< prev index next >

src/hotspot/share/runtime/synchronizer.cpp

Print this page
rev 56775 : imported patch 8230876.patch
rev 56776 : v2.00 -> v2.07 (CR7/v2.07/10-for-jdk14) patches combined into one; merge with 8230876.patch (2019.10.17) and jdk-14+21.
rev 56777 : See CR7-to-CR8-changes.


 132 // Global ObjectMonitor wait list. If HandshakeAfterDeflateIdleMonitors
 133 // is true, deflated ObjectMonitors wait on this list until after a
 134 // handshake or a safepoint for platforms that don't support handshakes.
 135 // After the handshake or safepoint, the deflated ObjectMonitors are
 136 // prepended to g_free_list.
 137 static ObjectMonitor* volatile g_wait_list = NULL;
 138 
 139 static volatile int g_om_free_count = 0;    // # on g_free_list
 140 static volatile int g_om_in_use_count = 0;  // # on g_om_in_use_list
 141 static volatile int g_om_population = 0;    // # Extant -- in circulation
 142 static volatile int g_om_wait_count = 0;    // # on g_wait_list
 143 
 144 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 145 
 146 
 147 // =====================> List Management functions
 148 
 149 // Return true if the ObjectMonitor's next field is marked.
 150 // Otherwise returns false.
 151 static bool is_next_marked(ObjectMonitor* om) {


 152   return ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & 0x1) != 0;
 153 }
 154 
 155 // Mark an ObjectMonitor* and return it. Note: the om parameter
 156 // may or may not have been marked originally.
 157 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 158   return (ObjectMonitor*)((intptr_t)om | 0x1);
 159 }
 160 
 161 // Mark the next field in an ObjectMonitor. If marking was successful,
 162 // then the unmarked next field is returned via parameter and true is
 163 // returned. Otherwise false is returned.
 164 static bool mark_next(ObjectMonitor* om, ObjectMonitor** next_p) {
 165   // Get current next field without any marking value.
 166   ObjectMonitor* next = (ObjectMonitor*)
 167       ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 168   if (Atomic::cmpxchg(mark_om_ptr(next), &om->_next_om, next) != next) {
 169     return false;  // Could not mark the next field or it was already marked.
 170   }
 171   *next_p = next;
 172   return true;
 173 }
 174 
 175 // Loop until we mark the next field in an ObjectMonitor. The unmarked
 176 // next field is returned.
 177 static ObjectMonitor* mark_next_loop(ObjectMonitor* om) {
 178   ObjectMonitor* next;
 179   while (true) {
 180     if (mark_next(om, &next)) {
 181       // Marked om's next field so return the unmarked value.
 182       return next;
 183     }
 184   }
 185 }
 186 
 187 // Set the next field in an ObjectMonitor to the specified value.
 188 // The caller of set_next() must be the same thread that marked the
 189 // ObjectMonitor.
 190 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 191   OrderAccess::release_store(&om->_next_om, value);
 192 }
 193 
 194 // Mark the next field in the list head ObjectMonitor. If marking was
 195 // successful, then the mid and the unmarked next field are returned
 196 // via parameter and true is returned. Otherwise false is returned.
 197 static bool mark_list_head(ObjectMonitor* volatile * list_p,
 198                            ObjectMonitor** mid_p, ObjectMonitor** next_p) {
 199   while (true) {
 200     ObjectMonitor* mid = OrderAccess::load_acquire(list_p);
 201     if (mid == NULL) {
 202       return false;  // The list is empty so nothing to mark.
 203     }
 204     if (mark_next(mid, next_p)) {
 205       if (OrderAccess::load_acquire(list_p) != mid) {
 206         // The list head changed so we have to retry.
 207         set_next(mid, *next_p);  // unmark mid
 208         continue;
 209       }
 210       // We marked next field to guard against races.
 211       *mid_p = mid;
 212       return true;
 213     }
 214   }
 215 }
 216 
 217 // Return the unmarked next field in an ObjectMonitor. Note: the next
 218 // field may or may not have been marked originally.
 219 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {


 220   return (ObjectMonitor*)((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 221 }
 222 

















 223 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 224 // the last ObjectMonitor in the list and there are 'count' on the list.
 225 // Also updates the specified *count_p.
 226 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 227                                    int count, ObjectMonitor* volatile* list_p,
 228                                    volatile int* count_p) {
 229   while (true) {
 230     ObjectMonitor* cur = OrderAccess::load_acquire(list_p);
 231     // Prepend list to *list_p.
 232     ObjectMonitor* next = NULL;
 233     if (!mark_next(tail, &next)) {
 234       continue;  // failed to mark next field so try it all again
 235     }
 236     set_next(tail, cur);  // tail now points to cur (and unmarks tail)
 237     if (cur == NULL) {
 238       // No potential race with takers or other prependers since
 239       // *list_p is empty.
 240       if (Atomic::cmpxchg(list, list_p, cur) == cur) {
 241         // Successfully switched *list_p to the list value.
 242         Atomic::add(count, count_p);
 243         break;
 244       }
 245       // Implied else: try it all again
 246     } else {
 247       // Try to mark next field to guard against races:
 248       if (!mark_next(cur, &next)) {
 249         continue;  // failed to mark next field so try it all again
 250       }


 303 // Prepend a list of ObjectMonitors to g_om_in_use_list. 'tail' is the last
 304 // ObjectMonitor in the list and there are 'count' on the list. Also
 305 // updates g_om_in_use_list.
 306 static void prepend_list_to_g_om_in_use_list(ObjectMonitor* list,
 307                                              ObjectMonitor* tail, int count) {
 308   prepend_list_to_common(list, tail, count, &g_om_in_use_list, &g_om_in_use_count);
 309 }
 310 
 311 // Prepend an ObjectMonitor to the specified list. Also updates
 312 // the specified counter.
 313 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor* volatile * list_p,
 314                               int volatile * count_p) {
 315   while (true) {
 316     (void)mark_next_loop(m);  // mark m so we can safely update its next field
 317     ObjectMonitor* cur = NULL;
 318     ObjectMonitor* next = NULL;
 319     // Mark the list head to guard against A-B-A race:
 320     if (mark_list_head(list_p, &cur, &next)) {
 321       // List head is now marked so we can safely switch it.
 322       set_next(m, cur);  // m now points to cur (and unmarks m)
 323       OrderAccess::release_store(list_p, m);  // Switch list head to unmarked m.


 324       set_next(cur, next);  // Unmark the previous list head.
 325       break;
 326     }
 327     // The list is empty so try to set the list head.
 328     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 329     set_next(m, cur);  // m now points to NULL (and unmarks m)
 330     if (Atomic::cmpxchg(m, list_p, cur) == cur) {
 331       // List head is now unmarked m.
 332       break;
 333     }
 334     // Implied else: try it all again
 335   }
 336   Atomic::inc(count_p);
 337 }
 338 
 339 // Prepend an ObjectMonitor to a per-thread om_free_list.
 340 // Also updates the per-thread om_free_count.
 341 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 342   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 343 }
 344 
 345 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 346 // Also updates the per-thread om_in_use_count.
 347 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 348   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 349 }
 350 
 351 // Take an ObjectMonitor from the start of the specified list. Also
 352 // decrements the specified counter. Returns NULL if none are available.
 353 static ObjectMonitor* take_from_start_of_common(ObjectMonitor* volatile * list_p,
 354                                                 int volatile * count_p) {
 355   ObjectMonitor* next = NULL;
 356   ObjectMonitor* take = NULL;
 357   // Mark the list head to guard against A-B-A race:
 358   if (!mark_list_head(list_p, &take, &next)) {
 359     return NULL;  // None are available.
 360   }
 361   // Switch marked list head to next (which unmarks the list head, but
 362   // leaves take marked):
 363   OrderAccess::release_store(list_p, next);
 364   Atomic::dec(count_p);


 365   // Unmark take, but leave the next value for any lagging list
 366   // walkers. It will get cleaned up when take is prepended to
 367   // the in-use list:
 368   set_next(take, next);
 369   return take;
 370 }
 371 
 372 // Take an ObjectMonitor from the start of the global free-list. Also
 373 // updates g_om_free_count. Returns NULL if none are available.
 374 static ObjectMonitor* take_from_start_of_g_free_list() {
 375   return take_from_start_of_common(&g_free_list, &g_om_free_count);
 376 }
 377 
 378 // Take an ObjectMonitor from the start of a per-thread free-list.
 379 // Also updates om_free_count. Returns NULL if none are available.
 380 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 381   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 382 }
 383 
 384 


1194       owner = (address) monitor->owner();
1195     }
1196 
1197     if (owner != NULL) {
1198       // owning_thread_from_monitor_owner() may also return NULL here
1199       return Threads::owning_thread_from_monitor_owner(t_list, owner);
1200     }
1201 
1202     // Unlocked case, header in place
1203     // Cannot have assertion since this object may have been
1204     // locked by another thread when reaching here.
1205     // assert(mark.is_neutral(), "sanity check");
1206 
1207     return NULL;
1208   }
1209 }
1210 
1211 // Visitors ...
1212 
1213 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1214   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
1215   while (block != NULL) {
1216     assert(block->object() == CHAINMARKER, "must be a block header");
1217     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1218       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1219       if (mid->is_active()) {
1220         ObjectMonitorHandle omh(mid);
1221 
1222         if (mid->object() == NULL ||
1223             (AsyncDeflateIdleMonitors && mid->ref_count() < 0)) {
1224           // Only process with closure if the object is set.
1225           // For async deflation, race here if monitor is not owned!
1226           // The above ref_count bump (in ObjectMonitorHandle ctr)
1227           // will cause subsequent async deflation to skip it.
1228           // However, previous or concurrent async deflation is a race
1229           // so skip this ObjectMonitor if it is being async deflated.
1230           continue;
1231         }
1232         closure->do_monitor(mid);
1233       }
1234     }
1235     // unmarked_next() is not needed with g_block_list (no next field marking).
1236     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);


1237   }
1238 }
1239 
1240 static bool monitors_used_above_threshold() {
1241   if (OrderAccess::load_acquire(&g_om_population) == 0) {
1242     return false;
1243   }
1244   if (MonitorUsedDeflationThreshold > 0) {
1245     int monitors_used = OrderAccess::load_acquire(&g_om_population) -
1246                         OrderAccess::load_acquire(&g_om_free_count);
1247     if (HandshakeAfterDeflateIdleMonitors) {
1248       monitors_used -= OrderAccess::load_acquire(&g_om_wait_count);
1249     }
1250     int monitor_usage = (monitors_used * 100LL) /
1251                         OrderAccess::load_acquire(&g_om_population);
1252     return monitor_usage > MonitorUsedDeflationThreshold;
1253   }
1254   return false;
1255 }
1256 
1257 // Returns true if MonitorBound is set (> 0) and if the specified
1258 // cnt is > MonitorBound. Otherwise returns false.
1259 static bool is_MonitorBound_exceeded(const int cnt) {
1260   const int mx = MonitorBound;
1261   return mx > 0 && cnt > mx;
1262 }
1263 
1264 bool ObjectSynchronizer::is_async_deflation_needed() {
1265   if (!AsyncDeflateIdleMonitors) {
1266     return false;
1267   }
1268   if (is_async_deflation_requested()) {
1269     // Async deflation request.
1270     return true;
1271   }
1272   if (AsyncDeflationInterval > 0 &&
1273       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1274       monitors_used_above_threshold()) {
1275     // It's been longer than our specified deflate interval and there
1276     // are too many monitors in use. We don't deflate more frequently
1277     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1278     // in order to not swamp the ServiceThread.
1279     _last_async_deflation_time_ns = os::javaTimeNanos();
1280     return true;
1281   }
1282   int monitors_used = OrderAccess::load_acquire(&g_om_population) -
1283                       OrderAccess::load_acquire(&g_om_free_count);
1284   if (HandshakeAfterDeflateIdleMonitors) {
1285     monitors_used -= OrderAccess::load_acquire(&g_om_wait_count);
1286   }
1287   if (is_MonitorBound_exceeded(monitors_used)) {
1288     // Not enough ObjectMonitors on the global free list.
1289     return true;
1290   }
1291   return false;
1292 }
1293 
1294 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1295   if (!AsyncDeflateIdleMonitors) {
1296     if (monitors_used_above_threshold()) {
1297       // Too many monitors in use.
1298       return true;
1299     }
1300     return false;
1301   }
1302   if (is_special_deflation_requested()) {
1303     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1304     // if there is a special deflation request.
1305     return true;
1306   }
1307   return false;
1308 }
1309 
1310 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1311   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1312 }
1313 
1314 void ObjectSynchronizer::oops_do(OopClosure* f) {
1315   // We only scan the global used list here (for moribund threads), and
1316   // the thread-local monitors in Thread::oops_do().
1317   global_used_oops_do(f);
1318 }
1319 
1320 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1321   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1322   list_oops_do(OrderAccess::load_acquire(&g_om_in_use_list), OrderAccess::load_acquire(&g_om_in_use_count), f);
1323 }
1324 
1325 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1326   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1327   list_oops_do(OrderAccess::load_acquire(&thread->om_in_use_list), OrderAccess::load_acquire(&thread->om_in_use_count), f);
1328 }
1329 
1330 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1331   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1332   // The oops_do() phase does not overlap with monitor deflation
1333   // so no need to update the ObjectMonitor's ref_count for this
1334   // ObjectMonitor* use.

1335   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1336     if (mid->object() != NULL) {
1337       f->do_oop((oop*)mid->object_addr());
1338     }
1339   }
1340 }
1341 
1342 
1343 // -----------------------------------------------------------------------------
1344 // ObjectMonitor Lifecycle
1345 // -----------------------
1346 // Inflation unlinks monitors from the global g_free_list and
1347 // associates them with objects.  Deflation -- which occurs at
1348 // STW-time -- disassociates idle monitors from objects.  Such
1349 // scavenged monitors are returned to the g_free_list.
1350 //
1351 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1352 //
1353 // Lifecycle:
1354 // --   unassigned and on the global free list


1426 
1427     // 1: try to allocate from the thread's local om_free_list.
1428     // Threads will attempt to allocate first from their local list, then
1429     // from the global list, and only after those attempts fail will the
1430     // thread attempt to instantiate new monitors. Thread-local free lists
1431     // improve allocation latency, as well as reducing coherency traffic
1432     // on the shared global list.
1433     m = take_from_start_of_om_free_list(self);
1434     if (m != NULL) {
1435       guarantee(m->object() == NULL, "invariant");
1436       m->set_allocation_state(ObjectMonitor::New);
1437       prepend_to_om_in_use_list(self, m);
1438       return m;
1439     }
1440 
1441     // 2: try to allocate from the global g_free_list
1442     // CONSIDER: use muxTry() instead of muxAcquire().
1443     // If the muxTry() fails then drop immediately into case 3.
1444     // If we're using thread-local free lists then try
1445     // to reprovision the caller's free list.
1446     if (OrderAccess::load_acquire(&g_free_list) != NULL) {
1447       // Reprovision the thread's om_free_list.
1448       // Use bulk transfers to reduce the allocation rate and heat
1449       // on various locks.
1450       for (int i = self->om_free_provision; --i >= 0;) {
1451         ObjectMonitor* take = take_from_start_of_g_free_list();
1452         if (take == NULL) {
1453           break;  // No more are available.
1454         }
1455         guarantee(take->object() == NULL, "invariant");
1456         if (AsyncDeflateIdleMonitors) {
1457           // We allowed 3 field values to linger during async deflation.
1458           // We clear header and restore ref_count here, but we leave
1459           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1460           // enter optimization can no longer race with async deflation
1461           // and reuse.
1462           take->set_header(markWord::zero());
1463           if (take->ref_count() < 0) {
1464             // Add back max_jint to restore the ref_count field to its
1465             // proper value.
1466             Atomic::add(max_jint, &take->_ref_count);
1467 
1468             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1469                    take->ref_count());

1470           }
1471         }
1472         take->Recycle();
1473         // Since we're taking from the global free-list, take must be Free.
1474         // om_release() also sets the allocation state to Free because it
1475         // is called from other code paths.
1476         assert(take->is_free(), "invariant");
1477         om_release(self, take, false);
1478       }
1479       self->om_free_provision += 1 + (self->om_free_provision/2);
1480       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1481 
1482       if (!AsyncDeflateIdleMonitors &&
1483           is_MonitorBound_exceeded(OrderAccess::load_acquire(&g_om_population) -
1484                                    OrderAccess::load_acquire(&g_om_free_count))) {
1485         // Not enough ObjectMonitors on the global free list.
1486         // We can't safely induce a STW safepoint from om_alloc() as our thread
1487         // state may not be appropriate for such activities and callers may hold
1488         // naked oops, so instead we defer the action.
1489         InduceScavenge(self, "om_alloc");
1490       }
1491       continue;
1492     }
1493 
1494     // 3: allocate a block of new ObjectMonitors
1495     // Both the local and global free lists are empty -- resort to malloc().
1496     // In the current implementation ObjectMonitors are TSM - immortal.
1497     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1498     // each ObjectMonitor to start at the beginning of a cache line,
1499     // so we use align_up().
1500     // A better solution would be to use C++ placement-new.
1501     // BEWARE: As it stands currently, we don't run the ctors!
1502     assert(_BLOCKSIZE > 1, "invariant");
1503     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1504     PaddedObjectMonitor* temp;
1505     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1506     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1507     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1508     (void)memset((void *) temp, 0, neededsize);
1509 
1510     // Format the block.
1511     // initialize the linked list, each monitor points to its next
1512     // forming the single linked free list, the very first monitor
1513     // will points to next block, which forms the block list.
1514     // The trick of using the 1st element in the block as g_block_list
1515     // linkage should be reconsidered.  A better implementation would
1516     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1517 
1518     for (int i = 1; i < _BLOCKSIZE; i++) {
1519       OrderAccess::release_store(&temp[i]._next_om, (ObjectMonitor*)&temp[i+1]);
1520       assert(temp[i].is_free(), "invariant");
1521     }
1522 
1523     // terminate the last monitor as the end of list
1524     OrderAccess::release_store(&temp[_BLOCKSIZE - 1]._next_om, (ObjectMonitor*)NULL);
1525 
1526     // Element [0] is reserved for global list linkage
1527     temp[0].set_object(CHAINMARKER);
1528 
1529     // Consider carving out this thread's current request from the
1530     // block in hand.  This avoids some lock traffic and redundant
1531     // list activity.
1532 
1533     prepend_block_to_lists(temp);
1534   }
1535 }
1536 
1537 // Place "m" on the caller's private per-thread om_free_list.
1538 // In practice there's no need to clamp or limit the number of
1539 // monitors on a thread's om_free_list as the only non-allocation time
1540 // we'll call om_release() is to return a monitor to the free list after
1541 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1542 // accumulate on a thread's free list.
1543 //
1544 // Key constraint: all ObjectMonitors on a thread's free list and the global


1558   // _next_om is used for both per-thread in-use and free lists so
1559   // we have to remove 'm' from the in-use list first (as needed).
1560   if (from_per_thread_alloc) {
1561     // Need to remove 'm' from om_in_use_list.
1562     // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
1563     // protocol because async deflation can do list deletions in parallel.
1564     ObjectMonitor* cur_mid_in_use = NULL;
1565     ObjectMonitor* mid = NULL;
1566     ObjectMonitor* next = NULL;
1567     bool extracted = false;
1568 
1569     if (!mark_list_head(&self->om_in_use_list, &mid, &next)) {
1570       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1571     }
1572     while (true) {
1573       if (m == mid) {
1574         // We found 'm' on the per-thread in-use list so try to extract it.
1575         if (cur_mid_in_use == NULL) {
1576           // mid is the list head and it is marked. Switch the list head
1577           // to next which unmarks the list head, but leaves mid marked:
1578           OrderAccess::release_store(&self->om_in_use_list, next);


1579         } else {
1580           // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
1581           // next field to next which unmarks cur_mid_in_use, but leaves
1582           // mid marked:
1583           OrderAccess::release_store(&cur_mid_in_use->_next_om, next);
1584         }
1585         extracted = true;
1586         Atomic::dec(&self->om_in_use_count);
1587         // Unmark mid, but leave the next value for any lagging list
1588         // walkers. It will get cleaned up when mid is prepended to
1589         // the thread's free list:
1590         set_next(mid, next);
1591         break;
1592       }
1593       if (cur_mid_in_use != NULL) {
1594         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
1595       }
1596       // The next cur_mid_in_use keeps mid's marked next field so
1597       // that it is stable for a possible next field change. It
1598       // cannot be deflated while it is marked.


1653     // The thread is going away, however the ObjectMonitors on the
1654     // om_in_use_list may still be in-use by other threads. Link
1655     // them to in_use_tail, which will be linked into the global
1656     // in-use list g_om_in_use_list below.
1657     //
1658     // Account for the in-use list head before the loop since it is
1659     // already marked (by this thread):
1660     in_use_tail = in_use_list;
1661     in_use_count++;
1662     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1663       if (is_next_marked(cur_om)) {
1664         // This next field is marked so there must be an async deflater
1665         // thread ahead of us so we'll give it a chance to finish.
1666         while (is_next_marked(cur_om)) {
1667           os::naked_short_sleep(1);
1668         }
1669         // Refetch the possibly changed next field and try again.
1670         cur_om = unmarked_next(in_use_tail);
1671         continue;
1672       }
1673       if (!cur_om->is_active()) {
1674         // cur_om was deflated and the allocation state was changed
1675         // to Free while it was marked. We happened to see it just
1676         // after it was unmarked (and added to the free list).
1677         // Refetch the possibly changed next field and try again.
1678         cur_om = unmarked_next(in_use_tail);
1679         continue;
1680       }
1681       in_use_tail = cur_om;
1682       in_use_count++;
1683       cur_om = unmarked_next(cur_om);
1684     }
1685     guarantee(in_use_tail != NULL, "invariant");
1686     int l_om_in_use_count = OrderAccess::load_acquire(&self->om_in_use_count);
1687     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1688                    "match: l_om_in_use_count=%d, in_use_count=%d",
1689                    l_om_in_use_count, in_use_count);
1690     // Clear the in-use count before unmarking the in-use list head
1691     // to avoid races:
1692     OrderAccess::release_store(&self->om_in_use_count, 0);
1693     // Clear the in-use list head (which also unmarks it):
1694     OrderAccess::release_store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1695     // Unmark the disconnected list head:

1696     set_next(in_use_list, next);
1697   }
1698 
1699   int free_count = 0;
1700   ObjectMonitor* free_list = OrderAccess::load_acquire(&self->om_free_list);
1701   ObjectMonitor* free_tail = NULL;
1702   if (free_list != NULL) {
1703     // The thread is going away. Set 'free_tail' to the last per-thread free
1704     // monitor which will be linked to g_free_list below.
1705     stringStream ss;
1706     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1707       free_count++;
1708       free_tail = s;
1709       guarantee(s->object() == NULL, "invariant");
1710       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1711     }
1712     guarantee(free_tail != NULL, "invariant");
1713     int l_om_free_count = OrderAccess::load_acquire(&self->om_free_count);
1714     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1715                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1716                    free_count);
1717     OrderAccess::release_store(&self->om_free_list, (ObjectMonitor*)NULL);
1718     OrderAccess::release_store(&self->om_free_count, 0);

1719   }
1720 
1721   if (free_tail != NULL) {
1722     prepend_list_to_g_free_list(free_list, free_tail, free_count);
1723   }
1724 
1725   if (in_use_tail != NULL) {
1726     prepend_list_to_g_om_in_use_list(in_use_list, in_use_tail, in_use_count);
1727   }
1728 
1729   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1730   LogStreamHandle(Info, monitorinflation) lsh_info;
1731   LogStream* ls = NULL;
1732   if (log_is_enabled(Debug, monitorinflation)) {
1733     ls = &lsh_debug;
1734   } else if ((free_count != 0 || in_use_count != 0) &&
1735              log_is_enabled(Info, monitorinflation)) {
1736     ls = &lsh_info;
1737   }
1738   if (ls != NULL) {


1884 
1885 
1886       // fetch the displaced mark from the owner's stack.
1887       // The owner can't die or unwind past the lock while our INFLATING
1888       // object is in the mark.  Furthermore the owner can't complete
1889       // an unlock on the object, either.
1890       markWord dmw = mark.displaced_mark_helper();
1891       // Catch if the object's header is not neutral (not locked and
1892       // not marked is what we care about here).
1893       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1894 
1895       // Setup monitor fields to proper values -- prepare the monitor
1896       m->set_header(dmw);
1897 
1898       // Optimization: if the mark.locker stack address is associated
1899       // with this thread we could simply set m->_owner = self.
1900       // Note that a thread can inflate an object
1901       // that it has stack-locked -- as might happen in wait() -- directly
1902       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1903       if (AsyncDeflateIdleMonitors) {
1904         m->set_owner_from(mark.locker(), NULL, DEFLATER_MARKER);
1905       } else {
1906         m->set_owner_from(mark.locker(), NULL);
1907       }
1908       m->set_object(object);
1909       // TODO-FIXME: assert BasicLock->dhw != 0.
1910 
1911       omh_p->set_om_ptr(m);
1912 
1913       // Must preserve store ordering. The monitor state must
1914       // be stable at the time of publishing the monitor address.
1915       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1916       object->release_set_mark(markWord::encode(m));
1917 
1918       // Once ObjectMonitor is configured and the object is associated
1919       // with the ObjectMonitor, it is safe to allow async deflation:
1920       assert(m->is_new(), "freshly allocated monitor must be new");
1921       m->set_allocation_state(ObjectMonitor::Old);
1922 
1923       // Hopefully the performance counters are allocated on distinct cache lines
1924       // to avoid false sharing on MP systems ...
1925       OM_PERFDATA_OP(Inflations, inc());
1926       if (log_is_enabled(Trace, monitorinflation)) {


2026 // is registered with the ServiceThread and it is notified.
2027 
2028 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2029   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2030 
2031   // The per-thread in-use lists are handled in
2032   // ParallelSPCleanupThreadClosure::do_thread().
2033 
2034   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2035     // Use the older mechanism for the global in-use list or if a
2036     // special deflation has been requested before the safepoint.
2037     ObjectSynchronizer::deflate_idle_monitors(counters);
2038     return;
2039   }
2040 
2041   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2042   // Request deflation of idle monitors by the ServiceThread:
2043   set_is_async_deflation_requested(true);
2044   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2045   ml.notify_all();









2046 }
2047 
2048 // Deflate a single monitor if not in-use
2049 // Return true if deflated, false if in-use
2050 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2051                                          ObjectMonitor** free_head_p,
2052                                          ObjectMonitor** free_tail_p) {
2053   bool deflated;
2054   // Normal case ... The monitor is associated with obj.
2055   const markWord mark = obj->mark();
2056   guarantee(mark == markWord::encode(mid), "should match: mark="
2057             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2058             markWord::encode(mid).value());
2059   // Make sure that mark.monitor() and markWord::encode() agree:
2060   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2061             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2062   const markWord dmw = mid->header();
2063   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2064 
2065   if (mid->is_busy() || mid->ref_count() != 0) {


2228         }
2229         *free_tail_p = mid;
2230 
2231         // At this point, mid->_next_om still refers to its current
2232         // value and another ObjectMonitor's _next_om field still
2233         // refers to this ObjectMonitor. Those linkages have to be
2234         // cleaned up by the caller who has the complete context.
2235 
2236         // We leave owner == DEFLATER_MARKER and ref_count < 0
2237         // to force any racing threads to retry.
2238         return true;  // Success, ObjectMonitor has been deflated.
2239       }
2240 
2241       // The owner was changed from DEFLATER_MARKER so we lost the
2242       // race since the ObjectMonitor is now busy.
2243 
2244       // Add back max_jint to restore the ref_count field to its
2245       // proper value (which may not be what we saw above):
2246       Atomic::add(max_jint, &mid->_ref_count);
2247 
2248       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
2249              mid->ref_count());

2250       return false;
2251     }
2252 
2253     // The ref_count was no longer 0 so we lost the race since the
2254     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2255     // Restore owner to NULL if it is still DEFLATER_MARKER:
2256     mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2257   }
2258 
2259   // The owner field is no longer NULL so we lost the race since the
2260   // ObjectMonitor is now busy.
2261   return false;
2262 }
2263 
2264 // Walk a given monitor list, and deflate idle monitors.
2265 // The given list could be a per-thread list or a global list.
2266 //
2267 // In the case of parallel processing of thread local monitor lists,
2268 // work is done by Threads::parallel_threads_do() which ensures that
2269 // each Java thread is processed by exactly one worker thread, and


2280   ObjectMonitor* cur_mid_in_use = NULL;
2281   ObjectMonitor* mid = NULL;
2282   ObjectMonitor* next = NULL;
2283   int deflated_count = 0;
2284 
2285   // We use the simpler mark-mid-as-we-go protocol since there are no
2286   // parallel list deletions since we are at a safepoint.
2287   if (!mark_list_head(list_p, &mid, &next)) {
2288     return 0;  // The list is empty so nothing to deflate.
2289   }
2290 
2291   while (true) {
2292     oop obj = (oop) mid->object();
2293     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2294       // Deflation succeeded and already updated free_head_p and
2295       // free_tail_p as needed. Finish the move to the local free list
2296       // by unlinking mid from the global or per-thread in-use list.
2297       if (cur_mid_in_use == NULL) {
2298         // mid is the list head and it is marked. Switch the list head
2299         // to next which unmarks the list head, but leaves mid marked:
2300         OrderAccess::release_store(list_p, next);


2301       } else {
2302         // mid is marked. Switch cur_mid_in_use's next field to next
2303         // which is safe because we have no parallel list deletions,
2304         // but we leave mid marked:
2305         OrderAccess::release_store(&cur_mid_in_use->_next_om, next);
2306       }
2307       // At this point mid is disconnected from the in-use list so
2308       // its marked next field no longer has any effects.
2309       deflated_count++;
2310       Atomic::dec(count_p);
2311       // mid is current tail in the free_head_p list so NULL terminate it
2312       // (which also unmarks it):
2313       set_next(mid, NULL);
2314 
2315       // All the list management is done so move on to the next one:
2316       mid = next;
2317     } else {
2318       set_next(mid, next);  // unmark next field
2319 
2320       // All the list management is done so move on to the next one:


2381     // a cur_mid_in_use, then its next field is also marked at this point.
2382 
2383     if (next != NULL) {
2384       // We mark next's next field so that an om_flush()
2385       // thread that is behind us cannot pass us when we
2386       // unmark the current mid's next field.
2387       next_next = mark_next_loop(next);
2388     }
2389 
2390     // Only try to deflate if there is an associated Java object and if
2391     // mid is old (is not newly allocated and is not newly freed).
2392     if (mid->object() != NULL && mid->is_old() &&
2393         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2394       // Deflation succeeded and already updated free_head_p and
2395       // free_tail_p as needed. Finish the move to the local free list
2396       // by unlinking mid from the global or per-thread in-use list.
2397       if (cur_mid_in_use == NULL) {
2398         // mid is the list head and it is marked. Switch the list head
2399         // to next which is also marked (if not NULL) and also leave
2400         // mid marked:
2401         OrderAccess::release_store(list_p, next);


2402       } else {
2403         ObjectMonitor* marked_next = mark_om_ptr(next);
2404         // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
2405         // next field to marked_next and also leave mid marked:
2406         OrderAccess::release_store(&cur_mid_in_use->_next_om, marked_next);
2407       }
2408       // At this point mid is disconnected from the in-use list so
2409       // its marked next field no longer has any effects.
2410       deflated_count++;
2411       Atomic::dec(count_p);
2412       // mid is current tail in the free_head_p list so NULL terminate it
2413       // (which also unmarks it):
2414       set_next(mid, NULL);
2415 
2416       // All the list management is done so move on to the next one:
2417       mid = next;  // mid keeps non-NULL next's marked next field
2418       next = next_next;
2419     } else {
2420       // mid is considered in-use if it does not have an associated
2421       // Java object or mid is not old or deflation did not succeed.
2422       // A mid->is_new() node can be seen here when it is freshly
2423       // returned by om_alloc() (and skips the deflation code path).
2424       // A mid->is_old() node can be seen here when deflation failed.
2425       // A mid->is_free() node can be seen here when a fresh node from
2426       // om_alloc() is released by om_release() due to losing the race
2427       // in inflate().
2428 
2429       // All the list management is done so move on to the next one:
2430       if (cur_mid_in_use != NULL) {
2431         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2432       }
2433       // The next cur_mid_in_use keeps mid's marked next field so
2434       // that it is stable for a possible next field change. It
2435       // cannot be modified by om_release() while it is marked.
2436       cur_mid_in_use = mid;
2437       mid = next;  // mid keeps non-NULL next's marked next field
2438       next = next_next;
2439 
2440       if (SafepointSynchronize::is_synchronizing() &&
2441           cur_mid_in_use != OrderAccess::load_acquire(list_p) &&
2442           cur_mid_in_use->is_old()) {
2443         // If a safepoint has started and cur_mid_in_use is not the list
2444         // head and is old, then it is safe to use as saved state. Return
2445         // to the caller before blocking.
2446         *saved_mid_in_use_p = cur_mid_in_use;
2447         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2448         if (mid != NULL) {
2449           set_next(mid, next);  // umark mid
2450         }
2451         return deflated_count;
2452       }
2453     }
2454     if (mid == NULL) {
2455       if (cur_mid_in_use != NULL) {
2456         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2457       }
2458       break;  // Reached end of the list so nothing more to deflate.
2459     }
2460 
2461     // The current mid's next field is marked at this point. If we have
2462     // a cur_mid_in_use, then its next field is also marked at this point.
2463   }
2464   // We finished the list without a safepoint starting so there's
2465   // no need to save state.
2466   *saved_mid_in_use_p = NULL;
2467   return deflated_count;
2468 }
2469 
2470 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2471   OrderAccess::release_store(&counters->n_in_use, 0);              // currently associated with objects
2472   OrderAccess::release_store(&counters->n_in_circulation, 0);      // extant
2473   OrderAccess::release_store(&counters->n_scavenged, 0);           // reclaimed (global and per-thread)
2474   OrderAccess::release_store(&counters->per_thread_scavenged, 0);  // per-thread scavenge total
2475   counters->per_thread_times = 0.0;                                // per-thread scavenge times

2476 }
2477 
2478 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2479   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2480 
2481   if (AsyncDeflateIdleMonitors) {
2482     // Nothing to do when global idle ObjectMonitors are deflated using
2483     // a JavaThread unless a special deflation has been requested.
2484     if (!is_special_deflation_requested()) {
2485       return;
2486     }
2487   }
2488 
2489   bool deflated = false;
2490 
2491   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2492   ObjectMonitor* free_tail_p = NULL;
2493   elapsedTimer timer;
2494 
2495   if (log_is_enabled(Info, monitorinflation)) {
2496     timer.start();
2497   }
2498 
2499   // Note: the thread-local monitors lists get deflated in
2500   // a separate pass. See deflate_thread_local_monitors().
2501 
2502   // For moribund threads, scan g_om_in_use_list
2503   int deflated_count = 0;
2504   if (OrderAccess::load_acquire(&g_om_in_use_list) != NULL) {
2505     // Update n_in_circulation before g_om_in_use_count is updated by deflation.
2506     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_circulation);
2507 
2508     deflated_count = deflate_monitor_list(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p);
2509     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_use);
2510   }
2511 
2512   if (free_head_p != NULL) {
2513     // Move the deflated ObjectMonitors back to the global free list.
2514     // No races on the working free list so no need for load_acquire().
2515     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2516     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2517            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2518     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2519     Atomic::add(deflated_count, &counters->n_scavenged);
2520   }
2521   timer.stop();
2522 
2523   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2524   LogStreamHandle(Info, monitorinflation) lsh_info;
2525   LogStream* ls = NULL;
2526   if (log_is_enabled(Debug, monitorinflation)) {
2527     ls = &lsh_debug;
2528   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2529     ls = &lsh_info;


2543 
2544 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2545   assert(AsyncDeflateIdleMonitors, "sanity check");
2546 
2547   // Deflate any global idle monitors.
2548   deflate_global_idle_monitors_using_JT();
2549 
2550   int count = 0;
2551   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2552     if (jt->om_in_use_count > 0 && !jt->is_exiting()) {
2553       // This JavaThread is using ObjectMonitors so deflate any that
2554       // are idle unless this JavaThread is exiting; do not race with
2555       // ObjectSynchronizer::om_flush().
2556       deflate_per_thread_idle_monitors_using_JT(jt);
2557       count++;
2558     }
2559   }
2560   if (count > 0) {
2561     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2562   }






2563   // The ServiceThread's async deflation request has been processed.
2564   set_is_async_deflation_requested(false);
2565 
2566   if (HandshakeAfterDeflateIdleMonitors && g_om_wait_count > 0) {
2567     // There are deflated ObjectMonitors waiting for a handshake
2568     // (or a safepoint) for safety.
2569 
2570     // g_wait_list and g_om_wait_count are only updated by the calling
2571     // thread so no need for load_acquire() or release_store().
2572     ObjectMonitor* list = g_wait_list;
2573     ADIM_guarantee(list != NULL, "g_wait_list must not be NULL");
2574     int count = g_om_wait_count;
2575     g_wait_list = NULL;
2576     g_om_wait_count = 0;


2577 
2578     // Find the tail for prepend_list_to_common().


2579     int l_count = 0;
2580     ObjectMonitor* tail = NULL;
2581     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2582       tail = n;
2583       l_count++;
2584     }
2585     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2586 
2587     // Will execute a safepoint if !ThreadLocalHandshakes:
2588     HandshakeForDeflation hfd_tc;
2589     Handshake::execute(&hfd_tc);
2590 
2591     prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
2592 
2593     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2594   }
2595 }
2596 
2597 // Deflate global idle ObjectMonitors using a JavaThread.
2598 //


2612 
2613   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2614 }
2615 
2616 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2617 //
2618 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2619   JavaThread* self = JavaThread::current();
2620 
2621   int deflated_count = 0;
2622   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2623   ObjectMonitor* free_tail_p = NULL;
2624   ObjectMonitor* saved_mid_in_use_p = NULL;
2625   elapsedTimer timer;
2626 
2627   if (log_is_enabled(Info, monitorinflation)) {
2628     timer.start();
2629   }
2630 
2631   if (is_global) {
2632     OM_PERFDATA_OP(MonExtant, set_value(OrderAccess::load_acquire(&g_om_in_use_count)));
2633   } else {
2634     OM_PERFDATA_OP(MonExtant, inc(OrderAccess::load_acquire(&target->om_in_use_count)));
2635   }
2636 
2637   do {
2638     int local_deflated_count;
2639     if (is_global) {
2640       local_deflated_count = deflate_monitor_list_using_JT(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2641     } else {
2642       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2643     }
2644     deflated_count += local_deflated_count;
2645 
2646     if (free_head_p != NULL) {
2647       // Move the deflated ObjectMonitors to the global free list.
2648       // No races on the working list so no need for load_acquire().
2649       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2650       // Note: The target thread can be doing an om_alloc() that
2651       // is trying to prepend an ObjectMonitor on its in-use list
2652       // at the same time that we have deflated the current in-use
2653       // list head and put it on the local free list. prepend_to_common()
2654       // will detect the race and retry which avoids list corruption,


2694   LogStream* ls = NULL;
2695   if (log_is_enabled(Debug, monitorinflation)) {
2696     ls = &lsh_debug;
2697   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2698     ls = &lsh_info;
2699   }
2700   if (ls != NULL) {
2701     if (is_global) {
2702       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2703     } else {
2704       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2705     }
2706   }
2707 }
2708 
2709 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2710   // Report the cumulative time for deflating each thread's idle
2711   // monitors. Note: if the work is split among more than one
2712   // worker thread, then the reported time will likely be more
2713   // than a beginning to end measurement of the phase.
2714   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2715   // monitors at a safepoint when a special deflation has been requested.
2716   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d",
2717                                counters->per_thread_times,
2718                                OrderAccess::load_acquire(&counters->per_thread_scavenged));
2719 
2720   bool needs_special_deflation = is_special_deflation_requested();
2721   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2722     // AsyncDeflateIdleMonitors does not use these counters unless
2723     // there is a special deflation request.
2724 
2725     OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2726     OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2727   }
2728 
2729   if (log_is_enabled(Debug, monitorinflation)) {
2730     // exit_globals()'s call to audit_and_print_stats() is done
2731     // at the Info level.



2732     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2733   } else if (log_is_enabled(Info, monitorinflation)) {
2734     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2735                                "g_om_free_count=%d, g_om_wait_count=%d",
2736                                OrderAccess::load_acquire(&g_om_population),
2737                                OrderAccess::load_acquire(&g_om_in_use_count),
2738                                OrderAccess::load_acquire(&g_om_free_count),
2739                                OrderAccess::load_acquire(&g_om_wait_count));
2740   }
2741 
2742   ForceMonitorScavenge = 0;    // Reset




2743   GVars.stw_random = os::random();
2744   GVars.stw_cycle++;

2745   if (needs_special_deflation) {
2746     set_is_special_deflation_requested(false);  // special deflation is done
2747   }
2748 }
2749 
2750 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2751   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2752 
2753   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2754     // Nothing to do if a special deflation has NOT been requested.
2755     return;
2756   }
2757 
2758   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2759   ObjectMonitor* free_tail_p = NULL;
2760   elapsedTimer timer;
2761 
2762   if (log_is_enabled(Info, safepoint, cleanup) ||
2763       log_is_enabled(Info, monitorinflation)) {
2764     timer.start();
2765   }
2766 
2767   // Update n_in_circulation before om_in_use_count is updated by deflation.
2768   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_circulation);
2769 
2770   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2771   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_use);
2772 
2773   if (free_head_p != NULL) {
2774     // Move the deflated ObjectMonitors back to the global free list.
2775     // No races on the working list so no need for load_acquire().
2776     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2777     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2778            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2779     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2780     Atomic::add(deflated_count, &counters->n_scavenged);
2781     Atomic::add(deflated_count, &counters->per_thread_scavenged);
2782   }
2783 
2784   timer.stop();
2785   // Safepoint logging cares about cumulative per_thread_times and
2786   // we'll capture most of the cost, but not the muxRelease() which
2787   // should be cheap.
2788   counters->per_thread_times += timer.seconds();
2789 
2790   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2791   LogStreamHandle(Info, monitorinflation) lsh_info;


2881   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2882   LogStreamHandle(Info, monitorinflation) lsh_info;
2883   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2884   LogStream* ls = NULL;
2885   if (log_is_enabled(Trace, monitorinflation)) {
2886     ls = &lsh_trace;
2887   } else if (log_is_enabled(Debug, monitorinflation)) {
2888     ls = &lsh_debug;
2889   } else if (log_is_enabled(Info, monitorinflation)) {
2890     ls = &lsh_info;
2891   }
2892   assert(ls != NULL, "sanity check");
2893 
2894   // Log counts for the global and per-thread monitor lists:
2895   int chk_om_population = log_monitor_list_counts(ls);
2896   int error_cnt = 0;
2897 
2898   ls->print_cr("Checking global lists:");
2899 
2900   // Check g_om_population:
2901   if (OrderAccess::load_acquire(&g_om_population) == chk_om_population) {
2902     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2903                  OrderAccess::load_acquire(&g_om_population),
2904                  chk_om_population);
2905   } else {
2906     // With lock free access to the monitor lists, it is possible for
2907     // log_monitor_list_counts() to return a value that doesn't match
2908     // g_om_population. So far a higher value has been seen in testing
2909     // so something is being double counted by log_monitor_list_counts().
2910     ls->print_cr("WARNING: g_om_population=%d is not equal to "
2911                  "chk_om_population=%d",
2912                  OrderAccess::load_acquire(&g_om_population),
2913                  chk_om_population);
2914   }
2915 
2916   // Check g_om_in_use_list and g_om_in_use_count:
2917   chk_global_in_use_list_and_count(ls, &error_cnt);
2918 
2919   // Check g_free_list and g_om_free_count:
2920   chk_global_free_list_and_count(ls, &error_cnt);
2921 
2922   if (HandshakeAfterDeflateIdleMonitors) {
2923     // Check g_wait_list and g_om_wait_count:
2924     chk_global_wait_list_and_count(ls, &error_cnt);
2925   }
2926 
2927   ls->print_cr("Checking per-thread lists:");
2928 
2929   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2930     // Check om_in_use_list and om_in_use_count:
2931     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2932 
2933     // Check om_free_list and om_free_count:


2984   }
2985   if (n->object() != NULL) {
2986     if (jt != NULL) {
2987       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2988                     ": free per-thread monitor must have NULL _object "
2989                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2990                     p2i(n->object()));
2991     } else {
2992       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2993                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2994                     p2i(n), p2i(n->object()));
2995     }
2996     *error_cnt_p = *error_cnt_p + 1;
2997   }
2998 }
2999 
3000 // Check the global free list and count; log the results of the checks.
3001 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3002                                                         int *error_cnt_p) {
3003   int chk_om_free_count = 0;
3004   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_free_list); n != NULL; n = unmarked_next(n)) {
3005     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);




3006     chk_om_free_count++;




3007   }
3008   if (OrderAccess::load_acquire(&g_om_free_count) == chk_om_free_count) {


3009     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
3010                   OrderAccess::load_acquire(&g_om_free_count),
3011                   chk_om_free_count);
3012   } else {
3013     // With lock free access to g_free_list, it is possible for an
3014     // ObjectMonitor to be prepended to g_free_list after we started
3015     // calculating chk_om_free_count so g_om_free_count may not
3016     // match anymore.
3017     out->print_cr("WARNING: g_om_free_count=%d is not equal to "
3018                   "chk_om_free_count=%d",
3019                   OrderAccess::load_acquire(&g_om_free_count),
3020                   chk_om_free_count);
3021   }
3022 }
3023 
3024 // Check the global wait list and count; log the results of the checks.
3025 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3026                                                         int *error_cnt_p) {
3027   int chk_om_wait_count = 0;
3028   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_wait_list); n != NULL; n = unmarked_next(n)) {




3029     // Rules for g_wait_list are the same as of g_free_list:
3030     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
3031     chk_om_wait_count++;




3032   }
3033   if (OrderAccess::load_acquire(&g_om_wait_count) == chk_om_wait_count) {


3034     out->print_cr("g_om_wait_count=%d equals chk_om_wait_count=%d",
3035                   OrderAccess::load_acquire(&g_om_wait_count),
3036                   chk_om_wait_count);
3037   } else {
3038     out->print_cr("ERROR: g_om_wait_count=%d is not equal to "
3039                   "chk_om_wait_count=%d",
3040                   OrderAccess::load_acquire(&g_om_wait_count),
3041                   chk_om_wait_count);
3042     *error_cnt_p = *error_cnt_p + 1;
3043   }
3044 }
3045 
3046 // Check the global in-use list and count; log the results of the checks.
3047 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3048                                                           int *error_cnt_p) {
3049   int chk_om_in_use_count = 0;
3050   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3051     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);




3052     chk_om_in_use_count++;





3053   }
3054   if (OrderAccess::load_acquire(&g_om_in_use_count) == chk_om_in_use_count) {

3055     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d",
3056                   OrderAccess::load_acquire(&g_om_in_use_count),
3057                   chk_om_in_use_count);
3058   } else {
3059     // With lock free access to the monitor lists, it is possible for
3060     // an exiting JavaThread to put its in-use ObjectMonitors on the
3061     // global in-use list after chk_om_in_use_count is calculated above.
3062     out->print_cr("WARNING: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3063                   OrderAccess::load_acquire(&g_om_in_use_count),
3064                   chk_om_in_use_count);
3065   }
3066 }
3067 
3068 // Check an in-use monitor entry; log any errors.
3069 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3070                                           outputStream * out, int *error_cnt_p) {
3071   if (n->header().value() == 0) {
3072     if (jt != NULL) {
3073       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3074                     ": in-use per-thread monitor must have non-NULL _header "
3075                     "field.", p2i(jt), p2i(n));
3076     } else {
3077       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3078                     "must have non-NULL _header field.", p2i(n));
3079     }
3080     *error_cnt_p = *error_cnt_p + 1;
3081   }
3082   if (n->object() == NULL) {
3083     if (jt != NULL) {
3084       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT


3112       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3113                     ": in-use per-thread monitor's object does not refer "
3114                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3115                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3116                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3117     } else {
3118       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3119                     "monitor's object does not refer to the same monitor: obj="
3120                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3121                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3122     }
3123     *error_cnt_p = *error_cnt_p + 1;
3124   }
3125 }
3126 
3127 // Check the thread's free list and count; log the results of the checks.
3128 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3129                                                             outputStream * out,
3130                                                             int *error_cnt_p) {
3131   int chk_om_free_count = 0;
3132   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_free_list); n != NULL; n = unmarked_next(n)) {
3133     chk_free_entry(jt, n, out, error_cnt_p);




3134     chk_om_free_count++;




3135   }
3136   if (OrderAccess::load_acquire(&jt->om_free_count) == chk_om_free_count) {


3137     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3138                   "chk_om_free_count=%d", p2i(jt),
3139                   OrderAccess::load_acquire(&jt->om_free_count),
3140                   chk_om_free_count);
3141   } else {
3142     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3143                   "equal to chk_om_free_count=%d", p2i(jt),
3144                   OrderAccess::load_acquire(&jt->om_free_count),
3145                   chk_om_free_count);
3146     *error_cnt_p = *error_cnt_p + 1;
3147   }
3148 }
3149 
3150 // Check the thread's in-use list and count; log the results of the checks.
3151 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3152                                                               outputStream * out,
3153                                                               int *error_cnt_p) {
3154   int chk_om_in_use_count = 0;
3155   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3156     chk_in_use_entry(jt, n, out, error_cnt_p);




3157     chk_om_in_use_count++;




3158   }
3159   if (OrderAccess::load_acquire(&jt->om_in_use_count) == chk_om_in_use_count) {


3160     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3161                   "chk_om_in_use_count=%d", p2i(jt),
3162                   OrderAccess::load_acquire(&jt->om_in_use_count),
3163                   chk_om_in_use_count);
3164   } else {
3165     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3166                   "equal to chk_om_in_use_count=%d", p2i(jt),
3167                   OrderAccess::load_acquire(&jt->om_in_use_count),
3168                   chk_om_in_use_count);
3169     *error_cnt_p = *error_cnt_p + 1;
3170   }
3171 }
3172 
3173 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3174 // flags indicate why the entry is in-use, 'object' and 'object type'
3175 // indicate the associated object and its type.
3176 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3177   stringStream ss;
3178   if (OrderAccess::load_acquire(&g_om_in_use_count) > 0) {
3179     out->print_cr("In-use global monitor info:");
3180     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3181     out->print_cr("%18s  %s  %7s  %18s  %18s",
3182                   "monitor", "BHL", "ref_cnt", "object", "object type");
3183     out->print_cr("==================  ===  =======  ==================  ==================");
3184     for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3185       const oop obj = (oop) n->object();
3186       const markWord mark = n->header();




3187       ResourceMark rm;
3188       out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3189                  p2i(n), n->is_busy() != 0, mark.hash() != 0,
3190                  n->owner() != NULL, (int)n->ref_count(), p2i(obj),
3191                  obj->klass()->external_name());
3192       if (n->is_busy() != 0) {
3193         out->print(" (%s)", n->is_busy_to_string(&ss));
3194         ss.reset();
3195       }
3196       out->cr();






3197     }
3198   }
3199 
3200   out->print_cr("In-use per-thread monitor info:");
3201   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3202   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3203                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3204   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3205   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3206     for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3207       const oop obj = (oop) n->object();
3208       const markWord mark = n->header();




3209       ResourceMark rm;
3210       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3211                  INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
3212                  mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(),
3213                  p2i(obj), obj->klass()->external_name());
3214       if (n->is_busy() != 0) {
3215         out->print(" (%s)", n->is_busy_to_string(&ss));
3216         ss.reset();
3217       }
3218       out->cr();






3219     }
3220   }
3221 
3222   out->flush();
3223 }
3224 
3225 // Log counts for the global and per-thread monitor lists and return
3226 // the population count.
3227 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3228   int pop_count = 0;
3229   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3230                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3231   out->print_cr("==================  ==========  ==========  ==========  ==========");
3232   out->print_cr("%18s  %10d  %10d  %10d  %10d", "",
3233                 OrderAccess::load_acquire(&g_om_in_use_count),
3234                 OrderAccess::load_acquire(&g_om_free_count),
3235                 OrderAccess::load_acquire(&g_om_wait_count),
3236                 OrderAccess::load_acquire(&g_om_population));
3237   pop_count += OrderAccess::load_acquire(&g_om_in_use_count) +
3238                OrderAccess::load_acquire(&g_om_free_count);
3239   if (HandshakeAfterDeflateIdleMonitors) {
3240     pop_count += OrderAccess::load_acquire(&g_om_wait_count);
3241   }
3242 
3243   out->print_cr("%18s  %10s  %10s  %10s",
3244                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3245   out->print_cr("==================  ==========  ==========  ==========");
3246 
3247   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3248     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3249                   OrderAccess::load_acquire(&jt->om_in_use_count),
3250                   OrderAccess::load_acquire(&jt->om_free_count),
3251                   jt->om_free_provision);
3252     pop_count += OrderAccess::load_acquire(&jt->om_in_use_count) +
3253                  OrderAccess::load_acquire(&jt->om_free_count);
3254   }
3255   return pop_count;
3256 }
3257 
3258 #ifndef PRODUCT
3259 
3260 // Check if monitor belongs to the monitor cache
3261 // The list is grow-only so it's *relatively* safe to traverse
3262 // the list of extant blocks without taking a lock.
3263 
3264 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3265   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
3266   while (block != NULL) {
3267     assert(block->object() == CHAINMARKER, "must be a block header");
3268     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3269       address mon = (address)monitor;
3270       address blk = (address)block;
3271       size_t diff = mon - blk;
3272       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3273       return 1;
3274     }
3275     // unmarked_next() is not needed with g_block_list (no next field marking).
3276     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);


3277   }
3278   return 0;
3279 }
3280 
3281 #endif


 132 // Global ObjectMonitor wait list. If HandshakeAfterDeflateIdleMonitors
 133 // is true, deflated ObjectMonitors wait on this list until after a
 134 // handshake or a safepoint for platforms that don't support handshakes.
 135 // After the handshake or safepoint, the deflated ObjectMonitors are
 136 // prepended to g_free_list.
 137 static ObjectMonitor* volatile g_wait_list = NULL;
 138 
 139 static volatile int g_om_free_count = 0;    // # on g_free_list
 140 static volatile int g_om_in_use_count = 0;  // # on g_om_in_use_list
 141 static volatile int g_om_population = 0;    // # Extant -- in circulation
 142 static volatile int g_om_wait_count = 0;    // # on g_wait_list
 143 
 144 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 145 
 146 
 147 // =====================> List Management functions
 148 
 149 // Return true if the ObjectMonitor's next field is marked.
 150 // Otherwise returns false.
 151 static bool is_next_marked(ObjectMonitor* om) {
 152   // Use load_acquire() since _next_om fields are updated with a
 153   // release_store().
 154   return ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & 0x1) != 0;
 155 }
 156 
 157 // Mark an ObjectMonitor* and return it. Note: the om parameter
 158 // may or may not have been marked originally.
 159 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 160   return (ObjectMonitor*)((intptr_t)om | 0x1);
 161 }
 162 
 163 // Mark the next field in an ObjectMonitor. If marking was successful,
 164 // then the unmarked next field is returned via parameter and true is
 165 // returned. Otherwise false is returned.
 166 static bool mark_next(ObjectMonitor* om, ObjectMonitor** next_p) {
 167   // Get current next field without any marking value.
 168   ObjectMonitor* next = (ObjectMonitor*)((intptr_t)om->_next_om & ~0x1);

 169   if (Atomic::cmpxchg(mark_om_ptr(next), &om->_next_om, next) != next) {
 170     return false;  // Could not mark the next field or it was already marked.
 171   }
 172   *next_p = next;
 173   return true;
 174 }
 175 
 176 // Loop until we mark the next field in an ObjectMonitor. The unmarked
 177 // next field is returned.
 178 static ObjectMonitor* mark_next_loop(ObjectMonitor* om) {
 179   ObjectMonitor* next;
 180   while (true) {
 181     if (mark_next(om, &next)) {
 182       // Marked om's next field so return the unmarked value.
 183       return next;
 184     }
 185   }
 186 }
 187 
 188 // Set the next field in an ObjectMonitor to the specified value.
 189 // The caller of set_next() must be the same thread that marked the
 190 // ObjectMonitor.
 191 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 192   OrderAccess::release_store(&om->_next_om, value);
 193 }
 194 
 195 // Mark the next field in the list head ObjectMonitor. If marking was
 196 // successful, then the mid and the unmarked next field are returned
 197 // via parameter and true is returned. Otherwise false is returned.
 198 static bool mark_list_head(ObjectMonitor* volatile * list_p,
 199                            ObjectMonitor** mid_p, ObjectMonitor** next_p) {
 200   while (true) {
 201     ObjectMonitor* mid = *list_p;
 202     if (mid == NULL) {
 203       return false;  // The list is empty so nothing to mark.
 204     }
 205     if (mark_next(mid, next_p)) {
 206       if (*list_p != mid) {
 207         // The list head changed so we have to retry.
 208         set_next(mid, *next_p);  // unmark mid
 209         continue;
 210       }
 211       // We marked next field to guard against races.
 212       *mid_p = mid;
 213       return true;
 214     }
 215   }
 216 }
 217 
 218 // Return the unmarked next field in an ObjectMonitor. Note: the next
 219 // field may or may not have been marked originally.
 220 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 221   // Use load_acquire() since _next_om fields are updated with a
 222   // release_store().
 223   return (ObjectMonitor*)((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 224 }
 225 
 226 // Mark the next ObjectMonitor for traversal. The current ObjectMonitor
 227 // is unmarked after the next ObjectMonitor is marked. *cur_p and *next_p
 228 // are updated to their next values in the list traversal. *cur_p is set
 229 // to NULL when the end of the list is reached.
 230 static void mark_next_for_traversal(ObjectMonitor** cur_p, ObjectMonitor** next_p) {
 231   ObjectMonitor* prev = *cur_p;      // Save current for unmarking.
 232   if (*next_p == NULL) {             // Reached the end of the list.
 233     set_next(prev, NULL);            // Unmark previous.
 234     *cur_p = NULL;                   // Tell the caller we are done.
 235     return;
 236   }
 237   (void)mark_next_loop(*next_p);     // Mark next.
 238   set_next(prev, *next_p);           // Unmark previous.
 239   *cur_p = *next_p;                  // Update current.
 240   *next_p = unmarked_next(*cur_p);   // Update next.
 241 }
 242 
 243 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 244 // the last ObjectMonitor in the list and there are 'count' on the list.
 245 // Also updates the specified *count_p.
 246 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 247                                    int count, ObjectMonitor* volatile* list_p,
 248                                    volatile int* count_p) {
 249   while (true) {
 250     ObjectMonitor* cur = *list_p;
 251     // Prepend list to *list_p.
 252     ObjectMonitor* next = NULL;
 253     if (!mark_next(tail, &next)) {
 254       continue;  // failed to mark next field so try it all again
 255     }
 256     set_next(tail, cur);  // tail now points to cur (and unmarks tail)
 257     if (cur == NULL) {
 258       // No potential race with takers or other prependers since
 259       // *list_p is empty.
 260       if (Atomic::cmpxchg(list, list_p, cur) == cur) {
 261         // Successfully switched *list_p to the list value.
 262         Atomic::add(count, count_p);
 263         break;
 264       }
 265       // Implied else: try it all again
 266     } else {
 267       // Try to mark next field to guard against races:
 268       if (!mark_next(cur, &next)) {
 269         continue;  // failed to mark next field so try it all again
 270       }


 323 // Prepend a list of ObjectMonitors to g_om_in_use_list. 'tail' is the last
 324 // ObjectMonitor in the list and there are 'count' on the list. Also
 325 // updates g_om_in_use_list.
 326 static void prepend_list_to_g_om_in_use_list(ObjectMonitor* list,
 327                                              ObjectMonitor* tail, int count) {
 328   prepend_list_to_common(list, tail, count, &g_om_in_use_list, &g_om_in_use_count);
 329 }
 330 
 331 // Prepend an ObjectMonitor to the specified list. Also updates
 332 // the specified counter.
 333 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor* volatile * list_p,
 334                               int volatile * count_p) {
 335   while (true) {
 336     (void)mark_next_loop(m);  // mark m so we can safely update its next field
 337     ObjectMonitor* cur = NULL;
 338     ObjectMonitor* next = NULL;
 339     // Mark the list head to guard against A-B-A race:
 340     if (mark_list_head(list_p, &cur, &next)) {
 341       // List head is now marked so we can safely switch it.
 342       set_next(m, cur);  // m now points to cur (and unmarks m)
 343       *list_p = m;  // Switch list head to unmarked m.
 344       // mark_list_head() used cmpxchg() above, switching list head can be lazier:
 345       OrderAccess::storestore();
 346       set_next(cur, next);  // Unmark the previous list head.
 347       break;
 348     }
 349     // The list is empty so try to set the list head.
 350     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 351     set_next(m, cur);  // m now points to NULL (and unmarks m)
 352     if (Atomic::cmpxchg(m, list_p, cur) == cur) {
 353       // List head is now unmarked m.
 354       break;
 355     }
 356     // Implied else: try it all again
 357   }
 358   Atomic::inc(count_p);
 359 }
 360 
 361 // Prepend an ObjectMonitor to a per-thread om_free_list.
 362 // Also updates the per-thread om_free_count.
 363 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 364   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 365 }
 366 
 367 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 368 // Also updates the per-thread om_in_use_count.
 369 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 370   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 371 }
 372 
 373 // Take an ObjectMonitor from the start of the specified list. Also
 374 // decrements the specified counter. Returns NULL if none are available.
 375 static ObjectMonitor* take_from_start_of_common(ObjectMonitor* volatile * list_p,
 376                                                 int volatile * count_p) {
 377   ObjectMonitor* next = NULL;
 378   ObjectMonitor* take = NULL;
 379   // Mark the list head to guard against A-B-A race:
 380   if (!mark_list_head(list_p, &take, &next)) {
 381     return NULL;  // None are available.
 382   }
 383   // Switch marked list head to next (which unmarks the list head, but
 384   // leaves take marked):
 385   *list_p = next;
 386   Atomic::dec(count_p);
 387   // mark_list_head() used cmpxchg() above, switching list head can be lazier:
 388   OrderAccess::storestore();
 389   // Unmark take, but leave the next value for any lagging list
 390   // walkers. It will get cleaned up when take is prepended to
 391   // the in-use list:
 392   set_next(take, next);
 393   return take;
 394 }
 395 
 396 // Take an ObjectMonitor from the start of the global free-list. Also
 397 // updates g_om_free_count. Returns NULL if none are available.
 398 static ObjectMonitor* take_from_start_of_g_free_list() {
 399   return take_from_start_of_common(&g_free_list, &g_om_free_count);
 400 }
 401 
 402 // Take an ObjectMonitor from the start of a per-thread free-list.
 403 // Also updates om_free_count. Returns NULL if none are available.
 404 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 405   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 406 }
 407 
 408 


1218       owner = (address) monitor->owner();
1219     }
1220 
1221     if (owner != NULL) {
1222       // owning_thread_from_monitor_owner() may also return NULL here
1223       return Threads::owning_thread_from_monitor_owner(t_list, owner);
1224     }
1225 
1226     // Unlocked case, header in place
1227     // Cannot have assertion since this object may have been
1228     // locked by another thread when reaching here.
1229     // assert(mark.is_neutral(), "sanity check");
1230 
1231     return NULL;
1232   }
1233 }
1234 
1235 // Visitors ...
1236 
1237 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1238   PaddedObjectMonitor* block = g_block_list;
1239   while (block != NULL) {
1240     assert(block->object() == CHAINMARKER, "must be a block header");
1241     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1242       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1243       ObjectMonitorHandle omh;
1244       if (!mid->is_free() && omh.set_om_ptr_if_safe(mid)) {
1245         // The ObjectMonitor* is not free and it has been made safe.
1246         if (mid->object() == NULL) {

1247           // Only process with closure if the object is set.





1248           continue;
1249         }
1250         closure->do_monitor(mid);
1251       }
1252     }
1253     // unmarked_next() is not needed with g_block_list (no next field
1254     // marking) and no load_acquire() needed because _next_om is
1255     // updated before g_block_list is changed with cmpxchg().
1256     block = (PaddedObjectMonitor*)block->_next_om;
1257   }
1258 }
1259 
1260 static bool monitors_used_above_threshold() {
1261   if (g_om_population == 0) {
1262     return false;
1263   }
1264   if (MonitorUsedDeflationThreshold > 0) {
1265     int monitors_used = g_om_population - g_om_free_count;

1266     if (HandshakeAfterDeflateIdleMonitors) {
1267       monitors_used -= g_om_wait_count;
1268     }
1269     int monitor_usage = (monitors_used * 100LL) / g_om_population;

1270     return monitor_usage > MonitorUsedDeflationThreshold;
1271   }
1272   return false;
1273 }
1274 
1275 // Returns true if MonitorBound is set (> 0) and if the specified
1276 // cnt is > MonitorBound. Otherwise returns false.
1277 static bool is_MonitorBound_exceeded(const int cnt) {
1278   const int mx = MonitorBound;
1279   return mx > 0 && cnt > mx;
1280 }
1281 
1282 bool ObjectSynchronizer::is_async_deflation_needed() {
1283   if (!AsyncDeflateIdleMonitors) {
1284     return false;
1285   }
1286   if (is_async_deflation_requested()) {
1287     // Async deflation request.
1288     return true;
1289   }
1290   if (AsyncDeflationInterval > 0 &&
1291       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1292       monitors_used_above_threshold()) {
1293     // It's been longer than our specified deflate interval and there
1294     // are too many monitors in use. We don't deflate more frequently
1295     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1296     // in order to not swamp the ServiceThread.
1297     _last_async_deflation_time_ns = os::javaTimeNanos();
1298     return true;
1299   }
1300   int monitors_used = g_om_population - g_om_free_count;

1301   if (HandshakeAfterDeflateIdleMonitors) {
1302     monitors_used -= g_om_wait_count;
1303   }
1304   if (is_MonitorBound_exceeded(monitors_used)) {
1305     // Not enough ObjectMonitors on the global free list.
1306     return true;
1307   }
1308   return false;
1309 }
1310 
1311 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1312   if (!AsyncDeflateIdleMonitors) {
1313     if (monitors_used_above_threshold()) {
1314       // Too many monitors in use.
1315       return true;
1316     }
1317     return false;
1318   }
1319   if (is_special_deflation_requested()) {
1320     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1321     // if there is a special deflation request.
1322     return true;
1323   }
1324   return false;
1325 }
1326 
1327 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1328   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1329 }
1330 
1331 void ObjectSynchronizer::oops_do(OopClosure* f) {
1332   // We only scan the global used list here (for moribund threads), and
1333   // the thread-local monitors in Thread::oops_do().
1334   global_used_oops_do(f);
1335 }
1336 
1337 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1338   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1339   list_oops_do(g_om_in_use_list, g_om_in_use_count, f);
1340 }
1341 
1342 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1343   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1344   list_oops_do(thread->om_in_use_list, thread->om_in_use_count, f);
1345 }
1346 
1347 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1348   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1349   // The oops_do() phase does not overlap with monitor deflation
1350   // so no need to update the ObjectMonitor's ref_count for this
1351   // ObjectMonitor* use and no need to mark ObjectMonitors for the
1352   // list traversal.
1353   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1354     if (mid->object() != NULL) {
1355       f->do_oop((oop*)mid->object_addr());
1356     }
1357   }
1358 }
1359 
1360 
1361 // -----------------------------------------------------------------------------
1362 // ObjectMonitor Lifecycle
1363 // -----------------------
1364 // Inflation unlinks monitors from the global g_free_list and
1365 // associates them with objects.  Deflation -- which occurs at
1366 // STW-time -- disassociates idle monitors from objects.  Such
1367 // scavenged monitors are returned to the g_free_list.
1368 //
1369 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1370 //
1371 // Lifecycle:
1372 // --   unassigned and on the global free list


1444 
1445     // 1: try to allocate from the thread's local om_free_list.
1446     // Threads will attempt to allocate first from their local list, then
1447     // from the global list, and only after those attempts fail will the
1448     // thread attempt to instantiate new monitors. Thread-local free lists
1449     // improve allocation latency, as well as reducing coherency traffic
1450     // on the shared global list.
1451     m = take_from_start_of_om_free_list(self);
1452     if (m != NULL) {
1453       guarantee(m->object() == NULL, "invariant");
1454       m->set_allocation_state(ObjectMonitor::New);
1455       prepend_to_om_in_use_list(self, m);
1456       return m;
1457     }
1458 
1459     // 2: try to allocate from the global g_free_list
1460     // CONSIDER: use muxTry() instead of muxAcquire().
1461     // If the muxTry() fails then drop immediately into case 3.
1462     // If we're using thread-local free lists then try
1463     // to reprovision the caller's free list.
1464     if (g_free_list != NULL) {
1465       // Reprovision the thread's om_free_list.
1466       // Use bulk transfers to reduce the allocation rate and heat
1467       // on various locks.
1468       for (int i = self->om_free_provision; --i >= 0;) {
1469         ObjectMonitor* take = take_from_start_of_g_free_list();
1470         if (take == NULL) {
1471           break;  // No more are available.
1472         }
1473         guarantee(take->object() == NULL, "invariant");
1474         if (AsyncDeflateIdleMonitors) {
1475           // We allowed 3 field values to linger during async deflation.
1476           // We clear header and restore ref_count here, but we leave
1477           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1478           // enter optimization can no longer race with async deflation
1479           // and reuse.
1480           take->set_header(markWord::zero());
1481           if (take->ref_count() < 0) {
1482             // Add back max_jint to restore the ref_count field to its
1483             // proper value.
1484             Atomic::add(max_jint, &take->_ref_count);
1485 
1486             DEBUG_ONLY(jint l_ref_count = take->ref_count();)
1487             assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
1488                    l_ref_count, take->ref_count());
1489           }
1490         }
1491         take->Recycle();
1492         // Since we're taking from the global free-list, take must be Free.
1493         // om_release() also sets the allocation state to Free because it
1494         // is called from other code paths.
1495         assert(take->is_free(), "invariant");
1496         om_release(self, take, false);
1497       }
1498       self->om_free_provision += 1 + (self->om_free_provision / 2);
1499       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1500 
1501       if (!AsyncDeflateIdleMonitors &&
1502           is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {

1503         // Not enough ObjectMonitors on the global free list.
1504         // We can't safely induce a STW safepoint from om_alloc() as our thread
1505         // state may not be appropriate for such activities and callers may hold
1506         // naked oops, so instead we defer the action.
1507         InduceScavenge(self, "om_alloc");
1508       }
1509       continue;
1510     }
1511 
1512     // 3: allocate a block of new ObjectMonitors
1513     // Both the local and global free lists are empty -- resort to malloc().
1514     // In the current implementation ObjectMonitors are TSM - immortal.
1515     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1516     // each ObjectMonitor to start at the beginning of a cache line,
1517     // so we use align_up().
1518     // A better solution would be to use C++ placement-new.
1519     // BEWARE: As it stands currently, we don't run the ctors!
1520     assert(_BLOCKSIZE > 1, "invariant");
1521     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1522     PaddedObjectMonitor* temp;
1523     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1524     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1525     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1526     (void)memset((void *) temp, 0, neededsize);
1527 
1528     // Format the block.
1529     // initialize the linked list, each monitor points to its next
1530     // forming the single linked free list, the very first monitor
1531     // will points to next block, which forms the block list.
1532     // The trick of using the 1st element in the block as g_block_list
1533     // linkage should be reconsidered.  A better implementation would
1534     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1535 
1536     for (int i = 1; i < _BLOCKSIZE; i++) {
1537       temp[i]._next_om = (ObjectMonitor*)&temp[i + 1];
1538       assert(temp[i].is_free(), "invariant");
1539     }
1540 
1541     // terminate the last monitor as the end of list
1542     temp[_BLOCKSIZE - 1]._next_om = (ObjectMonitor*)NULL;
1543 
1544     // Element [0] is reserved for global list linkage
1545     temp[0].set_object(CHAINMARKER);
1546 
1547     // Consider carving out this thread's current request from the
1548     // block in hand.  This avoids some lock traffic and redundant
1549     // list activity.
1550 
1551     prepend_block_to_lists(temp);
1552   }
1553 }
1554 
1555 // Place "m" on the caller's private per-thread om_free_list.
1556 // In practice there's no need to clamp or limit the number of
1557 // monitors on a thread's om_free_list as the only non-allocation time
1558 // we'll call om_release() is to return a monitor to the free list after
1559 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1560 // accumulate on a thread's free list.
1561 //
1562 // Key constraint: all ObjectMonitors on a thread's free list and the global


1576   // _next_om is used for both per-thread in-use and free lists so
1577   // we have to remove 'm' from the in-use list first (as needed).
1578   if (from_per_thread_alloc) {
1579     // Need to remove 'm' from om_in_use_list.
1580     // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
1581     // protocol because async deflation can do list deletions in parallel.
1582     ObjectMonitor* cur_mid_in_use = NULL;
1583     ObjectMonitor* mid = NULL;
1584     ObjectMonitor* next = NULL;
1585     bool extracted = false;
1586 
1587     if (!mark_list_head(&self->om_in_use_list, &mid, &next)) {
1588       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1589     }
1590     while (true) {
1591       if (m == mid) {
1592         // We found 'm' on the per-thread in-use list so try to extract it.
1593         if (cur_mid_in_use == NULL) {
1594           // mid is the list head and it is marked. Switch the list head
1595           // to next which unmarks the list head, but leaves mid marked:
1596           self->om_in_use_list = next;
1597           // mark_list_head() used cmpxchg() above, switching list head can be lazier:
1598           OrderAccess::storestore();
1599         } else {
1600           // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
1601           // next field to next which unmarks cur_mid_in_use, but leaves
1602           // mid marked:
1603           OrderAccess::release_store(&cur_mid_in_use->_next_om, next);
1604         }
1605         extracted = true;
1606         Atomic::dec(&self->om_in_use_count);
1607         // Unmark mid, but leave the next value for any lagging list
1608         // walkers. It will get cleaned up when mid is prepended to
1609         // the thread's free list:
1610         set_next(mid, next);
1611         break;
1612       }
1613       if (cur_mid_in_use != NULL) {
1614         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
1615       }
1616       // The next cur_mid_in_use keeps mid's marked next field so
1617       // that it is stable for a possible next field change. It
1618       // cannot be deflated while it is marked.


1673     // The thread is going away, however the ObjectMonitors on the
1674     // om_in_use_list may still be in-use by other threads. Link
1675     // them to in_use_tail, which will be linked into the global
1676     // in-use list g_om_in_use_list below.
1677     //
1678     // Account for the in-use list head before the loop since it is
1679     // already marked (by this thread):
1680     in_use_tail = in_use_list;
1681     in_use_count++;
1682     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1683       if (is_next_marked(cur_om)) {
1684         // This next field is marked so there must be an async deflater
1685         // thread ahead of us so we'll give it a chance to finish.
1686         while (is_next_marked(cur_om)) {
1687           os::naked_short_sleep(1);
1688         }
1689         // Refetch the possibly changed next field and try again.
1690         cur_om = unmarked_next(in_use_tail);
1691         continue;
1692       }
1693       if (cur_om->is_free()) {
1694         // cur_om was deflated and the allocation state was changed
1695         // to Free while it was marked. We happened to see it just
1696         // after it was unmarked (and added to the free list).
1697         // Refetch the possibly changed next field and try again.
1698         cur_om = unmarked_next(in_use_tail);
1699         continue;
1700       }
1701       in_use_tail = cur_om;
1702       in_use_count++;
1703       cur_om = unmarked_next(cur_om);
1704     }
1705     guarantee(in_use_tail != NULL, "invariant");
1706     int l_om_in_use_count = self->om_in_use_count;
1707     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1708                    "match: l_om_in_use_count=%d, in_use_count=%d",
1709                    l_om_in_use_count, in_use_count);
1710     self->om_in_use_count = 0;


1711     // Clear the in-use list head (which also unmarks it):
1712     self->om_in_use_list = (ObjectMonitor*)NULL;
1713     // mark_list_head() used cmpxchg() above, clearing the disconnected list head can be lazier:
1714     OrderAccess::storestore();
1715     set_next(in_use_list, next);
1716   }
1717 
1718   int free_count = 0;
1719   ObjectMonitor* free_list = self->om_free_list;
1720   ObjectMonitor* free_tail = NULL;
1721   if (free_list != NULL) {
1722     // The thread is going away. Set 'free_tail' to the last per-thread free
1723     // monitor which will be linked to g_free_list below.
1724     stringStream ss;
1725     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1726       free_count++;
1727       free_tail = s;
1728       guarantee(s->object() == NULL, "invariant");
1729       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1730     }
1731     guarantee(free_tail != NULL, "invariant");
1732     int l_om_free_count = self->om_free_count;
1733     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1734                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1735                    free_count);
1736     self->om_free_count = 0;
1737     self->om_free_list = NULL;
1738     OrderAccess::storestore();  // Lazier memory is okay for list walkers.
1739   }
1740 
1741   if (free_tail != NULL) {
1742     prepend_list_to_g_free_list(free_list, free_tail, free_count);
1743   }
1744 
1745   if (in_use_tail != NULL) {
1746     prepend_list_to_g_om_in_use_list(in_use_list, in_use_tail, in_use_count);
1747   }
1748 
1749   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1750   LogStreamHandle(Info, monitorinflation) lsh_info;
1751   LogStream* ls = NULL;
1752   if (log_is_enabled(Debug, monitorinflation)) {
1753     ls = &lsh_debug;
1754   } else if ((free_count != 0 || in_use_count != 0) &&
1755              log_is_enabled(Info, monitorinflation)) {
1756     ls = &lsh_info;
1757   }
1758   if (ls != NULL) {


1904 
1905 
1906       // fetch the displaced mark from the owner's stack.
1907       // The owner can't die or unwind past the lock while our INFLATING
1908       // object is in the mark.  Furthermore the owner can't complete
1909       // an unlock on the object, either.
1910       markWord dmw = mark.displaced_mark_helper();
1911       // Catch if the object's header is not neutral (not locked and
1912       // not marked is what we care about here).
1913       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1914 
1915       // Setup monitor fields to proper values -- prepare the monitor
1916       m->set_header(dmw);
1917 
1918       // Optimization: if the mark.locker stack address is associated
1919       // with this thread we could simply set m->_owner = self.
1920       // Note that a thread can inflate an object
1921       // that it has stack-locked -- as might happen in wait() -- directly
1922       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1923       if (AsyncDeflateIdleMonitors) {
1924         m->simply_set_owner_from(mark.locker(), NULL, DEFLATER_MARKER);
1925       } else {
1926         m->simply_set_owner_from(mark.locker(), NULL);
1927       }
1928       m->set_object(object);
1929       // TODO-FIXME: assert BasicLock->dhw != 0.
1930 
1931       omh_p->set_om_ptr(m);
1932 
1933       // Must preserve store ordering. The monitor state must
1934       // be stable at the time of publishing the monitor address.
1935       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1936       object->release_set_mark(markWord::encode(m));
1937 
1938       // Once ObjectMonitor is configured and the object is associated
1939       // with the ObjectMonitor, it is safe to allow async deflation:
1940       assert(m->is_new(), "freshly allocated monitor must be new");
1941       m->set_allocation_state(ObjectMonitor::Old);
1942 
1943       // Hopefully the performance counters are allocated on distinct cache lines
1944       // to avoid false sharing on MP systems ...
1945       OM_PERFDATA_OP(Inflations, inc());
1946       if (log_is_enabled(Trace, monitorinflation)) {


2046 // is registered with the ServiceThread and it is notified.
2047 
2048 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2049   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2050 
2051   // The per-thread in-use lists are handled in
2052   // ParallelSPCleanupThreadClosure::do_thread().
2053 
2054   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2055     // Use the older mechanism for the global in-use list or if a
2056     // special deflation has been requested before the safepoint.
2057     ObjectSynchronizer::deflate_idle_monitors(counters);
2058     return;
2059   }
2060 
2061   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2062   // Request deflation of idle monitors by the ServiceThread:
2063   set_is_async_deflation_requested(true);
2064   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2065   ml.notify_all();
2066 
2067   if (log_is_enabled(Debug, monitorinflation)) {
2068     // exit_globals()'s call to audit_and_print_stats() is done
2069     // at the Info level and not at a safepoint.
2070     // For safepoint based deflation, audit_and_print_stats() is called
2071     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2072     // Debug level at a safepoint.
2073     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2074   }
2075 }
2076 
2077 // Deflate a single monitor if not in-use
2078 // Return true if deflated, false if in-use
2079 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2080                                          ObjectMonitor** free_head_p,
2081                                          ObjectMonitor** free_tail_p) {
2082   bool deflated;
2083   // Normal case ... The monitor is associated with obj.
2084   const markWord mark = obj->mark();
2085   guarantee(mark == markWord::encode(mid), "should match: mark="
2086             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2087             markWord::encode(mid).value());
2088   // Make sure that mark.monitor() and markWord::encode() agree:
2089   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2090             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2091   const markWord dmw = mid->header();
2092   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2093 
2094   if (mid->is_busy() || mid->ref_count() != 0) {


2257         }
2258         *free_tail_p = mid;
2259 
2260         // At this point, mid->_next_om still refers to its current
2261         // value and another ObjectMonitor's _next_om field still
2262         // refers to this ObjectMonitor. Those linkages have to be
2263         // cleaned up by the caller who has the complete context.
2264 
2265         // We leave owner == DEFLATER_MARKER and ref_count < 0
2266         // to force any racing threads to retry.
2267         return true;  // Success, ObjectMonitor has been deflated.
2268       }
2269 
2270       // The owner was changed from DEFLATER_MARKER so we lost the
2271       // race since the ObjectMonitor is now busy.
2272 
2273       // Add back max_jint to restore the ref_count field to its
2274       // proper value (which may not be what we saw above):
2275       Atomic::add(max_jint, &mid->_ref_count);
2276 
2277       DEBUG_ONLY(jint l_ref_count = mid->ref_count();)
2278       assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
2279              l_ref_count, mid->ref_count());
2280       return false;
2281     }
2282 
2283     // The ref_count was no longer 0 so we lost the race since the
2284     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2285     // Restore owner to NULL if it is still DEFLATER_MARKER:
2286     mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2287   }
2288 
2289   // The owner field is no longer NULL so we lost the race since the
2290   // ObjectMonitor is now busy.
2291   return false;
2292 }
2293 
2294 // Walk a given monitor list, and deflate idle monitors.
2295 // The given list could be a per-thread list or a global list.
2296 //
2297 // In the case of parallel processing of thread local monitor lists,
2298 // work is done by Threads::parallel_threads_do() which ensures that
2299 // each Java thread is processed by exactly one worker thread, and


2310   ObjectMonitor* cur_mid_in_use = NULL;
2311   ObjectMonitor* mid = NULL;
2312   ObjectMonitor* next = NULL;
2313   int deflated_count = 0;
2314 
2315   // We use the simpler mark-mid-as-we-go protocol since there are no
2316   // parallel list deletions since we are at a safepoint.
2317   if (!mark_list_head(list_p, &mid, &next)) {
2318     return 0;  // The list is empty so nothing to deflate.
2319   }
2320 
2321   while (true) {
2322     oop obj = (oop) mid->object();
2323     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2324       // Deflation succeeded and already updated free_head_p and
2325       // free_tail_p as needed. Finish the move to the local free list
2326       // by unlinking mid from the global or per-thread in-use list.
2327       if (cur_mid_in_use == NULL) {
2328         // mid is the list head and it is marked. Switch the list head
2329         // to next which unmarks the list head, but leaves mid marked:
2330         *list_p = next;
2331         // mark_list_head() used cmpxchg() above, switching list head can be lazier:
2332         OrderAccess::storestore();
2333       } else {
2334         // mid is marked. Switch cur_mid_in_use's next field to next
2335         // which is safe because we have no parallel list deletions,
2336         // but we leave mid marked:
2337         OrderAccess::release_store(&cur_mid_in_use->_next_om, next);
2338       }
2339       // At this point mid is disconnected from the in-use list so
2340       // its marked next field no longer has any effects.
2341       deflated_count++;
2342       Atomic::dec(count_p);
2343       // mid is current tail in the free_head_p list so NULL terminate it
2344       // (which also unmarks it):
2345       set_next(mid, NULL);
2346 
2347       // All the list management is done so move on to the next one:
2348       mid = next;
2349     } else {
2350       set_next(mid, next);  // unmark next field
2351 
2352       // All the list management is done so move on to the next one:


2413     // a cur_mid_in_use, then its next field is also marked at this point.
2414 
2415     if (next != NULL) {
2416       // We mark next's next field so that an om_flush()
2417       // thread that is behind us cannot pass us when we
2418       // unmark the current mid's next field.
2419       next_next = mark_next_loop(next);
2420     }
2421 
2422     // Only try to deflate if there is an associated Java object and if
2423     // mid is old (is not newly allocated and is not newly freed).
2424     if (mid->object() != NULL && mid->is_old() &&
2425         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2426       // Deflation succeeded and already updated free_head_p and
2427       // free_tail_p as needed. Finish the move to the local free list
2428       // by unlinking mid from the global or per-thread in-use list.
2429       if (cur_mid_in_use == NULL) {
2430         // mid is the list head and it is marked. Switch the list head
2431         // to next which is also marked (if not NULL) and also leave
2432         // mid marked:
2433         *list_p = next;
2434         // mark_list_head() used cmpxchg() above, switching list head can be lazier:
2435         OrderAccess::storestore();
2436       } else {
2437         ObjectMonitor* marked_next = mark_om_ptr(next);
2438         // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
2439         // next field to marked_next and also leave mid marked:
2440         OrderAccess::release_store(&cur_mid_in_use->_next_om, marked_next);
2441       }
2442       // At this point mid is disconnected from the in-use list so
2443       // its marked next field no longer has any effects.
2444       deflated_count++;
2445       Atomic::dec(count_p);
2446       // mid is current tail in the free_head_p list so NULL terminate it
2447       // (which also unmarks it):
2448       set_next(mid, NULL);
2449 
2450       // All the list management is done so move on to the next one:
2451       mid = next;  // mid keeps non-NULL next's marked next field
2452       next = next_next;
2453     } else {
2454       // mid is considered in-use if it does not have an associated
2455       // Java object or mid is not old or deflation did not succeed.
2456       // A mid->is_new() node can be seen here when it is freshly
2457       // returned by om_alloc() (and skips the deflation code path).
2458       // A mid->is_old() node can be seen here when deflation failed.
2459       // A mid->is_free() node can be seen here when a fresh node from
2460       // om_alloc() is released by om_release() due to losing the race
2461       // in inflate().
2462 
2463       // All the list management is done so move on to the next one:
2464       if (cur_mid_in_use != NULL) {
2465         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2466       }
2467       // The next cur_mid_in_use keeps mid's marked next field so
2468       // that it is stable for a possible next field change. It
2469       // cannot be modified by om_release() while it is marked.
2470       cur_mid_in_use = mid;
2471       mid = next;  // mid keeps non-NULL next's marked next field
2472       next = next_next;
2473 
2474       if (SafepointSynchronize::is_synchronizing() &&
2475           cur_mid_in_use != *list_p && cur_mid_in_use->is_old()) {

2476         // If a safepoint has started and cur_mid_in_use is not the list
2477         // head and is old, then it is safe to use as saved state. Return
2478         // to the caller before blocking.
2479         *saved_mid_in_use_p = cur_mid_in_use;
2480         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2481         if (mid != NULL) {
2482           set_next(mid, next);  // umark mid
2483         }
2484         return deflated_count;
2485       }
2486     }
2487     if (mid == NULL) {
2488       if (cur_mid_in_use != NULL) {
2489         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2490       }
2491       break;  // Reached end of the list so nothing more to deflate.
2492     }
2493 
2494     // The current mid's next field is marked at this point. If we have
2495     // a cur_mid_in_use, then its next field is also marked at this point.
2496   }
2497   // We finished the list without a safepoint starting so there's
2498   // no need to save state.
2499   *saved_mid_in_use_p = NULL;
2500   return deflated_count;
2501 }
2502 
2503 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2504   counters->n_in_use = 0;              // currently associated with objects
2505   counters->n_in_circulation = 0;      // extant
2506   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2507   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2508   counters->per_thread_times = 0.0;    // per-thread scavenge times
2509   OrderAccess::storestore();           // flush inits for worker threads
2510 }
2511 
2512 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2513   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2514 
2515   if (AsyncDeflateIdleMonitors) {
2516     // Nothing to do when global idle ObjectMonitors are deflated using
2517     // a JavaThread unless a special deflation has been requested.
2518     if (!is_special_deflation_requested()) {
2519       return;
2520     }
2521   }
2522 
2523   bool deflated = false;
2524 
2525   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2526   ObjectMonitor* free_tail_p = NULL;
2527   elapsedTimer timer;
2528 
2529   if (log_is_enabled(Info, monitorinflation)) {
2530     timer.start();
2531   }
2532 
2533   // Note: the thread-local monitors lists get deflated in
2534   // a separate pass. See deflate_thread_local_monitors().
2535 
2536   // For moribund threads, scan g_om_in_use_list
2537   int deflated_count = 0;
2538   if (g_om_in_use_list != NULL) {
2539     // Update n_in_circulation before g_om_in_use_count is updated by deflation.
2540     Atomic::add(g_om_in_use_count, &counters->n_in_circulation);
2541 
2542     deflated_count = deflate_monitor_list(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p);
2543     Atomic::add(g_om_in_use_count, &counters->n_in_use);
2544   }
2545 
2546   if (free_head_p != NULL) {
2547     // Move the deflated ObjectMonitors back to the global free list.
2548     // No races on the working free list so no need for load_acquire().
2549     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2550     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2551            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2552     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2553     Atomic::add(deflated_count, &counters->n_scavenged);
2554   }
2555   timer.stop();
2556 
2557   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2558   LogStreamHandle(Info, monitorinflation) lsh_info;
2559   LogStream* ls = NULL;
2560   if (log_is_enabled(Debug, monitorinflation)) {
2561     ls = &lsh_debug;
2562   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2563     ls = &lsh_info;


2577 
2578 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2579   assert(AsyncDeflateIdleMonitors, "sanity check");
2580 
2581   // Deflate any global idle monitors.
2582   deflate_global_idle_monitors_using_JT();
2583 
2584   int count = 0;
2585   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2586     if (jt->om_in_use_count > 0 && !jt->is_exiting()) {
2587       // This JavaThread is using ObjectMonitors so deflate any that
2588       // are idle unless this JavaThread is exiting; do not race with
2589       // ObjectSynchronizer::om_flush().
2590       deflate_per_thread_idle_monitors_using_JT(jt);
2591       count++;
2592     }
2593   }
2594   if (count > 0) {
2595     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2596   }
2597 
2598   log_info(monitorinflation)("async g_om_population=%d, g_om_in_use_count=%d, "
2599                              "g_om_free_count=%d, g_om_wait_count=%d",
2600                              g_om_population, g_om_in_use_count,
2601                              g_om_free_count, g_om_wait_count);
2602 
2603   // The ServiceThread's async deflation request has been processed.
2604   set_is_async_deflation_requested(false);
2605 
2606   if (HandshakeAfterDeflateIdleMonitors && g_om_wait_count > 0) {
2607     // There are deflated ObjectMonitors waiting for a handshake
2608     // (or a safepoint) for safety.
2609 
2610     // g_wait_list and g_om_wait_count are only updated by the calling
2611     // thread so no need for load_acquire() or release_store().
2612     ObjectMonitor* list = g_wait_list;
2613     ADIM_guarantee(list != NULL, "g_wait_list must not be NULL");
2614     int count = g_om_wait_count;

2615     g_om_wait_count = 0;
2616     g_wait_list = NULL;
2617     OrderAccess::storestore();  // Lazier memory sync is okay for list walkers.
2618 
2619     // Find the tail for prepend_list_to_common(). No need to mark
2620     // ObjectMonitors for this list walk since only the deflater
2621     // thread manages the wait list.
2622     int l_count = 0;
2623     ObjectMonitor* tail = NULL;
2624     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2625       tail = n;
2626       l_count++;
2627     }
2628     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2629 
2630     // Will execute a safepoint if !ThreadLocalHandshakes:
2631     HandshakeForDeflation hfd_tc;
2632     Handshake::execute(&hfd_tc);
2633 
2634     prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
2635 
2636     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2637   }
2638 }
2639 
2640 // Deflate global idle ObjectMonitors using a JavaThread.
2641 //


2655 
2656   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2657 }
2658 
2659 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2660 //
2661 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2662   JavaThread* self = JavaThread::current();
2663 
2664   int deflated_count = 0;
2665   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2666   ObjectMonitor* free_tail_p = NULL;
2667   ObjectMonitor* saved_mid_in_use_p = NULL;
2668   elapsedTimer timer;
2669 
2670   if (log_is_enabled(Info, monitorinflation)) {
2671     timer.start();
2672   }
2673 
2674   if (is_global) {
2675     OM_PERFDATA_OP(MonExtant, set_value(g_om_in_use_count));
2676   } else {
2677     OM_PERFDATA_OP(MonExtant, inc(target->om_in_use_count));
2678   }
2679 
2680   do {
2681     int local_deflated_count;
2682     if (is_global) {
2683       local_deflated_count = deflate_monitor_list_using_JT(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2684     } else {
2685       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2686     }
2687     deflated_count += local_deflated_count;
2688 
2689     if (free_head_p != NULL) {
2690       // Move the deflated ObjectMonitors to the global free list.
2691       // No races on the working list so no need for load_acquire().
2692       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2693       // Note: The target thread can be doing an om_alloc() that
2694       // is trying to prepend an ObjectMonitor on its in-use list
2695       // at the same time that we have deflated the current in-use
2696       // list head and put it on the local free list. prepend_to_common()
2697       // will detect the race and retry which avoids list corruption,


2737   LogStream* ls = NULL;
2738   if (log_is_enabled(Debug, monitorinflation)) {
2739     ls = &lsh_debug;
2740   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2741     ls = &lsh_info;
2742   }
2743   if (ls != NULL) {
2744     if (is_global) {
2745       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2746     } else {
2747       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2748     }
2749   }
2750 }
2751 
2752 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2753   // Report the cumulative time for deflating each thread's idle
2754   // monitors. Note: if the work is split among more than one
2755   // worker thread, then the reported time will likely be more
2756   // than a beginning to end measurement of the phase.
2757   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);




2758 
2759   bool needs_special_deflation = is_special_deflation_requested();
2760   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2761     // Nothing to do when idle ObjectMonitors are deflated using
2762     // a JavaThread unless a special deflation has been requested.
2763     return;


2764   }
2765 
2766   if (log_is_enabled(Debug, monitorinflation)) {
2767     // exit_globals()'s call to audit_and_print_stats() is done
2768     // at the Info level and not at a safepoint.
2769     // For async deflation, audit_and_print_stats() is called in
2770     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2771     // at a safepoint.
2772     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2773   } else if (log_is_enabled(Info, monitorinflation)) {
2774     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2775                                "g_om_free_count=%d, g_om_wait_count=%d",
2776                                g_om_population, g_om_in_use_count,
2777                                g_om_free_count, g_om_wait_count);


2778   }
2779 
2780   ForceMonitorScavenge = 0;    // Reset
2781 
2782   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2783   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2784 
2785   GVars.stw_random = os::random();
2786   GVars.stw_cycle++;
2787 
2788   if (needs_special_deflation) {
2789     set_is_special_deflation_requested(false);  // special deflation is done
2790   }
2791 }
2792 
2793 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2794   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2795 
2796   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2797     // Nothing to do if a special deflation has NOT been requested.
2798     return;
2799   }
2800 
2801   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2802   ObjectMonitor* free_tail_p = NULL;
2803   elapsedTimer timer;
2804 
2805   if (log_is_enabled(Info, safepoint, cleanup) ||
2806       log_is_enabled(Info, monitorinflation)) {
2807     timer.start();
2808   }
2809 
2810   // Update n_in_circulation before om_in_use_count is updated by deflation.
2811   Atomic::add(thread->om_in_use_count, &counters->n_in_circulation);
2812 
2813   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2814   Atomic::add(thread->om_in_use_count, &counters->n_in_use);
2815 
2816   if (free_head_p != NULL) {
2817     // Move the deflated ObjectMonitors back to the global free list.
2818     // No races on the working list so no need for load_acquire().
2819     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2820     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2821            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2822     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2823     Atomic::add(deflated_count, &counters->n_scavenged);
2824     Atomic::add(deflated_count, &counters->per_thread_scavenged);
2825   }
2826 
2827   timer.stop();
2828   // Safepoint logging cares about cumulative per_thread_times and
2829   // we'll capture most of the cost, but not the muxRelease() which
2830   // should be cheap.
2831   counters->per_thread_times += timer.seconds();
2832 
2833   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2834   LogStreamHandle(Info, monitorinflation) lsh_info;


2924   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2925   LogStreamHandle(Info, monitorinflation) lsh_info;
2926   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2927   LogStream* ls = NULL;
2928   if (log_is_enabled(Trace, monitorinflation)) {
2929     ls = &lsh_trace;
2930   } else if (log_is_enabled(Debug, monitorinflation)) {
2931     ls = &lsh_debug;
2932   } else if (log_is_enabled(Info, monitorinflation)) {
2933     ls = &lsh_info;
2934   }
2935   assert(ls != NULL, "sanity check");
2936 
2937   // Log counts for the global and per-thread monitor lists:
2938   int chk_om_population = log_monitor_list_counts(ls);
2939   int error_cnt = 0;
2940 
2941   ls->print_cr("Checking global lists:");
2942 
2943   // Check g_om_population:
2944   if (g_om_population == chk_om_population) {
2945     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2946                  g_om_population, chk_om_population);

2947   } else {
2948     // With lock free access to the monitor lists, it is possible for
2949     // log_monitor_list_counts() to return a value that doesn't match
2950     // g_om_population. So far a higher value has been seen in testing
2951     // so something is being double counted by log_monitor_list_counts().
2952     ls->print_cr("WARNING: g_om_population=%d is not equal to "
2953                  "chk_om_population=%d", g_om_population, chk_om_population);


2954   }
2955 
2956   // Check g_om_in_use_list and g_om_in_use_count:
2957   chk_global_in_use_list_and_count(ls, &error_cnt);
2958 
2959   // Check g_free_list and g_om_free_count:
2960   chk_global_free_list_and_count(ls, &error_cnt);
2961 
2962   if (HandshakeAfterDeflateIdleMonitors) {
2963     // Check g_wait_list and g_om_wait_count:
2964     chk_global_wait_list_and_count(ls, &error_cnt);
2965   }
2966 
2967   ls->print_cr("Checking per-thread lists:");
2968 
2969   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2970     // Check om_in_use_list and om_in_use_count:
2971     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2972 
2973     // Check om_free_list and om_free_count:


3024   }
3025   if (n->object() != NULL) {
3026     if (jt != NULL) {
3027       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3028                     ": free per-thread monitor must have NULL _object "
3029                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3030                     p2i(n->object()));
3031     } else {
3032       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3033                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3034                     p2i(n), p2i(n->object()));
3035     }
3036     *error_cnt_p = *error_cnt_p + 1;
3037   }
3038 }
3039 
3040 // Check the global free list and count; log the results of the checks.
3041 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3042                                                         int *error_cnt_p) {
3043   int chk_om_free_count = 0;
3044   ObjectMonitor* cur = NULL;
3045   ObjectMonitor* next = NULL;
3046   if (mark_list_head(&g_free_list, &cur, &next)) {
3047     // Marked the global free list head so process the list.
3048     while (true) {
3049       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3050       chk_om_free_count++;
3051 
3052       mark_next_for_traversal(&cur, &next);
3053       if (cur == NULL) {
3054         break;
3055       }
3056     }
3057   }
3058   if (g_om_free_count == chk_om_free_count) {
3059     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
3060                   g_om_free_count, chk_om_free_count);

3061   } else {
3062     // With lock free access to g_free_list, it is possible for an
3063     // ObjectMonitor to be prepended to g_free_list after we started
3064     // calculating chk_om_free_count so g_om_free_count may not
3065     // match anymore.
3066     out->print_cr("WARNING: g_om_free_count=%d is not equal to "
3067                   "chk_om_free_count=%d", g_om_free_count, chk_om_free_count);


3068   }
3069 }
3070 
3071 // Check the global wait list and count; log the results of the checks.
3072 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3073                                                         int *error_cnt_p) {
3074   int chk_om_wait_count = 0;
3075   ObjectMonitor* cur = NULL;
3076   ObjectMonitor* next = NULL;
3077   if (mark_list_head(&g_wait_list, &cur, &next)) {
3078     // Marked the global wait list head so process the list.
3079     while (true) {
3080       // Rules for g_wait_list are the same as of g_free_list:
3081       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3082       chk_om_wait_count++;
3083 
3084       mark_next_for_traversal(&cur, &next);
3085       if (cur == NULL) {
3086         break;
3087       }
3088     }
3089   }
3090   if (g_om_wait_count == chk_om_wait_count) {
3091     out->print_cr("g_om_wait_count=%d equals chk_om_wait_count=%d",
3092                   g_om_wait_count, chk_om_wait_count);

3093   } else {
3094     out->print_cr("ERROR: g_om_wait_count=%d is not equal to "
3095                   "chk_om_wait_count=%d", g_om_wait_count, chk_om_wait_count);


3096     *error_cnt_p = *error_cnt_p + 1;
3097   }
3098 }
3099 
3100 // Check the global in-use list and count; log the results of the checks.
3101 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3102                                                           int *error_cnt_p) {
3103   int chk_om_in_use_count = 0;
3104   ObjectMonitor* cur = NULL;
3105   ObjectMonitor* next = NULL;
3106   if (mark_list_head(&g_om_in_use_list, &cur, &next)) {
3107     // Marked the global in-use list head so process the list.
3108     while (true) {
3109       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3110       chk_om_in_use_count++;
3111 
3112       mark_next_for_traversal(&cur, &next);
3113       if (cur == NULL) {
3114         break;
3115       }
3116     }
3117   }
3118   if (g_om_in_use_count == chk_om_in_use_count) {
3119     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d",
3120                   g_om_in_use_count, chk_om_in_use_count);

3121   } else {
3122     // With lock free access to the monitor lists, it is possible for
3123     // an exiting JavaThread to put its in-use ObjectMonitors on the
3124     // global in-use list after chk_om_in_use_count is calculated above.
3125     out->print_cr("WARNING: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3126                   g_om_in_use_count, chk_om_in_use_count);

3127   }
3128 }
3129 
3130 // Check an in-use monitor entry; log any errors.
3131 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3132                                           outputStream * out, int *error_cnt_p) {
3133   if (n->header().value() == 0) {
3134     if (jt != NULL) {
3135       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3136                     ": in-use per-thread monitor must have non-NULL _header "
3137                     "field.", p2i(jt), p2i(n));
3138     } else {
3139       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3140                     "must have non-NULL _header field.", p2i(n));
3141     }
3142     *error_cnt_p = *error_cnt_p + 1;
3143   }
3144   if (n->object() == NULL) {
3145     if (jt != NULL) {
3146       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT


3174       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3175                     ": in-use per-thread monitor's object does not refer "
3176                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3177                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3178                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3179     } else {
3180       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3181                     "monitor's object does not refer to the same monitor: obj="
3182                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3183                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3184     }
3185     *error_cnt_p = *error_cnt_p + 1;
3186   }
3187 }
3188 
3189 // Check the thread's free list and count; log the results of the checks.
3190 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3191                                                             outputStream * out,
3192                                                             int *error_cnt_p) {
3193   int chk_om_free_count = 0;
3194   ObjectMonitor* cur = NULL;
3195   ObjectMonitor* next = NULL;
3196   if (mark_list_head(&jt->om_free_list, &cur, &next)) {
3197     // Marked the per-thread free list head so process the list.
3198     while (true) {
3199       chk_free_entry(jt, cur, out, error_cnt_p);
3200       chk_om_free_count++;
3201 
3202       mark_next_for_traversal(&cur, &next);
3203       if (cur == NULL) {
3204         break;
3205       }
3206     }
3207   }
3208   if (jt->om_free_count == chk_om_free_count) {
3209     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3210                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count,

3211                   chk_om_free_count);
3212   } else {
3213     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3214                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,

3215                   chk_om_free_count);
3216     *error_cnt_p = *error_cnt_p + 1;
3217   }
3218 }
3219 
3220 // Check the thread's in-use list and count; log the results of the checks.
3221 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3222                                                               outputStream * out,
3223                                                               int *error_cnt_p) {
3224   int chk_om_in_use_count = 0;
3225   ObjectMonitor* cur = NULL;
3226   ObjectMonitor* next = NULL;
3227   if (mark_list_head(&jt->om_in_use_list, &cur, &next)) {
3228     // Marked the per-thread in-use list head so process the list.
3229     while (true) {
3230       chk_in_use_entry(jt, cur, out, error_cnt_p);
3231       chk_om_in_use_count++;
3232 
3233       mark_next_for_traversal(&cur, &next);
3234       if (cur == NULL) {
3235         break;
3236       }
3237     }
3238   }
3239   if (jt->om_in_use_count == chk_om_in_use_count) {
3240     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3241                   "chk_om_in_use_count=%d", p2i(jt),
3242                   jt->om_in_use_count, chk_om_in_use_count);

3243   } else {
3244     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3245                   "equal to chk_om_in_use_count=%d", p2i(jt),
3246                   jt->om_in_use_count, chk_om_in_use_count);

3247     *error_cnt_p = *error_cnt_p + 1;
3248   }
3249 }
3250 
3251 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3252 // flags indicate why the entry is in-use, 'object' and 'object type'
3253 // indicate the associated object and its type.
3254 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3255   stringStream ss;
3256   if (g_om_in_use_count > 0) {
3257     out->print_cr("In-use global monitor info:");
3258     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3259     out->print_cr("%18s  %s  %7s  %18s  %18s",
3260                   "monitor", "BHL", "ref_cnt", "object", "object type");
3261     out->print_cr("==================  ===  =======  ==================  ==================");
3262     ObjectMonitor* cur = NULL;
3263     ObjectMonitor* next = NULL;
3264     if (mark_list_head(&g_om_in_use_list, &cur, &next)) {
3265       // Marked the global in-use list head so process the list.
3266       while (true) {
3267         const oop obj = (oop) cur->object();
3268         const markWord mark = cur->header();
3269         ResourceMark rm;
3270         out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3271                    p2i(cur), cur->is_busy() != 0, mark.hash() != 0,
3272                    cur->owner() != NULL, (int)cur->ref_count(), p2i(obj),
3273                    obj->klass()->external_name());
3274         if (cur->is_busy() != 0) {
3275           out->print(" (%s)", cur->is_busy_to_string(&ss));
3276           ss.reset();
3277         }
3278         out->cr();
3279 
3280         mark_next_for_traversal(&cur, &next);
3281         if (cur == NULL) {
3282           break;
3283         }
3284       }
3285     }
3286   }
3287 
3288   out->print_cr("In-use per-thread monitor info:");
3289   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3290   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3291                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3292   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3293   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3294     ObjectMonitor* cur = NULL;
3295     ObjectMonitor* next = NULL;
3296     if (mark_list_head(&jt->om_in_use_list, &cur, &next)) {
3297       // Marked the global in-use list head so process the list.
3298       while (true) {
3299         const oop obj = (oop) cur->object();
3300         const markWord mark = cur->header();
3301         ResourceMark rm;
3302         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3303                    INTPTR_FORMAT "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3304                    mark.hash() != 0, cur->owner() != NULL, (int)cur->ref_count(),
3305                    p2i(obj), obj->klass()->external_name());
3306         if (cur->is_busy() != 0) {
3307           out->print(" (%s)", cur->is_busy_to_string(&ss));
3308           ss.reset();
3309         }
3310         out->cr();
3311 
3312         mark_next_for_traversal(&cur, &next);
3313         if (cur == NULL) {
3314           break;
3315         }
3316       }
3317     }
3318   }
3319 
3320   out->flush();
3321 }
3322 
3323 // Log counts for the global and per-thread monitor lists and return
3324 // the population count.
3325 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3326   int pop_count = 0;
3327   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3328                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3329   out->print_cr("==================  ==========  ==========  ==========  ==========");
3330   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", g_om_in_use_count,
3331                 g_om_free_count, g_om_wait_count, g_om_population);
3332   pop_count += g_om_in_use_count + g_om_free_count;




3333   if (HandshakeAfterDeflateIdleMonitors) {
3334     pop_count += g_om_wait_count;
3335   }
3336 
3337   out->print_cr("%18s  %10s  %10s  %10s",
3338                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3339   out->print_cr("==================  ==========  ==========  ==========");
3340 
3341   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3342     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3343                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
3344     pop_count += jt->om_in_use_count + jt->om_free_count;



3345   }
3346   return pop_count;
3347 }
3348 
3349 #ifndef PRODUCT
3350 
3351 // Check if monitor belongs to the monitor cache
3352 // The list is grow-only so it's *relatively* safe to traverse
3353 // the list of extant blocks without taking a lock.
3354 
3355 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3356   PaddedObjectMonitor* block = g_block_list;
3357   while (block != NULL) {
3358     assert(block->object() == CHAINMARKER, "must be a block header");
3359     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3360       address mon = (address)monitor;
3361       address blk = (address)block;
3362       size_t diff = mon - blk;
3363       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3364       return 1;
3365     }
3366     // unmarked_next() is not needed with g_block_list (no next field
3367     // marking) and no load_acquire() needed because _next_om is
3368     // updated before g_block_list is changed with cmpxchg().
3369     block = (PaddedObjectMonitor*)block->_next_om;
3370   }
3371   return 0;
3372 }
3373 
3374 #endif
< prev index next >