1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "runtime/objectMonitor.hpp"
  42 #include "runtime/objectMonitor.inline.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframe.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/dtrace.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/preserveException.hpp"
  56 
  57 // The "core" versions of monitor enter and exit reside in this file.
  58 // The interpreter and compilers contain specialized transliterated
  59 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  60 // for instance.  If you make changes here, make sure to modify the
  61 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  62 //
  63 // -----------------------------------------------------------------------------
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = NULL;                                                      \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  75   if (klassname != NULL) {                                                 \
  76     bytes = (char*)klassname->bytes();                                     \
  77     len = klassname->utf8_length();                                        \
  78   }
  79 
  80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  85                            (uintptr_t)(monitor), bytes, len, (millis));    \
  86     }                                                                      \
  87   }
  88 
  89 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  90 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  91 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  98                                     (uintptr_t)(monitor), bytes, len);     \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // This exists only as a workaround of dtrace bug 6254741
 110 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 111   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 112   return 0;
 113 }
 114 
 115 #define NINFLATIONLOCKS 256
 116 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 117 
 118 // global list of blocks of monitors
 119 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 120 // global monitor free list
 121 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 122 // global monitor in-use list, for moribund threads,
 123 // monitors they inflated need to be scanned for deflation
 124 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 125 // count of entries in gOmInUseList
 126 int ObjectSynchronizer::gOmInUseCount = 0;
 127 bool ObjectSynchronizer::_gOmShouldDeflateIdleMonitors = false;
 128 bool volatile ObjectSynchronizer::_is_cleanup_requested = false;
 129 
 130 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 131 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 132 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 133 
 134 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 135 
 136 
 137 // =====================> Quick functions
 138 
 139 // The quick_* forms are special fast-path variants used to improve
 140 // performance.  In the simplest case, a "quick_*" implementation could
 141 // simply return false, in which case the caller will perform the necessary
 142 // state transitions and call the slow-path form.
 143 // The fast-path is designed to handle frequently arising cases in an efficient
 144 // manner and is just a degenerate "optimistic" variant of the slow-path.
 145 // returns true  -- to indicate the call was satisfied.
 146 // returns false -- to indicate the call needs the services of the slow-path.
 147 // A no-loitering ordinance is in effect for code in the quick_* family
 148 // operators: safepoints or indefinite blocking (blocking that might span a
 149 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 150 // entry.
 151 //
 152 // Consider: An interesting optimization is to have the JIT recognize the
 153 // following common idiom:
 154 //   synchronized (someobj) { .... ; notify(); }
 155 // That is, we find a notify() or notifyAll() call that immediately precedes
 156 // the monitorexit operation.  In that case the JIT could fuse the operations
 157 // into a single notifyAndExit() runtime primitive.
 158 
 159 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 160   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 161   assert(self->is_Java_thread(), "invariant");
 162   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 163   NoSafepointVerifier nsv;
 164   if (obj == NULL) return false;  // slow-path for invalid obj
 165   const markOop mark = obj->mark();
 166 
 167   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 168     // Degenerate notify
 169     // stack-locked by caller so by definition the implied waitset is empty.
 170     return true;
 171   }
 172 
 173   if (mark->has_monitor()) {
 174     ObjectMonitor * const mon = mark->monitor();
 175     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 176     if (mon->owner() != self) return false;  // slow-path for IMS exception
 177 
 178     if (mon->first_waiter() != NULL) {
 179       // We have one or more waiters. Since this is an inflated monitor
 180       // that we own, we can transfer one or more threads from the waitset
 181       // to the entrylist here and now, avoiding the slow-path.
 182       if (all) {
 183         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 184       } else {
 185         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 186       }
 187       int tally = 0;
 188       do {
 189         mon->INotify(self);
 190         ++tally;
 191       } while (mon->first_waiter() != NULL && all);
 192       OM_PERFDATA_OP(Notifications, inc(tally));
 193     }
 194     return true;
 195   }
 196 
 197   // biased locking and any other IMS exception states take the slow-path
 198   return false;
 199 }
 200 
 201 
 202 // The LockNode emitted directly at the synchronization site would have
 203 // been too big if it were to have included support for the cases of inflated
 204 // recursive enter and exit, so they go here instead.
 205 // Note that we can't safely call AsyncPrintJavaStack() from within
 206 // quick_enter() as our thread state remains _in_Java.
 207 
 208 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 209                                      BasicLock * lock) {
 210   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 211   assert(Self->is_Java_thread(), "invariant");
 212   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 213   NoSafepointVerifier nsv;
 214   if (obj == NULL) return false;       // Need to throw NPE
 215 
 216   while (true) {
 217     const markOop mark = obj->mark();
 218 
 219     if (mark->has_monitor()) {
 220       ObjectMonitorHandle omh;
 221       if (!omh.save_om_ptr(obj, mark)) {
 222         // Lost a race with async deflation so try again.
 223         assert(AsyncDeflateIdleMonitors, "sanity check");
 224         continue;
 225       }
 226       ObjectMonitor * const m = omh.om_ptr();
 227       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 228       Thread * const owner = (Thread *) m->_owner;
 229 
 230       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 231       // and observability
 232       // Case: light contention possibly amenable to TLE
 233       // Case: TLE inimical operations such as nested/recursive synchronization
 234 
 235       if (owner == Self) {
 236         m->_recursions++;
 237         return true;
 238       }
 239 
 240       // This Java Monitor is inflated so obj's header will never be
 241       // displaced to this thread's BasicLock. Make the displaced header
 242       // non-NULL so this BasicLock is not seen as recursive nor as
 243       // being locked. We do this unconditionally so that this thread's
 244       // BasicLock cannot be mis-interpreted by any stack walkers. For
 245       // performance reasons, stack walkers generally first check for
 246       // Biased Locking in the object's header, the second check is for
 247       // stack-locking in the object's header, the third check is for
 248       // recursive stack-locking in the displaced header in the BasicLock,
 249       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 250       lock->set_displaced_header(markOopDesc::unused_mark());
 251 
 252       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 253         assert(m->_recursions == 0, "invariant");
 254         assert(m->_owner == Self, "invariant");
 255         return true;
 256       }
 257     }
 258     break;
 259   }
 260 
 261   // Note that we could inflate in quick_enter.
 262   // This is likely a useful optimization
 263   // Critically, in quick_enter() we must not:
 264   // -- perform bias revocation, or
 265   // -- block indefinitely, or
 266   // -- reach a safepoint
 267 
 268   return false;        // revert to slow-path
 269 }
 270 
 271 // -----------------------------------------------------------------------------
 272 //  Fast Monitor Enter/Exit
 273 // This the fast monitor enter. The interpreter and compiler use
 274 // some assembly copies of this code. Make sure update those code
 275 // if the following function is changed. The implementation is
 276 // extremely sensitive to race condition. Be careful.
 277 
 278 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 279                                     bool attempt_rebias, TRAPS) {
 280   if (UseBiasedLocking) {
 281     if (!SafepointSynchronize::is_at_safepoint()) {
 282       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 283       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 284         return;
 285       }
 286     } else {
 287       assert(!attempt_rebias, "can not rebias toward VM thread");
 288       BiasedLocking::revoke_at_safepoint(obj);
 289     }
 290     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 291   }
 292 
 293   slow_enter(obj, lock, THREAD);
 294 }
 295 
 296 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 297   markOop mark = object->mark();
 298   // We cannot check for Biased Locking if we are racing an inflation.
 299   assert(mark == markOopDesc::INFLATING() ||
 300          !mark->has_bias_pattern(), "should not see bias pattern here");
 301 
 302   markOop dhw = lock->displaced_header();
 303   if (dhw == NULL) {
 304     // If the displaced header is NULL, then this exit matches up with
 305     // a recursive enter. No real work to do here except for diagnostics.
 306 #ifndef PRODUCT
 307     if (mark != markOopDesc::INFLATING()) {
 308       // Only do diagnostics if we are not racing an inflation. Simply
 309       // exiting a recursive enter of a Java Monitor that is being
 310       // inflated is safe; see the has_monitor() comment below.
 311       assert(!mark->is_neutral(), "invariant");
 312       assert(!mark->has_locker() ||
 313              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 314       if (mark->has_monitor()) {
 315         // The BasicLock's displaced_header is marked as a recursive
 316         // enter and we have an inflated Java Monitor (ObjectMonitor).
 317         // This is a special case where the Java Monitor was inflated
 318         // after this thread entered the stack-lock recursively. When a
 319         // Java Monitor is inflated, we cannot safely walk the Java
 320         // Monitor owner's stack and update the BasicLocks because a
 321         // Java Monitor can be asynchronously inflated by a thread that
 322         // does not own the Java Monitor.
 323         ObjectMonitor * m = mark->monitor();
 324         assert(((oop)(m->object()))->mark() == mark, "invariant");
 325         assert(m->is_entered(THREAD), "invariant");
 326       }
 327     }
 328 #endif
 329     return;
 330   }
 331 
 332   if (mark == (markOop) lock) {
 333     // If the object is stack-locked by the current thread, try to
 334     // swing the displaced header from the BasicLock back to the mark.
 335     assert(dhw->is_neutral(), "invariant");
 336     if (object->cas_set_mark(dhw, mark) == mark) {
 337       return;
 338     }
 339   }
 340 
 341   // We have to take the slow-path of possible inflation and then exit.
 342   ObjectMonitorHandle omh;
 343   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 344   omh.om_ptr()->exit(true, THREAD);
 345 }
 346 
 347 // -----------------------------------------------------------------------------
 348 // Interpreter/Compiler Slow Case
 349 // This routine is used to handle interpreter/compiler slow case
 350 // We don't need to use fast path here, because it must have been
 351 // failed in the interpreter/compiler code.
 352 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 353   bool do_loop = true;
 354   while (do_loop) {
 355     markOop mark = obj->mark();
 356     assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 357 
 358     if (mark->is_neutral()) {
 359       // Anticipate successful CAS -- the ST of the displaced mark must
 360       // be visible <= the ST performed by the CAS.
 361       lock->set_displaced_header(mark);
 362       if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 363         return;
 364       }
 365       // Fall through to inflate() ...
 366     } else if (mark->has_locker() &&
 367                THREAD->is_lock_owned((address)mark->locker())) {
 368       assert(lock != mark->locker(), "must not re-lock the same lock");
 369       assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 370       lock->set_displaced_header(NULL);
 371       return;
 372     }
 373 
 374     // The object header will never be displaced to this lock,
 375     // so it does not matter what the value is, except that it
 376     // must be non-zero to avoid looking like a re-entrant lock,
 377     // and must not look locked either.
 378     lock->set_displaced_header(markOopDesc::unused_mark());
 379     ObjectMonitorHandle omh;
 380     inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 381     do_loop = !omh.om_ptr()->enter(THREAD);
 382   }
 383 }
 384 
 385 // This routine is used to handle interpreter/compiler slow case
 386 // We don't need to use fast path here, because it must have
 387 // failed in the interpreter/compiler code. Simply use the heavy
 388 // weight monitor should be ok, unless someone find otherwise.
 389 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 390   fast_exit(object, lock, THREAD);
 391 }
 392 
 393 // -----------------------------------------------------------------------------
 394 // Class Loader  support to workaround deadlocks on the class loader lock objects
 395 // Also used by GC
 396 // complete_exit()/reenter() are used to wait on a nested lock
 397 // i.e. to give up an outer lock completely and then re-enter
 398 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 399 //  1) complete_exit lock1 - saving recursion count
 400 //  2) wait on lock2
 401 //  3) when notified on lock2, unlock lock2
 402 //  4) reenter lock1 with original recursion count
 403 //  5) lock lock2
 404 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 405 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 406   if (UseBiasedLocking) {
 407     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 408     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 409   }
 410 
 411   ObjectMonitorHandle omh;
 412   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 413   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 414   return ret_code;
 415 }
 416 
 417 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 418 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 419   if (UseBiasedLocking) {
 420     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 421     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 422   }
 423 
 424   bool do_loop = true;
 425   while (do_loop) {
 426     ObjectMonitorHandle omh;
 427     inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 428     do_loop = !omh.om_ptr()->reenter(recursion, THREAD);
 429   }
 430 }
 431 // -----------------------------------------------------------------------------
 432 // JNI locks on java objects
 433 // NOTE: must use heavy weight monitor to handle jni monitor enter
 434 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 435   // the current locking is from JNI instead of Java code
 436   if (UseBiasedLocking) {
 437     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 438     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 439   }
 440   THREAD->set_current_pending_monitor_is_from_java(false);
 441   bool do_loop = true;
 442   while (do_loop) {
 443     ObjectMonitorHandle omh;
 444     inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 445     do_loop = !omh.om_ptr()->enter(THREAD);
 446   }
 447   THREAD->set_current_pending_monitor_is_from_java(true);
 448 }
 449 
 450 // NOTE: must use heavy weight monitor to handle jni monitor exit
 451 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 452   if (UseBiasedLocking) {
 453     Handle h_obj(THREAD, obj);
 454     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 455     obj = h_obj();
 456   }
 457   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 458 
 459   ObjectMonitorHandle omh;
 460   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 461   ObjectMonitor * monitor = omh.om_ptr();
 462   // If this thread has locked the object, exit the monitor.  Note:  can't use
 463   // monitor->check(CHECK); must exit even if an exception is pending.
 464   if (monitor->check(THREAD)) {
 465     monitor->exit(true, THREAD);
 466   }
 467 }
 468 
 469 // -----------------------------------------------------------------------------
 470 // Internal VM locks on java objects
 471 // standard constructor, allows locking failures
 472 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 473   _dolock = doLock;
 474   _thread = thread;
 475   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 476   _obj = obj;
 477 
 478   if (_dolock) {
 479     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 480   }
 481 }
 482 
 483 ObjectLocker::~ObjectLocker() {
 484   if (_dolock) {
 485     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 486   }
 487 }
 488 
 489 
 490 // -----------------------------------------------------------------------------
 491 //  Wait/Notify/NotifyAll
 492 // NOTE: must use heavy weight monitor to handle wait()
 493 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 494   if (UseBiasedLocking) {
 495     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 496     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 497   }
 498   if (millis < 0) {
 499     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 500   }
 501   ObjectMonitorHandle omh;
 502   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 503   ObjectMonitor * monitor = omh.om_ptr();
 504 
 505   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 506   monitor->wait(millis, true, THREAD);
 507 
 508   // This dummy call is in place to get around dtrace bug 6254741.  Once
 509   // that's fixed we can uncomment the following line, remove the call
 510   // and change this function back into a "void" func.
 511   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 512   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 513   return ret_code;
 514 }
 515 
 516 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 517   if (UseBiasedLocking) {
 518     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 519     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 520   }
 521   if (millis < 0) {
 522     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 523   }
 524   ObjectMonitorHandle omh;
 525   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 526   omh.om_ptr()->wait(millis, false, THREAD);
 527 }
 528 
 529 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 530   if (UseBiasedLocking) {
 531     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 532     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 533   }
 534 
 535   markOop mark = obj->mark();
 536   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 537     return;
 538   }
 539   ObjectMonitorHandle omh;
 540   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 541   omh.om_ptr()->notify(THREAD);
 542 }
 543 
 544 // NOTE: see comment of notify()
 545 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 546   if (UseBiasedLocking) {
 547     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 548     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 549   }
 550 
 551   markOop mark = obj->mark();
 552   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 553     return;
 554   }
 555   ObjectMonitorHandle omh;
 556   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 557   omh.om_ptr()->notifyAll(THREAD);
 558 }
 559 
 560 // -----------------------------------------------------------------------------
 561 // Hash Code handling
 562 //
 563 // Performance concern:
 564 // OrderAccess::storestore() calls release() which at one time stored 0
 565 // into the global volatile OrderAccess::dummy variable. This store was
 566 // unnecessary for correctness. Many threads storing into a common location
 567 // causes considerable cache migration or "sloshing" on large SMP systems.
 568 // As such, I avoided using OrderAccess::storestore(). In some cases
 569 // OrderAccess::fence() -- which incurs local latency on the executing
 570 // processor -- is a better choice as it scales on SMP systems.
 571 //
 572 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 573 // a discussion of coherency costs. Note that all our current reference
 574 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 575 // x64, and SPARC.
 576 //
 577 // As a general policy we use "volatile" to control compiler-based reordering
 578 // and explicit fences (barriers) to control for architectural reordering
 579 // performed by the CPU(s) or platform.
 580 
 581 struct SharedGlobals {
 582   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 583   // These are highly shared mostly-read variables.
 584   // To avoid false-sharing they need to be the sole occupants of a cache line.
 585   volatile int stwRandom;
 586   volatile int stwCycle;
 587   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 588   // Hot RW variable -- Sequester to avoid false-sharing
 589   volatile int hcSequence;
 590   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 591 };
 592 
 593 static SharedGlobals GVars;
 594 static int MonitorScavengeThreshold = 1000000;
 595 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 596 
 597 static markOop ReadStableMark(oop obj) {
 598   markOop mark = obj->mark();
 599   if (!mark->is_being_inflated()) {
 600     return mark;       // normal fast-path return
 601   }
 602 
 603   int its = 0;
 604   for (;;) {
 605     markOop mark = obj->mark();
 606     if (!mark->is_being_inflated()) {
 607       return mark;    // normal fast-path return
 608     }
 609 
 610     // The object is being inflated by some other thread.
 611     // The caller of ReadStableMark() must wait for inflation to complete.
 612     // Avoid live-lock
 613     // TODO: consider calling SafepointSynchronize::do_call_back() while
 614     // spinning to see if there's a safepoint pending.  If so, immediately
 615     // yielding or blocking would be appropriate.  Avoid spinning while
 616     // there is a safepoint pending.
 617     // TODO: add inflation contention performance counters.
 618     // TODO: restrict the aggregate number of spinners.
 619 
 620     ++its;
 621     if (its > 10000 || !os::is_MP()) {
 622       if (its & 1) {
 623         os::naked_yield();
 624       } else {
 625         // Note that the following code attenuates the livelock problem but is not
 626         // a complete remedy.  A more complete solution would require that the inflating
 627         // thread hold the associated inflation lock.  The following code simply restricts
 628         // the number of spinners to at most one.  We'll have N-2 threads blocked
 629         // on the inflationlock, 1 thread holding the inflation lock and using
 630         // a yield/park strategy, and 1 thread in the midst of inflation.
 631         // A more refined approach would be to change the encoding of INFLATING
 632         // to allow encapsulation of a native thread pointer.  Threads waiting for
 633         // inflation to complete would use CAS to push themselves onto a singly linked
 634         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 635         // and calling park().  When inflation was complete the thread that accomplished inflation
 636         // would detach the list and set the markword to inflated with a single CAS and
 637         // then for each thread on the list, set the flag and unpark() the thread.
 638         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 639         // wakes at most one thread whereas we need to wake the entire list.
 640         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 641         int YieldThenBlock = 0;
 642         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 643         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 644         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 645         while (obj->mark() == markOopDesc::INFLATING()) {
 646           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 647           // so we periodically call Self->_ParkEvent->park(1).
 648           // We use a mixed spin/yield/block mechanism.
 649           if ((YieldThenBlock++) >= 16) {
 650             Thread::current()->_ParkEvent->park(1);
 651           } else {
 652             os::naked_yield();
 653           }
 654         }
 655         Thread::muxRelease(gInflationLocks + ix);
 656       }
 657     } else {
 658       SpinPause();       // SMP-polite spinning
 659     }
 660   }
 661 }
 662 
 663 // hashCode() generation :
 664 //
 665 // Possibilities:
 666 // * MD5Digest of {obj,stwRandom}
 667 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 668 // * A DES- or AES-style SBox[] mechanism
 669 // * One of the Phi-based schemes, such as:
 670 //   2654435761 = 2^32 * Phi (golden ratio)
 671 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 672 // * A variation of Marsaglia's shift-xor RNG scheme.
 673 // * (obj ^ stwRandom) is appealing, but can result
 674 //   in undesirable regularity in the hashCode values of adjacent objects
 675 //   (objects allocated back-to-back, in particular).  This could potentially
 676 //   result in hashtable collisions and reduced hashtable efficiency.
 677 //   There are simple ways to "diffuse" the middle address bits over the
 678 //   generated hashCode values:
 679 
 680 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 681   intptr_t value = 0;
 682   if (hashCode == 0) {
 683     // This form uses global Park-Miller RNG.
 684     // On MP system we'll have lots of RW access to a global, so the
 685     // mechanism induces lots of coherency traffic.
 686     value = os::random();
 687   } else if (hashCode == 1) {
 688     // This variation has the property of being stable (idempotent)
 689     // between STW operations.  This can be useful in some of the 1-0
 690     // synchronization schemes.
 691     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 692     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 693   } else if (hashCode == 2) {
 694     value = 1;            // for sensitivity testing
 695   } else if (hashCode == 3) {
 696     value = ++GVars.hcSequence;
 697   } else if (hashCode == 4) {
 698     value = cast_from_oop<intptr_t>(obj);
 699   } else {
 700     // Marsaglia's xor-shift scheme with thread-specific state
 701     // This is probably the best overall implementation -- we'll
 702     // likely make this the default in future releases.
 703     unsigned t = Self->_hashStateX;
 704     t ^= (t << 11);
 705     Self->_hashStateX = Self->_hashStateY;
 706     Self->_hashStateY = Self->_hashStateZ;
 707     Self->_hashStateZ = Self->_hashStateW;
 708     unsigned v = Self->_hashStateW;
 709     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 710     Self->_hashStateW = v;
 711     value = v;
 712   }
 713 
 714   value &= markOopDesc::hash_mask;
 715   if (value == 0) value = 0xBAD;
 716   assert(value != markOopDesc::no_hash, "invariant");
 717   return value;
 718 }
 719 
 720 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 721   if (UseBiasedLocking) {
 722     // NOTE: many places throughout the JVM do not expect a safepoint
 723     // to be taken here, in particular most operations on perm gen
 724     // objects. However, we only ever bias Java instances and all of
 725     // the call sites of identity_hash that might revoke biases have
 726     // been checked to make sure they can handle a safepoint. The
 727     // added check of the bias pattern is to avoid useless calls to
 728     // thread-local storage.
 729     if (obj->mark()->has_bias_pattern()) {
 730       // Handle for oop obj in case of STW safepoint
 731       Handle hobj(Self, obj);
 732       // Relaxing assertion for bug 6320749.
 733       assert(Universe::verify_in_progress() ||
 734              !SafepointSynchronize::is_at_safepoint(),
 735              "biases should not be seen by VM thread here");
 736       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 737       obj = hobj();
 738       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 739     }
 740   }
 741 
 742   // hashCode() is a heap mutator ...
 743   // Relaxing assertion for bug 6320749.
 744   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 745          !SafepointSynchronize::is_at_safepoint(), "invariant");
 746   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 747          Self->is_Java_thread() , "invariant");
 748   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 749          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 750 
 751   while (true) {
 752     ObjectMonitor* monitor = NULL;
 753     markOop temp, test;
 754     intptr_t hash;
 755     markOop mark = ReadStableMark(obj);
 756 
 757     // object should remain ineligible for biased locking
 758     assert(!mark->has_bias_pattern(), "invariant");
 759 
 760     if (mark->is_neutral()) {
 761       hash = mark->hash();              // this is a normal header
 762       if (hash != 0) {                  // if it has hash, just return it
 763         return hash;
 764       }
 765       hash = get_next_hash(Self, obj);  // allocate a new hash code
 766       temp = mark->copy_set_hash(hash); // merge the hash code into header
 767       // use (machine word version) atomic operation to install the hash
 768       test = obj->cas_set_mark(temp, mark);
 769       if (test == mark) {
 770         return hash;
 771       }
 772       // If atomic operation failed, we must inflate the header
 773       // into heavy weight monitor. We could add more code here
 774       // for fast path, but it does not worth the complexity.
 775     } else if (mark->has_monitor()) {
 776       ObjectMonitorHandle omh;
 777       if (!omh.save_om_ptr(obj, mark)) {
 778         // Lost a race with async deflation so try again.
 779         assert(AsyncDeflateIdleMonitors, "sanity check");
 780         continue;
 781       }
 782       monitor = omh.om_ptr();
 783       temp = monitor->header();
 784       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 785       hash = temp->hash();
 786       if (hash != 0) {
 787         return hash;
 788       }
 789       // Skip to the following code to reduce code size
 790     } else if (Self->is_lock_owned((address)mark->locker())) {
 791       temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 792       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 793       hash = temp->hash();              // by current thread, check if the displaced
 794       if (hash != 0) {                  // header contains hash code
 795         return hash;
 796       }
 797       // WARNING:
 798       // The displaced header in the BasicLock on a thread's stack
 799       // is strictly immutable. It CANNOT be changed in ANY cases.
 800       // So we have to inflate the stack lock into an ObjectMonitor
 801       // even if the current thread owns the lock. The BasicLock on
 802       // a thread's stack can be asynchronously read by other threads
 803       // during an inflate() call so any change to that stack memory
 804       // may not propagate to other threads correctly.
 805     }
 806 
 807     // Inflate the monitor to set hash code
 808     ObjectMonitorHandle omh;
 809     inflate(&omh, Self, obj, inflate_cause_hash_code);
 810     monitor = omh.om_ptr();
 811     // Load displaced header and check it has hash code
 812     mark = monitor->header();
 813     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 814     hash = mark->hash();
 815     if (hash == 0) {
 816       hash = get_next_hash(Self, obj);
 817       temp = mark->copy_set_hash(hash); // merge hash code into header
 818       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 819       test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 820       if (test != mark) {
 821         // The only non-deflation update to the ObjectMonitor's
 822         // header/dmw field is to merge in the hash code. If someone
 823         // adds a new usage of the header/dmw field, please update
 824         // this code.
 825         // ObjectMonitor::install_displaced_markword_in_object()
 826         // does mark the header/dmw field as part of async deflation,
 827         // but that protocol cannot happen now due to the
 828         // ObjectMonitorHandle above.
 829         hash = test->hash();
 830         assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 831         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 832       }
 833     }
 834     // We finally get the hash
 835     return hash;
 836   }
 837 }
 838 
 839 // Deprecated -- use FastHashCode() instead.
 840 
 841 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 842   return FastHashCode(Thread::current(), obj());
 843 }
 844 
 845 
 846 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 847                                                    Handle h_obj) {
 848   if (UseBiasedLocking) {
 849     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 850     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 851   }
 852 
 853   assert(thread == JavaThread::current(), "Can only be called on current thread");
 854   oop obj = h_obj();
 855 
 856   while (true) {
 857     markOop mark = ReadStableMark(obj);
 858 
 859     // Uncontended case, header points to stack
 860     if (mark->has_locker()) {
 861       return thread->is_lock_owned((address)mark->locker());
 862     }
 863     // Contended case, header points to ObjectMonitor (tagged pointer)
 864     if (mark->has_monitor()) {
 865       ObjectMonitorHandle omh;
 866       if (!omh.save_om_ptr(obj, mark)) {
 867         // Lost a race with async deflation so try again.
 868         assert(AsyncDeflateIdleMonitors, "sanity check");
 869         continue;
 870       }
 871       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 872       return ret_code;
 873     }
 874     // Unlocked case, header in place
 875     assert(mark->is_neutral(), "sanity check");
 876     return false;
 877   }
 878 }
 879 
 880 // Be aware of this method could revoke bias of the lock object.
 881 // This method queries the ownership of the lock handle specified by 'h_obj'.
 882 // If the current thread owns the lock, it returns owner_self. If no
 883 // thread owns the lock, it returns owner_none. Otherwise, it will return
 884 // owner_other.
 885 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 886 (JavaThread *self, Handle h_obj) {
 887   // The caller must beware this method can revoke bias, and
 888   // revocation can result in a safepoint.
 889   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 890   assert(self->thread_state() != _thread_blocked, "invariant");
 891 
 892   // Possible mark states: neutral, biased, stack-locked, inflated
 893 
 894   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 895     // CASE: biased
 896     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 897     assert(!h_obj->mark()->has_bias_pattern(),
 898            "biases should be revoked by now");
 899   }
 900 
 901   assert(self == JavaThread::current(), "Can only be called on current thread");
 902   oop obj = h_obj();
 903 
 904   while (true) {
 905     markOop mark = ReadStableMark(obj);
 906 
 907     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 908     if (mark->has_locker()) {
 909       return self->is_lock_owned((address)mark->locker()) ?
 910         owner_self : owner_other;
 911     }
 912 
 913     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 914     // The Object:ObjectMonitor relationship is stable as long as we're
 915     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 916     if (mark->has_monitor()) {
 917       ObjectMonitorHandle omh;
 918       if (!omh.save_om_ptr(obj, mark)) {
 919         // Lost a race with async deflation so try again.
 920         assert(AsyncDeflateIdleMonitors, "sanity check");
 921         continue;
 922       }
 923       ObjectMonitor * monitor = omh.om_ptr();
 924       void * owner = monitor->_owner;
 925       if (owner == NULL) return owner_none;
 926       return (owner == self ||
 927               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 928     }
 929 
 930     // CASE: neutral
 931     assert(mark->is_neutral(), "sanity check");
 932     return owner_none;           // it's unlocked
 933   }
 934 }
 935 
 936 // FIXME: jvmti should call this
 937 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 938   if (UseBiasedLocking) {
 939     if (SafepointSynchronize::is_at_safepoint()) {
 940       BiasedLocking::revoke_at_safepoint(h_obj);
 941     } else {
 942       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 943     }
 944     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 945   }
 946 
 947   oop obj = h_obj();
 948 
 949   while (true) {
 950     address owner = NULL;
 951     markOop mark = ReadStableMark(obj);
 952 
 953     // Uncontended case, header points to stack
 954     if (mark->has_locker()) {
 955       owner = (address) mark->locker();
 956     }
 957 
 958     // Contended case, header points to ObjectMonitor (tagged pointer)
 959     else if (mark->has_monitor()) {
 960       ObjectMonitorHandle omh;
 961       if (!omh.save_om_ptr(obj, mark)) {
 962         // Lost a race with async deflation so try again.
 963         assert(AsyncDeflateIdleMonitors, "sanity check");
 964         continue;
 965       }
 966       ObjectMonitor* monitor = omh.om_ptr();
 967       assert(monitor != NULL, "monitor should be non-null");
 968       owner = (address) monitor->owner();
 969     }
 970 
 971     if (owner != NULL) {
 972       // owning_thread_from_monitor_owner() may also return NULL here
 973       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 974     }
 975 
 976     // Unlocked case, header in place
 977     // Cannot have assertion since this object may have been
 978     // locked by another thread when reaching here.
 979     // assert(mark->is_neutral(), "sanity check");
 980 
 981     return NULL;
 982   }
 983 }
 984 
 985 // Visitors ...
 986 
 987 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 988   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 989   while (block != NULL) {
 990     assert(block->object() == CHAINMARKER, "must be a block header");
 991     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 992       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 993       if (mid->is_active()) {
 994         ObjectMonitorHandle omh(mid);
 995 
 996         if (mid->object() == NULL ||
 997             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 998           // Only process with closure if the object is set.
 999           // For async deflation, race here if monitor is not owned!
1000           // The above ref_count bump (in ObjectMonitorHandle ctr)
1001           // will cause subsequent async deflation to skip it.
1002           // However, previous or concurrent async deflation is a race.
1003           continue;
1004         }
1005         closure->do_monitor(mid);
1006       }
1007     }
1008     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1009   }
1010 }
1011 
1012 // Get the next block in the block list.
1013 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1014   assert(block->object() == CHAINMARKER, "must be a block header");
1015   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1016   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1017   return block;
1018 }
1019 
1020 static bool monitors_used_above_threshold() {
1021   if (gMonitorPopulation == 0) {
1022     return false;
1023   }
1024   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1025   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1026   return monitor_usage > MonitorUsedDeflationThreshold;
1027 }
1028 
1029 bool ObjectSynchronizer::is_cleanup_needed() {
1030   if (MonitorUsedDeflationThreshold > 0) {
1031     return monitors_used_above_threshold();
1032   }
1033   return false;
1034 }
1035 
1036 void ObjectSynchronizer::oops_do(OopClosure* f) {
1037   // We only scan the global used list here (for moribund threads), and
1038   // the thread-local monitors in Thread::oops_do().
1039   global_used_oops_do(f);
1040 }
1041 
1042 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1043   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1044   list_oops_do(gOmInUseList, f);
1045 }
1046 
1047 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1048   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1049   list_oops_do(thread->omInUseList, f);
1050 }
1051 
1052 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1053   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1054   ObjectMonitor* mid;
1055   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1056     if (mid->object() != NULL) {
1057       f->do_oop((oop*)mid->object_addr());
1058     }
1059   }
1060 }
1061 
1062 
1063 // -----------------------------------------------------------------------------
1064 // ObjectMonitor Lifecycle
1065 // -----------------------
1066 // Inflation unlinks monitors from the global gFreeList and
1067 // associates them with objects.  Deflation -- which occurs at
1068 // STW-time -- disassociates idle monitors from objects.  Such
1069 // scavenged monitors are returned to the gFreeList.
1070 //
1071 // The global list is protected by gListLock.  All the critical sections
1072 // are short and operate in constant-time.
1073 //
1074 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1075 //
1076 // Lifecycle:
1077 // --   unassigned and on the global free list
1078 // --   unassigned and on a thread's private omFreeList
1079 // --   assigned to an object.  The object is inflated and the mark refers
1080 //      to the objectmonitor.
1081 
1082 
1083 // Constraining monitor pool growth via MonitorBound ...
1084 //
1085 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1086 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1087 // an inordinate number of monitors in circulation.
1088 // To avoid that scenario we can artificially induce a STW safepoint
1089 // if the pool appears to be growing past some reasonable bound.
1090 // Generally we favor time in space-time tradeoffs, but as there's no
1091 // natural back-pressure on the # of extant monitors we need to impose some
1092 // type of limit.  Beware that if MonitorBound is set to too low a value
1093 // we could just loop. In addition, if MonitorBound is set to a low value
1094 // we'll incur more safepoints, which are harmful to performance.
1095 // See also: GuaranteedSafepointInterval
1096 //
1097 // The current implementation uses asynchronous VM operations.
1098 
1099 static void InduceScavenge(Thread * Self, const char * Whence) {
1100   // Induce STW safepoint to trim monitors
1101   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1102   // More precisely, trigger an asynchronous STW safepoint as the number
1103   // of active monitors passes the specified threshold.
1104   // TODO: assert thread state is reasonable
1105 
1106   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1107     // Induce a 'null' safepoint to scavenge monitors
1108     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1109     // to the VMthread and have a lifespan longer than that of this activation record.
1110     // The VMThread will delete the op when completed.
1111     VMThread::execute(new VM_ScavengeMonitors());
1112   }
1113 }
1114 
1115 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1116                                            const InflateCause cause) {
1117   // A large MAXPRIVATE value reduces both list lock contention
1118   // and list coherency traffic, but also tends to increase the
1119   // number of objectMonitors in circulation as well as the STW
1120   // scavenge costs.  As usual, we lean toward time in space-time
1121   // tradeoffs.
1122   const int MAXPRIVATE = 1024;
1123 
1124   if (AsyncDeflateIdleMonitors) {
1125     JavaThread * jt = (JavaThread *)Self;
1126     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1127         cause != inflate_cause_vm_internal) {
1128       // Deflate any per-thread idle monitors for this JavaThread if
1129       // this is not an internal inflation. Clean up your own mess.
1130       // (Gibbs Rule 45) Otherwise, skip this cleanup.
1131       // deflate_global_idle_monitors_using_JT() is called by the ServiceThread.
1132       debug_only(jt->check_for_valid_safepoint_state(false);)
1133       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1134     }
1135   }
1136 
1137   for (;;) {
1138     ObjectMonitor * m;
1139 
1140     // 1: try to allocate from the thread's local omFreeList.
1141     // Threads will attempt to allocate first from their local list, then
1142     // from the global list, and only after those attempts fail will the thread
1143     // attempt to instantiate new monitors.   Thread-local free lists take
1144     // heat off the gListLock and improve allocation latency, as well as reducing
1145     // coherency traffic on the shared global list.
1146     m = Self->omFreeList;
1147     if (m != NULL) {
1148       Self->omFreeList = m->FreeNext;
1149       Self->omFreeCount--;
1150       guarantee(m->object() == NULL, "invariant");
1151       m->set_allocation_state(ObjectMonitor::New);
1152       m->FreeNext = Self->omInUseList;
1153       Self->omInUseList = m;
1154       Self->omInUseCount++;
1155       return m;
1156     }
1157 
1158     // 2: try to allocate from the global gFreeList
1159     // CONSIDER: use muxTry() instead of muxAcquire().
1160     // If the muxTry() fails then drop immediately into case 3.
1161     // If we're using thread-local free lists then try
1162     // to reprovision the caller's free list.
1163     if (gFreeList != NULL) {
1164       // Reprovision the thread's omFreeList.
1165       // Use bulk transfers to reduce the allocation rate and heat
1166       // on various locks.
1167       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1168       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1169         gMonitorFreeCount--;
1170         ObjectMonitor * take = gFreeList;
1171         gFreeList = take->FreeNext;
1172         guarantee(take->object() == NULL, "invariant");
1173         if (AsyncDeflateIdleMonitors) {
1174           // Clear any values we allowed to linger during async deflation.
1175           take->_header = NULL;
1176           take->set_owner(NULL);
1177           take->_contentions = 0;
1178 
1179           if (take->ref_count() < 0) {
1180             // Add back max_jint to restore the ref_count field to its
1181             // proper value.
1182             Atomic::add(max_jint, &take->_ref_count);
1183 
1184             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1185                    take->ref_count());
1186           }
1187         }
1188         guarantee(!take->is_busy(), "invariant");
1189         take->Recycle();
1190         assert(take->is_free(), "invariant");
1191         omRelease(Self, take, false);
1192       }
1193       Thread::muxRelease(&gListLock);
1194       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1195       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1196 
1197       const int mx = MonitorBound;
1198       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1199         // We can't safely induce a STW safepoint from omAlloc() as our thread
1200         // state may not be appropriate for such activities and callers may hold
1201         // naked oops, so instead we defer the action.
1202         InduceScavenge(Self, "omAlloc");
1203       }
1204       continue;
1205     }
1206 
1207     // 3: allocate a block of new ObjectMonitors
1208     // Both the local and global free lists are empty -- resort to malloc().
1209     // In the current implementation objectMonitors are TSM - immortal.
1210     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1211     // each ObjectMonitor to start at the beginning of a cache line,
1212     // so we use align_up().
1213     // A better solution would be to use C++ placement-new.
1214     // BEWARE: As it stands currently, we don't run the ctors!
1215     assert(_BLOCKSIZE > 1, "invariant");
1216     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1217     PaddedEnd<ObjectMonitor> * temp;
1218     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1219     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1220                                                       mtInternal);
1221     temp = (PaddedEnd<ObjectMonitor> *)
1222              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1223 
1224     // NOTE: (almost) no way to recover if allocation failed.
1225     // We might be able to induce a STW safepoint and scavenge enough
1226     // objectMonitors to permit progress.
1227     if (temp == NULL) {
1228       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1229                             "Allocate ObjectMonitors");
1230     }
1231     (void)memset((void *) temp, 0, neededsize);
1232 
1233     // Format the block.
1234     // initialize the linked list, each monitor points to its next
1235     // forming the single linked free list, the very first monitor
1236     // will points to next block, which forms the block list.
1237     // The trick of using the 1st element in the block as gBlockList
1238     // linkage should be reconsidered.  A better implementation would
1239     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1240 
1241     for (int i = 1; i < _BLOCKSIZE; i++) {
1242       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1243       assert(temp[i].is_free(), "invariant");
1244     }
1245 
1246     // terminate the last monitor as the end of list
1247     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1248 
1249     // Element [0] is reserved for global list linkage
1250     temp[0].set_object(CHAINMARKER);
1251 
1252     // Consider carving out this thread's current request from the
1253     // block in hand.  This avoids some lock traffic and redundant
1254     // list activity.
1255 
1256     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1257     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1258     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1259     gMonitorPopulation += _BLOCKSIZE-1;
1260     gMonitorFreeCount += _BLOCKSIZE-1;
1261 
1262     // Add the new block to the list of extant blocks (gBlockList).
1263     // The very first objectMonitor in a block is reserved and dedicated.
1264     // It serves as blocklist "next" linkage.
1265     temp[0].FreeNext = gBlockList;
1266     // There are lock-free uses of gBlockList so make sure that
1267     // the previous stores happen before we update gBlockList.
1268     OrderAccess::release_store(&gBlockList, temp);
1269 
1270     // Add the new string of objectMonitors to the global free list
1271     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1272     gFreeList = temp + 1;
1273     Thread::muxRelease(&gListLock);
1274   }
1275 }
1276 
1277 // Place "m" on the caller's private per-thread omFreeList.
1278 // In practice there's no need to clamp or limit the number of
1279 // monitors on a thread's omFreeList as the only time we'll call
1280 // omRelease is to return a monitor to the free list after a CAS
1281 // attempt failed.  This doesn't allow unbounded #s of monitors to
1282 // accumulate on a thread's free list.
1283 //
1284 // Key constraint: all ObjectMonitors on a thread's free list and the global
1285 // free list must have their object field set to null. This prevents the
1286 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1287 // -- from reclaiming them while we are trying to release them.
1288 
1289 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1290                                    bool fromPerThreadAlloc) {
1291   guarantee(m->header() == NULL, "invariant");
1292   guarantee(m->object() == NULL, "invariant");
1293   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1294   m->set_allocation_state(ObjectMonitor::Free);
1295   // Remove from omInUseList
1296   if (fromPerThreadAlloc) {
1297     ObjectMonitor* cur_mid_in_use = NULL;
1298     bool extracted = false;
1299     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1300       if (m == mid) {
1301         // extract from per-thread in-use list
1302         if (mid == Self->omInUseList) {
1303           Self->omInUseList = mid->FreeNext;
1304         } else if (cur_mid_in_use != NULL) {
1305           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1306         }
1307         extracted = true;
1308         Self->omInUseCount--;
1309         break;
1310       }
1311     }
1312     assert(extracted, "Should have extracted from in-use list");
1313   }
1314 
1315   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1316   m->FreeNext = Self->omFreeList;
1317   guarantee(m->is_free(), "invariant");
1318   Self->omFreeList = m;
1319   Self->omFreeCount++;
1320 }
1321 
1322 // Return the monitors of a moribund thread's local free list to
1323 // the global free list.  Typically a thread calls omFlush() when
1324 // it's dying.  We could also consider having the VM thread steal
1325 // monitors from threads that have not run java code over a few
1326 // consecutive STW safepoints.  Relatedly, we might decay
1327 // omFreeProvision at STW safepoints.
1328 //
1329 // Also return the monitors of a moribund thread's omInUseList to
1330 // a global gOmInUseList under the global list lock so these
1331 // will continue to be scanned.
1332 //
1333 // We currently call omFlush() from Threads::remove() _before the thread
1334 // has been excised from the thread list and is no longer a mutator.
1335 // This means that omFlush() cannot run concurrently with a safepoint and
1336 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1337 // this ensures that the thread's monitors are scanned by a GC safepoint,
1338 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1339 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1340 // monitors have been transferred to the global in-use list).
1341 //
1342 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1343 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1344 // run at the same time as omFlush() so we have to be careful.
1345 
1346 void ObjectSynchronizer::omFlush(Thread * Self) {
1347   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1348   ObjectMonitor * tail = NULL;
1349   int tally = 0;
1350   if (list != NULL) {
1351     ObjectMonitor * s;
1352     // The thread is going away, the per-thread free monitors
1353     // are freed via set_owner(NULL)
1354     // Link them to tail, which will be linked into the global free list
1355     // gFreeList below, under the gListLock
1356     for (s = list; s != NULL; s = s->FreeNext) {
1357       tally++;
1358       tail = s;
1359       guarantee(s->object() == NULL, "invariant");
1360       guarantee(!s->is_busy(), "invariant");
1361       s->set_owner(NULL);   // redundant but good hygiene
1362     }
1363     guarantee(tail != NULL, "invariant");
1364     ADIM_guarantee(Self->omFreeCount == tally, "free-count off");
1365     Self->omFreeList = NULL;
1366     Self->omFreeCount = 0;
1367   }
1368 
1369   ObjectMonitor * inUseList = Self->omInUseList;
1370   ObjectMonitor * inUseTail = NULL;
1371   int inUseTally = 0;
1372   if (inUseList != NULL) {
1373     ObjectMonitor *cur_om;
1374     // The thread is going away, however the omInUseList inflated
1375     // monitors may still be in-use by other threads.
1376     // Link them to inUseTail, which will be linked into the global in-use list
1377     // gOmInUseList below, under the gListLock
1378     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1379       inUseTail = cur_om;
1380       inUseTally++;
1381       ADIM_guarantee(cur_om->is_active(), "invariant");
1382     }
1383     guarantee(inUseTail != NULL, "invariant");
1384     ADIM_guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1385     Self->omInUseList = NULL;
1386     Self->omInUseCount = 0;
1387   }
1388 
1389   Thread::muxAcquire(&gListLock, "omFlush");
1390   if (tail != NULL) {
1391     tail->FreeNext = gFreeList;
1392     gFreeList = list;
1393     gMonitorFreeCount += tally;
1394   }
1395 
1396   if (inUseTail != NULL) {
1397     inUseTail->FreeNext = gOmInUseList;
1398     gOmInUseList = inUseList;
1399     gOmInUseCount += inUseTally;
1400   }
1401 
1402   Thread::muxRelease(&gListLock);
1403 
1404   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1405   LogStreamHandle(Info, monitorinflation) lsh_info;
1406   LogStream * ls = NULL;
1407   if (log_is_enabled(Debug, monitorinflation)) {
1408     ls = &lsh_debug;
1409   } else if ((tally != 0 || inUseTally != 0) &&
1410              log_is_enabled(Info, monitorinflation)) {
1411     ls = &lsh_info;
1412   }
1413   if (ls != NULL) {
1414     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1415                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1416                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1417   }
1418 }
1419 
1420 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1421                                        const oop obj,
1422                                        ObjectSynchronizer::InflateCause cause) {
1423   assert(event != NULL, "invariant");
1424   assert(event->should_commit(), "invariant");
1425   event->set_monitorClass(obj->klass());
1426   event->set_address((uintptr_t)(void*)obj);
1427   event->set_cause((u1)cause);
1428   event->commit();
1429 }
1430 
1431 // Fast path code shared by multiple functions
1432 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1433   while (true) {
1434     markOop mark = obj->mark();
1435     if (mark->has_monitor()) {
1436       if (!omh_p->save_om_ptr(obj, mark)) {
1437         // Lost a race with async deflation so try again.
1438         assert(AsyncDeflateIdleMonitors, "sanity check");
1439         continue;
1440       }
1441       ObjectMonitor * monitor = omh_p->om_ptr();
1442       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1443       markOop dmw = monitor->header();
1444       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1445       return;
1446     }
1447     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1448     return;
1449   }
1450 }
1451 
1452 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1453                                  oop object, const InflateCause cause) {
1454   // Inflate mutates the heap ...
1455   // Relaxing assertion for bug 6320749.
1456   assert(Universe::verify_in_progress() ||
1457          !SafepointSynchronize::is_at_safepoint(), "invariant");
1458 
1459   EventJavaMonitorInflate event;
1460 
1461   for (;;) {
1462     const markOop mark = object->mark();
1463     assert(!mark->has_bias_pattern(), "invariant");
1464 
1465     // The mark can be in one of the following states:
1466     // *  Inflated     - just return
1467     // *  Stack-locked - coerce it to inflated
1468     // *  INFLATING    - busy wait for conversion to complete
1469     // *  Neutral      - aggressively inflate the object.
1470     // *  BIASED       - Illegal.  We should never see this
1471 
1472     // CASE: inflated
1473     if (mark->has_monitor()) {
1474       if (!omh_p->save_om_ptr(object, mark)) {
1475         // Lost a race with async deflation so try again.
1476         assert(AsyncDeflateIdleMonitors, "sanity check");
1477         continue;
1478       }
1479       ObjectMonitor * inf = omh_p->om_ptr();
1480       markOop dmw = inf->header();
1481       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1482       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1483       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1484       return;
1485     }
1486 
1487     // CASE: inflation in progress - inflating over a stack-lock.
1488     // Some other thread is converting from stack-locked to inflated.
1489     // Only that thread can complete inflation -- other threads must wait.
1490     // The INFLATING value is transient.
1491     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1492     // We could always eliminate polling by parking the thread on some auxiliary list.
1493     if (mark == markOopDesc::INFLATING()) {
1494       ReadStableMark(object);
1495       continue;
1496     }
1497 
1498     // CASE: stack-locked
1499     // Could be stack-locked either by this thread or by some other thread.
1500     //
1501     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1502     // to install INFLATING into the mark word.  We originally installed INFLATING,
1503     // allocated the objectmonitor, and then finally STed the address of the
1504     // objectmonitor into the mark.  This was correct, but artificially lengthened
1505     // the interval in which INFLATED appeared in the mark, thus increasing
1506     // the odds of inflation contention.
1507     //
1508     // We now use per-thread private objectmonitor free lists.
1509     // These list are reprovisioned from the global free list outside the
1510     // critical INFLATING...ST interval.  A thread can transfer
1511     // multiple objectmonitors en-mass from the global free list to its local free list.
1512     // This reduces coherency traffic and lock contention on the global free list.
1513     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1514     // before or after the CAS(INFLATING) operation.
1515     // See the comments in omAlloc().
1516 
1517     LogStreamHandle(Trace, monitorinflation) lsh;
1518 
1519     if (mark->has_locker()) {
1520       ObjectMonitor * m;
1521       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1522         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1523         // we won't stop for a potential safepoint in omAlloc.
1524         m = omAlloc(Self, cause);
1525       } else {
1526         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1527         // we may stop for a safepoint in omAlloc() so protect object.
1528         Handle h_obj(Self, object);
1529         m = omAlloc(Self, cause);
1530         object = h_obj();  // Refresh object.
1531       }
1532       // Optimistically prepare the objectmonitor - anticipate successful CAS
1533       // We do this before the CAS in order to minimize the length of time
1534       // in which INFLATING appears in the mark.
1535       m->Recycle();
1536       m->_Responsible  = NULL;
1537       m->_recursions   = 0;
1538       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1539 
1540       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1541       if (cmp != mark) {
1542         omRelease(Self, m, true);
1543         continue;       // Interference -- just retry
1544       }
1545 
1546       // We've successfully installed INFLATING (0) into the mark-word.
1547       // This is the only case where 0 will appear in a mark-word.
1548       // Only the singular thread that successfully swings the mark-word
1549       // to 0 can perform (or more precisely, complete) inflation.
1550       //
1551       // Why do we CAS a 0 into the mark-word instead of just CASing the
1552       // mark-word from the stack-locked value directly to the new inflated state?
1553       // Consider what happens when a thread unlocks a stack-locked object.
1554       // It attempts to use CAS to swing the displaced header value from the
1555       // on-stack basiclock back into the object header.  Recall also that the
1556       // header value (hash code, etc) can reside in (a) the object header, or
1557       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1558       // header in an objectMonitor.  The inflate() routine must copy the header
1559       // value from the basiclock on the owner's stack to the objectMonitor, all
1560       // the while preserving the hashCode stability invariants.  If the owner
1561       // decides to release the lock while the value is 0, the unlock will fail
1562       // and control will eventually pass from slow_exit() to inflate.  The owner
1563       // will then spin, waiting for the 0 value to disappear.   Put another way,
1564       // the 0 causes the owner to stall if the owner happens to try to
1565       // drop the lock (restoring the header from the basiclock to the object)
1566       // while inflation is in-progress.  This protocol avoids races that might
1567       // would otherwise permit hashCode values to change or "flicker" for an object.
1568       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1569       // 0 serves as a "BUSY" inflate-in-progress indicator.
1570 
1571 
1572       // fetch the displaced mark from the owner's stack.
1573       // The owner can't die or unwind past the lock while our INFLATING
1574       // object is in the mark.  Furthermore the owner can't complete
1575       // an unlock on the object, either.
1576       markOop dmw = mark->displaced_mark_helper();
1577       // Catch if the object's header is not neutral (not locked and
1578       // not marked is what we care about here).
1579       ADIM_guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1580 
1581       // Setup monitor fields to proper values -- prepare the monitor
1582       m->set_header(dmw);
1583 
1584       // Optimization: if the mark->locker stack address is associated
1585       // with this thread we could simply set m->_owner = Self.
1586       // Note that a thread can inflate an object
1587       // that it has stack-locked -- as might happen in wait() -- directly
1588       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1589       m->set_owner(mark->locker());
1590       m->set_object(object);
1591       // TODO-FIXME: assert BasicLock->dhw != 0.
1592 
1593       omh_p->set_om_ptr(m);
1594       assert(m->is_new(), "freshly allocated monitor must be new");
1595       m->set_allocation_state(ObjectMonitor::Old);
1596 
1597       // Must preserve store ordering. The monitor state must
1598       // be stable at the time of publishing the monitor address.
1599       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1600       object->release_set_mark(markOopDesc::encode(m));
1601 
1602       // Hopefully the performance counters are allocated on distinct cache lines
1603       // to avoid false sharing on MP systems ...
1604       OM_PERFDATA_OP(Inflations, inc());
1605       if (log_is_enabled(Trace, monitorinflation)) {
1606         ResourceMark rm(Self);
1607         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1608                      INTPTR_FORMAT ", type='%s'", p2i(object),
1609                      p2i(object->mark()), object->klass()->external_name());
1610       }
1611       if (event.should_commit()) {
1612         post_monitor_inflate_event(&event, object, cause);
1613       }
1614       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1615       return;
1616     }
1617 
1618     // CASE: neutral
1619     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1620     // If we know we're inflating for entry it's better to inflate by swinging a
1621     // pre-locked objectMonitor pointer into the object header.   A successful
1622     // CAS inflates the object *and* confers ownership to the inflating thread.
1623     // In the current implementation we use a 2-step mechanism where we CAS()
1624     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1625     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1626     // would be useful.
1627 
1628     // Catch if the object's header is not neutral (not locked and
1629     // not marked is what we care about here).
1630     ADIM_guarantee(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1631     ObjectMonitor * m;
1632     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1633       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1634       // we won't stop for a potential safepoint in omAlloc.
1635       m = omAlloc(Self, cause);
1636     } else {
1637       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1638       // we may stop for a safepoint in omAlloc() so protect object.
1639       Handle h_obj(Self, object);
1640       m = omAlloc(Self, cause);
1641       object = h_obj();  // Refresh object.
1642     }
1643     // prepare m for installation - set monitor to initial state
1644     m->Recycle();
1645     m->set_header(mark);
1646     m->set_owner(NULL);
1647     m->set_object(object);
1648     m->_recursions   = 0;
1649     m->_Responsible  = NULL;
1650     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1651 
1652     omh_p->set_om_ptr(m);
1653     assert(m->is_new(), "freshly allocated monitor must be new");
1654     m->set_allocation_state(ObjectMonitor::Old);
1655 
1656     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1657       m->set_header(NULL);
1658       m->set_object(NULL);
1659       m->Recycle();
1660       omh_p->set_om_ptr(NULL);
1661       // omRelease() will reset the allocation state
1662       omRelease(Self, m, true);
1663       m = NULL;
1664       continue;
1665       // interference - the markword changed - just retry.
1666       // The state-transitions are one-way, so there's no chance of
1667       // live-lock -- "Inflated" is an absorbing state.
1668     }
1669 
1670     // Hopefully the performance counters are allocated on distinct
1671     // cache lines to avoid false sharing on MP systems ...
1672     OM_PERFDATA_OP(Inflations, inc());
1673     if (log_is_enabled(Trace, monitorinflation)) {
1674       ResourceMark rm(Self);
1675       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1676                    INTPTR_FORMAT ", type='%s'", p2i(object),
1677                    p2i(object->mark()), object->klass()->external_name());
1678     }
1679     if (event.should_commit()) {
1680       post_monitor_inflate_event(&event, object, cause);
1681     }
1682     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1683     return;
1684   }
1685 }
1686 
1687 
1688 // We maintain a list of in-use monitors for each thread.
1689 //
1690 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1691 // deflate_idle_monitors() scans only a global list of in-use monitors which
1692 // is populated only as a thread dies (see omFlush()).
1693 //
1694 // These operations are called at all safepoints, immediately after mutators
1695 // are stopped, but before any objects have moved. Collectively they traverse
1696 // the population of in-use monitors, deflating where possible. The scavenged
1697 // monitors are returned to the global monitor free list.
1698 //
1699 // Beware that we scavenge at *every* stop-the-world point. Having a large
1700 // number of monitors in-use could negatively impact performance. We also want
1701 // to minimize the total # of monitors in circulation, as they incur a small
1702 // footprint penalty.
1703 //
1704 // Perversely, the heap size -- and thus the STW safepoint rate --
1705 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1706 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1707 // This is an unfortunate aspect of this design.
1708 
1709 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1710   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1711 
1712   // The per-thread in-use lists are handled in
1713   // ParallelSPCleanupThreadClosure::do_thread().
1714 
1715   if (!AsyncDeflateIdleMonitors || is_cleanup_requested()) {
1716     // Use the older mechanism for the global in-use list or
1717     // if a special cleanup has been requested.
1718     ObjectSynchronizer::deflate_idle_monitors(_counters);
1719     return;
1720   }
1721 
1722   log_debug(monitorinflation)("requesting deflation of idle monitors.");
1723   // Request deflation of global idle monitors by the ServiceThread:
1724   _gOmShouldDeflateIdleMonitors = true;
1725   MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
1726   Service_lock->notify_all();
1727 }
1728 
1729 // Deflate a single monitor if not in-use
1730 // Return true if deflated, false if in-use
1731 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1732                                          ObjectMonitor** freeHeadp,
1733                                          ObjectMonitor** freeTailp) {
1734   bool deflated;
1735   // Normal case ... The monitor is associated with obj.
1736   const markOop mark = obj->mark();
1737   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1738             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1739             p2i(markOopDesc::encode(mid)));
1740   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1741   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1742             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1743   const markOop dmw = mid->header();
1744   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1745 
1746   if (mid->is_busy()) {
1747     deflated = false;
1748   } else {
1749     // Deflate the monitor if it is no longer being used
1750     // It's idle - scavenge and return to the global free list
1751     // plain old deflation ...
1752     if (log_is_enabled(Trace, monitorinflation)) {
1753       ResourceMark rm;
1754       log_trace(monitorinflation)("deflate_monitor: "
1755                                   "object=" INTPTR_FORMAT ", mark="
1756                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1757                                   p2i(mark), obj->klass()->external_name());
1758     }
1759 
1760     // Restore the header back to obj
1761     obj->release_set_mark(dmw);
1762     mid->clear();
1763 
1764     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1765            p2i(mid->object()));
1766     assert(mid->is_free(), "invariant");
1767 
1768     // Move the object to the working free list defined by freeHeadp, freeTailp
1769     if (*freeHeadp == NULL) *freeHeadp = mid;
1770     if (*freeTailp != NULL) {
1771       ObjectMonitor * prevtail = *freeTailp;
1772       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1773       prevtail->FreeNext = mid;
1774     }
1775     *freeTailp = mid;
1776     deflated = true;
1777   }
1778   return deflated;
1779 }
1780 
1781 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1782 // Returns true if it was deflated and false otherwise.
1783 //
1784 // The async deflation protocol sets owner to DEFLATER_MARKER and
1785 // makes contentions negative as signals to contending threads that
1786 // an async deflation is in progress. There are a number of checks
1787 // as part of the protocol to make sure that the calling thread has
1788 // not lost the race to a contending thread or to a thread that just
1789 // wants to use the ObjectMonitor*.
1790 //
1791 // The ObjectMonitor has been successfully async deflated when:
1792 // (owner == DEFLATER_MARKER && contentions < 0 && ref_count < 0).
1793 // Contending threads or ObjectMonitor* using threads that see those
1794 // values know to retry their operation.
1795 //
1796 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1797                                                   ObjectMonitor** freeHeadp,
1798                                                   ObjectMonitor** freeTailp) {
1799   assert(AsyncDeflateIdleMonitors, "sanity check");
1800   assert(Thread::current()->is_Java_thread(), "precondition");
1801   // A newly allocated ObjectMonitor should not be seen here so we
1802   // avoid an endless inflate/deflate cycle.
1803   assert(mid->is_old(), "must be old: allocation_state=%d",
1804          (int) mid->allocation_state());
1805 
1806   if (mid->is_busy() || mid->ref_count() != 0) {
1807     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1808     // is in use so no deflation.
1809     return false;
1810   }
1811 
1812   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1813     // ObjectMonitor is not owned by another thread. Our setting
1814     // owner to DEFLATER_MARKER forces any contending thread through
1815     // the slow path. This is just the first part of the async
1816     // deflation dance.
1817 
1818     if (mid->_waiters != 0 || mid->ref_count() != 0) {
1819       // Another thread has raced to enter the ObjectMonitor after
1820       // mid->is_busy() above and has already waited on it which
1821       // makes it busy so no deflation. Or the ObjectMonitor* is
1822       // in use for some other operation like inflate(). Restore
1823       // owner to NULL if it is still DEFLATER_MARKER.
1824       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1825       return false;
1826     }
1827 
1828     if (Atomic::cmpxchg(-max_jint, &mid->_contentions, (jint)0) == 0) {
1829       // Make contentions negative to force any contending threads to
1830       // retry. This is the second part of the async deflation dance.
1831 
1832       if (mid->_owner == DEFLATER_MARKER &&
1833           Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
1834         // If owner is still DEFLATER_MARKER, then we have successfully
1835         // signaled any contending threads to retry. If it is not, then we
1836         // have lost the race to an entering thread and the ObjectMonitor
1837         // is now busy. If we cannot make ref_count negative (because the
1838         // ObjectMonitor* is in use), then we have lost that race instead.
1839         // This is the third and final part of the async deflation dance.
1840         // Note: This owner check solves the ABA problem with contentions
1841         // where another thread acquired the ObjectMonitor, finished
1842         // using it and restored the contentions to zero.
1843         // Note: Making ref_count negative solves the race with
1844         // ObjectMonitor::save_om_ptr() where its ref_count increment
1845         // happens after the first ref_count check in this function.
1846         // Note: Making ref_count negative must happen after the third
1847         // part check of "owner == DEFLATER_MARKER". When save_om_ptr()
1848         // retries, it will call install_displaced_markword_in_object()
1849         // which will disconnect the object from the ObjectMonitor so
1850         // deflation must happen.
1851 
1852         // Sanity checks for the races:
1853         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1854         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1855                   INTPTR_FORMAT, p2i(mid->_cxq));
1856         guarantee(mid->_EntryList == NULL,
1857                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1858                   p2i(mid->_EntryList));
1859 
1860         const oop obj = (oop) mid->object();
1861         if (log_is_enabled(Trace, monitorinflation)) {
1862           ResourceMark rm;
1863           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1864                                       "object=" INTPTR_FORMAT ", mark="
1865                                       INTPTR_FORMAT ", type='%s'",
1866                                       p2i(obj), p2i(obj->mark()),
1867                                       obj->klass()->external_name());
1868         }
1869 
1870         // Install the old mark word if nobody else has already done it.
1871         mid->install_displaced_markword_in_object(obj);
1872         mid->clear_using_JT();
1873 
1874         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1875                p2i(mid->object()));
1876         assert(mid->is_free(), "must be free: allocation_state=%d",
1877                (int) mid->allocation_state());
1878 
1879         // Move the deflated ObjectMonitor to the working free list
1880         // defined by freeHeadp and freeTailp.
1881         if (*freeHeadp == NULL) {
1882           // First one on the list.
1883           *freeHeadp = mid;
1884         }
1885         if (*freeTailp != NULL) {
1886           // We append to the list so the caller can use mid->FreeNext
1887           // to fix the linkages in its context.
1888           ObjectMonitor * prevtail = *freeTailp;
1889           // Should have been cleaned up by the caller:
1890           assert(prevtail->FreeNext == NULL, "must be NULL: FreeNext="
1891                  INTPTR_FORMAT, p2i(prevtail->FreeNext));
1892           prevtail->FreeNext = mid;
1893         }
1894         *freeTailp = mid;
1895 
1896         // At this point, mid->FreeNext still refers to its current
1897         // value and another ObjectMonitor's FreeNext field still
1898         // refers to this ObjectMonitor. Those linkages have to be
1899         // cleaned up by the caller who has the complete context.
1900 
1901         // We leave owner == DEFLATER_MARKER and contentions < 0
1902         // to force any racing threads to retry.
1903         return true;  // Success, ObjectMonitor has been deflated.
1904       }
1905 
1906       // The owner was changed from DEFLATER_MARKER or ObjectMonitor*
1907       // is in use so we lost the race since the ObjectMonitor is now
1908       // busy.
1909 
1910       // Restore owner to NULL if it is still DEFLATER_MARKER:
1911       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1912 
1913       // Add back max_jint to restore the contentions field to its
1914       // proper value (which may not be what we saw above):
1915       Atomic::add(max_jint, &mid->_contentions);
1916 
1917       assert(mid->_contentions >= 0, "must not be negative: contentions=%d",
1918              mid->_contentions);
1919     }
1920 
1921     // The contentions was no longer 0 so we lost the race since the
1922     // ObjectMonitor is now busy.
1923     assert(mid->_owner != DEFLATER_MARKER, "must not be DEFLATER_MARKER");
1924   }
1925 
1926   // The owner field is no longer NULL so we lost the race since the
1927   // ObjectMonitor is now busy.
1928   return false;
1929 }
1930 
1931 // Walk a given monitor list, and deflate idle monitors
1932 // The given list could be a per-thread list or a global list
1933 // Caller acquires gListLock as needed.
1934 //
1935 // In the case of parallel processing of thread local monitor lists,
1936 // work is done by Threads::parallel_threads_do() which ensures that
1937 // each Java thread is processed by exactly one worker thread, and
1938 // thus avoid conflicts that would arise when worker threads would
1939 // process the same monitor lists concurrently.
1940 //
1941 // See also ParallelSPCleanupTask and
1942 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1943 // Threads::parallel_java_threads_do() in thread.cpp.
1944 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1945                                              ObjectMonitor** freeHeadp,
1946                                              ObjectMonitor** freeTailp) {
1947   ObjectMonitor* mid;
1948   ObjectMonitor* next;
1949   ObjectMonitor* cur_mid_in_use = NULL;
1950   int deflated_count = 0;
1951 
1952   for (mid = *listHeadp; mid != NULL;) {
1953     oop obj = (oop) mid->object();
1954     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1955       // if deflate_monitor succeeded,
1956       // extract from per-thread in-use list
1957       if (mid == *listHeadp) {
1958         *listHeadp = mid->FreeNext;
1959       } else if (cur_mid_in_use != NULL) {
1960         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1961       }
1962       next = mid->FreeNext;
1963       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1964       mid = next;
1965       deflated_count++;
1966     } else {
1967       cur_mid_in_use = mid;
1968       mid = mid->FreeNext;
1969     }
1970   }
1971   return deflated_count;
1972 }
1973 
1974 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1975 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1976 // list could be a per-thread in-use list or the global in-use list.
1977 // Caller acquires gListLock as appropriate. If a safepoint has started,
1978 // then we save state via savedMidInUsep and return to the caller to
1979 // honor the safepoint.
1980 //
1981 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
1982                                                       ObjectMonitor** freeHeadp,
1983                                                       ObjectMonitor** freeTailp,
1984                                                       ObjectMonitor** savedMidInUsep) {
1985   assert(AsyncDeflateIdleMonitors, "sanity check");
1986   assert(Thread::current()->is_Java_thread(), "precondition");
1987 
1988   ObjectMonitor* mid;
1989   ObjectMonitor* next;
1990   ObjectMonitor* cur_mid_in_use = NULL;
1991   int deflated_count = 0;
1992 
1993   if (*savedMidInUsep == NULL) {
1994     // No saved state so start at the beginning.
1995     mid = *listHeadp;
1996   } else {
1997     // We're restarting after a safepoint so restore the necessary state
1998     // before we resume.
1999     cur_mid_in_use = *savedMidInUsep;
2000     mid = cur_mid_in_use->FreeNext;
2001   }
2002   while (mid != NULL) {
2003     // Only try to deflate if there is an associated Java object and if
2004     // mid is old (is not newly allocated and is not newly freed).
2005     if (mid->object() != NULL && mid->is_old() &&
2006         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
2007       // Deflation succeeded so update the in-use list.
2008       if (mid == *listHeadp) {
2009         *listHeadp = mid->FreeNext;
2010       } else if (cur_mid_in_use != NULL) {
2011         // Maintain the current in-use list.
2012         cur_mid_in_use->FreeNext = mid->FreeNext;
2013       }
2014       next = mid->FreeNext;
2015       mid->FreeNext = NULL;
2016       // At this point mid is disconnected from the in-use list
2017       // and is the current tail in the freeHeadp list.
2018       mid = next;
2019       deflated_count++;
2020     } else {
2021       // mid is considered in-use if it does not have an associated
2022       // Java object or mid is not old or deflation did not succeed.
2023       // A mid->is_new() node can be seen here when it is freshly
2024       // returned by omAlloc() (and skips the deflation code path).
2025       // A mid->is_old() node can be seen here when deflation failed.
2026       // A mid->is_free() node can be seen here when a fresh node from
2027       // omAlloc() is released by omRelease() due to losing the race
2028       // in inflate().
2029 
2030       cur_mid_in_use = mid;
2031       mid = mid->FreeNext;
2032 
2033       if (SafepointSynchronize::is_synchronizing() &&
2034           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
2035         // If a safepoint has started and cur_mid_in_use is not the list
2036         // head and is old, then it is safe to use as saved state. Return
2037         // to the caller so gListLock can be dropped as appropriate
2038         // before blocking.
2039         *savedMidInUsep = cur_mid_in_use;
2040         return deflated_count;
2041       }
2042     }
2043   }
2044   // We finished the list without a safepoint starting so there's
2045   // no need to save state.
2046   *savedMidInUsep = NULL;
2047   return deflated_count;
2048 }
2049 
2050 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2051   counters->nInuse = 0;              // currently associated with objects
2052   counters->nInCirculation = 0;      // extant
2053   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2054   counters->perThreadScavenged = 0;  // per-thread scavenge total
2055   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2056 }
2057 
2058 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2059   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2060 
2061   if (AsyncDeflateIdleMonitors) {
2062     // Nothing to do when global idle ObjectMonitors are deflated using
2063     // a JavaThread unless a special cleanup has been requested.
2064     if (!is_cleanup_requested()) {
2065       return;
2066     }
2067   }
2068 
2069   bool deflated = false;
2070 
2071   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2072   ObjectMonitor * freeTailp = NULL;
2073   elapsedTimer timer;
2074 
2075   if (log_is_enabled(Info, monitorinflation)) {
2076     timer.start();
2077   }
2078 
2079   // Prevent omFlush from changing mids in Thread dtor's during deflation
2080   // And in case the vm thread is acquiring a lock during a safepoint
2081   // See e.g. 6320749
2082   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2083 
2084   // Note: the thread-local monitors lists get deflated in
2085   // a separate pass. See deflate_thread_local_monitors().
2086 
2087   // For moribund threads, scan gOmInUseList
2088   int deflated_count = 0;
2089   if (gOmInUseList) {
2090     counters->nInCirculation += gOmInUseCount;
2091     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
2092     gOmInUseCount -= deflated_count;
2093     counters->nScavenged += deflated_count;
2094     counters->nInuse += gOmInUseCount;
2095   }
2096 
2097   // Move the scavenged monitors back to the global free list.
2098   if (freeHeadp != NULL) {
2099     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
2100     assert(freeTailp->FreeNext == NULL, "invariant");
2101     // constant-time list splice - prepend scavenged segment to gFreeList
2102     freeTailp->FreeNext = gFreeList;
2103     gFreeList = freeHeadp;
2104   }
2105   Thread::muxRelease(&gListLock);
2106   timer.stop();
2107 
2108   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2109   LogStreamHandle(Info, monitorinflation) lsh_info;
2110   LogStream * ls = NULL;
2111   if (log_is_enabled(Debug, monitorinflation)) {
2112     ls = &lsh_debug;
2113   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2114     ls = &lsh_info;
2115   }
2116   if (ls != NULL) {
2117     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2118   }
2119 }
2120 
2121 // Deflate global idle ObjectMonitors using a JavaThread.
2122 //
2123 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2124   assert(AsyncDeflateIdleMonitors, "sanity check");
2125   assert(Thread::current()->is_Java_thread(), "precondition");
2126   JavaThread * self = JavaThread::current();
2127 
2128   _gOmShouldDeflateIdleMonitors = false;
2129 
2130   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2131 }
2132 
2133 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2134 //
2135 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2136   assert(AsyncDeflateIdleMonitors, "sanity check");
2137   assert(Thread::current()->is_Java_thread(), "precondition");
2138   JavaThread * self = JavaThread::current();
2139 
2140   self->omShouldDeflateIdleMonitors = false;
2141 
2142   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2143 }
2144 
2145 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2146 //
2147 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread * self) {
2148   int deflated_count = 0;
2149   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2150   ObjectMonitor * freeTailp = NULL;
2151   ObjectMonitor * savedMidInUsep = NULL;
2152   elapsedTimer timer;
2153 
2154   if (log_is_enabled(Info, monitorinflation)) {
2155     timer.start();
2156   }
2157 
2158   if (is_global) {
2159     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2160     OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2161   } else {
2162     OM_PERFDATA_OP(MonExtant, inc(self->omInUseCount));
2163   }
2164 
2165   do {
2166     int local_deflated_count;
2167     if (is_global) {
2168       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2169       gOmInUseCount -= local_deflated_count;
2170     } else {
2171       local_deflated_count = deflate_monitor_list_using_JT(self->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2172       self->omInUseCount -= local_deflated_count;
2173     }
2174     deflated_count += local_deflated_count;
2175 
2176     if (freeHeadp != NULL) {
2177       // Move the scavenged ObjectMonitors to the global free list.
2178       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2179       assert(freeTailp->FreeNext == NULL, "invariant");
2180 
2181       if (!is_global) {
2182         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2183       }
2184       // Constant-time list splice - prepend scavenged segment to gFreeList.
2185       freeTailp->FreeNext = gFreeList;
2186       gFreeList = freeHeadp;
2187 
2188       gMonitorFreeCount += local_deflated_count;
2189       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2190       if (!is_global) {
2191         Thread::muxRelease(&gListLock);
2192       }
2193     }
2194 
2195     if (savedMidInUsep != NULL) {
2196       // deflate_monitor_list_using_JT() detected a safepoint starting.
2197       if (is_global) {
2198         Thread::muxRelease(&gListLock);
2199       }
2200       timer.stop();
2201       {
2202         if (is_global) {
2203           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2204         } else {
2205           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2206         }
2207         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2208         ThreadBlockInVM blocker(self);
2209       }
2210       // Prepare for another loop after the safepoint.
2211       freeHeadp = NULL;
2212       freeTailp = NULL;
2213       if (log_is_enabled(Info, monitorinflation)) {
2214         timer.start();
2215       }
2216       if (is_global) {
2217         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2218       }
2219     }
2220   } while (savedMidInUsep != NULL);
2221   if (is_global) {
2222     Thread::muxRelease(&gListLock);
2223   }
2224   timer.stop();
2225 
2226   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2227   LogStreamHandle(Info, monitorinflation) lsh_info;
2228   LogStream * ls = NULL;
2229   if (log_is_enabled(Debug, monitorinflation)) {
2230     ls = &lsh_debug;
2231   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2232     ls = &lsh_info;
2233   }
2234   if (ls != NULL) {
2235     if (is_global) {
2236       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2237     } else {
2238       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2239     }
2240   }
2241 }
2242 
2243 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2244   // Report the cumulative time for deflating each thread's idle
2245   // monitors. Note: if the work is split among more than one
2246   // worker thread, then the reported time will likely be more
2247   // than a beginning to end measurement of the phase.
2248   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2249   // monitors at a safepoint when a special cleanup has been requested.
2250   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2251 
2252   bool needs_special_cleanup = is_cleanup_requested();
2253   if (!AsyncDeflateIdleMonitors || needs_special_cleanup) {
2254     // AsyncDeflateIdleMonitors does not use these counters unless
2255     // there is a special cleanup request.
2256 
2257     gMonitorFreeCount += counters->nScavenged;
2258 
2259     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2260     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2261   }
2262 
2263   if (log_is_enabled(Debug, monitorinflation)) {
2264     // exit_globals()'s call to audit_and_print_stats() is done
2265     // at the Info level.
2266     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2267   } else if (log_is_enabled(Info, monitorinflation)) {
2268     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2269     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2270                                "gMonitorFreeCount=%d", gMonitorPopulation,
2271                                gOmInUseCount, gMonitorFreeCount);
2272     Thread::muxRelease(&gListLock);
2273   }
2274 
2275   ForceMonitorScavenge = 0;    // Reset
2276   GVars.stwRandom = os::random();
2277   GVars.stwCycle++;
2278   if (needs_special_cleanup) {
2279     set_is_cleanup_requested(false);  // special clean up is done
2280   }
2281 }
2282 
2283 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2284   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2285 
2286   if (AsyncDeflateIdleMonitors) {
2287     if (!is_cleanup_requested()) {
2288       // Mark the JavaThread for idle monitor cleanup if a special
2289       // cleanup has NOT been requested.
2290       if (thread->omInUseCount > 0) {
2291         // This JavaThread is using monitors so mark it.
2292         thread->omShouldDeflateIdleMonitors = true;
2293       }
2294       return;
2295     }
2296   }
2297 
2298   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2299   ObjectMonitor * freeTailp = NULL;
2300   elapsedTimer timer;
2301 
2302   if (log_is_enabled(Info, safepoint, cleanup) ||
2303       log_is_enabled(Info, monitorinflation)) {
2304     timer.start();
2305   }
2306 
2307   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2308 
2309   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2310 
2311   // Adjust counters
2312   counters->nInCirculation += thread->omInUseCount;
2313   thread->omInUseCount -= deflated_count;
2314   counters->nScavenged += deflated_count;
2315   counters->nInuse += thread->omInUseCount;
2316   counters->perThreadScavenged += deflated_count;
2317 
2318   // Move the scavenged monitors back to the global free list.
2319   if (freeHeadp != NULL) {
2320     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
2321     assert(freeTailp->FreeNext == NULL, "invariant");
2322 
2323     // constant-time list splice - prepend scavenged segment to gFreeList
2324     freeTailp->FreeNext = gFreeList;
2325     gFreeList = freeHeadp;
2326   }
2327 
2328   timer.stop();
2329   // Safepoint logging cares about cumulative perThreadTimes and
2330   // we'll capture most of the cost, but not the muxRelease() which
2331   // should be cheap.
2332   counters->perThreadTimes += timer.seconds();
2333 
2334   Thread::muxRelease(&gListLock);
2335 
2336   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2337   LogStreamHandle(Info, monitorinflation) lsh_info;
2338   LogStream * ls = NULL;
2339   if (log_is_enabled(Debug, monitorinflation)) {
2340     ls = &lsh_debug;
2341   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2342     ls = &lsh_info;
2343   }
2344   if (ls != NULL) {
2345     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2346   }
2347 }
2348 
2349 // Monitor cleanup on JavaThread::exit
2350 
2351 // Iterate through monitor cache and attempt to release thread's monitors
2352 // Gives up on a particular monitor if an exception occurs, but continues
2353 // the overall iteration, swallowing the exception.
2354 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2355  private:
2356   TRAPS;
2357 
2358  public:
2359   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2360   void do_monitor(ObjectMonitor* mid) {
2361     if (mid->owner() == THREAD) {
2362       (void)mid->complete_exit(CHECK);
2363     }
2364   }
2365 };
2366 
2367 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2368 // ignored.  This is meant to be called during JNI thread detach which assumes
2369 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2370 // Scanning the extant monitor list can be time consuming.
2371 // A simple optimization is to add a per-thread flag that indicates a thread
2372 // called jni_monitorenter() during its lifetime.
2373 //
2374 // Instead of No_Savepoint_Verifier it might be cheaper to
2375 // use an idiom of the form:
2376 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2377 //   <code that must not run at safepoint>
2378 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2379 // Since the tests are extremely cheap we could leave them enabled
2380 // for normal product builds.
2381 
2382 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2383   assert(THREAD == JavaThread::current(), "must be current Java thread");
2384   NoSafepointVerifier nsv;
2385   ReleaseJavaMonitorsClosure rjmc(THREAD);
2386   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2387   ObjectSynchronizer::monitors_iterate(&rjmc);
2388   Thread::muxRelease(&gListLock);
2389   THREAD->clear_pending_exception();
2390 }
2391 
2392 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2393   switch (cause) {
2394     case inflate_cause_vm_internal:    return "VM Internal";
2395     case inflate_cause_monitor_enter:  return "Monitor Enter";
2396     case inflate_cause_wait:           return "Monitor Wait";
2397     case inflate_cause_notify:         return "Monitor Notify";
2398     case inflate_cause_hash_code:      return "Monitor Hash Code";
2399     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2400     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2401     default:
2402       ShouldNotReachHere();
2403   }
2404   return "Unknown";
2405 }
2406 
2407 //------------------------------------------------------------------------------
2408 // Debugging code
2409 
2410 u_char* ObjectSynchronizer::get_gvars_addr() {
2411   return (u_char*)&GVars;
2412 }
2413 
2414 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
2415   return (u_char*)&GVars.hcSequence;
2416 }
2417 
2418 size_t ObjectSynchronizer::get_gvars_size() {
2419   return sizeof(SharedGlobals);
2420 }
2421 
2422 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
2423   return (u_char*)&GVars.stwRandom;
2424 }
2425 
2426 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2427   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2428 
2429   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2430   LogStreamHandle(Info, monitorinflation) lsh_info;
2431   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2432   LogStream * ls = NULL;
2433   if (log_is_enabled(Trace, monitorinflation)) {
2434     ls = &lsh_trace;
2435   } else if (log_is_enabled(Debug, monitorinflation)) {
2436     ls = &lsh_debug;
2437   } else if (log_is_enabled(Info, monitorinflation)) {
2438     ls = &lsh_info;
2439   }
2440   assert(ls != NULL, "sanity check");
2441 
2442   if (!on_exit) {
2443     // Not at VM exit so grab the global list lock.
2444     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2445   }
2446 
2447   // Log counts for the global and per-thread monitor lists:
2448   int chkMonitorPopulation = log_monitor_list_counts(ls);
2449   int error_cnt = 0;
2450 
2451   ls->print_cr("Checking global lists:");
2452 
2453   // Check gMonitorPopulation:
2454   if (gMonitorPopulation == chkMonitorPopulation) {
2455     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
2456                  gMonitorPopulation, chkMonitorPopulation);
2457   } else {
2458     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
2459                  "chkMonitorPopulation=%d", gMonitorPopulation,
2460                  chkMonitorPopulation);
2461     error_cnt++;
2462   }
2463 
2464   // Check gOmInUseList and gOmInUseCount:
2465   chk_global_in_use_list_and_count(ls, &error_cnt);
2466 
2467   // Check gFreeList and gMonitorFreeCount:
2468   chk_global_free_list_and_count(ls, &error_cnt);
2469 
2470   if (!on_exit) {
2471     Thread::muxRelease(&gListLock);
2472   }
2473 
2474   ls->print_cr("Checking per-thread lists:");
2475 
2476   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2477     // Check omInUseList and omInUseCount:
2478     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2479 
2480     // Check omFreeList and omFreeCount:
2481     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2482   }
2483 
2484   if (error_cnt == 0) {
2485     ls->print_cr("No errors found in monitor list checks.");
2486   } else {
2487     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2488   }
2489 
2490   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2491       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2492     // When exiting this log output is at the Info level. When called
2493     // at a safepoint, this log output is at the Trace level since
2494     // there can be a lot of it.
2495     log_in_use_monitor_details(ls, on_exit);
2496   }
2497 
2498   ls->flush();
2499 
2500   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2501 }
2502 
2503 // Check a free monitor entry; log any errors.
2504 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2505                                         outputStream * out, int *error_cnt_p) {
2506   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2507       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2508     if (jt != NULL) {
2509       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2510                     ": free per-thread monitor must not be busy.", p2i(jt),
2511                     p2i(n));
2512     } else {
2513       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2514                     "must not be busy.", p2i(n));
2515     }
2516     *error_cnt_p = *error_cnt_p + 1;
2517   }
2518   if (n->header() != NULL) {
2519     if (jt != NULL) {
2520       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2521                     ": free per-thread monitor must have NULL _header "
2522                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2523                     p2i(n->header()));
2524       *error_cnt_p = *error_cnt_p + 1;
2525     } else if (!AsyncDeflateIdleMonitors) {
2526       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2527                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2528                     p2i(n), p2i(n->header()));
2529       *error_cnt_p = *error_cnt_p + 1;
2530     }
2531   }
2532   if (n->object() != NULL) {
2533     if (jt != NULL) {
2534       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2535                     ": free per-thread monitor must have NULL _object "
2536                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2537                     p2i(n->object()));
2538     } else {
2539       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2540                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2541                     p2i(n), p2i(n->object()));
2542     }
2543     *error_cnt_p = *error_cnt_p + 1;
2544   }
2545 }
2546 
2547 // Check the global free list and count; log the results of the checks.
2548 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2549                                                         int *error_cnt_p) {
2550   int chkMonitorFreeCount = 0;
2551   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
2552     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2553     chkMonitorFreeCount++;
2554   }
2555   if (gMonitorFreeCount == chkMonitorFreeCount) {
2556     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
2557                   gMonitorFreeCount, chkMonitorFreeCount);
2558   } else {
2559     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
2560                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
2561                   chkMonitorFreeCount);
2562     *error_cnt_p = *error_cnt_p + 1;
2563   }
2564 }
2565 
2566 // Check the global in-use list and count; log the results of the checks.
2567 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2568                                                           int *error_cnt_p) {
2569   int chkOmInUseCount = 0;
2570   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2571     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2572     chkOmInUseCount++;
2573   }
2574   if (gOmInUseCount == chkOmInUseCount) {
2575     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
2576                   chkOmInUseCount);
2577   } else {
2578     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
2579                   gOmInUseCount, chkOmInUseCount);
2580     *error_cnt_p = *error_cnt_p + 1;
2581   }
2582 }
2583 
2584 // Check an in-use monitor entry; log any errors.
2585 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2586                                           outputStream * out, int *error_cnt_p) {
2587   if (n->header() == NULL) {
2588     if (jt != NULL) {
2589       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2590                     ": in-use per-thread monitor must have non-NULL _header "
2591                     "field.", p2i(jt), p2i(n));
2592     } else {
2593       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2594                     "must have non-NULL _header field.", p2i(n));
2595     }
2596     *error_cnt_p = *error_cnt_p + 1;
2597   }
2598   if (n->object() == NULL) {
2599     if (jt != NULL) {
2600       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2601                     ": in-use per-thread monitor must have non-NULL _object "
2602                     "field.", p2i(jt), p2i(n));
2603     } else {
2604       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2605                     "must have non-NULL _object field.", p2i(n));
2606     }
2607     *error_cnt_p = *error_cnt_p + 1;
2608   }
2609   const oop obj = (oop)n->object();
2610   const markOop mark = obj->mark();
2611   if (!mark->has_monitor()) {
2612     if (jt != NULL) {
2613       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2614                     ": in-use per-thread monitor's object does not think "
2615                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2616                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2617     } else {
2618       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2619                     "monitor's object does not think it has a monitor: obj="
2620                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2621                     p2i(obj), p2i(mark));
2622     }
2623     *error_cnt_p = *error_cnt_p + 1;
2624   }
2625   ObjectMonitor * const obj_mon = mark->monitor();
2626   if (n != obj_mon) {
2627     if (jt != NULL) {
2628       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2629                     ": in-use per-thread monitor's object does not refer "
2630                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2631                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2632                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2633     } else {
2634       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2635                     "monitor's object does not refer to the same monitor: obj="
2636                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2637                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2638     }
2639     *error_cnt_p = *error_cnt_p + 1;
2640   }
2641 }
2642 
2643 // Check the thread's free list and count; log the results of the checks.
2644 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2645                                                             outputStream * out,
2646                                                             int *error_cnt_p) {
2647   int chkOmFreeCount = 0;
2648   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2649     chk_free_entry(jt, n, out, error_cnt_p);
2650     chkOmFreeCount++;
2651   }
2652   if (jt->omFreeCount == chkOmFreeCount) {
2653     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2654                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2655   } else {
2656     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2657                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2658                   chkOmFreeCount);
2659     *error_cnt_p = *error_cnt_p + 1;
2660   }
2661 }
2662 
2663 // Check the thread's in-use list and count; log the results of the checks.
2664 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2665                                                               outputStream * out,
2666                                                               int *error_cnt_p) {
2667   int chkOmInUseCount = 0;
2668   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2669     chk_in_use_entry(jt, n, out, error_cnt_p);
2670     chkOmInUseCount++;
2671   }
2672   if (jt->omInUseCount == chkOmInUseCount) {
2673     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2674                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2675                   chkOmInUseCount);
2676   } else {
2677     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2678                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2679                   chkOmInUseCount);
2680     *error_cnt_p = *error_cnt_p + 1;
2681   }
2682 }
2683 
2684 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2685 // flags indicate why the entry is in-use, 'object' and 'object type'
2686 // indicate the associated object and its type.
2687 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2688                                                     bool on_exit) {
2689   if (!on_exit) {
2690     // Not at VM exit so grab the global list lock.
2691     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2692   }
2693 
2694   if (gOmInUseCount > 0) {
2695     out->print_cr("In-use global monitor info:");
2696     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2697     out->print_cr("%18s  %s  %7s  %18s  %18s",
2698                   "monitor", "BHL", "ref_cnt", "object", "object type");
2699     out->print_cr("==================  ===  =======  ==================  ==================");
2700     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2701       const oop obj = (oop) n->object();
2702       const markOop mark = n->header();
2703       ResourceMark rm;
2704       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2705                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2706                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2707                     obj->klass()->external_name());
2708     }
2709   }
2710 
2711   if (!on_exit) {
2712     Thread::muxRelease(&gListLock);
2713   }
2714 
2715   out->print_cr("In-use per-thread monitor info:");
2716   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2717   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2718                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2719   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2720   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2721     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2722       const oop obj = (oop) n->object();
2723       const markOop mark = n->header();
2724       ResourceMark rm;
2725       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2726                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2727                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2728                     p2i(obj), obj->klass()->external_name());
2729     }
2730   }
2731 
2732   out->flush();
2733 }
2734 
2735 // Log counts for the global and per-thread monitor lists and return
2736 // the population count.
2737 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2738   int popCount = 0;
2739   out->print_cr("%18s  %10s  %10s  %10s",
2740                 "Global Lists:", "InUse", "Free", "Total");
2741   out->print_cr("==================  ==========  ==========  ==========");
2742   out->print_cr("%18s  %10d  %10d  %10d", "",
2743                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2744   popCount += gOmInUseCount + gMonitorFreeCount;
2745 
2746   out->print_cr("%18s  %10s  %10s  %10s",
2747                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2748   out->print_cr("==================  ==========  ==========  ==========");
2749 
2750   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2751     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2752                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2753     popCount += jt->omInUseCount + jt->omFreeCount;
2754   }
2755   return popCount;
2756 }
2757 
2758 #ifndef PRODUCT
2759 
2760 // Check if monitor belongs to the monitor cache
2761 // The list is grow-only so it's *relatively* safe to traverse
2762 // the list of extant blocks without taking a lock.
2763 
2764 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2765   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2766   while (block != NULL) {
2767     assert(block->object() == CHAINMARKER, "must be a block header");
2768     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2769       address mon = (address)monitor;
2770       address blk = (address)block;
2771       size_t diff = mon - blk;
2772       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2773       return 1;
2774     }
2775     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2776   }
2777   return 0;
2778 }
2779 
2780 #endif