1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/objectMonitor.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/synchronizer.hpp"
  70 #include "runtime/vframe.inline.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "utilities/copy.hpp"
  73 #include "utilities/dtrace.hpp"
  74 #include "utilities/events.hpp"
  75 #include "utilities/hashtable.inline.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/xmlstream.hpp"
  78 #ifdef COMPILER1
  79 #include "c1/c1_Runtime1.hpp"
  80 #endif
  81 
  82 // Shared stub locations
  83 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  84 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 address             SharedRuntime::_resolve_static_call_entry;
  90 
  91 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 104   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 105   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 106   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 107   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 108   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 109   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 110 
 111 #if COMPILER2_OR_JVMCI
 112   // Vectors are generated only by C2 and JVMCI.
 113   bool support_wide = is_wide_vector(MaxVectorSize);
 114   if (support_wide) {
 115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 116   }
 117 #endif // COMPILER2_OR_JVMCI
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 120 
 121   generate_deopt_blob();
 122 
 123 #ifdef COMPILER2
 124   generate_uncommon_trap_blob();
 125 #endif // COMPILER2
 126 }
 127 
 128 #include <math.h>
 129 
 130 // Implementation of SharedRuntime
 131 
 132 #ifndef PRODUCT
 133 // For statistics
 134 int SharedRuntime::_ic_miss_ctr = 0;
 135 int SharedRuntime::_wrong_method_ctr = 0;
 136 int SharedRuntime::_resolve_static_ctr = 0;
 137 int SharedRuntime::_resolve_virtual_ctr = 0;
 138 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 139 int SharedRuntime::_implicit_null_throws = 0;
 140 int SharedRuntime::_implicit_div0_throws = 0;
 141 int SharedRuntime::_throw_null_ctr = 0;
 142 
 143 int SharedRuntime::_nof_normal_calls = 0;
 144 int SharedRuntime::_nof_optimized_calls = 0;
 145 int SharedRuntime::_nof_inlined_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_calls = 0;
 147 int SharedRuntime::_nof_static_calls = 0;
 148 int SharedRuntime::_nof_inlined_static_calls = 0;
 149 int SharedRuntime::_nof_interface_calls = 0;
 150 int SharedRuntime::_nof_optimized_interface_calls = 0;
 151 int SharedRuntime::_nof_inlined_interface_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 153 int SharedRuntime::_nof_removable_exceptions = 0;
 154 
 155 int SharedRuntime::_new_instance_ctr=0;
 156 int SharedRuntime::_new_array_ctr=0;
 157 int SharedRuntime::_multi1_ctr=0;
 158 int SharedRuntime::_multi2_ctr=0;
 159 int SharedRuntime::_multi3_ctr=0;
 160 int SharedRuntime::_multi4_ctr=0;
 161 int SharedRuntime::_multi5_ctr=0;
 162 int SharedRuntime::_mon_enter_stub_ctr=0;
 163 int SharedRuntime::_mon_exit_stub_ctr=0;
 164 int SharedRuntime::_mon_enter_ctr=0;
 165 int SharedRuntime::_mon_exit_ctr=0;
 166 int SharedRuntime::_partial_subtype_ctr=0;
 167 int SharedRuntime::_jbyte_array_copy_ctr=0;
 168 int SharedRuntime::_jshort_array_copy_ctr=0;
 169 int SharedRuntime::_jint_array_copy_ctr=0;
 170 int SharedRuntime::_jlong_array_copy_ctr=0;
 171 int SharedRuntime::_oop_array_copy_ctr=0;
 172 int SharedRuntime::_checkcast_array_copy_ctr=0;
 173 int SharedRuntime::_unsafe_array_copy_ctr=0;
 174 int SharedRuntime::_generic_array_copy_ctr=0;
 175 int SharedRuntime::_slow_array_copy_ctr=0;
 176 int SharedRuntime::_find_handler_ctr=0;
 177 int SharedRuntime::_rethrow_ctr=0;
 178 
 179 int     SharedRuntime::_ICmiss_index                    = 0;
 180 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 182 
 183 
 184 void SharedRuntime::trace_ic_miss(address at) {
 185   for (int i = 0; i < _ICmiss_index; i++) {
 186     if (_ICmiss_at[i] == at) {
 187       _ICmiss_count[i]++;
 188       return;
 189     }
 190   }
 191   int index = _ICmiss_index++;
 192   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 193   _ICmiss_at[index] = at;
 194   _ICmiss_count[index] = 1;
 195 }
 196 
 197 void SharedRuntime::print_ic_miss_histogram() {
 198   if (ICMissHistogram) {
 199     tty->print_cr("IC Miss Histogram:");
 200     int tot_misses = 0;
 201     for (int i = 0; i < _ICmiss_index; i++) {
 202       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 203       tot_misses += _ICmiss_count[i];
 204     }
 205     tty->print_cr("Total IC misses: %7d", tot_misses);
 206   }
 207 }
 208 #endif // PRODUCT
 209 
 210 
 211 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 212   return x * y;
 213 JRT_END
 214 
 215 
 216 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 217   if (x == min_jlong && y == CONST64(-1)) {
 218     return x;
 219   } else {
 220     return x / y;
 221   }
 222 JRT_END
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 226   if (x == min_jlong && y == CONST64(-1)) {
 227     return 0;
 228   } else {
 229     return x % y;
 230   }
 231 JRT_END
 232 
 233 
 234 const juint  float_sign_mask  = 0x7FFFFFFF;
 235 const juint  float_infinity   = 0x7F800000;
 236 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 237 const julong double_infinity  = CONST64(0x7FF0000000000000);
 238 
 239 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 240 #ifdef _WIN64
 241   // 64-bit Windows on amd64 returns the wrong values for
 242   // infinity operands.
 243   union { jfloat f; juint i; } xbits, ybits;
 244   xbits.f = x;
 245   ybits.f = y;
 246   // x Mod Infinity == x unless x is infinity
 247   if (((xbits.i & float_sign_mask) != float_infinity) &&
 248        ((ybits.i & float_sign_mask) == float_infinity) ) {
 249     return x;
 250   }
 251   return ((jfloat)fmod_winx64((double)x, (double)y));
 252 #else
 253   return ((jfloat)fmod((double)x,(double)y));
 254 #endif
 255 JRT_END
 256 
 257 
 258 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 259 #ifdef _WIN64
 260   union { jdouble d; julong l; } xbits, ybits;
 261   xbits.d = x;
 262   ybits.d = y;
 263   // x Mod Infinity == x unless x is infinity
 264   if (((xbits.l & double_sign_mask) != double_infinity) &&
 265        ((ybits.l & double_sign_mask) == double_infinity) ) {
 266     return x;
 267   }
 268   return ((jdouble)fmod_winx64((double)x, (double)y));
 269 #else
 270   return ((jdouble)fmod((double)x,(double)y));
 271 #endif
 272 JRT_END
 273 
 274 #ifdef __SOFTFP__
 275 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 276   return x + y;
 277 JRT_END
 278 
 279 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 280   return x - y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 284   return x * y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 288   return x / y;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 308   return (jfloat)x;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 312   return (jdouble)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 320   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 324   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 328   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 332   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 333 JRT_END
 334 
 335 // Functions to return the opposite of the aeabi functions for nan.
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 337   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 345   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 353   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 361   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 // Intrinsics make gcc generate code for these.
 369 float  SharedRuntime::fneg(float f)   {
 370   return -f;
 371 }
 372 
 373 double SharedRuntime::dneg(double f)  {
 374   return -f;
 375 }
 376 
 377 #endif // __SOFTFP__
 378 
 379 #if defined(__SOFTFP__) || defined(E500V2)
 380 // Intrinsics make gcc generate code for these.
 381 double SharedRuntime::dabs(double f)  {
 382   return (f <= (double)0.0) ? (double)0.0 - f : f;
 383 }
 384 
 385 #endif
 386 
 387 #if defined(__SOFTFP__) || defined(PPC)
 388 double SharedRuntime::dsqrt(double f) {
 389   return sqrt(f);
 390 }
 391 #endif
 392 
 393 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 394   if (g_isnan(x))
 395     return 0;
 396   if (x >= (jfloat) max_jint)
 397     return max_jint;
 398   if (x <= (jfloat) min_jint)
 399     return min_jint;
 400   return (jint) x;
 401 JRT_END
 402 
 403 
 404 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 405   if (g_isnan(x))
 406     return 0;
 407   if (x >= (jfloat) max_jlong)
 408     return max_jlong;
 409   if (x <= (jfloat) min_jlong)
 410     return min_jlong;
 411   return (jlong) x;
 412 JRT_END
 413 
 414 
 415 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jdouble) max_jint)
 419     return max_jint;
 420   if (x <= (jdouble) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jdouble) max_jlong)
 430     return max_jlong;
 431   if (x <= (jdouble) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 438   return (jfloat)x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 443   return (jfloat)x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 448   return (jdouble)x;
 449 JRT_END
 450 
 451 // Exception handling across interpreter/compiler boundaries
 452 //
 453 // exception_handler_for_return_address(...) returns the continuation address.
 454 // The continuation address is the entry point of the exception handler of the
 455 // previous frame depending on the return address.
 456 
 457 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 458   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 459   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 460 
 461   // Reset method handle flag.
 462   thread->set_is_method_handle_return(false);
 463 
 464 #if INCLUDE_JVMCI
 465   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 466   // and other exception handler continuations do not read it
 467   thread->set_exception_pc(NULL);
 468 #endif // INCLUDE_JVMCI
 469 
 470   // The fastest case first
 471   CodeBlob* blob = CodeCache::find_blob(return_address);
 472   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 473   if (nm != NULL) {
 474     // Set flag if return address is a method handle call site.
 475     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 476     // native nmethods don't have exception handlers
 477     assert(!nm->is_native_method(), "no exception handler");
 478     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 479     if (nm->is_deopt_pc(return_address)) {
 480       // If we come here because of a stack overflow, the stack may be
 481       // unguarded. Reguard the stack otherwise if we return to the
 482       // deopt blob and the stack bang causes a stack overflow we
 483       // crash.
 484       bool guard_pages_enabled = thread->stack_guards_enabled();
 485       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 486       if (thread->reserved_stack_activation() != thread->stack_base()) {
 487         thread->set_reserved_stack_activation(thread->stack_base());
 488       }
 489       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 490       return SharedRuntime::deopt_blob()->unpack_with_exception();
 491     } else {
 492       return nm->exception_begin();
 493     }
 494   }
 495 
 496   // Entry code
 497   if (StubRoutines::returns_to_call_stub(return_address)) {
 498     return StubRoutines::catch_exception_entry();
 499   }
 500   // Interpreted code
 501   if (Interpreter::contains(return_address)) {
 502     return Interpreter::rethrow_exception_entry();
 503   }
 504 
 505   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 506   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 507 
 508 #ifndef PRODUCT
 509   { ResourceMark rm;
 510     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 511     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 512     tty->print_cr("b) other problem");
 513   }
 514 #endif // PRODUCT
 515 
 516   ShouldNotReachHere();
 517   return NULL;
 518 }
 519 
 520 
 521 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 522   return raw_exception_handler_for_return_address(thread, return_address);
 523 JRT_END
 524 
 525 
 526 address SharedRuntime::get_poll_stub(address pc) {
 527   address stub;
 528   // Look up the code blob
 529   CodeBlob *cb = CodeCache::find_blob(pc);
 530 
 531   // Should be an nmethod
 532   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 533 
 534   // Look up the relocation information
 535   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 536     "safepoint polling: type must be poll");
 537 
 538 #ifdef ASSERT
 539   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 540     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 541     Disassembler::decode(cb);
 542     fatal("Only polling locations are used for safepoint");
 543   }
 544 #endif
 545 
 546   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 547   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 548   if (at_poll_return) {
 549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 550            "polling page return stub not created yet");
 551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 552   } else if (has_wide_vectors) {
 553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 554            "polling page vectors safepoint stub not created yet");
 555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 556   } else {
 557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 558            "polling page safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 560   }
 561   log_debug(safepoint)("... found polling page %s exception at pc = "
 562                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 563                        at_poll_return ? "return" : "loop",
 564                        (intptr_t)pc, (intptr_t)stub);
 565   return stub;
 566 }
 567 
 568 
 569 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 570   assert(caller.is_interpreted_frame(), "");
 571   int args_size = ArgumentSizeComputer(sig).size() + 1;
 572   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 573   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 574   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 575   return result;
 576 }
 577 
 578 
 579 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 580   if (JvmtiExport::can_post_on_exceptions()) {
 581     vframeStream vfst(thread, true);
 582     methodHandle method = methodHandle(thread, vfst.method());
 583     address bcp = method()->bcp_from(vfst.bci());
 584     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 585   }
 586   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 587 }
 588 
 589 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 590   Handle h_exception = Exceptions::new_exception(thread, name, message);
 591   throw_and_post_jvmti_exception(thread, h_exception);
 592 }
 593 
 594 // The interpreter code to call this tracing function is only
 595 // called/generated when UL is on for redefine, class and has the right level
 596 // and tags. Since obsolete methods are never compiled, we don't have
 597 // to modify the compilers to generate calls to this function.
 598 //
 599 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 600     JavaThread* thread, Method* method))
 601   if (method->is_obsolete()) {
 602     // We are calling an obsolete method, but this is not necessarily
 603     // an error. Our method could have been redefined just after we
 604     // fetched the Method* from the constant pool.
 605     ResourceMark rm;
 606     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 607   }
 608   return 0;
 609 JRT_END
 610 
 611 // ret_pc points into caller; we are returning caller's exception handler
 612 // for given exception
 613 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 614                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 615   assert(cm != NULL, "must exist");
 616   ResourceMark rm;
 617 
 618 #if INCLUDE_JVMCI
 619   if (cm->is_compiled_by_jvmci()) {
 620     // lookup exception handler for this pc
 621     int catch_pco = ret_pc - cm->code_begin();
 622     ExceptionHandlerTable table(cm);
 623     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 624     if (t != NULL) {
 625       return cm->code_begin() + t->pco();
 626     } else {
 627       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 628     }
 629   }
 630 #endif // INCLUDE_JVMCI
 631 
 632   nmethod* nm = cm->as_nmethod();
 633   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 634   // determine handler bci, if any
 635   EXCEPTION_MARK;
 636 
 637   int handler_bci = -1;
 638   int scope_depth = 0;
 639   if (!force_unwind) {
 640     int bci = sd->bci();
 641     bool recursive_exception = false;
 642     do {
 643       bool skip_scope_increment = false;
 644       // exception handler lookup
 645       Klass* ek = exception->klass();
 646       methodHandle mh(THREAD, sd->method());
 647       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 648       if (HAS_PENDING_EXCEPTION) {
 649         recursive_exception = true;
 650         // We threw an exception while trying to find the exception handler.
 651         // Transfer the new exception to the exception handle which will
 652         // be set into thread local storage, and do another lookup for an
 653         // exception handler for this exception, this time starting at the
 654         // BCI of the exception handler which caused the exception to be
 655         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 656         // argument to ensure that the correct exception is thrown (4870175).
 657         recursive_exception_occurred = true;
 658         exception = Handle(THREAD, PENDING_EXCEPTION);
 659         CLEAR_PENDING_EXCEPTION;
 660         if (handler_bci >= 0) {
 661           bci = handler_bci;
 662           handler_bci = -1;
 663           skip_scope_increment = true;
 664         }
 665       }
 666       else {
 667         recursive_exception = false;
 668       }
 669       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 670         sd = sd->sender();
 671         if (sd != NULL) {
 672           bci = sd->bci();
 673         }
 674         ++scope_depth;
 675       }
 676     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 677   }
 678 
 679   // found handling method => lookup exception handler
 680   int catch_pco = ret_pc - nm->code_begin();
 681 
 682   ExceptionHandlerTable table(nm);
 683   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 684   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 685     // Allow abbreviated catch tables.  The idea is to allow a method
 686     // to materialize its exceptions without committing to the exact
 687     // routing of exceptions.  In particular this is needed for adding
 688     // a synthetic handler to unlock monitors when inlining
 689     // synchronized methods since the unlock path isn't represented in
 690     // the bytecodes.
 691     t = table.entry_for(catch_pco, -1, 0);
 692   }
 693 
 694 #ifdef COMPILER1
 695   if (t == NULL && nm->is_compiled_by_c1()) {
 696     assert(nm->unwind_handler_begin() != NULL, "");
 697     return nm->unwind_handler_begin();
 698   }
 699 #endif
 700 
 701   if (t == NULL) {
 702     ttyLocker ttyl;
 703     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 704     tty->print_cr("   Exception:");
 705     exception->print();
 706     tty->cr();
 707     tty->print_cr(" Compiled exception table :");
 708     table.print();
 709     nm->print_code();
 710     guarantee(false, "missing exception handler");
 711     return NULL;
 712   }
 713 
 714   return nm->code_begin() + t->pco();
 715 }
 716 
 717 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 718   // These errors occur only at call sites
 719   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 720 JRT_END
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 736   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 737   // cache sites (when the callee activation is not yet set up) so we are at a call site
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 742   throw_StackOverflowError_common(thread, false);
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 746   throw_StackOverflowError_common(thread, true);
 747 JRT_END
 748 
 749 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 750   // We avoid using the normal exception construction in this case because
 751   // it performs an upcall to Java, and we're already out of stack space.
 752   Thread* THREAD = thread;
 753   Klass* k = SystemDictionary::StackOverflowError_klass();
 754   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 755   if (delayed) {
 756     java_lang_Throwable::set_message(exception_oop,
 757                                      Universe::delayed_stack_overflow_error_message());
 758   }
 759   Handle exception (thread, exception_oop);
 760   if (StackTraceInThrowable) {
 761     java_lang_Throwable::fill_in_stack_trace(exception);
 762   }
 763   // Increment counter for hs_err file reporting
 764   Atomic::inc(&Exceptions::_stack_overflow_errors);
 765   throw_and_post_jvmti_exception(thread, exception);
 766 }
 767 
 768 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 769                                                            address pc,
 770                                                            ImplicitExceptionKind exception_kind)
 771 {
 772   address target_pc = NULL;
 773 
 774   if (Interpreter::contains(pc)) {
 775 #ifdef CC_INTERP
 776     // C++ interpreter doesn't throw implicit exceptions
 777     ShouldNotReachHere();
 778 #else
 779     switch (exception_kind) {
 780       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 781       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 782       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 783       default:                      ShouldNotReachHere();
 784     }
 785 #endif // !CC_INTERP
 786   } else {
 787     switch (exception_kind) {
 788       case STACK_OVERFLOW: {
 789         // Stack overflow only occurs upon frame setup; the callee is
 790         // going to be unwound. Dispatch to a shared runtime stub
 791         // which will cause the StackOverflowError to be fabricated
 792         // and processed.
 793         // Stack overflow should never occur during deoptimization:
 794         // the compiled method bangs the stack by as much as the
 795         // interpreter would need in case of a deoptimization. The
 796         // deoptimization blob and uncommon trap blob bang the stack
 797         // in a debug VM to verify the correctness of the compiled
 798         // method stack banging.
 799         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 800         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 801         return StubRoutines::throw_StackOverflowError_entry();
 802       }
 803 
 804       case IMPLICIT_NULL: {
 805         if (VtableStubs::contains(pc)) {
 806           // We haven't yet entered the callee frame. Fabricate an
 807           // exception and begin dispatching it in the caller. Since
 808           // the caller was at a call site, it's safe to destroy all
 809           // caller-saved registers, as these entry points do.
 810           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 811 
 812           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 813           if (vt_stub == NULL) return NULL;
 814 
 815           if (vt_stub->is_abstract_method_error(pc)) {
 816             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 817             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 818             // Instead of throwing the abstract method error here directly, we re-resolve
 819             // and will throw the AbstractMethodError during resolve. As a result, we'll
 820             // get a more detailed error message.
 821             return SharedRuntime::get_handle_wrong_method_stub();
 822           } else {
 823             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 824             // Assert that the signal comes from the expected location in stub code.
 825             assert(vt_stub->is_null_pointer_exception(pc),
 826                    "obtained signal from unexpected location in stub code");
 827             return StubRoutines::throw_NullPointerException_at_call_entry();
 828           }
 829         } else {
 830           CodeBlob* cb = CodeCache::find_blob(pc);
 831 
 832           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 833           if (cb == NULL) return NULL;
 834 
 835           // Exception happened in CodeCache. Must be either:
 836           // 1. Inline-cache check in C2I handler blob,
 837           // 2. Inline-cache check in nmethod, or
 838           // 3. Implicit null exception in nmethod
 839 
 840           if (!cb->is_compiled()) {
 841             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 842             if (!is_in_blob) {
 843               // Allow normal crash reporting to handle this
 844               return NULL;
 845             }
 846             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 847             // There is no handler here, so we will simply unwind.
 848             return StubRoutines::throw_NullPointerException_at_call_entry();
 849           }
 850 
 851           // Otherwise, it's a compiled method.  Consult its exception handlers.
 852           CompiledMethod* cm = (CompiledMethod*)cb;
 853           if (cm->inlinecache_check_contains(pc)) {
 854             // exception happened inside inline-cache check code
 855             // => the nmethod is not yet active (i.e., the frame
 856             // is not set up yet) => use return address pushed by
 857             // caller => don't push another return address
 858             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 859             return StubRoutines::throw_NullPointerException_at_call_entry();
 860           }
 861 
 862           if (cm->method()->is_method_handle_intrinsic()) {
 863             // exception happened inside MH dispatch code, similar to a vtable stub
 864             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 865             return StubRoutines::throw_NullPointerException_at_call_entry();
 866           }
 867 
 868 #ifndef PRODUCT
 869           _implicit_null_throws++;
 870 #endif
 871           target_pc = cm->continuation_for_implicit_null_exception(pc);
 872           // If there's an unexpected fault, target_pc might be NULL,
 873           // in which case we want to fall through into the normal
 874           // error handling code.
 875         }
 876 
 877         break; // fall through
 878       }
 879 
 880 
 881       case IMPLICIT_DIVIDE_BY_ZERO: {
 882         CompiledMethod* cm = CodeCache::find_compiled(pc);
 883         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 884 #ifndef PRODUCT
 885         _implicit_div0_throws++;
 886 #endif
 887         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 888         // If there's an unexpected fault, target_pc might be NULL,
 889         // in which case we want to fall through into the normal
 890         // error handling code.
 891         break; // fall through
 892       }
 893 
 894       default: ShouldNotReachHere();
 895     }
 896 
 897     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 898 
 899     if (exception_kind == IMPLICIT_NULL) {
 900 #ifndef PRODUCT
 901       // for AbortVMOnException flag
 902       Exceptions::debug_check_abort("java.lang.NullPointerException");
 903 #endif //PRODUCT
 904       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 905     } else {
 906 #ifndef PRODUCT
 907       // for AbortVMOnException flag
 908       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 909 #endif //PRODUCT
 910       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 911     }
 912     return target_pc;
 913   }
 914 
 915   ShouldNotReachHere();
 916   return NULL;
 917 }
 918 
 919 
 920 /**
 921  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 922  * installed in the native function entry of all native Java methods before
 923  * they get linked to their actual native methods.
 924  *
 925  * \note
 926  * This method actually never gets called!  The reason is because
 927  * the interpreter's native entries call NativeLookup::lookup() which
 928  * throws the exception when the lookup fails.  The exception is then
 929  * caught and forwarded on the return from NativeLookup::lookup() call
 930  * before the call to the native function.  This might change in the future.
 931  */
 932 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 933 {
 934   // We return a bad value here to make sure that the exception is
 935   // forwarded before we look at the return value.
 936   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 937 }
 938 JNI_END
 939 
 940 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 941   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 942 }
 943 
 944 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 945 #if INCLUDE_JVMCI
 946   if (!obj->klass()->has_finalizer()) {
 947     return;
 948   }
 949 #endif // INCLUDE_JVMCI
 950   assert(oopDesc::is_oop(obj), "must be a valid oop");
 951   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 952   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 953 JRT_END
 954 
 955 
 956 jlong SharedRuntime::get_java_tid(Thread* thread) {
 957   if (thread != NULL) {
 958     if (thread->is_Java_thread()) {
 959       oop obj = ((JavaThread*)thread)->threadObj();
 960       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 961     }
 962   }
 963   return 0;
 964 }
 965 
 966 /**
 967  * This function ought to be a void function, but cannot be because
 968  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 969  * 6254741.  Once that is fixed we can remove the dummy return value.
 970  */
 971 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 972   return dtrace_object_alloc_base(Thread::current(), o, size);
 973 }
 974 
 975 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 976   assert(DTraceAllocProbes, "wrong call");
 977   Klass* klass = o->klass();
 978   Symbol* name = klass->name();
 979   HOTSPOT_OBJECT_ALLOC(
 980                    get_java_tid(thread),
 981                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 982   return 0;
 983 }
 984 
 985 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 986     JavaThread* thread, Method* method))
 987   assert(DTraceMethodProbes, "wrong call");
 988   Symbol* kname = method->klass_name();
 989   Symbol* name = method->name();
 990   Symbol* sig = method->signature();
 991   HOTSPOT_METHOD_ENTRY(
 992       get_java_tid(thread),
 993       (char *) kname->bytes(), kname->utf8_length(),
 994       (char *) name->bytes(), name->utf8_length(),
 995       (char *) sig->bytes(), sig->utf8_length());
 996   return 0;
 997 JRT_END
 998 
 999 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1000     JavaThread* thread, Method* method))
1001   assert(DTraceMethodProbes, "wrong call");
1002   Symbol* kname = method->klass_name();
1003   Symbol* name = method->name();
1004   Symbol* sig = method->signature();
1005   HOTSPOT_METHOD_RETURN(
1006       get_java_tid(thread),
1007       (char *) kname->bytes(), kname->utf8_length(),
1008       (char *) name->bytes(), name->utf8_length(),
1009       (char *) sig->bytes(), sig->utf8_length());
1010   return 0;
1011 JRT_END
1012 
1013 
1014 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1015 // for a call current in progress, i.e., arguments has been pushed on stack
1016 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1017 // vtable updates, etc.  Caller frame must be compiled.
1018 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1019   ResourceMark rm(THREAD);
1020 
1021   // last java frame on stack (which includes native call frames)
1022   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1023 
1024   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1025 }
1026 
1027 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1028   CompiledMethod* caller = vfst.nm();
1029 
1030   nmethodLocker caller_lock(caller);
1031 
1032   address pc = vfst.frame_pc();
1033   { // Get call instruction under lock because another thread may be busy patching it.
1034     CompiledICLocker ic_locker(caller);
1035     return caller->attached_method_before_pc(pc);
1036   }
1037   return NULL;
1038 }
1039 
1040 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1041 // for a call current in progress, i.e., arguments has been pushed on stack
1042 // but callee has not been invoked yet.  Caller frame must be compiled.
1043 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1044                                               vframeStream& vfst,
1045                                               Bytecodes::Code& bc,
1046                                               CallInfo& callinfo, TRAPS) {
1047   Handle receiver;
1048   Handle nullHandle;  //create a handy null handle for exception returns
1049 
1050   assert(!vfst.at_end(), "Java frame must exist");
1051 
1052   // Find caller and bci from vframe
1053   methodHandle caller(THREAD, vfst.method());
1054   int          bci   = vfst.bci();
1055 
1056   Bytecode_invoke bytecode(caller, bci);
1057   int bytecode_index = bytecode.index();
1058   bc = bytecode.invoke_code();
1059 
1060   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1061   if (attached_method.not_null()) {
1062     Method* callee = bytecode.static_target(CHECK_NH);
1063     vmIntrinsics::ID id = callee->intrinsic_id();
1064     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1065     // it attaches statically resolved method to the call site.
1066     if (MethodHandles::is_signature_polymorphic(id) &&
1067         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1068       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1069 
1070       // Adjust invocation mode according to the attached method.
1071       switch (bc) {
1072         case Bytecodes::_invokevirtual:
1073           if (attached_method->method_holder()->is_interface()) {
1074             bc = Bytecodes::_invokeinterface;
1075           }
1076           break;
1077         case Bytecodes::_invokeinterface:
1078           if (!attached_method->method_holder()->is_interface()) {
1079             bc = Bytecodes::_invokevirtual;
1080           }
1081           break;
1082         case Bytecodes::_invokehandle:
1083           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1084             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1085                                               : Bytecodes::_invokevirtual;
1086           }
1087           break;
1088         default:
1089           break;
1090       }
1091     }
1092   }
1093 
1094   assert(bc != Bytecodes::_illegal, "not initialized");
1095 
1096   bool has_receiver = bc != Bytecodes::_invokestatic &&
1097                       bc != Bytecodes::_invokedynamic &&
1098                       bc != Bytecodes::_invokehandle;
1099 
1100   // Find receiver for non-static call
1101   if (has_receiver) {
1102     // This register map must be update since we need to find the receiver for
1103     // compiled frames. The receiver might be in a register.
1104     RegisterMap reg_map2(thread);
1105     frame stubFrame   = thread->last_frame();
1106     // Caller-frame is a compiled frame
1107     frame callerFrame = stubFrame.sender(&reg_map2);
1108 
1109     if (attached_method.is_null()) {
1110       Method* callee = bytecode.static_target(CHECK_NH);
1111       if (callee == NULL) {
1112         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1113       }
1114     }
1115 
1116     // Retrieve from a compiled argument list
1117     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1118 
1119     if (receiver.is_null()) {
1120       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1121     }
1122   }
1123 
1124   // Resolve method
1125   if (attached_method.not_null()) {
1126     // Parameterized by attached method.
1127     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1128   } else {
1129     // Parameterized by bytecode.
1130     constantPoolHandle constants(THREAD, caller->constants());
1131     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1132   }
1133 
1134 #ifdef ASSERT
1135   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1136   if (has_receiver) {
1137     assert(receiver.not_null(), "should have thrown exception");
1138     Klass* receiver_klass = receiver->klass();
1139     Klass* rk = NULL;
1140     if (attached_method.not_null()) {
1141       // In case there's resolved method attached, use its holder during the check.
1142       rk = attached_method->method_holder();
1143     } else {
1144       // Klass is already loaded.
1145       constantPoolHandle constants(THREAD, caller->constants());
1146       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1147     }
1148     Klass* static_receiver_klass = rk;
1149     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1150            "actual receiver must be subclass of static receiver klass");
1151     if (receiver_klass->is_instance_klass()) {
1152       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1153         tty->print_cr("ERROR: Klass not yet initialized!!");
1154         receiver_klass->print();
1155       }
1156       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1157     }
1158   }
1159 #endif
1160 
1161   return receiver;
1162 }
1163 
1164 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1165   ResourceMark rm(THREAD);
1166   // We need first to check if any Java activations (compiled, interpreted)
1167   // exist on the stack since last JavaCall.  If not, we need
1168   // to get the target method from the JavaCall wrapper.
1169   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1170   methodHandle callee_method;
1171   if (vfst.at_end()) {
1172     // No Java frames were found on stack since we did the JavaCall.
1173     // Hence the stack can only contain an entry_frame.  We need to
1174     // find the target method from the stub frame.
1175     RegisterMap reg_map(thread, false);
1176     frame fr = thread->last_frame();
1177     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1178     fr = fr.sender(&reg_map);
1179     assert(fr.is_entry_frame(), "must be");
1180     // fr is now pointing to the entry frame.
1181     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1182   } else {
1183     Bytecodes::Code bc;
1184     CallInfo callinfo;
1185     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1186     callee_method = methodHandle(THREAD, callinfo.selected_method());
1187   }
1188   assert(callee_method()->is_method(), "must be");
1189   return callee_method;
1190 }
1191 
1192 // Resolves a call.
1193 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1194                                            bool is_virtual,
1195                                            bool is_optimized, TRAPS) {
1196   methodHandle callee_method;
1197   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1198   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1199     int retry_count = 0;
1200     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1201            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1202       // If has a pending exception then there is no need to re-try to
1203       // resolve this method.
1204       // If the method has been redefined, we need to try again.
1205       // Hack: we have no way to update the vtables of arrays, so don't
1206       // require that java.lang.Object has been updated.
1207 
1208       // It is very unlikely that method is redefined more than 100 times
1209       // in the middle of resolve. If it is looping here more than 100 times
1210       // means then there could be a bug here.
1211       guarantee((retry_count++ < 100),
1212                 "Could not resolve to latest version of redefined method");
1213       // method is redefined in the middle of resolve so re-try.
1214       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1215     }
1216   }
1217   return callee_method;
1218 }
1219 
1220 // This fails if resolution required refilling of IC stubs
1221 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1222                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1223                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1224   StaticCallInfo static_call_info;
1225   CompiledICInfo virtual_call_info;
1226 
1227   // Make sure the callee nmethod does not get deoptimized and removed before
1228   // we are done patching the code.
1229   CompiledMethod* callee = callee_method->code();
1230 
1231   if (callee != NULL) {
1232     assert(callee->is_compiled(), "must be nmethod for patching");
1233   }
1234 
1235   if (callee != NULL && !callee->is_in_use()) {
1236     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1237     callee = NULL;
1238   }
1239   nmethodLocker nl_callee(callee);
1240 #ifdef ASSERT
1241   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1242 #endif
1243 
1244   bool is_nmethod = caller_nm->is_nmethod();
1245 
1246   if (is_virtual) {
1247     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1248     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1249     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1250     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1251                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1252                      CHECK_false);
1253   } else {
1254     // static call
1255     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1256   }
1257 
1258   // grab lock, check for deoptimization and potentially patch caller
1259   {
1260     CompiledICLocker ml(caller_nm);
1261 
1262     // Lock blocks for safepoint during which both nmethods can change state.
1263 
1264     // Now that we are ready to patch if the Method* was redefined then
1265     // don't update call site and let the caller retry.
1266     // Don't update call site if callee nmethod was unloaded or deoptimized.
1267     // Don't update call site if callee nmethod was replaced by an other nmethod
1268     // which may happen when multiply alive nmethod (tiered compilation)
1269     // will be supported.
1270     if (!callee_method->is_old() &&
1271         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1272       NoSafepointVerifier nsv;
1273 #ifdef ASSERT
1274       // We must not try to patch to jump to an already unloaded method.
1275       if (dest_entry_point != 0) {
1276         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1277         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1278                "should not call unloaded nmethod");
1279       }
1280 #endif
1281       if (is_virtual) {
1282         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1283         if (inline_cache->is_clean()) {
1284           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1285             return false;
1286           }
1287         }
1288       } else {
1289         if (VM_Version::supports_fast_class_init_checks() &&
1290             invoke_code == Bytecodes::_invokestatic &&
1291             callee_method->needs_clinit_barrier() &&
1292             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1293           return true; // skip patching for JVMCI or AOT code
1294         }
1295         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1296         if (ssc->is_clean()) ssc->set(static_call_info);
1297       }
1298     }
1299   } // unlock CompiledICLocker
1300   return true;
1301 }
1302 
1303 // Resolves a call.  The compilers generate code for calls that go here
1304 // and are patched with the real destination of the call.
1305 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1306                                                bool is_virtual,
1307                                                bool is_optimized, TRAPS) {
1308 
1309   ResourceMark rm(thread);
1310   RegisterMap cbl_map(thread, false);
1311   frame caller_frame = thread->last_frame().sender(&cbl_map);
1312 
1313   CodeBlob* caller_cb = caller_frame.cb();
1314   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1315   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1316 
1317   // make sure caller is not getting deoptimized
1318   // and removed before we are done with it.
1319   // CLEANUP - with lazy deopt shouldn't need this lock
1320   nmethodLocker caller_lock(caller_nm);
1321 
1322   // determine call info & receiver
1323   // note: a) receiver is NULL for static calls
1324   //       b) an exception is thrown if receiver is NULL for non-static calls
1325   CallInfo call_info;
1326   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1327   Handle receiver = find_callee_info(thread, invoke_code,
1328                                      call_info, CHECK_(methodHandle()));
1329   methodHandle callee_method(THREAD, call_info.selected_method());
1330 
1331   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1332          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1333          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1334          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1335          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1336 
1337   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1338 
1339 #ifndef PRODUCT
1340   // tracing/debugging/statistics
1341   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1342                 (is_virtual) ? (&_resolve_virtual_ctr) :
1343                                (&_resolve_static_ctr);
1344   Atomic::inc(addr);
1345 
1346   if (TraceCallFixup) {
1347     ResourceMark rm(thread);
1348     tty->print("resolving %s%s (%s) call to",
1349       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1350       Bytecodes::name(invoke_code));
1351     callee_method->print_short_name(tty);
1352     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1353                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1354   }
1355 #endif
1356 
1357   if (invoke_code == Bytecodes::_invokestatic) {
1358     assert(callee_method->method_holder()->is_initialized() ||
1359            callee_method->method_holder()->is_reentrant_initialization(thread),
1360            "invalid class initialization state for invoke_static");
1361     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1362       // In order to keep class initialization check, do not patch call
1363       // site for static call when the class is not fully initialized.
1364       // Proper check is enforced by call site re-resolution on every invocation.
1365       //
1366       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1367       // explicit class initialization check is put in nmethod entry (VEP).
1368       assert(callee_method->method_holder()->is_linked(), "must be");
1369       return callee_method;
1370     }
1371   }
1372 
1373   // JSR 292 key invariant:
1374   // If the resolved method is a MethodHandle invoke target, the call
1375   // site must be a MethodHandle call site, because the lambda form might tail-call
1376   // leaving the stack in a state unknown to either caller or callee
1377   // TODO detune for now but we might need it again
1378 //  assert(!callee_method->is_compiled_lambda_form() ||
1379 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1380 
1381   // Compute entry points. This might require generation of C2I converter
1382   // frames, so we cannot be holding any locks here. Furthermore, the
1383   // computation of the entry points is independent of patching the call.  We
1384   // always return the entry-point, but we only patch the stub if the call has
1385   // not been deoptimized.  Return values: For a virtual call this is an
1386   // (cached_oop, destination address) pair. For a static call/optimized
1387   // virtual this is just a destination address.
1388 
1389   // Patching IC caches may fail if we run out if transition stubs.
1390   // We refill the ic stubs then and try again.
1391   for (;;) {
1392     ICRefillVerifier ic_refill_verifier;
1393     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1394                                                   is_virtual, is_optimized, receiver,
1395                                                   call_info, invoke_code, CHECK_(methodHandle()));
1396     if (successful) {
1397       return callee_method;
1398     } else {
1399       InlineCacheBuffer::refill_ic_stubs();
1400     }
1401   }
1402 
1403 }
1404 
1405 
1406 // Inline caches exist only in compiled code
1407 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1408 #ifdef ASSERT
1409   RegisterMap reg_map(thread, false);
1410   frame stub_frame = thread->last_frame();
1411   assert(stub_frame.is_runtime_frame(), "sanity check");
1412   frame caller_frame = stub_frame.sender(&reg_map);
1413   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1414 #endif /* ASSERT */
1415 
1416   methodHandle callee_method;
1417   JRT_BLOCK
1418     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1419     // Return Method* through TLS
1420     thread->set_vm_result_2(callee_method());
1421   JRT_BLOCK_END
1422   // return compiled code entry point after potential safepoints
1423   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1424   return callee_method->verified_code_entry();
1425 JRT_END
1426 
1427 
1428 // Handle call site that has been made non-entrant
1429 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1430   // 6243940 We might end up in here if the callee is deoptimized
1431   // as we race to call it.  We don't want to take a safepoint if
1432   // the caller was interpreted because the caller frame will look
1433   // interpreted to the stack walkers and arguments are now
1434   // "compiled" so it is much better to make this transition
1435   // invisible to the stack walking code. The i2c path will
1436   // place the callee method in the callee_target. It is stashed
1437   // there because if we try and find the callee by normal means a
1438   // safepoint is possible and have trouble gc'ing the compiled args.
1439   RegisterMap reg_map(thread, false);
1440   frame stub_frame = thread->last_frame();
1441   assert(stub_frame.is_runtime_frame(), "sanity check");
1442   frame caller_frame = stub_frame.sender(&reg_map);
1443 
1444   if (caller_frame.is_interpreted_frame() ||
1445       caller_frame.is_entry_frame()) {
1446     Method* callee = thread->callee_target();
1447     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1448     thread->set_vm_result_2(callee);
1449     thread->set_callee_target(NULL);
1450     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1451       // Bypass class initialization checks in c2i when caller is in native.
1452       // JNI calls to static methods don't have class initialization checks.
1453       // Fast class initialization checks are present in c2i adapters and call into
1454       // SharedRuntime::handle_wrong_method() on the slow path.
1455       //
1456       // JVM upcalls may land here as well, but there's a proper check present in
1457       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1458       // so bypassing it in c2i adapter is benign.
1459       return callee->get_c2i_no_clinit_check_entry();
1460     } else {
1461       return callee->get_c2i_entry();
1462     }
1463   }
1464 
1465   // Must be compiled to compiled path which is safe to stackwalk
1466   methodHandle callee_method;
1467   JRT_BLOCK
1468     // Force resolving of caller (if we called from compiled frame)
1469     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1470     thread->set_vm_result_2(callee_method());
1471   JRT_BLOCK_END
1472   // return compiled code entry point after potential safepoints
1473   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1474   return callee_method->verified_code_entry();
1475 JRT_END
1476 
1477 // Handle abstract method call
1478 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1479   // Verbose error message for AbstractMethodError.
1480   // Get the called method from the invoke bytecode.
1481   vframeStream vfst(thread, true);
1482   assert(!vfst.at_end(), "Java frame must exist");
1483   methodHandle caller(thread, vfst.method());
1484   Bytecode_invoke invoke(caller, vfst.bci());
1485   DEBUG_ONLY( invoke.verify(); )
1486 
1487   // Find the compiled caller frame.
1488   RegisterMap reg_map(thread);
1489   frame stubFrame = thread->last_frame();
1490   assert(stubFrame.is_runtime_frame(), "must be");
1491   frame callerFrame = stubFrame.sender(&reg_map);
1492   assert(callerFrame.is_compiled_frame(), "must be");
1493 
1494   // Install exception and return forward entry.
1495   address res = StubRoutines::throw_AbstractMethodError_entry();
1496   JRT_BLOCK
1497     methodHandle callee(thread, invoke.static_target(thread));
1498     if (!callee.is_null()) {
1499       oop recv = callerFrame.retrieve_receiver(&reg_map);
1500       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1501       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1502       res = StubRoutines::forward_exception_entry();
1503     }
1504   JRT_BLOCK_END
1505   return res;
1506 JRT_END
1507 
1508 
1509 // resolve a static call and patch code
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1511   methodHandle callee_method;
1512   JRT_BLOCK
1513     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1514     thread->set_vm_result_2(callee_method());
1515   JRT_BLOCK_END
1516   // return compiled code entry point after potential safepoints
1517   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518   return callee_method->verified_code_entry();
1519 JRT_END
1520 
1521 
1522 // resolve virtual call and update inline cache to monomorphic
1523 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1524   methodHandle callee_method;
1525   JRT_BLOCK
1526     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1527     thread->set_vm_result_2(callee_method());
1528   JRT_BLOCK_END
1529   // return compiled code entry point after potential safepoints
1530   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1531   return callee_method->verified_code_entry();
1532 JRT_END
1533 
1534 
1535 // Resolve a virtual call that can be statically bound (e.g., always
1536 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1537 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1538   methodHandle callee_method;
1539   JRT_BLOCK
1540     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1541     thread->set_vm_result_2(callee_method());
1542   JRT_BLOCK_END
1543   // return compiled code entry point after potential safepoints
1544   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1545   return callee_method->verified_code_entry();
1546 JRT_END
1547 
1548 // The handle_ic_miss_helper_internal function returns false if it failed due
1549 // to either running out of vtable stubs or ic stubs due to IC transitions
1550 // to transitional states. The needs_ic_stub_refill value will be set if
1551 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1552 // refills the IC stubs and tries again.
1553 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1554                                                    const frame& caller_frame, methodHandle callee_method,
1555                                                    Bytecodes::Code bc, CallInfo& call_info,
1556                                                    bool& needs_ic_stub_refill, TRAPS) {
1557   CompiledICLocker ml(caller_nm);
1558   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1559   bool should_be_mono = false;
1560   if (inline_cache->is_optimized()) {
1561     if (TraceCallFixup) {
1562       ResourceMark rm(THREAD);
1563       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1564       callee_method->print_short_name(tty);
1565       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1566     }
1567     should_be_mono = true;
1568   } else if (inline_cache->is_icholder_call()) {
1569     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1570     if (ic_oop != NULL) {
1571       if (!ic_oop->is_loader_alive()) {
1572         // Deferred IC cleaning due to concurrent class unloading
1573         if (!inline_cache->set_to_clean()) {
1574           needs_ic_stub_refill = true;
1575           return false;
1576         }
1577       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1578         // This isn't a real miss. We must have seen that compiled code
1579         // is now available and we want the call site converted to a
1580         // monomorphic compiled call site.
1581         // We can't assert for callee_method->code() != NULL because it
1582         // could have been deoptimized in the meantime
1583         if (TraceCallFixup) {
1584           ResourceMark rm(THREAD);
1585           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1586           callee_method->print_short_name(tty);
1587           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1588         }
1589         should_be_mono = true;
1590       }
1591     }
1592   }
1593 
1594   if (should_be_mono) {
1595     // We have a path that was monomorphic but was going interpreted
1596     // and now we have (or had) a compiled entry. We correct the IC
1597     // by using a new icBuffer.
1598     CompiledICInfo info;
1599     Klass* receiver_klass = receiver()->klass();
1600     inline_cache->compute_monomorphic_entry(callee_method,
1601                                             receiver_klass,
1602                                             inline_cache->is_optimized(),
1603                                             false, caller_nm->is_nmethod(),
1604                                             info, CHECK_false);
1605     if (!inline_cache->set_to_monomorphic(info)) {
1606       needs_ic_stub_refill = true;
1607       return false;
1608     }
1609   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1610     // Potential change to megamorphic
1611 
1612     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1613     if (needs_ic_stub_refill) {
1614       return false;
1615     }
1616     if (!successful) {
1617       if (!inline_cache->set_to_clean()) {
1618         needs_ic_stub_refill = true;
1619         return false;
1620       }
1621     }
1622   } else {
1623     // Either clean or megamorphic
1624   }
1625   return true;
1626 }
1627 
1628 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1629   ResourceMark rm(thread);
1630   CallInfo call_info;
1631   Bytecodes::Code bc;
1632 
1633   // receiver is NULL for static calls. An exception is thrown for NULL
1634   // receivers for non-static calls
1635   Handle receiver = find_callee_info(thread, bc, call_info,
1636                                      CHECK_(methodHandle()));
1637   // Compiler1 can produce virtual call sites that can actually be statically bound
1638   // If we fell thru to below we would think that the site was going megamorphic
1639   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1640   // we'd try and do a vtable dispatch however methods that can be statically bound
1641   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1642   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1643   // plain ic_miss) and the site will be converted to an optimized virtual call site
1644   // never to miss again. I don't believe C2 will produce code like this but if it
1645   // did this would still be the correct thing to do for it too, hence no ifdef.
1646   //
1647   if (call_info.resolved_method()->can_be_statically_bound()) {
1648     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1649     if (TraceCallFixup) {
1650       RegisterMap reg_map(thread, false);
1651       frame caller_frame = thread->last_frame().sender(&reg_map);
1652       ResourceMark rm(thread);
1653       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1654       callee_method->print_short_name(tty);
1655       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1656       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1657     }
1658     return callee_method;
1659   }
1660 
1661   methodHandle callee_method(thread, call_info.selected_method());
1662 
1663 #ifndef PRODUCT
1664   Atomic::inc(&_ic_miss_ctr);
1665 
1666   // Statistics & Tracing
1667   if (TraceCallFixup) {
1668     ResourceMark rm(thread);
1669     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1670     callee_method->print_short_name(tty);
1671     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1672   }
1673 
1674   if (ICMissHistogram) {
1675     MutexLocker m(VMStatistic_lock);
1676     RegisterMap reg_map(thread, false);
1677     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1678     // produce statistics under the lock
1679     trace_ic_miss(f.pc());
1680   }
1681 #endif
1682 
1683   // install an event collector so that when a vtable stub is created the
1684   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1685   // event can't be posted when the stub is created as locks are held
1686   // - instead the event will be deferred until the event collector goes
1687   // out of scope.
1688   JvmtiDynamicCodeEventCollector event_collector;
1689 
1690   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1691   // Transitioning IC caches may require transition stubs. If we run out
1692   // of transition stubs, we have to drop locks and perform a safepoint
1693   // that refills them.
1694   RegisterMap reg_map(thread, false);
1695   frame caller_frame = thread->last_frame().sender(&reg_map);
1696   CodeBlob* cb = caller_frame.cb();
1697   CompiledMethod* caller_nm = cb->as_compiled_method();
1698 
1699   for (;;) {
1700     ICRefillVerifier ic_refill_verifier;
1701     bool needs_ic_stub_refill = false;
1702     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1703                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1704     if (successful || !needs_ic_stub_refill) {
1705       return callee_method;
1706     } else {
1707       InlineCacheBuffer::refill_ic_stubs();
1708     }
1709   }
1710 }
1711 
1712 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1713   CompiledICLocker ml(caller_nm);
1714   if (is_static_call) {
1715     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1716     if (!ssc->is_clean()) {
1717       return ssc->set_to_clean();
1718     }
1719   } else {
1720     // compiled, dispatched call (which used to call an interpreted method)
1721     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1722     if (!inline_cache->is_clean()) {
1723       return inline_cache->set_to_clean();
1724     }
1725   }
1726   return true;
1727 }
1728 
1729 //
1730 // Resets a call-site in compiled code so it will get resolved again.
1731 // This routines handles both virtual call sites, optimized virtual call
1732 // sites, and static call sites. Typically used to change a call sites
1733 // destination from compiled to interpreted.
1734 //
1735 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1736   ResourceMark rm(thread);
1737   RegisterMap reg_map(thread, false);
1738   frame stub_frame = thread->last_frame();
1739   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1740   frame caller = stub_frame.sender(&reg_map);
1741 
1742   // Do nothing if the frame isn't a live compiled frame.
1743   // nmethod could be deoptimized by the time we get here
1744   // so no update to the caller is needed.
1745 
1746   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1747 
1748     address pc = caller.pc();
1749 
1750     // Check for static or virtual call
1751     bool is_static_call = false;
1752     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1753 
1754     // Default call_addr is the location of the "basic" call.
1755     // Determine the address of the call we a reresolving. With
1756     // Inline Caches we will always find a recognizable call.
1757     // With Inline Caches disabled we may or may not find a
1758     // recognizable call. We will always find a call for static
1759     // calls and for optimized virtual calls. For vanilla virtual
1760     // calls it depends on the state of the UseInlineCaches switch.
1761     //
1762     // With Inline Caches disabled we can get here for a virtual call
1763     // for two reasons:
1764     //   1 - calling an abstract method. The vtable for abstract methods
1765     //       will run us thru handle_wrong_method and we will eventually
1766     //       end up in the interpreter to throw the ame.
1767     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1768     //       call and between the time we fetch the entry address and
1769     //       we jump to it the target gets deoptimized. Similar to 1
1770     //       we will wind up in the interprter (thru a c2i with c2).
1771     //
1772     address call_addr = NULL;
1773     {
1774       // Get call instruction under lock because another thread may be
1775       // busy patching it.
1776       CompiledICLocker ml(caller_nm);
1777       // Location of call instruction
1778       call_addr = caller_nm->call_instruction_address(pc);
1779     }
1780     // Make sure nmethod doesn't get deoptimized and removed until
1781     // this is done with it.
1782     // CLEANUP - with lazy deopt shouldn't need this lock
1783     nmethodLocker nmlock(caller_nm);
1784 
1785     if (call_addr != NULL) {
1786       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1787       int ret = iter.next(); // Get item
1788       if (ret) {
1789         assert(iter.addr() == call_addr, "must find call");
1790         if (iter.type() == relocInfo::static_call_type) {
1791           is_static_call = true;
1792         } else {
1793           assert(iter.type() == relocInfo::virtual_call_type ||
1794                  iter.type() == relocInfo::opt_virtual_call_type
1795                 , "unexpected relocInfo. type");
1796         }
1797       } else {
1798         assert(!UseInlineCaches, "relocation info. must exist for this address");
1799       }
1800 
1801       // Cleaning the inline cache will force a new resolve. This is more robust
1802       // than directly setting it to the new destination, since resolving of calls
1803       // is always done through the same code path. (experience shows that it
1804       // leads to very hard to track down bugs, if an inline cache gets updated
1805       // to a wrong method). It should not be performance critical, since the
1806       // resolve is only done once.
1807 
1808       for (;;) {
1809         ICRefillVerifier ic_refill_verifier;
1810         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1811           InlineCacheBuffer::refill_ic_stubs();
1812         } else {
1813           break;
1814         }
1815       }
1816     }
1817   }
1818 
1819   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1820 
1821 
1822 #ifndef PRODUCT
1823   Atomic::inc(&_wrong_method_ctr);
1824 
1825   if (TraceCallFixup) {
1826     ResourceMark rm(thread);
1827     tty->print("handle_wrong_method reresolving call to");
1828     callee_method->print_short_name(tty);
1829     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1830   }
1831 #endif
1832 
1833   return callee_method;
1834 }
1835 
1836 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1837   // The faulting unsafe accesses should be changed to throw the error
1838   // synchronously instead. Meanwhile the faulting instruction will be
1839   // skipped over (effectively turning it into a no-op) and an
1840   // asynchronous exception will be raised which the thread will
1841   // handle at a later point. If the instruction is a load it will
1842   // return garbage.
1843 
1844   // Request an async exception.
1845   thread->set_pending_unsafe_access_error();
1846 
1847   // Return address of next instruction to execute.
1848   return next_pc;
1849 }
1850 
1851 #ifdef ASSERT
1852 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1853                                                                 const BasicType* sig_bt,
1854                                                                 const VMRegPair* regs) {
1855   ResourceMark rm;
1856   const int total_args_passed = method->size_of_parameters();
1857   const VMRegPair*    regs_with_member_name = regs;
1858         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1859 
1860   const int member_arg_pos = total_args_passed - 1;
1861   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1862   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1863 
1864   const bool is_outgoing = method->is_method_handle_intrinsic();
1865   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1866 
1867   for (int i = 0; i < member_arg_pos; i++) {
1868     VMReg a =    regs_with_member_name[i].first();
1869     VMReg b = regs_without_member_name[i].first();
1870     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1871   }
1872   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1873 }
1874 #endif
1875 
1876 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1877   if (destination != entry_point) {
1878     CodeBlob* callee = CodeCache::find_blob(destination);
1879     // callee == cb seems weird. It means calling interpreter thru stub.
1880     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1881       // static call or optimized virtual
1882       if (TraceCallFixup) {
1883         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1884         moop->print_short_name(tty);
1885         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1886       }
1887       return true;
1888     } else {
1889       if (TraceCallFixup) {
1890         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1891         moop->print_short_name(tty);
1892         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1893       }
1894       // assert is too strong could also be resolve destinations.
1895       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1896     }
1897   } else {
1898     if (TraceCallFixup) {
1899       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1900       moop->print_short_name(tty);
1901       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1902     }
1903   }
1904   return false;
1905 }
1906 
1907 // ---------------------------------------------------------------------------
1908 // We are calling the interpreter via a c2i. Normally this would mean that
1909 // we were called by a compiled method. However we could have lost a race
1910 // where we went int -> i2c -> c2i and so the caller could in fact be
1911 // interpreted. If the caller is compiled we attempt to patch the caller
1912 // so he no longer calls into the interpreter.
1913 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1914   Method* moop(method);
1915 
1916   address entry_point = moop->from_compiled_entry_no_trampoline();
1917 
1918   // It's possible that deoptimization can occur at a call site which hasn't
1919   // been resolved yet, in which case this function will be called from
1920   // an nmethod that has been patched for deopt and we can ignore the
1921   // request for a fixup.
1922   // Also it is possible that we lost a race in that from_compiled_entry
1923   // is now back to the i2c in that case we don't need to patch and if
1924   // we did we'd leap into space because the callsite needs to use
1925   // "to interpreter" stub in order to load up the Method*. Don't
1926   // ask me how I know this...
1927 
1928   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1929   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1930     return;
1931   }
1932 
1933   // The check above makes sure this is a nmethod.
1934   CompiledMethod* nm = cb->as_compiled_method_or_null();
1935   assert(nm, "must be");
1936 
1937   // Get the return PC for the passed caller PC.
1938   address return_pc = caller_pc + frame::pc_return_offset;
1939 
1940   // There is a benign race here. We could be attempting to patch to a compiled
1941   // entry point at the same time the callee is being deoptimized. If that is
1942   // the case then entry_point may in fact point to a c2i and we'd patch the
1943   // call site with the same old data. clear_code will set code() to NULL
1944   // at the end of it. If we happen to see that NULL then we can skip trying
1945   // to patch. If we hit the window where the callee has a c2i in the
1946   // from_compiled_entry and the NULL isn't present yet then we lose the race
1947   // and patch the code with the same old data. Asi es la vida.
1948 
1949   if (moop->code() == NULL) return;
1950 
1951   if (nm->is_in_use()) {
1952     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1953     CompiledICLocker ic_locker(nm);
1954     if (NativeCall::is_call_before(return_pc)) {
1955       ResourceMark mark;
1956       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1957       //
1958       // bug 6281185. We might get here after resolving a call site to a vanilla
1959       // virtual call. Because the resolvee uses the verified entry it may then
1960       // see compiled code and attempt to patch the site by calling us. This would
1961       // then incorrectly convert the call site to optimized and its downhill from
1962       // there. If you're lucky you'll get the assert in the bugid, if not you've
1963       // just made a call site that could be megamorphic into a monomorphic site
1964       // for the rest of its life! Just another racing bug in the life of
1965       // fixup_callers_callsite ...
1966       //
1967       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1968       iter.next();
1969       assert(iter.has_current(), "must have a reloc at java call site");
1970       relocInfo::relocType typ = iter.reloc()->type();
1971       if (typ != relocInfo::static_call_type &&
1972            typ != relocInfo::opt_virtual_call_type &&
1973            typ != relocInfo::static_stub_type) {
1974         return;
1975       }
1976       address destination = call->destination();
1977       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1978         call->set_destination_mt_safe(entry_point);
1979       }
1980     }
1981   }
1982 JRT_END
1983 
1984 
1985 // same as JVM_Arraycopy, but called directly from compiled code
1986 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1987                                                 oopDesc* dest, jint dest_pos,
1988                                                 jint length,
1989                                                 JavaThread* thread)) {
1990 #ifndef PRODUCT
1991   _slow_array_copy_ctr++;
1992 #endif
1993   // Check if we have null pointers
1994   if (src == NULL || dest == NULL) {
1995     THROW(vmSymbols::java_lang_NullPointerException());
1996   }
1997   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1998   // even though the copy_array API also performs dynamic checks to ensure
1999   // that src and dest are truly arrays (and are conformable).
2000   // The copy_array mechanism is awkward and could be removed, but
2001   // the compilers don't call this function except as a last resort,
2002   // so it probably doesn't matter.
2003   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2004                                         (arrayOopDesc*)dest, dest_pos,
2005                                         length, thread);
2006 }
2007 JRT_END
2008 
2009 // The caller of generate_class_cast_message() (or one of its callers)
2010 // must use a ResourceMark in order to correctly free the result.
2011 char* SharedRuntime::generate_class_cast_message(
2012     JavaThread* thread, Klass* caster_klass) {
2013 
2014   // Get target class name from the checkcast instruction
2015   vframeStream vfst(thread, true);
2016   assert(!vfst.at_end(), "Java frame must exist");
2017   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2018   constantPoolHandle cpool(thread, vfst.method()->constants());
2019   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2020   Symbol* target_klass_name = NULL;
2021   if (target_klass == NULL) {
2022     // This klass should be resolved, but just in case, get the name in the klass slot.
2023     target_klass_name = cpool->klass_name_at(cc.index());
2024   }
2025   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2026 }
2027 
2028 
2029 // The caller of generate_class_cast_message() (or one of its callers)
2030 // must use a ResourceMark in order to correctly free the result.
2031 char* SharedRuntime::generate_class_cast_message(
2032     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2033   const char* caster_name = caster_klass->external_name();
2034 
2035   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2036   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2037                                                    target_klass->external_name();
2038 
2039   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2040 
2041   const char* caster_klass_description = "";
2042   const char* target_klass_description = "";
2043   const char* klass_separator = "";
2044   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2045     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2046   } else {
2047     caster_klass_description = caster_klass->class_in_module_of_loader();
2048     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2049     klass_separator = (target_klass != NULL) ? "; " : "";
2050   }
2051 
2052   // add 3 for parenthesis and preceeding space
2053   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2054 
2055   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2056   if (message == NULL) {
2057     // Shouldn't happen, but don't cause even more problems if it does
2058     message = const_cast<char*>(caster_klass->external_name());
2059   } else {
2060     jio_snprintf(message,
2061                  msglen,
2062                  "class %s cannot be cast to class %s (%s%s%s)",
2063                  caster_name,
2064                  target_name,
2065                  caster_klass_description,
2066                  klass_separator,
2067                  target_klass_description
2068                  );
2069   }
2070   return message;
2071 }
2072 
2073 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2074   (void) JavaThread::current()->reguard_stack();
2075 JRT_END
2076 
2077 
2078 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2079 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2080   if (!SafepointSynchronize::is_synchronizing()) {
2081     // Only try quick_enter() if we're not trying to reach a safepoint
2082     // so that the calling thread reaches the safepoint more quickly.
2083     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2084   }
2085   // NO_ASYNC required because an async exception on the state transition destructor
2086   // would leave you with the lock held and it would never be released.
2087   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2088   // and the model is that an exception implies the method failed.
2089   JRT_BLOCK_NO_ASYNC
2090   oop obj(_obj);
2091   if (PrintBiasedLockingStatistics) {
2092     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2093   }
2094   Handle h_obj(THREAD, obj);
2095   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2096   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2097   JRT_BLOCK_END
2098 JRT_END
2099 
2100 // Handles the uncommon cases of monitor unlocking in compiled code
2101 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2102    oop obj(_obj);
2103   assert(JavaThread::current() == THREAD, "invariant");
2104   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2105   // testing was unable to ever fire the assert that guarded it so I have removed it.
2106   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2107 #undef MIGHT_HAVE_PENDING
2108 #ifdef MIGHT_HAVE_PENDING
2109   // Save and restore any pending_exception around the exception mark.
2110   // While the slow_exit must not throw an exception, we could come into
2111   // this routine with one set.
2112   oop pending_excep = NULL;
2113   const char* pending_file;
2114   int pending_line;
2115   if (HAS_PENDING_EXCEPTION) {
2116     pending_excep = PENDING_EXCEPTION;
2117     pending_file  = THREAD->exception_file();
2118     pending_line  = THREAD->exception_line();
2119     CLEAR_PENDING_EXCEPTION;
2120   }
2121 #endif /* MIGHT_HAVE_PENDING */
2122 
2123   {
2124     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2125     EXCEPTION_MARK;
2126     ObjectSynchronizer::exit(obj, lock, THREAD);
2127   }
2128 
2129 #ifdef MIGHT_HAVE_PENDING
2130   if (pending_excep != NULL) {
2131     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2132   }
2133 #endif /* MIGHT_HAVE_PENDING */
2134 JRT_END
2135 
2136 #ifndef PRODUCT
2137 
2138 void SharedRuntime::print_statistics() {
2139   ttyLocker ttyl;
2140   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2141 
2142   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2143 
2144   SharedRuntime::print_ic_miss_histogram();
2145 
2146   if (CountRemovableExceptions) {
2147     if (_nof_removable_exceptions > 0) {
2148       Unimplemented(); // this counter is not yet incremented
2149       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2150     }
2151   }
2152 
2153   // Dump the JRT_ENTRY counters
2154   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2155   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2156   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2157   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2158   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2159   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2160   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2161 
2162   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2163   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2164   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2165   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2166   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2167 
2168   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2169   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2170   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2171   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2172   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2173   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2174   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2175   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2176   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2177   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2178   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2179   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2180   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2181   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2182   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2183   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2184 
2185   AdapterHandlerLibrary::print_statistics();
2186 
2187   if (xtty != NULL)  xtty->tail("statistics");
2188 }
2189 
2190 inline double percent(int x, int y) {
2191   return 100.0 * x / MAX2(y, 1);
2192 }
2193 
2194 class MethodArityHistogram {
2195  public:
2196   enum { MAX_ARITY = 256 };
2197  private:
2198   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2199   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2200   static int _max_arity;                      // max. arity seen
2201   static int _max_size;                       // max. arg size seen
2202 
2203   static void add_method_to_histogram(nmethod* nm) {
2204     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2205       Method* method = nm->method();
2206       ArgumentCount args(method->signature());
2207       int arity   = args.size() + (method->is_static() ? 0 : 1);
2208       int argsize = method->size_of_parameters();
2209       arity   = MIN2(arity, MAX_ARITY-1);
2210       argsize = MIN2(argsize, MAX_ARITY-1);
2211       int count = method->compiled_invocation_count();
2212       _arity_histogram[arity]  += count;
2213       _size_histogram[argsize] += count;
2214       _max_arity = MAX2(_max_arity, arity);
2215       _max_size  = MAX2(_max_size, argsize);
2216     }
2217   }
2218 
2219   void print_histogram_helper(int n, int* histo, const char* name) {
2220     const int N = MIN2(5, n);
2221     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2222     double sum = 0;
2223     double weighted_sum = 0;
2224     int i;
2225     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2226     double rest = sum;
2227     double percent = sum / 100;
2228     for (i = 0; i <= N; i++) {
2229       rest -= histo[i];
2230       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2231     }
2232     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2233     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2234   }
2235 
2236   void print_histogram() {
2237     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2238     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2239     tty->print_cr("\nSame for parameter size (in words):");
2240     print_histogram_helper(_max_size, _size_histogram, "size");
2241     tty->cr();
2242   }
2243 
2244  public:
2245   MethodArityHistogram() {
2246     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2247     _max_arity = _max_size = 0;
2248     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2249     CodeCache::nmethods_do(add_method_to_histogram);
2250     print_histogram();
2251   }
2252 };
2253 
2254 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2255 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2256 int MethodArityHistogram::_max_arity;
2257 int MethodArityHistogram::_max_size;
2258 
2259 void SharedRuntime::print_call_statistics(int comp_total) {
2260   tty->print_cr("Calls from compiled code:");
2261   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2262   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2263   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2264   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2265   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2266   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2267   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2268   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2269   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2270   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2271   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2272   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2273   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2274   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2275   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2277   tty->cr();
2278   tty->print_cr("Note 1: counter updates are not MT-safe.");
2279   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2280   tty->print_cr("        %% in nested categories are relative to their category");
2281   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2282   tty->cr();
2283 
2284   MethodArityHistogram h;
2285 }
2286 #endif
2287 
2288 
2289 // A simple wrapper class around the calling convention information
2290 // that allows sharing of adapters for the same calling convention.
2291 class AdapterFingerPrint : public CHeapObj<mtCode> {
2292  private:
2293   enum {
2294     _basic_type_bits = 4,
2295     _basic_type_mask = right_n_bits(_basic_type_bits),
2296     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2297     _compact_int_count = 3
2298   };
2299   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2300   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2301 
2302   union {
2303     int  _compact[_compact_int_count];
2304     int* _fingerprint;
2305   } _value;
2306   int _length; // A negative length indicates the fingerprint is in the compact form,
2307                // Otherwise _value._fingerprint is the array.
2308 
2309   // Remap BasicTypes that are handled equivalently by the adapters.
2310   // These are correct for the current system but someday it might be
2311   // necessary to make this mapping platform dependent.
2312   static int adapter_encoding(BasicType in) {
2313     switch (in) {
2314       case T_BOOLEAN:
2315       case T_BYTE:
2316       case T_SHORT:
2317       case T_CHAR:
2318         // There are all promoted to T_INT in the calling convention
2319         return T_INT;
2320 
2321       case T_OBJECT:
2322       case T_ARRAY:
2323         // In other words, we assume that any register good enough for
2324         // an int or long is good enough for a managed pointer.
2325 #ifdef _LP64
2326         return T_LONG;
2327 #else
2328         return T_INT;
2329 #endif
2330 
2331       case T_INT:
2332       case T_LONG:
2333       case T_FLOAT:
2334       case T_DOUBLE:
2335       case T_VOID:
2336         return in;
2337 
2338       default:
2339         ShouldNotReachHere();
2340         return T_CONFLICT;
2341     }
2342   }
2343 
2344  public:
2345   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2346     // The fingerprint is based on the BasicType signature encoded
2347     // into an array of ints with eight entries per int.
2348     int* ptr;
2349     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2350     if (len <= _compact_int_count) {
2351       assert(_compact_int_count == 3, "else change next line");
2352       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2353       // Storing the signature encoded as signed chars hits about 98%
2354       // of the time.
2355       _length = -len;
2356       ptr = _value._compact;
2357     } else {
2358       _length = len;
2359       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2360       ptr = _value._fingerprint;
2361     }
2362 
2363     // Now pack the BasicTypes with 8 per int
2364     int sig_index = 0;
2365     for (int index = 0; index < len; index++) {
2366       int value = 0;
2367       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2368         int bt = ((sig_index < total_args_passed)
2369                   ? adapter_encoding(sig_bt[sig_index++])
2370                   : 0);
2371         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2372         value = (value << _basic_type_bits) | bt;
2373       }
2374       ptr[index] = value;
2375     }
2376   }
2377 
2378   ~AdapterFingerPrint() {
2379     if (_length > 0) {
2380       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2381     }
2382   }
2383 
2384   int value(int index) {
2385     if (_length < 0) {
2386       return _value._compact[index];
2387     }
2388     return _value._fingerprint[index];
2389   }
2390   int length() {
2391     if (_length < 0) return -_length;
2392     return _length;
2393   }
2394 
2395   bool is_compact() {
2396     return _length <= 0;
2397   }
2398 
2399   unsigned int compute_hash() {
2400     int hash = 0;
2401     for (int i = 0; i < length(); i++) {
2402       int v = value(i);
2403       hash = (hash << 8) ^ v ^ (hash >> 5);
2404     }
2405     return (unsigned int)hash;
2406   }
2407 
2408   const char* as_string() {
2409     stringStream st;
2410     st.print("0x");
2411     for (int i = 0; i < length(); i++) {
2412       st.print("%08x", value(i));
2413     }
2414     return st.as_string();
2415   }
2416 
2417   bool equals(AdapterFingerPrint* other) {
2418     if (other->_length != _length) {
2419       return false;
2420     }
2421     if (_length < 0) {
2422       assert(_compact_int_count == 3, "else change next line");
2423       return _value._compact[0] == other->_value._compact[0] &&
2424              _value._compact[1] == other->_value._compact[1] &&
2425              _value._compact[2] == other->_value._compact[2];
2426     } else {
2427       for (int i = 0; i < _length; i++) {
2428         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2429           return false;
2430         }
2431       }
2432     }
2433     return true;
2434   }
2435 };
2436 
2437 
2438 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2439 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2440   friend class AdapterHandlerTableIterator;
2441 
2442  private:
2443 
2444 #ifndef PRODUCT
2445   static int _lookups; // number of calls to lookup
2446   static int _buckets; // number of buckets checked
2447   static int _equals;  // number of buckets checked with matching hash
2448   static int _hits;    // number of successful lookups
2449   static int _compact; // number of equals calls with compact signature
2450 #endif
2451 
2452   AdapterHandlerEntry* bucket(int i) {
2453     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2454   }
2455 
2456  public:
2457   AdapterHandlerTable()
2458     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2459 
2460   // Create a new entry suitable for insertion in the table
2461   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2462     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2463     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2464     if (DumpSharedSpaces) {
2465       ((CDSAdapterHandlerEntry*)entry)->init();
2466     }
2467     return entry;
2468   }
2469 
2470   // Insert an entry into the table
2471   void add(AdapterHandlerEntry* entry) {
2472     int index = hash_to_index(entry->hash());
2473     add_entry(index, entry);
2474   }
2475 
2476   void free_entry(AdapterHandlerEntry* entry) {
2477     entry->deallocate();
2478     BasicHashtable<mtCode>::free_entry(entry);
2479   }
2480 
2481   // Find a entry with the same fingerprint if it exists
2482   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2483     NOT_PRODUCT(_lookups++);
2484     AdapterFingerPrint fp(total_args_passed, sig_bt);
2485     unsigned int hash = fp.compute_hash();
2486     int index = hash_to_index(hash);
2487     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2488       NOT_PRODUCT(_buckets++);
2489       if (e->hash() == hash) {
2490         NOT_PRODUCT(_equals++);
2491         if (fp.equals(e->fingerprint())) {
2492 #ifndef PRODUCT
2493           if (fp.is_compact()) _compact++;
2494           _hits++;
2495 #endif
2496           return e;
2497         }
2498       }
2499     }
2500     return NULL;
2501   }
2502 
2503 #ifndef PRODUCT
2504   void print_statistics() {
2505     ResourceMark rm;
2506     int longest = 0;
2507     int empty = 0;
2508     int total = 0;
2509     int nonempty = 0;
2510     for (int index = 0; index < table_size(); index++) {
2511       int count = 0;
2512       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2513         count++;
2514       }
2515       if (count != 0) nonempty++;
2516       if (count == 0) empty++;
2517       if (count > longest) longest = count;
2518       total += count;
2519     }
2520     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2521                   empty, longest, total, total / (double)nonempty);
2522     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2523                   _lookups, _buckets, _equals, _hits, _compact);
2524   }
2525 #endif
2526 };
2527 
2528 
2529 #ifndef PRODUCT
2530 
2531 int AdapterHandlerTable::_lookups;
2532 int AdapterHandlerTable::_buckets;
2533 int AdapterHandlerTable::_equals;
2534 int AdapterHandlerTable::_hits;
2535 int AdapterHandlerTable::_compact;
2536 
2537 #endif
2538 
2539 class AdapterHandlerTableIterator : public StackObj {
2540  private:
2541   AdapterHandlerTable* _table;
2542   int _index;
2543   AdapterHandlerEntry* _current;
2544 
2545   void scan() {
2546     while (_index < _table->table_size()) {
2547       AdapterHandlerEntry* a = _table->bucket(_index);
2548       _index++;
2549       if (a != NULL) {
2550         _current = a;
2551         return;
2552       }
2553     }
2554   }
2555 
2556  public:
2557   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2558     scan();
2559   }
2560   bool has_next() {
2561     return _current != NULL;
2562   }
2563   AdapterHandlerEntry* next() {
2564     if (_current != NULL) {
2565       AdapterHandlerEntry* result = _current;
2566       _current = _current->next();
2567       if (_current == NULL) scan();
2568       return result;
2569     } else {
2570       return NULL;
2571     }
2572   }
2573 };
2574 
2575 
2576 // ---------------------------------------------------------------------------
2577 // Implementation of AdapterHandlerLibrary
2578 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2579 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2580 const int AdapterHandlerLibrary_size = 16*K;
2581 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2582 
2583 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2584   // Should be called only when AdapterHandlerLibrary_lock is active.
2585   if (_buffer == NULL) // Initialize lazily
2586       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2587   return _buffer;
2588 }
2589 
2590 extern "C" void unexpected_adapter_call() {
2591   ShouldNotCallThis();
2592 }
2593 
2594 void AdapterHandlerLibrary::initialize() {
2595   if (_adapters != NULL) return;
2596   _adapters = new AdapterHandlerTable();
2597 
2598   // Create a special handler for abstract methods.  Abstract methods
2599   // are never compiled so an i2c entry is somewhat meaningless, but
2600   // throw AbstractMethodError just in case.
2601   // Pass wrong_method_abstract for the c2i transitions to return
2602   // AbstractMethodError for invalid invocations.
2603   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2604   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2605                                                               StubRoutines::throw_AbstractMethodError_entry(),
2606                                                               wrong_method_abstract, wrong_method_abstract);
2607 }
2608 
2609 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2610                                                       address i2c_entry,
2611                                                       address c2i_entry,
2612                                                       address c2i_unverified_entry,
2613                                                       address c2i_no_clinit_check_entry) {
2614   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2615 }
2616 
2617 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2618   AdapterHandlerEntry* entry = get_adapter0(method);
2619   if (entry != NULL && method->is_shared()) {
2620     // See comments around Method::link_method()
2621     MutexLocker mu(AdapterHandlerLibrary_lock);
2622     if (method->adapter() == NULL) {
2623       method->update_adapter_trampoline(entry);
2624     }
2625     address trampoline = method->from_compiled_entry();
2626     if (*(int*)trampoline == 0) {
2627       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2628       MacroAssembler _masm(&buffer);
2629       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2630       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2631       _masm.flush();
2632 
2633       if (PrintInterpreter) {
2634         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2635       }
2636     }
2637   }
2638 
2639   return entry;
2640 }
2641 
2642 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2643   // Use customized signature handler.  Need to lock around updates to
2644   // the AdapterHandlerTable (it is not safe for concurrent readers
2645   // and a single writer: this could be fixed if it becomes a
2646   // problem).
2647 
2648   ResourceMark rm;
2649 
2650   NOT_PRODUCT(int insts_size);
2651   AdapterBlob* new_adapter = NULL;
2652   AdapterHandlerEntry* entry = NULL;
2653   AdapterFingerPrint* fingerprint = NULL;
2654   {
2655     MutexLocker mu(AdapterHandlerLibrary_lock);
2656     // make sure data structure is initialized
2657     initialize();
2658 
2659     if (method->is_abstract()) {
2660       return _abstract_method_handler;
2661     }
2662 
2663     // Fill in the signature array, for the calling-convention call.
2664     int total_args_passed = method->size_of_parameters(); // All args on stack
2665 
2666     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2667     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2668     int i = 0;
2669     if (!method->is_static())  // Pass in receiver first
2670       sig_bt[i++] = T_OBJECT;
2671     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2672       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2673       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2674         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2675     }
2676     assert(i == total_args_passed, "");
2677 
2678     // Lookup method signature's fingerprint
2679     entry = _adapters->lookup(total_args_passed, sig_bt);
2680 
2681 #ifdef ASSERT
2682     AdapterHandlerEntry* shared_entry = NULL;
2683     // Start adapter sharing verification only after the VM is booted.
2684     if (VerifyAdapterSharing && (entry != NULL)) {
2685       shared_entry = entry;
2686       entry = NULL;
2687     }
2688 #endif
2689 
2690     if (entry != NULL) {
2691       return entry;
2692     }
2693 
2694     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2695     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2696 
2697     // Make a C heap allocated version of the fingerprint to store in the adapter
2698     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2699 
2700     // StubRoutines::code2() is initialized after this function can be called. As a result,
2701     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2702     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2703     // stub that ensure that an I2C stub is called from an interpreter frame.
2704     bool contains_all_checks = StubRoutines::code2() != NULL;
2705 
2706     // Create I2C & C2I handlers
2707     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2708     if (buf != NULL) {
2709       CodeBuffer buffer(buf);
2710       short buffer_locs[20];
2711       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2712                                              sizeof(buffer_locs)/sizeof(relocInfo));
2713 
2714       MacroAssembler _masm(&buffer);
2715       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2716                                                      total_args_passed,
2717                                                      comp_args_on_stack,
2718                                                      sig_bt,
2719                                                      regs,
2720                                                      fingerprint);
2721 #ifdef ASSERT
2722       if (VerifyAdapterSharing) {
2723         if (shared_entry != NULL) {
2724           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2725           // Release the one just created and return the original
2726           _adapters->free_entry(entry);
2727           return shared_entry;
2728         } else  {
2729           entry->save_code(buf->code_begin(), buffer.insts_size());
2730         }
2731       }
2732 #endif
2733 
2734       new_adapter = AdapterBlob::create(&buffer);
2735       NOT_PRODUCT(insts_size = buffer.insts_size());
2736     }
2737     if (new_adapter == NULL) {
2738       // CodeCache is full, disable compilation
2739       // Ought to log this but compile log is only per compile thread
2740       // and we're some non descript Java thread.
2741       return NULL; // Out of CodeCache space
2742     }
2743     entry->relocate(new_adapter->content_begin());
2744 #ifndef PRODUCT
2745     // debugging suppport
2746     if (PrintAdapterHandlers || PrintStubCode) {
2747       ttyLocker ttyl;
2748       entry->print_adapter_on(tty);
2749       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2750                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2751                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2752       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2753       if (Verbose || PrintStubCode) {
2754         address first_pc = entry->base_address();
2755         if (first_pc != NULL) {
2756           Disassembler::decode(first_pc, first_pc + insts_size);
2757           tty->cr();
2758         }
2759       }
2760     }
2761 #endif
2762     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2763     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2764     if (contains_all_checks || !VerifyAdapterCalls) {
2765       _adapters->add(entry);
2766     }
2767   }
2768   // Outside of the lock
2769   if (new_adapter != NULL) {
2770     char blob_id[256];
2771     jio_snprintf(blob_id,
2772                  sizeof(blob_id),
2773                  "%s(%s)@" PTR_FORMAT,
2774                  new_adapter->name(),
2775                  fingerprint->as_string(),
2776                  new_adapter->content_begin());
2777     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2778 
2779     if (JvmtiExport::should_post_dynamic_code_generated()) {
2780       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2781     }
2782   }
2783   return entry;
2784 }
2785 
2786 address AdapterHandlerEntry::base_address() {
2787   address base = _i2c_entry;
2788   if (base == NULL)  base = _c2i_entry;
2789   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2790   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2791   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2792   return base;
2793 }
2794 
2795 void AdapterHandlerEntry::relocate(address new_base) {
2796   address old_base = base_address();
2797   assert(old_base != NULL, "");
2798   ptrdiff_t delta = new_base - old_base;
2799   if (_i2c_entry != NULL)
2800     _i2c_entry += delta;
2801   if (_c2i_entry != NULL)
2802     _c2i_entry += delta;
2803   if (_c2i_unverified_entry != NULL)
2804     _c2i_unverified_entry += delta;
2805   if (_c2i_no_clinit_check_entry != NULL)
2806     _c2i_no_clinit_check_entry += delta;
2807   assert(base_address() == new_base, "");
2808 }
2809 
2810 
2811 void AdapterHandlerEntry::deallocate() {
2812   delete _fingerprint;
2813 #ifdef ASSERT
2814   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2815 #endif
2816 }
2817 
2818 
2819 #ifdef ASSERT
2820 // Capture the code before relocation so that it can be compared
2821 // against other versions.  If the code is captured after relocation
2822 // then relative instructions won't be equivalent.
2823 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2824   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2825   _saved_code_length = length;
2826   memcpy(_saved_code, buffer, length);
2827 }
2828 
2829 
2830 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2831   if (length != _saved_code_length) {
2832     return false;
2833   }
2834 
2835   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2836 }
2837 #endif
2838 
2839 
2840 /**
2841  * Create a native wrapper for this native method.  The wrapper converts the
2842  * Java-compiled calling convention to the native convention, handles
2843  * arguments, and transitions to native.  On return from the native we transition
2844  * back to java blocking if a safepoint is in progress.
2845  */
2846 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2847   ResourceMark rm;
2848   nmethod* nm = NULL;
2849   address critical_entry = NULL;
2850 
2851   assert(method->is_native(), "must be native");
2852   assert(method->is_method_handle_intrinsic() ||
2853          method->has_native_function(), "must have something valid to call!");
2854 
2855   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2856     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2857     critical_entry = NativeLookup::lookup_critical_entry(method);
2858   }
2859 
2860   {
2861     // Perform the work while holding the lock, but perform any printing outside the lock
2862     MutexLocker mu(AdapterHandlerLibrary_lock);
2863     // See if somebody beat us to it
2864     if (method->code() != NULL) {
2865       return;
2866     }
2867 
2868     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2869     assert(compile_id > 0, "Must generate native wrapper");
2870 
2871 
2872     ResourceMark rm;
2873     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2874     if (buf != NULL) {
2875       CodeBuffer buffer(buf);
2876       double locs_buf[20];
2877       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2878       MacroAssembler _masm(&buffer);
2879 
2880       // Fill in the signature array, for the calling-convention call.
2881       const int total_args_passed = method->size_of_parameters();
2882 
2883       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2884       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2885       int i=0;
2886       if (!method->is_static())  // Pass in receiver first
2887         sig_bt[i++] = T_OBJECT;
2888       SignatureStream ss(method->signature());
2889       for (; !ss.at_return_type(); ss.next()) {
2890         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2891         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2892           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2893       }
2894       assert(i == total_args_passed, "");
2895       BasicType ret_type = ss.type();
2896 
2897       // Now get the compiled-Java layout as input (or output) arguments.
2898       // NOTE: Stubs for compiled entry points of method handle intrinsics
2899       // are just trampolines so the argument registers must be outgoing ones.
2900       const bool is_outgoing = method->is_method_handle_intrinsic();
2901       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2902 
2903       // Generate the compiled-to-native wrapper code
2904       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2905 
2906       if (nm != NULL) {
2907         {
2908           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
2909           if (nm->make_in_use()) {
2910             method->set_code(method, nm);
2911           }
2912         }
2913 
2914         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2915         if (directive->PrintAssemblyOption) {
2916           nm->print_code();
2917         }
2918         DirectivesStack::release(directive);
2919       }
2920     }
2921   } // Unlock AdapterHandlerLibrary_lock
2922 
2923 
2924   // Install the generated code.
2925   if (nm != NULL) {
2926     const char *msg = method->is_static() ? "(static)" : "";
2927     CompileTask::print_ul(nm, msg);
2928     if (PrintCompilation) {
2929       ttyLocker ttyl;
2930       CompileTask::print(tty, nm, msg);
2931     }
2932     nm->post_compiled_method_load_event();
2933   }
2934 }
2935 
2936 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2937   assert(thread == JavaThread::current(), "must be");
2938   // The code is about to enter a JNI lazy critical native method and
2939   // _needs_gc is true, so if this thread is already in a critical
2940   // section then just return, otherwise this thread should block
2941   // until needs_gc has been cleared.
2942   if (thread->in_critical()) {
2943     return;
2944   }
2945   // Lock and unlock a critical section to give the system a chance to block
2946   GCLocker::lock_critical(thread);
2947   GCLocker::unlock_critical(thread);
2948 JRT_END
2949 
2950 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2951   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2952   assert(obj != NULL, "Should not be null");
2953   oop o(obj);
2954   o = Universe::heap()->pin_object(thread, o);
2955   assert(o != NULL, "Should not be null");
2956   return o;
2957 JRT_END
2958 
2959 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2960   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2961   assert(obj != NULL, "Should not be null");
2962   oop o(obj);
2963   Universe::heap()->unpin_object(thread, o);
2964 JRT_END
2965 
2966 // -------------------------------------------------------------------------
2967 // Java-Java calling convention
2968 // (what you use when Java calls Java)
2969 
2970 //------------------------------name_for_receiver----------------------------------
2971 // For a given signature, return the VMReg for parameter 0.
2972 VMReg SharedRuntime::name_for_receiver() {
2973   VMRegPair regs;
2974   BasicType sig_bt = T_OBJECT;
2975   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2976   // Return argument 0 register.  In the LP64 build pointers
2977   // take 2 registers, but the VM wants only the 'main' name.
2978   return regs.first();
2979 }
2980 
2981 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2982   // This method is returning a data structure allocating as a
2983   // ResourceObject, so do not put any ResourceMarks in here.
2984   char *s = sig->as_C_string();
2985   int len = (int)strlen(s);
2986   s++; len--;                   // Skip opening paren
2987 
2988   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2989   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2990   int cnt = 0;
2991   if (has_receiver) {
2992     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2993   }
2994 
2995   while (*s != JVM_SIGNATURE_ENDFUNC) { // Find closing right paren
2996     switch (*s++) {                     // Switch on signature character
2997     case JVM_SIGNATURE_BYTE:    sig_bt[cnt++] = T_BYTE;    break;
2998     case JVM_SIGNATURE_CHAR:    sig_bt[cnt++] = T_CHAR;    break;
2999     case JVM_SIGNATURE_DOUBLE:  sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3000     case JVM_SIGNATURE_FLOAT:   sig_bt[cnt++] = T_FLOAT;   break;
3001     case JVM_SIGNATURE_INT:     sig_bt[cnt++] = T_INT;     break;
3002     case JVM_SIGNATURE_LONG:    sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3003     case JVM_SIGNATURE_SHORT:   sig_bt[cnt++] = T_SHORT;   break;
3004     case JVM_SIGNATURE_BOOLEAN: sig_bt[cnt++] = T_BOOLEAN; break;
3005     case JVM_SIGNATURE_VOID:    sig_bt[cnt++] = T_VOID;    break;
3006     case JVM_SIGNATURE_CLASS: // Oop
3007       while (*s++ != JVM_SIGNATURE_ENDCLASS);   // Skip signature
3008       sig_bt[cnt++] = T_OBJECT;
3009       break;
3010     case JVM_SIGNATURE_ARRAY: { // Array
3011       do {                      // Skip optional size
3012         while (*s >= '0' && *s <= '9') s++;
3013       } while (*s++ == JVM_SIGNATURE_ARRAY);   // Nested arrays?
3014       // Skip element type
3015       if (s[-1] == JVM_SIGNATURE_CLASS)
3016         while (*s++ != JVM_SIGNATURE_ENDCLASS); // Skip signature
3017       sig_bt[cnt++] = T_ARRAY;
3018       break;
3019     }
3020     default : ShouldNotReachHere();
3021     }
3022   }
3023 
3024   if (has_appendix) {
3025     sig_bt[cnt++] = T_OBJECT;
3026   }
3027 
3028   assert(cnt < 256, "grow table size");
3029 
3030   int comp_args_on_stack;
3031   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3032 
3033   // the calling convention doesn't count out_preserve_stack_slots so
3034   // we must add that in to get "true" stack offsets.
3035 
3036   if (comp_args_on_stack) {
3037     for (int i = 0; i < cnt; i++) {
3038       VMReg reg1 = regs[i].first();
3039       if (reg1->is_stack()) {
3040         // Yuck
3041         reg1 = reg1->bias(out_preserve_stack_slots());
3042       }
3043       VMReg reg2 = regs[i].second();
3044       if (reg2->is_stack()) {
3045         // Yuck
3046         reg2 = reg2->bias(out_preserve_stack_slots());
3047       }
3048       regs[i].set_pair(reg2, reg1);
3049     }
3050   }
3051 
3052   // results
3053   *arg_size = cnt;
3054   return regs;
3055 }
3056 
3057 // OSR Migration Code
3058 //
3059 // This code is used convert interpreter frames into compiled frames.  It is
3060 // called from very start of a compiled OSR nmethod.  A temp array is
3061 // allocated to hold the interesting bits of the interpreter frame.  All
3062 // active locks are inflated to allow them to move.  The displaced headers and
3063 // active interpreter locals are copied into the temp buffer.  Then we return
3064 // back to the compiled code.  The compiled code then pops the current
3065 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3066 // copies the interpreter locals and displaced headers where it wants.
3067 // Finally it calls back to free the temp buffer.
3068 //
3069 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3070 
3071 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3072 
3073   //
3074   // This code is dependent on the memory layout of the interpreter local
3075   // array and the monitors. On all of our platforms the layout is identical
3076   // so this code is shared. If some platform lays the their arrays out
3077   // differently then this code could move to platform specific code or
3078   // the code here could be modified to copy items one at a time using
3079   // frame accessor methods and be platform independent.
3080 
3081   frame fr = thread->last_frame();
3082   assert(fr.is_interpreted_frame(), "");
3083   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3084 
3085   // Figure out how many monitors are active.
3086   int active_monitor_count = 0;
3087   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3088        kptr < fr.interpreter_frame_monitor_begin();
3089        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3090     if (kptr->obj() != NULL) active_monitor_count++;
3091   }
3092 
3093   // QQQ we could place number of active monitors in the array so that compiled code
3094   // could double check it.
3095 
3096   Method* moop = fr.interpreter_frame_method();
3097   int max_locals = moop->max_locals();
3098   // Allocate temp buffer, 1 word per local & 2 per active monitor
3099   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3100   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3101 
3102   // Copy the locals.  Order is preserved so that loading of longs works.
3103   // Since there's no GC I can copy the oops blindly.
3104   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3105   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3106                        (HeapWord*)&buf[0],
3107                        max_locals);
3108 
3109   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3110   int i = max_locals;
3111   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3112        kptr2 < fr.interpreter_frame_monitor_begin();
3113        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3114     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3115       BasicLock *lock = kptr2->lock();
3116       // Disallow async deflation of the inflated monitor so the
3117       // displaced header stays stable until we've copied it.
3118       ObjectMonitorHandle omh;
3119       // Inflate so the displaced header becomes position-independent
3120       if (lock->displaced_header().is_unlocked()) {
3121         ObjectSynchronizer::inflate_helper(&omh, kptr2->obj());
3122       }
3123       // Now the displaced header is free to move
3124       buf[i++] = (intptr_t)lock->displaced_header().value();
3125       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3126     }
3127   }
3128   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3129 
3130   return buf;
3131 JRT_END
3132 
3133 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3134   FREE_C_HEAP_ARRAY(intptr_t, buf);
3135 JRT_END
3136 
3137 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3138   AdapterHandlerTableIterator iter(_adapters);
3139   while (iter.has_next()) {
3140     AdapterHandlerEntry* a = iter.next();
3141     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3142   }
3143   return false;
3144 }
3145 
3146 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3147   AdapterHandlerTableIterator iter(_adapters);
3148   while (iter.has_next()) {
3149     AdapterHandlerEntry* a = iter.next();
3150     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3151       st->print("Adapter for signature: ");
3152       a->print_adapter_on(tty);
3153       return;
3154     }
3155   }
3156   assert(false, "Should have found handler");
3157 }
3158 
3159 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3160   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3161   if (get_i2c_entry() != NULL) {
3162     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3163   }
3164   if (get_c2i_entry() != NULL) {
3165     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3166   }
3167   if (get_c2i_unverified_entry() != NULL) {
3168     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3169   }
3170   if (get_c2i_no_clinit_check_entry() != NULL) {
3171     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3172   }
3173   st->cr();
3174 }
3175 
3176 #if INCLUDE_CDS
3177 
3178 void CDSAdapterHandlerEntry::init() {
3179   assert(DumpSharedSpaces, "used during dump time only");
3180   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3181   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3182 };
3183 
3184 #endif // INCLUDE_CDS
3185 
3186 
3187 #ifndef PRODUCT
3188 
3189 void AdapterHandlerLibrary::print_statistics() {
3190   _adapters->print_statistics();
3191 }
3192 
3193 #endif /* PRODUCT */
3194 
3195 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3196   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3197   if (thread->stack_reserved_zone_disabled()) {
3198   thread->enable_stack_reserved_zone();
3199   }
3200   thread->set_reserved_stack_activation(thread->stack_base());
3201 JRT_END
3202 
3203 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3204   ResourceMark rm(thread);
3205   frame activation;
3206   CompiledMethod* nm = NULL;
3207   int count = 1;
3208 
3209   assert(fr.is_java_frame(), "Must start on Java frame");
3210 
3211   while (true) {
3212     Method* method = NULL;
3213     bool found = false;
3214     if (fr.is_interpreted_frame()) {
3215       method = fr.interpreter_frame_method();
3216       if (method != NULL && method->has_reserved_stack_access()) {
3217         found = true;
3218       }
3219     } else {
3220       CodeBlob* cb = fr.cb();
3221       if (cb != NULL && cb->is_compiled()) {
3222         nm = cb->as_compiled_method();
3223         method = nm->method();
3224         // scope_desc_near() must be used, instead of scope_desc_at() because on
3225         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3226         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3227           method = sd->method();
3228           if (method != NULL && method->has_reserved_stack_access()) {
3229             found = true;
3230       }
3231     }
3232       }
3233     }
3234     if (found) {
3235       activation = fr;
3236       warning("Potentially dangerous stack overflow in "
3237               "ReservedStackAccess annotated method %s [%d]",
3238               method->name_and_sig_as_C_string(), count++);
3239       EventReservedStackActivation event;
3240       if (event.should_commit()) {
3241         event.set_method(method);
3242         event.commit();
3243       }
3244     }
3245     if (fr.is_first_java_frame()) {
3246       break;
3247     } else {
3248       fr = fr.java_sender();
3249     }
3250   }
3251   return activation;
3252 }
3253 
3254 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3255   // After any safepoint, just before going back to compiled code,
3256   // we inform the GC that we will be doing initializing writes to
3257   // this object in the future without emitting card-marks, so
3258   // GC may take any compensating steps.
3259 
3260   oop new_obj = thread->vm_result();
3261   if (new_obj == NULL) return;
3262 
3263   BarrierSet *bs = BarrierSet::barrier_set();
3264   bs->on_slowpath_allocation_exit(thread, new_obj);
3265 }