc, table, rax);
9046   }
9047 
9048   BIND(L_tail_restore);
9049   movl(len, tmp); // restore
9050   BIND(L_tail);
9051   andl(len, 0xf);
9052   jccb(Assembler::zero, L_exit);
9053 
9054   // Fold the rest of bytes
9055   align(4);
9056   BIND(L_tail_loop);
9057   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9058   update_byte_crc32(crc, rax, table);
9059   increment(buf);
9060   decrementl(len);
9061   jccb(Assembler::greater, L_tail_loop);
9062 
9063   BIND(L_exit);
9064   notl(crc); // ~c
9065 }
9066 
9067 #ifdef _LP64
9068 // S. Gueron / Information Processing Letters 112 (2012) 184
9069 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9070 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9071 // Output: the 64-bit carry-less product of B * CONST
9072 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9073                                      Register tmp1, Register tmp2, Register tmp3) {
9074   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9075   if (n > 0) {
9076     addq(tmp3, n * 256 * 8);
9077   }
9078   //    Q1 = TABLEExt[n][B & 0xFF];
9079   movl(tmp1, in);
9080   andl(tmp1, 0x000000FF);
9081   shll(tmp1, 3);
9082   addq(tmp1, tmp3);
9083   movq(tmp1, Address(tmp1, 0));
9084 
9085   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9086   movl(tmp2, in);
9087   shrl(tmp2, 8);
9088   andl(tmp2, 0x000000FF);
9089   shll(tmp2, 3);
9090   addq(tmp2, tmp3);
9091   movq(tmp2, Address(tmp2, 0));
9092 
9093   shlq(tmp2, 8);
9094   xorq(tmp1, tmp2);
9095 
9096   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9097   movl(tmp2, in);
9098   shrl(tmp2, 16);
9099   andl(tmp2, 0x000000FF);
9100   shll(tmp2, 3);
9101   addq(tmp2, tmp3);
9102   movq(tmp2, Address(tmp2, 0));
9103 
9104   shlq(tmp2, 16);
9105   xorq(tmp1, tmp2);
9106 
9107   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9108   shrl(in, 24);
9109   andl(in, 0x000000FF);
9110   shll(in, 3);
9111   addq(in, tmp3);
9112   movq(in, Address(in, 0));
9113 
9114   shlq(in, 24);
9115   xorq(in, tmp1);
9116   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9117 }
9118 
9119 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9120                                       Register in_out,
9121                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9122                                       XMMRegister w_xtmp2,
9123                                       Register tmp1,
9124                                       Register n_tmp2, Register n_tmp3) {
9125   if (is_pclmulqdq_supported) {
9126     movdl(w_xtmp1, in_out); // modified blindly
9127 
9128     movl(tmp1, const_or_pre_comp_const_index);
9129     movdl(w_xtmp2, tmp1);
9130     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9131 
9132     movdq(in_out, w_xtmp1);
9133   } else {
9134     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9135   }
9136 }
9137 
9138 // Recombination Alternative 2: No bit-reflections
9139 // T1 = (CRC_A * U1) << 1
9140 // T2 = (CRC_B * U2) << 1
9141 // C1 = T1 >> 32
9142 // C2 = T2 >> 32
9143 // T1 = T1 & 0xFFFFFFFF
9144 // T2 = T2 & 0xFFFFFFFF
9145 // T1 = CRC32(0, T1)
9146 // T2 = CRC32(0, T2)
9147 // C1 = C1 ^ T1
9148 // C2 = C2 ^ T2
9149 // CRC = C1 ^ C2 ^ CRC_C
9150 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9151                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9152                                      Register tmp1, Register tmp2,
9153                                      Register n_tmp3) {
9154   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9155   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9156   shlq(in_out, 1);
9157   movl(tmp1, in_out);
9158   shrq(in_out, 32);
9159   xorl(tmp2, tmp2);
9160   crc32(tmp2, tmp1, 4);
9161   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9162   shlq(in1, 1);
9163   movl(tmp1, in1);
9164   shrq(in1, 32);
9165   xorl(tmp2, tmp2);
9166   crc32(tmp2, tmp1, 4);
9167   xorl(in1, tmp2);
9168   xorl(in_out, in1);
9169   xorl(in_out, in2);
9170 }
9171 
9172 // Set N to predefined value
9173 // Subtract from a lenght of a buffer
9174 // execute in a loop:
9175 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9176 // for i = 1 to N do
9177 //  CRC_A = CRC32(CRC_A, A[i])
9178 //  CRC_B = CRC32(CRC_B, B[i])
9179 //  CRC_C = CRC32(CRC_C, C[i])
9180 // end for
9181 // Recombine
9182 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9183                                        Register in_out1, Register in_out2, Register in_out3,
9184                                        Register tmp1, Register tmp2, Register tmp3,
9185                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9186                                        Register tmp4, Register tmp5,
9187                                        Register n_tmp6) {
9188   Label L_processPartitions;
9189   Label L_processPartition;
9190   Label L_exit;
9191 
9192   bind(L_processPartitions);
9193   cmpl(in_out1, 3 * size);
9194   jcc(Assembler::less, L_exit);
9195     xorl(tmp1, tmp1);
9196     xorl(tmp2, tmp2);
9197     movq(tmp3, in_out2);
9198     addq(tmp3, size);
9199 
9200     bind(L_processPartition);
9201       crc32(in_out3, Address(in_out2, 0), 8);
9202       crc32(tmp1, Address(in_out2, size), 8);
9203       crc32(tmp2, Address(in_out2, size * 2), 8);
9204       addq(in_out2, 8);
9205       cmpq(in_out2, tmp3);
9206       jcc(Assembler::less, L_processPartition);
9207     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9208             w_xtmp1, w_xtmp2, w_xtmp3,
9209             tmp4, tmp5,
9210             n_tmp6);
9211     addq(in_out2, 2 * size);
9212     subl(in_out1, 3 * size);
9213     jmp(L_processPartitions);
9214 
9215   bind(L_exit);
9216 }
9217 #else
9218 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9219                                      Register tmp1, Register tmp2, Register tmp3,
9220                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9221   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9222   if (n > 0) {
9223     addl(tmp3, n * 256 * 8);
9224   }
9225   //    Q1 = TABLEExt[n][B & 0xFF];
9226   movl(tmp1, in_out);
9227   andl(tmp1, 0x000000FF);
9228   shll(tmp1, 3);
9229   addl(tmp1, tmp3);
9230   movq(xtmp1, Address(tmp1, 0));
9231 
9232   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9233   movl(tmp2, in_out);
9234   shrl(tmp2, 8);
9235   andl(tmp2, 0x000000FF);
9236   shll(tmp2, 3);
9237   addl(tmp2, tmp3);
9238   movq(xtmp2, Address(tmp2, 0));
9239 
9240   psllq(xtmp2, 8);
9241   pxor(xtmp1, xtmp2);
9242 
9243   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9244   movl(tmp2, in_out);
9245   shrl(tmp2, 16);
9246   andl(tmp2, 0x000000FF);
9247   shll(tmp2, 3);
9248   addl(tmp2, tmp3);
9249   movq(xtmp2, Address(tmp2, 0));
9250 
9251   psllq(xtmp2, 16);
9252   pxor(xtmp1, xtmp2);
9253 
9254   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9255   shrl(in_out, 24);
9256   andl(in_out, 0x000000FF);
9257   shll(in_out, 3);
9258   addl(in_out, tmp3);
9259   movq(xtmp2, Address(in_out, 0));
9260 
9261   psllq(xtmp2, 24);
9262   pxor(xtmp1, xtmp2); // Result in CXMM
9263   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9264 }
9265 
9266 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9267                                       Register in_out,
9268                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9269                                       XMMRegister w_xtmp2,
9270                                       Register tmp1,
9271                                       Register n_tmp2, Register n_tmp3) {
9272   if (is_pclmulqdq_supported) {
9273     movdl(w_xtmp1, in_out);
9274 
9275     movl(tmp1, const_or_pre_comp_const_index);
9276     movdl(w_xtmp2, tmp1);
9277     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9278     // Keep result in XMM since GPR is 32 bit in length
9279   } else {
9280     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9281   }
9282 }
9283 
9284 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9285                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9286                                      Register tmp1, Register tmp2,
9287                                      Register n_tmp3) {
9288   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9289   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9290 
9291   psllq(w_xtmp1, 1);
9292   movdl(tmp1, w_xtmp1);
9293   psrlq(w_xtmp1, 32);
9294   movdl(in_out, w_xtmp1);
9295 
9296   xorl(tmp2, tmp2);
9297   crc32(tmp2, tmp1, 4);
9298   xorl(in_out, tmp2);
9299 
9300   psllq(w_xtmp2, 1);
9301   movdl(tmp1, w_xtmp2);
9302   psrlq(w_xtmp2, 32);
9303   movdl(in1, w_xtmp2);
9304 
9305   xorl(tmp2, tmp2);
9306   crc32(tmp2, tmp1, 4);
9307   xorl(in1, tmp2);
9308   xorl(in_out, in1);
9309   xorl(in_out, in2);
9310 }
9311 
9312 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9313                                        Register in_out1, Register in_out2, Register in_out3,
9314                                        Register tmp1, Register tmp2, Register tmp3,
9315                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9316                                        Register tmp4, Register tmp5,
9317                                        Register n_tmp6) {
9318   Label L_processPartitions;
9319   Label L_processPartition;
9320   Label L_exit;
9321 
9322   bind(L_processPartitions);
9323   cmpl(in_out1, 3 * size);
9324   jcc(Assembler::less, L_exit);
9325     xorl(tmp1, tmp1);
9326     xorl(tmp2, tmp2);
9327     movl(tmp3, in_out2);
9328     addl(tmp3, size);
9329 
9330     bind(L_processPartition);
9331       crc32(in_out3, Address(in_out2, 0), 4);
9332       crc32(tmp1, Address(in_out2, size), 4);
9333       crc32(tmp2, Address(in_out2, size*2), 4);
9334       crc32(in_out3, Address(in_out2, 0+4), 4);
9335       crc32(tmp1, Address(in_out2, size+4), 4);
9336       crc32(tmp2, Address(in_out2, size*2+4), 4);
9337       addl(in_out2, 8);
9338       cmpl(in_out2, tmp3);
9339       jcc(Assembler::less, L_processPartition);
9340 
9341         push(tmp3);
9342         push(in_out1);
9343         push(in_out2);
9344         tmp4 = tmp3;
9345         tmp5 = in_out1;
9346         n_tmp6 = in_out2;
9347 
9348       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9349             w_xtmp1, w_xtmp2, w_xtmp3,
9350             tmp4, tmp5,
9351             n_tmp6);
9352 
9353         pop(in_out2);
9354         pop(in_out1);
9355         pop(tmp3);
9356 
9357     addl(in_out2, 2 * size);
9358     subl(in_out1, 3 * size);
9359     jmp(L_processPartitions);
9360 
9361   bind(L_exit);
9362 }
9363 #endif //LP64
9364 
9365 #ifdef _LP64
9366 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9367 // Input: A buffer I of L bytes.
9368 // Output: the CRC32C value of the buffer.
9369 // Notations:
9370 // Write L = 24N + r, with N = floor (L/24).
9371 // r = L mod 24 (0 <= r < 24).
9372 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9373 // N quadwords, and R consists of r bytes.
9374 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9375 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9376 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9377 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9378 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9379                                           Register tmp1, Register tmp2, Register tmp3,
9380                                           Register tmp4, Register tmp5, Register tmp6,
9381                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9382                                           bool is_pclmulqdq_supported) {
9383   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9384   Label L_wordByWord;
9385   Label L_byteByByteProlog;
9386   Label L_byteByByte;
9387   Label L_exit;
9388 
9389   if (is_pclmulqdq_supported ) {
9390     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9391     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9392 
9393     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9394     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9395 
9396     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9397     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9398     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9399   } else {
9400     const_or_pre_comp_const_index[0] = 1;
9401     const_or_pre_comp_const_index[1] = 0;
9402 
9403     const_or_pre_comp_const_index[2] = 3;
9404     const_or_pre_comp_const_index[3] = 2;
9405 
9406     const_or_pre_comp_const_index[4] = 5;
9407     const_or_pre_comp_const_index[5] = 4;
9408    }
9409   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9410                     in2, in1, in_out,
9411                     tmp1, tmp2, tmp3,
9412                     w_xtmp1, w_xtmp2, w_xtmp3,
9413                     tmp4, tmp5,
9414                     tmp6);
9415   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9416                     in2, in1, in_out,
9417                     tmp1, tmp2, tmp3,
9418                     w_xtmp1, w_xtmp2, w_xtmp3,
9419                     tmp4, tmp5,
9420                     tmp6);
9421   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9422                     in2, in1, in_out,
9423                     tmp1, tmp2, tmp3,
9424                     w_xtmp1, w_xtmp2, w_xtmp3,
9425                     tmp4, tmp5,
9426                     tmp6);
9427   movl(tmp1, in2);
9428   andl(tmp1, 0x00000007);
9429   negl(tmp1);
9430   addl(tmp1, in2);
9431   addq(tmp1, in1);
9432 
9433   BIND(L_wordByWord);
9434   cmpq(in1, tmp1);
9435   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9436     crc32(in_out, Address(in1, 0), 4);
9437     addq(in1, 4);
9438     jmp(L_wordByWord);
9439 
9440   BIND(L_byteByByteProlog);
9441   andl(in2, 0x00000007);
9442   movl(tmp2, 1);
9443 
9444   BIND(L_byteByByte);
9445   cmpl(tmp2, in2);
9446   jccb(Assembler::greater, L_exit);
9447     crc32(in_out, Address(in1, 0), 1);
9448     incq(in1);
9449     incl(tmp2);
9450     jmp(L_byteByByte);
9451 
9452   BIND(L_exit);
9453 }
9454 #else
9455 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9456                                           Register tmp1, Register  tmp2, Register tmp3,
9457                                           Register tmp4, Register  tmp5, Register tmp6,
9458                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9459                                           bool is_pclmulqdq_supported) {
9460   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9461   Label L_wordByWord;
9462   Label L_byteByByteProlog;
9463   Label L_byteByByte;
9464   Label L_exit;
9465 
9466   if (is_pclmulqdq_supported) {
9467     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9468     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9469 
9470     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9471     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9472 
9473     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9474     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9475   } else {
9476     const_or_pre_comp_const_index[0] = 1;
9477     const_or_pre_comp_const_index[1] = 0;
9478 
9479     const_or_pre_comp_const_index[2] = 3;
9480     const_or_pre_comp_const_index[3] = 2;
9481 
9482     const_or_pre_comp_const_index[4] = 5;
9483     const_or_pre_comp_const_index[5] = 4;
9484   }
9485   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9486                     in2, in1, in_out,
9487                     tmp1, tmp2, tmp3,
9488                     w_xtmp1, w_xtmp2, w_xtmp3,
9489                     tmp4, tmp5,
9490                     tmp6);
9491   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9492                     in2, in1, in_out,
9493                     tmp1, tmp2, tmp3,
9494                     w_xtmp1, w_xtmp2, w_xtmp3,
9495                     tmp4, tmp5,
9496                     tmp6);
9497   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9498                     in2, in1, in_out,
9499                     tmp1, tmp2, tmp3,
9500                     w_xtmp1, w_xtmp2, w_xtmp3,
9501                     tmp4, tmp5,
9502                     tmp6);
9503   movl(tmp1, in2);
9504   andl(tmp1, 0x00000007);
9505   negl(tmp1);
9506   addl(tmp1, in2);
9507   addl(tmp1, in1);
9508 
9509   BIND(L_wordByWord);
9510   cmpl(in1, tmp1);
9511   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9512     crc32(in_out, Address(in1,0), 4);
9513     addl(in1, 4);
9514     jmp(L_wordByWord);
9515 
9516   BIND(L_byteByByteProlog);
9517   andl(in2, 0x00000007);
9518   movl(tmp2, 1);
9519 
9520   BIND(L_byteByByte);
9521   cmpl(tmp2, in2);
9522   jccb(Assembler::greater, L_exit);
9523     movb(tmp1, Address(in1, 0));
9524     crc32(in_out, tmp1, 1);
9525     incl(in1);
9526     incl(tmp2);
9527     jmp(L_byteByByte);
9528 
9529   BIND(L_exit);
9530 }
9531 #endif // LP64
9532 #undef BIND
9533 #undef BLOCK_COMMENT
9534 
9535 // Compress char[] array to byte[].
9536 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9537 //   @HotSpotIntrinsicCandidate
9538 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9539 //     for (int i = 0; i < len; i++) {
9540 //       int c = src[srcOff++];
9541 //       if (c >>> 8 != 0) {
9542 //         return 0;
9543 //       }
9544 //       dst[dstOff++] = (byte)c;
9545 //     }
9546 //     return len;
9547 //   }
9548 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9549   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9550   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9551   Register tmp5, Register result) {
9552   Label copy_chars_loop, return_length, return_zero, done;
9553 
9554   // rsi: src
9555   // rdi: dst
9556   // rdx: len
9557   // rcx: tmp5
9558   // rax: result
9559 
9560   // rsi holds start addr of source char[] to be compressed
9561   // rdi holds start addr of destination byte[]
9562   // rdx holds length
9563 
9564   assert(len != result, "");
9565 
9566   // save length for return
9567   push(len);
9568 
9569   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9570     VM_Version::supports_avx512vlbw() &&
9571     VM_Version::supports_bmi2()) {
9572 
9573     Label copy_32_loop, copy_loop_tail, below_threshold;
9574 
9575     // alignment
9576     Label post_alignment;
9577 
9578     // if length of the string is less than 16, handle it in an old fashioned way
9579     testl(len, -32);
9580     jcc(Assembler::zero, below_threshold);
9581 
9582     // First check whether a character is compressable ( <= 0xFF).
9583     // Create mask to test for Unicode chars inside zmm vector
9584     movl(result, 0x00FF);
9585     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9586 
9587     testl(len, -64);
9588     jcc(Assembler::zero, post_alignment);
9589 
9590     movl(tmp5, dst);
9591     andl(tmp5, (32 - 1));
9592     negl(tmp5);
9593     andl(tmp5, (32 - 1));
9594 
9595     // bail out when there is nothing to be done
9596     testl(tmp5, 0xFFFFFFFF);
9597     jcc(Assembler::zero, post_alignment);
9598 
9599     // ~(~0 << len), where len is the # of remaining elements to process
9600     movl(result, 0xFFFFFFFF);
9601     shlxl(result, result, tmp5);
9602     notl(result);
9603     kmovdl(k3, result);
9604 
9605     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9606     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9607     ktestd(k2, k3);
9608     jcc(Assembler::carryClear, return_zero);
9609 
9610     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9611 
9612     addptr(src, tmp5);
9613     addptr(src, tmp5);
9614     addptr(dst, tmp5);
9615     subl(len, tmp5);
9616 
9617     bind(post_alignment);
9618     // end of alignment
9619 
9620     movl(tmp5, len);
9621     andl(tmp5, (32 - 1));    // tail count (in chars)
9622     andl(len, ~(32 - 1));    // vector count (in chars)
9623     jcc(Assembler::zero, copy_loop_tail);
9624 
9625     lea(src, Address(src, len, Address::times_2));
9626     lea(dst, Address(dst, len, Address::times_1));
9627     negptr(len);
9628 
9629     bind(copy_32_loop);
9630     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9631     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9632     kortestdl(k2, k2);
9633     jcc(Assembler::carryClear, return_zero);
9634 
9635     // All elements in current processed chunk are valid candidates for
9636     // compression. Write a truncated byte elements to the memory.
9637     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9638     addptr(len, 32);
9639     jcc(Assembler::notZero, copy_32_loop);
9640 
9641     bind(copy_loop_tail);
9642     // bail out when there is nothing to be done
9643     testl(tmp5, 0xFFFFFFFF);
9644     jcc(Assembler::zero, return_length);
9645 
9646     movl(len, tmp5);
9647 
9648     // ~(~0 << len), where len is the # of remaining elements to process
9649     movl(result, 0xFFFFFFFF);
9650     shlxl(result, result, len);
9651     notl(result);
9652 
9653     kmovdl(k3, result);
9654 
9655     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9656     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9657     ktestd(k2, k3);
9658     jcc(Assembler::carryClear, return_zero);
9659 
9660     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9661     jmp(return_length);
9662 
9663     bind(below_threshold);
9664   }
9665 
9666   if (UseSSE42Intrinsics) {
9667     Label copy_32_loop, copy_16, copy_tail;
9668 
9669     movl(result, len);
9670 
9671     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9672 
9673     // vectored compression
9674     andl(len, 0xfffffff0);    // vector count (in chars)
9675     andl(result, 0x0000000f);    // tail count (in chars)
9676     testl(len, len);
9677     jcc(Assembler::zero, copy_16);
9678 
9679     // compress 16 chars per iter
9680     movdl(tmp1Reg, tmp5);
9681     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9682     pxor(tmp4Reg, tmp4Reg);
9683 
9684     lea(src, Address(src, len, Address::times_2));
9685     lea(dst, Address(dst, len, Address::times_1));
9686     negptr(len);
9687 
9688     bind(copy_32_loop);
9689     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9690     por(tmp4Reg, tmp2Reg);
9691     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9692     por(tmp4Reg, tmp3Reg);
9693     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9694     jcc(Assembler::notZero, return_zero);
9695     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9696     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9697     addptr(len, 16);
9698     jcc(Assembler::notZero, copy_32_loop);
9699 
9700     // compress next vector of 8 chars (if any)
9701     bind(copy_16);
9702     movl(len, result);
9703     andl(len, 0xfffffff8);    // vector count (in chars)
9704     andl(result, 0x00000007);    // tail count (in chars)
9705     testl(len, len);
9706     jccb(Assembler::zero, copy_tail);
9707 
9708     movdl(tmp1Reg, tmp5);
9709     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9710     pxor(tmp3Reg, tmp3Reg);
9711 
9712     movdqu(tmp2Reg, Address(src, 0));
9713     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9714     jccb(Assembler::notZero, return_zero);
9715     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9716     movq(Address(dst, 0), tmp2Reg);
9717     addptr(src, 16);
9718     addptr(dst, 8);
9719 
9720     bind(copy_tail);
9721     movl(len, result);
9722   }
9723   // compress 1 char per iter
9724   testl(len, len);
9725   jccb(Assembler::zero, return_length);
9726   lea(src, Address(src, len, Address::times_2));
9727   lea(dst, Address(dst, len, Address::times_1));
9728   negptr(len);
9729 
9730   bind(copy_chars_loop);
9731   load_unsigned_short(result, Address(src, len, Address::times_2));
9732   testl(result, 0xff00);      // check if Unicode char
9733   jccb(Assembler::notZero, return_zero);
9734   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9735   increment(len);
9736   jcc(Assembler::notZero, copy_chars_loop);
9737 
9738   // if compression succeeded, return length
9739   bind(return_length);
9740   pop(result);
9741   jmpb(done);
9742 
9743   // if compression failed, return 0
9744   bind(return_zero);
9745   xorl(result, result);
9746   addptr(rsp, wordSize);
9747 
9748   bind(done);
9749 }
9750 
9751 // Inflate byte[] array to char[].
9752 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9753 //   @HotSpotIntrinsicCandidate
9754 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9755 //     for (int i = 0; i < len; i++) {
9756 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9757 //     }
9758 //   }
9759 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9760   XMMRegister tmp1, Register tmp2) {
9761   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9762   // rsi: src
9763   // rdi: dst
9764   // rdx: len
9765   // rcx: tmp2
9766 
9767   // rsi holds start addr of source byte[] to be inflated
9768   // rdi holds start addr of destination char[]
9769   // rdx holds length
9770   assert_different_registers(src, dst, len, tmp2);
9771   movl(tmp2, len);
9772   if ((UseAVX > 2) && // AVX512
9773     VM_Version::supports_avx512vlbw() &&
9774     VM_Version::supports_bmi2()) {
9775 
9776     Label copy_32_loop, copy_tail;
9777     Register tmp3_aliased = len;
9778 
9779     // if length of the string is less than 16, handle it in an old fashioned way
9780     testl(len, -16);
9781     jcc(Assembler::zero, below_threshold);
9782 
9783     testl(len, -1 * AVX3Threshold);
9784     jcc(Assembler::zero, avx3_threshold);
9785 
9786     // In order to use only one arithmetic operation for the main loop we use
9787     // this pre-calculation
9788     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9789     andl(len, -32);     // vector count
9790     jccb(Assembler::zero, copy_tail);
9791 
9792     lea(src, Address(src, len, Address::times_1));
9793     lea(dst, Address(dst, len, Address::times_2));
9794     negptr(len);
9795 
9796 
9797     // inflate 32 chars per iter
9798     bind(copy_32_loop);
9799     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9800     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9801     addptr(len, 32);
9802     jcc(Assembler::notZero, copy_32_loop);
9803 
9804     bind(copy_tail);
9805     // bail out when there is nothing to be done
9806     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9807     jcc(Assembler::zero, done);
9808 
9809     // ~(~0 << length), where length is the # of remaining elements to process
9810     movl(tmp3_aliased, -1);
9811     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9812     notl(tmp3_aliased);
9813     kmovdl(k2, tmp3_aliased);
9814     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9815     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9816 
9817     jmp(done);
9818     bind(avx3_threshold);
9819   }
9820   if (UseSSE42Intrinsics) {
9821     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9822 
9823     if (UseAVX > 1) {
9824       andl(tmp2, (16 - 1));
9825       andl(len, -16);
9826       jccb(Assembler::zero, copy_new_tail);
9827     } else {
9828       andl(tmp2, 0x00000007);   // tail count (in chars)
9829       andl(len, 0xfffffff8);    // vector count (in chars)
9830       jccb(Assembler::zero, copy_tail);
9831     }
9832 
9833     // vectored inflation
9834     lea(src, Address(src, len, Address::times_1));
9835     lea(dst, Address(dst, len, Address::times_2));
9836     negptr(len);
9837 
9838     if (UseAVX > 1) {
9839       bind(copy_16_loop);
9840       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9841       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9842       addptr(len, 16);
9843       jcc(Assembler::notZero, copy_16_loop);
9844 
9845       bind(below_threshold);
9846       bind(copy_new_tail);
9847       movl(len, tmp2);
9848       andl(tmp2, 0x00000007);
9849       andl(len, 0xFFFFFFF8);
9850       jccb(Assembler::zero, copy_tail);
9851 
9852       pmovzxbw(tmp1, Address(src, 0));
9853       movdqu(Address(dst, 0), tmp1);
9854       addptr(src, 8);
9855       addptr(dst, 2 * 8);
9856 
9857       jmp(copy_tail, true);
9858     }
9859 
9860     // inflate 8 chars per iter
9861     bind(copy_8_loop);
9862     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9863     movdqu(Address(dst, len, Address::times_2), tmp1);
9864     addptr(len, 8);
9865     jcc(Assembler::notZero, copy_8_loop);
9866 
9867     bind(copy_tail);
9868     movl(len, tmp2);
9869 
9870     cmpl(len, 4);
9871     jccb(Assembler::less, copy_bytes);
9872 
9873     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9874     pmovzxbw(tmp1, tmp1);
9875     movq(Address(dst, 0), tmp1);
9876     subptr(len, 4);
9877     addptr(src, 4);
9878     addptr(dst, 8);
9879 
9880     bind(copy_bytes);
9881   } else {
9882     bind(below_threshold);
9883   }
9884 
9885   testl(len, len);
9886   jccb(Assembler::zero, done);
9887   lea(src, Address(src, len, Address::times_1));
9888   lea(dst, Address(dst, len, Address::times_2));
9889   negptr(len);
9890 
9891   // inflate 1 char per iter
9892   bind(copy_chars_loop);
9893   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9894   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9895   increment(len);
9896   jcc(Assembler::notZero, copy_chars_loop);
9897 
9898   bind(done);
9899 }
9900 
9901 #ifdef _LP64
9902 void MacroAssembler::cache_wb(Address line)
9903 {
9904   // 64 bit cpus always support clflush
9905   assert(VM_Version::supports_clflush(), "clflush should be available");
9906   bool optimized = VM_Version::supports_clflushopt();
9907   bool no_evict = VM_Version::supports_clwb();
9908 
9909   // prefer clwb (writeback without evict) otherwise
9910   // prefer clflushopt (potentially parallel writeback with evict)
9911   // otherwise fallback on clflush (serial writeback with evict)
9912 
9913   if (optimized) {
9914     if (no_evict) {
9915       clwb(line);
9916     } else {
9917       clflushopt(line);
9918     }
9919   } else {
9920     // no need for fence when using CLFLUSH
9921     clflush(line);
9922   }
9923 }
9924 
9925 void MacroAssembler::cache_wbsync(bool is_pre)
9926 {
9927   assert(VM_Version::supports_clflush(), "clflush should be available");
9928   bool optimized = VM_Version::supports_clflushopt();
9929   bool no_evict = VM_Version::supports_clwb();
9930 
9931   // pick the correct implementation
9932 
9933   if (!is_pre && (optimized || no_evict)) {
9934     // need an sfence for post flush when using clflushopt or clwb
9935     // otherwise no no need for any synchroniaztion
9936 
9937     sfence();
9938   }
9939 }
9940 #endif // _LP64
9941 
9942 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9943   switch (cond) {
9944     // Note some conditions are synonyms for others
9945     case Assembler::zero:         return Assembler::notZero;
9946     case Assembler::notZero:      return Assembler::zero;
9947     case Assembler::less:         return Assembler::greaterEqual;
9948     case Assembler::lessEqual:    return Assembler::greater;
9949     case Assembler::greater:      return Assembler::lessEqual;
9950     case Assembler::greaterEqual: return Assembler::less;
9951     case Assembler::below:        return Assembler::aboveEqual;
9952     case Assembler::belowEqual:   return Assembler::above;
9953     case Assembler::above:        return Assembler::belowEqual;
9954     case Assembler::aboveEqual:   return Assembler::below;
9955     case Assembler::overflow:     return Assembler::noOverflow;
9956     case Assembler::noOverflow:   return Assembler::overflow;
9957     case Assembler::negative:     return Assembler::positive;
9958     case Assembler::positive:     return Assembler::negative;
9959     case Assembler::parity:       return Assembler::noParity;
9960     case Assembler::noParity:     return Assembler::parity;
9961   }
9962   ShouldNotReachHere(); return Assembler::overflow;
9963 }
9964 
9965 SkipIfEqual::SkipIfEqual(
9966     MacroAssembler* masm, const bool* flag_addr, bool value) {
9967   _masm = masm;
9968   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9969   _masm->jcc(Assembler::equal, _label);
9970 }
9971 
9972 SkipIfEqual::~SkipIfEqual() {
9973   _masm->bind(_label);
9974 }
9975 
9976 // 32-bit Windows has its own fast-path implementation
9977 // of get_thread
9978 #if !defined(WIN32) || defined(_LP64)
9979 
9980 // This is simply a call to Thread::current()
9981 void MacroAssembler::get_thread(Register thread) {
9982   if (thread != rax) {
9983     push(rax);
9984   }
9985   LP64_ONLY(push(rdi);)
9986   LP64_ONLY(push(rsi);)
9987   push(rdx);
9988   push(rcx);
9989 #ifdef _LP64
9990   push(r8);
9991   push(r9);
9992   push(r10);
9993   push(r11);
9994 #endif
9995 
9996   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9997 
9998 #ifdef _LP64
9999   pop(r11);
10000   pop(r10);
10001   pop(r9);
10002   pop(r8);
10003 #endif
10004   pop(rcx);
10005   pop(rdx);
10006   LP64_ONLY(pop(rsi);)
10007   LP64_ONLY(pop(rdi);)
10008   if (thread != rax) {
10009     mov(thread, rax);
10010     pop(rax);
10011   }
10012 }
10013 
10014 #endif