1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269   omShouldDeflateIdleMonitors = false;
 270 
 271 #ifdef ASSERT
 272   _visited_for_critical_count = false;
 273 #endif
 274 
 275   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 276                          Monitor::_safepoint_check_sometimes);
 277   _suspend_flags = 0;
 278 
 279   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 280   _hashStateX = os::random();
 281   _hashStateY = 842502087;
 282   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 283   _hashStateW = 273326509;
 284 
 285   _OnTrap   = 0;
 286   _Stalled  = 0;
 287   _TypeTag  = 0x2BAD;
 288 
 289   // Many of the following fields are effectively final - immutable
 290   // Note that nascent threads can't use the Native Monitor-Mutex
 291   // construct until the _MutexEvent is initialized ...
 292   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 293   // we might instead use a stack of ParkEvents that we could provision on-demand.
 294   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 295   // and ::Release()
 296   _ParkEvent   = ParkEvent::Allocate(this);
 297   _SleepEvent  = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 
 314   // Notify the barrier set that a thread is being created. The initial
 315   // thread is created before the barrier set is available.  The call to
 316   // BarrierSet::on_thread_create() for this thread is therefore deferred
 317   // to BarrierSet::set_barrier_set().
 318   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 319   if (barrier_set != NULL) {
 320     barrier_set->on_thread_create(this);
 321   } else {
 322     // Only the main thread should be created before the barrier set
 323     // and that happens just before Thread::current is set. No other thread
 324     // can attach as the VM is not created yet, so they can't execute this code.
 325     // If the main thread creates other threads before the barrier set that is an error.
 326     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 327   }
 328 }
 329 
 330 void Thread::initialize_thread_current() {
 331 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 332   assert(_thr_current == NULL, "Thread::current already initialized");
 333   _thr_current = this;
 334 #endif
 335   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 336   ThreadLocalStorage::set_thread(this);
 337   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 338 }
 339 
 340 void Thread::clear_thread_current() {
 341   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 342 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 343   _thr_current = NULL;
 344 #endif
 345   ThreadLocalStorage::set_thread(NULL);
 346 }
 347 
 348 void Thread::record_stack_base_and_size() {
 349   // Note: at this point, Thread object is not yet initialized. Do not rely on
 350   // any members being initialized. Do not rely on Thread::current() being set.
 351   // If possible, refrain from doing anything which may crash or assert since
 352   // quite probably those crash dumps will be useless.
 353   set_stack_base(os::current_stack_base());
 354   set_stack_size(os::current_stack_size());
 355 
 356 #ifdef SOLARIS
 357   if (os::is_primordial_thread()) {
 358     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 359   }
 360 #endif
 361 
 362   // Set stack limits after thread is initialized.
 363   if (is_Java_thread()) {
 364     ((JavaThread*) this)->set_stack_overflow_limit();
 365     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 366   }
 367 }
 368 
 369 #if INCLUDE_NMT
 370 void Thread::register_thread_stack_with_NMT() {
 371   MemTracker::record_thread_stack(stack_end(), stack_size());
 372 }
 373 #endif // INCLUDE_NMT
 374 
 375 void Thread::call_run() {
 376   DEBUG_ONLY(_run_state = CALL_RUN;)
 377 
 378   // At this point, Thread object should be fully initialized and
 379   // Thread::current() should be set.
 380 
 381   assert(Thread::current_or_null() != NULL, "current thread is unset");
 382   assert(Thread::current_or_null() == this, "current thread is wrong");
 383 
 384   // Perform common initialization actions
 385 
 386   register_thread_stack_with_NMT();
 387 
 388   JFR_ONLY(Jfr::on_thread_start(this);)
 389 
 390   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 391     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 392     os::current_thread_id(), p2i(stack_base() - stack_size()),
 393     p2i(stack_base()), stack_size()/1024);
 394 
 395   // Perform <ChildClass> initialization actions
 396   DEBUG_ONLY(_run_state = PRE_RUN;)
 397   this->pre_run();
 398 
 399   // Invoke <ChildClass>::run()
 400   DEBUG_ONLY(_run_state = RUN;)
 401   this->run();
 402   // Returned from <ChildClass>::run(). Thread finished.
 403 
 404   // Perform common tear-down actions
 405 
 406   assert(Thread::current_or_null() != NULL, "current thread is unset");
 407   assert(Thread::current_or_null() == this, "current thread is wrong");
 408 
 409   // Perform <ChildClass> tear-down actions
 410   DEBUG_ONLY(_run_state = POST_RUN;)
 411   this->post_run();
 412 
 413   // Note: at this point the thread object may already have deleted itself,
 414   // so from here on do not dereference *this*. Not all thread types currently
 415   // delete themselves when they terminate. But no thread should ever be deleted
 416   // asynchronously with respect to its termination - that is what _run_state can
 417   // be used to check.
 418 
 419   assert(Thread::current_or_null() == NULL, "current thread still present");
 420 }
 421 
 422 Thread::~Thread() {
 423 
 424   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 425   // get started due to errors etc. Any active thread should at least reach post_run
 426   // before it is deleted (usually in post_run()).
 427   assert(_run_state == PRE_CALL_RUN ||
 428          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 429          "_run_state=%d", (int)_run_state);
 430 
 431   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 432   // set might not be available if we encountered errors during bootstrapping.
 433   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 434   if (barrier_set != NULL) {
 435     barrier_set->on_thread_destroy(this);
 436   }
 437 
 438   // stack_base can be NULL if the thread is never started or exited before
 439   // record_stack_base_and_size called. Although, we would like to ensure
 440   // that all started threads do call record_stack_base_and_size(), there is
 441   // not proper way to enforce that.
 442 #if INCLUDE_NMT
 443   if (_stack_base != NULL) {
 444     MemTracker::release_thread_stack(stack_end(), stack_size());
 445 #ifdef ASSERT
 446     set_stack_base(NULL);
 447 #endif
 448   }
 449 #endif // INCLUDE_NMT
 450 
 451   // deallocate data structures
 452   delete resource_area();
 453   // since the handle marks are using the handle area, we have to deallocated the root
 454   // handle mark before deallocating the thread's handle area,
 455   assert(last_handle_mark() != NULL, "check we have an element");
 456   delete last_handle_mark();
 457   assert(last_handle_mark() == NULL, "check we have reached the end");
 458 
 459   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 460   // We NULL out the fields for good hygiene.
 461   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 462   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 463   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 464 
 465   delete handle_area();
 466   delete metadata_handles();
 467 
 468   // SR_handler uses this as a termination indicator -
 469   // needs to happen before os::free_thread()
 470   delete _SR_lock;
 471   _SR_lock = NULL;
 472 
 473   // osthread() can be NULL, if creation of thread failed.
 474   if (osthread() != NULL) os::free_thread(osthread());
 475 
 476   // Clear Thread::current if thread is deleting itself and it has not
 477   // already been done. This must be done before the memory is deallocated.
 478   // Needed to ensure JNI correctly detects non-attached threads.
 479   if (this == Thread::current_or_null()) {
 480     Thread::clear_thread_current();
 481   }
 482 
 483   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 484 }
 485 
 486 #ifdef ASSERT
 487 // A JavaThread is considered "dangling" if it is not the current
 488 // thread, has been added the Threads list, the system is not at a
 489 // safepoint and the Thread is not "protected".
 490 //
 491 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 492   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 493          !((JavaThread *) thread)->on_thread_list() ||
 494          SafepointSynchronize::is_at_safepoint() ||
 495          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 496          "possibility of dangling Thread pointer");
 497 }
 498 #endif
 499 
 500 ThreadPriority Thread::get_priority(const Thread* const thread) {
 501   ThreadPriority priority;
 502   // Can return an error!
 503   (void)os::get_priority(thread, priority);
 504   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 505   return priority;
 506 }
 507 
 508 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 509   debug_only(check_for_dangling_thread_pointer(thread);)
 510   // Can return an error!
 511   (void)os::set_priority(thread, priority);
 512 }
 513 
 514 
 515 void Thread::start(Thread* thread) {
 516   // Start is different from resume in that its safety is guaranteed by context or
 517   // being called from a Java method synchronized on the Thread object.
 518   if (!DisableStartThread) {
 519     if (thread->is_Java_thread()) {
 520       // Initialize the thread state to RUNNABLE before starting this thread.
 521       // Can not set it after the thread started because we do not know the
 522       // exact thread state at that time. It could be in MONITOR_WAIT or
 523       // in SLEEPING or some other state.
 524       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 525                                           java_lang_Thread::RUNNABLE);
 526     }
 527     os::start_thread(thread);
 528   }
 529 }
 530 
 531 // Enqueue a VM_Operation to do the job for us - sometime later
 532 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 533   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 534   VMThread::execute(vm_stop);
 535 }
 536 
 537 
 538 // Check if an external suspend request has completed (or has been
 539 // cancelled). Returns true if the thread is externally suspended and
 540 // false otherwise.
 541 //
 542 // The bits parameter returns information about the code path through
 543 // the routine. Useful for debugging:
 544 //
 545 // set in is_ext_suspend_completed():
 546 // 0x00000001 - routine was entered
 547 // 0x00000010 - routine return false at end
 548 // 0x00000100 - thread exited (return false)
 549 // 0x00000200 - suspend request cancelled (return false)
 550 // 0x00000400 - thread suspended (return true)
 551 // 0x00001000 - thread is in a suspend equivalent state (return true)
 552 // 0x00002000 - thread is native and walkable (return true)
 553 // 0x00004000 - thread is native_trans and walkable (needed retry)
 554 //
 555 // set in wait_for_ext_suspend_completion():
 556 // 0x00010000 - routine was entered
 557 // 0x00020000 - suspend request cancelled before loop (return false)
 558 // 0x00040000 - thread suspended before loop (return true)
 559 // 0x00080000 - suspend request cancelled in loop (return false)
 560 // 0x00100000 - thread suspended in loop (return true)
 561 // 0x00200000 - suspend not completed during retry loop (return false)
 562 
 563 // Helper class for tracing suspend wait debug bits.
 564 //
 565 // 0x00000100 indicates that the target thread exited before it could
 566 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 567 // 0x00080000 each indicate a cancelled suspend request so they don't
 568 // count as wait failures either.
 569 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 570 
 571 class TraceSuspendDebugBits : public StackObj {
 572  private:
 573   JavaThread * jt;
 574   bool         is_wait;
 575   bool         called_by_wait;  // meaningful when !is_wait
 576   uint32_t *   bits;
 577 
 578  public:
 579   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 580                         uint32_t *_bits) {
 581     jt             = _jt;
 582     is_wait        = _is_wait;
 583     called_by_wait = _called_by_wait;
 584     bits           = _bits;
 585   }
 586 
 587   ~TraceSuspendDebugBits() {
 588     if (!is_wait) {
 589 #if 1
 590       // By default, don't trace bits for is_ext_suspend_completed() calls.
 591       // That trace is very chatty.
 592       return;
 593 #else
 594       if (!called_by_wait) {
 595         // If tracing for is_ext_suspend_completed() is enabled, then only
 596         // trace calls to it from wait_for_ext_suspend_completion()
 597         return;
 598       }
 599 #endif
 600     }
 601 
 602     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 603       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 604         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 605         ResourceMark rm;
 606 
 607         tty->print_cr(
 608                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 609                       jt->get_thread_name(), *bits);
 610 
 611         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 612       }
 613     }
 614   }
 615 };
 616 #undef DEBUG_FALSE_BITS
 617 
 618 
 619 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 620                                           uint32_t *bits) {
 621   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 622 
 623   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 624   bool do_trans_retry;           // flag to force the retry
 625 
 626   *bits |= 0x00000001;
 627 
 628   do {
 629     do_trans_retry = false;
 630 
 631     if (is_exiting()) {
 632       // Thread is in the process of exiting. This is always checked
 633       // first to reduce the risk of dereferencing a freed JavaThread.
 634       *bits |= 0x00000100;
 635       return false;
 636     }
 637 
 638     if (!is_external_suspend()) {
 639       // Suspend request is cancelled. This is always checked before
 640       // is_ext_suspended() to reduce the risk of a rogue resume
 641       // confusing the thread that made the suspend request.
 642       *bits |= 0x00000200;
 643       return false;
 644     }
 645 
 646     if (is_ext_suspended()) {
 647       // thread is suspended
 648       *bits |= 0x00000400;
 649       return true;
 650     }
 651 
 652     // Now that we no longer do hard suspends of threads running
 653     // native code, the target thread can be changing thread state
 654     // while we are in this routine:
 655     //
 656     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 657     //
 658     // We save a copy of the thread state as observed at this moment
 659     // and make our decision about suspend completeness based on the
 660     // copy. This closes the race where the thread state is seen as
 661     // _thread_in_native_trans in the if-thread_blocked check, but is
 662     // seen as _thread_blocked in if-thread_in_native_trans check.
 663     JavaThreadState save_state = thread_state();
 664 
 665     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 666       // If the thread's state is _thread_blocked and this blocking
 667       // condition is known to be equivalent to a suspend, then we can
 668       // consider the thread to be externally suspended. This means that
 669       // the code that sets _thread_blocked has been modified to do
 670       // self-suspension if the blocking condition releases. We also
 671       // used to check for CONDVAR_WAIT here, but that is now covered by
 672       // the _thread_blocked with self-suspension check.
 673       //
 674       // Return true since we wouldn't be here unless there was still an
 675       // external suspend request.
 676       *bits |= 0x00001000;
 677       return true;
 678     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 679       // Threads running native code will self-suspend on native==>VM/Java
 680       // transitions. If its stack is walkable (should always be the case
 681       // unless this function is called before the actual java_suspend()
 682       // call), then the wait is done.
 683       *bits |= 0x00002000;
 684       return true;
 685     } else if (!called_by_wait && !did_trans_retry &&
 686                save_state == _thread_in_native_trans &&
 687                frame_anchor()->walkable()) {
 688       // The thread is transitioning from thread_in_native to another
 689       // thread state. check_safepoint_and_suspend_for_native_trans()
 690       // will force the thread to self-suspend. If it hasn't gotten
 691       // there yet we may have caught the thread in-between the native
 692       // code check above and the self-suspend. Lucky us. If we were
 693       // called by wait_for_ext_suspend_completion(), then it
 694       // will be doing the retries so we don't have to.
 695       //
 696       // Since we use the saved thread state in the if-statement above,
 697       // there is a chance that the thread has already transitioned to
 698       // _thread_blocked by the time we get here. In that case, we will
 699       // make a single unnecessary pass through the logic below. This
 700       // doesn't hurt anything since we still do the trans retry.
 701 
 702       *bits |= 0x00004000;
 703 
 704       // Once the thread leaves thread_in_native_trans for another
 705       // thread state, we break out of this retry loop. We shouldn't
 706       // need this flag to prevent us from getting back here, but
 707       // sometimes paranoia is good.
 708       did_trans_retry = true;
 709 
 710       // We wait for the thread to transition to a more usable state.
 711       for (int i = 1; i <= SuspendRetryCount; i++) {
 712         // We used to do an "os::yield_all(i)" call here with the intention
 713         // that yielding would increase on each retry. However, the parameter
 714         // is ignored on Linux which means the yield didn't scale up. Waiting
 715         // on the SR_lock below provides a much more predictable scale up for
 716         // the delay. It also provides a simple/direct point to check for any
 717         // safepoint requests from the VMThread
 718 
 719         // temporarily drops SR_lock while doing wait with safepoint check
 720         // (if we're a JavaThread - the WatcherThread can also call this)
 721         // and increase delay with each retry
 722         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       MutexLocker ml(SR_lock());
 795       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 796       // can also call this)  and increase delay with each retry
 797       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 798 
 799       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 800                                               delay, bits);
 801 
 802       // It is possible for the external suspend request to be cancelled
 803       // (by a resume) before the actual suspend operation is completed.
 804       // Refresh our local copy to see if we still need to wait.
 805       pending = is_external_suspend();
 806     }
 807 
 808     if (!pending) {
 809       // A cancelled suspend request is the only false return from
 810       // is_ext_suspend_completed() that keeps us from staying in the
 811       // retry loop.
 812       *bits |= 0x00080000;
 813       return false;
 814     }
 815 
 816     if (is_suspended) {
 817       *bits |= 0x00100000;
 818       return true;
 819     }
 820   } // end retry loop
 821 
 822   // thread did not suspend after all our retries
 823   *bits |= 0x00200000;
 824   return false;
 825 }
 826 
 827 // Called from API entry points which perform stack walking. If the
 828 // associated JavaThread is the current thread, then wait_for_suspend
 829 // is not used. Otherwise, it determines if we should wait for the
 830 // "other" thread to complete external suspension. (NOTE: in future
 831 // releases the suspension mechanism should be reimplemented so this
 832 // is not necessary.)
 833 //
 834 bool
 835 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 836   if (this != JavaThread::current()) {
 837     // "other" threads require special handling.
 838     if (wait_for_suspend) {
 839       // We are allowed to wait for the external suspend to complete
 840       // so give the other thread a chance to get suspended.
 841       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 842                                            SuspendRetryDelay, bits)) {
 843         // Didn't make it so let the caller know.
 844         return false;
 845       }
 846     }
 847     // We aren't allowed to wait for the external suspend to complete
 848     // so if the other thread isn't externally suspended we need to
 849     // let the caller know.
 850     else if (!is_ext_suspend_completed_with_lock(bits)) {
 851       return false;
 852     }
 853   }
 854 
 855   return true;
 856 }
 857 
 858 #ifndef PRODUCT
 859 void JavaThread::record_jump(address target, address instr, const char* file,
 860                              int line) {
 861 
 862   // This should not need to be atomic as the only way for simultaneous
 863   // updates is via interrupts. Even then this should be rare or non-existent
 864   // and we don't care that much anyway.
 865 
 866   int index = _jmp_ring_index;
 867   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 868   _jmp_ring[index]._target = (intptr_t) target;
 869   _jmp_ring[index]._instruction = (intptr_t) instr;
 870   _jmp_ring[index]._file = file;
 871   _jmp_ring[index]._line = line;
 872 }
 873 #endif // PRODUCT
 874 
 875 void Thread::interrupt(Thread* thread) {
 876   debug_only(check_for_dangling_thread_pointer(thread);)
 877   os::interrupt(thread);
 878 }
 879 
 880 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 881   debug_only(check_for_dangling_thread_pointer(thread);)
 882   // Note:  If clear_interrupted==false, this simply fetches and
 883   // returns the value of the field osthread()->interrupted().
 884   return os::is_interrupted(thread, clear_interrupted);
 885 }
 886 
 887 
 888 // GC Support
 889 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 890   int thread_parity = _oops_do_parity;
 891   if (thread_parity != strong_roots_parity) {
 892     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 893     if (res == thread_parity) {
 894       return true;
 895     } else {
 896       guarantee(res == strong_roots_parity, "Or else what?");
 897       return false;
 898     }
 899   }
 900   return false;
 901 }
 902 
 903 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 904   active_handles()->oops_do(f);
 905   // Do oop for ThreadShadow
 906   f->do_oop((oop*)&_pending_exception);
 907   handle_area()->oops_do(f);
 908 
 909   // We scan thread local monitor lists here, and the remaining global
 910   // monitors in ObjectSynchronizer::oops_do().
 911   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 912 }
 913 
 914 void Thread::metadata_handles_do(void f(Metadata*)) {
 915   // Only walk the Handles in Thread.
 916   if (metadata_handles() != NULL) {
 917     for (int i = 0; i< metadata_handles()->length(); i++) {
 918       f(metadata_handles()->at(i));
 919     }
 920   }
 921 }
 922 
 923 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 924   // get_priority assumes osthread initialized
 925   if (osthread() != NULL) {
 926     int os_prio;
 927     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 928       st->print("os_prio=%d ", os_prio);
 929     }
 930 
 931     st->print("cpu=%.2fms ",
 932               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 933               );
 934     st->print("elapsed=%.2fs ",
 935               _statistical_info.getElapsedTime() / 1000.0
 936               );
 937     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 938       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 939       st->print("allocated=" SIZE_FORMAT "%s ",
 940                 byte_size_in_proper_unit(allocated_bytes),
 941                 proper_unit_for_byte_size(allocated_bytes)
 942                 );
 943       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 944     }
 945 
 946     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 947     osthread()->print_on(st);
 948   }
 949   ThreadsSMRSupport::print_info_on(this, st);
 950   st->print(" ");
 951   debug_only(if (WizardMode) print_owned_locks_on(st);)
 952 }
 953 
 954 // Thread::print_on_error() is called by fatal error handler. Don't use
 955 // any lock or allocate memory.
 956 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 957   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 958 
 959   if (is_VM_thread())                 { st->print("VMThread"); }
 960   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 961   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 962   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 963   else                                { st->print("Thread"); }
 964 
 965   if (is_Named_thread()) {
 966     st->print(" \"%s\"", name());
 967   }
 968 
 969   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 970             p2i(stack_end()), p2i(stack_base()));
 971 
 972   if (osthread()) {
 973     st->print(" [id=%d]", osthread()->thread_id());
 974   }
 975 
 976   ThreadsSMRSupport::print_info_on(this, st);
 977 }
 978 
 979 void Thread::print_value_on(outputStream* st) const {
 980   if (is_Named_thread()) {
 981     st->print(" \"%s\" ", name());
 982   }
 983   st->print(INTPTR_FORMAT, p2i(this));   // print address
 984 }
 985 
 986 #ifdef ASSERT
 987 void Thread::print_owned_locks_on(outputStream* st) const {
 988   Monitor *cur = _owned_locks;
 989   if (cur == NULL) {
 990     st->print(" (no locks) ");
 991   } else {
 992     st->print_cr(" Locks owned:");
 993     while (cur) {
 994       cur->print_on(st);
 995       cur = cur->next();
 996     }
 997   }
 998 }
 999 
1000 static int ref_use_count  = 0;
1001 
1002 bool Thread::owns_locks_but_compiled_lock() const {
1003   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1004     if (cur != Compile_lock) return true;
1005   }
1006   return false;
1007 }
1008 
1009 
1010 #endif
1011 
1012 #ifndef PRODUCT
1013 
1014 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1015 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1016 // no locks which allow_vm_block's are held
1017 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1018   // Check if current thread is allowed to block at a safepoint
1019   if (!(_allow_safepoint_count == 0)) {
1020     fatal("Possible safepoint reached by thread that does not allow it");
1021   }
1022   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1023     fatal("LEAF method calling lock?");
1024   }
1025 
1026 #ifdef ASSERT
1027   if (potential_vm_operation && is_Java_thread()
1028       && !Universe::is_bootstrapping()) {
1029     // Make sure we do not hold any locks that the VM thread also uses.
1030     // This could potentially lead to deadlocks
1031     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1032       // Threads_lock is special, since the safepoint synchronization will not start before this is
1033       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1034       // since it is used to transfer control between JavaThreads and the VMThread
1035       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1036       if ((cur->allow_vm_block() &&
1037            cur != Threads_lock &&
1038            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1039            cur != VMOperationRequest_lock &&
1040            cur != VMOperationQueue_lock) ||
1041            cur->rank() == Mutex::special) {
1042         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1043       }
1044     }
1045   }
1046 
1047   if (GCALotAtAllSafepoints) {
1048     // We could enter a safepoint here and thus have a gc
1049     InterfaceSupport::check_gc_alot();
1050   }
1051 #endif
1052 }
1053 #endif
1054 
1055 bool Thread::is_in_stack(address adr) const {
1056   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1057   address end = os::current_stack_pointer();
1058   // Allow non Java threads to call this without stack_base
1059   if (_stack_base == NULL) return true;
1060   if (stack_base() >= adr && adr >= end) return true;
1061 
1062   return false;
1063 }
1064 
1065 bool Thread::is_in_usable_stack(address adr) const {
1066   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1067   size_t usable_stack_size = _stack_size - stack_guard_size;
1068 
1069   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1070 }
1071 
1072 
1073 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1074 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1075 // used for compilation in the future. If that change is made, the need for these methods
1076 // should be revisited, and they should be removed if possible.
1077 
1078 bool Thread::is_lock_owned(address adr) const {
1079   return on_local_stack(adr);
1080 }
1081 
1082 bool Thread::set_as_starting_thread() {
1083   assert(_starting_thread == NULL, "already initialized: "
1084          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1085   // NOTE: this must be called inside the main thread.
1086   DEBUG_ONLY(_starting_thread = this;)
1087   return os::create_main_thread((JavaThread*)this);
1088 }
1089 
1090 static void initialize_class(Symbol* class_name, TRAPS) {
1091   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1092   InstanceKlass::cast(klass)->initialize(CHECK);
1093 }
1094 
1095 
1096 // Creates the initial ThreadGroup
1097 static Handle create_initial_thread_group(TRAPS) {
1098   Handle system_instance = JavaCalls::construct_new_instance(
1099                             SystemDictionary::ThreadGroup_klass(),
1100                             vmSymbols::void_method_signature(),
1101                             CHECK_NH);
1102   Universe::set_system_thread_group(system_instance());
1103 
1104   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1105   Handle main_instance = JavaCalls::construct_new_instance(
1106                             SystemDictionary::ThreadGroup_klass(),
1107                             vmSymbols::threadgroup_string_void_signature(),
1108                             system_instance,
1109                             string,
1110                             CHECK_NH);
1111   return main_instance;
1112 }
1113 
1114 // Creates the initial Thread
1115 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1116                                  TRAPS) {
1117   InstanceKlass* ik = SystemDictionary::Thread_klass();
1118   assert(ik->is_initialized(), "must be");
1119   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1120 
1121   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1122   // constructor calls Thread.current(), which must be set here for the
1123   // initial thread.
1124   java_lang_Thread::set_thread(thread_oop(), thread);
1125   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1126   thread->set_threadObj(thread_oop());
1127 
1128   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1129 
1130   JavaValue result(T_VOID);
1131   JavaCalls::call_special(&result, thread_oop,
1132                           ik,
1133                           vmSymbols::object_initializer_name(),
1134                           vmSymbols::threadgroup_string_void_signature(),
1135                           thread_group,
1136                           string,
1137                           CHECK_NULL);
1138   return thread_oop();
1139 }
1140 
1141 char java_runtime_name[128] = "";
1142 char java_runtime_version[128] = "";
1143 
1144 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1145 static const char* get_java_runtime_name(TRAPS) {
1146   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1147                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1148   fieldDescriptor fd;
1149   bool found = k != NULL &&
1150                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1151                                                         vmSymbols::string_signature(), &fd);
1152   if (found) {
1153     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1154     if (name_oop == NULL) {
1155       return NULL;
1156     }
1157     const char* name = java_lang_String::as_utf8_string(name_oop,
1158                                                         java_runtime_name,
1159                                                         sizeof(java_runtime_name));
1160     return name;
1161   } else {
1162     return NULL;
1163   }
1164 }
1165 
1166 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1167 static const char* get_java_runtime_version(TRAPS) {
1168   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1169                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1170   fieldDescriptor fd;
1171   bool found = k != NULL &&
1172                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1173                                                         vmSymbols::string_signature(), &fd);
1174   if (found) {
1175     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1176     if (name_oop == NULL) {
1177       return NULL;
1178     }
1179     const char* name = java_lang_String::as_utf8_string(name_oop,
1180                                                         java_runtime_version,
1181                                                         sizeof(java_runtime_version));
1182     return name;
1183   } else {
1184     return NULL;
1185   }
1186 }
1187 
1188 // General purpose hook into Java code, run once when the VM is initialized.
1189 // The Java library method itself may be changed independently from the VM.
1190 static void call_postVMInitHook(TRAPS) {
1191   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1192   if (klass != NULL) {
1193     JavaValue result(T_VOID);
1194     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1195                            vmSymbols::void_method_signature(),
1196                            CHECK);
1197   }
1198 }
1199 
1200 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1201                                     bool daemon, TRAPS) {
1202   assert(thread_group.not_null(), "thread group should be specified");
1203   assert(threadObj() == NULL, "should only create Java thread object once");
1204 
1205   InstanceKlass* ik = SystemDictionary::Thread_klass();
1206   assert(ik->is_initialized(), "must be");
1207   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1208 
1209   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1210   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1211   // constructor calls Thread.current(), which must be set here.
1212   java_lang_Thread::set_thread(thread_oop(), this);
1213   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1214   set_threadObj(thread_oop());
1215 
1216   JavaValue result(T_VOID);
1217   if (thread_name != NULL) {
1218     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1219     // Thread gets assigned specified name and null target
1220     JavaCalls::call_special(&result,
1221                             thread_oop,
1222                             ik,
1223                             vmSymbols::object_initializer_name(),
1224                             vmSymbols::threadgroup_string_void_signature(),
1225                             thread_group,
1226                             name,
1227                             THREAD);
1228   } else {
1229     // Thread gets assigned name "Thread-nnn" and null target
1230     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1231     JavaCalls::call_special(&result,
1232                             thread_oop,
1233                             ik,
1234                             vmSymbols::object_initializer_name(),
1235                             vmSymbols::threadgroup_runnable_void_signature(),
1236                             thread_group,
1237                             Handle(),
1238                             THREAD);
1239   }
1240 
1241 
1242   if (daemon) {
1243     java_lang_Thread::set_daemon(thread_oop());
1244   }
1245 
1246   if (HAS_PENDING_EXCEPTION) {
1247     return;
1248   }
1249 
1250   Klass* group =  SystemDictionary::ThreadGroup_klass();
1251   Handle threadObj(THREAD, this->threadObj());
1252 
1253   JavaCalls::call_special(&result,
1254                           thread_group,
1255                           group,
1256                           vmSymbols::add_method_name(),
1257                           vmSymbols::thread_void_signature(),
1258                           threadObj,          // Arg 1
1259                           THREAD);
1260 }
1261 
1262 // List of all NonJavaThreads and safe iteration over that list.
1263 
1264 class NonJavaThread::List {
1265 public:
1266   NonJavaThread* volatile _head;
1267   SingleWriterSynchronizer _protect;
1268 
1269   List() : _head(NULL), _protect() {}
1270 };
1271 
1272 NonJavaThread::List NonJavaThread::_the_list;
1273 
1274 NonJavaThread::Iterator::Iterator() :
1275   _protect_enter(_the_list._protect.enter()),
1276   _current(OrderAccess::load_acquire(&_the_list._head))
1277 {}
1278 
1279 NonJavaThread::Iterator::~Iterator() {
1280   _the_list._protect.exit(_protect_enter);
1281 }
1282 
1283 void NonJavaThread::Iterator::step() {
1284   assert(!end(), "precondition");
1285   _current = OrderAccess::load_acquire(&_current->_next);
1286 }
1287 
1288 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1289   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1290 }
1291 
1292 NonJavaThread::~NonJavaThread() { }
1293 
1294 void NonJavaThread::add_to_the_list() {
1295   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1296   _next = _the_list._head;
1297   OrderAccess::release_store(&_the_list._head, this);
1298 }
1299 
1300 void NonJavaThread::remove_from_the_list() {
1301   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1302   NonJavaThread* volatile* p = &_the_list._head;
1303   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1304     if (t == this) {
1305       *p = this->_next;
1306       // Wait for any in-progress iterators.  Concurrent synchronize is
1307       // not allowed, so do it while holding the list lock.
1308       _the_list._protect.synchronize();
1309       break;
1310     }
1311   }
1312 }
1313 
1314 void NonJavaThread::pre_run() {
1315   // Initialize BarrierSet-related data before adding to list.
1316   assert(BarrierSet::barrier_set() != NULL, "invariant");
1317   BarrierSet::barrier_set()->on_thread_attach(this);
1318   add_to_the_list();
1319 
1320   // This is slightly odd in that NamedThread is a subclass, but
1321   // in fact name() is defined in Thread
1322   assert(this->name() != NULL, "thread name was not set before it was started");
1323   this->set_native_thread_name(this->name());
1324 }
1325 
1326 void NonJavaThread::post_run() {
1327   JFR_ONLY(Jfr::on_thread_exit(this);)
1328   // Clean up BarrierSet data before removing from list.
1329   BarrierSet::barrier_set()->on_thread_detach(this);
1330   remove_from_the_list();
1331   // Ensure thread-local-storage is cleared before termination.
1332   Thread::clear_thread_current();
1333 }
1334 
1335 // NamedThread --  non-JavaThread subclasses with multiple
1336 // uniquely named instances should derive from this.
1337 NamedThread::NamedThread() :
1338   NonJavaThread(),
1339   _name(NULL),
1340   _processed_thread(NULL),
1341   _gc_id(GCId::undefined())
1342 {}
1343 
1344 NamedThread::~NamedThread() {
1345   if (_name != NULL) {
1346     FREE_C_HEAP_ARRAY(char, _name);
1347     _name = NULL;
1348   }
1349 }
1350 
1351 void NamedThread::set_name(const char* format, ...) {
1352   guarantee(_name == NULL, "Only get to set name once.");
1353   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1354   guarantee(_name != NULL, "alloc failure");
1355   va_list ap;
1356   va_start(ap, format);
1357   jio_vsnprintf(_name, max_name_len, format, ap);
1358   va_end(ap);
1359 }
1360 
1361 void NamedThread::print_on(outputStream* st) const {
1362   st->print("\"%s\" ", name());
1363   Thread::print_on(st);
1364   st->cr();
1365 }
1366 
1367 
1368 // ======= WatcherThread ========
1369 
1370 // The watcher thread exists to simulate timer interrupts.  It should
1371 // be replaced by an abstraction over whatever native support for
1372 // timer interrupts exists on the platform.
1373 
1374 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1375 bool WatcherThread::_startable = false;
1376 volatile bool  WatcherThread::_should_terminate = false;
1377 
1378 WatcherThread::WatcherThread() : NonJavaThread() {
1379   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1380   if (os::create_thread(this, os::watcher_thread)) {
1381     _watcher_thread = this;
1382 
1383     // Set the watcher thread to the highest OS priority which should not be
1384     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1385     // is created. The only normal thread using this priority is the reference
1386     // handler thread, which runs for very short intervals only.
1387     // If the VMThread's priority is not lower than the WatcherThread profiling
1388     // will be inaccurate.
1389     os::set_priority(this, MaxPriority);
1390     if (!DisableStartThread) {
1391       os::start_thread(this);
1392     }
1393   }
1394 }
1395 
1396 int WatcherThread::sleep() const {
1397   // The WatcherThread does not participate in the safepoint protocol
1398   // for the PeriodicTask_lock because it is not a JavaThread.
1399   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1400 
1401   if (_should_terminate) {
1402     // check for termination before we do any housekeeping or wait
1403     return 0;  // we did not sleep.
1404   }
1405 
1406   // remaining will be zero if there are no tasks,
1407   // causing the WatcherThread to sleep until a task is
1408   // enrolled
1409   int remaining = PeriodicTask::time_to_wait();
1410   int time_slept = 0;
1411 
1412   // we expect this to timeout - we only ever get unparked when
1413   // we should terminate or when a new task has been enrolled
1414   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1415 
1416   jlong time_before_loop = os::javaTimeNanos();
1417 
1418   while (true) {
1419     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1420                                             remaining);
1421     jlong now = os::javaTimeNanos();
1422 
1423     if (remaining == 0) {
1424       // if we didn't have any tasks we could have waited for a long time
1425       // consider the time_slept zero and reset time_before_loop
1426       time_slept = 0;
1427       time_before_loop = now;
1428     } else {
1429       // need to recalculate since we might have new tasks in _tasks
1430       time_slept = (int) ((now - time_before_loop) / 1000000);
1431     }
1432 
1433     // Change to task list or spurious wakeup of some kind
1434     if (timedout || _should_terminate) {
1435       break;
1436     }
1437 
1438     remaining = PeriodicTask::time_to_wait();
1439     if (remaining == 0) {
1440       // Last task was just disenrolled so loop around and wait until
1441       // another task gets enrolled
1442       continue;
1443     }
1444 
1445     remaining -= time_slept;
1446     if (remaining <= 0) {
1447       break;
1448     }
1449   }
1450 
1451   return time_slept;
1452 }
1453 
1454 void WatcherThread::run() {
1455   assert(this == watcher_thread(), "just checking");
1456 
1457   this->set_active_handles(JNIHandleBlock::allocate_block());
1458   while (true) {
1459     assert(watcher_thread() == Thread::current(), "thread consistency check");
1460     assert(watcher_thread() == this, "thread consistency check");
1461 
1462     // Calculate how long it'll be until the next PeriodicTask work
1463     // should be done, and sleep that amount of time.
1464     int time_waited = sleep();
1465 
1466     if (VMError::is_error_reported()) {
1467       // A fatal error has happened, the error handler(VMError::report_and_die)
1468       // should abort JVM after creating an error log file. However in some
1469       // rare cases, the error handler itself might deadlock. Here periodically
1470       // check for error reporting timeouts, and if it happens, just proceed to
1471       // abort the VM.
1472 
1473       // This code is in WatcherThread because WatcherThread wakes up
1474       // periodically so the fatal error handler doesn't need to do anything;
1475       // also because the WatcherThread is less likely to crash than other
1476       // threads.
1477 
1478       for (;;) {
1479         // Note: we use naked sleep in this loop because we want to avoid using
1480         // any kind of VM infrastructure which may be broken at this point.
1481         if (VMError::check_timeout()) {
1482           // We hit error reporting timeout. Error reporting was interrupted and
1483           // will be wrapping things up now (closing files etc). Give it some more
1484           // time, then quit the VM.
1485           os::naked_short_sleep(200);
1486           // Print a message to stderr.
1487           fdStream err(defaultStream::output_fd());
1488           err.print_raw_cr("# [ timer expired, abort... ]");
1489           // skip atexit/vm_exit/vm_abort hooks
1490           os::die();
1491         }
1492 
1493         // Wait a second, then recheck for timeout.
1494         os::naked_short_sleep(999);
1495       }
1496     }
1497 
1498     if (_should_terminate) {
1499       // check for termination before posting the next tick
1500       break;
1501     }
1502 
1503     PeriodicTask::real_time_tick(time_waited);
1504   }
1505 
1506   // Signal that it is terminated
1507   {
1508     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1509     _watcher_thread = NULL;
1510     Terminator_lock->notify();
1511   }
1512 }
1513 
1514 void WatcherThread::start() {
1515   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1516 
1517   if (watcher_thread() == NULL && _startable) {
1518     _should_terminate = false;
1519     // Create the single instance of WatcherThread
1520     new WatcherThread();
1521   }
1522 }
1523 
1524 void WatcherThread::make_startable() {
1525   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1526   _startable = true;
1527 }
1528 
1529 void WatcherThread::stop() {
1530   {
1531     // Follow normal safepoint aware lock enter protocol since the
1532     // WatcherThread is stopped by another JavaThread.
1533     MutexLocker ml(PeriodicTask_lock);
1534     _should_terminate = true;
1535 
1536     WatcherThread* watcher = watcher_thread();
1537     if (watcher != NULL) {
1538       // unpark the WatcherThread so it can see that it should terminate
1539       watcher->unpark();
1540     }
1541   }
1542 
1543   MutexLocker mu(Terminator_lock);
1544 
1545   while (watcher_thread() != NULL) {
1546     // This wait should make safepoint checks, wait without a timeout,
1547     // and wait as a suspend-equivalent condition.
1548     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1549                           Mutex::_as_suspend_equivalent_flag);
1550   }
1551 }
1552 
1553 void WatcherThread::unpark() {
1554   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1555   PeriodicTask_lock->notify();
1556 }
1557 
1558 void WatcherThread::print_on(outputStream* st) const {
1559   st->print("\"%s\" ", name());
1560   Thread::print_on(st);
1561   st->cr();
1562 }
1563 
1564 // ======= JavaThread ========
1565 
1566 #if INCLUDE_JVMCI
1567 
1568 jlong* JavaThread::_jvmci_old_thread_counters;
1569 
1570 bool jvmci_counters_include(JavaThread* thread) {
1571   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1572 }
1573 
1574 void JavaThread::collect_counters(typeArrayOop array) {
1575   if (JVMCICounterSize > 0) {
1576     JavaThreadIteratorWithHandle jtiwh;
1577     for (int i = 0; i < array->length(); i++) {
1578       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1579     }
1580     for (; JavaThread *tp = jtiwh.next(); ) {
1581       if (jvmci_counters_include(tp)) {
1582         for (int i = 0; i < array->length(); i++) {
1583           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1584         }
1585       }
1586     }
1587   }
1588 }
1589 
1590 #endif // INCLUDE_JVMCI
1591 
1592 // A JavaThread is a normal Java thread
1593 
1594 void JavaThread::initialize() {
1595   // Initialize fields
1596 
1597   set_saved_exception_pc(NULL);
1598   set_threadObj(NULL);
1599   _anchor.clear();
1600   set_entry_point(NULL);
1601   set_jni_functions(jni_functions());
1602   set_callee_target(NULL);
1603   set_vm_result(NULL);
1604   set_vm_result_2(NULL);
1605   set_vframe_array_head(NULL);
1606   set_vframe_array_last(NULL);
1607   set_deferred_locals(NULL);
1608   set_deopt_mark(NULL);
1609   set_deopt_compiled_method(NULL);
1610   clear_must_deopt_id();
1611   set_monitor_chunks(NULL);
1612   set_next(NULL);
1613   _on_thread_list = false;
1614   set_thread_state(_thread_new);
1615   _terminated = _not_terminated;
1616   _array_for_gc = NULL;
1617   _suspend_equivalent = false;
1618   _in_deopt_handler = 0;
1619   _doing_unsafe_access = false;
1620   _stack_guard_state = stack_guard_unused;
1621 #if INCLUDE_JVMCI
1622   _pending_monitorenter = false;
1623   _pending_deoptimization = -1;
1624   _pending_failed_speculation = 0;
1625   _pending_transfer_to_interpreter = false;
1626   _adjusting_comp_level = false;
1627   _in_retryable_allocation = false;
1628   _jvmci._alternate_call_target = NULL;
1629   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1630   if (JVMCICounterSize > 0) {
1631     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1632     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1633   } else {
1634     _jvmci_counters = NULL;
1635   }
1636 #endif // INCLUDE_JVMCI
1637   _reserved_stack_activation = NULL;  // stack base not known yet
1638   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1639   _exception_pc  = 0;
1640   _exception_handler_pc = 0;
1641   _is_method_handle_return = 0;
1642   _jvmti_thread_state= NULL;
1643   _should_post_on_exceptions_flag = JNI_FALSE;
1644   _interp_only_mode    = 0;
1645   _special_runtime_exit_condition = _no_async_condition;
1646   _pending_async_exception = NULL;
1647   _thread_stat = NULL;
1648   _thread_stat = new ThreadStatistics();
1649   _blocked_on_compilation = false;
1650   _jni_active_critical = 0;
1651   _pending_jni_exception_check_fn = NULL;
1652   _do_not_unlock_if_synchronized = false;
1653   _cached_monitor_info = NULL;
1654   _parker = Parker::Allocate(this);
1655 
1656 #ifndef PRODUCT
1657   _jmp_ring_index = 0;
1658   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1659     record_jump(NULL, NULL, NULL, 0);
1660   }
1661 #endif // PRODUCT
1662 
1663   // Setup safepoint state info for this thread
1664   ThreadSafepointState::create(this);
1665 
1666   debug_only(_java_call_counter = 0);
1667 
1668   // JVMTI PopFrame support
1669   _popframe_condition = popframe_inactive;
1670   _popframe_preserved_args = NULL;
1671   _popframe_preserved_args_size = 0;
1672   _frames_to_pop_failed_realloc = 0;
1673 
1674   if (SafepointMechanism::uses_thread_local_poll()) {
1675     SafepointMechanism::initialize_header(this);
1676   }
1677 
1678   _class_to_be_initialized = NULL;
1679 
1680   pd_initialize();
1681 }
1682 
1683 JavaThread::JavaThread(bool is_attaching_via_jni) :
1684                        Thread() {
1685   initialize();
1686   if (is_attaching_via_jni) {
1687     _jni_attach_state = _attaching_via_jni;
1688   } else {
1689     _jni_attach_state = _not_attaching_via_jni;
1690   }
1691   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1692 }
1693 
1694 bool JavaThread::reguard_stack(address cur_sp) {
1695   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1696       && _stack_guard_state != stack_guard_reserved_disabled) {
1697     return true; // Stack already guarded or guard pages not needed.
1698   }
1699 
1700   if (register_stack_overflow()) {
1701     // For those architectures which have separate register and
1702     // memory stacks, we must check the register stack to see if
1703     // it has overflowed.
1704     return false;
1705   }
1706 
1707   // Java code never executes within the yellow zone: the latter is only
1708   // there to provoke an exception during stack banging.  If java code
1709   // is executing there, either StackShadowPages should be larger, or
1710   // some exception code in c1, c2 or the interpreter isn't unwinding
1711   // when it should.
1712   guarantee(cur_sp > stack_reserved_zone_base(),
1713             "not enough space to reguard - increase StackShadowPages");
1714   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1715     enable_stack_yellow_reserved_zone();
1716     if (reserved_stack_activation() != stack_base()) {
1717       set_reserved_stack_activation(stack_base());
1718     }
1719   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1720     set_reserved_stack_activation(stack_base());
1721     enable_stack_reserved_zone();
1722   }
1723   return true;
1724 }
1725 
1726 bool JavaThread::reguard_stack(void) {
1727   return reguard_stack(os::current_stack_pointer());
1728 }
1729 
1730 
1731 void JavaThread::block_if_vm_exited() {
1732   if (_terminated == _vm_exited) {
1733     // _vm_exited is set at safepoint, and Threads_lock is never released
1734     // we will block here forever
1735     Threads_lock->lock_without_safepoint_check();
1736     ShouldNotReachHere();
1737   }
1738 }
1739 
1740 
1741 // Remove this ifdef when C1 is ported to the compiler interface.
1742 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1743 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1744 
1745 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1746                        Thread() {
1747   initialize();
1748   _jni_attach_state = _not_attaching_via_jni;
1749   set_entry_point(entry_point);
1750   // Create the native thread itself.
1751   // %note runtime_23
1752   os::ThreadType thr_type = os::java_thread;
1753   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1754                                                      os::java_thread;
1755   os::create_thread(this, thr_type, stack_sz);
1756   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1757   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1758   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1759   // the exception consists of creating the exception object & initializing it, initialization
1760   // will leave the VM via a JavaCall and then all locks must be unlocked).
1761   //
1762   // The thread is still suspended when we reach here. Thread must be explicit started
1763   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1764   // by calling Threads:add. The reason why this is not done here, is because the thread
1765   // object must be fully initialized (take a look at JVM_Start)
1766 }
1767 
1768 JavaThread::~JavaThread() {
1769 
1770   // JSR166 -- return the parker to the free list
1771   Parker::Release(_parker);
1772   _parker = NULL;
1773 
1774   // Free any remaining  previous UnrollBlock
1775   vframeArray* old_array = vframe_array_last();
1776 
1777   if (old_array != NULL) {
1778     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1779     old_array->set_unroll_block(NULL);
1780     delete old_info;
1781     delete old_array;
1782   }
1783 
1784   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1785   if (deferred != NULL) {
1786     // This can only happen if thread is destroyed before deoptimization occurs.
1787     assert(deferred->length() != 0, "empty array!");
1788     do {
1789       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1790       deferred->remove_at(0);
1791       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1792       delete dlv;
1793     } while (deferred->length() != 0);
1794     delete deferred;
1795   }
1796 
1797   // All Java related clean up happens in exit
1798   ThreadSafepointState::destroy(this);
1799   if (_thread_stat != NULL) delete _thread_stat;
1800 
1801 #if INCLUDE_JVMCI
1802   if (JVMCICounterSize > 0) {
1803     if (jvmci_counters_include(this)) {
1804       for (int i = 0; i < JVMCICounterSize; i++) {
1805         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1806       }
1807     }
1808     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1809   }
1810 #endif // INCLUDE_JVMCI
1811 }
1812 
1813 
1814 // First JavaThread specific code executed by a new Java thread.
1815 void JavaThread::pre_run() {
1816   // empty - see comments in run()
1817 }
1818 
1819 // The main routine called by a new Java thread. This isn't overridden
1820 // by subclasses, instead different subclasses define a different "entry_point"
1821 // which defines the actual logic for that kind of thread.
1822 void JavaThread::run() {
1823   // initialize thread-local alloc buffer related fields
1824   this->initialize_tlab();
1825 
1826   // Used to test validity of stack trace backs.
1827   // This can't be moved into pre_run() else we invalidate
1828   // the requirement that thread_main_inner is lower on
1829   // the stack. Consequently all the initialization logic
1830   // stays here in run() rather than pre_run().
1831   this->record_base_of_stack_pointer();
1832 
1833   this->create_stack_guard_pages();
1834 
1835   this->cache_global_variables();
1836 
1837   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1838   // in the VM. Change thread state from _thread_new to _thread_in_vm
1839   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1840 
1841   assert(JavaThread::current() == this, "sanity check");
1842   assert(!Thread::current()->owns_locks(), "sanity check");
1843 
1844   DTRACE_THREAD_PROBE(start, this);
1845 
1846   // This operation might block. We call that after all safepoint checks for a new thread has
1847   // been completed.
1848   this->set_active_handles(JNIHandleBlock::allocate_block());
1849 
1850   if (JvmtiExport::should_post_thread_life()) {
1851     JvmtiExport::post_thread_start(this);
1852 
1853   }
1854 
1855   // We call another function to do the rest so we are sure that the stack addresses used
1856   // from there will be lower than the stack base just computed.
1857   thread_main_inner();
1858 }
1859 
1860 void JavaThread::thread_main_inner() {
1861   assert(JavaThread::current() == this, "sanity check");
1862   assert(this->threadObj() != NULL, "just checking");
1863 
1864   // Execute thread entry point unless this thread has a pending exception
1865   // or has been stopped before starting.
1866   // Note: Due to JVM_StopThread we can have pending exceptions already!
1867   if (!this->has_pending_exception() &&
1868       !java_lang_Thread::is_stillborn(this->threadObj())) {
1869     {
1870       ResourceMark rm(this);
1871       this->set_native_thread_name(this->get_thread_name());
1872     }
1873     HandleMark hm(this);
1874     this->entry_point()(this, this);
1875   }
1876 
1877   DTRACE_THREAD_PROBE(stop, this);
1878 
1879   // Cleanup is handled in post_run()
1880 }
1881 
1882 // Shared teardown for all JavaThreads
1883 void JavaThread::post_run() {
1884   this->exit(false);
1885   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1886   // for any shared tear-down.
1887   this->smr_delete();
1888 }
1889 
1890 static void ensure_join(JavaThread* thread) {
1891   // We do not need to grab the Threads_lock, since we are operating on ourself.
1892   Handle threadObj(thread, thread->threadObj());
1893   assert(threadObj.not_null(), "java thread object must exist");
1894   ObjectLocker lock(threadObj, thread);
1895   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1896   thread->clear_pending_exception();
1897   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1898   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1899   // Clear the native thread instance - this makes isAlive return false and allows the join()
1900   // to complete once we've done the notify_all below
1901   java_lang_Thread::set_thread(threadObj(), NULL);
1902   lock.notify_all(thread);
1903   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1904   thread->clear_pending_exception();
1905 }
1906 
1907 static bool is_daemon(oop threadObj) {
1908   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1909 }
1910 
1911 // For any new cleanup additions, please check to see if they need to be applied to
1912 // cleanup_failed_attach_current_thread as well.
1913 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1914   assert(this == JavaThread::current(), "thread consistency check");
1915 
1916   elapsedTimer _timer_exit_phase1;
1917   elapsedTimer _timer_exit_phase2;
1918   elapsedTimer _timer_exit_phase3;
1919   elapsedTimer _timer_exit_phase4;
1920 
1921   if (log_is_enabled(Debug, os, thread, timer)) {
1922     _timer_exit_phase1.start();
1923   }
1924 
1925   HandleMark hm(this);
1926   Handle uncaught_exception(this, this->pending_exception());
1927   this->clear_pending_exception();
1928   Handle threadObj(this, this->threadObj());
1929   assert(threadObj.not_null(), "Java thread object should be created");
1930 
1931   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1932   {
1933     EXCEPTION_MARK;
1934 
1935     CLEAR_PENDING_EXCEPTION;
1936   }
1937   if (!destroy_vm) {
1938     if (uncaught_exception.not_null()) {
1939       EXCEPTION_MARK;
1940       // Call method Thread.dispatchUncaughtException().
1941       Klass* thread_klass = SystemDictionary::Thread_klass();
1942       JavaValue result(T_VOID);
1943       JavaCalls::call_virtual(&result,
1944                               threadObj, thread_klass,
1945                               vmSymbols::dispatchUncaughtException_name(),
1946                               vmSymbols::throwable_void_signature(),
1947                               uncaught_exception,
1948                               THREAD);
1949       if (HAS_PENDING_EXCEPTION) {
1950         ResourceMark rm(this);
1951         jio_fprintf(defaultStream::error_stream(),
1952                     "\nException: %s thrown from the UncaughtExceptionHandler"
1953                     " in thread \"%s\"\n",
1954                     pending_exception()->klass()->external_name(),
1955                     get_thread_name());
1956         CLEAR_PENDING_EXCEPTION;
1957       }
1958     }
1959     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1960 
1961     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1962     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1963     // is deprecated anyhow.
1964     if (!is_Compiler_thread()) {
1965       int count = 3;
1966       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1967         EXCEPTION_MARK;
1968         JavaValue result(T_VOID);
1969         Klass* thread_klass = SystemDictionary::Thread_klass();
1970         JavaCalls::call_virtual(&result,
1971                                 threadObj, thread_klass,
1972                                 vmSymbols::exit_method_name(),
1973                                 vmSymbols::void_method_signature(),
1974                                 THREAD);
1975         CLEAR_PENDING_EXCEPTION;
1976       }
1977     }
1978     // notify JVMTI
1979     if (JvmtiExport::should_post_thread_life()) {
1980       JvmtiExport::post_thread_end(this);
1981     }
1982 
1983     // We have notified the agents that we are exiting, before we go on,
1984     // we must check for a pending external suspend request and honor it
1985     // in order to not surprise the thread that made the suspend request.
1986     while (true) {
1987       {
1988         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1989         if (!is_external_suspend()) {
1990           set_terminated(_thread_exiting);
1991           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1992           break;
1993         }
1994         // Implied else:
1995         // Things get a little tricky here. We have a pending external
1996         // suspend request, but we are holding the SR_lock so we
1997         // can't just self-suspend. So we temporarily drop the lock
1998         // and then self-suspend.
1999       }
2000 
2001       ThreadBlockInVM tbivm(this);
2002       java_suspend_self();
2003 
2004       // We're done with this suspend request, but we have to loop around
2005       // and check again. Eventually we will get SR_lock without a pending
2006       // external suspend request and will be able to mark ourselves as
2007       // exiting.
2008     }
2009     // no more external suspends are allowed at this point
2010   } else {
2011     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2012     // before_exit() has already posted JVMTI THREAD_END events
2013   }
2014 
2015   if (log_is_enabled(Debug, os, thread, timer)) {
2016     _timer_exit_phase1.stop();
2017     _timer_exit_phase2.start();
2018   }
2019   // Notify waiters on thread object. This has to be done after exit() is called
2020   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2021   // group should have the destroyed bit set before waiters are notified).
2022   ensure_join(this);
2023   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2024 
2025   if (log_is_enabled(Debug, os, thread, timer)) {
2026     _timer_exit_phase2.stop();
2027     _timer_exit_phase3.start();
2028   }
2029   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2030   // held by this thread must be released. The spec does not distinguish
2031   // between JNI-acquired and regular Java monitors. We can only see
2032   // regular Java monitors here if monitor enter-exit matching is broken.
2033   //
2034   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2035   // ObjectSynchronizer::release_monitors_owned_by_thread().
2036   if (exit_type == jni_detach) {
2037     // Sanity check even though JNI DetachCurrentThread() would have
2038     // returned JNI_ERR if there was a Java frame. JavaThread exit
2039     // should be done executing Java code by the time we get here.
2040     assert(!this->has_last_Java_frame(),
2041            "should not have a Java frame when detaching or exiting");
2042     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2043     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2044   }
2045 
2046   // These things needs to be done while we are still a Java Thread. Make sure that thread
2047   // is in a consistent state, in case GC happens
2048   JFR_ONLY(Jfr::on_thread_exit(this);)
2049 
2050   if (active_handles() != NULL) {
2051     JNIHandleBlock* block = active_handles();
2052     set_active_handles(NULL);
2053     JNIHandleBlock::release_block(block);
2054   }
2055 
2056   if (free_handle_block() != NULL) {
2057     JNIHandleBlock* block = free_handle_block();
2058     set_free_handle_block(NULL);
2059     JNIHandleBlock::release_block(block);
2060   }
2061 
2062   // These have to be removed while this is still a valid thread.
2063   remove_stack_guard_pages();
2064 
2065   if (UseTLAB) {
2066     tlab().retire();
2067   }
2068 
2069   if (JvmtiEnv::environments_might_exist()) {
2070     JvmtiExport::cleanup_thread(this);
2071   }
2072 
2073   // We must flush any deferred card marks and other various GC barrier
2074   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2075   // before removing a thread from the list of active threads.
2076   BarrierSet::barrier_set()->on_thread_detach(this);
2077 
2078   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2079     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2080     os::current_thread_id());
2081 
2082   if (log_is_enabled(Debug, os, thread, timer)) {
2083     _timer_exit_phase3.stop();
2084     _timer_exit_phase4.start();
2085   }
2086   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2087   Threads::remove(this);
2088 
2089   if (log_is_enabled(Debug, os, thread, timer)) {
2090     _timer_exit_phase4.stop();
2091     ResourceMark rm(this);
2092     log_debug(os, thread, timer)("name='%s'"
2093                                  ", exit-phase1=" JLONG_FORMAT
2094                                  ", exit-phase2=" JLONG_FORMAT
2095                                  ", exit-phase3=" JLONG_FORMAT
2096                                  ", exit-phase4=" JLONG_FORMAT,
2097                                  get_thread_name(),
2098                                  _timer_exit_phase1.milliseconds(),
2099                                  _timer_exit_phase2.milliseconds(),
2100                                  _timer_exit_phase3.milliseconds(),
2101                                  _timer_exit_phase4.milliseconds());
2102   }
2103 }
2104 
2105 void JavaThread::cleanup_failed_attach_current_thread() {
2106   if (active_handles() != NULL) {
2107     JNIHandleBlock* block = active_handles();
2108     set_active_handles(NULL);
2109     JNIHandleBlock::release_block(block);
2110   }
2111 
2112   if (free_handle_block() != NULL) {
2113     JNIHandleBlock* block = free_handle_block();
2114     set_free_handle_block(NULL);
2115     JNIHandleBlock::release_block(block);
2116   }
2117 
2118   // These have to be removed while this is still a valid thread.
2119   remove_stack_guard_pages();
2120 
2121   if (UseTLAB) {
2122     tlab().retire();
2123   }
2124 
2125   BarrierSet::barrier_set()->on_thread_detach(this);
2126 
2127   Threads::remove(this);
2128   this->smr_delete();
2129 }
2130 
2131 JavaThread* JavaThread::active() {
2132   Thread* thread = Thread::current();
2133   if (thread->is_Java_thread()) {
2134     return (JavaThread*) thread;
2135   } else {
2136     assert(thread->is_VM_thread(), "this must be a vm thread");
2137     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2138     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2139     assert(ret->is_Java_thread(), "must be a Java thread");
2140     return ret;
2141   }
2142 }
2143 
2144 bool JavaThread::is_lock_owned(address adr) const {
2145   if (Thread::is_lock_owned(adr)) return true;
2146 
2147   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2148     if (chunk->contains(adr)) return true;
2149   }
2150 
2151   return false;
2152 }
2153 
2154 
2155 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2156   chunk->set_next(monitor_chunks());
2157   set_monitor_chunks(chunk);
2158 }
2159 
2160 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2161   guarantee(monitor_chunks() != NULL, "must be non empty");
2162   if (monitor_chunks() == chunk) {
2163     set_monitor_chunks(chunk->next());
2164   } else {
2165     MonitorChunk* prev = monitor_chunks();
2166     while (prev->next() != chunk) prev = prev->next();
2167     prev->set_next(chunk->next());
2168   }
2169 }
2170 
2171 // JVM support.
2172 
2173 // Note: this function shouldn't block if it's called in
2174 // _thread_in_native_trans state (such as from
2175 // check_special_condition_for_native_trans()).
2176 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2177 
2178   if (has_last_Java_frame() && has_async_condition()) {
2179     // If we are at a polling page safepoint (not a poll return)
2180     // then we must defer async exception because live registers
2181     // will be clobbered by the exception path. Poll return is
2182     // ok because the call we a returning from already collides
2183     // with exception handling registers and so there is no issue.
2184     // (The exception handling path kills call result registers but
2185     //  this is ok since the exception kills the result anyway).
2186 
2187     if (is_at_poll_safepoint()) {
2188       // if the code we are returning to has deoptimized we must defer
2189       // the exception otherwise live registers get clobbered on the
2190       // exception path before deoptimization is able to retrieve them.
2191       //
2192       RegisterMap map(this, false);
2193       frame caller_fr = last_frame().sender(&map);
2194       assert(caller_fr.is_compiled_frame(), "what?");
2195       if (caller_fr.is_deoptimized_frame()) {
2196         log_info(exceptions)("deferred async exception at compiled safepoint");
2197         return;
2198       }
2199     }
2200   }
2201 
2202   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2203   if (condition == _no_async_condition) {
2204     // Conditions have changed since has_special_runtime_exit_condition()
2205     // was called:
2206     // - if we were here only because of an external suspend request,
2207     //   then that was taken care of above (or cancelled) so we are done
2208     // - if we were here because of another async request, then it has
2209     //   been cleared between the has_special_runtime_exit_condition()
2210     //   and now so again we are done
2211     return;
2212   }
2213 
2214   // Check for pending async. exception
2215   if (_pending_async_exception != NULL) {
2216     // Only overwrite an already pending exception, if it is not a threadDeath.
2217     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2218 
2219       // We cannot call Exceptions::_throw(...) here because we cannot block
2220       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2221 
2222       LogTarget(Info, exceptions) lt;
2223       if (lt.is_enabled()) {
2224         ResourceMark rm;
2225         LogStream ls(lt);
2226         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2227           if (has_last_Java_frame()) {
2228             frame f = last_frame();
2229            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2230           }
2231         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2232       }
2233       _pending_async_exception = NULL;
2234       clear_has_async_exception();
2235     }
2236   }
2237 
2238   if (check_unsafe_error &&
2239       condition == _async_unsafe_access_error && !has_pending_exception()) {
2240     condition = _no_async_condition;  // done
2241     switch (thread_state()) {
2242     case _thread_in_vm: {
2243       JavaThread* THREAD = this;
2244       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2245     }
2246     case _thread_in_native: {
2247       ThreadInVMfromNative tiv(this);
2248       JavaThread* THREAD = this;
2249       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2250     }
2251     case _thread_in_Java: {
2252       ThreadInVMfromJava tiv(this);
2253       JavaThread* THREAD = this;
2254       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2255     }
2256     default:
2257       ShouldNotReachHere();
2258     }
2259   }
2260 
2261   assert(condition == _no_async_condition || has_pending_exception() ||
2262          (!check_unsafe_error && condition == _async_unsafe_access_error),
2263          "must have handled the async condition, if no exception");
2264 }
2265 
2266 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2267   //
2268   // Check for pending external suspend. Internal suspend requests do
2269   // not use handle_special_runtime_exit_condition().
2270   // If JNIEnv proxies are allowed, don't self-suspend if the target
2271   // thread is not the current thread. In older versions of jdbx, jdbx
2272   // threads could call into the VM with another thread's JNIEnv so we
2273   // can be here operating on behalf of a suspended thread (4432884).
2274   bool do_self_suspend = is_external_suspend_with_lock();
2275   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2276     //
2277     // Because thread is external suspended the safepoint code will count
2278     // thread as at a safepoint. This can be odd because we can be here
2279     // as _thread_in_Java which would normally transition to _thread_blocked
2280     // at a safepoint. We would like to mark the thread as _thread_blocked
2281     // before calling java_suspend_self like all other callers of it but
2282     // we must then observe proper safepoint protocol. (We can't leave
2283     // _thread_blocked with a safepoint in progress). However we can be
2284     // here as _thread_in_native_trans so we can't use a normal transition
2285     // constructor/destructor pair because they assert on that type of
2286     // transition. We could do something like:
2287     //
2288     // JavaThreadState state = thread_state();
2289     // set_thread_state(_thread_in_vm);
2290     // {
2291     //   ThreadBlockInVM tbivm(this);
2292     //   java_suspend_self()
2293     // }
2294     // set_thread_state(_thread_in_vm_trans);
2295     // if (safepoint) block;
2296     // set_thread_state(state);
2297     //
2298     // but that is pretty messy. Instead we just go with the way the
2299     // code has worked before and note that this is the only path to
2300     // java_suspend_self that doesn't put the thread in _thread_blocked
2301     // mode.
2302 
2303     frame_anchor()->make_walkable(this);
2304     java_suspend_self();
2305 
2306     // We might be here for reasons in addition to the self-suspend request
2307     // so check for other async requests.
2308   }
2309 
2310   if (check_asyncs) {
2311     check_and_handle_async_exceptions();
2312   }
2313 
2314   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2315 }
2316 
2317 void JavaThread::send_thread_stop(oop java_throwable)  {
2318   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2319   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2320   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2321 
2322   // Do not throw asynchronous exceptions against the compiler thread
2323   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2324   if (!can_call_java()) return;
2325 
2326   {
2327     // Actually throw the Throwable against the target Thread - however
2328     // only if there is no thread death exception installed already.
2329     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2330       // If the topmost frame is a runtime stub, then we are calling into
2331       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2332       // must deoptimize the caller before continuing, as the compiled  exception handler table
2333       // may not be valid
2334       if (has_last_Java_frame()) {
2335         frame f = last_frame();
2336         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2337           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2338           RegisterMap reg_map(this, UseBiasedLocking);
2339           frame compiled_frame = f.sender(&reg_map);
2340           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2341             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2342           }
2343         }
2344       }
2345 
2346       // Set async. pending exception in thread.
2347       set_pending_async_exception(java_throwable);
2348 
2349       if (log_is_enabled(Info, exceptions)) {
2350          ResourceMark rm;
2351         log_info(exceptions)("Pending Async. exception installed of type: %s",
2352                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2353       }
2354       // for AbortVMOnException flag
2355       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2356     }
2357   }
2358 
2359 
2360   // Interrupt thread so it will wake up from a potential wait()
2361   Thread::interrupt(this);
2362 }
2363 
2364 // External suspension mechanism.
2365 //
2366 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2367 // to any VM_locks and it is at a transition
2368 // Self-suspension will happen on the transition out of the vm.
2369 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2370 //
2371 // Guarantees on return:
2372 //   + Target thread will not execute any new bytecode (that's why we need to
2373 //     force a safepoint)
2374 //   + Target thread will not enter any new monitors
2375 //
2376 void JavaThread::java_suspend() {
2377   ThreadsListHandle tlh;
2378   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2379     return;
2380   }
2381 
2382   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2383     if (!is_external_suspend()) {
2384       // a racing resume has cancelled us; bail out now
2385       return;
2386     }
2387 
2388     // suspend is done
2389     uint32_t debug_bits = 0;
2390     // Warning: is_ext_suspend_completed() may temporarily drop the
2391     // SR_lock to allow the thread to reach a stable thread state if
2392     // it is currently in a transient thread state.
2393     if (is_ext_suspend_completed(false /* !called_by_wait */,
2394                                  SuspendRetryDelay, &debug_bits)) {
2395       return;
2396     }
2397   }
2398 
2399   if (Thread::current() == this) {
2400     // Safely self-suspend.
2401     // If we don't do this explicitly it will implicitly happen
2402     // before we transition back to Java, and on some other thread-state
2403     // transition paths, but not as we exit a JVM TI SuspendThread call.
2404     // As SuspendThread(current) must not return (until resumed) we must
2405     // self-suspend here.
2406     ThreadBlockInVM tbivm(this);
2407     java_suspend_self();
2408   } else {
2409     VM_ThreadSuspend vm_suspend;
2410     VMThread::execute(&vm_suspend);
2411   }
2412 }
2413 
2414 // Part II of external suspension.
2415 // A JavaThread self suspends when it detects a pending external suspend
2416 // request. This is usually on transitions. It is also done in places
2417 // where continuing to the next transition would surprise the caller,
2418 // e.g., monitor entry.
2419 //
2420 // Returns the number of times that the thread self-suspended.
2421 //
2422 // Note: DO NOT call java_suspend_self() when you just want to block current
2423 //       thread. java_suspend_self() is the second stage of cooperative
2424 //       suspension for external suspend requests and should only be used
2425 //       to complete an external suspend request.
2426 //
2427 int JavaThread::java_suspend_self() {
2428   int ret = 0;
2429 
2430   // we are in the process of exiting so don't suspend
2431   if (is_exiting()) {
2432     clear_external_suspend();
2433     return ret;
2434   }
2435 
2436   assert(_anchor.walkable() ||
2437          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2438          "must have walkable stack");
2439 
2440   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2441 
2442   assert(!this->is_ext_suspended(),
2443          "a thread trying to self-suspend should not already be suspended");
2444 
2445   if (this->is_suspend_equivalent()) {
2446     // If we are self-suspending as a result of the lifting of a
2447     // suspend equivalent condition, then the suspend_equivalent
2448     // flag is not cleared until we set the ext_suspended flag so
2449     // that wait_for_ext_suspend_completion() returns consistent
2450     // results.
2451     this->clear_suspend_equivalent();
2452   }
2453 
2454   // A racing resume may have cancelled us before we grabbed SR_lock
2455   // above. Or another external suspend request could be waiting for us
2456   // by the time we return from SR_lock()->wait(). The thread
2457   // that requested the suspension may already be trying to walk our
2458   // stack and if we return now, we can change the stack out from under
2459   // it. This would be a "bad thing (TM)" and cause the stack walker
2460   // to crash. We stay self-suspended until there are no more pending
2461   // external suspend requests.
2462   while (is_external_suspend()) {
2463     ret++;
2464     this->set_ext_suspended();
2465 
2466     // _ext_suspended flag is cleared by java_resume()
2467     while (is_ext_suspended()) {
2468       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2469     }
2470   }
2471 
2472   return ret;
2473 }
2474 
2475 #ifdef ASSERT
2476 // Verify the JavaThread has not yet been published in the Threads::list, and
2477 // hence doesn't need protection from concurrent access at this stage.
2478 void JavaThread::verify_not_published() {
2479   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2480   // since an unpublished JavaThread doesn't participate in the
2481   // Thread-SMR protocol for keeping a ThreadsList alive.
2482   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2483 }
2484 #endif
2485 
2486 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2487 // progress or when _suspend_flags is non-zero.
2488 // Current thread needs to self-suspend if there is a suspend request and/or
2489 // block if a safepoint is in progress.
2490 // Async exception ISN'T checked.
2491 // Note only the ThreadInVMfromNative transition can call this function
2492 // directly and when thread state is _thread_in_native_trans
2493 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2494   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2495 
2496   JavaThread *curJT = JavaThread::current();
2497   bool do_self_suspend = thread->is_external_suspend();
2498 
2499   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2500 
2501   // If JNIEnv proxies are allowed, don't self-suspend if the target
2502   // thread is not the current thread. In older versions of jdbx, jdbx
2503   // threads could call into the VM with another thread's JNIEnv so we
2504   // can be here operating on behalf of a suspended thread (4432884).
2505   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2506     JavaThreadState state = thread->thread_state();
2507 
2508     // We mark this thread_blocked state as a suspend-equivalent so
2509     // that a caller to is_ext_suspend_completed() won't be confused.
2510     // The suspend-equivalent state is cleared by java_suspend_self().
2511     thread->set_suspend_equivalent();
2512 
2513     // If the safepoint code sees the _thread_in_native_trans state, it will
2514     // wait until the thread changes to other thread state. There is no
2515     // guarantee on how soon we can obtain the SR_lock and complete the
2516     // self-suspend request. It would be a bad idea to let safepoint wait for
2517     // too long. Temporarily change the state to _thread_blocked to
2518     // let the VM thread know that this thread is ready for GC. The problem
2519     // of changing thread state is that safepoint could happen just after
2520     // java_suspend_self() returns after being resumed, and VM thread will
2521     // see the _thread_blocked state. We must check for safepoint
2522     // after restoring the state and make sure we won't leave while a safepoint
2523     // is in progress.
2524     thread->set_thread_state(_thread_blocked);
2525     thread->java_suspend_self();
2526     thread->set_thread_state(state);
2527 
2528     InterfaceSupport::serialize_thread_state_with_handler(thread);
2529   }
2530 
2531   SafepointMechanism::block_if_requested(curJT);
2532 
2533   if (thread->is_deopt_suspend()) {
2534     thread->clear_deopt_suspend();
2535     RegisterMap map(thread, false);
2536     frame f = thread->last_frame();
2537     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2538       f = f.sender(&map);
2539     }
2540     if (f.id() == thread->must_deopt_id()) {
2541       thread->clear_must_deopt_id();
2542       f.deoptimize(thread);
2543     } else {
2544       fatal("missed deoptimization!");
2545     }
2546   }
2547 
2548   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2549 }
2550 
2551 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2552 // progress or when _suspend_flags is non-zero.
2553 // Current thread needs to self-suspend if there is a suspend request and/or
2554 // block if a safepoint is in progress.
2555 // Also check for pending async exception (not including unsafe access error).
2556 // Note only the native==>VM/Java barriers can call this function and when
2557 // thread state is _thread_in_native_trans.
2558 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2559   check_safepoint_and_suspend_for_native_trans(thread);
2560 
2561   if (thread->has_async_exception()) {
2562     // We are in _thread_in_native_trans state, don't handle unsafe
2563     // access error since that may block.
2564     thread->check_and_handle_async_exceptions(false);
2565   }
2566 }
2567 
2568 // This is a variant of the normal
2569 // check_special_condition_for_native_trans with slightly different
2570 // semantics for use by critical native wrappers.  It does all the
2571 // normal checks but also performs the transition back into
2572 // thread_in_Java state.  This is required so that critical natives
2573 // can potentially block and perform a GC if they are the last thread
2574 // exiting the GCLocker.
2575 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2576   check_special_condition_for_native_trans(thread);
2577 
2578   // Finish the transition
2579   thread->set_thread_state(_thread_in_Java);
2580 
2581   if (thread->do_critical_native_unlock()) {
2582     ThreadInVMfromJavaNoAsyncException tiv(thread);
2583     GCLocker::unlock_critical(thread);
2584     thread->clear_critical_native_unlock();
2585   }
2586 }
2587 
2588 // We need to guarantee the Threads_lock here, since resumes are not
2589 // allowed during safepoint synchronization
2590 // Can only resume from an external suspension
2591 void JavaThread::java_resume() {
2592   assert_locked_or_safepoint(Threads_lock);
2593 
2594   // Sanity check: thread is gone, has started exiting or the thread
2595   // was not externally suspended.
2596   ThreadsListHandle tlh;
2597   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2598     return;
2599   }
2600 
2601   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2602 
2603   clear_external_suspend();
2604 
2605   if (is_ext_suspended()) {
2606     clear_ext_suspended();
2607     SR_lock()->notify_all();
2608   }
2609 }
2610 
2611 size_t JavaThread::_stack_red_zone_size = 0;
2612 size_t JavaThread::_stack_yellow_zone_size = 0;
2613 size_t JavaThread::_stack_reserved_zone_size = 0;
2614 size_t JavaThread::_stack_shadow_zone_size = 0;
2615 
2616 void JavaThread::create_stack_guard_pages() {
2617   if (!os::uses_stack_guard_pages() ||
2618       _stack_guard_state != stack_guard_unused ||
2619       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2620       log_info(os, thread)("Stack guard page creation for thread "
2621                            UINTX_FORMAT " disabled", os::current_thread_id());
2622     return;
2623   }
2624   address low_addr = stack_end();
2625   size_t len = stack_guard_zone_size();
2626 
2627   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2628   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2629 
2630   int must_commit = os::must_commit_stack_guard_pages();
2631   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2632 
2633   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2634     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2635     return;
2636   }
2637 
2638   if (os::guard_memory((char *) low_addr, len)) {
2639     _stack_guard_state = stack_guard_enabled;
2640   } else {
2641     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2642       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2643     if (os::uncommit_memory((char *) low_addr, len)) {
2644       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2645     }
2646     return;
2647   }
2648 
2649   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2650     PTR_FORMAT "-" PTR_FORMAT ".",
2651     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2652 }
2653 
2654 void JavaThread::remove_stack_guard_pages() {
2655   assert(Thread::current() == this, "from different thread");
2656   if (_stack_guard_state == stack_guard_unused) return;
2657   address low_addr = stack_end();
2658   size_t len = stack_guard_zone_size();
2659 
2660   if (os::must_commit_stack_guard_pages()) {
2661     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2662       _stack_guard_state = stack_guard_unused;
2663     } else {
2664       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2665         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2666       return;
2667     }
2668   } else {
2669     if (_stack_guard_state == stack_guard_unused) return;
2670     if (os::unguard_memory((char *) low_addr, len)) {
2671       _stack_guard_state = stack_guard_unused;
2672     } else {
2673       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2674         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2675       return;
2676     }
2677   }
2678 
2679   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2680     PTR_FORMAT "-" PTR_FORMAT ".",
2681     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2682 }
2683 
2684 void JavaThread::enable_stack_reserved_zone() {
2685   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2686 
2687   // The base notation is from the stack's point of view, growing downward.
2688   // We need to adjust it to work correctly with guard_memory()
2689   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2690 
2691   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2692   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2693 
2694   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2695     _stack_guard_state = stack_guard_enabled;
2696   } else {
2697     warning("Attempt to guard stack reserved zone failed.");
2698   }
2699   enable_register_stack_guard();
2700 }
2701 
2702 void JavaThread::disable_stack_reserved_zone() {
2703   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2704 
2705   // Simply return if called for a thread that does not use guard pages.
2706   if (_stack_guard_state != stack_guard_enabled) return;
2707 
2708   // The base notation is from the stack's point of view, growing downward.
2709   // We need to adjust it to work correctly with guard_memory()
2710   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2711 
2712   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2713     _stack_guard_state = stack_guard_reserved_disabled;
2714   } else {
2715     warning("Attempt to unguard stack reserved zone failed.");
2716   }
2717   disable_register_stack_guard();
2718 }
2719 
2720 void JavaThread::enable_stack_yellow_reserved_zone() {
2721   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2722   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2723 
2724   // The base notation is from the stacks point of view, growing downward.
2725   // We need to adjust it to work correctly with guard_memory()
2726   address base = stack_red_zone_base();
2727 
2728   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2729   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2730 
2731   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2732     _stack_guard_state = stack_guard_enabled;
2733   } else {
2734     warning("Attempt to guard stack yellow zone failed.");
2735   }
2736   enable_register_stack_guard();
2737 }
2738 
2739 void JavaThread::disable_stack_yellow_reserved_zone() {
2740   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2741   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2742 
2743   // Simply return if called for a thread that does not use guard pages.
2744   if (_stack_guard_state == stack_guard_unused) return;
2745 
2746   // The base notation is from the stacks point of view, growing downward.
2747   // We need to adjust it to work correctly with guard_memory()
2748   address base = stack_red_zone_base();
2749 
2750   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2751     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2752   } else {
2753     warning("Attempt to unguard stack yellow zone failed.");
2754   }
2755   disable_register_stack_guard();
2756 }
2757 
2758 void JavaThread::enable_stack_red_zone() {
2759   // The base notation is from the stacks point of view, growing downward.
2760   // We need to adjust it to work correctly with guard_memory()
2761   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2762   address base = stack_red_zone_base() - stack_red_zone_size();
2763 
2764   guarantee(base < stack_base(), "Error calculating stack red zone");
2765   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2766 
2767   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2768     warning("Attempt to guard stack red zone failed.");
2769   }
2770 }
2771 
2772 void JavaThread::disable_stack_red_zone() {
2773   // The base notation is from the stacks point of view, growing downward.
2774   // We need to adjust it to work correctly with guard_memory()
2775   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2776   address base = stack_red_zone_base() - stack_red_zone_size();
2777   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2778     warning("Attempt to unguard stack red zone failed.");
2779   }
2780 }
2781 
2782 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2783   // ignore is there is no stack
2784   if (!has_last_Java_frame()) return;
2785   // traverse the stack frames. Starts from top frame.
2786   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2787     frame* fr = fst.current();
2788     f(fr, fst.register_map());
2789   }
2790 }
2791 
2792 
2793 #ifndef PRODUCT
2794 // Deoptimization
2795 // Function for testing deoptimization
2796 void JavaThread::deoptimize() {
2797   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2798   StackFrameStream fst(this, UseBiasedLocking);
2799   bool deopt = false;           // Dump stack only if a deopt actually happens.
2800   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2801   // Iterate over all frames in the thread and deoptimize
2802   for (; !fst.is_done(); fst.next()) {
2803     if (fst.current()->can_be_deoptimized()) {
2804 
2805       if (only_at) {
2806         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2807         // consists of comma or carriage return separated numbers so
2808         // search for the current bci in that string.
2809         address pc = fst.current()->pc();
2810         nmethod* nm =  (nmethod*) fst.current()->cb();
2811         ScopeDesc* sd = nm->scope_desc_at(pc);
2812         char buffer[8];
2813         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2814         size_t len = strlen(buffer);
2815         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2816         while (found != NULL) {
2817           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2818               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2819             // Check that the bci found is bracketed by terminators.
2820             break;
2821           }
2822           found = strstr(found + 1, buffer);
2823         }
2824         if (!found) {
2825           continue;
2826         }
2827       }
2828 
2829       if (DebugDeoptimization && !deopt) {
2830         deopt = true; // One-time only print before deopt
2831         tty->print_cr("[BEFORE Deoptimization]");
2832         trace_frames();
2833         trace_stack();
2834       }
2835       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2836     }
2837   }
2838 
2839   if (DebugDeoptimization && deopt) {
2840     tty->print_cr("[AFTER Deoptimization]");
2841     trace_frames();
2842   }
2843 }
2844 
2845 
2846 // Make zombies
2847 void JavaThread::make_zombies() {
2848   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849     if (fst.current()->can_be_deoptimized()) {
2850       // it is a Java nmethod
2851       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2852       nm->make_not_entrant();
2853     }
2854   }
2855 }
2856 #endif // PRODUCT
2857 
2858 
2859 void JavaThread::deoptimized_wrt_marked_nmethods() {
2860   if (!has_last_Java_frame()) return;
2861   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2862   StackFrameStream fst(this, UseBiasedLocking);
2863   for (; !fst.is_done(); fst.next()) {
2864     if (fst.current()->should_be_deoptimized()) {
2865       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2866     }
2867   }
2868 }
2869 
2870 
2871 // If the caller is a NamedThread, then remember, in the current scope,
2872 // the given JavaThread in its _processed_thread field.
2873 class RememberProcessedThread: public StackObj {
2874   NamedThread* _cur_thr;
2875  public:
2876   RememberProcessedThread(JavaThread* jthr) {
2877     Thread* thread = Thread::current();
2878     if (thread->is_Named_thread()) {
2879       _cur_thr = (NamedThread *)thread;
2880       _cur_thr->set_processed_thread(jthr);
2881     } else {
2882       _cur_thr = NULL;
2883     }
2884   }
2885 
2886   ~RememberProcessedThread() {
2887     if (_cur_thr) {
2888       _cur_thr->set_processed_thread(NULL);
2889     }
2890   }
2891 };
2892 
2893 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2894   // Verify that the deferred card marks have been flushed.
2895   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2896 
2897   // Traverse the GCHandles
2898   Thread::oops_do(f, cf);
2899 
2900   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2901          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2902 
2903   if (has_last_Java_frame()) {
2904     // Record JavaThread to GC thread
2905     RememberProcessedThread rpt(this);
2906 
2907     // traverse the registered growable array
2908     if (_array_for_gc != NULL) {
2909       for (int index = 0; index < _array_for_gc->length(); index++) {
2910         f->do_oop(_array_for_gc->adr_at(index));
2911       }
2912     }
2913 
2914     // Traverse the monitor chunks
2915     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2916       chunk->oops_do(f);
2917     }
2918 
2919     // Traverse the execution stack
2920     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2921       fst.current()->oops_do(f, cf, fst.register_map());
2922     }
2923   }
2924 
2925   // callee_target is never live across a gc point so NULL it here should
2926   // it still contain a methdOop.
2927 
2928   set_callee_target(NULL);
2929 
2930   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2931   // If we have deferred set_locals there might be oops waiting to be
2932   // written
2933   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2934   if (list != NULL) {
2935     for (int i = 0; i < list->length(); i++) {
2936       list->at(i)->oops_do(f);
2937     }
2938   }
2939 
2940   // Traverse instance variables at the end since the GC may be moving things
2941   // around using this function
2942   f->do_oop((oop*) &_threadObj);
2943   f->do_oop((oop*) &_vm_result);
2944   f->do_oop((oop*) &_exception_oop);
2945   f->do_oop((oop*) &_pending_async_exception);
2946 
2947   if (jvmti_thread_state() != NULL) {
2948     jvmti_thread_state()->oops_do(f);
2949   }
2950 }
2951 
2952 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2953   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2954          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2955 
2956   if (has_last_Java_frame()) {
2957     // Traverse the execution stack
2958     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2959       fst.current()->nmethods_do(cf);
2960     }
2961   }
2962 }
2963 
2964 void JavaThread::metadata_do(void f(Metadata*)) {
2965   if (has_last_Java_frame()) {
2966     // Traverse the execution stack to call f() on the methods in the stack
2967     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2968       fst.current()->metadata_do(f);
2969     }
2970   } else if (is_Compiler_thread()) {
2971     // need to walk ciMetadata in current compile tasks to keep alive.
2972     CompilerThread* ct = (CompilerThread*)this;
2973     if (ct->env() != NULL) {
2974       ct->env()->metadata_do(f);
2975     }
2976     CompileTask* task = ct->task();
2977     if (task != NULL) {
2978       task->metadata_do(f);
2979     }
2980   }
2981 }
2982 
2983 // Printing
2984 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2985   switch (_thread_state) {
2986   case _thread_uninitialized:     return "_thread_uninitialized";
2987   case _thread_new:               return "_thread_new";
2988   case _thread_new_trans:         return "_thread_new_trans";
2989   case _thread_in_native:         return "_thread_in_native";
2990   case _thread_in_native_trans:   return "_thread_in_native_trans";
2991   case _thread_in_vm:             return "_thread_in_vm";
2992   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2993   case _thread_in_Java:           return "_thread_in_Java";
2994   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2995   case _thread_blocked:           return "_thread_blocked";
2996   case _thread_blocked_trans:     return "_thread_blocked_trans";
2997   default:                        return "unknown thread state";
2998   }
2999 }
3000 
3001 #ifndef PRODUCT
3002 void JavaThread::print_thread_state_on(outputStream *st) const {
3003   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3004 };
3005 void JavaThread::print_thread_state() const {
3006   print_thread_state_on(tty);
3007 }
3008 #endif // PRODUCT
3009 
3010 // Called by Threads::print() for VM_PrintThreads operation
3011 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3012   st->print_raw("\"");
3013   st->print_raw(get_thread_name());
3014   st->print_raw("\" ");
3015   oop thread_oop = threadObj();
3016   if (thread_oop != NULL) {
3017     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3018     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3019     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3020   }
3021   Thread::print_on(st, print_extended_info);
3022   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3023   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3024   if (thread_oop != NULL) {
3025     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3026   }
3027 #ifndef PRODUCT
3028   _safepoint_state->print_on(st);
3029 #endif // PRODUCT
3030   if (is_Compiler_thread()) {
3031     CompileTask *task = ((CompilerThread*)this)->task();
3032     if (task != NULL) {
3033       st->print("   Compiling: ");
3034       task->print(st, NULL, true, false);
3035     } else {
3036       st->print("   No compile task");
3037     }
3038     st->cr();
3039   }
3040 }
3041 
3042 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3043   st->print("%s", get_thread_name_string(buf, buflen));
3044 }
3045 
3046 // Called by fatal error handler. The difference between this and
3047 // JavaThread::print() is that we can't grab lock or allocate memory.
3048 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3049   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3050   oop thread_obj = threadObj();
3051   if (thread_obj != NULL) {
3052     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3053   }
3054   st->print(" [");
3055   st->print("%s", _get_thread_state_name(_thread_state));
3056   if (osthread()) {
3057     st->print(", id=%d", osthread()->thread_id());
3058   }
3059   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3060             p2i(stack_end()), p2i(stack_base()));
3061   st->print("]");
3062 
3063   ThreadsSMRSupport::print_info_on(this, st);
3064   return;
3065 }
3066 
3067 // Verification
3068 
3069 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3070 
3071 void JavaThread::verify() {
3072   // Verify oops in the thread.
3073   oops_do(&VerifyOopClosure::verify_oop, NULL);
3074 
3075   // Verify the stack frames.
3076   frames_do(frame_verify);
3077 }
3078 
3079 // CR 6300358 (sub-CR 2137150)
3080 // Most callers of this method assume that it can't return NULL but a
3081 // thread may not have a name whilst it is in the process of attaching to
3082 // the VM - see CR 6412693, and there are places where a JavaThread can be
3083 // seen prior to having it's threadObj set (eg JNI attaching threads and
3084 // if vm exit occurs during initialization). These cases can all be accounted
3085 // for such that this method never returns NULL.
3086 const char* JavaThread::get_thread_name() const {
3087 #ifdef ASSERT
3088   // early safepoints can hit while current thread does not yet have TLS
3089   if (!SafepointSynchronize::is_at_safepoint()) {
3090     Thread *cur = Thread::current();
3091     if (!(cur->is_Java_thread() && cur == this)) {
3092       // Current JavaThreads are allowed to get their own name without
3093       // the Threads_lock.
3094       assert_locked_or_safepoint(Threads_lock);
3095     }
3096   }
3097 #endif // ASSERT
3098   return get_thread_name_string();
3099 }
3100 
3101 // Returns a non-NULL representation of this thread's name, or a suitable
3102 // descriptive string if there is no set name
3103 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3104   const char* name_str;
3105   oop thread_obj = threadObj();
3106   if (thread_obj != NULL) {
3107     oop name = java_lang_Thread::name(thread_obj);
3108     if (name != NULL) {
3109       if (buf == NULL) {
3110         name_str = java_lang_String::as_utf8_string(name);
3111       } else {
3112         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3113       }
3114     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3115       name_str = "<no-name - thread is attaching>";
3116     } else {
3117       name_str = Thread::name();
3118     }
3119   } else {
3120     name_str = Thread::name();
3121   }
3122   assert(name_str != NULL, "unexpected NULL thread name");
3123   return name_str;
3124 }
3125 
3126 
3127 const char* JavaThread::get_threadgroup_name() const {
3128   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3129   oop thread_obj = threadObj();
3130   if (thread_obj != NULL) {
3131     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3132     if (thread_group != NULL) {
3133       // ThreadGroup.name can be null
3134       return java_lang_ThreadGroup::name(thread_group);
3135     }
3136   }
3137   return NULL;
3138 }
3139 
3140 const char* JavaThread::get_parent_name() const {
3141   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3142   oop thread_obj = threadObj();
3143   if (thread_obj != NULL) {
3144     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3145     if (thread_group != NULL) {
3146       oop parent = java_lang_ThreadGroup::parent(thread_group);
3147       if (parent != NULL) {
3148         // ThreadGroup.name can be null
3149         return java_lang_ThreadGroup::name(parent);
3150       }
3151     }
3152   }
3153   return NULL;
3154 }
3155 
3156 ThreadPriority JavaThread::java_priority() const {
3157   oop thr_oop = threadObj();
3158   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3159   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3160   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3161   return priority;
3162 }
3163 
3164 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3165 
3166   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3167   // Link Java Thread object <-> C++ Thread
3168 
3169   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3170   // and put it into a new Handle.  The Handle "thread_oop" can then
3171   // be used to pass the C++ thread object to other methods.
3172 
3173   // Set the Java level thread object (jthread) field of the
3174   // new thread (a JavaThread *) to C++ thread object using the
3175   // "thread_oop" handle.
3176 
3177   // Set the thread field (a JavaThread *) of the
3178   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3179 
3180   Handle thread_oop(Thread::current(),
3181                     JNIHandles::resolve_non_null(jni_thread));
3182   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3183          "must be initialized");
3184   set_threadObj(thread_oop());
3185   java_lang_Thread::set_thread(thread_oop(), this);
3186 
3187   if (prio == NoPriority) {
3188     prio = java_lang_Thread::priority(thread_oop());
3189     assert(prio != NoPriority, "A valid priority should be present");
3190   }
3191 
3192   // Push the Java priority down to the native thread; needs Threads_lock
3193   Thread::set_priority(this, prio);
3194 
3195   // Add the new thread to the Threads list and set it in motion.
3196   // We must have threads lock in order to call Threads::add.
3197   // It is crucial that we do not block before the thread is
3198   // added to the Threads list for if a GC happens, then the java_thread oop
3199   // will not be visited by GC.
3200   Threads::add(this);
3201 }
3202 
3203 oop JavaThread::current_park_blocker() {
3204   // Support for JSR-166 locks
3205   oop thread_oop = threadObj();
3206   if (thread_oop != NULL &&
3207       JDK_Version::current().supports_thread_park_blocker()) {
3208     return java_lang_Thread::park_blocker(thread_oop);
3209   }
3210   return NULL;
3211 }
3212 
3213 
3214 void JavaThread::print_stack_on(outputStream* st) {
3215   if (!has_last_Java_frame()) return;
3216   ResourceMark rm;
3217   HandleMark   hm;
3218 
3219   RegisterMap reg_map(this);
3220   vframe* start_vf = last_java_vframe(&reg_map);
3221   int count = 0;
3222   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3223     if (f->is_java_frame()) {
3224       javaVFrame* jvf = javaVFrame::cast(f);
3225       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3226 
3227       // Print out lock information
3228       if (JavaMonitorsInStackTrace) {
3229         jvf->print_lock_info_on(st, count);
3230       }
3231     } else {
3232       // Ignore non-Java frames
3233     }
3234 
3235     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3236     count++;
3237     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3238   }
3239 }
3240 
3241 
3242 // JVMTI PopFrame support
3243 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3244   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3245   if (in_bytes(size_in_bytes) != 0) {
3246     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3247     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3248     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3249   }
3250 }
3251 
3252 void* JavaThread::popframe_preserved_args() {
3253   return _popframe_preserved_args;
3254 }
3255 
3256 ByteSize JavaThread::popframe_preserved_args_size() {
3257   return in_ByteSize(_popframe_preserved_args_size);
3258 }
3259 
3260 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3261   int sz = in_bytes(popframe_preserved_args_size());
3262   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3263   return in_WordSize(sz / wordSize);
3264 }
3265 
3266 void JavaThread::popframe_free_preserved_args() {
3267   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3268   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3269   _popframe_preserved_args = NULL;
3270   _popframe_preserved_args_size = 0;
3271 }
3272 
3273 #ifndef PRODUCT
3274 
3275 void JavaThread::trace_frames() {
3276   tty->print_cr("[Describe stack]");
3277   int frame_no = 1;
3278   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3279     tty->print("  %d. ", frame_no++);
3280     fst.current()->print_value_on(tty, this);
3281     tty->cr();
3282   }
3283 }
3284 
3285 class PrintAndVerifyOopClosure: public OopClosure {
3286  protected:
3287   template <class T> inline void do_oop_work(T* p) {
3288     oop obj = RawAccess<>::oop_load(p);
3289     if (obj == NULL) return;
3290     tty->print(INTPTR_FORMAT ": ", p2i(p));
3291     if (oopDesc::is_oop_or_null(obj)) {
3292       if (obj->is_objArray()) {
3293         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3294       } else {
3295         obj->print();
3296       }
3297     } else {
3298       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3299     }
3300     tty->cr();
3301   }
3302  public:
3303   virtual void do_oop(oop* p) { do_oop_work(p); }
3304   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3305 };
3306 
3307 
3308 static void oops_print(frame* f, const RegisterMap *map) {
3309   PrintAndVerifyOopClosure print;
3310   f->print_value();
3311   f->oops_do(&print, NULL, (RegisterMap*)map);
3312 }
3313 
3314 // Print our all the locations that contain oops and whether they are
3315 // valid or not.  This useful when trying to find the oldest frame
3316 // where an oop has gone bad since the frame walk is from youngest to
3317 // oldest.
3318 void JavaThread::trace_oops() {
3319   tty->print_cr("[Trace oops]");
3320   frames_do(oops_print);
3321 }
3322 
3323 
3324 #ifdef ASSERT
3325 // Print or validate the layout of stack frames
3326 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3327   ResourceMark rm;
3328   PRESERVE_EXCEPTION_MARK;
3329   FrameValues values;
3330   int frame_no = 0;
3331   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3332     fst.current()->describe(values, ++frame_no);
3333     if (depth == frame_no) break;
3334   }
3335   if (validate_only) {
3336     values.validate();
3337   } else {
3338     tty->print_cr("[Describe stack layout]");
3339     values.print(this);
3340   }
3341 }
3342 #endif
3343 
3344 void JavaThread::trace_stack_from(vframe* start_vf) {
3345   ResourceMark rm;
3346   int vframe_no = 1;
3347   for (vframe* f = start_vf; f; f = f->sender()) {
3348     if (f->is_java_frame()) {
3349       javaVFrame::cast(f)->print_activation(vframe_no++);
3350     } else {
3351       f->print();
3352     }
3353     if (vframe_no > StackPrintLimit) {
3354       tty->print_cr("...<more frames>...");
3355       return;
3356     }
3357   }
3358 }
3359 
3360 
3361 void JavaThread::trace_stack() {
3362   if (!has_last_Java_frame()) return;
3363   ResourceMark rm;
3364   HandleMark   hm;
3365   RegisterMap reg_map(this);
3366   trace_stack_from(last_java_vframe(&reg_map));
3367 }
3368 
3369 
3370 #endif // PRODUCT
3371 
3372 
3373 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3374   assert(reg_map != NULL, "a map must be given");
3375   frame f = last_frame();
3376   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3377     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3378   }
3379   return NULL;
3380 }
3381 
3382 
3383 Klass* JavaThread::security_get_caller_class(int depth) {
3384   vframeStream vfst(this);
3385   vfst.security_get_caller_frame(depth);
3386   if (!vfst.at_end()) {
3387     return vfst.method()->method_holder();
3388   }
3389   return NULL;
3390 }
3391 
3392 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3393   assert(thread->is_Compiler_thread(), "must be compiler thread");
3394   CompileBroker::compiler_thread_loop();
3395 }
3396 
3397 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3398   NMethodSweeper::sweeper_loop();
3399 }
3400 
3401 // Create a CompilerThread
3402 CompilerThread::CompilerThread(CompileQueue* queue,
3403                                CompilerCounters* counters)
3404                                : JavaThread(&compiler_thread_entry) {
3405   _env   = NULL;
3406   _log   = NULL;
3407   _task  = NULL;
3408   _queue = queue;
3409   _counters = counters;
3410   _buffer_blob = NULL;
3411   _compiler = NULL;
3412 
3413   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3414   resource_area()->bias_to(mtCompiler);
3415 
3416 #ifndef PRODUCT
3417   _ideal_graph_printer = NULL;
3418 #endif
3419 }
3420 
3421 CompilerThread::~CompilerThread() {
3422   // Delete objects which were allocated on heap.
3423   delete _counters;
3424 }
3425 
3426 bool CompilerThread::can_call_java() const {
3427   return _compiler != NULL && _compiler->is_jvmci();
3428 }
3429 
3430 // Create sweeper thread
3431 CodeCacheSweeperThread::CodeCacheSweeperThread()
3432 : JavaThread(&sweeper_thread_entry) {
3433   _scanned_compiled_method = NULL;
3434 }
3435 
3436 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3437   JavaThread::oops_do(f, cf);
3438   if (_scanned_compiled_method != NULL && cf != NULL) {
3439     // Safepoints can occur when the sweeper is scanning an nmethod so
3440     // process it here to make sure it isn't unloaded in the middle of
3441     // a scan.
3442     cf->do_code_blob(_scanned_compiled_method);
3443   }
3444 }
3445 
3446 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3447   JavaThread::nmethods_do(cf);
3448   if (_scanned_compiled_method != NULL && cf != NULL) {
3449     // Safepoints can occur when the sweeper is scanning an nmethod so
3450     // process it here to make sure it isn't unloaded in the middle of
3451     // a scan.
3452     cf->do_code_blob(_scanned_compiled_method);
3453   }
3454 }
3455 
3456 
3457 // ======= Threads ========
3458 
3459 // The Threads class links together all active threads, and provides
3460 // operations over all threads. It is protected by the Threads_lock,
3461 // which is also used in other global contexts like safepointing.
3462 // ThreadsListHandles are used to safely perform operations on one
3463 // or more threads without the risk of the thread exiting during the
3464 // operation.
3465 //
3466 // Note: The Threads_lock is currently more widely used than we
3467 // would like. We are actively migrating Threads_lock uses to other
3468 // mechanisms in order to reduce Threads_lock contention.
3469 
3470 JavaThread* Threads::_thread_list = NULL;
3471 int         Threads::_number_of_threads = 0;
3472 int         Threads::_number_of_non_daemon_threads = 0;
3473 int         Threads::_return_code = 0;
3474 int         Threads::_thread_claim_parity = 0;
3475 size_t      JavaThread::_stack_size_at_create = 0;
3476 
3477 #ifdef ASSERT
3478 bool        Threads::_vm_complete = false;
3479 #endif
3480 
3481 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3482   Prefetch::read((void*)addr, prefetch_interval);
3483   return *addr;
3484 }
3485 
3486 // Possibly the ugliest for loop the world has seen. C++ does not allow
3487 // multiple types in the declaration section of the for loop. In this case
3488 // we are only dealing with pointers and hence can cast them. It looks ugly
3489 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3490 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3491     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3492              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3493              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3494              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3495              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3496          MACRO_current_p != MACRO_end;                                                                                    \
3497          MACRO_current_p++,                                                                                               \
3498              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3499 
3500 // All JavaThreads
3501 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3502 
3503 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3504 void Threads::non_java_threads_do(ThreadClosure* tc) {
3505   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3506   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3507     tc->do_thread(njti.current());
3508   }
3509 }
3510 
3511 // All JavaThreads
3512 void Threads::java_threads_do(ThreadClosure* tc) {
3513   assert_locked_or_safepoint(Threads_lock);
3514   // ALL_JAVA_THREADS iterates through all JavaThreads.
3515   ALL_JAVA_THREADS(p) {
3516     tc->do_thread(p);
3517   }
3518 }
3519 
3520 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3521   assert_locked_or_safepoint(Threads_lock);
3522   java_threads_do(tc);
3523   tc->do_thread(VMThread::vm_thread());
3524 }
3525 
3526 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3527 void Threads::threads_do(ThreadClosure* tc) {
3528   assert_locked_or_safepoint(Threads_lock);
3529   java_threads_do(tc);
3530   non_java_threads_do(tc);
3531 }
3532 
3533 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3534   int cp = Threads::thread_claim_parity();
3535   ALL_JAVA_THREADS(p) {
3536     if (p->claim_oops_do(is_par, cp)) {
3537       tc->do_thread(p);
3538     }
3539   }
3540   VMThread* vmt = VMThread::vm_thread();
3541   if (vmt->claim_oops_do(is_par, cp)) {
3542     tc->do_thread(vmt);
3543   }
3544 }
3545 
3546 // The system initialization in the library has three phases.
3547 //
3548 // Phase 1: java.lang.System class initialization
3549 //     java.lang.System is a primordial class loaded and initialized
3550 //     by the VM early during startup.  java.lang.System.<clinit>
3551 //     only does registerNatives and keeps the rest of the class
3552 //     initialization work later until thread initialization completes.
3553 //
3554 //     System.initPhase1 initializes the system properties, the static
3555 //     fields in, out, and err. Set up java signal handlers, OS-specific
3556 //     system settings, and thread group of the main thread.
3557 static void call_initPhase1(TRAPS) {
3558   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3559   JavaValue result(T_VOID);
3560   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3561                                          vmSymbols::void_method_signature(), CHECK);
3562 }
3563 
3564 // Phase 2. Module system initialization
3565 //     This will initialize the module system.  Only java.base classes
3566 //     can be loaded until phase 2 completes.
3567 //
3568 //     Call System.initPhase2 after the compiler initialization and jsr292
3569 //     classes get initialized because module initialization runs a lot of java
3570 //     code, that for performance reasons, should be compiled.  Also, this will
3571 //     enable the startup code to use lambda and other language features in this
3572 //     phase and onward.
3573 //
3574 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3575 static void call_initPhase2(TRAPS) {
3576   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3577 
3578   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3579 
3580   JavaValue result(T_INT);
3581   JavaCallArguments args;
3582   args.push_int(DisplayVMOutputToStderr);
3583   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3584   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3585                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3586   if (result.get_jint() != JNI_OK) {
3587     vm_exit_during_initialization(); // no message or exception
3588   }
3589 
3590   universe_post_module_init();
3591 }
3592 
3593 // Phase 3. final setup - set security manager, system class loader and TCCL
3594 //
3595 //     This will instantiate and set the security manager, set the system class
3596 //     loader as well as the thread context class loader.  The security manager
3597 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3598 //     other modules or the application's classpath.
3599 static void call_initPhase3(TRAPS) {
3600   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3601   JavaValue result(T_VOID);
3602   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3603                                          vmSymbols::void_method_signature(), CHECK);
3604 }
3605 
3606 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3607   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3608 
3609   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3610     create_vm_init_libraries();
3611   }
3612 
3613   initialize_class(vmSymbols::java_lang_String(), CHECK);
3614 
3615   // Inject CompactStrings value after the static initializers for String ran.
3616   java_lang_String::set_compact_strings(CompactStrings);
3617 
3618   // Initialize java_lang.System (needed before creating the thread)
3619   initialize_class(vmSymbols::java_lang_System(), CHECK);
3620   // The VM creates & returns objects of this class. Make sure it's initialized.
3621   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3622   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3623   Handle thread_group = create_initial_thread_group(CHECK);
3624   Universe::set_main_thread_group(thread_group());
3625   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3626   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3627   main_thread->set_threadObj(thread_object);
3628   // Set thread status to running since main thread has
3629   // been started and running.
3630   java_lang_Thread::set_thread_status(thread_object,
3631                                       java_lang_Thread::RUNNABLE);
3632 
3633   // The VM creates objects of this class.
3634   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3635 
3636   // The VM preresolves methods to these classes. Make sure that they get initialized
3637   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3638   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3639 
3640   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3641   call_initPhase1(CHECK);
3642 
3643   // get the Java runtime name after java.lang.System is initialized
3644   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3645   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3646 
3647   // an instance of OutOfMemory exception has been allocated earlier
3648   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3649   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3650   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3651   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3652   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3653   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3654   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3655   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3656 }
3657 
3658 void Threads::initialize_jsr292_core_classes(TRAPS) {
3659   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3660 
3661   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3662   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3663   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3664   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3665 }
3666 
3667 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3668   extern void JDK_Version_init();
3669 
3670   // Preinitialize version info.
3671   VM_Version::early_initialize();
3672 
3673   // Check version
3674   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3675 
3676   // Initialize library-based TLS
3677   ThreadLocalStorage::init();
3678 
3679   // Initialize the output stream module
3680   ostream_init();
3681 
3682   // Process java launcher properties.
3683   Arguments::process_sun_java_launcher_properties(args);
3684 
3685   // Initialize the os module
3686   os::init();
3687 
3688   // Record VM creation timing statistics
3689   TraceVmCreationTime create_vm_timer;
3690   create_vm_timer.start();
3691 
3692   // Initialize system properties.
3693   Arguments::init_system_properties();
3694 
3695   // So that JDK version can be used as a discriminator when parsing arguments
3696   JDK_Version_init();
3697 
3698   // Update/Initialize System properties after JDK version number is known
3699   Arguments::init_version_specific_system_properties();
3700 
3701   // Make sure to initialize log configuration *before* parsing arguments
3702   LogConfiguration::initialize(create_vm_timer.begin_time());
3703 
3704   // Parse arguments
3705   // Note: this internally calls os::init_container_support()
3706   jint parse_result = Arguments::parse(args);
3707   if (parse_result != JNI_OK) return parse_result;
3708 
3709   os::init_before_ergo();
3710 
3711   jint ergo_result = Arguments::apply_ergo();
3712   if (ergo_result != JNI_OK) return ergo_result;
3713 
3714   // Final check of all ranges after ergonomics which may change values.
3715   if (!JVMFlagRangeList::check_ranges()) {
3716     return JNI_EINVAL;
3717   }
3718 
3719   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3720   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3721   if (!constraint_result) {
3722     return JNI_EINVAL;
3723   }
3724 
3725   JVMFlagWriteableList::mark_startup();
3726 
3727   if (PauseAtStartup) {
3728     os::pause();
3729   }
3730 
3731   HOTSPOT_VM_INIT_BEGIN();
3732 
3733   // Timing (must come after argument parsing)
3734   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3735 
3736   // Initialize the os module after parsing the args
3737   jint os_init_2_result = os::init_2();
3738   if (os_init_2_result != JNI_OK) return os_init_2_result;
3739 
3740 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3741   // Initialize assert poison page mechanism.
3742   if (ShowRegistersOnAssert) {
3743     initialize_assert_poison();
3744   }
3745 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3746 
3747   SafepointMechanism::initialize();
3748 
3749   jint adjust_after_os_result = Arguments::adjust_after_os();
3750   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3751 
3752   // Initialize output stream logging
3753   ostream_init_log();
3754 
3755   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3756   // Must be before create_vm_init_agents()
3757   if (Arguments::init_libraries_at_startup()) {
3758     convert_vm_init_libraries_to_agents();
3759   }
3760 
3761   // Launch -agentlib/-agentpath and converted -Xrun agents
3762   if (Arguments::init_agents_at_startup()) {
3763     create_vm_init_agents();
3764   }
3765 
3766   // Initialize Threads state
3767   _thread_list = NULL;
3768   _number_of_threads = 0;
3769   _number_of_non_daemon_threads = 0;
3770 
3771   // Initialize global data structures and create system classes in heap
3772   vm_init_globals();
3773 
3774 #if INCLUDE_JVMCI
3775   if (JVMCICounterSize > 0) {
3776     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3777     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3778   } else {
3779     JavaThread::_jvmci_old_thread_counters = NULL;
3780   }
3781 #endif // INCLUDE_JVMCI
3782 
3783   // Attach the main thread to this os thread
3784   JavaThread* main_thread = new JavaThread();
3785   main_thread->set_thread_state(_thread_in_vm);
3786   main_thread->initialize_thread_current();
3787   // must do this before set_active_handles
3788   main_thread->record_stack_base_and_size();
3789   main_thread->register_thread_stack_with_NMT();
3790   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3791 
3792   if (!main_thread->set_as_starting_thread()) {
3793     vm_shutdown_during_initialization(
3794                                       "Failed necessary internal allocation. Out of swap space");
3795     main_thread->smr_delete();
3796     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3797     return JNI_ENOMEM;
3798   }
3799 
3800   // Enable guard page *after* os::create_main_thread(), otherwise it would
3801   // crash Linux VM, see notes in os_linux.cpp.
3802   main_thread->create_stack_guard_pages();
3803 
3804   // Initialize Java-Level synchronization subsystem
3805   ObjectMonitor::Initialize();
3806 
3807   // Initialize global modules
3808   jint status = init_globals();
3809   if (status != JNI_OK) {
3810     main_thread->smr_delete();
3811     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3812     return status;
3813   }
3814 
3815   JFR_ONLY(Jfr::on_vm_init();)
3816 
3817   // Should be done after the heap is fully created
3818   main_thread->cache_global_variables();
3819 
3820   HandleMark hm;
3821 
3822   { MutexLocker mu(Threads_lock);
3823     Threads::add(main_thread);
3824   }
3825 
3826   // Any JVMTI raw monitors entered in onload will transition into
3827   // real raw monitor. VM is setup enough here for raw monitor enter.
3828   JvmtiExport::transition_pending_onload_raw_monitors();
3829 
3830   // Create the VMThread
3831   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3832 
3833   VMThread::create();
3834     Thread* vmthread = VMThread::vm_thread();
3835 
3836     if (!os::create_thread(vmthread, os::vm_thread)) {
3837       vm_exit_during_initialization("Cannot create VM thread. "
3838                                     "Out of system resources.");
3839     }
3840 
3841     // Wait for the VM thread to become ready, and VMThread::run to initialize
3842     // Monitors can have spurious returns, must always check another state flag
3843     {
3844       MutexLocker ml(Notify_lock);
3845       os::start_thread(vmthread);
3846       while (vmthread->active_handles() == NULL) {
3847         Notify_lock->wait();
3848       }
3849     }
3850   }
3851 
3852   assert(Universe::is_fully_initialized(), "not initialized");
3853   if (VerifyDuringStartup) {
3854     // Make sure we're starting with a clean slate.
3855     VM_Verify verify_op;
3856     VMThread::execute(&verify_op);
3857   }
3858 
3859   // We need this to update the java.vm.info property in case any flags used
3860   // to initially define it have been changed. This is needed for both CDS and
3861   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3862   // is initially computed. See Abstract_VM_Version::vm_info_string().
3863   // This update must happen before we initialize the java classes, but
3864   // after any initialization logic that might modify the flags.
3865   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3866 
3867   Thread* THREAD = Thread::current();
3868 
3869   // Always call even when there are not JVMTI environments yet, since environments
3870   // may be attached late and JVMTI must track phases of VM execution
3871   JvmtiExport::enter_early_start_phase();
3872 
3873   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3874   JvmtiExport::post_early_vm_start();
3875 
3876   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3877 
3878   quicken_jni_functions();
3879 
3880   // No more stub generation allowed after that point.
3881   StubCodeDesc::freeze();
3882 
3883   // Set flag that basic initialization has completed. Used by exceptions and various
3884   // debug stuff, that does not work until all basic classes have been initialized.
3885   set_init_completed();
3886 
3887   LogConfiguration::post_initialize();
3888   Metaspace::post_initialize();
3889 
3890   HOTSPOT_VM_INIT_END();
3891 
3892   // record VM initialization completion time
3893 #if INCLUDE_MANAGEMENT
3894   Management::record_vm_init_completed();
3895 #endif // INCLUDE_MANAGEMENT
3896 
3897   // Signal Dispatcher needs to be started before VMInit event is posted
3898   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3899 
3900   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3901   if (!DisableAttachMechanism) {
3902     AttachListener::vm_start();
3903     if (StartAttachListener || AttachListener::init_at_startup()) {
3904       AttachListener::init();
3905     }
3906   }
3907 
3908   // Launch -Xrun agents
3909   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3910   // back-end can launch with -Xdebug -Xrunjdwp.
3911   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3912     create_vm_init_libraries();
3913   }
3914 
3915   if (CleanChunkPoolAsync) {
3916     Chunk::start_chunk_pool_cleaner_task();
3917   }
3918 
3919   // initialize compiler(s)
3920 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3921 #if INCLUDE_JVMCI
3922   bool force_JVMCI_intialization = false;
3923   if (EnableJVMCI) {
3924     // Initialize JVMCI eagerly when it is explicitly requested.
3925     // Or when JVMCIPrintProperties is enabled.
3926     // The JVMCI Java initialization code will read this flag and
3927     // do the printing if it's set.
3928     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3929 
3930     if (!force_JVMCI_intialization) {
3931       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3932       // compilations via JVMCI will not actually block until JVMCI is initialized.
3933       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3934     }
3935   }
3936 #endif
3937   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3938   // Postpone completion of compiler initialization to after JVMCI
3939   // is initialized to avoid timeouts of blocking compilations.
3940   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3941     CompileBroker::compilation_init_phase2();
3942   }
3943 #endif
3944 
3945   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3946   // It is done after compilers are initialized, because otherwise compilations of
3947   // signature polymorphic MH intrinsics can be missed
3948   // (see SystemDictionary::find_method_handle_intrinsic).
3949   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3950 
3951   // This will initialize the module system.  Only java.base classes can be
3952   // loaded until phase 2 completes
3953   call_initPhase2(CHECK_JNI_ERR);
3954 
3955   // Always call even when there are not JVMTI environments yet, since environments
3956   // may be attached late and JVMTI must track phases of VM execution
3957   JvmtiExport::enter_start_phase();
3958 
3959   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3960   JvmtiExport::post_vm_start();
3961 
3962   // Final system initialization including security manager and system class loader
3963   call_initPhase3(CHECK_JNI_ERR);
3964 
3965   // cache the system and platform class loaders
3966   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3967 
3968 #if INCLUDE_CDS
3969   if (DumpSharedSpaces) {
3970     // capture the module path info from the ModuleEntryTable
3971     ClassLoader::initialize_module_path(THREAD);
3972   }
3973 #endif
3974 
3975 #if INCLUDE_JVMCI
3976   if (force_JVMCI_intialization) {
3977     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3978     CompileBroker::compilation_init_phase2();
3979   }
3980 #endif
3981 
3982   // Always call even when there are not JVMTI environments yet, since environments
3983   // may be attached late and JVMTI must track phases of VM execution
3984   JvmtiExport::enter_live_phase();
3985 
3986   // Make perfmemory accessible
3987   PerfMemory::set_accessible(true);
3988 
3989   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3990   JvmtiExport::post_vm_initialized();
3991 
3992   JFR_ONLY(Jfr::on_vm_start();)
3993 
3994 #if INCLUDE_MANAGEMENT
3995   Management::initialize(THREAD);
3996 
3997   if (HAS_PENDING_EXCEPTION) {
3998     // management agent fails to start possibly due to
3999     // configuration problem and is responsible for printing
4000     // stack trace if appropriate. Simply exit VM.
4001     vm_exit(1);
4002   }
4003 #endif // INCLUDE_MANAGEMENT
4004 
4005   if (MemProfiling)                   MemProfiler::engage();
4006   StatSampler::engage();
4007   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4008 
4009   BiasedLocking::init();
4010 
4011 #if INCLUDE_RTM_OPT
4012   RTMLockingCounters::init();
4013 #endif
4014 
4015   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4016     call_postVMInitHook(THREAD);
4017     // The Java side of PostVMInitHook.run must deal with all
4018     // exceptions and provide means of diagnosis.
4019     if (HAS_PENDING_EXCEPTION) {
4020       CLEAR_PENDING_EXCEPTION;
4021     }
4022   }
4023 
4024   {
4025     MutexLocker ml(PeriodicTask_lock);
4026     // Make sure the WatcherThread can be started by WatcherThread::start()
4027     // or by dynamic enrollment.
4028     WatcherThread::make_startable();
4029     // Start up the WatcherThread if there are any periodic tasks
4030     // NOTE:  All PeriodicTasks should be registered by now. If they
4031     //   aren't, late joiners might appear to start slowly (we might
4032     //   take a while to process their first tick).
4033     if (PeriodicTask::num_tasks() > 0) {
4034       WatcherThread::start();
4035     }
4036   }
4037 
4038   create_vm_timer.end();
4039 #ifdef ASSERT
4040   _vm_complete = true;
4041 #endif
4042 
4043   if (DumpSharedSpaces) {
4044     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4045     ShouldNotReachHere();
4046   }
4047 
4048   return JNI_OK;
4049 }
4050 
4051 // type for the Agent_OnLoad and JVM_OnLoad entry points
4052 extern "C" {
4053   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4054 }
4055 // Find a command line agent library and return its entry point for
4056 //         -agentlib:  -agentpath:   -Xrun
4057 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4058 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4059                                     const char *on_load_symbols[],
4060                                     size_t num_symbol_entries) {
4061   OnLoadEntry_t on_load_entry = NULL;
4062   void *library = NULL;
4063 
4064   if (!agent->valid()) {
4065     char buffer[JVM_MAXPATHLEN];
4066     char ebuf[1024] = "";
4067     const char *name = agent->name();
4068     const char *msg = "Could not find agent library ";
4069 
4070     // First check to see if agent is statically linked into executable
4071     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4072       library = agent->os_lib();
4073     } else if (agent->is_absolute_path()) {
4074       library = os::dll_load(name, ebuf, sizeof ebuf);
4075       if (library == NULL) {
4076         const char *sub_msg = " in absolute path, with error: ";
4077         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4078         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4079         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4080         // If we can't find the agent, exit.
4081         vm_exit_during_initialization(buf, NULL);
4082         FREE_C_HEAP_ARRAY(char, buf);
4083       }
4084     } else {
4085       // Try to load the agent from the standard dll directory
4086       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4087                              name)) {
4088         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4089       }
4090       if (library == NULL) { // Try the library path directory.
4091         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4092           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4093         }
4094         if (library == NULL) {
4095           const char *sub_msg = " on the library path, with error: ";
4096           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4097 
4098           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4099                        strlen(ebuf) + strlen(sub_msg2) + 1;
4100           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4101           if (!agent->is_instrument_lib()) {
4102             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4103           } else {
4104             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4105           }
4106           // If we can't find the agent, exit.
4107           vm_exit_during_initialization(buf, NULL);
4108           FREE_C_HEAP_ARRAY(char, buf);
4109         }
4110       }
4111     }
4112     agent->set_os_lib(library);
4113     agent->set_valid();
4114   }
4115 
4116   // Find the OnLoad function.
4117   on_load_entry =
4118     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4119                                                           false,
4120                                                           on_load_symbols,
4121                                                           num_symbol_entries));
4122   return on_load_entry;
4123 }
4124 
4125 // Find the JVM_OnLoad entry point
4126 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4127   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4128   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4129 }
4130 
4131 // Find the Agent_OnLoad entry point
4132 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4133   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4134   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4135 }
4136 
4137 // For backwards compatibility with -Xrun
4138 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4139 // treated like -agentpath:
4140 // Must be called before agent libraries are created
4141 void Threads::convert_vm_init_libraries_to_agents() {
4142   AgentLibrary* agent;
4143   AgentLibrary* next;
4144 
4145   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4146     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4147     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4148 
4149     // If there is an JVM_OnLoad function it will get called later,
4150     // otherwise see if there is an Agent_OnLoad
4151     if (on_load_entry == NULL) {
4152       on_load_entry = lookup_agent_on_load(agent);
4153       if (on_load_entry != NULL) {
4154         // switch it to the agent list -- so that Agent_OnLoad will be called,
4155         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4156         Arguments::convert_library_to_agent(agent);
4157       } else {
4158         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4159       }
4160     }
4161   }
4162 }
4163 
4164 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4165 // Invokes Agent_OnLoad
4166 // Called very early -- before JavaThreads exist
4167 void Threads::create_vm_init_agents() {
4168   extern struct JavaVM_ main_vm;
4169   AgentLibrary* agent;
4170 
4171   JvmtiExport::enter_onload_phase();
4172 
4173   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4174     // CDS dumping does not support native JVMTI agent.
4175     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4176     if (DumpSharedSpaces) {
4177       if(!agent->is_instrument_lib()) {
4178         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4179       } else if (!AllowArchivingWithJavaAgent) {
4180         vm_exit_during_cds_dumping(
4181           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4182       }
4183     }
4184 
4185     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4186 
4187     if (on_load_entry != NULL) {
4188       // Invoke the Agent_OnLoad function
4189       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4190       if (err != JNI_OK) {
4191         vm_exit_during_initialization("agent library failed to init", agent->name());
4192       }
4193     } else {
4194       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4195     }
4196   }
4197 
4198   JvmtiExport::enter_primordial_phase();
4199 }
4200 
4201 extern "C" {
4202   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4203 }
4204 
4205 void Threads::shutdown_vm_agents() {
4206   // Send any Agent_OnUnload notifications
4207   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4208   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4209   extern struct JavaVM_ main_vm;
4210   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4211 
4212     // Find the Agent_OnUnload function.
4213     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4214                                                    os::find_agent_function(agent,
4215                                                    false,
4216                                                    on_unload_symbols,
4217                                                    num_symbol_entries));
4218 
4219     // Invoke the Agent_OnUnload function
4220     if (unload_entry != NULL) {
4221       JavaThread* thread = JavaThread::current();
4222       ThreadToNativeFromVM ttn(thread);
4223       HandleMark hm(thread);
4224       (*unload_entry)(&main_vm);
4225     }
4226   }
4227 }
4228 
4229 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4230 // Invokes JVM_OnLoad
4231 void Threads::create_vm_init_libraries() {
4232   extern struct JavaVM_ main_vm;
4233   AgentLibrary* agent;
4234 
4235   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4236     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4237 
4238     if (on_load_entry != NULL) {
4239       // Invoke the JVM_OnLoad function
4240       JavaThread* thread = JavaThread::current();
4241       ThreadToNativeFromVM ttn(thread);
4242       HandleMark hm(thread);
4243       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4244       if (err != JNI_OK) {
4245         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4246       }
4247     } else {
4248       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4249     }
4250   }
4251 }
4252 
4253 
4254 // Last thread running calls java.lang.Shutdown.shutdown()
4255 void JavaThread::invoke_shutdown_hooks() {
4256   HandleMark hm(this);
4257 
4258   // We could get here with a pending exception, if so clear it now.
4259   if (this->has_pending_exception()) {
4260     this->clear_pending_exception();
4261   }
4262 
4263   EXCEPTION_MARK;
4264   Klass* shutdown_klass =
4265     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4266                                       THREAD);
4267   if (shutdown_klass != NULL) {
4268     // SystemDictionary::resolve_or_null will return null if there was
4269     // an exception.  If we cannot load the Shutdown class, just don't
4270     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4271     // won't be run.  Note that if a shutdown hook was registered,
4272     // the Shutdown class would have already been loaded
4273     // (Runtime.addShutdownHook will load it).
4274     JavaValue result(T_VOID);
4275     JavaCalls::call_static(&result,
4276                            shutdown_klass,
4277                            vmSymbols::shutdown_method_name(),
4278                            vmSymbols::void_method_signature(),
4279                            THREAD);
4280   }
4281   CLEAR_PENDING_EXCEPTION;
4282 }
4283 
4284 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4285 // the program falls off the end of main(). Another VM exit path is through
4286 // vm_exit() when the program calls System.exit() to return a value or when
4287 // there is a serious error in VM. The two shutdown paths are not exactly
4288 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4289 // and VM_Exit op at VM level.
4290 //
4291 // Shutdown sequence:
4292 //   + Shutdown native memory tracking if it is on
4293 //   + Wait until we are the last non-daemon thread to execute
4294 //     <-- every thing is still working at this moment -->
4295 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4296 //        shutdown hooks
4297 //   + Call before_exit(), prepare for VM exit
4298 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4299 //        currently the only user of this mechanism is File.deleteOnExit())
4300 //      > stop StatSampler, watcher thread, CMS threads,
4301 //        post thread end and vm death events to JVMTI,
4302 //        stop signal thread
4303 //   + Call JavaThread::exit(), it will:
4304 //      > release JNI handle blocks, remove stack guard pages
4305 //      > remove this thread from Threads list
4306 //     <-- no more Java code from this thread after this point -->
4307 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4308 //     the compiler threads at safepoint
4309 //     <-- do not use anything that could get blocked by Safepoint -->
4310 //   + Disable tracing at JNI/JVM barriers
4311 //   + Set _vm_exited flag for threads that are still running native code
4312 //   + Call exit_globals()
4313 //      > deletes tty
4314 //      > deletes PerfMemory resources
4315 //   + Delete this thread
4316 //   + Return to caller
4317 
4318 bool Threads::destroy_vm() {
4319   JavaThread* thread = JavaThread::current();
4320 
4321 #ifdef ASSERT
4322   _vm_complete = false;
4323 #endif
4324   // Wait until we are the last non-daemon thread to execute
4325   { MutexLocker nu(Threads_lock);
4326     while (Threads::number_of_non_daemon_threads() > 1)
4327       // This wait should make safepoint checks, wait without a timeout,
4328       // and wait as a suspend-equivalent condition.
4329       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4330                          Mutex::_as_suspend_equivalent_flag);
4331   }
4332 
4333   EventShutdown e;
4334   if (e.should_commit()) {
4335     e.set_reason("No remaining non-daemon Java threads");
4336     e.commit();
4337   }
4338 
4339   // Hang forever on exit if we are reporting an error.
4340   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4341     os::infinite_sleep();
4342   }
4343   os::wait_for_keypress_at_exit();
4344 
4345   // run Java level shutdown hooks
4346   thread->invoke_shutdown_hooks();
4347 
4348   before_exit(thread);
4349 
4350   thread->exit(true);
4351 
4352   // Stop VM thread.
4353   {
4354     // 4945125 The vm thread comes to a safepoint during exit.
4355     // GC vm_operations can get caught at the safepoint, and the
4356     // heap is unparseable if they are caught. Grab the Heap_lock
4357     // to prevent this. The GC vm_operations will not be able to
4358     // queue until after the vm thread is dead. After this point,
4359     // we'll never emerge out of the safepoint before the VM exits.
4360 
4361     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4362 
4363     VMThread::wait_for_vm_thread_exit();
4364     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4365     VMThread::destroy();
4366   }
4367 
4368   // Now, all Java threads are gone except daemon threads. Daemon threads
4369   // running Java code or in VM are stopped by the Safepoint. However,
4370   // daemon threads executing native code are still running.  But they
4371   // will be stopped at native=>Java/VM barriers. Note that we can't
4372   // simply kill or suspend them, as it is inherently deadlock-prone.
4373 
4374   VM_Exit::set_vm_exited();
4375 
4376   // Clean up ideal graph printers after the VMThread has started
4377   // the final safepoint which will block all the Compiler threads.
4378   // Note that this Thread has already logically exited so the
4379   // clean_up() function's use of a JavaThreadIteratorWithHandle
4380   // would be a problem except set_vm_exited() has remembered the
4381   // shutdown thread which is granted a policy exception.
4382 #if defined(COMPILER2) && !defined(PRODUCT)
4383   IdealGraphPrinter::clean_up();
4384 #endif
4385 
4386   notify_vm_shutdown();
4387 
4388   // exit_globals() will delete tty
4389   exit_globals();
4390 
4391   // We are after VM_Exit::set_vm_exited() so we can't call
4392   // thread->smr_delete() or we will block on the Threads_lock.
4393   // Deleting the shutdown thread here is safe because another
4394   // JavaThread cannot have an active ThreadsListHandle for
4395   // this JavaThread.
4396   delete thread;
4397 
4398 #if INCLUDE_JVMCI
4399   if (JVMCICounterSize > 0) {
4400     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4401   }
4402 #endif
4403 
4404   LogConfiguration::finalize();
4405 
4406   return true;
4407 }
4408 
4409 
4410 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4411   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4412   return is_supported_jni_version(version);
4413 }
4414 
4415 
4416 jboolean Threads::is_supported_jni_version(jint version) {
4417   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4418   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4419   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4420   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4421   if (version == JNI_VERSION_9) return JNI_TRUE;
4422   if (version == JNI_VERSION_10) return JNI_TRUE;
4423   return JNI_FALSE;
4424 }
4425 
4426 
4427 void Threads::add(JavaThread* p, bool force_daemon) {
4428   // The threads lock must be owned at this point
4429   assert(Threads_lock->owned_by_self(), "must have threads lock");
4430 
4431   BarrierSet::barrier_set()->on_thread_attach(p);
4432 
4433   p->set_next(_thread_list);
4434   _thread_list = p;
4435 
4436   // Once a JavaThread is added to the Threads list, smr_delete() has
4437   // to be used to delete it. Otherwise we can just delete it directly.
4438   p->set_on_thread_list();
4439 
4440   _number_of_threads++;
4441   oop threadObj = p->threadObj();
4442   bool daemon = true;
4443   // Bootstrapping problem: threadObj can be null for initial
4444   // JavaThread (or for threads attached via JNI)
4445   if ((!force_daemon) && !is_daemon((threadObj))) {
4446     _number_of_non_daemon_threads++;
4447     daemon = false;
4448   }
4449 
4450   ThreadService::add_thread(p, daemon);
4451 
4452   // Maintain fast thread list
4453   ThreadsSMRSupport::add_thread(p);
4454 
4455   // Possible GC point.
4456   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4457 }
4458 
4459 void Threads::remove(JavaThread* p) {
4460 
4461   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4462   ObjectSynchronizer::omFlush(p);
4463 
4464   // Extra scope needed for Thread_lock, so we can check
4465   // that we do not remove thread without safepoint code notice
4466   { MutexLocker ml(Threads_lock);
4467 
4468     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4469 
4470     // Maintain fast thread list
4471     ThreadsSMRSupport::remove_thread(p);
4472 
4473     JavaThread* current = _thread_list;
4474     JavaThread* prev    = NULL;
4475 
4476     while (current != p) {
4477       prev    = current;
4478       current = current->next();
4479     }
4480 
4481     if (prev) {
4482       prev->set_next(current->next());
4483     } else {
4484       _thread_list = p->next();
4485     }
4486 
4487     _number_of_threads--;
4488     oop threadObj = p->threadObj();
4489     bool daemon = true;
4490     if (!is_daemon(threadObj)) {
4491       _number_of_non_daemon_threads--;
4492       daemon = false;
4493 
4494       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4495       // on destroy_vm will wake up.
4496       if (number_of_non_daemon_threads() == 1) {
4497         Threads_lock->notify_all();
4498       }
4499     }
4500     ThreadService::remove_thread(p, daemon);
4501 
4502     // Make sure that safepoint code disregard this thread. This is needed since
4503     // the thread might mess around with locks after this point. This can cause it
4504     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4505     // of this thread since it is removed from the queue.
4506     p->set_terminated_value();
4507   } // unlock Threads_lock
4508 
4509   // Since Events::log uses a lock, we grab it outside the Threads_lock
4510   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4511 }
4512 
4513 // Operations on the Threads list for GC.  These are not explicitly locked,
4514 // but the garbage collector must provide a safe context for them to run.
4515 // In particular, these things should never be called when the Threads_lock
4516 // is held by some other thread. (Note: the Safepoint abstraction also
4517 // uses the Threads_lock to guarantee this property. It also makes sure that
4518 // all threads gets blocked when exiting or starting).
4519 
4520 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4521   ALL_JAVA_THREADS(p) {
4522     p->oops_do(f, cf);
4523   }
4524   VMThread::vm_thread()->oops_do(f, cf);
4525 }
4526 
4527 void Threads::change_thread_claim_parity() {
4528   // Set the new claim parity.
4529   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4530          "Not in range.");
4531   _thread_claim_parity++;
4532   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4533   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4534          "Not in range.");
4535 }
4536 
4537 #ifdef ASSERT
4538 void Threads::assert_all_threads_claimed() {
4539   ALL_JAVA_THREADS(p) {
4540     const int thread_parity = p->oops_do_parity();
4541     assert((thread_parity == _thread_claim_parity),
4542            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4543   }
4544   VMThread* vmt = VMThread::vm_thread();
4545   const int thread_parity = vmt->oops_do_parity();
4546   assert((thread_parity == _thread_claim_parity),
4547          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4548 }
4549 #endif // ASSERT
4550 
4551 class ParallelOopsDoThreadClosure : public ThreadClosure {
4552 private:
4553   OopClosure* _f;
4554   CodeBlobClosure* _cf;
4555 public:
4556   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4557   void do_thread(Thread* t) {
4558     t->oops_do(_f, _cf);
4559   }
4560 };
4561 
4562 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4563   ParallelOopsDoThreadClosure tc(f, cf);
4564   possibly_parallel_threads_do(is_par, &tc);
4565 }
4566 
4567 void Threads::nmethods_do(CodeBlobClosure* cf) {
4568   ALL_JAVA_THREADS(p) {
4569     // This is used by the code cache sweeper to mark nmethods that are active
4570     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4571     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4572     if(!p->is_Code_cache_sweeper_thread()) {
4573       p->nmethods_do(cf);
4574     }
4575   }
4576 }
4577 
4578 void Threads::metadata_do(void f(Metadata*)) {
4579   ALL_JAVA_THREADS(p) {
4580     p->metadata_do(f);
4581   }
4582 }
4583 
4584 class ThreadHandlesClosure : public ThreadClosure {
4585   void (*_f)(Metadata*);
4586  public:
4587   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4588   virtual void do_thread(Thread* thread) {
4589     thread->metadata_handles_do(_f);
4590   }
4591 };
4592 
4593 void Threads::metadata_handles_do(void f(Metadata*)) {
4594   // Only walk the Handles in Thread.
4595   ThreadHandlesClosure handles_closure(f);
4596   threads_do(&handles_closure);
4597 }
4598 
4599 void Threads::deoptimized_wrt_marked_nmethods() {
4600   ALL_JAVA_THREADS(p) {
4601     p->deoptimized_wrt_marked_nmethods();
4602   }
4603 }
4604 
4605 
4606 // Get count Java threads that are waiting to enter the specified monitor.
4607 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4608                                                          int count,
4609                                                          address monitor) {
4610   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4611 
4612   int i = 0;
4613   DO_JAVA_THREADS(t_list, p) {
4614     if (!p->can_call_java()) continue;
4615 
4616     address pending = (address)p->current_pending_monitor();
4617     if (pending == monitor) {             // found a match
4618       if (i < count) result->append(p);   // save the first count matches
4619       i++;
4620     }
4621   }
4622 
4623   return result;
4624 }
4625 
4626 
4627 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4628                                                       address owner) {
4629   // NULL owner means not locked so we can skip the search
4630   if (owner == NULL) return NULL;
4631 
4632   DO_JAVA_THREADS(t_list, p) {
4633     // first, see if owner is the address of a Java thread
4634     if (owner == (address)p) return p;
4635   }
4636 
4637   // Cannot assert on lack of success here since this function may be
4638   // used by code that is trying to report useful problem information
4639   // like deadlock detection.
4640   if (UseHeavyMonitors) return NULL;
4641 
4642   // If we didn't find a matching Java thread and we didn't force use of
4643   // heavyweight monitors, then the owner is the stack address of the
4644   // Lock Word in the owning Java thread's stack.
4645   //
4646   JavaThread* the_owner = NULL;
4647   DO_JAVA_THREADS(t_list, q) {
4648     if (q->is_lock_owned(owner)) {
4649       the_owner = q;
4650       break;
4651     }
4652   }
4653 
4654   // cannot assert on lack of success here; see above comment
4655   return the_owner;
4656 }
4657 
4658 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4659 void Threads::print_on(outputStream* st, bool print_stacks,
4660                        bool internal_format, bool print_concurrent_locks,
4661                        bool print_extended_info) {
4662   char buf[32];
4663   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4664 
4665   st->print_cr("Full thread dump %s (%s %s):",
4666                VM_Version::vm_name(),
4667                VM_Version::vm_release(),
4668                VM_Version::vm_info_string());
4669   st->cr();
4670 
4671 #if INCLUDE_SERVICES
4672   // Dump concurrent locks
4673   ConcurrentLocksDump concurrent_locks;
4674   if (print_concurrent_locks) {
4675     concurrent_locks.dump_at_safepoint();
4676   }
4677 #endif // INCLUDE_SERVICES
4678 
4679   ThreadsSMRSupport::print_info_on(st);
4680   st->cr();
4681 
4682   ALL_JAVA_THREADS(p) {
4683     ResourceMark rm;
4684     p->print_on(st, print_extended_info);
4685     if (print_stacks) {
4686       if (internal_format) {
4687         p->trace_stack();
4688       } else {
4689         p->print_stack_on(st);
4690       }
4691     }
4692     st->cr();
4693 #if INCLUDE_SERVICES
4694     if (print_concurrent_locks) {
4695       concurrent_locks.print_locks_on(p, st);
4696     }
4697 #endif // INCLUDE_SERVICES
4698   }
4699 
4700   VMThread::vm_thread()->print_on(st);
4701   st->cr();
4702   Universe::heap()->print_gc_threads_on(st);
4703   WatcherThread* wt = WatcherThread::watcher_thread();
4704   if (wt != NULL) {
4705     wt->print_on(st);
4706     st->cr();
4707   }
4708 
4709   st->flush();
4710 }
4711 
4712 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4713                              int buflen, bool* found_current) {
4714   if (this_thread != NULL) {
4715     bool is_current = (current == this_thread);
4716     *found_current = *found_current || is_current;
4717     st->print("%s", is_current ? "=>" : "  ");
4718 
4719     st->print(PTR_FORMAT, p2i(this_thread));
4720     st->print(" ");
4721     this_thread->print_on_error(st, buf, buflen);
4722     st->cr();
4723   }
4724 }
4725 
4726 class PrintOnErrorClosure : public ThreadClosure {
4727   outputStream* _st;
4728   Thread* _current;
4729   char* _buf;
4730   int _buflen;
4731   bool* _found_current;
4732  public:
4733   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4734                       int buflen, bool* found_current) :
4735    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4736 
4737   virtual void do_thread(Thread* thread) {
4738     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4739   }
4740 };
4741 
4742 // Threads::print_on_error() is called by fatal error handler. It's possible
4743 // that VM is not at safepoint and/or current thread is inside signal handler.
4744 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4745 // memory (even in resource area), it might deadlock the error handler.
4746 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4747                              int buflen) {
4748   ThreadsSMRSupport::print_info_on(st);
4749   st->cr();
4750 
4751   bool found_current = false;
4752   st->print_cr("Java Threads: ( => current thread )");
4753   ALL_JAVA_THREADS(thread) {
4754     print_on_error(thread, st, current, buf, buflen, &found_current);
4755   }
4756   st->cr();
4757 
4758   st->print_cr("Other Threads:");
4759   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4760   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4761 
4762   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4763   Universe::heap()->gc_threads_do(&print_closure);
4764 
4765   if (!found_current) {
4766     st->cr();
4767     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4768     current->print_on_error(st, buf, buflen);
4769     st->cr();
4770   }
4771   st->cr();
4772 
4773   st->print_cr("Threads with active compile tasks:");
4774   print_threads_compiling(st, buf, buflen);
4775 }
4776 
4777 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4778   ALL_JAVA_THREADS(thread) {
4779     if (thread->is_Compiler_thread()) {
4780       CompilerThread* ct = (CompilerThread*) thread;
4781 
4782       // Keep task in local variable for NULL check.
4783       // ct->_task might be set to NULL by concurring compiler thread
4784       // because it completed the compilation. The task is never freed,
4785       // though, just returned to a free list.
4786       CompileTask* task = ct->task();
4787       if (task != NULL) {
4788         thread->print_name_on_error(st, buf, buflen);
4789         st->print("  ");
4790         task->print(st, NULL, short_form, true);
4791       }
4792     }
4793   }
4794 }
4795 
4796 
4797 // Internal SpinLock and Mutex
4798 // Based on ParkEvent
4799 
4800 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4801 //
4802 // We employ SpinLocks _only for low-contention, fixed-length
4803 // short-duration critical sections where we're concerned
4804 // about native mutex_t or HotSpot Mutex:: latency.
4805 // The mux construct provides a spin-then-block mutual exclusion
4806 // mechanism.
4807 //
4808 // Testing has shown that contention on the ListLock guarding gFreeList
4809 // is common.  If we implement ListLock as a simple SpinLock it's common
4810 // for the JVM to devolve to yielding with little progress.  This is true
4811 // despite the fact that the critical sections protected by ListLock are
4812 // extremely short.
4813 //
4814 // TODO-FIXME: ListLock should be of type SpinLock.
4815 // We should make this a 1st-class type, integrated into the lock
4816 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4817 // should have sufficient padding to avoid false-sharing and excessive
4818 // cache-coherency traffic.
4819 
4820 
4821 typedef volatile int SpinLockT;
4822 
4823 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4824   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4825     return;   // normal fast-path return
4826   }
4827 
4828   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4829   int ctr = 0;
4830   int Yields = 0;
4831   for (;;) {
4832     while (*adr != 0) {
4833       ++ctr;
4834       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4835         if (Yields > 5) {
4836           os::naked_short_sleep(1);
4837         } else {
4838           os::naked_yield();
4839           ++Yields;
4840         }
4841       } else {
4842         SpinPause();
4843       }
4844     }
4845     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4846   }
4847 }
4848 
4849 void Thread::SpinRelease(volatile int * adr) {
4850   assert(*adr != 0, "invariant");
4851   OrderAccess::fence();      // guarantee at least release consistency.
4852   // Roach-motel semantics.
4853   // It's safe if subsequent LDs and STs float "up" into the critical section,
4854   // but prior LDs and STs within the critical section can't be allowed
4855   // to reorder or float past the ST that releases the lock.
4856   // Loads and stores in the critical section - which appear in program
4857   // order before the store that releases the lock - must also appear
4858   // before the store that releases the lock in memory visibility order.
4859   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4860   // the ST of 0 into the lock-word which releases the lock, so fence
4861   // more than covers this on all platforms.
4862   *adr = 0;
4863 }
4864 
4865 // muxAcquire and muxRelease:
4866 //
4867 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4868 //    The LSB of the word is set IFF the lock is held.
4869 //    The remainder of the word points to the head of a singly-linked list
4870 //    of threads blocked on the lock.
4871 //
4872 // *  The current implementation of muxAcquire-muxRelease uses its own
4873 //    dedicated Thread._MuxEvent instance.  If we're interested in
4874 //    minimizing the peak number of extant ParkEvent instances then
4875 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4876 //    as certain invariants were satisfied.  Specifically, care would need
4877 //    to be taken with regards to consuming unpark() "permits".
4878 //    A safe rule of thumb is that a thread would never call muxAcquire()
4879 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4880 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4881 //    consume an unpark() permit intended for monitorenter, for instance.
4882 //    One way around this would be to widen the restricted-range semaphore
4883 //    implemented in park().  Another alternative would be to provide
4884 //    multiple instances of the PlatformEvent() for each thread.  One
4885 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4886 //
4887 // *  Usage:
4888 //    -- Only as leaf locks
4889 //    -- for short-term locking only as muxAcquire does not perform
4890 //       thread state transitions.
4891 //
4892 // Alternatives:
4893 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4894 //    but with parking or spin-then-park instead of pure spinning.
4895 // *  Use Taura-Oyama-Yonenzawa locks.
4896 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4897 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4898 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4899 //    acquiring threads use timers (ParkTimed) to detect and recover from
4900 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4901 //    boundaries by using placement-new.
4902 // *  Augment MCS with advisory back-link fields maintained with CAS().
4903 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4904 //    The validity of the backlinks must be ratified before we trust the value.
4905 //    If the backlinks are invalid the exiting thread must back-track through the
4906 //    the forward links, which are always trustworthy.
4907 // *  Add a successor indication.  The LockWord is currently encoded as
4908 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4909 //    to provide the usual futile-wakeup optimization.
4910 //    See RTStt for details.
4911 //
4912 
4913 
4914 const intptr_t LOCKBIT = 1;
4915 
4916 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4917   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4918   if (w == 0) return;
4919   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4920     return;
4921   }
4922 
4923   ParkEvent * const Self = Thread::current()->_MuxEvent;
4924   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4925   for (;;) {
4926     int its = (os::is_MP() ? 100 : 0) + 1;
4927 
4928     // Optional spin phase: spin-then-park strategy
4929     while (--its >= 0) {
4930       w = *Lock;
4931       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4932         return;
4933       }
4934     }
4935 
4936     Self->reset();
4937     Self->OnList = intptr_t(Lock);
4938     // The following fence() isn't _strictly necessary as the subsequent
4939     // CAS() both serializes execution and ratifies the fetched *Lock value.
4940     OrderAccess::fence();
4941     for (;;) {
4942       w = *Lock;
4943       if ((w & LOCKBIT) == 0) {
4944         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4945           Self->OnList = 0;   // hygiene - allows stronger asserts
4946           return;
4947         }
4948         continue;      // Interference -- *Lock changed -- Just retry
4949       }
4950       assert(w & LOCKBIT, "invariant");
4951       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4952       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4953     }
4954 
4955     while (Self->OnList != 0) {
4956       Self->park();
4957     }
4958   }
4959 }
4960 
4961 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4962   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4963   if (w == 0) return;
4964   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4965     return;
4966   }
4967 
4968   ParkEvent * ReleaseAfter = NULL;
4969   if (ev == NULL) {
4970     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4971   }
4972   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4973   for (;;) {
4974     guarantee(ev->OnList == 0, "invariant");
4975     int its = (os::is_MP() ? 100 : 0) + 1;
4976 
4977     // Optional spin phase: spin-then-park strategy
4978     while (--its >= 0) {
4979       w = *Lock;
4980       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4981         if (ReleaseAfter != NULL) {
4982           ParkEvent::Release(ReleaseAfter);
4983         }
4984         return;
4985       }
4986     }
4987 
4988     ev->reset();
4989     ev->OnList = intptr_t(Lock);
4990     // The following fence() isn't _strictly necessary as the subsequent
4991     // CAS() both serializes execution and ratifies the fetched *Lock value.
4992     OrderAccess::fence();
4993     for (;;) {
4994       w = *Lock;
4995       if ((w & LOCKBIT) == 0) {
4996         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4997           ev->OnList = 0;
4998           // We call ::Release while holding the outer lock, thus
4999           // artificially lengthening the critical section.
5000           // Consider deferring the ::Release() until the subsequent unlock(),
5001           // after we've dropped the outer lock.
5002           if (ReleaseAfter != NULL) {
5003             ParkEvent::Release(ReleaseAfter);
5004           }
5005           return;
5006         }
5007         continue;      // Interference -- *Lock changed -- Just retry
5008       }
5009       assert(w & LOCKBIT, "invariant");
5010       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5011       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5012     }
5013 
5014     while (ev->OnList != 0) {
5015       ev->park();
5016     }
5017   }
5018 }
5019 
5020 // Release() must extract a successor from the list and then wake that thread.
5021 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5022 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5023 // Release() would :
5024 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5025 // (B) Extract a successor from the private list "in-hand"
5026 // (C) attempt to CAS() the residual back into *Lock over null.
5027 //     If there were any newly arrived threads and the CAS() would fail.
5028 //     In that case Release() would detach the RATs, re-merge the list in-hand
5029 //     with the RATs and repeat as needed.  Alternately, Release() might
5030 //     detach and extract a successor, but then pass the residual list to the wakee.
5031 //     The wakee would be responsible for reattaching and remerging before it
5032 //     competed for the lock.
5033 //
5034 // Both "pop" and DMR are immune from ABA corruption -- there can be
5035 // multiple concurrent pushers, but only one popper or detacher.
5036 // This implementation pops from the head of the list.  This is unfair,
5037 // but tends to provide excellent throughput as hot threads remain hot.
5038 // (We wake recently run threads first).
5039 //
5040 // All paths through muxRelease() will execute a CAS.
5041 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5042 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5043 // executed within the critical section are complete and globally visible before the
5044 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5045 void Thread::muxRelease(volatile intptr_t * Lock)  {
5046   for (;;) {
5047     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5048     assert(w & LOCKBIT, "invariant");
5049     if (w == LOCKBIT) return;
5050     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5051     assert(List != NULL, "invariant");
5052     assert(List->OnList == intptr_t(Lock), "invariant");
5053     ParkEvent * const nxt = List->ListNext;
5054     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5055 
5056     // The following CAS() releases the lock and pops the head element.
5057     // The CAS() also ratifies the previously fetched lock-word value.
5058     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5059       continue;
5060     }
5061     List->OnList = 0;
5062     OrderAccess::fence();
5063     List->unpark();
5064     return;
5065   }
5066 }
5067 
5068 
5069 void Threads::verify() {
5070   ALL_JAVA_THREADS(p) {
5071     p->verify();
5072   }
5073   VMThread* thread = VMThread::vm_thread();
5074   if (thread != NULL) thread->verify();
5075 }