1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/flags/jvmFlagWriteableList.hpp"
  72 #include "runtime/deoptimization.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/handshake.hpp"
  76 #include "runtime/init.hpp"
  77 #include "runtime/interfaceSupport.inline.hpp"
  78 #include "runtime/java.hpp"
  79 #include "runtime/javaCalls.hpp"
  80 #include "runtime/jniHandles.inline.hpp"
  81 #include "runtime/jniPeriodicChecker.hpp"
  82 #include "runtime/memprofiler.hpp"
  83 #include "runtime/mutexLocker.hpp"
  84 #include "runtime/objectMonitor.hpp"
  85 #include "runtime/orderAccess.hpp"
  86 #include "runtime/osThread.hpp"
  87 #include "runtime/prefetch.inline.hpp"
  88 #include "runtime/safepoint.hpp"
  89 #include "runtime/safepointMechanism.inline.hpp"
  90 #include "runtime/safepointVerifiers.hpp"
  91 #include "runtime/serviceThread.hpp"
  92 #include "runtime/sharedRuntime.hpp"
  93 #include "runtime/statSampler.hpp"
  94 #include "runtime/stubRoutines.hpp"
  95 #include "runtime/sweeper.hpp"
  96 #include "runtime/task.hpp"
  97 #include "runtime/thread.inline.hpp"
  98 #include "runtime/threadCritical.hpp"
  99 #include "runtime/threadSMR.inline.hpp"
 100 #include "runtime/threadStatisticalInfo.hpp"
 101 #include "runtime/timer.hpp"
 102 #include "runtime/timerTrace.hpp"
 103 #include "runtime/vframe.inline.hpp"
 104 #include "runtime/vframeArray.hpp"
 105 #include "runtime/vframe_hp.hpp"
 106 #include "runtime/vmThread.hpp"
 107 #include "runtime/vmOperations.hpp"
 108 #include "runtime/vm_version.hpp"
 109 #include "services/attachListener.hpp"
 110 #include "services/management.hpp"
 111 #include "services/memTracker.hpp"
 112 #include "services/threadService.hpp"
 113 #include "utilities/align.hpp"
 114 #include "utilities/copy.hpp"
 115 #include "utilities/defaultStream.hpp"
 116 #include "utilities/dtrace.hpp"
 117 #include "utilities/events.hpp"
 118 #include "utilities/macros.hpp"
 119 #include "utilities/preserveException.hpp"
 120 #include "utilities/singleWriterSynchronizer.hpp"
 121 #include "utilities/vmError.hpp"
 122 #if INCLUDE_JVMCI
 123 #include "jvmci/jvmci.hpp"
 124 #include "jvmci/jvmciEnv.hpp"
 125 #endif
 126 #ifdef COMPILER1
 127 #include "c1/c1_Compiler.hpp"
 128 #endif
 129 #ifdef COMPILER2
 130 #include "opto/c2compiler.hpp"
 131 #include "opto/idealGraphPrinter.hpp"
 132 #endif
 133 #if INCLUDE_RTM_OPT
 134 #include "runtime/rtmLocking.hpp"
 135 #endif
 136 #if INCLUDE_JFR
 137 #include "jfr/jfr.hpp"
 138 #endif
 139 
 140 // Initialization after module runtime initialization
 141 void universe_post_module_init();  // must happen after call_initPhase2
 142 
 143 #ifdef DTRACE_ENABLED
 144 
 145 // Only bother with this argument setup if dtrace is available
 146 
 147   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 148   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 151     {                                                                      \
 152       ResourceMark rm(this);                                               \
 153       int len = 0;                                                         \
 154       const char* name = (javathread)->get_thread_name();                  \
 155       len = strlen(name);                                                  \
 156       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 157         (char *) name, len,                                                \
 158         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 159         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 160         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 161     }
 162 
 163 #else //  ndef DTRACE_ENABLED
 164 
 165   #define DTRACE_THREAD_PROBE(probe, javathread)
 166 
 167 #endif // ndef DTRACE_ENABLED
 168 
 169 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 170 // Current thread is maintained as a thread-local variable
 171 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 172 #endif
 173 
 174 // ======= Thread ========
 175 // Support for forcing alignment of thread objects for biased locking
 176 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 177   if (UseBiasedLocking) {
 178     const size_t alignment = markWord::biased_lock_alignment;
 179     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 180     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 181                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 182                                                          AllocFailStrategy::RETURN_NULL);
 183     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 184     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 185            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 186            "JavaThread alignment code overflowed allocated storage");
 187     if (aligned_addr != real_malloc_addr) {
 188       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 189                               p2i(real_malloc_addr),
 190                               p2i(aligned_addr));
 191     }
 192     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 193     return aligned_addr;
 194   } else {
 195     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 196                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 197   }
 198 }
 199 
 200 void Thread::operator delete(void* p) {
 201   if (UseBiasedLocking) {
 202     FreeHeap(((Thread*) p)->_real_malloc_address);
 203   } else {
 204     FreeHeap(p);
 205   }
 206 }
 207 
 208 void JavaThread::smr_delete() {
 209   if (_on_thread_list) {
 210     ThreadsSMRSupport::smr_delete(this);
 211   } else {
 212     delete this;
 213   }
 214 }
 215 
 216 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 217 // JavaThread
 218 
 219 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 220 
 221 Thread::Thread() {
 222 
 223   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 224 
 225   // stack and get_thread
 226   set_stack_base(NULL);
 227   set_stack_size(0);
 228   set_lgrp_id(-1);
 229   DEBUG_ONLY(clear_suspendible_thread();)
 230 
 231   // allocated data structures
 232   set_osthread(NULL);
 233   set_resource_area(new (mtThread)ResourceArea());
 234   DEBUG_ONLY(_current_resource_mark = NULL;)
 235   set_handle_area(new (mtThread) HandleArea(NULL));
 236   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 237   set_active_handles(NULL);
 238   set_free_handle_block(NULL);
 239   set_last_handle_mark(NULL);
 240   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 241 
 242   // Initial value of zero ==> never claimed.
 243   _threads_do_token = 0;
 244   _threads_hazard_ptr = NULL;
 245   _threads_list_ptr = NULL;
 246   _nested_threads_hazard_ptr_cnt = 0;
 247   _rcu_counter = 0;
 248 
 249   // the handle mark links itself to last_handle_mark
 250   new HandleMark(this);
 251 
 252   // plain initialization
 253   debug_only(_owned_locks = NULL;)
 254   NOT_PRODUCT(_no_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _current_pending_raw_monitor = NULL;
 264   _num_nested_signal = 0;
 265   om_free_list = NULL;
 266   om_free_count = 0;
 267   om_free_provision = 32;
 268   om_in_use_list = NULL;
 269   om_in_use_count = 0;
 270 
 271 #ifdef ASSERT
 272   _visited_for_critical_count = false;
 273 #endif
 274 
 275   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 276                          Monitor::_safepoint_check_sometimes);
 277   _suspend_flags = 0;
 278 
 279   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 280   _hashStateX = os::random();
 281   _hashStateY = 842502087;
 282   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 283   _hashStateW = 273326509;
 284 
 285   _OnTrap   = 0;
 286   _Stalled  = 0;
 287   _TypeTag  = 0x2BAD;
 288 
 289   // Many of the following fields are effectively final - immutable
 290   // Note that nascent threads can't use the Native Monitor-Mutex
 291   // construct until the _MutexEvent is initialized ...
 292   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 293   // we might instead use a stack of ParkEvents that we could provision on-demand.
 294   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 295   // and ::Release()
 296   _ParkEvent   = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 462 
 463   delete handle_area();
 464   delete metadata_handles();
 465 
 466   // SR_handler uses this as a termination indicator -
 467   // needs to happen before os::free_thread()
 468   delete _SR_lock;
 469   _SR_lock = NULL;
 470 
 471   // osthread() can be NULL, if creation of thread failed.
 472   if (osthread() != NULL) os::free_thread(osthread());
 473 
 474   // Clear Thread::current if thread is deleting itself and it has not
 475   // already been done. This must be done before the memory is deallocated.
 476   // Needed to ensure JNI correctly detects non-attached threads.
 477   if (this == Thread::current_or_null()) {
 478     Thread::clear_thread_current();
 479   }
 480 
 481   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 482 }
 483 
 484 #ifdef ASSERT
 485 // A JavaThread is considered "dangling" if it is not the current
 486 // thread, has been added the Threads list, the system is not at a
 487 // safepoint and the Thread is not "protected".
 488 //
 489 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 490   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 491          !((JavaThread *) thread)->on_thread_list() ||
 492          SafepointSynchronize::is_at_safepoint() ||
 493          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 494          "possibility of dangling Thread pointer");
 495 }
 496 #endif
 497 
 498 ThreadPriority Thread::get_priority(const Thread* const thread) {
 499   ThreadPriority priority;
 500   // Can return an error!
 501   (void)os::get_priority(thread, priority);
 502   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 503   return priority;
 504 }
 505 
 506 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 507   debug_only(check_for_dangling_thread_pointer(thread);)
 508   // Can return an error!
 509   (void)os::set_priority(thread, priority);
 510 }
 511 
 512 
 513 void Thread::start(Thread* thread) {
 514   // Start is different from resume in that its safety is guaranteed by context or
 515   // being called from a Java method synchronized on the Thread object.
 516   if (!DisableStartThread) {
 517     if (thread->is_Java_thread()) {
 518       // Initialize the thread state to RUNNABLE before starting this thread.
 519       // Can not set it after the thread started because we do not know the
 520       // exact thread state at that time. It could be in MONITOR_WAIT or
 521       // in SLEEPING or some other state.
 522       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 523                                           java_lang_Thread::RUNNABLE);
 524     }
 525     os::start_thread(thread);
 526   }
 527 }
 528 
 529 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 530   VM_ThreadStop vm_stop(java_thread, java_throwable);
 531   VMThread::execute(&vm_stop);
 532 }
 533 
 534 
 535 // Check if an external suspend request has completed (or has been
 536 // cancelled). Returns true if the thread is externally suspended and
 537 // false otherwise.
 538 //
 539 // The bits parameter returns information about the code path through
 540 // the routine. Useful for debugging:
 541 //
 542 // set in is_ext_suspend_completed():
 543 // 0x00000001 - routine was entered
 544 // 0x00000010 - routine return false at end
 545 // 0x00000100 - thread exited (return false)
 546 // 0x00000200 - suspend request cancelled (return false)
 547 // 0x00000400 - thread suspended (return true)
 548 // 0x00001000 - thread is in a suspend equivalent state (return true)
 549 // 0x00002000 - thread is native and walkable (return true)
 550 // 0x00004000 - thread is native_trans and walkable (needed retry)
 551 //
 552 // set in wait_for_ext_suspend_completion():
 553 // 0x00010000 - routine was entered
 554 // 0x00020000 - suspend request cancelled before loop (return false)
 555 // 0x00040000 - thread suspended before loop (return true)
 556 // 0x00080000 - suspend request cancelled in loop (return false)
 557 // 0x00100000 - thread suspended in loop (return true)
 558 // 0x00200000 - suspend not completed during retry loop (return false)
 559 
 560 // Helper class for tracing suspend wait debug bits.
 561 //
 562 // 0x00000100 indicates that the target thread exited before it could
 563 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 564 // 0x00080000 each indicate a cancelled suspend request so they don't
 565 // count as wait failures either.
 566 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 567 
 568 class TraceSuspendDebugBits : public StackObj {
 569  private:
 570   JavaThread * jt;
 571   bool         is_wait;
 572   bool         called_by_wait;  // meaningful when !is_wait
 573   uint32_t *   bits;
 574 
 575  public:
 576   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 577                         uint32_t *_bits) {
 578     jt             = _jt;
 579     is_wait        = _is_wait;
 580     called_by_wait = _called_by_wait;
 581     bits           = _bits;
 582   }
 583 
 584   ~TraceSuspendDebugBits() {
 585     if (!is_wait) {
 586 #if 1
 587       // By default, don't trace bits for is_ext_suspend_completed() calls.
 588       // That trace is very chatty.
 589       return;
 590 #else
 591       if (!called_by_wait) {
 592         // If tracing for is_ext_suspend_completed() is enabled, then only
 593         // trace calls to it from wait_for_ext_suspend_completion()
 594         return;
 595       }
 596 #endif
 597     }
 598 
 599     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 600       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 601         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 602         ResourceMark rm;
 603 
 604         tty->print_cr(
 605                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 606                       jt->get_thread_name(), *bits);
 607 
 608         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 609       }
 610     }
 611   }
 612 };
 613 #undef DEBUG_FALSE_BITS
 614 
 615 
 616 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 617                                           uint32_t *bits) {
 618   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 619 
 620   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 621   bool do_trans_retry;           // flag to force the retry
 622 
 623   *bits |= 0x00000001;
 624 
 625   do {
 626     do_trans_retry = false;
 627 
 628     if (is_exiting()) {
 629       // Thread is in the process of exiting. This is always checked
 630       // first to reduce the risk of dereferencing a freed JavaThread.
 631       *bits |= 0x00000100;
 632       return false;
 633     }
 634 
 635     if (!is_external_suspend()) {
 636       // Suspend request is cancelled. This is always checked before
 637       // is_ext_suspended() to reduce the risk of a rogue resume
 638       // confusing the thread that made the suspend request.
 639       *bits |= 0x00000200;
 640       return false;
 641     }
 642 
 643     if (is_ext_suspended()) {
 644       // thread is suspended
 645       *bits |= 0x00000400;
 646       return true;
 647     }
 648 
 649     // Now that we no longer do hard suspends of threads running
 650     // native code, the target thread can be changing thread state
 651     // while we are in this routine:
 652     //
 653     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 654     //
 655     // We save a copy of the thread state as observed at this moment
 656     // and make our decision about suspend completeness based on the
 657     // copy. This closes the race where the thread state is seen as
 658     // _thread_in_native_trans in the if-thread_blocked check, but is
 659     // seen as _thread_blocked in if-thread_in_native_trans check.
 660     JavaThreadState save_state = thread_state();
 661 
 662     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 663       // If the thread's state is _thread_blocked and this blocking
 664       // condition is known to be equivalent to a suspend, then we can
 665       // consider the thread to be externally suspended. This means that
 666       // the code that sets _thread_blocked has been modified to do
 667       // self-suspension if the blocking condition releases. We also
 668       // used to check for CONDVAR_WAIT here, but that is now covered by
 669       // the _thread_blocked with self-suspension check.
 670       //
 671       // Return true since we wouldn't be here unless there was still an
 672       // external suspend request.
 673       *bits |= 0x00001000;
 674       return true;
 675     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 676       // Threads running native code will self-suspend on native==>VM/Java
 677       // transitions. If its stack is walkable (should always be the case
 678       // unless this function is called before the actual java_suspend()
 679       // call), then the wait is done.
 680       *bits |= 0x00002000;
 681       return true;
 682     } else if (!called_by_wait && !did_trans_retry &&
 683                save_state == _thread_in_native_trans &&
 684                frame_anchor()->walkable()) {
 685       // The thread is transitioning from thread_in_native to another
 686       // thread state. check_safepoint_and_suspend_for_native_trans()
 687       // will force the thread to self-suspend. If it hasn't gotten
 688       // there yet we may have caught the thread in-between the native
 689       // code check above and the self-suspend. Lucky us. If we were
 690       // called by wait_for_ext_suspend_completion(), then it
 691       // will be doing the retries so we don't have to.
 692       //
 693       // Since we use the saved thread state in the if-statement above,
 694       // there is a chance that the thread has already transitioned to
 695       // _thread_blocked by the time we get here. In that case, we will
 696       // make a single unnecessary pass through the logic below. This
 697       // doesn't hurt anything since we still do the trans retry.
 698 
 699       *bits |= 0x00004000;
 700 
 701       // Once the thread leaves thread_in_native_trans for another
 702       // thread state, we break out of this retry loop. We shouldn't
 703       // need this flag to prevent us from getting back here, but
 704       // sometimes paranoia is good.
 705       did_trans_retry = true;
 706 
 707       // We wait for the thread to transition to a more usable state.
 708       for (int i = 1; i <= SuspendRetryCount; i++) {
 709         // We used to do an "os::yield_all(i)" call here with the intention
 710         // that yielding would increase on each retry. However, the parameter
 711         // is ignored on Linux which means the yield didn't scale up. Waiting
 712         // on the SR_lock below provides a much more predictable scale up for
 713         // the delay. It also provides a simple/direct point to check for any
 714         // safepoint requests from the VMThread
 715 
 716         // temporarily drops SR_lock while doing wait with safepoint check
 717         // (if we're a JavaThread - the WatcherThread can also call this)
 718         // and increase delay with each retry
 719         if (Thread::current()->is_Java_thread()) {
 720           SR_lock()->wait(i * delay);
 721         } else {
 722           SR_lock()->wait_without_safepoint_check(i * delay);
 723         }
 724 
 725         // check the actual thread state instead of what we saved above
 726         if (thread_state() != _thread_in_native_trans) {
 727           // the thread has transitioned to another thread state so
 728           // try all the checks (except this one) one more time.
 729           do_trans_retry = true;
 730           break;
 731         }
 732       } // end retry loop
 733 
 734 
 735     }
 736   } while (do_trans_retry);
 737 
 738   *bits |= 0x00000010;
 739   return false;
 740 }
 741 
 742 // Wait for an external suspend request to complete (or be cancelled).
 743 // Returns true if the thread is externally suspended and false otherwise.
 744 //
 745 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 746                                                  uint32_t *bits) {
 747   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 748                              false /* !called_by_wait */, bits);
 749 
 750   // local flag copies to minimize SR_lock hold time
 751   bool is_suspended;
 752   bool pending;
 753   uint32_t reset_bits;
 754 
 755   // set a marker so is_ext_suspend_completed() knows we are the caller
 756   *bits |= 0x00010000;
 757 
 758   // We use reset_bits to reinitialize the bits value at the top of
 759   // each retry loop. This allows the caller to make use of any
 760   // unused bits for their own marking purposes.
 761   reset_bits = *bits;
 762 
 763   {
 764     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 765     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 766                                             delay, bits);
 767     pending = is_external_suspend();
 768   }
 769   // must release SR_lock to allow suspension to complete
 770 
 771   if (!pending) {
 772     // A cancelled suspend request is the only false return from
 773     // is_ext_suspend_completed() that keeps us from entering the
 774     // retry loop.
 775     *bits |= 0x00020000;
 776     return false;
 777   }
 778 
 779   if (is_suspended) {
 780     *bits |= 0x00040000;
 781     return true;
 782   }
 783 
 784   for (int i = 1; i <= retries; i++) {
 785     *bits = reset_bits;  // reinit to only track last retry
 786 
 787     // We used to do an "os::yield_all(i)" call here with the intention
 788     // that yielding would increase on each retry. However, the parameter
 789     // is ignored on Linux which means the yield didn't scale up. Waiting
 790     // on the SR_lock below provides a much more predictable scale up for
 791     // the delay. It also provides a simple/direct point to check for any
 792     // safepoint requests from the VMThread
 793 
 794     {
 795       Thread* t = Thread::current();
 796       MonitorLocker ml(SR_lock(),
 797                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 798       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 799       // can also call this)  and increase delay with each retry
 800       ml.wait(i * delay);
 801 
 802       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 803                                               delay, bits);
 804 
 805       // It is possible for the external suspend request to be cancelled
 806       // (by a resume) before the actual suspend operation is completed.
 807       // Refresh our local copy to see if we still need to wait.
 808       pending = is_external_suspend();
 809     }
 810 
 811     if (!pending) {
 812       // A cancelled suspend request is the only false return from
 813       // is_ext_suspend_completed() that keeps us from staying in the
 814       // retry loop.
 815       *bits |= 0x00080000;
 816       return false;
 817     }
 818 
 819     if (is_suspended) {
 820       *bits |= 0x00100000;
 821       return true;
 822     }
 823   } // end retry loop
 824 
 825   // thread did not suspend after all our retries
 826   *bits |= 0x00200000;
 827   return false;
 828 }
 829 
 830 // Called from API entry points which perform stack walking. If the
 831 // associated JavaThread is the current thread, then wait_for_suspend
 832 // is not used. Otherwise, it determines if we should wait for the
 833 // "other" thread to complete external suspension. (NOTE: in future
 834 // releases the suspension mechanism should be reimplemented so this
 835 // is not necessary.)
 836 //
 837 bool
 838 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 839   if (this != JavaThread::current()) {
 840     // "other" threads require special handling.
 841     if (wait_for_suspend) {
 842       // We are allowed to wait for the external suspend to complete
 843       // so give the other thread a chance to get suspended.
 844       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 845                                            SuspendRetryDelay, bits)) {
 846         // Didn't make it so let the caller know.
 847         return false;
 848       }
 849     }
 850     // We aren't allowed to wait for the external suspend to complete
 851     // so if the other thread isn't externally suspended we need to
 852     // let the caller know.
 853     else if (!is_ext_suspend_completed_with_lock(bits)) {
 854       return false;
 855     }
 856   }
 857 
 858   return true;
 859 }
 860 
 861 // GC Support
 862 bool Thread::claim_par_threads_do(uintx claim_token) {
 863   uintx token = _threads_do_token;
 864   if (token != claim_token) {
 865     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 866     if (res == token) {
 867       return true;
 868     }
 869     guarantee(res == claim_token, "invariant");
 870   }
 871   return false;
 872 }
 873 
 874 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 875   active_handles()->oops_do(f);
 876   // Do oop for ThreadShadow
 877   f->do_oop((oop*)&_pending_exception);
 878   handle_area()->oops_do(f);
 879 
 880   // We scan thread local monitor lists here, and the remaining global
 881   // monitors in ObjectSynchronizer::oops_do().
 882   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 883 }
 884 
 885 void Thread::metadata_handles_do(void f(Metadata*)) {
 886   // Only walk the Handles in Thread.
 887   if (metadata_handles() != NULL) {
 888     for (int i = 0; i< metadata_handles()->length(); i++) {
 889       f(metadata_handles()->at(i));
 890     }
 891   }
 892 }
 893 
 894 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 895   // get_priority assumes osthread initialized
 896   if (osthread() != NULL) {
 897     int os_prio;
 898     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 899       st->print("os_prio=%d ", os_prio);
 900     }
 901 
 902     st->print("cpu=%.2fms ",
 903               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 904               );
 905     st->print("elapsed=%.2fs ",
 906               _statistical_info.getElapsedTime() / 1000.0
 907               );
 908     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 909       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 910       st->print("allocated=" SIZE_FORMAT "%s ",
 911                 byte_size_in_proper_unit(allocated_bytes),
 912                 proper_unit_for_byte_size(allocated_bytes)
 913                 );
 914       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 915     }
 916 
 917     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 918     osthread()->print_on(st);
 919   }
 920   ThreadsSMRSupport::print_info_on(this, st);
 921   st->print(" ");
 922   debug_only(if (WizardMode) print_owned_locks_on(st);)
 923 }
 924 
 925 void Thread::print() const { print_on(tty); }
 926 
 927 // Thread::print_on_error() is called by fatal error handler. Don't use
 928 // any lock or allocate memory.
 929 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 930   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 931 
 932   if (is_VM_thread())                 { st->print("VMThread"); }
 933   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 934   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 935   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 936   else                                { st->print("Thread"); }
 937 
 938   if (is_Named_thread()) {
 939     st->print(" \"%s\"", name());
 940   }
 941 
 942   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 943             p2i(stack_end()), p2i(stack_base()));
 944 
 945   if (osthread()) {
 946     st->print(" [id=%d]", osthread()->thread_id());
 947   }
 948 
 949   ThreadsSMRSupport::print_info_on(this, st);
 950 }
 951 
 952 void Thread::print_value_on(outputStream* st) const {
 953   if (is_Named_thread()) {
 954     st->print(" \"%s\" ", name());
 955   }
 956   st->print(INTPTR_FORMAT, p2i(this));   // print address
 957 }
 958 
 959 #ifdef ASSERT
 960 void Thread::print_owned_locks_on(outputStream* st) const {
 961   Mutex* cur = _owned_locks;
 962   if (cur == NULL) {
 963     st->print(" (no locks) ");
 964   } else {
 965     st->print_cr(" Locks owned:");
 966     while (cur) {
 967       cur->print_on(st);
 968       cur = cur->next();
 969     }
 970   }
 971 }
 972 
 973 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 974 void Thread::check_possible_safepoint() {
 975   if (!is_Java_thread()) return;
 976 
 977   if (_no_safepoint_count > 0) {
 978     print_owned_locks();
 979     fatal("Possible safepoint reached by thread that does not allow it");
 980   }
 981 #ifdef CHECK_UNHANDLED_OOPS
 982   // Clear unhandled oops in JavaThreads so we get a crash right away.
 983   clear_unhandled_oops();
 984 #endif // CHECK_UNHANDLED_OOPS
 985 }
 986 
 987 void Thread::check_for_valid_safepoint_state() {
 988   if (!is_Java_thread()) return;
 989 
 990   // Check NoSafepointVerifier, which is implied by locks taken that can be
 991   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 992   // are held.
 993   check_possible_safepoint();
 994 
 995   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
 996     fatal("LEAF method calling lock?");
 997   }
 998 
 999   if (GCALotAtAllSafepoints) {
1000     // We could enter a safepoint here and thus have a gc
1001     InterfaceSupport::check_gc_alot();
1002   }
1003 }
1004 #endif // ASSERT
1005 
1006 bool Thread::is_in_stack(address adr) const {
1007   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1008   address end = os::current_stack_pointer();
1009   // Allow non Java threads to call this without stack_base
1010   if (_stack_base == NULL) return true;
1011   if (stack_base() > adr && adr >= end) return true;
1012 
1013   return false;
1014 }
1015 
1016 bool Thread::is_in_usable_stack(address adr) const {
1017   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1018   size_t usable_stack_size = _stack_size - stack_guard_size;
1019 
1020   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1021 }
1022 
1023 
1024 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1025 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1026 // used for compilation in the future. If that change is made, the need for these methods
1027 // should be revisited, and they should be removed if possible.
1028 
1029 bool Thread::is_lock_owned(address adr) const {
1030   return on_local_stack(adr);
1031 }
1032 
1033 bool Thread::set_as_starting_thread() {
1034   assert(_starting_thread == NULL, "already initialized: "
1035          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1036   // NOTE: this must be called inside the main thread.
1037   DEBUG_ONLY(_starting_thread = this;)
1038   return os::create_main_thread((JavaThread*)this);
1039 }
1040 
1041 static void initialize_class(Symbol* class_name, TRAPS) {
1042   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1043   InstanceKlass::cast(klass)->initialize(CHECK);
1044 }
1045 
1046 
1047 // Creates the initial ThreadGroup
1048 static Handle create_initial_thread_group(TRAPS) {
1049   Handle system_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::void_method_signature(),
1052                             CHECK_NH);
1053   Universe::set_system_thread_group(system_instance());
1054 
1055   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1056   Handle main_instance = JavaCalls::construct_new_instance(
1057                             SystemDictionary::ThreadGroup_klass(),
1058                             vmSymbols::threadgroup_string_void_signature(),
1059                             system_instance,
1060                             string,
1061                             CHECK_NH);
1062   return main_instance;
1063 }
1064 
1065 // Creates the initial Thread
1066 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1067                                  TRAPS) {
1068   InstanceKlass* ik = SystemDictionary::Thread_klass();
1069   assert(ik->is_initialized(), "must be");
1070   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1071 
1072   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1073   // constructor calls Thread.current(), which must be set here for the
1074   // initial thread.
1075   java_lang_Thread::set_thread(thread_oop(), thread);
1076   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1077   thread->set_threadObj(thread_oop());
1078 
1079   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1080 
1081   JavaValue result(T_VOID);
1082   JavaCalls::call_special(&result, thread_oop,
1083                           ik,
1084                           vmSymbols::object_initializer_name(),
1085                           vmSymbols::threadgroup_string_void_signature(),
1086                           thread_group,
1087                           string,
1088                           CHECK_NULL);
1089   return thread_oop();
1090 }
1091 
1092 char java_runtime_name[128] = "";
1093 char java_runtime_version[128] = "";
1094 char java_runtime_vendor_version[128] = "";
1095 char java_runtime_vendor_vm_bug_url[128] = "";
1096 
1097 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1098 static const char* get_java_runtime_name(TRAPS) {
1099   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1100                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1101   fieldDescriptor fd;
1102   bool found = k != NULL &&
1103                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1104                                                         vmSymbols::string_signature(), &fd);
1105   if (found) {
1106     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1107     if (name_oop == NULL) {
1108       return NULL;
1109     }
1110     const char* name = java_lang_String::as_utf8_string(name_oop,
1111                                                         java_runtime_name,
1112                                                         sizeof(java_runtime_name));
1113     return name;
1114   } else {
1115     return NULL;
1116   }
1117 }
1118 
1119 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1120 static const char* get_java_runtime_version(TRAPS) {
1121   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1122                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1123   fieldDescriptor fd;
1124   bool found = k != NULL &&
1125                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1126                                                         vmSymbols::string_signature(), &fd);
1127   if (found) {
1128     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1129     if (name_oop == NULL) {
1130       return NULL;
1131     }
1132     const char* name = java_lang_String::as_utf8_string(name_oop,
1133                                                         java_runtime_version,
1134                                                         sizeof(java_runtime_version));
1135     return name;
1136   } else {
1137     return NULL;
1138   }
1139 }
1140 
1141 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1142 static const char* get_java_runtime_vendor_version(TRAPS) {
1143   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1144                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1145   fieldDescriptor fd;
1146   bool found = k != NULL &&
1147                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1148                                                         vmSymbols::string_signature(), &fd);
1149   if (found) {
1150     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1151     if (name_oop == NULL) {
1152       return NULL;
1153     }
1154     const char* name = java_lang_String::as_utf8_string(name_oop,
1155                                                         java_runtime_vendor_version,
1156                                                         sizeof(java_runtime_vendor_version));
1157     return name;
1158   } else {
1159     return NULL;
1160   }
1161 }
1162 
1163 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1164 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1165   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1166                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1167   fieldDescriptor fd;
1168   bool found = k != NULL &&
1169                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1170                                                         vmSymbols::string_signature(), &fd);
1171   if (found) {
1172     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1173     if (name_oop == NULL) {
1174       return NULL;
1175     }
1176     const char* name = java_lang_String::as_utf8_string(name_oop,
1177                                                         java_runtime_vendor_vm_bug_url,
1178                                                         sizeof(java_runtime_vendor_vm_bug_url));
1179     return name;
1180   } else {
1181     return NULL;
1182   }
1183 }
1184 
1185 // General purpose hook into Java code, run once when the VM is initialized.
1186 // The Java library method itself may be changed independently from the VM.
1187 static void call_postVMInitHook(TRAPS) {
1188   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1189   if (klass != NULL) {
1190     JavaValue result(T_VOID);
1191     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1192                            vmSymbols::void_method_signature(),
1193                            CHECK);
1194   }
1195 }
1196 
1197 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1198                                     bool daemon, TRAPS) {
1199   assert(thread_group.not_null(), "thread group should be specified");
1200   assert(threadObj() == NULL, "should only create Java thread object once");
1201 
1202   InstanceKlass* ik = SystemDictionary::Thread_klass();
1203   assert(ik->is_initialized(), "must be");
1204   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1205 
1206   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1207   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1208   // constructor calls Thread.current(), which must be set here.
1209   java_lang_Thread::set_thread(thread_oop(), this);
1210   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1211   set_threadObj(thread_oop());
1212 
1213   JavaValue result(T_VOID);
1214   if (thread_name != NULL) {
1215     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1216     // Thread gets assigned specified name and null target
1217     JavaCalls::call_special(&result,
1218                             thread_oop,
1219                             ik,
1220                             vmSymbols::object_initializer_name(),
1221                             vmSymbols::threadgroup_string_void_signature(),
1222                             thread_group,
1223                             name,
1224                             THREAD);
1225   } else {
1226     // Thread gets assigned name "Thread-nnn" and null target
1227     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1228     JavaCalls::call_special(&result,
1229                             thread_oop,
1230                             ik,
1231                             vmSymbols::object_initializer_name(),
1232                             vmSymbols::threadgroup_runnable_void_signature(),
1233                             thread_group,
1234                             Handle(),
1235                             THREAD);
1236   }
1237 
1238 
1239   if (daemon) {
1240     java_lang_Thread::set_daemon(thread_oop());
1241   }
1242 
1243   if (HAS_PENDING_EXCEPTION) {
1244     return;
1245   }
1246 
1247   Klass* group =  SystemDictionary::ThreadGroup_klass();
1248   Handle threadObj(THREAD, this->threadObj());
1249 
1250   JavaCalls::call_special(&result,
1251                           thread_group,
1252                           group,
1253                           vmSymbols::add_method_name(),
1254                           vmSymbols::thread_void_signature(),
1255                           threadObj,          // Arg 1
1256                           THREAD);
1257 }
1258 
1259 // List of all NonJavaThreads and safe iteration over that list.
1260 
1261 class NonJavaThread::List {
1262 public:
1263   NonJavaThread* volatile _head;
1264   SingleWriterSynchronizer _protect;
1265 
1266   List() : _head(NULL), _protect() {}
1267 };
1268 
1269 NonJavaThread::List NonJavaThread::_the_list;
1270 
1271 NonJavaThread::Iterator::Iterator() :
1272   _protect_enter(_the_list._protect.enter()),
1273   _current(Atomic::load_acquire(&_the_list._head))
1274 {}
1275 
1276 NonJavaThread::Iterator::~Iterator() {
1277   _the_list._protect.exit(_protect_enter);
1278 }
1279 
1280 void NonJavaThread::Iterator::step() {
1281   assert(!end(), "precondition");
1282   _current = Atomic::load_acquire(&_current->_next);
1283 }
1284 
1285 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1286   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1287 }
1288 
1289 NonJavaThread::~NonJavaThread() { }
1290 
1291 void NonJavaThread::add_to_the_list() {
1292   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1293   // Initialize BarrierSet-related data before adding to list.
1294   BarrierSet::barrier_set()->on_thread_attach(this);
1295   Atomic::release_store(&_next, _the_list._head);
1296   Atomic::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   {
1301     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1302     // Cleanup BarrierSet-related data before removing from list.
1303     BarrierSet::barrier_set()->on_thread_detach(this);
1304     NonJavaThread* volatile* p = &_the_list._head;
1305     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1306       if (t == this) {
1307         *p = _next;
1308         break;
1309       }
1310     }
1311   }
1312   // Wait for any in-progress iterators.  Concurrent synchronize is not
1313   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1314   // from NJTList_lock in case an iteration attempts to lock it.
1315   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1316   _the_list._protect.synchronize();
1317   _next = NULL;                 // Safe to drop the link now.
1318 }
1319 
1320 void NonJavaThread::pre_run() {
1321   add_to_the_list();
1322 
1323   // This is slightly odd in that NamedThread is a subclass, but
1324   // in fact name() is defined in Thread
1325   assert(this->name() != NULL, "thread name was not set before it was started");
1326   this->set_native_thread_name(this->name());
1327 }
1328 
1329 void NonJavaThread::post_run() {
1330   JFR_ONLY(Jfr::on_thread_exit(this);)
1331   remove_from_the_list();
1332   // Ensure thread-local-storage is cleared before termination.
1333   Thread::clear_thread_current();
1334 }
1335 
1336 // NamedThread --  non-JavaThread subclasses with multiple
1337 // uniquely named instances should derive from this.
1338 NamedThread::NamedThread() :
1339   NonJavaThread(),
1340   _name(NULL),
1341   _processed_thread(NULL),
1342   _gc_id(GCId::undefined())
1343 {}
1344 
1345 NamedThread::~NamedThread() {
1346   FREE_C_HEAP_ARRAY(char, _name);
1347 }
1348 
1349 void NamedThread::set_name(const char* format, ...) {
1350   guarantee(_name == NULL, "Only get to set name once.");
1351   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1352   va_list ap;
1353   va_start(ap, format);
1354   jio_vsnprintf(_name, max_name_len, format, ap);
1355   va_end(ap);
1356 }
1357 
1358 void NamedThread::print_on(outputStream* st) const {
1359   st->print("\"%s\" ", name());
1360   Thread::print_on(st);
1361   st->cr();
1362 }
1363 
1364 
1365 // ======= WatcherThread ========
1366 
1367 // The watcher thread exists to simulate timer interrupts.  It should
1368 // be replaced by an abstraction over whatever native support for
1369 // timer interrupts exists on the platform.
1370 
1371 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1372 bool WatcherThread::_startable = false;
1373 volatile bool  WatcherThread::_should_terminate = false;
1374 
1375 WatcherThread::WatcherThread() : NonJavaThread() {
1376   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1377   if (os::create_thread(this, os::watcher_thread)) {
1378     _watcher_thread = this;
1379 
1380     // Set the watcher thread to the highest OS priority which should not be
1381     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1382     // is created. The only normal thread using this priority is the reference
1383     // handler thread, which runs for very short intervals only.
1384     // If the VMThread's priority is not lower than the WatcherThread profiling
1385     // will be inaccurate.
1386     os::set_priority(this, MaxPriority);
1387     if (!DisableStartThread) {
1388       os::start_thread(this);
1389     }
1390   }
1391 }
1392 
1393 int WatcherThread::sleep() const {
1394   // The WatcherThread does not participate in the safepoint protocol
1395   // for the PeriodicTask_lock because it is not a JavaThread.
1396   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1397 
1398   if (_should_terminate) {
1399     // check for termination before we do any housekeeping or wait
1400     return 0;  // we did not sleep.
1401   }
1402 
1403   // remaining will be zero if there are no tasks,
1404   // causing the WatcherThread to sleep until a task is
1405   // enrolled
1406   int remaining = PeriodicTask::time_to_wait();
1407   int time_slept = 0;
1408 
1409   // we expect this to timeout - we only ever get unparked when
1410   // we should terminate or when a new task has been enrolled
1411   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1412 
1413   jlong time_before_loop = os::javaTimeNanos();
1414 
1415   while (true) {
1416     bool timedout = ml.wait(remaining);
1417     jlong now = os::javaTimeNanos();
1418 
1419     if (remaining == 0) {
1420       // if we didn't have any tasks we could have waited for a long time
1421       // consider the time_slept zero and reset time_before_loop
1422       time_slept = 0;
1423       time_before_loop = now;
1424     } else {
1425       // need to recalculate since we might have new tasks in _tasks
1426       time_slept = (int) ((now - time_before_loop) / 1000000);
1427     }
1428 
1429     // Change to task list or spurious wakeup of some kind
1430     if (timedout || _should_terminate) {
1431       break;
1432     }
1433 
1434     remaining = PeriodicTask::time_to_wait();
1435     if (remaining == 0) {
1436       // Last task was just disenrolled so loop around and wait until
1437       // another task gets enrolled
1438       continue;
1439     }
1440 
1441     remaining -= time_slept;
1442     if (remaining <= 0) {
1443       break;
1444     }
1445   }
1446 
1447   return time_slept;
1448 }
1449 
1450 void WatcherThread::run() {
1451   assert(this == watcher_thread(), "just checking");
1452 
1453   this->set_active_handles(JNIHandleBlock::allocate_block());
1454   while (true) {
1455     assert(watcher_thread() == Thread::current(), "thread consistency check");
1456     assert(watcher_thread() == this, "thread consistency check");
1457 
1458     // Calculate how long it'll be until the next PeriodicTask work
1459     // should be done, and sleep that amount of time.
1460     int time_waited = sleep();
1461 
1462     if (VMError::is_error_reported()) {
1463       // A fatal error has happened, the error handler(VMError::report_and_die)
1464       // should abort JVM after creating an error log file. However in some
1465       // rare cases, the error handler itself might deadlock. Here periodically
1466       // check for error reporting timeouts, and if it happens, just proceed to
1467       // abort the VM.
1468 
1469       // This code is in WatcherThread because WatcherThread wakes up
1470       // periodically so the fatal error handler doesn't need to do anything;
1471       // also because the WatcherThread is less likely to crash than other
1472       // threads.
1473 
1474       for (;;) {
1475         // Note: we use naked sleep in this loop because we want to avoid using
1476         // any kind of VM infrastructure which may be broken at this point.
1477         if (VMError::check_timeout()) {
1478           // We hit error reporting timeout. Error reporting was interrupted and
1479           // will be wrapping things up now (closing files etc). Give it some more
1480           // time, then quit the VM.
1481           os::naked_short_sleep(200);
1482           // Print a message to stderr.
1483           fdStream err(defaultStream::output_fd());
1484           err.print_raw_cr("# [ timer expired, abort... ]");
1485           // skip atexit/vm_exit/vm_abort hooks
1486           os::die();
1487         }
1488 
1489         // Wait a second, then recheck for timeout.
1490         os::naked_short_sleep(999);
1491       }
1492     }
1493 
1494     if (_should_terminate) {
1495       // check for termination before posting the next tick
1496       break;
1497     }
1498 
1499     PeriodicTask::real_time_tick(time_waited);
1500   }
1501 
1502   // Signal that it is terminated
1503   {
1504     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1505     _watcher_thread = NULL;
1506     Terminator_lock->notify_all();
1507   }
1508 }
1509 
1510 void WatcherThread::start() {
1511   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1512 
1513   if (watcher_thread() == NULL && _startable) {
1514     _should_terminate = false;
1515     // Create the single instance of WatcherThread
1516     new WatcherThread();
1517   }
1518 }
1519 
1520 void WatcherThread::make_startable() {
1521   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1522   _startable = true;
1523 }
1524 
1525 void WatcherThread::stop() {
1526   {
1527     // Follow normal safepoint aware lock enter protocol since the
1528     // WatcherThread is stopped by another JavaThread.
1529     MutexLocker ml(PeriodicTask_lock);
1530     _should_terminate = true;
1531 
1532     WatcherThread* watcher = watcher_thread();
1533     if (watcher != NULL) {
1534       // unpark the WatcherThread so it can see that it should terminate
1535       watcher->unpark();
1536     }
1537   }
1538 
1539   MonitorLocker mu(Terminator_lock);
1540 
1541   while (watcher_thread() != NULL) {
1542     // This wait should make safepoint checks, wait without a timeout,
1543     // and wait as a suspend-equivalent condition.
1544     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1545   }
1546 }
1547 
1548 void WatcherThread::unpark() {
1549   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1550   PeriodicTask_lock->notify();
1551 }
1552 
1553 void WatcherThread::print_on(outputStream* st) const {
1554   st->print("\"%s\" ", name());
1555   Thread::print_on(st);
1556   st->cr();
1557 }
1558 
1559 // ======= JavaThread ========
1560 
1561 #if INCLUDE_JVMCI
1562 
1563 jlong* JavaThread::_jvmci_old_thread_counters;
1564 
1565 bool jvmci_counters_include(JavaThread* thread) {
1566   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1567 }
1568 
1569 void JavaThread::collect_counters(jlong* array, int length) {
1570   assert(length == JVMCICounterSize, "wrong value");
1571   for (int i = 0; i < length; i++) {
1572     array[i] = _jvmci_old_thread_counters[i];
1573   }
1574   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1575     if (jvmci_counters_include(tp)) {
1576       for (int i = 0; i < length; i++) {
1577         array[i] += tp->_jvmci_counters[i];
1578       }
1579     }
1580   }
1581 }
1582 
1583 // Attempt to enlarge the array for per thread counters.
1584 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1585   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1586   if (old_counters == NULL) {
1587     old_counters = new_counters;
1588     memset(old_counters, 0, sizeof(jlong) * new_size);
1589   } else {
1590     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1591       new_counters[i] = old_counters[i];
1592     }
1593     if (new_size > current_size) {
1594       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1595     }
1596     FREE_C_HEAP_ARRAY(jlong, old_counters);
1597   }
1598   return new_counters;
1599 }
1600 
1601 // Attempt to enlarge the array for per thread counters.
1602 void JavaThread::resize_counters(int current_size, int new_size) {
1603   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1604 }
1605 
1606 class VM_JVMCIResizeCounters : public VM_Operation {
1607  private:
1608   int _new_size;
1609 
1610  public:
1611   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1612   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1613   bool allow_nested_vm_operations() const        { return true; }
1614   void doit() {
1615     // Resize the old thread counters array
1616     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1617     JavaThread::_jvmci_old_thread_counters = new_counters;
1618 
1619     // Now resize each threads array
1620     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1621       tp->resize_counters(JVMCICounterSize, _new_size);
1622     }
1623     JVMCICounterSize = _new_size;
1624   }
1625 };
1626 
1627 void JavaThread::resize_all_jvmci_counters(int new_size) {
1628   VM_JVMCIResizeCounters op(new_size);
1629   VMThread::execute(&op);
1630 }
1631 
1632 #endif // INCLUDE_JVMCI
1633 
1634 // A JavaThread is a normal Java thread
1635 
1636 void JavaThread::initialize() {
1637   // Initialize fields
1638 
1639   set_saved_exception_pc(NULL);
1640   set_threadObj(NULL);
1641   _anchor.clear();
1642   set_entry_point(NULL);
1643   set_jni_functions(jni_functions());
1644   set_callee_target(NULL);
1645   set_vm_result(NULL);
1646   set_vm_result_2(NULL);
1647   set_vframe_array_head(NULL);
1648   set_vframe_array_last(NULL);
1649   set_deferred_locals(NULL);
1650   set_deopt_mark(NULL);
1651   set_deopt_compiled_method(NULL);
1652   set_monitor_chunks(NULL);
1653   _on_thread_list = false;
1654   _thread_state = _thread_new;
1655   _terminated = _not_terminated;
1656   _array_for_gc = NULL;
1657   _suspend_equivalent = false;
1658   _in_deopt_handler = 0;
1659   _doing_unsafe_access = false;
1660   _stack_guard_state = stack_guard_unused;
1661 #if INCLUDE_JVMCI
1662   _pending_monitorenter = false;
1663   _pending_deoptimization = -1;
1664   _pending_failed_speculation = 0;
1665   _pending_transfer_to_interpreter = false;
1666   _in_retryable_allocation = false;
1667   _jvmci._alternate_call_target = NULL;
1668   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1669   _jvmci_counters = NULL;
1670   if (JVMCICounterSize > 0) {
1671     resize_counters(0, (int) JVMCICounterSize);
1672   }
1673 #endif // INCLUDE_JVMCI
1674   _reserved_stack_activation = NULL;  // stack base not known yet
1675   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1676   _exception_pc  = 0;
1677   _exception_handler_pc = 0;
1678   _is_method_handle_return = 0;
1679   _jvmti_thread_state= NULL;
1680   _should_post_on_exceptions_flag = JNI_FALSE;
1681   _interp_only_mode    = 0;
1682   _special_runtime_exit_condition = _no_async_condition;
1683   _pending_async_exception = NULL;
1684   _thread_stat = NULL;
1685   _thread_stat = new ThreadStatistics();
1686   _jni_active_critical = 0;
1687   _pending_jni_exception_check_fn = NULL;
1688   _do_not_unlock_if_synchronized = false;
1689   _cached_monitor_info = NULL;
1690   _parker = Parker::Allocate(this);
1691   _SleepEvent = ParkEvent::Allocate(this);
1692   // Setup safepoint state info for this thread
1693   ThreadSafepointState::create(this);
1694 
1695   debug_only(_java_call_counter = 0);
1696 
1697   // JVMTI PopFrame support
1698   _popframe_condition = popframe_inactive;
1699   _popframe_preserved_args = NULL;
1700   _popframe_preserved_args_size = 0;
1701   _frames_to_pop_failed_realloc = 0;
1702 
1703   if (SafepointMechanism::uses_thread_local_poll()) {
1704     SafepointMechanism::initialize_header(this);
1705   }
1706 
1707   _class_to_be_initialized = NULL;
1708 
1709   pd_initialize();
1710 }
1711 
1712 JavaThread::JavaThread(bool is_attaching_via_jni) :
1713                        Thread() {
1714   initialize();
1715   if (is_attaching_via_jni) {
1716     _jni_attach_state = _attaching_via_jni;
1717   } else {
1718     _jni_attach_state = _not_attaching_via_jni;
1719   }
1720   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1721 }
1722 
1723 
1724 // interrupt support
1725 
1726 void JavaThread::interrupt() {
1727   debug_only(check_for_dangling_thread_pointer(this);)
1728 
1729   // For Windows _interrupt_event
1730   osthread()->set_interrupted(true);
1731 
1732   // For Thread.sleep
1733   _SleepEvent->unpark();
1734 
1735   // For JSR166 LockSupport.park
1736   parker()->unpark();
1737 
1738   // For ObjectMonitor and JvmtiRawMonitor
1739   _ParkEvent->unpark();
1740 }
1741 
1742 
1743 bool JavaThread::is_interrupted(bool clear_interrupted) {
1744   debug_only(check_for_dangling_thread_pointer(this);)
1745 
1746   if (threadObj() == NULL) {
1747     // If there is no j.l.Thread then it is impossible to have
1748     // been interrupted. We can find NULL during VM initialization
1749     // or when a JNI thread is still in the process of attaching.
1750     // In such cases this must be the current thread.
1751     assert(this == Thread::current(), "invariant");
1752     return false;
1753   }
1754 
1755   bool interrupted = java_lang_Thread::interrupted(threadObj());
1756 
1757   // NOTE that since there is no "lock" around the interrupt and
1758   // is_interrupted operations, there is the possibility that the
1759   // interrupted flag will be "false" but that the
1760   // low-level events will be in the signaled state. This is
1761   // intentional. The effect of this is that Object.wait() and
1762   // LockSupport.park() will appear to have a spurious wakeup, which
1763   // is allowed and not harmful, and the possibility is so rare that
1764   // it is not worth the added complexity to add yet another lock.
1765   // For the sleep event an explicit reset is performed on entry
1766   // to JavaThread::sleep, so there is no early return. It has also been
1767   // recommended not to put the interrupted flag into the "event"
1768   // structure because it hides the issue.
1769   // Also, because there is no lock, we must only clear the interrupt
1770   // state if we are going to report that we were interrupted; otherwise
1771   // an interrupt that happens just after we read the field would be lost.
1772   if (interrupted && clear_interrupted) {
1773     assert(this == Thread::current(), "only the current thread can clear");
1774     java_lang_Thread::set_interrupted(threadObj(), false);
1775     osthread()->set_interrupted(false);
1776   }
1777 
1778   return interrupted;
1779 }
1780 
1781 bool JavaThread::reguard_stack(address cur_sp) {
1782   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1783       && _stack_guard_state != stack_guard_reserved_disabled) {
1784     return true; // Stack already guarded or guard pages not needed.
1785   }
1786 
1787   if (register_stack_overflow()) {
1788     // For those architectures which have separate register and
1789     // memory stacks, we must check the register stack to see if
1790     // it has overflowed.
1791     return false;
1792   }
1793 
1794   // Java code never executes within the yellow zone: the latter is only
1795   // there to provoke an exception during stack banging.  If java code
1796   // is executing there, either StackShadowPages should be larger, or
1797   // some exception code in c1, c2 or the interpreter isn't unwinding
1798   // when it should.
1799   guarantee(cur_sp > stack_reserved_zone_base(),
1800             "not enough space to reguard - increase StackShadowPages");
1801   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1802     enable_stack_yellow_reserved_zone();
1803     if (reserved_stack_activation() != stack_base()) {
1804       set_reserved_stack_activation(stack_base());
1805     }
1806   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1807     set_reserved_stack_activation(stack_base());
1808     enable_stack_reserved_zone();
1809   }
1810   return true;
1811 }
1812 
1813 bool JavaThread::reguard_stack(void) {
1814   return reguard_stack(os::current_stack_pointer());
1815 }
1816 
1817 
1818 void JavaThread::block_if_vm_exited() {
1819   if (_terminated == _vm_exited) {
1820     // _vm_exited is set at safepoint, and Threads_lock is never released
1821     // we will block here forever.
1822     // Here we can be doing a jump from a safe state to an unsafe state without
1823     // proper transition, but it happens after the final safepoint has begun.
1824     set_thread_state(_thread_in_vm);
1825     Threads_lock->lock();
1826     ShouldNotReachHere();
1827   }
1828 }
1829 
1830 
1831 // Remove this ifdef when C1 is ported to the compiler interface.
1832 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1833 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1834 
1835 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1836                        Thread() {
1837   initialize();
1838   _jni_attach_state = _not_attaching_via_jni;
1839   set_entry_point(entry_point);
1840   // Create the native thread itself.
1841   // %note runtime_23
1842   os::ThreadType thr_type = os::java_thread;
1843   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1844                                                      os::java_thread;
1845   os::create_thread(this, thr_type, stack_sz);
1846   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1847   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1848   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1849   // the exception consists of creating the exception object & initializing it, initialization
1850   // will leave the VM via a JavaCall and then all locks must be unlocked).
1851   //
1852   // The thread is still suspended when we reach here. Thread must be explicit started
1853   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1854   // by calling Threads:add. The reason why this is not done here, is because the thread
1855   // object must be fully initialized (take a look at JVM_Start)
1856 }
1857 
1858 JavaThread::~JavaThread() {
1859 
1860   // JSR166 -- return the parker to the free list
1861   Parker::Release(_parker);
1862   _parker = NULL;
1863 
1864   // Return the sleep event to the free list
1865   ParkEvent::Release(_SleepEvent);
1866   _SleepEvent = NULL;
1867 
1868   // Free any remaining  previous UnrollBlock
1869   vframeArray* old_array = vframe_array_last();
1870 
1871   if (old_array != NULL) {
1872     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1873     old_array->set_unroll_block(NULL);
1874     delete old_info;
1875     delete old_array;
1876   }
1877 
1878   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1879   if (deferred != NULL) {
1880     // This can only happen if thread is destroyed before deoptimization occurs.
1881     assert(deferred->length() != 0, "empty array!");
1882     do {
1883       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1884       deferred->remove_at(0);
1885       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1886       delete dlv;
1887     } while (deferred->length() != 0);
1888     delete deferred;
1889   }
1890 
1891   // All Java related clean up happens in exit
1892   ThreadSafepointState::destroy(this);
1893   if (_thread_stat != NULL) delete _thread_stat;
1894 
1895 #if INCLUDE_JVMCI
1896   if (JVMCICounterSize > 0) {
1897     if (jvmci_counters_include(this)) {
1898       for (int i = 0; i < JVMCICounterSize; i++) {
1899         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1900       }
1901     }
1902     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1903   }
1904 #endif // INCLUDE_JVMCI
1905 }
1906 
1907 
1908 // First JavaThread specific code executed by a new Java thread.
1909 void JavaThread::pre_run() {
1910   // empty - see comments in run()
1911 }
1912 
1913 // The main routine called by a new Java thread. This isn't overridden
1914 // by subclasses, instead different subclasses define a different "entry_point"
1915 // which defines the actual logic for that kind of thread.
1916 void JavaThread::run() {
1917   // initialize thread-local alloc buffer related fields
1918   this->initialize_tlab();
1919 
1920   // Used to test validity of stack trace backs.
1921   // This can't be moved into pre_run() else we invalidate
1922   // the requirement that thread_main_inner is lower on
1923   // the stack. Consequently all the initialization logic
1924   // stays here in run() rather than pre_run().
1925   this->record_base_of_stack_pointer();
1926 
1927   this->create_stack_guard_pages();
1928 
1929   this->cache_global_variables();
1930 
1931   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1932   // in the VM. Change thread state from _thread_new to _thread_in_vm
1933   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1934   // Before a thread is on the threads list it is always safe, so after leaving the
1935   // _thread_new we should emit a instruction barrier. The distance to modified code
1936   // from here is probably far enough, but this is consistent and safe.
1937   OrderAccess::cross_modify_fence();
1938 
1939   assert(JavaThread::current() == this, "sanity check");
1940   assert(!Thread::current()->owns_locks(), "sanity check");
1941 
1942   DTRACE_THREAD_PROBE(start, this);
1943 
1944   // This operation might block. We call that after all safepoint checks for a new thread has
1945   // been completed.
1946   this->set_active_handles(JNIHandleBlock::allocate_block());
1947 
1948   if (JvmtiExport::should_post_thread_life()) {
1949     JvmtiExport::post_thread_start(this);
1950 
1951   }
1952 
1953   // We call another function to do the rest so we are sure that the stack addresses used
1954   // from there will be lower than the stack base just computed.
1955   thread_main_inner();
1956 }
1957 
1958 void JavaThread::thread_main_inner() {
1959   assert(JavaThread::current() == this, "sanity check");
1960   assert(this->threadObj() != NULL, "just checking");
1961 
1962   // Execute thread entry point unless this thread has a pending exception
1963   // or has been stopped before starting.
1964   // Note: Due to JVM_StopThread we can have pending exceptions already!
1965   if (!this->has_pending_exception() &&
1966       !java_lang_Thread::is_stillborn(this->threadObj())) {
1967     {
1968       ResourceMark rm(this);
1969       this->set_native_thread_name(this->get_thread_name());
1970     }
1971     HandleMark hm(this);
1972     this->entry_point()(this, this);
1973   }
1974 
1975   DTRACE_THREAD_PROBE(stop, this);
1976 
1977   // Cleanup is handled in post_run()
1978 }
1979 
1980 // Shared teardown for all JavaThreads
1981 void JavaThread::post_run() {
1982   this->exit(false);
1983   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1984   // for any shared tear-down.
1985   this->smr_delete();
1986 }
1987 
1988 static void ensure_join(JavaThread* thread) {
1989   // We do not need to grab the Threads_lock, since we are operating on ourself.
1990   Handle threadObj(thread, thread->threadObj());
1991   assert(threadObj.not_null(), "java thread object must exist");
1992   ObjectLocker lock(threadObj, thread);
1993   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1994   thread->clear_pending_exception();
1995   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1996   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1997   // Clear the native thread instance - this makes isAlive return false and allows the join()
1998   // to complete once we've done the notify_all below
1999   java_lang_Thread::set_thread(threadObj(), NULL);
2000   lock.notify_all(thread);
2001   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2002   thread->clear_pending_exception();
2003 }
2004 
2005 static bool is_daemon(oop threadObj) {
2006   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
2007 }
2008 
2009 // For any new cleanup additions, please check to see if they need to be applied to
2010 // cleanup_failed_attach_current_thread as well.
2011 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2012   assert(this == JavaThread::current(), "thread consistency check");
2013 
2014   elapsedTimer _timer_exit_phase1;
2015   elapsedTimer _timer_exit_phase2;
2016   elapsedTimer _timer_exit_phase3;
2017   elapsedTimer _timer_exit_phase4;
2018 
2019   if (log_is_enabled(Debug, os, thread, timer)) {
2020     _timer_exit_phase1.start();
2021   }
2022 
2023   HandleMark hm(this);
2024   Handle uncaught_exception(this, this->pending_exception());
2025   this->clear_pending_exception();
2026   Handle threadObj(this, this->threadObj());
2027   assert(threadObj.not_null(), "Java thread object should be created");
2028 
2029   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2030   {
2031     EXCEPTION_MARK;
2032 
2033     CLEAR_PENDING_EXCEPTION;
2034   }
2035   if (!destroy_vm) {
2036     if (uncaught_exception.not_null()) {
2037       EXCEPTION_MARK;
2038       // Call method Thread.dispatchUncaughtException().
2039       Klass* thread_klass = SystemDictionary::Thread_klass();
2040       JavaValue result(T_VOID);
2041       JavaCalls::call_virtual(&result,
2042                               threadObj, thread_klass,
2043                               vmSymbols::dispatchUncaughtException_name(),
2044                               vmSymbols::throwable_void_signature(),
2045                               uncaught_exception,
2046                               THREAD);
2047       if (HAS_PENDING_EXCEPTION) {
2048         ResourceMark rm(this);
2049         jio_fprintf(defaultStream::error_stream(),
2050                     "\nException: %s thrown from the UncaughtExceptionHandler"
2051                     " in thread \"%s\"\n",
2052                     pending_exception()->klass()->external_name(),
2053                     get_thread_name());
2054         CLEAR_PENDING_EXCEPTION;
2055       }
2056     }
2057     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2058 
2059     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2060     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2061     // is deprecated anyhow.
2062     if (!is_Compiler_thread()) {
2063       int count = 3;
2064       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2065         EXCEPTION_MARK;
2066         JavaValue result(T_VOID);
2067         Klass* thread_klass = SystemDictionary::Thread_klass();
2068         JavaCalls::call_virtual(&result,
2069                                 threadObj, thread_klass,
2070                                 vmSymbols::exit_method_name(),
2071                                 vmSymbols::void_method_signature(),
2072                                 THREAD);
2073         CLEAR_PENDING_EXCEPTION;
2074       }
2075     }
2076     // notify JVMTI
2077     if (JvmtiExport::should_post_thread_life()) {
2078       JvmtiExport::post_thread_end(this);
2079     }
2080 
2081     // We have notified the agents that we are exiting, before we go on,
2082     // we must check for a pending external suspend request and honor it
2083     // in order to not surprise the thread that made the suspend request.
2084     while (true) {
2085       {
2086         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2087         if (!is_external_suspend()) {
2088           set_terminated(_thread_exiting);
2089           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2090           break;
2091         }
2092         // Implied else:
2093         // Things get a little tricky here. We have a pending external
2094         // suspend request, but we are holding the SR_lock so we
2095         // can't just self-suspend. So we temporarily drop the lock
2096         // and then self-suspend.
2097       }
2098 
2099       ThreadBlockInVM tbivm(this);
2100       java_suspend_self();
2101 
2102       // We're done with this suspend request, but we have to loop around
2103       // and check again. Eventually we will get SR_lock without a pending
2104       // external suspend request and will be able to mark ourselves as
2105       // exiting.
2106     }
2107     // no more external suspends are allowed at this point
2108   } else {
2109     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2110     // before_exit() has already posted JVMTI THREAD_END events
2111   }
2112 
2113   if (log_is_enabled(Debug, os, thread, timer)) {
2114     _timer_exit_phase1.stop();
2115     _timer_exit_phase2.start();
2116   }
2117 
2118   // Capture daemon status before the thread is marked as terminated.
2119   bool daemon = is_daemon(threadObj());
2120 
2121   // Notify waiters on thread object. This has to be done after exit() is called
2122   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2123   // group should have the destroyed bit set before waiters are notified).
2124   ensure_join(this);
2125   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2126 
2127   if (log_is_enabled(Debug, os, thread, timer)) {
2128     _timer_exit_phase2.stop();
2129     _timer_exit_phase3.start();
2130   }
2131   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2132   // held by this thread must be released. The spec does not distinguish
2133   // between JNI-acquired and regular Java monitors. We can only see
2134   // regular Java monitors here if monitor enter-exit matching is broken.
2135   //
2136   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2137   // ObjectSynchronizer::release_monitors_owned_by_thread().
2138   if (exit_type == jni_detach) {
2139     // Sanity check even though JNI DetachCurrentThread() would have
2140     // returned JNI_ERR if there was a Java frame. JavaThread exit
2141     // should be done executing Java code by the time we get here.
2142     assert(!this->has_last_Java_frame(),
2143            "should not have a Java frame when detaching or exiting");
2144     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2145     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2146   }
2147 
2148   // These things needs to be done while we are still a Java Thread. Make sure that thread
2149   // is in a consistent state, in case GC happens
2150   JFR_ONLY(Jfr::on_thread_exit(this);)
2151 
2152   if (active_handles() != NULL) {
2153     JNIHandleBlock* block = active_handles();
2154     set_active_handles(NULL);
2155     JNIHandleBlock::release_block(block);
2156   }
2157 
2158   if (free_handle_block() != NULL) {
2159     JNIHandleBlock* block = free_handle_block();
2160     set_free_handle_block(NULL);
2161     JNIHandleBlock::release_block(block);
2162   }
2163 
2164   // These have to be removed while this is still a valid thread.
2165   remove_stack_guard_pages();
2166 
2167   if (UseTLAB) {
2168     tlab().retire();
2169   }
2170 
2171   if (JvmtiEnv::environments_might_exist()) {
2172     JvmtiExport::cleanup_thread(this);
2173   }
2174 
2175   // We must flush any deferred card marks and other various GC barrier
2176   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2177   // before removing a thread from the list of active threads.
2178   BarrierSet::barrier_set()->on_thread_detach(this);
2179 
2180   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2181     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2182     os::current_thread_id());
2183 
2184   if (log_is_enabled(Debug, os, thread, timer)) {
2185     _timer_exit_phase3.stop();
2186     _timer_exit_phase4.start();
2187   }
2188   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2189   Threads::remove(this, daemon);
2190 
2191   if (log_is_enabled(Debug, os, thread, timer)) {
2192     _timer_exit_phase4.stop();
2193     ResourceMark rm(this);
2194     log_debug(os, thread, timer)("name='%s'"
2195                                  ", exit-phase1=" JLONG_FORMAT
2196                                  ", exit-phase2=" JLONG_FORMAT
2197                                  ", exit-phase3=" JLONG_FORMAT
2198                                  ", exit-phase4=" JLONG_FORMAT,
2199                                  get_thread_name(),
2200                                  _timer_exit_phase1.milliseconds(),
2201                                  _timer_exit_phase2.milliseconds(),
2202                                  _timer_exit_phase3.milliseconds(),
2203                                  _timer_exit_phase4.milliseconds());
2204   }
2205 }
2206 
2207 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2208   if (active_handles() != NULL) {
2209     JNIHandleBlock* block = active_handles();
2210     set_active_handles(NULL);
2211     JNIHandleBlock::release_block(block);
2212   }
2213 
2214   if (free_handle_block() != NULL) {
2215     JNIHandleBlock* block = free_handle_block();
2216     set_free_handle_block(NULL);
2217     JNIHandleBlock::release_block(block);
2218   }
2219 
2220   // These have to be removed while this is still a valid thread.
2221   remove_stack_guard_pages();
2222 
2223   if (UseTLAB) {
2224     tlab().retire();
2225   }
2226 
2227   BarrierSet::barrier_set()->on_thread_detach(this);
2228 
2229   Threads::remove(this, is_daemon);
2230   this->smr_delete();
2231 }
2232 
2233 JavaThread* JavaThread::active() {
2234   Thread* thread = Thread::current();
2235   if (thread->is_Java_thread()) {
2236     return (JavaThread*) thread;
2237   } else {
2238     assert(thread->is_VM_thread(), "this must be a vm thread");
2239     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2240     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2241     assert(ret->is_Java_thread(), "must be a Java thread");
2242     return ret;
2243   }
2244 }
2245 
2246 bool JavaThread::is_lock_owned(address adr) const {
2247   if (Thread::is_lock_owned(adr)) return true;
2248 
2249   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2250     if (chunk->contains(adr)) return true;
2251   }
2252 
2253   return false;
2254 }
2255 
2256 
2257 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2258   chunk->set_next(monitor_chunks());
2259   set_monitor_chunks(chunk);
2260 }
2261 
2262 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2263   guarantee(monitor_chunks() != NULL, "must be non empty");
2264   if (monitor_chunks() == chunk) {
2265     set_monitor_chunks(chunk->next());
2266   } else {
2267     MonitorChunk* prev = monitor_chunks();
2268     while (prev->next() != chunk) prev = prev->next();
2269     prev->set_next(chunk->next());
2270   }
2271 }
2272 
2273 // JVM support.
2274 
2275 // Note: this function shouldn't block if it's called in
2276 // _thread_in_native_trans state (such as from
2277 // check_special_condition_for_native_trans()).
2278 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2279 
2280   if (has_last_Java_frame() && has_async_condition()) {
2281     // If we are at a polling page safepoint (not a poll return)
2282     // then we must defer async exception because live registers
2283     // will be clobbered by the exception path. Poll return is
2284     // ok because the call we a returning from already collides
2285     // with exception handling registers and so there is no issue.
2286     // (The exception handling path kills call result registers but
2287     //  this is ok since the exception kills the result anyway).
2288 
2289     if (is_at_poll_safepoint()) {
2290       // if the code we are returning to has deoptimized we must defer
2291       // the exception otherwise live registers get clobbered on the
2292       // exception path before deoptimization is able to retrieve them.
2293       //
2294       RegisterMap map(this, false);
2295       frame caller_fr = last_frame().sender(&map);
2296       assert(caller_fr.is_compiled_frame(), "what?");
2297       if (caller_fr.is_deoptimized_frame()) {
2298         log_info(exceptions)("deferred async exception at compiled safepoint");
2299         return;
2300       }
2301     }
2302   }
2303 
2304   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2305   if (condition == _no_async_condition) {
2306     // Conditions have changed since has_special_runtime_exit_condition()
2307     // was called:
2308     // - if we were here only because of an external suspend request,
2309     //   then that was taken care of above (or cancelled) so we are done
2310     // - if we were here because of another async request, then it has
2311     //   been cleared between the has_special_runtime_exit_condition()
2312     //   and now so again we are done
2313     return;
2314   }
2315 
2316   // Check for pending async. exception
2317   if (_pending_async_exception != NULL) {
2318     // Only overwrite an already pending exception, if it is not a threadDeath.
2319     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2320 
2321       // We cannot call Exceptions::_throw(...) here because we cannot block
2322       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2323 
2324       LogTarget(Info, exceptions) lt;
2325       if (lt.is_enabled()) {
2326         ResourceMark rm;
2327         LogStream ls(lt);
2328         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2329           if (has_last_Java_frame()) {
2330             frame f = last_frame();
2331            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2332           }
2333         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2334       }
2335       _pending_async_exception = NULL;
2336       clear_has_async_exception();
2337     }
2338   }
2339 
2340   if (check_unsafe_error &&
2341       condition == _async_unsafe_access_error && !has_pending_exception()) {
2342     condition = _no_async_condition;  // done
2343     switch (thread_state()) {
2344     case _thread_in_vm: {
2345       JavaThread* THREAD = this;
2346       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2347     }
2348     case _thread_in_native: {
2349       ThreadInVMfromNative tiv(this);
2350       JavaThread* THREAD = this;
2351       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2352     }
2353     case _thread_in_Java: {
2354       ThreadInVMfromJava tiv(this);
2355       JavaThread* THREAD = this;
2356       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2357     }
2358     default:
2359       ShouldNotReachHere();
2360     }
2361   }
2362 
2363   assert(condition == _no_async_condition || has_pending_exception() ||
2364          (!check_unsafe_error && condition == _async_unsafe_access_error),
2365          "must have handled the async condition, if no exception");
2366 }
2367 
2368 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2369 
2370   // Check for pending external suspend.
2371   if (is_external_suspend_with_lock()) {
2372     frame_anchor()->make_walkable(this);
2373     java_suspend_self_with_safepoint_check();
2374   }
2375 
2376   // We might be here for reasons in addition to the self-suspend request
2377   // so check for other async requests.
2378   if (check_asyncs) {
2379     check_and_handle_async_exceptions();
2380   }
2381 
2382   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2383 }
2384 
2385 void JavaThread::send_thread_stop(oop java_throwable)  {
2386   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2387   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2388   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2389 
2390   // Do not throw asynchronous exceptions against the compiler thread
2391   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2392   if (!can_call_java()) return;
2393 
2394   {
2395     // Actually throw the Throwable against the target Thread - however
2396     // only if there is no thread death exception installed already.
2397     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2398       // If the topmost frame is a runtime stub, then we are calling into
2399       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2400       // must deoptimize the caller before continuing, as the compiled  exception handler table
2401       // may not be valid
2402       if (has_last_Java_frame()) {
2403         frame f = last_frame();
2404         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2405           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2406           RegisterMap reg_map(this, UseBiasedLocking);
2407           frame compiled_frame = f.sender(&reg_map);
2408           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2409             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2410           }
2411         }
2412       }
2413 
2414       // Set async. pending exception in thread.
2415       set_pending_async_exception(java_throwable);
2416 
2417       if (log_is_enabled(Info, exceptions)) {
2418          ResourceMark rm;
2419         log_info(exceptions)("Pending Async. exception installed of type: %s",
2420                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2421       }
2422       // for AbortVMOnException flag
2423       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2424     }
2425   }
2426 
2427 
2428   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2429   java_lang_Thread::set_interrupted(threadObj(), true);
2430   this->interrupt();
2431 }
2432 
2433 // External suspension mechanism.
2434 //
2435 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2436 // to any VM_locks and it is at a transition
2437 // Self-suspension will happen on the transition out of the vm.
2438 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2439 //
2440 // Guarantees on return:
2441 //   + Target thread will not execute any new bytecode (that's why we need to
2442 //     force a safepoint)
2443 //   + Target thread will not enter any new monitors
2444 //
2445 void JavaThread::java_suspend() {
2446   ThreadsListHandle tlh;
2447   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2448     return;
2449   }
2450 
2451   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2452     if (!is_external_suspend()) {
2453       // a racing resume has cancelled us; bail out now
2454       return;
2455     }
2456 
2457     // suspend is done
2458     uint32_t debug_bits = 0;
2459     // Warning: is_ext_suspend_completed() may temporarily drop the
2460     // SR_lock to allow the thread to reach a stable thread state if
2461     // it is currently in a transient thread state.
2462     if (is_ext_suspend_completed(false /* !called_by_wait */,
2463                                  SuspendRetryDelay, &debug_bits)) {
2464       return;
2465     }
2466   }
2467 
2468   if (Thread::current() == this) {
2469     // Safely self-suspend.
2470     // If we don't do this explicitly it will implicitly happen
2471     // before we transition back to Java, and on some other thread-state
2472     // transition paths, but not as we exit a JVM TI SuspendThread call.
2473     // As SuspendThread(current) must not return (until resumed) we must
2474     // self-suspend here.
2475     ThreadBlockInVM tbivm(this);
2476     java_suspend_self();
2477   } else {
2478     VM_ThreadSuspend vm_suspend;
2479     VMThread::execute(&vm_suspend);
2480   }
2481 }
2482 
2483 // Part II of external suspension.
2484 // A JavaThread self suspends when it detects a pending external suspend
2485 // request. This is usually on transitions. It is also done in places
2486 // where continuing to the next transition would surprise the caller,
2487 // e.g., monitor entry.
2488 //
2489 // Returns the number of times that the thread self-suspended.
2490 //
2491 // Note: DO NOT call java_suspend_self() when you just want to block current
2492 //       thread. java_suspend_self() is the second stage of cooperative
2493 //       suspension for external suspend requests and should only be used
2494 //       to complete an external suspend request.
2495 //
2496 int JavaThread::java_suspend_self() {
2497   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2498   int ret = 0;
2499 
2500   // we are in the process of exiting so don't suspend
2501   if (is_exiting()) {
2502     clear_external_suspend();
2503     return ret;
2504   }
2505 
2506   assert(_anchor.walkable() ||
2507          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2508          "must have walkable stack");
2509 
2510   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2511 
2512   assert(!this->is_ext_suspended(),
2513          "a thread trying to self-suspend should not already be suspended");
2514 
2515   if (this->is_suspend_equivalent()) {
2516     // If we are self-suspending as a result of the lifting of a
2517     // suspend equivalent condition, then the suspend_equivalent
2518     // flag is not cleared until we set the ext_suspended flag so
2519     // that wait_for_ext_suspend_completion() returns consistent
2520     // results.
2521     this->clear_suspend_equivalent();
2522   }
2523 
2524   // A racing resume may have cancelled us before we grabbed SR_lock
2525   // above. Or another external suspend request could be waiting for us
2526   // by the time we return from SR_lock()->wait(). The thread
2527   // that requested the suspension may already be trying to walk our
2528   // stack and if we return now, we can change the stack out from under
2529   // it. This would be a "bad thing (TM)" and cause the stack walker
2530   // to crash. We stay self-suspended until there are no more pending
2531   // external suspend requests.
2532   while (is_external_suspend()) {
2533     ret++;
2534     this->set_ext_suspended();
2535 
2536     // _ext_suspended flag is cleared by java_resume()
2537     while (is_ext_suspended()) {
2538       ml.wait();
2539     }
2540   }
2541   return ret;
2542 }
2543 
2544 // Helper routine to set up the correct thread state before calling java_suspend_self.
2545 // This is called when regular thread-state transition helpers can't be used because
2546 // we can be in various states, in particular _thread_in_native_trans.
2547 // Because this thread is external suspended the safepoint code will count it as at
2548 // a safepoint, regardless of what its actual current thread-state is. But
2549 // is_ext_suspend_completed() may be waiting to see a thread transition from
2550 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2551 // to _thread_blocked. The problem with setting thread state directly is that a
2552 // safepoint could happen just after java_suspend_self() returns after being resumed,
2553 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2554 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2555 // However, not all initial-states are allowed when performing a safepoint check, as we
2556 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2557 // only _thread_in_native is possible when executing this code (based on our two callers).
2558 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2559 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2560 // and so we don't need the explicit safepoint check.
2561 
2562 void JavaThread::java_suspend_self_with_safepoint_check() {
2563   assert(this == Thread::current(), "invariant");
2564   JavaThreadState state = thread_state();
2565   set_thread_state(_thread_blocked);
2566   java_suspend_self();
2567   set_thread_state_fence(state);
2568   // Since we are not using a regular thread-state transition helper here,
2569   // we must manually emit the instruction barrier after leaving a safe state.
2570   OrderAccess::cross_modify_fence();
2571   if (state != _thread_in_native) {
2572     SafepointMechanism::block_if_requested(this);
2573   }
2574 }
2575 
2576 #ifdef ASSERT
2577 // Verify the JavaThread has not yet been published in the Threads::list, and
2578 // hence doesn't need protection from concurrent access at this stage.
2579 void JavaThread::verify_not_published() {
2580   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2581   // since an unpublished JavaThread doesn't participate in the
2582   // Thread-SMR protocol for keeping a ThreadsList alive.
2583   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2584 }
2585 #endif
2586 
2587 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2588 // progress or when _suspend_flags is non-zero.
2589 // Current thread needs to self-suspend if there is a suspend request and/or
2590 // block if a safepoint is in progress.
2591 // Async exception ISN'T checked.
2592 // Note only the ThreadInVMfromNative transition can call this function
2593 // directly and when thread state is _thread_in_native_trans
2594 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2595   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2596 
2597   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2598 
2599   if (thread->is_external_suspend()) {
2600     thread->java_suspend_self_with_safepoint_check();
2601   } else {
2602     SafepointMechanism::block_if_requested(thread);
2603   }
2604 
2605   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2606 }
2607 
2608 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2609 // progress or when _suspend_flags is non-zero.
2610 // Current thread needs to self-suspend if there is a suspend request and/or
2611 // block if a safepoint is in progress.
2612 // Also check for pending async exception (not including unsafe access error).
2613 // Note only the native==>VM/Java barriers can call this function and when
2614 // thread state is _thread_in_native_trans.
2615 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2616   check_safepoint_and_suspend_for_native_trans(thread);
2617 
2618   if (thread->has_async_exception()) {
2619     // We are in _thread_in_native_trans state, don't handle unsafe
2620     // access error since that may block.
2621     thread->check_and_handle_async_exceptions(false);
2622   }
2623 }
2624 
2625 // This is a variant of the normal
2626 // check_special_condition_for_native_trans with slightly different
2627 // semantics for use by critical native wrappers.  It does all the
2628 // normal checks but also performs the transition back into
2629 // thread_in_Java state.  This is required so that critical natives
2630 // can potentially block and perform a GC if they are the last thread
2631 // exiting the GCLocker.
2632 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2633   check_special_condition_for_native_trans(thread);
2634 
2635   // Finish the transition
2636   thread->set_thread_state(_thread_in_Java);
2637 
2638   if (thread->do_critical_native_unlock()) {
2639     ThreadInVMfromJavaNoAsyncException tiv(thread);
2640     GCLocker::unlock_critical(thread);
2641     thread->clear_critical_native_unlock();
2642   }
2643 }
2644 
2645 // We need to guarantee the Threads_lock here, since resumes are not
2646 // allowed during safepoint synchronization
2647 // Can only resume from an external suspension
2648 void JavaThread::java_resume() {
2649   assert_locked_or_safepoint(Threads_lock);
2650 
2651   // Sanity check: thread is gone, has started exiting or the thread
2652   // was not externally suspended.
2653   ThreadsListHandle tlh;
2654   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2655     return;
2656   }
2657 
2658   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2659 
2660   clear_external_suspend();
2661 
2662   if (is_ext_suspended()) {
2663     clear_ext_suspended();
2664     SR_lock()->notify_all();
2665   }
2666 }
2667 
2668 size_t JavaThread::_stack_red_zone_size = 0;
2669 size_t JavaThread::_stack_yellow_zone_size = 0;
2670 size_t JavaThread::_stack_reserved_zone_size = 0;
2671 size_t JavaThread::_stack_shadow_zone_size = 0;
2672 
2673 void JavaThread::create_stack_guard_pages() {
2674   if (!os::uses_stack_guard_pages() ||
2675       _stack_guard_state != stack_guard_unused ||
2676       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2677       log_info(os, thread)("Stack guard page creation for thread "
2678                            UINTX_FORMAT " disabled", os::current_thread_id());
2679     return;
2680   }
2681   address low_addr = stack_end();
2682   size_t len = stack_guard_zone_size();
2683 
2684   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2685   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2686 
2687   int must_commit = os::must_commit_stack_guard_pages();
2688   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2689 
2690   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2691     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2692     return;
2693   }
2694 
2695   if (os::guard_memory((char *) low_addr, len)) {
2696     _stack_guard_state = stack_guard_enabled;
2697   } else {
2698     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2699       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2700     if (os::uncommit_memory((char *) low_addr, len)) {
2701       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2702     }
2703     return;
2704   }
2705 
2706   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2707     PTR_FORMAT "-" PTR_FORMAT ".",
2708     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2709 }
2710 
2711 void JavaThread::remove_stack_guard_pages() {
2712   assert(Thread::current() == this, "from different thread");
2713   if (_stack_guard_state == stack_guard_unused) return;
2714   address low_addr = stack_end();
2715   size_t len = stack_guard_zone_size();
2716 
2717   if (os::must_commit_stack_guard_pages()) {
2718     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2719       _stack_guard_state = stack_guard_unused;
2720     } else {
2721       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2722         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2723       return;
2724     }
2725   } else {
2726     if (_stack_guard_state == stack_guard_unused) return;
2727     if (os::unguard_memory((char *) low_addr, len)) {
2728       _stack_guard_state = stack_guard_unused;
2729     } else {
2730       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2731         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2732       return;
2733     }
2734   }
2735 
2736   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2737     PTR_FORMAT "-" PTR_FORMAT ".",
2738     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2739 }
2740 
2741 void JavaThread::enable_stack_reserved_zone() {
2742   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2743 
2744   // The base notation is from the stack's point of view, growing downward.
2745   // We need to adjust it to work correctly with guard_memory()
2746   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2747 
2748   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2749   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2750 
2751   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2752     _stack_guard_state = stack_guard_enabled;
2753   } else {
2754     warning("Attempt to guard stack reserved zone failed.");
2755   }
2756   enable_register_stack_guard();
2757 }
2758 
2759 void JavaThread::disable_stack_reserved_zone() {
2760   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2761 
2762   // Simply return if called for a thread that does not use guard pages.
2763   if (_stack_guard_state != stack_guard_enabled) return;
2764 
2765   // The base notation is from the stack's point of view, growing downward.
2766   // We need to adjust it to work correctly with guard_memory()
2767   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2768 
2769   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2770     _stack_guard_state = stack_guard_reserved_disabled;
2771   } else {
2772     warning("Attempt to unguard stack reserved zone failed.");
2773   }
2774   disable_register_stack_guard();
2775 }
2776 
2777 void JavaThread::enable_stack_yellow_reserved_zone() {
2778   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2779   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2780 
2781   // The base notation is from the stacks point of view, growing downward.
2782   // We need to adjust it to work correctly with guard_memory()
2783   address base = stack_red_zone_base();
2784 
2785   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2786   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2787 
2788   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2789     _stack_guard_state = stack_guard_enabled;
2790   } else {
2791     warning("Attempt to guard stack yellow zone failed.");
2792   }
2793   enable_register_stack_guard();
2794 }
2795 
2796 void JavaThread::disable_stack_yellow_reserved_zone() {
2797   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2798   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2799 
2800   // Simply return if called for a thread that does not use guard pages.
2801   if (_stack_guard_state == stack_guard_unused) return;
2802 
2803   // The base notation is from the stacks point of view, growing downward.
2804   // We need to adjust it to work correctly with guard_memory()
2805   address base = stack_red_zone_base();
2806 
2807   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2808     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2809   } else {
2810     warning("Attempt to unguard stack yellow zone failed.");
2811   }
2812   disable_register_stack_guard();
2813 }
2814 
2815 void JavaThread::enable_stack_red_zone() {
2816   // The base notation is from the stacks point of view, growing downward.
2817   // We need to adjust it to work correctly with guard_memory()
2818   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2819   address base = stack_red_zone_base() - stack_red_zone_size();
2820 
2821   guarantee(base < stack_base(), "Error calculating stack red zone");
2822   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2823 
2824   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2825     warning("Attempt to guard stack red zone failed.");
2826   }
2827 }
2828 
2829 void JavaThread::disable_stack_red_zone() {
2830   // The base notation is from the stacks point of view, growing downward.
2831   // We need to adjust it to work correctly with guard_memory()
2832   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2833   address base = stack_red_zone_base() - stack_red_zone_size();
2834   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2835     warning("Attempt to unguard stack red zone failed.");
2836   }
2837 }
2838 
2839 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2840   // ignore is there is no stack
2841   if (!has_last_Java_frame()) return;
2842   // traverse the stack frames. Starts from top frame.
2843   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2844     frame* fr = fst.current();
2845     f(fr, fst.register_map());
2846   }
2847 }
2848 
2849 
2850 #ifndef PRODUCT
2851 // Deoptimization
2852 // Function for testing deoptimization
2853 void JavaThread::deoptimize() {
2854   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2855   StackFrameStream fst(this, UseBiasedLocking);
2856   bool deopt = false;           // Dump stack only if a deopt actually happens.
2857   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2858   // Iterate over all frames in the thread and deoptimize
2859   for (; !fst.is_done(); fst.next()) {
2860     if (fst.current()->can_be_deoptimized()) {
2861 
2862       if (only_at) {
2863         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2864         // consists of comma or carriage return separated numbers so
2865         // search for the current bci in that string.
2866         address pc = fst.current()->pc();
2867         nmethod* nm =  (nmethod*) fst.current()->cb();
2868         ScopeDesc* sd = nm->scope_desc_at(pc);
2869         char buffer[8];
2870         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2871         size_t len = strlen(buffer);
2872         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2873         while (found != NULL) {
2874           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2875               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2876             // Check that the bci found is bracketed by terminators.
2877             break;
2878           }
2879           found = strstr(found + 1, buffer);
2880         }
2881         if (!found) {
2882           continue;
2883         }
2884       }
2885 
2886       if (DebugDeoptimization && !deopt) {
2887         deopt = true; // One-time only print before deopt
2888         tty->print_cr("[BEFORE Deoptimization]");
2889         trace_frames();
2890         trace_stack();
2891       }
2892       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2893     }
2894   }
2895 
2896   if (DebugDeoptimization && deopt) {
2897     tty->print_cr("[AFTER Deoptimization]");
2898     trace_frames();
2899   }
2900 }
2901 
2902 
2903 // Make zombies
2904 void JavaThread::make_zombies() {
2905   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2906     if (fst.current()->can_be_deoptimized()) {
2907       // it is a Java nmethod
2908       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2909       nm->make_not_entrant();
2910     }
2911   }
2912 }
2913 #endif // PRODUCT
2914 
2915 
2916 void JavaThread::deoptimize_marked_methods() {
2917   if (!has_last_Java_frame()) return;
2918   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2919   StackFrameStream fst(this, UseBiasedLocking);
2920   for (; !fst.is_done(); fst.next()) {
2921     if (fst.current()->should_be_deoptimized()) {
2922       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2923     }
2924   }
2925 }
2926 
2927 // If the caller is a NamedThread, then remember, in the current scope,
2928 // the given JavaThread in its _processed_thread field.
2929 class RememberProcessedThread: public StackObj {
2930   NamedThread* _cur_thr;
2931  public:
2932   RememberProcessedThread(JavaThread* jthr) {
2933     Thread* thread = Thread::current();
2934     if (thread->is_Named_thread()) {
2935       _cur_thr = (NamedThread *)thread;
2936       _cur_thr->set_processed_thread(jthr);
2937     } else {
2938       _cur_thr = NULL;
2939     }
2940   }
2941 
2942   ~RememberProcessedThread() {
2943     if (_cur_thr) {
2944       _cur_thr->set_processed_thread(NULL);
2945     }
2946   }
2947 };
2948 
2949 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2950   // Verify that the deferred card marks have been flushed.
2951   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2952 
2953   // Traverse the GCHandles
2954   Thread::oops_do(f, cf);
2955 
2956   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2957          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2958 
2959   if (has_last_Java_frame()) {
2960     // Record JavaThread to GC thread
2961     RememberProcessedThread rpt(this);
2962 
2963     // traverse the registered growable array
2964     if (_array_for_gc != NULL) {
2965       for (int index = 0; index < _array_for_gc->length(); index++) {
2966         f->do_oop(_array_for_gc->adr_at(index));
2967       }
2968     }
2969 
2970     // Traverse the monitor chunks
2971     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2972       chunk->oops_do(f);
2973     }
2974 
2975     // Traverse the execution stack
2976     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2977       fst.current()->oops_do(f, cf, fst.register_map());
2978     }
2979   }
2980 
2981   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2982   // If we have deferred set_locals there might be oops waiting to be
2983   // written
2984   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2985   if (list != NULL) {
2986     for (int i = 0; i < list->length(); i++) {
2987       list->at(i)->oops_do(f);
2988     }
2989   }
2990 
2991   // Traverse instance variables at the end since the GC may be moving things
2992   // around using this function
2993   f->do_oop((oop*) &_threadObj);
2994   f->do_oop((oop*) &_vm_result);
2995   f->do_oop((oop*) &_exception_oop);
2996   f->do_oop((oop*) &_pending_async_exception);
2997 
2998   if (jvmti_thread_state() != NULL) {
2999     jvmti_thread_state()->oops_do(f, cf);
3000   }
3001 }
3002 
3003 #ifdef ASSERT
3004 void JavaThread::verify_states_for_handshake() {
3005   // This checks that the thread has a correct frame state during a handshake.
3006   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3007          (has_last_Java_frame() && java_call_counter() > 0),
3008          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3009          has_last_Java_frame(), java_call_counter());
3010 }
3011 #endif
3012 
3013 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3014   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3015          (has_last_Java_frame() && java_call_counter() > 0),
3016          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3017          has_last_Java_frame(), java_call_counter());
3018 
3019   if (has_last_Java_frame()) {
3020     // Traverse the execution stack
3021     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3022       fst.current()->nmethods_do(cf);
3023     }
3024   }
3025 
3026   if (jvmti_thread_state() != NULL) {
3027     jvmti_thread_state()->nmethods_do(cf);
3028   }
3029 }
3030 
3031 void JavaThread::metadata_do(MetadataClosure* f) {
3032   if (has_last_Java_frame()) {
3033     // Traverse the execution stack to call f() on the methods in the stack
3034     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3035       fst.current()->metadata_do(f);
3036     }
3037   } else if (is_Compiler_thread()) {
3038     // need to walk ciMetadata in current compile tasks to keep alive.
3039     CompilerThread* ct = (CompilerThread*)this;
3040     if (ct->env() != NULL) {
3041       ct->env()->metadata_do(f);
3042     }
3043     CompileTask* task = ct->task();
3044     if (task != NULL) {
3045       task->metadata_do(f);
3046     }
3047   }
3048 }
3049 
3050 // Printing
3051 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3052   switch (_thread_state) {
3053   case _thread_uninitialized:     return "_thread_uninitialized";
3054   case _thread_new:               return "_thread_new";
3055   case _thread_new_trans:         return "_thread_new_trans";
3056   case _thread_in_native:         return "_thread_in_native";
3057   case _thread_in_native_trans:   return "_thread_in_native_trans";
3058   case _thread_in_vm:             return "_thread_in_vm";
3059   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3060   case _thread_in_Java:           return "_thread_in_Java";
3061   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3062   case _thread_blocked:           return "_thread_blocked";
3063   case _thread_blocked_trans:     return "_thread_blocked_trans";
3064   default:                        return "unknown thread state";
3065   }
3066 }
3067 
3068 #ifndef PRODUCT
3069 void JavaThread::print_thread_state_on(outputStream *st) const {
3070   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3071 };
3072 #endif // PRODUCT
3073 
3074 // Called by Threads::print() for VM_PrintThreads operation
3075 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3076   st->print_raw("\"");
3077   st->print_raw(get_thread_name());
3078   st->print_raw("\" ");
3079   oop thread_oop = threadObj();
3080   if (thread_oop != NULL) {
3081     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3082     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3083     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3084   }
3085   Thread::print_on(st, print_extended_info);
3086   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3087   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3088   if (thread_oop != NULL) {
3089     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3090   }
3091 #ifndef PRODUCT
3092   _safepoint_state->print_on(st);
3093 #endif // PRODUCT
3094   if (is_Compiler_thread()) {
3095     CompileTask *task = ((CompilerThread*)this)->task();
3096     if (task != NULL) {
3097       st->print("   Compiling: ");
3098       task->print(st, NULL, true, false);
3099     } else {
3100       st->print("   No compile task");
3101     }
3102     st->cr();
3103   }
3104 }
3105 
3106 void JavaThread::print() const { print_on(tty); }
3107 
3108 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3109   st->print("%s", get_thread_name_string(buf, buflen));
3110 }
3111 
3112 // Called by fatal error handler. The difference between this and
3113 // JavaThread::print() is that we can't grab lock or allocate memory.
3114 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3115   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3116   oop thread_obj = threadObj();
3117   if (thread_obj != NULL) {
3118     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3119   }
3120   st->print(" [");
3121   st->print("%s", _get_thread_state_name(_thread_state));
3122   if (osthread()) {
3123     st->print(", id=%d", osthread()->thread_id());
3124   }
3125   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3126             p2i(stack_end()), p2i(stack_base()));
3127   st->print("]");
3128 
3129   ThreadsSMRSupport::print_info_on(this, st);
3130   return;
3131 }
3132 
3133 // Verification
3134 
3135 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3136 
3137 void JavaThread::verify() {
3138   // Verify oops in the thread.
3139   oops_do(&VerifyOopClosure::verify_oop, NULL);
3140 
3141   // Verify the stack frames.
3142   frames_do(frame_verify);
3143 }
3144 
3145 // CR 6300358 (sub-CR 2137150)
3146 // Most callers of this method assume that it can't return NULL but a
3147 // thread may not have a name whilst it is in the process of attaching to
3148 // the VM - see CR 6412693, and there are places where a JavaThread can be
3149 // seen prior to having it's threadObj set (eg JNI attaching threads and
3150 // if vm exit occurs during initialization). These cases can all be accounted
3151 // for such that this method never returns NULL.
3152 const char* JavaThread::get_thread_name() const {
3153 #ifdef ASSERT
3154   // early safepoints can hit while current thread does not yet have TLS
3155   if (!SafepointSynchronize::is_at_safepoint()) {
3156     Thread *cur = Thread::current();
3157     if (!(cur->is_Java_thread() && cur == this)) {
3158       // Current JavaThreads are allowed to get their own name without
3159       // the Threads_lock.
3160       assert_locked_or_safepoint(Threads_lock);
3161     }
3162   }
3163 #endif // ASSERT
3164   return get_thread_name_string();
3165 }
3166 
3167 // Returns a non-NULL representation of this thread's name, or a suitable
3168 // descriptive string if there is no set name
3169 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3170   const char* name_str;
3171   oop thread_obj = threadObj();
3172   if (thread_obj != NULL) {
3173     oop name = java_lang_Thread::name(thread_obj);
3174     if (name != NULL) {
3175       if (buf == NULL) {
3176         name_str = java_lang_String::as_utf8_string(name);
3177       } else {
3178         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3179       }
3180     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3181       name_str = "<no-name - thread is attaching>";
3182     } else {
3183       name_str = Thread::name();
3184     }
3185   } else {
3186     name_str = Thread::name();
3187   }
3188   assert(name_str != NULL, "unexpected NULL thread name");
3189   return name_str;
3190 }
3191 
3192 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3193 
3194   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3195   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3196   // Link Java Thread object <-> C++ Thread
3197 
3198   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3199   // and put it into a new Handle.  The Handle "thread_oop" can then
3200   // be used to pass the C++ thread object to other methods.
3201 
3202   // Set the Java level thread object (jthread) field of the
3203   // new thread (a JavaThread *) to C++ thread object using the
3204   // "thread_oop" handle.
3205 
3206   // Set the thread field (a JavaThread *) of the
3207   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3208 
3209   Handle thread_oop(Thread::current(),
3210                     JNIHandles::resolve_non_null(jni_thread));
3211   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3212          "must be initialized");
3213   set_threadObj(thread_oop());
3214   java_lang_Thread::set_thread(thread_oop(), this);
3215 
3216   if (prio == NoPriority) {
3217     prio = java_lang_Thread::priority(thread_oop());
3218     assert(prio != NoPriority, "A valid priority should be present");
3219   }
3220 
3221   // Push the Java priority down to the native thread; needs Threads_lock
3222   Thread::set_priority(this, prio);
3223 
3224   // Add the new thread to the Threads list and set it in motion.
3225   // We must have threads lock in order to call Threads::add.
3226   // It is crucial that we do not block before the thread is
3227   // added to the Threads list for if a GC happens, then the java_thread oop
3228   // will not be visited by GC.
3229   Threads::add(this);
3230 }
3231 
3232 oop JavaThread::current_park_blocker() {
3233   // Support for JSR-166 locks
3234   oop thread_oop = threadObj();
3235   if (thread_oop != NULL) {
3236     return java_lang_Thread::park_blocker(thread_oop);
3237   }
3238   return NULL;
3239 }
3240 
3241 
3242 void JavaThread::print_stack_on(outputStream* st) {
3243   if (!has_last_Java_frame()) return;
3244   ResourceMark rm;
3245   HandleMark   hm;
3246 
3247   RegisterMap reg_map(this);
3248   vframe* start_vf = last_java_vframe(&reg_map);
3249   int count = 0;
3250   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3251     if (f->is_java_frame()) {
3252       javaVFrame* jvf = javaVFrame::cast(f);
3253       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3254 
3255       // Print out lock information
3256       if (JavaMonitorsInStackTrace) {
3257         jvf->print_lock_info_on(st, count);
3258       }
3259     } else {
3260       // Ignore non-Java frames
3261     }
3262 
3263     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3264     count++;
3265     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3266   }
3267 }
3268 
3269 
3270 // JVMTI PopFrame support
3271 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3272   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3273   if (in_bytes(size_in_bytes) != 0) {
3274     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3275     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3276     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3277   }
3278 }
3279 
3280 void* JavaThread::popframe_preserved_args() {
3281   return _popframe_preserved_args;
3282 }
3283 
3284 ByteSize JavaThread::popframe_preserved_args_size() {
3285   return in_ByteSize(_popframe_preserved_args_size);
3286 }
3287 
3288 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3289   int sz = in_bytes(popframe_preserved_args_size());
3290   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3291   return in_WordSize(sz / wordSize);
3292 }
3293 
3294 void JavaThread::popframe_free_preserved_args() {
3295   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3296   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3297   _popframe_preserved_args = NULL;
3298   _popframe_preserved_args_size = 0;
3299 }
3300 
3301 #ifndef PRODUCT
3302 
3303 void JavaThread::trace_frames() {
3304   tty->print_cr("[Describe stack]");
3305   int frame_no = 1;
3306   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3307     tty->print("  %d. ", frame_no++);
3308     fst.current()->print_value_on(tty, this);
3309     tty->cr();
3310   }
3311 }
3312 
3313 class PrintAndVerifyOopClosure: public OopClosure {
3314  protected:
3315   template <class T> inline void do_oop_work(T* p) {
3316     oop obj = RawAccess<>::oop_load(p);
3317     if (obj == NULL) return;
3318     tty->print(INTPTR_FORMAT ": ", p2i(p));
3319     if (oopDesc::is_oop_or_null(obj)) {
3320       if (obj->is_objArray()) {
3321         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3322       } else {
3323         obj->print();
3324       }
3325     } else {
3326       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3327     }
3328     tty->cr();
3329   }
3330  public:
3331   virtual void do_oop(oop* p) { do_oop_work(p); }
3332   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3333 };
3334 
3335 #ifdef ASSERT
3336 // Print or validate the layout of stack frames
3337 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3338   ResourceMark rm;
3339   PRESERVE_EXCEPTION_MARK;
3340   FrameValues values;
3341   int frame_no = 0;
3342   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3343     fst.current()->describe(values, ++frame_no);
3344     if (depth == frame_no) break;
3345   }
3346   if (validate_only) {
3347     values.validate();
3348   } else {
3349     tty->print_cr("[Describe stack layout]");
3350     values.print(this);
3351   }
3352 }
3353 #endif
3354 
3355 void JavaThread::trace_stack_from(vframe* start_vf) {
3356   ResourceMark rm;
3357   int vframe_no = 1;
3358   for (vframe* f = start_vf; f; f = f->sender()) {
3359     if (f->is_java_frame()) {
3360       javaVFrame::cast(f)->print_activation(vframe_no++);
3361     } else {
3362       f->print();
3363     }
3364     if (vframe_no > StackPrintLimit) {
3365       tty->print_cr("...<more frames>...");
3366       return;
3367     }
3368   }
3369 }
3370 
3371 
3372 void JavaThread::trace_stack() {
3373   if (!has_last_Java_frame()) return;
3374   ResourceMark rm;
3375   HandleMark   hm;
3376   RegisterMap reg_map(this);
3377   trace_stack_from(last_java_vframe(&reg_map));
3378 }
3379 
3380 
3381 #endif // PRODUCT
3382 
3383 
3384 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3385   assert(reg_map != NULL, "a map must be given");
3386   frame f = last_frame();
3387   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3388     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3389   }
3390   return NULL;
3391 }
3392 
3393 
3394 Klass* JavaThread::security_get_caller_class(int depth) {
3395   vframeStream vfst(this);
3396   vfst.security_get_caller_frame(depth);
3397   if (!vfst.at_end()) {
3398     return vfst.method()->method_holder();
3399   }
3400   return NULL;
3401 }
3402 
3403 // java.lang.Thread.sleep support
3404 // Returns true if sleep time elapsed as expected, and false
3405 // if the thread was interrupted.
3406 bool JavaThread::sleep(jlong millis) {
3407   assert(this == Thread::current(),  "thread consistency check");
3408 
3409   ParkEvent * const slp = this->_SleepEvent;
3410   // Because there can be races with thread interruption sending an unpark()
3411   // to the event, we explicitly reset it here to avoid an immediate return.
3412   // The actual interrupt state will be checked before we park().
3413   slp->reset();
3414   // Thread interruption establishes a happens-before ordering in the
3415   // Java Memory Model, so we need to ensure we synchronize with the
3416   // interrupt state.
3417   OrderAccess::fence();
3418 
3419   jlong prevtime = os::javaTimeNanos();
3420 
3421   for (;;) {
3422     // interruption has precedence over timing out
3423     if (this->is_interrupted(true)) {
3424       return false;
3425     }
3426 
3427     if (millis <= 0) {
3428       return true;
3429     }
3430 
3431     {
3432       ThreadBlockInVM tbivm(this);
3433       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3434 
3435       this->set_suspend_equivalent();
3436       // cleared by handle_special_suspend_equivalent_condition() or
3437       // java_suspend_self() via check_and_wait_while_suspended()
3438 
3439       slp->park(millis);
3440 
3441       // were we externally suspended while we were waiting?
3442       this->check_and_wait_while_suspended();
3443     }
3444 
3445     // Update elapsed time tracking
3446     jlong newtime = os::javaTimeNanos();
3447     if (newtime - prevtime < 0) {
3448       // time moving backwards, should only happen if no monotonic clock
3449       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3450       assert(!os::supports_monotonic_clock(),
3451              "unexpected time moving backwards detected in JavaThread::sleep()");
3452     } else {
3453       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3454     }
3455     prevtime = newtime;
3456   }
3457 }
3458 
3459 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3460   assert(thread->is_Compiler_thread(), "must be compiler thread");
3461   CompileBroker::compiler_thread_loop();
3462 }
3463 
3464 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3465   NMethodSweeper::sweeper_loop();
3466 }
3467 
3468 // Create a CompilerThread
3469 CompilerThread::CompilerThread(CompileQueue* queue,
3470                                CompilerCounters* counters)
3471                                : JavaThread(&compiler_thread_entry) {
3472   _env   = NULL;
3473   _log   = NULL;
3474   _task  = NULL;
3475   _queue = queue;
3476   _counters = counters;
3477   _buffer_blob = NULL;
3478   _compiler = NULL;
3479 
3480   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3481   resource_area()->bias_to(mtCompiler);
3482 
3483 #ifndef PRODUCT
3484   _ideal_graph_printer = NULL;
3485 #endif
3486 }
3487 
3488 CompilerThread::~CompilerThread() {
3489   // Delete objects which were allocated on heap.
3490   delete _counters;
3491 }
3492 
3493 bool CompilerThread::can_call_java() const {
3494   return _compiler != NULL && _compiler->is_jvmci();
3495 }
3496 
3497 // Create sweeper thread
3498 CodeCacheSweeperThread::CodeCacheSweeperThread()
3499 : JavaThread(&sweeper_thread_entry) {
3500   _scanned_compiled_method = NULL;
3501 }
3502 
3503 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3504   JavaThread::oops_do(f, cf);
3505   if (_scanned_compiled_method != NULL && cf != NULL) {
3506     // Safepoints can occur when the sweeper is scanning an nmethod so
3507     // process it here to make sure it isn't unloaded in the middle of
3508     // a scan.
3509     cf->do_code_blob(_scanned_compiled_method);
3510   }
3511 }
3512 
3513 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3514   JavaThread::nmethods_do(cf);
3515   if (_scanned_compiled_method != NULL && cf != NULL) {
3516     // Safepoints can occur when the sweeper is scanning an nmethod so
3517     // process it here to make sure it isn't unloaded in the middle of
3518     // a scan.
3519     cf->do_code_blob(_scanned_compiled_method);
3520   }
3521 }
3522 
3523 
3524 // ======= Threads ========
3525 
3526 // The Threads class links together all active threads, and provides
3527 // operations over all threads. It is protected by the Threads_lock,
3528 // which is also used in other global contexts like safepointing.
3529 // ThreadsListHandles are used to safely perform operations on one
3530 // or more threads without the risk of the thread exiting during the
3531 // operation.
3532 //
3533 // Note: The Threads_lock is currently more widely used than we
3534 // would like. We are actively migrating Threads_lock uses to other
3535 // mechanisms in order to reduce Threads_lock contention.
3536 
3537 int         Threads::_number_of_threads = 0;
3538 int         Threads::_number_of_non_daemon_threads = 0;
3539 int         Threads::_return_code = 0;
3540 uintx       Threads::_thread_claim_token = 1; // Never zero.
3541 size_t      JavaThread::_stack_size_at_create = 0;
3542 
3543 #ifdef ASSERT
3544 bool        Threads::_vm_complete = false;
3545 #endif
3546 
3547 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3548   Prefetch::read((void*)addr, prefetch_interval);
3549   return *addr;
3550 }
3551 
3552 // Possibly the ugliest for loop the world has seen. C++ does not allow
3553 // multiple types in the declaration section of the for loop. In this case
3554 // we are only dealing with pointers and hence can cast them. It looks ugly
3555 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3556 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3557     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3558              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3559              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3560              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3561              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3562          MACRO_current_p != MACRO_end;                                                                                    \
3563          MACRO_current_p++,                                                                                               \
3564              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3565 
3566 // All JavaThreads
3567 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3568 
3569 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3570 void Threads::non_java_threads_do(ThreadClosure* tc) {
3571   NoSafepointVerifier nsv;
3572   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3573     tc->do_thread(njti.current());
3574   }
3575 }
3576 
3577 // All JavaThreads
3578 void Threads::java_threads_do(ThreadClosure* tc) {
3579   assert_locked_or_safepoint(Threads_lock);
3580   // ALL_JAVA_THREADS iterates through all JavaThreads.
3581   ALL_JAVA_THREADS(p) {
3582     tc->do_thread(p);
3583   }
3584 }
3585 
3586 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3587   assert_locked_or_safepoint(Threads_lock);
3588   java_threads_do(tc);
3589   tc->do_thread(VMThread::vm_thread());
3590 }
3591 
3592 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3593 void Threads::threads_do(ThreadClosure* tc) {
3594   assert_locked_or_safepoint(Threads_lock);
3595   java_threads_do(tc);
3596   non_java_threads_do(tc);
3597 }
3598 
3599 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3600   uintx claim_token = Threads::thread_claim_token();
3601   ALL_JAVA_THREADS(p) {
3602     if (p->claim_threads_do(is_par, claim_token)) {
3603       tc->do_thread(p);
3604     }
3605   }
3606   VMThread* vmt = VMThread::vm_thread();
3607   if (vmt->claim_threads_do(is_par, claim_token)) {
3608     tc->do_thread(vmt);
3609   }
3610 }
3611 
3612 // The system initialization in the library has three phases.
3613 //
3614 // Phase 1: java.lang.System class initialization
3615 //     java.lang.System is a primordial class loaded and initialized
3616 //     by the VM early during startup.  java.lang.System.<clinit>
3617 //     only does registerNatives and keeps the rest of the class
3618 //     initialization work later until thread initialization completes.
3619 //
3620 //     System.initPhase1 initializes the system properties, the static
3621 //     fields in, out, and err. Set up java signal handlers, OS-specific
3622 //     system settings, and thread group of the main thread.
3623 static void call_initPhase1(TRAPS) {
3624   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3625   JavaValue result(T_VOID);
3626   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3627                                          vmSymbols::void_method_signature(), CHECK);
3628 }
3629 
3630 // Phase 2. Module system initialization
3631 //     This will initialize the module system.  Only java.base classes
3632 //     can be loaded until phase 2 completes.
3633 //
3634 //     Call System.initPhase2 after the compiler initialization and jsr292
3635 //     classes get initialized because module initialization runs a lot of java
3636 //     code, that for performance reasons, should be compiled.  Also, this will
3637 //     enable the startup code to use lambda and other language features in this
3638 //     phase and onward.
3639 //
3640 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3641 static void call_initPhase2(TRAPS) {
3642   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3643 
3644   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3645 
3646   JavaValue result(T_INT);
3647   JavaCallArguments args;
3648   args.push_int(DisplayVMOutputToStderr);
3649   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3650   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3651                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3652   if (result.get_jint() != JNI_OK) {
3653     vm_exit_during_initialization(); // no message or exception
3654   }
3655 
3656   universe_post_module_init();
3657 }
3658 
3659 // Phase 3. final setup - set security manager, system class loader and TCCL
3660 //
3661 //     This will instantiate and set the security manager, set the system class
3662 //     loader as well as the thread context class loader.  The security manager
3663 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3664 //     other modules or the application's classpath.
3665 static void call_initPhase3(TRAPS) {
3666   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3667   JavaValue result(T_VOID);
3668   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3669                                          vmSymbols::void_method_signature(), CHECK);
3670 }
3671 
3672 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3673   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3674 
3675   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3676     create_vm_init_libraries();
3677   }
3678 
3679   initialize_class(vmSymbols::java_lang_String(), CHECK);
3680 
3681   // Inject CompactStrings value after the static initializers for String ran.
3682   java_lang_String::set_compact_strings(CompactStrings);
3683 
3684   // Initialize java_lang.System (needed before creating the thread)
3685   initialize_class(vmSymbols::java_lang_System(), CHECK);
3686   // The VM creates & returns objects of this class. Make sure it's initialized.
3687   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3688   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3689   Handle thread_group = create_initial_thread_group(CHECK);
3690   Universe::set_main_thread_group(thread_group());
3691   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3692   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3693   main_thread->set_threadObj(thread_object);
3694 
3695   // Set thread status to running since main thread has
3696   // been started and running.
3697   java_lang_Thread::set_thread_status(thread_object,
3698                                       java_lang_Thread::RUNNABLE);
3699 
3700   // The VM creates objects of this class.
3701   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3702 
3703 #ifdef ASSERT
3704   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3705   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3706 #endif
3707 
3708   // initialize the hardware-specific constants needed by Unsafe
3709   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3710   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3711 
3712   // The VM preresolves methods to these classes. Make sure that they get initialized
3713   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3714   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3715 
3716   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3717   call_initPhase1(CHECK);
3718 
3719   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3720   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3721   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3722   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3723   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3724 
3725   // an instance of OutOfMemory exception has been allocated earlier
3726   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3727   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3728   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3729   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3730   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3731   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3732   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3733   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3734 
3735   // Eager box cache initialization only if AOT is on and any library is loaded.
3736   AOTLoader::initialize_box_caches(CHECK);
3737 }
3738 
3739 void Threads::initialize_jsr292_core_classes(TRAPS) {
3740   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3741 
3742   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3743   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3744   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3745   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3746 }
3747 
3748 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3749   extern void JDK_Version_init();
3750 
3751   // Preinitialize version info.
3752   VM_Version::early_initialize();
3753 
3754   // Check version
3755   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3756 
3757   // Initialize library-based TLS
3758   ThreadLocalStorage::init();
3759 
3760   // Initialize the output stream module
3761   ostream_init();
3762 
3763   // Process java launcher properties.
3764   Arguments::process_sun_java_launcher_properties(args);
3765 
3766   // Initialize the os module
3767   os::init();
3768 
3769   // Record VM creation timing statistics
3770   TraceVmCreationTime create_vm_timer;
3771   create_vm_timer.start();
3772 
3773   // Initialize system properties.
3774   Arguments::init_system_properties();
3775 
3776   // So that JDK version can be used as a discriminator when parsing arguments
3777   JDK_Version_init();
3778 
3779   // Update/Initialize System properties after JDK version number is known
3780   Arguments::init_version_specific_system_properties();
3781 
3782   // Make sure to initialize log configuration *before* parsing arguments
3783   LogConfiguration::initialize(create_vm_timer.begin_time());
3784 
3785   // Parse arguments
3786   // Note: this internally calls os::init_container_support()
3787   jint parse_result = Arguments::parse(args);
3788   if (parse_result != JNI_OK) return parse_result;
3789 
3790   os::init_before_ergo();
3791 
3792   jint ergo_result = Arguments::apply_ergo();
3793   if (ergo_result != JNI_OK) return ergo_result;
3794 
3795   // Final check of all ranges after ergonomics which may change values.
3796   if (!JVMFlagRangeList::check_ranges()) {
3797     return JNI_EINVAL;
3798   }
3799 
3800   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3801   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3802   if (!constraint_result) {
3803     return JNI_EINVAL;
3804   }
3805 
3806   JVMFlagWriteableList::mark_startup();
3807 
3808   if (PauseAtStartup) {
3809     os::pause();
3810   }
3811 
3812   HOTSPOT_VM_INIT_BEGIN();
3813 
3814   // Timing (must come after argument parsing)
3815   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3816 
3817   // Initialize the os module after parsing the args
3818   jint os_init_2_result = os::init_2();
3819   if (os_init_2_result != JNI_OK) return os_init_2_result;
3820 
3821 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3822   // Initialize assert poison page mechanism.
3823   if (ShowRegistersOnAssert) {
3824     initialize_assert_poison();
3825   }
3826 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3827 
3828   SafepointMechanism::initialize();
3829 
3830   jint adjust_after_os_result = Arguments::adjust_after_os();
3831   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3832 
3833   // Initialize output stream logging
3834   ostream_init_log();
3835 
3836   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3837   // Must be before create_vm_init_agents()
3838   if (Arguments::init_libraries_at_startup()) {
3839     convert_vm_init_libraries_to_agents();
3840   }
3841 
3842   // Launch -agentlib/-agentpath and converted -Xrun agents
3843   if (Arguments::init_agents_at_startup()) {
3844     create_vm_init_agents();
3845   }
3846 
3847   // Initialize Threads state
3848   _number_of_threads = 0;
3849   _number_of_non_daemon_threads = 0;
3850 
3851   // Initialize global data structures and create system classes in heap
3852   vm_init_globals();
3853 
3854 #if INCLUDE_JVMCI
3855   if (JVMCICounterSize > 0) {
3856     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3857     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3858   } else {
3859     JavaThread::_jvmci_old_thread_counters = NULL;
3860   }
3861 #endif // INCLUDE_JVMCI
3862 
3863   // Attach the main thread to this os thread
3864   JavaThread* main_thread = new JavaThread();
3865   main_thread->set_thread_state(_thread_in_vm);
3866   main_thread->initialize_thread_current();
3867   // must do this before set_active_handles
3868   main_thread->record_stack_base_and_size();
3869   main_thread->register_thread_stack_with_NMT();
3870   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3871 
3872   if (!main_thread->set_as_starting_thread()) {
3873     vm_shutdown_during_initialization(
3874                                       "Failed necessary internal allocation. Out of swap space");
3875     main_thread->smr_delete();
3876     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3877     return JNI_ENOMEM;
3878   }
3879 
3880   // Enable guard page *after* os::create_main_thread(), otherwise it would
3881   // crash Linux VM, see notes in os_linux.cpp.
3882   main_thread->create_stack_guard_pages();
3883 
3884   // Initialize Java-Level synchronization subsystem
3885   ObjectMonitor::Initialize();
3886 
3887   // Initialize global modules
3888   jint status = init_globals();
3889   if (status != JNI_OK) {
3890     main_thread->smr_delete();
3891     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3892     return status;
3893   }
3894 
3895   JFR_ONLY(Jfr::on_create_vm_1();)
3896 
3897   // Should be done after the heap is fully created
3898   main_thread->cache_global_variables();
3899 
3900   HandleMark hm;
3901 
3902   { MutexLocker mu(Threads_lock);
3903     Threads::add(main_thread);
3904   }
3905 
3906   // Any JVMTI raw monitors entered in onload will transition into
3907   // real raw monitor. VM is setup enough here for raw monitor enter.
3908   JvmtiExport::transition_pending_onload_raw_monitors();
3909 
3910   // Create the VMThread
3911   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3912 
3913     VMThread::create();
3914     Thread* vmthread = VMThread::vm_thread();
3915 
3916     if (!os::create_thread(vmthread, os::vm_thread)) {
3917       vm_exit_during_initialization("Cannot create VM thread. "
3918                                     "Out of system resources.");
3919     }
3920 
3921     // Wait for the VM thread to become ready, and VMThread::run to initialize
3922     // Monitors can have spurious returns, must always check another state flag
3923     {
3924       MonitorLocker ml(Notify_lock);
3925       os::start_thread(vmthread);
3926       while (vmthread->active_handles() == NULL) {
3927         ml.wait();
3928       }
3929     }
3930   }
3931 
3932   assert(Universe::is_fully_initialized(), "not initialized");
3933   if (VerifyDuringStartup) {
3934     // Make sure we're starting with a clean slate.
3935     VM_Verify verify_op;
3936     VMThread::execute(&verify_op);
3937   }
3938 
3939   // We need this to update the java.vm.info property in case any flags used
3940   // to initially define it have been changed. This is needed for both CDS and
3941   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3942   // is initially computed. See Abstract_VM_Version::vm_info_string().
3943   // This update must happen before we initialize the java classes, but
3944   // after any initialization logic that might modify the flags.
3945   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3946 
3947   Thread* THREAD = Thread::current();
3948 
3949   // Always call even when there are not JVMTI environments yet, since environments
3950   // may be attached late and JVMTI must track phases of VM execution
3951   JvmtiExport::enter_early_start_phase();
3952 
3953   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3954   JvmtiExport::post_early_vm_start();
3955 
3956   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3957 
3958   quicken_jni_functions();
3959 
3960   // No more stub generation allowed after that point.
3961   StubCodeDesc::freeze();
3962 
3963   // Set flag that basic initialization has completed. Used by exceptions and various
3964   // debug stuff, that does not work until all basic classes have been initialized.
3965   set_init_completed();
3966 
3967   LogConfiguration::post_initialize();
3968   Metaspace::post_initialize();
3969 
3970   HOTSPOT_VM_INIT_END();
3971 
3972   // record VM initialization completion time
3973 #if INCLUDE_MANAGEMENT
3974   Management::record_vm_init_completed();
3975 #endif // INCLUDE_MANAGEMENT
3976 
3977   // Signal Dispatcher needs to be started before VMInit event is posted
3978   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3979 
3980   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3981   if (!DisableAttachMechanism) {
3982     AttachListener::vm_start();
3983     if (StartAttachListener || AttachListener::init_at_startup()) {
3984       AttachListener::init();
3985     }
3986   }
3987 
3988   // Launch -Xrun agents
3989   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3990   // back-end can launch with -Xdebug -Xrunjdwp.
3991   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3992     create_vm_init_libraries();
3993   }
3994 
3995   if (CleanChunkPoolAsync) {
3996     Chunk::start_chunk_pool_cleaner_task();
3997   }
3998 
3999   // Start the service thread
4000   // The service thread enqueues JVMTI deferred events and does various hashtable
4001   // and other cleanups.  Needs to start before the compilers start posting events.
4002   ServiceThread::initialize();
4003 
4004   // initialize compiler(s)
4005 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4006 #if INCLUDE_JVMCI
4007   bool force_JVMCI_intialization = false;
4008   if (EnableJVMCI) {
4009     // Initialize JVMCI eagerly when it is explicitly requested.
4010     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4011     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4012 
4013     if (!force_JVMCI_intialization) {
4014       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4015       // compilations via JVMCI will not actually block until JVMCI is initialized.
4016       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4017     }
4018   }
4019 #endif
4020   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4021   // Postpone completion of compiler initialization to after JVMCI
4022   // is initialized to avoid timeouts of blocking compilations.
4023   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4024     CompileBroker::compilation_init_phase2();
4025   }
4026 #endif
4027 
4028   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4029   // It is done after compilers are initialized, because otherwise compilations of
4030   // signature polymorphic MH intrinsics can be missed
4031   // (see SystemDictionary::find_method_handle_intrinsic).
4032   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4033 
4034   // This will initialize the module system.  Only java.base classes can be
4035   // loaded until phase 2 completes
4036   call_initPhase2(CHECK_JNI_ERR);
4037 
4038   JFR_ONLY(Jfr::on_create_vm_2();)
4039 
4040   // Always call even when there are not JVMTI environments yet, since environments
4041   // may be attached late and JVMTI must track phases of VM execution
4042   JvmtiExport::enter_start_phase();
4043 
4044   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4045   JvmtiExport::post_vm_start();
4046 
4047   // Final system initialization including security manager and system class loader
4048   call_initPhase3(CHECK_JNI_ERR);
4049 
4050   // cache the system and platform class loaders
4051   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4052 
4053 #if INCLUDE_CDS
4054   // capture the module path info from the ModuleEntryTable
4055   ClassLoader::initialize_module_path(THREAD);
4056 #endif
4057 
4058 #if INCLUDE_JVMCI
4059   if (force_JVMCI_intialization) {
4060     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4061     CompileBroker::compilation_init_phase2();
4062   }
4063 #endif
4064 
4065   // Always call even when there are not JVMTI environments yet, since environments
4066   // may be attached late and JVMTI must track phases of VM execution
4067   JvmtiExport::enter_live_phase();
4068 
4069   // Make perfmemory accessible
4070   PerfMemory::set_accessible(true);
4071 
4072   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4073   JvmtiExport::post_vm_initialized();
4074 
4075   JFR_ONLY(Jfr::on_create_vm_3();)
4076 
4077 #if INCLUDE_MANAGEMENT
4078   Management::initialize(THREAD);
4079 
4080   if (HAS_PENDING_EXCEPTION) {
4081     // management agent fails to start possibly due to
4082     // configuration problem and is responsible for printing
4083     // stack trace if appropriate. Simply exit VM.
4084     vm_exit(1);
4085   }
4086 #endif // INCLUDE_MANAGEMENT
4087 
4088   if (MemProfiling)                   MemProfiler::engage();
4089   StatSampler::engage();
4090   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4091 
4092   BiasedLocking::init();
4093 
4094 #if INCLUDE_RTM_OPT
4095   RTMLockingCounters::init();
4096 #endif
4097 
4098   call_postVMInitHook(THREAD);
4099   // The Java side of PostVMInitHook.run must deal with all
4100   // exceptions and provide means of diagnosis.
4101   if (HAS_PENDING_EXCEPTION) {
4102     CLEAR_PENDING_EXCEPTION;
4103   }
4104 
4105   {
4106     MutexLocker ml(PeriodicTask_lock);
4107     // Make sure the WatcherThread can be started by WatcherThread::start()
4108     // or by dynamic enrollment.
4109     WatcherThread::make_startable();
4110     // Start up the WatcherThread if there are any periodic tasks
4111     // NOTE:  All PeriodicTasks should be registered by now. If they
4112     //   aren't, late joiners might appear to start slowly (we might
4113     //   take a while to process their first tick).
4114     if (PeriodicTask::num_tasks() > 0) {
4115       WatcherThread::start();
4116     }
4117   }
4118 
4119   create_vm_timer.end();
4120 #ifdef ASSERT
4121   _vm_complete = true;
4122 #endif
4123 
4124   if (DumpSharedSpaces) {
4125     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4126     ShouldNotReachHere();
4127   }
4128 
4129   return JNI_OK;
4130 }
4131 
4132 // type for the Agent_OnLoad and JVM_OnLoad entry points
4133 extern "C" {
4134   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4135 }
4136 // Find a command line agent library and return its entry point for
4137 //         -agentlib:  -agentpath:   -Xrun
4138 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4139 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4140                                     const char *on_load_symbols[],
4141                                     size_t num_symbol_entries) {
4142   OnLoadEntry_t on_load_entry = NULL;
4143   void *library = NULL;
4144 
4145   if (!agent->valid()) {
4146     char buffer[JVM_MAXPATHLEN];
4147     char ebuf[1024] = "";
4148     const char *name = agent->name();
4149     const char *msg = "Could not find agent library ";
4150 
4151     // First check to see if agent is statically linked into executable
4152     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4153       library = agent->os_lib();
4154     } else if (agent->is_absolute_path()) {
4155       library = os::dll_load(name, ebuf, sizeof ebuf);
4156       if (library == NULL) {
4157         const char *sub_msg = " in absolute path, with error: ";
4158         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4159         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4160         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4161         // If we can't find the agent, exit.
4162         vm_exit_during_initialization(buf, NULL);
4163         FREE_C_HEAP_ARRAY(char, buf);
4164       }
4165     } else {
4166       // Try to load the agent from the standard dll directory
4167       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4168                              name)) {
4169         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4170       }
4171       if (library == NULL) { // Try the library path directory.
4172         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4173           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4174         }
4175         if (library == NULL) {
4176           const char *sub_msg = " on the library path, with error: ";
4177           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4178 
4179           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4180                        strlen(ebuf) + strlen(sub_msg2) + 1;
4181           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4182           if (!agent->is_instrument_lib()) {
4183             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4184           } else {
4185             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4186           }
4187           // If we can't find the agent, exit.
4188           vm_exit_during_initialization(buf, NULL);
4189           FREE_C_HEAP_ARRAY(char, buf);
4190         }
4191       }
4192     }
4193     agent->set_os_lib(library);
4194     agent->set_valid();
4195   }
4196 
4197   // Find the OnLoad function.
4198   on_load_entry =
4199     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4200                                                           false,
4201                                                           on_load_symbols,
4202                                                           num_symbol_entries));
4203   return on_load_entry;
4204 }
4205 
4206 // Find the JVM_OnLoad entry point
4207 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4208   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4209   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4210 }
4211 
4212 // Find the Agent_OnLoad entry point
4213 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4214   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4215   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4216 }
4217 
4218 // For backwards compatibility with -Xrun
4219 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4220 // treated like -agentpath:
4221 // Must be called before agent libraries are created
4222 void Threads::convert_vm_init_libraries_to_agents() {
4223   AgentLibrary* agent;
4224   AgentLibrary* next;
4225 
4226   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4227     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4228     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4229 
4230     // If there is an JVM_OnLoad function it will get called later,
4231     // otherwise see if there is an Agent_OnLoad
4232     if (on_load_entry == NULL) {
4233       on_load_entry = lookup_agent_on_load(agent);
4234       if (on_load_entry != NULL) {
4235         // switch it to the agent list -- so that Agent_OnLoad will be called,
4236         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4237         Arguments::convert_library_to_agent(agent);
4238       } else {
4239         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4240       }
4241     }
4242   }
4243 }
4244 
4245 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4246 // Invokes Agent_OnLoad
4247 // Called very early -- before JavaThreads exist
4248 void Threads::create_vm_init_agents() {
4249   extern struct JavaVM_ main_vm;
4250   AgentLibrary* agent;
4251 
4252   JvmtiExport::enter_onload_phase();
4253 
4254   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4255     // CDS dumping does not support native JVMTI agent.
4256     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4257     if (Arguments::is_dumping_archive()) {
4258       if(!agent->is_instrument_lib()) {
4259         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4260       } else if (!AllowArchivingWithJavaAgent) {
4261         vm_exit_during_cds_dumping(
4262           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4263       }
4264     }
4265 
4266     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4267 
4268     if (on_load_entry != NULL) {
4269       // Invoke the Agent_OnLoad function
4270       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4271       if (err != JNI_OK) {
4272         vm_exit_during_initialization("agent library failed to init", agent->name());
4273       }
4274     } else {
4275       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4276     }
4277   }
4278 
4279   JvmtiExport::enter_primordial_phase();
4280 }
4281 
4282 extern "C" {
4283   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4284 }
4285 
4286 void Threads::shutdown_vm_agents() {
4287   // Send any Agent_OnUnload notifications
4288   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4289   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4290   extern struct JavaVM_ main_vm;
4291   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4292 
4293     // Find the Agent_OnUnload function.
4294     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4295                                                    os::find_agent_function(agent,
4296                                                    false,
4297                                                    on_unload_symbols,
4298                                                    num_symbol_entries));
4299 
4300     // Invoke the Agent_OnUnload function
4301     if (unload_entry != NULL) {
4302       JavaThread* thread = JavaThread::current();
4303       ThreadToNativeFromVM ttn(thread);
4304       HandleMark hm(thread);
4305       (*unload_entry)(&main_vm);
4306     }
4307   }
4308 }
4309 
4310 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4311 // Invokes JVM_OnLoad
4312 void Threads::create_vm_init_libraries() {
4313   extern struct JavaVM_ main_vm;
4314   AgentLibrary* agent;
4315 
4316   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4317     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4318 
4319     if (on_load_entry != NULL) {
4320       // Invoke the JVM_OnLoad function
4321       JavaThread* thread = JavaThread::current();
4322       ThreadToNativeFromVM ttn(thread);
4323       HandleMark hm(thread);
4324       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4325       if (err != JNI_OK) {
4326         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4327       }
4328     } else {
4329       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4330     }
4331   }
4332 }
4333 
4334 
4335 // Last thread running calls java.lang.Shutdown.shutdown()
4336 void JavaThread::invoke_shutdown_hooks() {
4337   HandleMark hm(this);
4338 
4339   // We could get here with a pending exception, if so clear it now.
4340   if (this->has_pending_exception()) {
4341     this->clear_pending_exception();
4342   }
4343 
4344   EXCEPTION_MARK;
4345   Klass* shutdown_klass =
4346     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4347                                       THREAD);
4348   if (shutdown_klass != NULL) {
4349     // SystemDictionary::resolve_or_null will return null if there was
4350     // an exception.  If we cannot load the Shutdown class, just don't
4351     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4352     // won't be run.  Note that if a shutdown hook was registered,
4353     // the Shutdown class would have already been loaded
4354     // (Runtime.addShutdownHook will load it).
4355     JavaValue result(T_VOID);
4356     JavaCalls::call_static(&result,
4357                            shutdown_klass,
4358                            vmSymbols::shutdown_name(),
4359                            vmSymbols::void_method_signature(),
4360                            THREAD);
4361   }
4362   CLEAR_PENDING_EXCEPTION;
4363 }
4364 
4365 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4366 // the program falls off the end of main(). Another VM exit path is through
4367 // vm_exit() when the program calls System.exit() to return a value or when
4368 // there is a serious error in VM. The two shutdown paths are not exactly
4369 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4370 // and VM_Exit op at VM level.
4371 //
4372 // Shutdown sequence:
4373 //   + Shutdown native memory tracking if it is on
4374 //   + Wait until we are the last non-daemon thread to execute
4375 //     <-- every thing is still working at this moment -->
4376 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4377 //        shutdown hooks
4378 //   + Call before_exit(), prepare for VM exit
4379 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4380 //        currently the only user of this mechanism is File.deleteOnExit())
4381 //      > stop StatSampler, watcher thread,
4382 //        post thread end and vm death events to JVMTI,
4383 //        stop signal thread
4384 //   + Call JavaThread::exit(), it will:
4385 //      > release JNI handle blocks, remove stack guard pages
4386 //      > remove this thread from Threads list
4387 //     <-- no more Java code from this thread after this point -->
4388 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4389 //     the compiler threads at safepoint
4390 //     <-- do not use anything that could get blocked by Safepoint -->
4391 //   + Disable tracing at JNI/JVM barriers
4392 //   + Set _vm_exited flag for threads that are still running native code
4393 //   + Call exit_globals()
4394 //      > deletes tty
4395 //      > deletes PerfMemory resources
4396 //   + Delete this thread
4397 //   + Return to caller
4398 
4399 bool Threads::destroy_vm() {
4400   JavaThread* thread = JavaThread::current();
4401 
4402 #ifdef ASSERT
4403   _vm_complete = false;
4404 #endif
4405   // Wait until we are the last non-daemon thread to execute
4406   { MonitorLocker nu(Threads_lock);
4407     while (Threads::number_of_non_daemon_threads() > 1)
4408       // This wait should make safepoint checks, wait without a timeout,
4409       // and wait as a suspend-equivalent condition.
4410       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4411   }
4412 
4413   EventShutdown e;
4414   if (e.should_commit()) {
4415     e.set_reason("No remaining non-daemon Java threads");
4416     e.commit();
4417   }
4418 
4419   // Hang forever on exit if we are reporting an error.
4420   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4421     os::infinite_sleep();
4422   }
4423   os::wait_for_keypress_at_exit();
4424 
4425   // run Java level shutdown hooks
4426   thread->invoke_shutdown_hooks();
4427 
4428   before_exit(thread);
4429 
4430   thread->exit(true);
4431 
4432   // Stop VM thread.
4433   {
4434     // 4945125 The vm thread comes to a safepoint during exit.
4435     // GC vm_operations can get caught at the safepoint, and the
4436     // heap is unparseable if they are caught. Grab the Heap_lock
4437     // to prevent this. The GC vm_operations will not be able to
4438     // queue until after the vm thread is dead. After this point,
4439     // we'll never emerge out of the safepoint before the VM exits.
4440 
4441     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4442 
4443     VMThread::wait_for_vm_thread_exit();
4444     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4445     VMThread::destroy();
4446   }
4447 
4448   // Now, all Java threads are gone except daemon threads. Daemon threads
4449   // running Java code or in VM are stopped by the Safepoint. However,
4450   // daemon threads executing native code are still running.  But they
4451   // will be stopped at native=>Java/VM barriers. Note that we can't
4452   // simply kill or suspend them, as it is inherently deadlock-prone.
4453 
4454   VM_Exit::set_vm_exited();
4455 
4456   // Clean up ideal graph printers after the VMThread has started
4457   // the final safepoint which will block all the Compiler threads.
4458   // Note that this Thread has already logically exited so the
4459   // clean_up() function's use of a JavaThreadIteratorWithHandle
4460   // would be a problem except set_vm_exited() has remembered the
4461   // shutdown thread which is granted a policy exception.
4462 #if defined(COMPILER2) && !defined(PRODUCT)
4463   IdealGraphPrinter::clean_up();
4464 #endif
4465 
4466   notify_vm_shutdown();
4467 
4468   // exit_globals() will delete tty
4469   exit_globals();
4470 
4471   // We are after VM_Exit::set_vm_exited() so we can't call
4472   // thread->smr_delete() or we will block on the Threads_lock.
4473   // Deleting the shutdown thread here is safe because another
4474   // JavaThread cannot have an active ThreadsListHandle for
4475   // this JavaThread.
4476   delete thread;
4477 
4478 #if INCLUDE_JVMCI
4479   if (JVMCICounterSize > 0) {
4480     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4481   }
4482 #endif
4483 
4484   LogConfiguration::finalize();
4485 
4486   return true;
4487 }
4488 
4489 
4490 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4491   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4492   return is_supported_jni_version(version);
4493 }
4494 
4495 
4496 jboolean Threads::is_supported_jni_version(jint version) {
4497   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4498   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4499   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4500   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4501   if (version == JNI_VERSION_9) return JNI_TRUE;
4502   if (version == JNI_VERSION_10) return JNI_TRUE;
4503   return JNI_FALSE;
4504 }
4505 
4506 
4507 void Threads::add(JavaThread* p, bool force_daemon) {
4508   // The threads lock must be owned at this point
4509   assert(Threads_lock->owned_by_self(), "must have threads lock");
4510 
4511   BarrierSet::barrier_set()->on_thread_attach(p);
4512 
4513   // Once a JavaThread is added to the Threads list, smr_delete() has
4514   // to be used to delete it. Otherwise we can just delete it directly.
4515   p->set_on_thread_list();
4516 
4517   _number_of_threads++;
4518   oop threadObj = p->threadObj();
4519   bool daemon = true;
4520   // Bootstrapping problem: threadObj can be null for initial
4521   // JavaThread (or for threads attached via JNI)
4522   if ((!force_daemon) && !is_daemon((threadObj))) {
4523     _number_of_non_daemon_threads++;
4524     daemon = false;
4525   }
4526 
4527   ThreadService::add_thread(p, daemon);
4528 
4529   // Maintain fast thread list
4530   ThreadsSMRSupport::add_thread(p);
4531 
4532   // Possible GC point.
4533   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4534 }
4535 
4536 void Threads::remove(JavaThread* p, bool is_daemon) {
4537 
4538   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4539   ObjectSynchronizer::om_flush(p);
4540 
4541   // Extra scope needed for Thread_lock, so we can check
4542   // that we do not remove thread without safepoint code notice
4543   { MonitorLocker ml(Threads_lock);
4544 
4545     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4546 
4547     // Maintain fast thread list
4548     ThreadsSMRSupport::remove_thread(p);
4549 
4550     _number_of_threads--;
4551     if (!is_daemon) {
4552       _number_of_non_daemon_threads--;
4553 
4554       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4555       // on destroy_vm will wake up.
4556       if (number_of_non_daemon_threads() == 1) {
4557         ml.notify_all();
4558       }
4559     }
4560     ThreadService::remove_thread(p, is_daemon);
4561 
4562     // Make sure that safepoint code disregard this thread. This is needed since
4563     // the thread might mess around with locks after this point. This can cause it
4564     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4565     // of this thread since it is removed from the queue.
4566     p->set_terminated_value();
4567   } // unlock Threads_lock
4568 
4569   // Since Events::log uses a lock, we grab it outside the Threads_lock
4570   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4571 }
4572 
4573 // Operations on the Threads list for GC.  These are not explicitly locked,
4574 // but the garbage collector must provide a safe context for them to run.
4575 // In particular, these things should never be called when the Threads_lock
4576 // is held by some other thread. (Note: the Safepoint abstraction also
4577 // uses the Threads_lock to guarantee this property. It also makes sure that
4578 // all threads gets blocked when exiting or starting).
4579 
4580 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4581   ALL_JAVA_THREADS(p) {
4582     p->oops_do(f, cf);
4583   }
4584   VMThread::vm_thread()->oops_do(f, cf);
4585 }
4586 
4587 void Threads::change_thread_claim_token() {
4588   if (++_thread_claim_token == 0) {
4589     // On overflow of the token counter, there is a risk of future
4590     // collisions between a new global token value and a stale token
4591     // for a thread, because not all iterations visit all threads.
4592     // (Though it's pretty much a theoretical concern for non-trivial
4593     // token counter sizes.)  To deal with the possibility, reset all
4594     // the thread tokens to zero on global token overflow.
4595     struct ResetClaims : public ThreadClosure {
4596       virtual void do_thread(Thread* t) {
4597         t->claim_threads_do(false, 0);
4598       }
4599     } reset_claims;
4600     Threads::threads_do(&reset_claims);
4601     // On overflow, update the global token to non-zero, to
4602     // avoid the special "never claimed" initial thread value.
4603     _thread_claim_token = 1;
4604   }
4605 }
4606 
4607 #ifdef ASSERT
4608 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4609   const uintx token = t->threads_do_token();
4610   assert(token == expected,
4611          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4612          UINTX_FORMAT, kind, p2i(t), token, expected);
4613 }
4614 
4615 void Threads::assert_all_threads_claimed() {
4616   ALL_JAVA_THREADS(p) {
4617     assert_thread_claimed("Thread", p, _thread_claim_token);
4618   }
4619   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4620 }
4621 #endif // ASSERT
4622 
4623 class ParallelOopsDoThreadClosure : public ThreadClosure {
4624 private:
4625   OopClosure* _f;
4626   CodeBlobClosure* _cf;
4627 public:
4628   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4629   void do_thread(Thread* t) {
4630     t->oops_do(_f, _cf);
4631   }
4632 };
4633 
4634 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4635   ParallelOopsDoThreadClosure tc(f, cf);
4636   possibly_parallel_threads_do(is_par, &tc);
4637 }
4638 
4639 void Threads::nmethods_do(CodeBlobClosure* cf) {
4640   ALL_JAVA_THREADS(p) {
4641     // This is used by the code cache sweeper to mark nmethods that are active
4642     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4643     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4644     if(!p->is_Code_cache_sweeper_thread()) {
4645       p->nmethods_do(cf);
4646     }
4647   }
4648 }
4649 
4650 void Threads::metadata_do(MetadataClosure* f) {
4651   ALL_JAVA_THREADS(p) {
4652     p->metadata_do(f);
4653   }
4654 }
4655 
4656 class ThreadHandlesClosure : public ThreadClosure {
4657   void (*_f)(Metadata*);
4658  public:
4659   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4660   virtual void do_thread(Thread* thread) {
4661     thread->metadata_handles_do(_f);
4662   }
4663 };
4664 
4665 void Threads::metadata_handles_do(void f(Metadata*)) {
4666   // Only walk the Handles in Thread.
4667   ThreadHandlesClosure handles_closure(f);
4668   threads_do(&handles_closure);
4669 }
4670 
4671 // Get count Java threads that are waiting to enter the specified monitor.
4672 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4673                                                          int count,
4674                                                          address monitor) {
4675   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4676 
4677   int i = 0;
4678   DO_JAVA_THREADS(t_list, p) {
4679     if (!p->can_call_java()) continue;
4680 
4681     address pending = (address)p->current_pending_monitor();
4682     if (pending == monitor) {             // found a match
4683       if (i < count) result->append(p);   // save the first count matches
4684       i++;
4685     }
4686   }
4687 
4688   return result;
4689 }
4690 
4691 
4692 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4693                                                       address owner) {
4694   // NULL owner means not locked so we can skip the search
4695   if (owner == NULL) return NULL;
4696 
4697   DO_JAVA_THREADS(t_list, p) {
4698     // first, see if owner is the address of a Java thread
4699     if (owner == (address)p) return p;
4700   }
4701 
4702   // Cannot assert on lack of success here since this function may be
4703   // used by code that is trying to report useful problem information
4704   // like deadlock detection.
4705   if (UseHeavyMonitors) return NULL;
4706 
4707   // If we didn't find a matching Java thread and we didn't force use of
4708   // heavyweight monitors, then the owner is the stack address of the
4709   // Lock Word in the owning Java thread's stack.
4710   //
4711   JavaThread* the_owner = NULL;
4712   DO_JAVA_THREADS(t_list, q) {
4713     if (q->is_lock_owned(owner)) {
4714       the_owner = q;
4715       break;
4716     }
4717   }
4718 
4719   // cannot assert on lack of success here; see above comment
4720   return the_owner;
4721 }
4722 
4723 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4724 void Threads::print_on(outputStream* st, bool print_stacks,
4725                        bool internal_format, bool print_concurrent_locks,
4726                        bool print_extended_info) {
4727   char buf[32];
4728   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4729 
4730   st->print_cr("Full thread dump %s (%s %s):",
4731                VM_Version::vm_name(),
4732                VM_Version::vm_release(),
4733                VM_Version::vm_info_string());
4734   st->cr();
4735 
4736 #if INCLUDE_SERVICES
4737   // Dump concurrent locks
4738   ConcurrentLocksDump concurrent_locks;
4739   if (print_concurrent_locks) {
4740     concurrent_locks.dump_at_safepoint();
4741   }
4742 #endif // INCLUDE_SERVICES
4743 
4744   ThreadsSMRSupport::print_info_on(st);
4745   st->cr();
4746 
4747   ALL_JAVA_THREADS(p) {
4748     ResourceMark rm;
4749     p->print_on(st, print_extended_info);
4750     if (print_stacks) {
4751       if (internal_format) {
4752         p->trace_stack();
4753       } else {
4754         p->print_stack_on(st);
4755       }
4756     }
4757     st->cr();
4758 #if INCLUDE_SERVICES
4759     if (print_concurrent_locks) {
4760       concurrent_locks.print_locks_on(p, st);
4761     }
4762 #endif // INCLUDE_SERVICES
4763   }
4764 
4765   VMThread::vm_thread()->print_on(st);
4766   st->cr();
4767   Universe::heap()->print_gc_threads_on(st);
4768   WatcherThread* wt = WatcherThread::watcher_thread();
4769   if (wt != NULL) {
4770     wt->print_on(st);
4771     st->cr();
4772   }
4773 
4774   st->flush();
4775 }
4776 
4777 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4778                              int buflen, bool* found_current) {
4779   if (this_thread != NULL) {
4780     bool is_current = (current == this_thread);
4781     *found_current = *found_current || is_current;
4782     st->print("%s", is_current ? "=>" : "  ");
4783 
4784     st->print(PTR_FORMAT, p2i(this_thread));
4785     st->print(" ");
4786     this_thread->print_on_error(st, buf, buflen);
4787     st->cr();
4788   }
4789 }
4790 
4791 class PrintOnErrorClosure : public ThreadClosure {
4792   outputStream* _st;
4793   Thread* _current;
4794   char* _buf;
4795   int _buflen;
4796   bool* _found_current;
4797  public:
4798   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4799                       int buflen, bool* found_current) :
4800    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4801 
4802   virtual void do_thread(Thread* thread) {
4803     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4804   }
4805 };
4806 
4807 // Threads::print_on_error() is called by fatal error handler. It's possible
4808 // that VM is not at safepoint and/or current thread is inside signal handler.
4809 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4810 // memory (even in resource area), it might deadlock the error handler.
4811 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4812                              int buflen) {
4813   ThreadsSMRSupport::print_info_on(st);
4814   st->cr();
4815 
4816   bool found_current = false;
4817   st->print_cr("Java Threads: ( => current thread )");
4818   ALL_JAVA_THREADS(thread) {
4819     print_on_error(thread, st, current, buf, buflen, &found_current);
4820   }
4821   st->cr();
4822 
4823   st->print_cr("Other Threads:");
4824   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4825   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4826 
4827   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4828   Universe::heap()->gc_threads_do(&print_closure);
4829 
4830   if (!found_current) {
4831     st->cr();
4832     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4833     current->print_on_error(st, buf, buflen);
4834     st->cr();
4835   }
4836   st->cr();
4837 
4838   st->print_cr("Threads with active compile tasks:");
4839   print_threads_compiling(st, buf, buflen);
4840 }
4841 
4842 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4843   ALL_JAVA_THREADS(thread) {
4844     if (thread->is_Compiler_thread()) {
4845       CompilerThread* ct = (CompilerThread*) thread;
4846 
4847       // Keep task in local variable for NULL check.
4848       // ct->_task might be set to NULL by concurring compiler thread
4849       // because it completed the compilation. The task is never freed,
4850       // though, just returned to a free list.
4851       CompileTask* task = ct->task();
4852       if (task != NULL) {
4853         thread->print_name_on_error(st, buf, buflen);
4854         st->print("  ");
4855         task->print(st, NULL, short_form, true);
4856       }
4857     }
4858   }
4859 }
4860 
4861 
4862 // Internal SpinLock and Mutex
4863 // Based on ParkEvent
4864 
4865 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4866 //
4867 // We employ SpinLocks _only for low-contention, fixed-length
4868 // short-duration critical sections where we're concerned
4869 // about native mutex_t or HotSpot Mutex:: latency.
4870 // The mux construct provides a spin-then-block mutual exclusion
4871 // mechanism.
4872 //
4873 // Testing has shown that contention on the ListLock guarding gFreeList
4874 // is common.  If we implement ListLock as a simple SpinLock it's common
4875 // for the JVM to devolve to yielding with little progress.  This is true
4876 // despite the fact that the critical sections protected by ListLock are
4877 // extremely short.
4878 //
4879 // TODO-FIXME: ListLock should be of type SpinLock.
4880 // We should make this a 1st-class type, integrated into the lock
4881 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4882 // should have sufficient padding to avoid false-sharing and excessive
4883 // cache-coherency traffic.
4884 
4885 
4886 typedef volatile int SpinLockT;
4887 
4888 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4889   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4890     return;   // normal fast-path return
4891   }
4892 
4893   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4894   int ctr = 0;
4895   int Yields = 0;
4896   for (;;) {
4897     while (*adr != 0) {
4898       ++ctr;
4899       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4900         if (Yields > 5) {
4901           os::naked_short_sleep(1);
4902         } else {
4903           os::naked_yield();
4904           ++Yields;
4905         }
4906       } else {
4907         SpinPause();
4908       }
4909     }
4910     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4911   }
4912 }
4913 
4914 void Thread::SpinRelease(volatile int * adr) {
4915   assert(*adr != 0, "invariant");
4916   OrderAccess::fence();      // guarantee at least release consistency.
4917   // Roach-motel semantics.
4918   // It's safe if subsequent LDs and STs float "up" into the critical section,
4919   // but prior LDs and STs within the critical section can't be allowed
4920   // to reorder or float past the ST that releases the lock.
4921   // Loads and stores in the critical section - which appear in program
4922   // order before the store that releases the lock - must also appear
4923   // before the store that releases the lock in memory visibility order.
4924   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4925   // the ST of 0 into the lock-word which releases the lock, so fence
4926   // more than covers this on all platforms.
4927   *adr = 0;
4928 }
4929 
4930 // muxAcquire and muxRelease:
4931 //
4932 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4933 //    The LSB of the word is set IFF the lock is held.
4934 //    The remainder of the word points to the head of a singly-linked list
4935 //    of threads blocked on the lock.
4936 //
4937 // *  The current implementation of muxAcquire-muxRelease uses its own
4938 //    dedicated Thread._MuxEvent instance.  If we're interested in
4939 //    minimizing the peak number of extant ParkEvent instances then
4940 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4941 //    as certain invariants were satisfied.  Specifically, care would need
4942 //    to be taken with regards to consuming unpark() "permits".
4943 //    A safe rule of thumb is that a thread would never call muxAcquire()
4944 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4945 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4946 //    consume an unpark() permit intended for monitorenter, for instance.
4947 //    One way around this would be to widen the restricted-range semaphore
4948 //    implemented in park().  Another alternative would be to provide
4949 //    multiple instances of the PlatformEvent() for each thread.  One
4950 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4951 //
4952 // *  Usage:
4953 //    -- Only as leaf locks
4954 //    -- for short-term locking only as muxAcquire does not perform
4955 //       thread state transitions.
4956 //
4957 // Alternatives:
4958 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4959 //    but with parking or spin-then-park instead of pure spinning.
4960 // *  Use Taura-Oyama-Yonenzawa locks.
4961 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4962 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4963 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4964 //    acquiring threads use timers (ParkTimed) to detect and recover from
4965 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4966 //    boundaries by using placement-new.
4967 // *  Augment MCS with advisory back-link fields maintained with CAS().
4968 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4969 //    The validity of the backlinks must be ratified before we trust the value.
4970 //    If the backlinks are invalid the exiting thread must back-track through the
4971 //    the forward links, which are always trustworthy.
4972 // *  Add a successor indication.  The LockWord is currently encoded as
4973 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4974 //    to provide the usual futile-wakeup optimization.
4975 //    See RTStt for details.
4976 //
4977 
4978 
4979 const intptr_t LOCKBIT = 1;
4980 
4981 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4982   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
4983   if (w == 0) return;
4984   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4985     return;
4986   }
4987 
4988   ParkEvent * const Self = Thread::current()->_MuxEvent;
4989   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4990   for (;;) {
4991     int its = (os::is_MP() ? 100 : 0) + 1;
4992 
4993     // Optional spin phase: spin-then-park strategy
4994     while (--its >= 0) {
4995       w = *Lock;
4996       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4997         return;
4998       }
4999     }
5000 
5001     Self->reset();
5002     Self->OnList = intptr_t(Lock);
5003     // The following fence() isn't _strictly necessary as the subsequent
5004     // CAS() both serializes execution and ratifies the fetched *Lock value.
5005     OrderAccess::fence();
5006     for (;;) {
5007       w = *Lock;
5008       if ((w & LOCKBIT) == 0) {
5009         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5010           Self->OnList = 0;   // hygiene - allows stronger asserts
5011           return;
5012         }
5013         continue;      // Interference -- *Lock changed -- Just retry
5014       }
5015       assert(w & LOCKBIT, "invariant");
5016       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5017       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5018     }
5019 
5020     while (Self->OnList != 0) {
5021       Self->park();
5022     }
5023   }
5024 }
5025 
5026 // Release() must extract a successor from the list and then wake that thread.
5027 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5028 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5029 // Release() would :
5030 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5031 // (B) Extract a successor from the private list "in-hand"
5032 // (C) attempt to CAS() the residual back into *Lock over null.
5033 //     If there were any newly arrived threads and the CAS() would fail.
5034 //     In that case Release() would detach the RATs, re-merge the list in-hand
5035 //     with the RATs and repeat as needed.  Alternately, Release() might
5036 //     detach and extract a successor, but then pass the residual list to the wakee.
5037 //     The wakee would be responsible for reattaching and remerging before it
5038 //     competed for the lock.
5039 //
5040 // Both "pop" and DMR are immune from ABA corruption -- there can be
5041 // multiple concurrent pushers, but only one popper or detacher.
5042 // This implementation pops from the head of the list.  This is unfair,
5043 // but tends to provide excellent throughput as hot threads remain hot.
5044 // (We wake recently run threads first).
5045 //
5046 // All paths through muxRelease() will execute a CAS.
5047 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5048 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5049 // executed within the critical section are complete and globally visible before the
5050 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5051 void Thread::muxRelease(volatile intptr_t * Lock)  {
5052   for (;;) {
5053     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5054     assert(w & LOCKBIT, "invariant");
5055     if (w == LOCKBIT) return;
5056     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5057     assert(List != NULL, "invariant");
5058     assert(List->OnList == intptr_t(Lock), "invariant");
5059     ParkEvent * const nxt = List->ListNext;
5060     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5061 
5062     // The following CAS() releases the lock and pops the head element.
5063     // The CAS() also ratifies the previously fetched lock-word value.
5064     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5065       continue;
5066     }
5067     List->OnList = 0;
5068     OrderAccess::fence();
5069     List->unpark();
5070     return;
5071   }
5072 }
5073 
5074 
5075 void Threads::verify() {
5076   ALL_JAVA_THREADS(p) {
5077     p->verify();
5078   }
5079   VMThread* thread = VMThread::vm_thread();
5080   if (thread != NULL) thread->verify();
5081 }