1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 #if INCLUDE_JVMCI
 768 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 769   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 770   thread->set_jvmci_implicit_exception_pc(pc);
 771   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 772   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 773 }
 774 #endif // INCLUDE_JVMCI
 775 
 776 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 777                                                            address pc,
 778                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 779 {
 780   address target_pc = NULL;
 781 
 782   if (Interpreter::contains(pc)) {
 783 #ifdef CC_INTERP
 784     // C++ interpreter doesn't throw implicit exceptions
 785     ShouldNotReachHere();
 786 #else
 787     switch (exception_kind) {
 788       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 789       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 790       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 791       default:                      ShouldNotReachHere();
 792     }
 793 #endif // !CC_INTERP
 794   } else {
 795     switch (exception_kind) {
 796       case STACK_OVERFLOW: {
 797         // Stack overflow only occurs upon frame setup; the callee is
 798         // going to be unwound. Dispatch to a shared runtime stub
 799         // which will cause the StackOverflowError to be fabricated
 800         // and processed.
 801         // Stack overflow should never occur during deoptimization:
 802         // the compiled method bangs the stack by as much as the
 803         // interpreter would need in case of a deoptimization. The
 804         // deoptimization blob and uncommon trap blob bang the stack
 805         // in a debug VM to verify the correctness of the compiled
 806         // method stack banging.
 807         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 808         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 809         return StubRoutines::throw_StackOverflowError_entry();
 810       }
 811 
 812       case IMPLICIT_NULL: {
 813         if (VtableStubs::contains(pc)) {
 814           // We haven't yet entered the callee frame. Fabricate an
 815           // exception and begin dispatching it in the caller. Since
 816           // the caller was at a call site, it's safe to destroy all
 817           // caller-saved registers, as these entry points do.
 818           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 819 
 820           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 821           if (vt_stub == NULL) return NULL;
 822 
 823           if (vt_stub->is_abstract_method_error(pc)) {
 824             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 825             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 826             // Instead of throwing the abstract method error here directly, we re-resolve
 827             // and will throw the AbstractMethodError during resolve. As a result, we'll
 828             // get a more detailed error message.
 829             return SharedRuntime::get_handle_wrong_method_stub();
 830           } else {
 831             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 832             // Assert that the signal comes from the expected location in stub code.
 833             assert(vt_stub->is_null_pointer_exception(pc),
 834                    "obtained signal from unexpected location in stub code");
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837         } else {
 838           CodeBlob* cb = CodeCache::find_blob(pc);
 839 
 840           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (cb == NULL) return NULL;
 842 
 843           // Exception happened in CodeCache. Must be either:
 844           // 1. Inline-cache check in C2I handler blob,
 845           // 2. Inline-cache check in nmethod, or
 846           // 3. Implicit null exception in nmethod
 847 
 848           if (!cb->is_compiled()) {
 849             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 850             if (!is_in_blob) {
 851               // Allow normal crash reporting to handle this
 852               return NULL;
 853             }
 854             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 855             // There is no handler here, so we will simply unwind.
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           // Otherwise, it's a compiled method.  Consult its exception handlers.
 860           CompiledMethod* cm = (CompiledMethod*)cb;
 861           if (cm->inlinecache_check_contains(pc)) {
 862             // exception happened inside inline-cache check code
 863             // => the nmethod is not yet active (i.e., the frame
 864             // is not set up yet) => use return address pushed by
 865             // caller => don't push another return address
 866             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870           if (cm->method()->is_method_handle_intrinsic()) {
 871             // exception happened inside MH dispatch code, similar to a vtable stub
 872             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876 #ifndef PRODUCT
 877           _implicit_null_throws++;
 878 #endif
 879 #if INCLUDE_JVMCI
 880           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 881             // If there's no PcDesc then we'll die way down inside of
 882             // deopt instead of just getting normal error reporting,
 883             // so only go there if it will succeed.
 884             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 885           } else {
 886 #endif // INCLUDE_JVMCI
 887           assert (cm->is_nmethod(), "Expect nmethod");
 888           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 889 #if INCLUDE_JVMCI
 890           }
 891 #endif // INCLUDE_JVMCI
 892           // If there's an unexpected fault, target_pc might be NULL,
 893           // in which case we want to fall through into the normal
 894           // error handling code.
 895         }
 896 
 897         break; // fall through
 898       }
 899 
 900 
 901       case IMPLICIT_DIVIDE_BY_ZERO: {
 902         CompiledMethod* cm = CodeCache::find_compiled(pc);
 903         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 904 #ifndef PRODUCT
 905         _implicit_div0_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 909           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 910         } else {
 911 #endif // INCLUDE_JVMCI
 912         target_pc = cm->continuation_for_implicit_exception(pc);
 913 #if INCLUDE_JVMCI
 914         }
 915 #endif // INCLUDE_JVMCI
 916         // If there's an unexpected fault, target_pc might be NULL,
 917         // in which case we want to fall through into the normal
 918         // error handling code.
 919         break; // fall through
 920       }
 921 
 922       default: ShouldNotReachHere();
 923     }
 924 
 925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 926 
 927     if (exception_kind == IMPLICIT_NULL) {
 928 #ifndef PRODUCT
 929       // for AbortVMOnException flag
 930       Exceptions::debug_check_abort("java.lang.NullPointerException");
 931 #endif //PRODUCT
 932       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 933     } else {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     }
 940     return target_pc;
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 
 948 /**
 949  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 950  * installed in the native function entry of all native Java methods before
 951  * they get linked to their actual native methods.
 952  *
 953  * \note
 954  * This method actually never gets called!  The reason is because
 955  * the interpreter's native entries call NativeLookup::lookup() which
 956  * throws the exception when the lookup fails.  The exception is then
 957  * caught and forwarded on the return from NativeLookup::lookup() call
 958  * before the call to the native function.  This might change in the future.
 959  */
 960 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 961 {
 962   // We return a bad value here to make sure that the exception is
 963   // forwarded before we look at the return value.
 964   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 965 }
 966 JNI_END
 967 
 968 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 969   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 970 }
 971 
 972 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 973 #if INCLUDE_JVMCI
 974   if (!obj->klass()->has_finalizer()) {
 975     return;
 976   }
 977 #endif // INCLUDE_JVMCI
 978   assert(oopDesc::is_oop(obj), "must be a valid oop");
 979   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 980   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 981 JRT_END
 982 
 983 
 984 jlong SharedRuntime::get_java_tid(Thread* thread) {
 985   if (thread != NULL) {
 986     if (thread->is_Java_thread()) {
 987       oop obj = ((JavaThread*)thread)->threadObj();
 988       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 989     }
 990   }
 991   return 0;
 992 }
 993 
 994 /**
 995  * This function ought to be a void function, but cannot be because
 996  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 997  * 6254741.  Once that is fixed we can remove the dummy return value.
 998  */
 999 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1000   return dtrace_object_alloc_base(Thread::current(), o, size);
1001 }
1002 
1003 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1004   assert(DTraceAllocProbes, "wrong call");
1005   Klass* klass = o->klass();
1006   Symbol* name = klass->name();
1007   HOTSPOT_OBJECT_ALLOC(
1008                    get_java_tid(thread),
1009                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1010   return 0;
1011 }
1012 
1013 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1014     JavaThread* thread, Method* method))
1015   assert(DTraceMethodProbes, "wrong call");
1016   Symbol* kname = method->klass_name();
1017   Symbol* name = method->name();
1018   Symbol* sig = method->signature();
1019   HOTSPOT_METHOD_ENTRY(
1020       get_java_tid(thread),
1021       (char *) kname->bytes(), kname->utf8_length(),
1022       (char *) name->bytes(), name->utf8_length(),
1023       (char *) sig->bytes(), sig->utf8_length());
1024   return 0;
1025 JRT_END
1026 
1027 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1028     JavaThread* thread, Method* method))
1029   assert(DTraceMethodProbes, "wrong call");
1030   Symbol* kname = method->klass_name();
1031   Symbol* name = method->name();
1032   Symbol* sig = method->signature();
1033   HOTSPOT_METHOD_RETURN(
1034       get_java_tid(thread),
1035       (char *) kname->bytes(), kname->utf8_length(),
1036       (char *) name->bytes(), name->utf8_length(),
1037       (char *) sig->bytes(), sig->utf8_length());
1038   return 0;
1039 JRT_END
1040 
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1045 // vtable updates, etc.  Caller frame must be compiled.
1046 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1047   ResourceMark rm(THREAD);
1048 
1049   // last java frame on stack (which includes native call frames)
1050   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1051 
1052   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1053 }
1054 
1055 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1056   CompiledMethod* caller = vfst.nm();
1057 
1058   nmethodLocker caller_lock(caller);
1059 
1060   address pc = vfst.frame_pc();
1061   { // Get call instruction under lock because another thread may be busy patching it.
1062     CompiledICLocker ic_locker(caller);
1063     return caller->attached_method_before_pc(pc);
1064   }
1065   return NULL;
1066 }
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // but callee has not been invoked yet.  Caller frame must be compiled.
1071 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1072                                               vframeStream& vfst,
1073                                               Bytecodes::Code& bc,
1074                                               CallInfo& callinfo, TRAPS) {
1075   Handle receiver;
1076   Handle nullHandle;  //create a handy null handle for exception returns
1077 
1078   assert(!vfst.at_end(), "Java frame must exist");
1079 
1080   // Find caller and bci from vframe
1081   methodHandle caller(THREAD, vfst.method());
1082   int          bci   = vfst.bci();
1083 
1084   Bytecode_invoke bytecode(caller, bci);
1085   int bytecode_index = bytecode.index();
1086   bc = bytecode.invoke_code();
1087 
1088   methodHandle attached_method = extract_attached_method(vfst);
1089   if (attached_method.not_null()) {
1090     methodHandle callee = bytecode.static_target(CHECK_NH);
1091     vmIntrinsics::ID id = callee->intrinsic_id();
1092     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1093     // it attaches statically resolved method to the call site.
1094     if (MethodHandles::is_signature_polymorphic(id) &&
1095         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1096       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1097 
1098       // Adjust invocation mode according to the attached method.
1099       switch (bc) {
1100         case Bytecodes::_invokevirtual:
1101           if (attached_method->method_holder()->is_interface()) {
1102             bc = Bytecodes::_invokeinterface;
1103           }
1104           break;
1105         case Bytecodes::_invokeinterface:
1106           if (!attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokevirtual;
1108           }
1109           break;
1110         case Bytecodes::_invokehandle:
1111           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1112             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1113                                               : Bytecodes::_invokevirtual;
1114           }
1115           break;
1116         default:
1117           break;
1118       }
1119     }
1120   }
1121 
1122   assert(bc != Bytecodes::_illegal, "not initialized");
1123 
1124   bool has_receiver = bc != Bytecodes::_invokestatic &&
1125                       bc != Bytecodes::_invokedynamic &&
1126                       bc != Bytecodes::_invokehandle;
1127 
1128   // Find receiver for non-static call
1129   if (has_receiver) {
1130     // This register map must be update since we need to find the receiver for
1131     // compiled frames. The receiver might be in a register.
1132     RegisterMap reg_map2(thread);
1133     frame stubFrame   = thread->last_frame();
1134     // Caller-frame is a compiled frame
1135     frame callerFrame = stubFrame.sender(&reg_map2);
1136 
1137     if (attached_method.is_null()) {
1138       methodHandle callee = bytecode.static_target(CHECK_NH);
1139       if (callee.is_null()) {
1140         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1141       }
1142     }
1143 
1144     // Retrieve from a compiled argument list
1145     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1146 
1147     if (receiver.is_null()) {
1148       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1149     }
1150   }
1151 
1152   // Resolve method
1153   if (attached_method.not_null()) {
1154     // Parameterized by attached method.
1155     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1156   } else {
1157     // Parameterized by bytecode.
1158     constantPoolHandle constants(THREAD, caller->constants());
1159     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1160   }
1161 
1162 #ifdef ASSERT
1163   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1164   if (has_receiver) {
1165     assert(receiver.not_null(), "should have thrown exception");
1166     Klass* receiver_klass = receiver->klass();
1167     Klass* rk = NULL;
1168     if (attached_method.not_null()) {
1169       // In case there's resolved method attached, use its holder during the check.
1170       rk = attached_method->method_holder();
1171     } else {
1172       // Klass is already loaded.
1173       constantPoolHandle constants(THREAD, caller->constants());
1174       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1175     }
1176     Klass* static_receiver_klass = rk;
1177     methodHandle callee = callinfo.selected_method();
1178     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1179            "actual receiver must be subclass of static receiver klass");
1180     if (receiver_klass->is_instance_klass()) {
1181       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1182         tty->print_cr("ERROR: Klass not yet initialized!!");
1183         receiver_klass->print();
1184       }
1185       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1186     }
1187   }
1188 #endif
1189 
1190   return receiver;
1191 }
1192 
1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1194   ResourceMark rm(THREAD);
1195   // We need first to check if any Java activations (compiled, interpreted)
1196   // exist on the stack since last JavaCall.  If not, we need
1197   // to get the target method from the JavaCall wrapper.
1198   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1199   methodHandle callee_method;
1200   if (vfst.at_end()) {
1201     // No Java frames were found on stack since we did the JavaCall.
1202     // Hence the stack can only contain an entry_frame.  We need to
1203     // find the target method from the stub frame.
1204     RegisterMap reg_map(thread, false);
1205     frame fr = thread->last_frame();
1206     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1207     fr = fr.sender(&reg_map);
1208     assert(fr.is_entry_frame(), "must be");
1209     // fr is now pointing to the entry frame.
1210     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1211   } else {
1212     Bytecodes::Code bc;
1213     CallInfo callinfo;
1214     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1215     callee_method = callinfo.selected_method();
1216   }
1217   assert(callee_method()->is_method(), "must be");
1218   return callee_method;
1219 }
1220 
1221 // Resolves a call.
1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1223                                            bool is_virtual,
1224                                            bool is_optimized, TRAPS) {
1225   methodHandle callee_method;
1226   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1227   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1228     int retry_count = 0;
1229     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1230            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1231       // If has a pending exception then there is no need to re-try to
1232       // resolve this method.
1233       // If the method has been redefined, we need to try again.
1234       // Hack: we have no way to update the vtables of arrays, so don't
1235       // require that java.lang.Object has been updated.
1236 
1237       // It is very unlikely that method is redefined more than 100 times
1238       // in the middle of resolve. If it is looping here more than 100 times
1239       // means then there could be a bug here.
1240       guarantee((retry_count++ < 100),
1241                 "Could not resolve to latest version of redefined method");
1242       // method is redefined in the middle of resolve so re-try.
1243       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1244     }
1245   }
1246   return callee_method;
1247 }
1248 
1249 // This fails if resolution required refilling of IC stubs
1250 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1251                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1252                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1253   StaticCallInfo static_call_info;
1254   CompiledICInfo virtual_call_info;
1255 
1256   // Make sure the callee nmethod does not get deoptimized and removed before
1257   // we are done patching the code.
1258   CompiledMethod* callee = callee_method->code();
1259 
1260   if (callee != NULL) {
1261     assert(callee->is_compiled(), "must be nmethod for patching");
1262   }
1263 
1264   if (callee != NULL && !callee->is_in_use()) {
1265     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1266     callee = NULL;
1267   }
1268   nmethodLocker nl_callee(callee);
1269 #ifdef ASSERT
1270   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1271 #endif
1272 
1273   bool is_nmethod = caller_nm->is_nmethod();
1274 
1275   if (is_virtual) {
1276     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1277     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1278     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1279     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1280                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1281                      CHECK_false);
1282   } else {
1283     // static call
1284     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1285   }
1286 
1287   // grab lock, check for deoptimization and potentially patch caller
1288   {
1289     CompiledICLocker ml(caller_nm);
1290 
1291     // Lock blocks for safepoint during which both nmethods can change state.
1292 
1293     // Now that we are ready to patch if the Method* was redefined then
1294     // don't update call site and let the caller retry.
1295     // Don't update call site if callee nmethod was unloaded or deoptimized.
1296     // Don't update call site if callee nmethod was replaced by an other nmethod
1297     // which may happen when multiply alive nmethod (tiered compilation)
1298     // will be supported.
1299     if (!callee_method->is_old() &&
1300         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1301 #ifdef ASSERT
1302       // We must not try to patch to jump to an already unloaded method.
1303       if (dest_entry_point != 0) {
1304         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1305         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1306                "should not call unloaded nmethod");
1307       }
1308 #endif
1309       if (is_virtual) {
1310         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1311         if (inline_cache->is_clean()) {
1312           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1313             return false;
1314           }
1315         }
1316       } else {
1317         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1318         if (ssc->is_clean()) ssc->set(static_call_info);
1319       }
1320     }
1321   } // unlock CompiledICLocker
1322   return true;
1323 }
1324 
1325 // Resolves a call.  The compilers generate code for calls that go here
1326 // and are patched with the real destination of the call.
1327 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1328                                                bool is_virtual,
1329                                                bool is_optimized, TRAPS) {
1330 
1331   ResourceMark rm(thread);
1332   RegisterMap cbl_map(thread, false);
1333   frame caller_frame = thread->last_frame().sender(&cbl_map);
1334 
1335   CodeBlob* caller_cb = caller_frame.cb();
1336   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1337   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1338 
1339   // make sure caller is not getting deoptimized
1340   // and removed before we are done with it.
1341   // CLEANUP - with lazy deopt shouldn't need this lock
1342   nmethodLocker caller_lock(caller_nm);
1343 
1344   // determine call info & receiver
1345   // note: a) receiver is NULL for static calls
1346   //       b) an exception is thrown if receiver is NULL for non-static calls
1347   CallInfo call_info;
1348   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1349   Handle receiver = find_callee_info(thread, invoke_code,
1350                                      call_info, CHECK_(methodHandle()));
1351   methodHandle callee_method = call_info.selected_method();
1352 
1353   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1354          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1355          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1356          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1357          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1358 
1359   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1360 
1361 #ifndef PRODUCT
1362   // tracing/debugging/statistics
1363   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1364                 (is_virtual) ? (&_resolve_virtual_ctr) :
1365                                (&_resolve_static_ctr);
1366   Atomic::inc(addr);
1367 
1368   if (TraceCallFixup) {
1369     ResourceMark rm(thread);
1370     tty->print("resolving %s%s (%s) call to",
1371       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1372       Bytecodes::name(invoke_code));
1373     callee_method->print_short_name(tty);
1374     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1375                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1376   }
1377 #endif
1378 
1379   // Do not patch call site for static call to another class
1380   // when the class is not fully initialized.
1381   if (invoke_code == Bytecodes::_invokestatic) {
1382     if (!callee_method->method_holder()->is_initialized() &&
1383         callee_method->method_holder() != caller_nm->method()->method_holder()) {
1384       assert(callee_method->method_holder()->is_linked(), "must be");
1385       return callee_method;
1386     } else {
1387       assert(callee_method->method_holder()->is_initialized() ||
1388              callee_method->method_holder()->is_reentrant_initialization(thread),
1389              "invalid class initialization state for invoke_static");
1390     }
1391   }
1392 
1393   // JSR 292 key invariant:
1394   // If the resolved method is a MethodHandle invoke target, the call
1395   // site must be a MethodHandle call site, because the lambda form might tail-call
1396   // leaving the stack in a state unknown to either caller or callee
1397   // TODO detune for now but we might need it again
1398 //  assert(!callee_method->is_compiled_lambda_form() ||
1399 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1400 
1401   // Compute entry points. This might require generation of C2I converter
1402   // frames, so we cannot be holding any locks here. Furthermore, the
1403   // computation of the entry points is independent of patching the call.  We
1404   // always return the entry-point, but we only patch the stub if the call has
1405   // not been deoptimized.  Return values: For a virtual call this is an
1406   // (cached_oop, destination address) pair. For a static call/optimized
1407   // virtual this is just a destination address.
1408 
1409   // Patching IC caches may fail if we run out if transition stubs.
1410   // We refill the ic stubs then and try again.
1411   for (;;) {
1412     ICRefillVerifier ic_refill_verifier;
1413     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1414                                                   is_virtual, is_optimized, receiver,
1415                                                   call_info, invoke_code, CHECK_(methodHandle()));
1416     if (successful) {
1417       return callee_method;
1418     } else {
1419       InlineCacheBuffer::refill_ic_stubs();
1420     }
1421   }
1422 
1423 }
1424 
1425 
1426 // Inline caches exist only in compiled code
1427 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1428 #ifdef ASSERT
1429   RegisterMap reg_map(thread, false);
1430   frame stub_frame = thread->last_frame();
1431   assert(stub_frame.is_runtime_frame(), "sanity check");
1432   frame caller_frame = stub_frame.sender(&reg_map);
1433   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1434 #endif /* ASSERT */
1435 
1436   methodHandle callee_method;
1437   JRT_BLOCK
1438     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1439     // Return Method* through TLS
1440     thread->set_vm_result_2(callee_method());
1441   JRT_BLOCK_END
1442   // return compiled code entry point after potential safepoints
1443   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1444   return callee_method->verified_code_entry();
1445 JRT_END
1446 
1447 
1448 // Handle call site that has been made non-entrant
1449 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1450   // 6243940 We might end up in here if the callee is deoptimized
1451   // as we race to call it.  We don't want to take a safepoint if
1452   // the caller was interpreted because the caller frame will look
1453   // interpreted to the stack walkers and arguments are now
1454   // "compiled" so it is much better to make this transition
1455   // invisible to the stack walking code. The i2c path will
1456   // place the callee method in the callee_target. It is stashed
1457   // there because if we try and find the callee by normal means a
1458   // safepoint is possible and have trouble gc'ing the compiled args.
1459   RegisterMap reg_map(thread, false);
1460   frame stub_frame = thread->last_frame();
1461   assert(stub_frame.is_runtime_frame(), "sanity check");
1462   frame caller_frame = stub_frame.sender(&reg_map);
1463 
1464   if (caller_frame.is_interpreted_frame() ||
1465       caller_frame.is_entry_frame()) {
1466     Method* callee = thread->callee_target();
1467     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1468     thread->set_vm_result_2(callee);
1469     thread->set_callee_target(NULL);
1470     return callee->get_c2i_entry();
1471   }
1472 
1473   // Must be compiled to compiled path which is safe to stackwalk
1474   methodHandle callee_method;
1475   JRT_BLOCK
1476     // Force resolving of caller (if we called from compiled frame)
1477     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1478     thread->set_vm_result_2(callee_method());
1479   JRT_BLOCK_END
1480   // return compiled code entry point after potential safepoints
1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1482   return callee_method->verified_code_entry();
1483 JRT_END
1484 
1485 // Handle abstract method call
1486 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1487   // Verbose error message for AbstractMethodError.
1488   // Get the called method from the invoke bytecode.
1489   vframeStream vfst(thread, true);
1490   assert(!vfst.at_end(), "Java frame must exist");
1491   methodHandle caller(vfst.method());
1492   Bytecode_invoke invoke(caller, vfst.bci());
1493   DEBUG_ONLY( invoke.verify(); )
1494 
1495   // Find the compiled caller frame.
1496   RegisterMap reg_map(thread);
1497   frame stubFrame = thread->last_frame();
1498   assert(stubFrame.is_runtime_frame(), "must be");
1499   frame callerFrame = stubFrame.sender(&reg_map);
1500   assert(callerFrame.is_compiled_frame(), "must be");
1501 
1502   // Install exception and return forward entry.
1503   address res = StubRoutines::throw_AbstractMethodError_entry();
1504   JRT_BLOCK
1505     methodHandle callee = invoke.static_target(thread);
1506     if (!callee.is_null()) {
1507       oop recv = callerFrame.retrieve_receiver(&reg_map);
1508       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1509       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1510       res = StubRoutines::forward_exception_entry();
1511     }
1512   JRT_BLOCK_END
1513   return res;
1514 JRT_END
1515 
1516 
1517 // resolve a static call and patch code
1518 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1519   methodHandle callee_method;
1520   JRT_BLOCK
1521     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1522     thread->set_vm_result_2(callee_method());
1523   JRT_BLOCK_END
1524   // return compiled code entry point after potential safepoints
1525   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1526   return callee_method->verified_code_entry();
1527 JRT_END
1528 
1529 
1530 // resolve virtual call and update inline cache to monomorphic
1531 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1532   methodHandle callee_method;
1533   JRT_BLOCK
1534     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1535     thread->set_vm_result_2(callee_method());
1536   JRT_BLOCK_END
1537   // return compiled code entry point after potential safepoints
1538   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1539   return callee_method->verified_code_entry();
1540 JRT_END
1541 
1542 
1543 // Resolve a virtual call that can be statically bound (e.g., always
1544 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1545 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1546   methodHandle callee_method;
1547   JRT_BLOCK
1548     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1549     thread->set_vm_result_2(callee_method());
1550   JRT_BLOCK_END
1551   // return compiled code entry point after potential safepoints
1552   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1553   return callee_method->verified_code_entry();
1554 JRT_END
1555 
1556 // The handle_ic_miss_helper_internal function returns false if it failed due
1557 // to either running out of vtable stubs or ic stubs due to IC transitions
1558 // to transitional states. The needs_ic_stub_refill value will be set if
1559 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1560 // refills the IC stubs and tries again.
1561 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1562                                                    const frame& caller_frame, methodHandle callee_method,
1563                                                    Bytecodes::Code bc, CallInfo& call_info,
1564                                                    bool& needs_ic_stub_refill, TRAPS) {
1565   CompiledICLocker ml(caller_nm);
1566   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1567   bool should_be_mono = false;
1568   if (inline_cache->is_optimized()) {
1569     if (TraceCallFixup) {
1570       ResourceMark rm(THREAD);
1571       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1572       callee_method->print_short_name(tty);
1573       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1574     }
1575     should_be_mono = true;
1576   } else if (inline_cache->is_icholder_call()) {
1577     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1578     if (ic_oop != NULL) {
1579       if (!ic_oop->is_loader_alive()) {
1580         // Deferred IC cleaning due to concurrent class unloading
1581         if (!inline_cache->set_to_clean()) {
1582           needs_ic_stub_refill = true;
1583           return false;
1584         }
1585       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1586         // This isn't a real miss. We must have seen that compiled code
1587         // is now available and we want the call site converted to a
1588         // monomorphic compiled call site.
1589         // We can't assert for callee_method->code() != NULL because it
1590         // could have been deoptimized in the meantime
1591         if (TraceCallFixup) {
1592           ResourceMark rm(THREAD);
1593           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1594           callee_method->print_short_name(tty);
1595           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1596         }
1597         should_be_mono = true;
1598       }
1599     }
1600   }
1601 
1602   if (should_be_mono) {
1603     // We have a path that was monomorphic but was going interpreted
1604     // and now we have (or had) a compiled entry. We correct the IC
1605     // by using a new icBuffer.
1606     CompiledICInfo info;
1607     Klass* receiver_klass = receiver()->klass();
1608     inline_cache->compute_monomorphic_entry(callee_method,
1609                                             receiver_klass,
1610                                             inline_cache->is_optimized(),
1611                                             false, caller_nm->is_nmethod(),
1612                                             info, CHECK_false);
1613     if (!inline_cache->set_to_monomorphic(info)) {
1614       needs_ic_stub_refill = true;
1615       return false;
1616     }
1617   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1618     // Potential change to megamorphic
1619 
1620     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1621     if (needs_ic_stub_refill) {
1622       return false;
1623     }
1624     if (!successful) {
1625       if (!inline_cache->set_to_clean()) {
1626         needs_ic_stub_refill = true;
1627         return false;
1628       }
1629     }
1630   } else {
1631     // Either clean or megamorphic
1632   }
1633   return true;
1634 }
1635 
1636 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1637   ResourceMark rm(thread);
1638   CallInfo call_info;
1639   Bytecodes::Code bc;
1640 
1641   // receiver is NULL for static calls. An exception is thrown for NULL
1642   // receivers for non-static calls
1643   Handle receiver = find_callee_info(thread, bc, call_info,
1644                                      CHECK_(methodHandle()));
1645   // Compiler1 can produce virtual call sites that can actually be statically bound
1646   // If we fell thru to below we would think that the site was going megamorphic
1647   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1648   // we'd try and do a vtable dispatch however methods that can be statically bound
1649   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1650   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1651   // plain ic_miss) and the site will be converted to an optimized virtual call site
1652   // never to miss again. I don't believe C2 will produce code like this but if it
1653   // did this would still be the correct thing to do for it too, hence no ifdef.
1654   //
1655   if (call_info.resolved_method()->can_be_statically_bound()) {
1656     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1657     if (TraceCallFixup) {
1658       RegisterMap reg_map(thread, false);
1659       frame caller_frame = thread->last_frame().sender(&reg_map);
1660       ResourceMark rm(thread);
1661       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1662       callee_method->print_short_name(tty);
1663       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1664       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1665     }
1666     return callee_method;
1667   }
1668 
1669   methodHandle callee_method = call_info.selected_method();
1670 
1671 #ifndef PRODUCT
1672   Atomic::inc(&_ic_miss_ctr);
1673 
1674   // Statistics & Tracing
1675   if (TraceCallFixup) {
1676     ResourceMark rm(thread);
1677     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1678     callee_method->print_short_name(tty);
1679     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1680   }
1681 
1682   if (ICMissHistogram) {
1683     MutexLocker m(VMStatistic_lock);
1684     RegisterMap reg_map(thread, false);
1685     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1686     // produce statistics under the lock
1687     trace_ic_miss(f.pc());
1688   }
1689 #endif
1690 
1691   // install an event collector so that when a vtable stub is created the
1692   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1693   // event can't be posted when the stub is created as locks are held
1694   // - instead the event will be deferred until the event collector goes
1695   // out of scope.
1696   JvmtiDynamicCodeEventCollector event_collector;
1697 
1698   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1699   // Transitioning IC caches may require transition stubs. If we run out
1700   // of transition stubs, we have to drop locks and perform a safepoint
1701   // that refills them.
1702   RegisterMap reg_map(thread, false);
1703   frame caller_frame = thread->last_frame().sender(&reg_map);
1704   CodeBlob* cb = caller_frame.cb();
1705   CompiledMethod* caller_nm = cb->as_compiled_method();
1706 
1707   for (;;) {
1708     ICRefillVerifier ic_refill_verifier;
1709     bool needs_ic_stub_refill = false;
1710     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1711                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1712     if (successful || !needs_ic_stub_refill) {
1713       return callee_method;
1714     } else {
1715       InlineCacheBuffer::refill_ic_stubs();
1716     }
1717   }
1718 }
1719 
1720 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1721   CompiledICLocker ml(caller_nm);
1722   if (is_static_call) {
1723     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1724     if (!ssc->is_clean()) {
1725       return ssc->set_to_clean();
1726     }
1727   } else {
1728     // compiled, dispatched call (which used to call an interpreted method)
1729     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1730     if (!inline_cache->is_clean()) {
1731       return inline_cache->set_to_clean();
1732     }
1733   }
1734   return true;
1735 }
1736 
1737 //
1738 // Resets a call-site in compiled code so it will get resolved again.
1739 // This routines handles both virtual call sites, optimized virtual call
1740 // sites, and static call sites. Typically used to change a call sites
1741 // destination from compiled to interpreted.
1742 //
1743 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1744   ResourceMark rm(thread);
1745   RegisterMap reg_map(thread, false);
1746   frame stub_frame = thread->last_frame();
1747   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1748   frame caller = stub_frame.sender(&reg_map);
1749 
1750   // Do nothing if the frame isn't a live compiled frame.
1751   // nmethod could be deoptimized by the time we get here
1752   // so no update to the caller is needed.
1753 
1754   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1755 
1756     address pc = caller.pc();
1757 
1758     // Check for static or virtual call
1759     bool is_static_call = false;
1760     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1761 
1762     // Default call_addr is the location of the "basic" call.
1763     // Determine the address of the call we a reresolving. With
1764     // Inline Caches we will always find a recognizable call.
1765     // With Inline Caches disabled we may or may not find a
1766     // recognizable call. We will always find a call for static
1767     // calls and for optimized virtual calls. For vanilla virtual
1768     // calls it depends on the state of the UseInlineCaches switch.
1769     //
1770     // With Inline Caches disabled we can get here for a virtual call
1771     // for two reasons:
1772     //   1 - calling an abstract method. The vtable for abstract methods
1773     //       will run us thru handle_wrong_method and we will eventually
1774     //       end up in the interpreter to throw the ame.
1775     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1776     //       call and between the time we fetch the entry address and
1777     //       we jump to it the target gets deoptimized. Similar to 1
1778     //       we will wind up in the interprter (thru a c2i with c2).
1779     //
1780     address call_addr = NULL;
1781     {
1782       // Get call instruction under lock because another thread may be
1783       // busy patching it.
1784       CompiledICLocker ml(caller_nm);
1785       // Location of call instruction
1786       call_addr = caller_nm->call_instruction_address(pc);
1787     }
1788     // Make sure nmethod doesn't get deoptimized and removed until
1789     // this is done with it.
1790     // CLEANUP - with lazy deopt shouldn't need this lock
1791     nmethodLocker nmlock(caller_nm);
1792 
1793     if (call_addr != NULL) {
1794       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1795       int ret = iter.next(); // Get item
1796       if (ret) {
1797         assert(iter.addr() == call_addr, "must find call");
1798         if (iter.type() == relocInfo::static_call_type) {
1799           is_static_call = true;
1800         } else {
1801           assert(iter.type() == relocInfo::virtual_call_type ||
1802                  iter.type() == relocInfo::opt_virtual_call_type
1803                 , "unexpected relocInfo. type");
1804         }
1805       } else {
1806         assert(!UseInlineCaches, "relocation info. must exist for this address");
1807       }
1808 
1809       // Cleaning the inline cache will force a new resolve. This is more robust
1810       // than directly setting it to the new destination, since resolving of calls
1811       // is always done through the same code path. (experience shows that it
1812       // leads to very hard to track down bugs, if an inline cache gets updated
1813       // to a wrong method). It should not be performance critical, since the
1814       // resolve is only done once.
1815 
1816       for (;;) {
1817         ICRefillVerifier ic_refill_verifier;
1818         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1819           InlineCacheBuffer::refill_ic_stubs();
1820         } else {
1821           break;
1822         }
1823       }
1824     }
1825   }
1826 
1827   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1828 
1829 
1830 #ifndef PRODUCT
1831   Atomic::inc(&_wrong_method_ctr);
1832 
1833   if (TraceCallFixup) {
1834     ResourceMark rm(thread);
1835     tty->print("handle_wrong_method reresolving call to");
1836     callee_method->print_short_name(tty);
1837     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1838   }
1839 #endif
1840 
1841   return callee_method;
1842 }
1843 
1844 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1845   // The faulting unsafe accesses should be changed to throw the error
1846   // synchronously instead. Meanwhile the faulting instruction will be
1847   // skipped over (effectively turning it into a no-op) and an
1848   // asynchronous exception will be raised which the thread will
1849   // handle at a later point. If the instruction is a load it will
1850   // return garbage.
1851 
1852   // Request an async exception.
1853   thread->set_pending_unsafe_access_error();
1854 
1855   // Return address of next instruction to execute.
1856   return next_pc;
1857 }
1858 
1859 #ifdef ASSERT
1860 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1861                                                                 const BasicType* sig_bt,
1862                                                                 const VMRegPair* regs) {
1863   ResourceMark rm;
1864   const int total_args_passed = method->size_of_parameters();
1865   const VMRegPair*    regs_with_member_name = regs;
1866         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1867 
1868   const int member_arg_pos = total_args_passed - 1;
1869   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1870   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1871 
1872   const bool is_outgoing = method->is_method_handle_intrinsic();
1873   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1874 
1875   for (int i = 0; i < member_arg_pos; i++) {
1876     VMReg a =    regs_with_member_name[i].first();
1877     VMReg b = regs_without_member_name[i].first();
1878     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1879   }
1880   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1881 }
1882 #endif
1883 
1884 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1885   if (destination != entry_point) {
1886     CodeBlob* callee = CodeCache::find_blob(destination);
1887     // callee == cb seems weird. It means calling interpreter thru stub.
1888     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1889       // static call or optimized virtual
1890       if (TraceCallFixup) {
1891         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1892         moop->print_short_name(tty);
1893         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1894       }
1895       return true;
1896     } else {
1897       if (TraceCallFixup) {
1898         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1899         moop->print_short_name(tty);
1900         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1901       }
1902       // assert is too strong could also be resolve destinations.
1903       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1904     }
1905   } else {
1906     if (TraceCallFixup) {
1907       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1908       moop->print_short_name(tty);
1909       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1910     }
1911   }
1912   return false;
1913 }
1914 
1915 // ---------------------------------------------------------------------------
1916 // We are calling the interpreter via a c2i. Normally this would mean that
1917 // we were called by a compiled method. However we could have lost a race
1918 // where we went int -> i2c -> c2i and so the caller could in fact be
1919 // interpreted. If the caller is compiled we attempt to patch the caller
1920 // so he no longer calls into the interpreter.
1921 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1922   Method* moop(method);
1923 
1924   address entry_point = moop->from_compiled_entry_no_trampoline();
1925 
1926   // It's possible that deoptimization can occur at a call site which hasn't
1927   // been resolved yet, in which case this function will be called from
1928   // an nmethod that has been patched for deopt and we can ignore the
1929   // request for a fixup.
1930   // Also it is possible that we lost a race in that from_compiled_entry
1931   // is now back to the i2c in that case we don't need to patch and if
1932   // we did we'd leap into space because the callsite needs to use
1933   // "to interpreter" stub in order to load up the Method*. Don't
1934   // ask me how I know this...
1935 
1936   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1937   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1938     return;
1939   }
1940 
1941   // The check above makes sure this is a nmethod.
1942   CompiledMethod* nm = cb->as_compiled_method_or_null();
1943   assert(nm, "must be");
1944 
1945   // Get the return PC for the passed caller PC.
1946   address return_pc = caller_pc + frame::pc_return_offset;
1947 
1948   // There is a benign race here. We could be attempting to patch to a compiled
1949   // entry point at the same time the callee is being deoptimized. If that is
1950   // the case then entry_point may in fact point to a c2i and we'd patch the
1951   // call site with the same old data. clear_code will set code() to NULL
1952   // at the end of it. If we happen to see that NULL then we can skip trying
1953   // to patch. If we hit the window where the callee has a c2i in the
1954   // from_compiled_entry and the NULL isn't present yet then we lose the race
1955   // and patch the code with the same old data. Asi es la vida.
1956 
1957   if (moop->code() == NULL) return;
1958 
1959   if (nm->is_in_use()) {
1960     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1961     CompiledICLocker ic_locker(nm);
1962     if (NativeCall::is_call_before(return_pc)) {
1963       ResourceMark mark;
1964       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1965       //
1966       // bug 6281185. We might get here after resolving a call site to a vanilla
1967       // virtual call. Because the resolvee uses the verified entry it may then
1968       // see compiled code and attempt to patch the site by calling us. This would
1969       // then incorrectly convert the call site to optimized and its downhill from
1970       // there. If you're lucky you'll get the assert in the bugid, if not you've
1971       // just made a call site that could be megamorphic into a monomorphic site
1972       // for the rest of its life! Just another racing bug in the life of
1973       // fixup_callers_callsite ...
1974       //
1975       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1976       iter.next();
1977       assert(iter.has_current(), "must have a reloc at java call site");
1978       relocInfo::relocType typ = iter.reloc()->type();
1979       if (typ != relocInfo::static_call_type &&
1980            typ != relocInfo::opt_virtual_call_type &&
1981            typ != relocInfo::static_stub_type) {
1982         return;
1983       }
1984       address destination = call->destination();
1985       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1986         call->set_destination_mt_safe(entry_point);
1987       }
1988     }
1989   }
1990 JRT_END
1991 
1992 
1993 // same as JVM_Arraycopy, but called directly from compiled code
1994 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1995                                                 oopDesc* dest, jint dest_pos,
1996                                                 jint length,
1997                                                 JavaThread* thread)) {
1998 #ifndef PRODUCT
1999   _slow_array_copy_ctr++;
2000 #endif
2001   // Check if we have null pointers
2002   if (src == NULL || dest == NULL) {
2003     THROW(vmSymbols::java_lang_NullPointerException());
2004   }
2005   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2006   // even though the copy_array API also performs dynamic checks to ensure
2007   // that src and dest are truly arrays (and are conformable).
2008   // The copy_array mechanism is awkward and could be removed, but
2009   // the compilers don't call this function except as a last resort,
2010   // so it probably doesn't matter.
2011   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2012                                         (arrayOopDesc*)dest, dest_pos,
2013                                         length, thread);
2014 }
2015 JRT_END
2016 
2017 // The caller of generate_class_cast_message() (or one of its callers)
2018 // must use a ResourceMark in order to correctly free the result.
2019 char* SharedRuntime::generate_class_cast_message(
2020     JavaThread* thread, Klass* caster_klass) {
2021 
2022   // Get target class name from the checkcast instruction
2023   vframeStream vfst(thread, true);
2024   assert(!vfst.at_end(), "Java frame must exist");
2025   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2026   constantPoolHandle cpool(thread, vfst.method()->constants());
2027   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2028   Symbol* target_klass_name = NULL;
2029   if (target_klass == NULL) {
2030     // This klass should be resolved, but just in case, get the name in the klass slot.
2031     target_klass_name = cpool->klass_name_at(cc.index());
2032   }
2033   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2034 }
2035 
2036 
2037 // The caller of generate_class_cast_message() (or one of its callers)
2038 // must use a ResourceMark in order to correctly free the result.
2039 char* SharedRuntime::generate_class_cast_message(
2040     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2041   const char* caster_name = caster_klass->external_name();
2042 
2043   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2044   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2045                                                    target_klass->external_name();
2046 
2047   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2048 
2049   const char* caster_klass_description = "";
2050   const char* target_klass_description = "";
2051   const char* klass_separator = "";
2052   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2053     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2054   } else {
2055     caster_klass_description = caster_klass->class_in_module_of_loader();
2056     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2057     klass_separator = (target_klass != NULL) ? "; " : "";
2058   }
2059 
2060   // add 3 for parenthesis and preceeding space
2061   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2062 
2063   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2064   if (message == NULL) {
2065     // Shouldn't happen, but don't cause even more problems if it does
2066     message = const_cast<char*>(caster_klass->external_name());
2067   } else {
2068     jio_snprintf(message,
2069                  msglen,
2070                  "class %s cannot be cast to class %s (%s%s%s)",
2071                  caster_name,
2072                  target_name,
2073                  caster_klass_description,
2074                  klass_separator,
2075                  target_klass_description
2076                  );
2077   }
2078   return message;
2079 }
2080 
2081 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2082   (void) JavaThread::current()->reguard_stack();
2083 JRT_END
2084 
2085 
2086 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2087 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2088   if (!SafepointSynchronize::is_synchronizing()) {
2089     // Only try quick_enter() if we're not trying to reach a safepoint
2090     // so that the calling thread reaches the safepoint more quickly.
2091     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2092   }
2093   // NO_ASYNC required because an async exception on the state transition destructor
2094   // would leave you with the lock held and it would never be released.
2095   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2096   // and the model is that an exception implies the method failed.
2097   JRT_BLOCK_NO_ASYNC
2098   oop obj(_obj);
2099   if (PrintBiasedLockingStatistics) {
2100     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2101   }
2102   Handle h_obj(THREAD, obj);
2103   if (UseBiasedLocking) {
2104     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2105     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2106   } else {
2107     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2108   }
2109   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2110   JRT_BLOCK_END
2111 JRT_END
2112 
2113 // Handles the uncommon cases of monitor unlocking in compiled code
2114 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2115    oop obj(_obj);
2116   assert(JavaThread::current() == THREAD, "invariant");
2117   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2118   // testing was unable to ever fire the assert that guarded it so I have removed it.
2119   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2120 #undef MIGHT_HAVE_PENDING
2121 #ifdef MIGHT_HAVE_PENDING
2122   // Save and restore any pending_exception around the exception mark.
2123   // While the slow_exit must not throw an exception, we could come into
2124   // this routine with one set.
2125   oop pending_excep = NULL;
2126   const char* pending_file;
2127   int pending_line;
2128   if (HAS_PENDING_EXCEPTION) {
2129     pending_excep = PENDING_EXCEPTION;
2130     pending_file  = THREAD->exception_file();
2131     pending_line  = THREAD->exception_line();
2132     CLEAR_PENDING_EXCEPTION;
2133   }
2134 #endif /* MIGHT_HAVE_PENDING */
2135 
2136   {
2137     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2138     EXCEPTION_MARK;
2139     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2140   }
2141 
2142 #ifdef MIGHT_HAVE_PENDING
2143   if (pending_excep != NULL) {
2144     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2145   }
2146 #endif /* MIGHT_HAVE_PENDING */
2147 JRT_END
2148 
2149 #ifndef PRODUCT
2150 
2151 void SharedRuntime::print_statistics() {
2152   ttyLocker ttyl;
2153   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2154 
2155   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2156 
2157   SharedRuntime::print_ic_miss_histogram();
2158 
2159   if (CountRemovableExceptions) {
2160     if (_nof_removable_exceptions > 0) {
2161       Unimplemented(); // this counter is not yet incremented
2162       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2163     }
2164   }
2165 
2166   // Dump the JRT_ENTRY counters
2167   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2168   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2169   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2170   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2171   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2172   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2173   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2174 
2175   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2176   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2177   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2178   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2179   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2180 
2181   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2182   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2183   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2184   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2185   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2186   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2187   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2188   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2189   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2190   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2191   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2192   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2193   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2194   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2195   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2196   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2197 
2198   AdapterHandlerLibrary::print_statistics();
2199 
2200   if (xtty != NULL)  xtty->tail("statistics");
2201 }
2202 
2203 inline double percent(int x, int y) {
2204   return 100.0 * x / MAX2(y, 1);
2205 }
2206 
2207 class MethodArityHistogram {
2208  public:
2209   enum { MAX_ARITY = 256 };
2210  private:
2211   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2212   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2213   static int _max_arity;                      // max. arity seen
2214   static int _max_size;                       // max. arg size seen
2215 
2216   static void add_method_to_histogram(nmethod* nm) {
2217     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2218       Method* method = nm->method();
2219       ArgumentCount args(method->signature());
2220       int arity   = args.size() + (method->is_static() ? 0 : 1);
2221       int argsize = method->size_of_parameters();
2222       arity   = MIN2(arity, MAX_ARITY-1);
2223       argsize = MIN2(argsize, MAX_ARITY-1);
2224       int count = method->compiled_invocation_count();
2225       _arity_histogram[arity]  += count;
2226       _size_histogram[argsize] += count;
2227       _max_arity = MAX2(_max_arity, arity);
2228       _max_size  = MAX2(_max_size, argsize);
2229     }
2230   }
2231 
2232   void print_histogram_helper(int n, int* histo, const char* name) {
2233     const int N = MIN2(5, n);
2234     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2235     double sum = 0;
2236     double weighted_sum = 0;
2237     int i;
2238     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2239     double rest = sum;
2240     double percent = sum / 100;
2241     for (i = 0; i <= N; i++) {
2242       rest -= histo[i];
2243       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2244     }
2245     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2246     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2247   }
2248 
2249   void print_histogram() {
2250     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2251     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2252     tty->print_cr("\nSame for parameter size (in words):");
2253     print_histogram_helper(_max_size, _size_histogram, "size");
2254     tty->cr();
2255   }
2256 
2257  public:
2258   MethodArityHistogram() {
2259     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2260     _max_arity = _max_size = 0;
2261     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2262     CodeCache::nmethods_do(add_method_to_histogram);
2263     print_histogram();
2264   }
2265 };
2266 
2267 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2268 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2269 int MethodArityHistogram::_max_arity;
2270 int MethodArityHistogram::_max_size;
2271 
2272 void SharedRuntime::print_call_statistics(int comp_total) {
2273   tty->print_cr("Calls from compiled code:");
2274   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2275   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2276   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2277   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2278   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2279   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2280   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2281   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2282   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2283   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2284   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2285   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2286   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2287   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2288   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2289   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2290   tty->cr();
2291   tty->print_cr("Note 1: counter updates are not MT-safe.");
2292   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2293   tty->print_cr("        %% in nested categories are relative to their category");
2294   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2295   tty->cr();
2296 
2297   MethodArityHistogram h;
2298 }
2299 #endif
2300 
2301 
2302 // A simple wrapper class around the calling convention information
2303 // that allows sharing of adapters for the same calling convention.
2304 class AdapterFingerPrint : public CHeapObj<mtCode> {
2305  private:
2306   enum {
2307     _basic_type_bits = 4,
2308     _basic_type_mask = right_n_bits(_basic_type_bits),
2309     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2310     _compact_int_count = 3
2311   };
2312   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2313   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2314 
2315   union {
2316     int  _compact[_compact_int_count];
2317     int* _fingerprint;
2318   } _value;
2319   int _length; // A negative length indicates the fingerprint is in the compact form,
2320                // Otherwise _value._fingerprint is the array.
2321 
2322   // Remap BasicTypes that are handled equivalently by the adapters.
2323   // These are correct for the current system but someday it might be
2324   // necessary to make this mapping platform dependent.
2325   static int adapter_encoding(BasicType in) {
2326     switch (in) {
2327       case T_BOOLEAN:
2328       case T_BYTE:
2329       case T_SHORT:
2330       case T_CHAR:
2331         // There are all promoted to T_INT in the calling convention
2332         return T_INT;
2333 
2334       case T_OBJECT:
2335       case T_ARRAY:
2336         // In other words, we assume that any register good enough for
2337         // an int or long is good enough for a managed pointer.
2338 #ifdef _LP64
2339         return T_LONG;
2340 #else
2341         return T_INT;
2342 #endif
2343 
2344       case T_INT:
2345       case T_LONG:
2346       case T_FLOAT:
2347       case T_DOUBLE:
2348       case T_VOID:
2349         return in;
2350 
2351       default:
2352         ShouldNotReachHere();
2353         return T_CONFLICT;
2354     }
2355   }
2356 
2357  public:
2358   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2359     // The fingerprint is based on the BasicType signature encoded
2360     // into an array of ints with eight entries per int.
2361     int* ptr;
2362     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2363     if (len <= _compact_int_count) {
2364       assert(_compact_int_count == 3, "else change next line");
2365       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2366       // Storing the signature encoded as signed chars hits about 98%
2367       // of the time.
2368       _length = -len;
2369       ptr = _value._compact;
2370     } else {
2371       _length = len;
2372       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2373       ptr = _value._fingerprint;
2374     }
2375 
2376     // Now pack the BasicTypes with 8 per int
2377     int sig_index = 0;
2378     for (int index = 0; index < len; index++) {
2379       int value = 0;
2380       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2381         int bt = ((sig_index < total_args_passed)
2382                   ? adapter_encoding(sig_bt[sig_index++])
2383                   : 0);
2384         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2385         value = (value << _basic_type_bits) | bt;
2386       }
2387       ptr[index] = value;
2388     }
2389   }
2390 
2391   ~AdapterFingerPrint() {
2392     if (_length > 0) {
2393       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2394     }
2395   }
2396 
2397   int value(int index) {
2398     if (_length < 0) {
2399       return _value._compact[index];
2400     }
2401     return _value._fingerprint[index];
2402   }
2403   int length() {
2404     if (_length < 0) return -_length;
2405     return _length;
2406   }
2407 
2408   bool is_compact() {
2409     return _length <= 0;
2410   }
2411 
2412   unsigned int compute_hash() {
2413     int hash = 0;
2414     for (int i = 0; i < length(); i++) {
2415       int v = value(i);
2416       hash = (hash << 8) ^ v ^ (hash >> 5);
2417     }
2418     return (unsigned int)hash;
2419   }
2420 
2421   const char* as_string() {
2422     stringStream st;
2423     st.print("0x");
2424     for (int i = 0; i < length(); i++) {
2425       st.print("%08x", value(i));
2426     }
2427     return st.as_string();
2428   }
2429 
2430   bool equals(AdapterFingerPrint* other) {
2431     if (other->_length != _length) {
2432       return false;
2433     }
2434     if (_length < 0) {
2435       assert(_compact_int_count == 3, "else change next line");
2436       return _value._compact[0] == other->_value._compact[0] &&
2437              _value._compact[1] == other->_value._compact[1] &&
2438              _value._compact[2] == other->_value._compact[2];
2439     } else {
2440       for (int i = 0; i < _length; i++) {
2441         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2442           return false;
2443         }
2444       }
2445     }
2446     return true;
2447   }
2448 };
2449 
2450 
2451 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2452 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2453   friend class AdapterHandlerTableIterator;
2454 
2455  private:
2456 
2457 #ifndef PRODUCT
2458   static int _lookups; // number of calls to lookup
2459   static int _buckets; // number of buckets checked
2460   static int _equals;  // number of buckets checked with matching hash
2461   static int _hits;    // number of successful lookups
2462   static int _compact; // number of equals calls with compact signature
2463 #endif
2464 
2465   AdapterHandlerEntry* bucket(int i) {
2466     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2467   }
2468 
2469  public:
2470   AdapterHandlerTable()
2471     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2472 
2473   // Create a new entry suitable for insertion in the table
2474   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2475     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2476     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2477     if (DumpSharedSpaces) {
2478       ((CDSAdapterHandlerEntry*)entry)->init();
2479     }
2480     return entry;
2481   }
2482 
2483   // Insert an entry into the table
2484   void add(AdapterHandlerEntry* entry) {
2485     int index = hash_to_index(entry->hash());
2486     add_entry(index, entry);
2487   }
2488 
2489   void free_entry(AdapterHandlerEntry* entry) {
2490     entry->deallocate();
2491     BasicHashtable<mtCode>::free_entry(entry);
2492   }
2493 
2494   // Find a entry with the same fingerprint if it exists
2495   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2496     NOT_PRODUCT(_lookups++);
2497     AdapterFingerPrint fp(total_args_passed, sig_bt);
2498     unsigned int hash = fp.compute_hash();
2499     int index = hash_to_index(hash);
2500     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2501       NOT_PRODUCT(_buckets++);
2502       if (e->hash() == hash) {
2503         NOT_PRODUCT(_equals++);
2504         if (fp.equals(e->fingerprint())) {
2505 #ifndef PRODUCT
2506           if (fp.is_compact()) _compact++;
2507           _hits++;
2508 #endif
2509           return e;
2510         }
2511       }
2512     }
2513     return NULL;
2514   }
2515 
2516 #ifndef PRODUCT
2517   void print_statistics() {
2518     ResourceMark rm;
2519     int longest = 0;
2520     int empty = 0;
2521     int total = 0;
2522     int nonempty = 0;
2523     for (int index = 0; index < table_size(); index++) {
2524       int count = 0;
2525       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2526         count++;
2527       }
2528       if (count != 0) nonempty++;
2529       if (count == 0) empty++;
2530       if (count > longest) longest = count;
2531       total += count;
2532     }
2533     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2534                   empty, longest, total, total / (double)nonempty);
2535     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2536                   _lookups, _buckets, _equals, _hits, _compact);
2537   }
2538 #endif
2539 };
2540 
2541 
2542 #ifndef PRODUCT
2543 
2544 int AdapterHandlerTable::_lookups;
2545 int AdapterHandlerTable::_buckets;
2546 int AdapterHandlerTable::_equals;
2547 int AdapterHandlerTable::_hits;
2548 int AdapterHandlerTable::_compact;
2549 
2550 #endif
2551 
2552 class AdapterHandlerTableIterator : public StackObj {
2553  private:
2554   AdapterHandlerTable* _table;
2555   int _index;
2556   AdapterHandlerEntry* _current;
2557 
2558   void scan() {
2559     while (_index < _table->table_size()) {
2560       AdapterHandlerEntry* a = _table->bucket(_index);
2561       _index++;
2562       if (a != NULL) {
2563         _current = a;
2564         return;
2565       }
2566     }
2567   }
2568 
2569  public:
2570   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2571     scan();
2572   }
2573   bool has_next() {
2574     return _current != NULL;
2575   }
2576   AdapterHandlerEntry* next() {
2577     if (_current != NULL) {
2578       AdapterHandlerEntry* result = _current;
2579       _current = _current->next();
2580       if (_current == NULL) scan();
2581       return result;
2582     } else {
2583       return NULL;
2584     }
2585   }
2586 };
2587 
2588 
2589 // ---------------------------------------------------------------------------
2590 // Implementation of AdapterHandlerLibrary
2591 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2592 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2593 const int AdapterHandlerLibrary_size = 16*K;
2594 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2595 
2596 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2597   // Should be called only when AdapterHandlerLibrary_lock is active.
2598   if (_buffer == NULL) // Initialize lazily
2599       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2600   return _buffer;
2601 }
2602 
2603 extern "C" void unexpected_adapter_call() {
2604   ShouldNotCallThis();
2605 }
2606 
2607 void AdapterHandlerLibrary::initialize() {
2608   if (_adapters != NULL) return;
2609   _adapters = new AdapterHandlerTable();
2610 
2611   // Create a special handler for abstract methods.  Abstract methods
2612   // are never compiled so an i2c entry is somewhat meaningless, but
2613   // throw AbstractMethodError just in case.
2614   // Pass wrong_method_abstract for the c2i transitions to return
2615   // AbstractMethodError for invalid invocations.
2616   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2617   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2618                                                               StubRoutines::throw_AbstractMethodError_entry(),
2619                                                               wrong_method_abstract, wrong_method_abstract);
2620 }
2621 
2622 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2623                                                       address i2c_entry,
2624                                                       address c2i_entry,
2625                                                       address c2i_unverified_entry) {
2626   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2627 }
2628 
2629 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2630   AdapterHandlerEntry* entry = get_adapter0(method);
2631   if (method->is_shared()) {
2632     // See comments around Method::link_method()
2633     MutexLocker mu(AdapterHandlerLibrary_lock);
2634     if (method->adapter() == NULL) {
2635       method->update_adapter_trampoline(entry);
2636     }
2637     address trampoline = method->from_compiled_entry();
2638     if (*(int*)trampoline == 0) {
2639       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2640       MacroAssembler _masm(&buffer);
2641       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2642       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2643 
2644       if (PrintInterpreter) {
2645         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2646       }
2647     }
2648   }
2649 
2650   return entry;
2651 }
2652 
2653 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2654   // Use customized signature handler.  Need to lock around updates to
2655   // the AdapterHandlerTable (it is not safe for concurrent readers
2656   // and a single writer: this could be fixed if it becomes a
2657   // problem).
2658 
2659   ResourceMark rm;
2660 
2661   NOT_PRODUCT(int insts_size);
2662   AdapterBlob* new_adapter = NULL;
2663   AdapterHandlerEntry* entry = NULL;
2664   AdapterFingerPrint* fingerprint = NULL;
2665   {
2666     MutexLocker mu(AdapterHandlerLibrary_lock);
2667     // make sure data structure is initialized
2668     initialize();
2669 
2670     if (method->is_abstract()) {
2671       return _abstract_method_handler;
2672     }
2673 
2674     // Fill in the signature array, for the calling-convention call.
2675     int total_args_passed = method->size_of_parameters(); // All args on stack
2676 
2677     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2678     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2679     int i = 0;
2680     if (!method->is_static())  // Pass in receiver first
2681       sig_bt[i++] = T_OBJECT;
2682     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2683       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2684       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2685         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2686     }
2687     assert(i == total_args_passed, "");
2688 
2689     // Lookup method signature's fingerprint
2690     entry = _adapters->lookup(total_args_passed, sig_bt);
2691 
2692 #ifdef ASSERT
2693     AdapterHandlerEntry* shared_entry = NULL;
2694     // Start adapter sharing verification only after the VM is booted.
2695     if (VerifyAdapterSharing && (entry != NULL)) {
2696       shared_entry = entry;
2697       entry = NULL;
2698     }
2699 #endif
2700 
2701     if (entry != NULL) {
2702       return entry;
2703     }
2704 
2705     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2706     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2707 
2708     // Make a C heap allocated version of the fingerprint to store in the adapter
2709     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2710 
2711     // StubRoutines::code2() is initialized after this function can be called. As a result,
2712     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2713     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2714     // stub that ensure that an I2C stub is called from an interpreter frame.
2715     bool contains_all_checks = StubRoutines::code2() != NULL;
2716 
2717     // Create I2C & C2I handlers
2718     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2719     if (buf != NULL) {
2720       CodeBuffer buffer(buf);
2721       short buffer_locs[20];
2722       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2723                                              sizeof(buffer_locs)/sizeof(relocInfo));
2724 
2725       MacroAssembler _masm(&buffer);
2726       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2727                                                      total_args_passed,
2728                                                      comp_args_on_stack,
2729                                                      sig_bt,
2730                                                      regs,
2731                                                      fingerprint);
2732 #ifdef ASSERT
2733       if (VerifyAdapterSharing) {
2734         if (shared_entry != NULL) {
2735           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2736           // Release the one just created and return the original
2737           _adapters->free_entry(entry);
2738           return shared_entry;
2739         } else  {
2740           entry->save_code(buf->code_begin(), buffer.insts_size());
2741         }
2742       }
2743 #endif
2744 
2745       new_adapter = AdapterBlob::create(&buffer);
2746       NOT_PRODUCT(insts_size = buffer.insts_size());
2747     }
2748     if (new_adapter == NULL) {
2749       // CodeCache is full, disable compilation
2750       // Ought to log this but compile log is only per compile thread
2751       // and we're some non descript Java thread.
2752       return NULL; // Out of CodeCache space
2753     }
2754     entry->relocate(new_adapter->content_begin());
2755 #ifndef PRODUCT
2756     // debugging suppport
2757     if (PrintAdapterHandlers || PrintStubCode) {
2758       ttyLocker ttyl;
2759       entry->print_adapter_on(tty);
2760       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2761                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2762                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2763       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2764       if (Verbose || PrintStubCode) {
2765         address first_pc = entry->base_address();
2766         if (first_pc != NULL) {
2767           Disassembler::decode(first_pc, first_pc + insts_size);
2768           tty->cr();
2769         }
2770       }
2771     }
2772 #endif
2773     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2774     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2775     if (contains_all_checks || !VerifyAdapterCalls) {
2776       _adapters->add(entry);
2777     }
2778   }
2779   // Outside of the lock
2780   if (new_adapter != NULL) {
2781     char blob_id[256];
2782     jio_snprintf(blob_id,
2783                  sizeof(blob_id),
2784                  "%s(%s)@" PTR_FORMAT,
2785                  new_adapter->name(),
2786                  fingerprint->as_string(),
2787                  new_adapter->content_begin());
2788     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2789 
2790     if (JvmtiExport::should_post_dynamic_code_generated()) {
2791       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2792     }
2793   }
2794   return entry;
2795 }
2796 
2797 address AdapterHandlerEntry::base_address() {
2798   address base = _i2c_entry;
2799   if (base == NULL)  base = _c2i_entry;
2800   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2801   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2802   return base;
2803 }
2804 
2805 void AdapterHandlerEntry::relocate(address new_base) {
2806   address old_base = base_address();
2807   assert(old_base != NULL, "");
2808   ptrdiff_t delta = new_base - old_base;
2809   if (_i2c_entry != NULL)
2810     _i2c_entry += delta;
2811   if (_c2i_entry != NULL)
2812     _c2i_entry += delta;
2813   if (_c2i_unverified_entry != NULL)
2814     _c2i_unverified_entry += delta;
2815   assert(base_address() == new_base, "");
2816 }
2817 
2818 
2819 void AdapterHandlerEntry::deallocate() {
2820   delete _fingerprint;
2821 #ifdef ASSERT
2822   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2823 #endif
2824 }
2825 
2826 
2827 #ifdef ASSERT
2828 // Capture the code before relocation so that it can be compared
2829 // against other versions.  If the code is captured after relocation
2830 // then relative instructions won't be equivalent.
2831 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2832   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2833   _saved_code_length = length;
2834   memcpy(_saved_code, buffer, length);
2835 }
2836 
2837 
2838 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2839   if (length != _saved_code_length) {
2840     return false;
2841   }
2842 
2843   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2844 }
2845 #endif
2846 
2847 
2848 /**
2849  * Create a native wrapper for this native method.  The wrapper converts the
2850  * Java-compiled calling convention to the native convention, handles
2851  * arguments, and transitions to native.  On return from the native we transition
2852  * back to java blocking if a safepoint is in progress.
2853  */
2854 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2855   ResourceMark rm;
2856   nmethod* nm = NULL;
2857 
2858   assert(method->is_native(), "must be native");
2859   assert(method->is_method_handle_intrinsic() ||
2860          method->has_native_function(), "must have something valid to call!");
2861 
2862   {
2863     // Perform the work while holding the lock, but perform any printing outside the lock
2864     MutexLocker mu(AdapterHandlerLibrary_lock);
2865     // See if somebody beat us to it
2866     if (method->code() != NULL) {
2867       return;
2868     }
2869 
2870     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2871     assert(compile_id > 0, "Must generate native wrapper");
2872 
2873 
2874     ResourceMark rm;
2875     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2876     if (buf != NULL) {
2877       CodeBuffer buffer(buf);
2878       double locs_buf[20];
2879       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2880       MacroAssembler _masm(&buffer);
2881 
2882       // Fill in the signature array, for the calling-convention call.
2883       const int total_args_passed = method->size_of_parameters();
2884 
2885       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2886       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2887       int i=0;
2888       if (!method->is_static())  // Pass in receiver first
2889         sig_bt[i++] = T_OBJECT;
2890       SignatureStream ss(method->signature());
2891       for (; !ss.at_return_type(); ss.next()) {
2892         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2893         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2894           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2895       }
2896       assert(i == total_args_passed, "");
2897       BasicType ret_type = ss.type();
2898 
2899       // Now get the compiled-Java layout as input (or output) arguments.
2900       // NOTE: Stubs for compiled entry points of method handle intrinsics
2901       // are just trampolines so the argument registers must be outgoing ones.
2902       const bool is_outgoing = method->is_method_handle_intrinsic();
2903       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2904 
2905       // Generate the compiled-to-native wrapper code
2906       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2907 
2908       if (nm != NULL) {
2909         method->set_code(method, nm);
2910 
2911         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2912         if (directive->PrintAssemblyOption) {
2913           nm->print_code();
2914         }
2915         DirectivesStack::release(directive);
2916       }
2917     }
2918   } // Unlock AdapterHandlerLibrary_lock
2919 
2920 
2921   // Install the generated code.
2922   if (nm != NULL) {
2923     const char *msg = method->is_static() ? "(static)" : "";
2924     CompileTask::print_ul(nm, msg);
2925     if (PrintCompilation) {
2926       ttyLocker ttyl;
2927       CompileTask::print(tty, nm, msg);
2928     }
2929     nm->post_compiled_method_load_event();
2930   }
2931 }
2932 
2933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2934   assert(thread == JavaThread::current(), "must be");
2935   // The code is about to enter a JNI lazy critical native method and
2936   // _needs_gc is true, so if this thread is already in a critical
2937   // section then just return, otherwise this thread should block
2938   // until needs_gc has been cleared.
2939   if (thread->in_critical()) {
2940     return;
2941   }
2942   // Lock and unlock a critical section to give the system a chance to block
2943   GCLocker::lock_critical(thread);
2944   GCLocker::unlock_critical(thread);
2945 JRT_END
2946 
2947 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2948   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2949   assert(obj != NULL, "Should not be null");
2950   oop o(obj);
2951   o = Universe::heap()->pin_object(thread, o);
2952   assert(o != NULL, "Should not be null");
2953   return o;
2954 JRT_END
2955 
2956 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2957   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2958   assert(obj != NULL, "Should not be null");
2959   oop o(obj);
2960   Universe::heap()->unpin_object(thread, o);
2961 JRT_END
2962 
2963 // -------------------------------------------------------------------------
2964 // Java-Java calling convention
2965 // (what you use when Java calls Java)
2966 
2967 //------------------------------name_for_receiver----------------------------------
2968 // For a given signature, return the VMReg for parameter 0.
2969 VMReg SharedRuntime::name_for_receiver() {
2970   VMRegPair regs;
2971   BasicType sig_bt = T_OBJECT;
2972   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2973   // Return argument 0 register.  In the LP64 build pointers
2974   // take 2 registers, but the VM wants only the 'main' name.
2975   return regs.first();
2976 }
2977 
2978 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2979   // This method is returning a data structure allocating as a
2980   // ResourceObject, so do not put any ResourceMarks in here.
2981   char *s = sig->as_C_string();
2982   int len = (int)strlen(s);
2983   s++; len--;                   // Skip opening paren
2984 
2985   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2986   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2987   int cnt = 0;
2988   if (has_receiver) {
2989     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2990   }
2991 
2992   while (*s != ')') {          // Find closing right paren
2993     switch (*s++) {            // Switch on signature character
2994     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2995     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2996     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2997     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2998     case 'I': sig_bt[cnt++] = T_INT;     break;
2999     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3000     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3001     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3002     case 'V': sig_bt[cnt++] = T_VOID;    break;
3003     case 'L':                   // Oop
3004       while (*s++ != ';');   // Skip signature
3005       sig_bt[cnt++] = T_OBJECT;
3006       break;
3007     case '[': {                 // Array
3008       do {                      // Skip optional size
3009         while (*s >= '0' && *s <= '9') s++;
3010       } while (*s++ == '[');   // Nested arrays?
3011       // Skip element type
3012       if (s[-1] == 'L')
3013         while (*s++ != ';'); // Skip signature
3014       sig_bt[cnt++] = T_ARRAY;
3015       break;
3016     }
3017     default : ShouldNotReachHere();
3018     }
3019   }
3020 
3021   if (has_appendix) {
3022     sig_bt[cnt++] = T_OBJECT;
3023   }
3024 
3025   assert(cnt < 256, "grow table size");
3026 
3027   int comp_args_on_stack;
3028   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3029 
3030   // the calling convention doesn't count out_preserve_stack_slots so
3031   // we must add that in to get "true" stack offsets.
3032 
3033   if (comp_args_on_stack) {
3034     for (int i = 0; i < cnt; i++) {
3035       VMReg reg1 = regs[i].first();
3036       if (reg1->is_stack()) {
3037         // Yuck
3038         reg1 = reg1->bias(out_preserve_stack_slots());
3039       }
3040       VMReg reg2 = regs[i].second();
3041       if (reg2->is_stack()) {
3042         // Yuck
3043         reg2 = reg2->bias(out_preserve_stack_slots());
3044       }
3045       regs[i].set_pair(reg2, reg1);
3046     }
3047   }
3048 
3049   // results
3050   *arg_size = cnt;
3051   return regs;
3052 }
3053 
3054 // OSR Migration Code
3055 //
3056 // This code is used convert interpreter frames into compiled frames.  It is
3057 // called from very start of a compiled OSR nmethod.  A temp array is
3058 // allocated to hold the interesting bits of the interpreter frame.  All
3059 // active locks are inflated to allow them to move.  The displaced headers and
3060 // active interpreter locals are copied into the temp buffer.  Then we return
3061 // back to the compiled code.  The compiled code then pops the current
3062 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3063 // copies the interpreter locals and displaced headers where it wants.
3064 // Finally it calls back to free the temp buffer.
3065 //
3066 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3067 
3068 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3069 
3070   //
3071   // This code is dependent on the memory layout of the interpreter local
3072   // array and the monitors. On all of our platforms the layout is identical
3073   // so this code is shared. If some platform lays the their arrays out
3074   // differently then this code could move to platform specific code or
3075   // the code here could be modified to copy items one at a time using
3076   // frame accessor methods and be platform independent.
3077 
3078   frame fr = thread->last_frame();
3079   assert(fr.is_interpreted_frame(), "");
3080   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3081 
3082   // Figure out how many monitors are active.
3083   int active_monitor_count = 0;
3084   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3085        kptr < fr.interpreter_frame_monitor_begin();
3086        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3087     if (kptr->obj() != NULL) active_monitor_count++;
3088   }
3089 
3090   // QQQ we could place number of active monitors in the array so that compiled code
3091   // could double check it.
3092 
3093   Method* moop = fr.interpreter_frame_method();
3094   int max_locals = moop->max_locals();
3095   // Allocate temp buffer, 1 word per local & 2 per active monitor
3096   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3097   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3098 
3099   // Copy the locals.  Order is preserved so that loading of longs works.
3100   // Since there's no GC I can copy the oops blindly.
3101   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3102   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3103                        (HeapWord*)&buf[0],
3104                        max_locals);
3105 
3106   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3107   int i = max_locals;
3108   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3109        kptr2 < fr.interpreter_frame_monitor_begin();
3110        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3111     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3112       BasicLock *lock = kptr2->lock();
3113       // Inflate so the displaced header becomes position-independent
3114       if (lock->displaced_header()->is_unlocked())
3115         ObjectSynchronizer::inflate_helper(kptr2->obj());
3116       // Now the displaced header is free to move
3117       buf[i++] = (intptr_t)lock->displaced_header();
3118       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3119     }
3120   }
3121   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3122 
3123   return buf;
3124 JRT_END
3125 
3126 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3127   FREE_C_HEAP_ARRAY(intptr_t, buf);
3128 JRT_END
3129 
3130 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3131   AdapterHandlerTableIterator iter(_adapters);
3132   while (iter.has_next()) {
3133     AdapterHandlerEntry* a = iter.next();
3134     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3135   }
3136   return false;
3137 }
3138 
3139 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3140   AdapterHandlerTableIterator iter(_adapters);
3141   while (iter.has_next()) {
3142     AdapterHandlerEntry* a = iter.next();
3143     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3144       st->print("Adapter for signature: ");
3145       a->print_adapter_on(tty);
3146       return;
3147     }
3148   }
3149   assert(false, "Should have found handler");
3150 }
3151 
3152 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3153   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3154                p2i(this), fingerprint()->as_string(),
3155                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3156 
3157 }
3158 
3159 #if INCLUDE_CDS
3160 
3161 void CDSAdapterHandlerEntry::init() {
3162   assert(DumpSharedSpaces, "used during dump time only");
3163   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3164   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3165 };
3166 
3167 #endif // INCLUDE_CDS
3168 
3169 
3170 #ifndef PRODUCT
3171 
3172 void AdapterHandlerLibrary::print_statistics() {
3173   _adapters->print_statistics();
3174 }
3175 
3176 #endif /* PRODUCT */
3177 
3178 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3179   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3180   if (thread->stack_reserved_zone_disabled()) {
3181   thread->enable_stack_reserved_zone();
3182   }
3183   thread->set_reserved_stack_activation(thread->stack_base());
3184 JRT_END
3185 
3186 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3187   ResourceMark rm(thread);
3188   frame activation;
3189   CompiledMethod* nm = NULL;
3190   int count = 1;
3191 
3192   assert(fr.is_java_frame(), "Must start on Java frame");
3193 
3194   while (true) {
3195     Method* method = NULL;
3196     bool found = false;
3197     if (fr.is_interpreted_frame()) {
3198       method = fr.interpreter_frame_method();
3199       if (method != NULL && method->has_reserved_stack_access()) {
3200         found = true;
3201       }
3202     } else {
3203       CodeBlob* cb = fr.cb();
3204       if (cb != NULL && cb->is_compiled()) {
3205         nm = cb->as_compiled_method();
3206         method = nm->method();
3207         // scope_desc_near() must be used, instead of scope_desc_at() because on
3208         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3209         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3210           method = sd->method();
3211           if (method != NULL && method->has_reserved_stack_access()) {
3212             found = true;
3213       }
3214     }
3215       }
3216     }
3217     if (found) {
3218       activation = fr;
3219       warning("Potentially dangerous stack overflow in "
3220               "ReservedStackAccess annotated method %s [%d]",
3221               method->name_and_sig_as_C_string(), count++);
3222       EventReservedStackActivation event;
3223       if (event.should_commit()) {
3224         event.set_method(method);
3225         event.commit();
3226       }
3227     }
3228     if (fr.is_first_java_frame()) {
3229       break;
3230     } else {
3231       fr = fr.java_sender();
3232     }
3233   }
3234   return activation;
3235 }
3236 
3237 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3238   // After any safepoint, just before going back to compiled code,
3239   // we inform the GC that we will be doing initializing writes to
3240   // this object in the future without emitting card-marks, so
3241   // GC may take any compensating steps.
3242 
3243   oop new_obj = thread->vm_result();
3244   if (new_obj == NULL) return;
3245 
3246   BarrierSet *bs = BarrierSet::barrier_set();
3247   bs->on_slowpath_allocation_exit(thread, new_obj);
3248 }