1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "runtime/objectMonitor.hpp"
  42 #include "runtime/objectMonitor.inline.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframe.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/dtrace.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/preserveException.hpp"
  56 
  57 // The "core" versions of monitor enter and exit reside in this file.
  58 // The interpreter and compilers contain specialized transliterated
  59 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  60 // for instance.  If you make changes here, make sure to modify the
  61 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  62 //
  63 // -----------------------------------------------------------------------------
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = NULL;                                                      \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  75   if (klassname != NULL) {                                                 \
  76     bytes = (char*)klassname->bytes();                                     \
  77     len = klassname->utf8_length();                                        \
  78   }
  79 
  80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  85                            (uintptr_t)(monitor), bytes, len, (millis));    \
  86     }                                                                      \
  87   }
  88 
  89 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  90 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  91 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  98                                     (uintptr_t)(monitor), bytes, len);     \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // This exists only as a workaround of dtrace bug 6254741
 110 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 111   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 112   return 0;
 113 }
 114 
 115 #define NINFLATIONLOCKS 256
 116 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 117 
 118 // global list of blocks of monitors
 119 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 120 // global monitor free list
 121 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 122 // global monitor in-use list, for moribund threads,
 123 // monitors they inflated need to be scanned for deflation
 124 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 125 // count of entries in gOmInUseList
 126 int ObjectSynchronizer::gOmInUseCount = 0;
 127 bool ObjectSynchronizer::_gOmShouldDeflateIdleMonitors = false;
 128 bool volatile ObjectSynchronizer::_is_cleanup_requested = false;
 129 
 130 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 131 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 132 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 133 
 134 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 135 
 136 
 137 // =====================> Quick functions
 138 
 139 // The quick_* forms are special fast-path variants used to improve
 140 // performance.  In the simplest case, a "quick_*" implementation could
 141 // simply return false, in which case the caller will perform the necessary
 142 // state transitions and call the slow-path form.
 143 // The fast-path is designed to handle frequently arising cases in an efficient
 144 // manner and is just a degenerate "optimistic" variant of the slow-path.
 145 // returns true  -- to indicate the call was satisfied.
 146 // returns false -- to indicate the call needs the services of the slow-path.
 147 // A no-loitering ordinance is in effect for code in the quick_* family
 148 // operators: safepoints or indefinite blocking (blocking that might span a
 149 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 150 // entry.
 151 //
 152 // Consider: An interesting optimization is to have the JIT recognize the
 153 // following common idiom:
 154 //   synchronized (someobj) { .... ; notify(); }
 155 // That is, we find a notify() or notifyAll() call that immediately precedes
 156 // the monitorexit operation.  In that case the JIT could fuse the operations
 157 // into a single notifyAndExit() runtime primitive.
 158 
 159 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 160   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 161   assert(self->is_Java_thread(), "invariant");
 162   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 163   NoSafepointVerifier nsv;
 164   if (obj == NULL) return false;  // slow-path for invalid obj
 165   const markOop mark = obj->mark();
 166 
 167   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 168     // Degenerate notify
 169     // stack-locked by caller so by definition the implied waitset is empty.
 170     return true;
 171   }
 172 
 173   if (mark->has_monitor()) {
 174     ObjectMonitor * const mon = mark->monitor();
 175     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 176     if (mon->owner() != self) return false;  // slow-path for IMS exception
 177 
 178     if (mon->first_waiter() != NULL) {
 179       // We have one or more waiters. Since this is an inflated monitor
 180       // that we own, we can transfer one or more threads from the waitset
 181       // to the entrylist here and now, avoiding the slow-path.
 182       if (all) {
 183         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 184       } else {
 185         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 186       }
 187       int tally = 0;
 188       do {
 189         mon->INotify(self);
 190         ++tally;
 191       } while (mon->first_waiter() != NULL && all);
 192       OM_PERFDATA_OP(Notifications, inc(tally));
 193     }
 194     return true;
 195   }
 196 
 197   // biased locking and any other IMS exception states take the slow-path
 198   return false;
 199 }
 200 
 201 
 202 // The LockNode emitted directly at the synchronization site would have
 203 // been too big if it were to have included support for the cases of inflated
 204 // recursive enter and exit, so they go here instead.
 205 // Note that we can't safely call AsyncPrintJavaStack() from within
 206 // quick_enter() as our thread state remains _in_Java.
 207 
 208 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 209                                      BasicLock * lock) {
 210   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 211   assert(Self->is_Java_thread(), "invariant");
 212   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 213   NoSafepointVerifier nsv;
 214   if (obj == NULL) return false;       // Need to throw NPE
 215 
 216   while (true) {
 217     const markOop mark = obj->mark();
 218 
 219     if (mark->has_monitor()) {
 220       ObjectMonitorHandle omh;
 221       if (!omh.save_om_ptr(obj, mark)) {
 222         // Lost a race with async deflation so try again.
 223         assert(AsyncDeflateIdleMonitors, "sanity check");
 224         continue;
 225       }
 226       ObjectMonitor * const m = omh.om_ptr();
 227       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 228       Thread * const owner = (Thread *) m->_owner;
 229 
 230       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 231       // and observability
 232       // Case: light contention possibly amenable to TLE
 233       // Case: TLE inimical operations such as nested/recursive synchronization
 234 
 235       if (owner == Self) {
 236         m->_recursions++;
 237         return true;
 238       }
 239 
 240       // This Java Monitor is inflated so obj's header will never be
 241       // displaced to this thread's BasicLock. Make the displaced header
 242       // non-NULL so this BasicLock is not seen as recursive nor as
 243       // being locked. We do this unconditionally so that this thread's
 244       // BasicLock cannot be mis-interpreted by any stack walkers. For
 245       // performance reasons, stack walkers generally first check for
 246       // Biased Locking in the object's header, the second check is for
 247       // stack-locking in the object's header, the third check is for
 248       // recursive stack-locking in the displaced header in the BasicLock,
 249       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 250       lock->set_displaced_header(markOopDesc::unused_mark());
 251 
 252       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 253         assert(m->_recursions == 0, "invariant");
 254         assert(m->_owner == Self, "invariant");
 255         return true;
 256       }
 257     }
 258     break;
 259   }
 260 
 261   // Note that we could inflate in quick_enter.
 262   // This is likely a useful optimization
 263   // Critically, in quick_enter() we must not:
 264   // -- perform bias revocation, or
 265   // -- block indefinitely, or
 266   // -- reach a safepoint
 267 
 268   return false;        // revert to slow-path
 269 }
 270 
 271 // -----------------------------------------------------------------------------
 272 //  Fast Monitor Enter/Exit
 273 // This the fast monitor enter. The interpreter and compiler use
 274 // some assembly copies of this code. Make sure update those code
 275 // if the following function is changed. The implementation is
 276 // extremely sensitive to race condition. Be careful.
 277 
 278 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 279                                     bool attempt_rebias, TRAPS) {
 280   if (UseBiasedLocking) {
 281     if (!SafepointSynchronize::is_at_safepoint()) {
 282       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 283       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 284         return;
 285       }
 286     } else {
 287       assert(!attempt_rebias, "can not rebias toward VM thread");
 288       BiasedLocking::revoke_at_safepoint(obj);
 289     }
 290     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 291   }
 292 
 293   slow_enter(obj, lock, THREAD);
 294 }
 295 
 296 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 297   markOop mark = object->mark();
 298   // We cannot check for Biased Locking if we are racing an inflation.
 299   assert(mark == markOopDesc::INFLATING() ||
 300          !mark->has_bias_pattern(), "should not see bias pattern here");
 301 
 302   markOop dhw = lock->displaced_header();
 303   if (dhw == NULL) {
 304     // If the displaced header is NULL, then this exit matches up with
 305     // a recursive enter. No real work to do here except for diagnostics.
 306 #ifndef PRODUCT
 307     if (mark != markOopDesc::INFLATING()) {
 308       // Only do diagnostics if we are not racing an inflation. Simply
 309       // exiting a recursive enter of a Java Monitor that is being
 310       // inflated is safe; see the has_monitor() comment below.
 311       assert(!mark->is_neutral(), "invariant");
 312       assert(!mark->has_locker() ||
 313              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 314       if (mark->has_monitor()) {
 315         // The BasicLock's displaced_header is marked as a recursive
 316         // enter and we have an inflated Java Monitor (ObjectMonitor).
 317         // This is a special case where the Java Monitor was inflated
 318         // after this thread entered the stack-lock recursively. When a
 319         // Java Monitor is inflated, we cannot safely walk the Java
 320         // Monitor owner's stack and update the BasicLocks because a
 321         // Java Monitor can be asynchronously inflated by a thread that
 322         // does not own the Java Monitor.
 323         ObjectMonitor * m = mark->monitor();
 324         assert(((oop)(m->object()))->mark() == mark, "invariant");
 325         assert(m->is_entered(THREAD), "invariant");
 326       }
 327     }
 328 #endif
 329     return;
 330   }
 331 
 332   if (mark == (markOop) lock) {
 333     // If the object is stack-locked by the current thread, try to
 334     // swing the displaced header from the BasicLock back to the mark.
 335     assert(dhw->is_neutral(), "invariant");
 336     if (object->cas_set_mark(dhw, mark) == mark) {
 337       return;
 338     }
 339   }
 340 
 341   // We have to take the slow-path of possible inflation and then exit.
 342   ObjectMonitorHandle omh;
 343   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 344   omh.om_ptr()->exit(true, THREAD);
 345 }
 346 
 347 // -----------------------------------------------------------------------------
 348 // Interpreter/Compiler Slow Case
 349 // This routine is used to handle interpreter/compiler slow case
 350 // We don't need to use fast path here, because it must have been
 351 // failed in the interpreter/compiler code.
 352 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 353   markOop mark = obj->mark();
 354   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 355 
 356   if (mark->is_neutral()) {
 357     // Anticipate successful CAS -- the ST of the displaced mark must
 358     // be visible <= the ST performed by the CAS.
 359     lock->set_displaced_header(mark);
 360     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 361       return;
 362     }
 363     // Fall through to inflate() ...
 364   } else if (mark->has_locker() &&
 365              THREAD->is_lock_owned((address)mark->locker())) {
 366     assert(lock != mark->locker(), "must not re-lock the same lock");
 367     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 368     lock->set_displaced_header(NULL);
 369     return;
 370   }
 371 
 372   // The object header will never be displaced to this lock,
 373   // so it does not matter what the value is, except that it
 374   // must be non-zero to avoid looking like a re-entrant lock,
 375   // and must not look locked either.
 376   lock->set_displaced_header(markOopDesc::unused_mark());
 377   ObjectMonitorHandle omh;
 378   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 379   omh.om_ptr()->enter(THREAD);
 380 }
 381 
 382 // This routine is used to handle interpreter/compiler slow case
 383 // We don't need to use fast path here, because it must have
 384 // failed in the interpreter/compiler code. Simply use the heavy
 385 // weight monitor should be ok, unless someone find otherwise.
 386 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 387   fast_exit(object, lock, THREAD);
 388 }
 389 
 390 // -----------------------------------------------------------------------------
 391 // Class Loader  support to workaround deadlocks on the class loader lock objects
 392 // Also used by GC
 393 // complete_exit()/reenter() are used to wait on a nested lock
 394 // i.e. to give up an outer lock completely and then re-enter
 395 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 396 //  1) complete_exit lock1 - saving recursion count
 397 //  2) wait on lock2
 398 //  3) when notified on lock2, unlock lock2
 399 //  4) reenter lock1 with original recursion count
 400 //  5) lock lock2
 401 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 402 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 403   if (UseBiasedLocking) {
 404     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 405     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 406   }
 407 
 408   ObjectMonitorHandle omh;
 409   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 410   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 411   return ret_code;
 412 }
 413 
 414 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 415 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 416   if (UseBiasedLocking) {
 417     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 418     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 419   }
 420 
 421   ObjectMonitorHandle omh;
 422   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 423   omh.om_ptr()->reenter(recursion, THREAD);
 424 }
 425 // -----------------------------------------------------------------------------
 426 // JNI locks on java objects
 427 // NOTE: must use heavy weight monitor to handle jni monitor enter
 428 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 429   // the current locking is from JNI instead of Java code
 430   if (UseBiasedLocking) {
 431     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 432     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 433   }
 434   THREAD->set_current_pending_monitor_is_from_java(false);
 435   ObjectMonitorHandle omh;
 436   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 437   omh.om_ptr()->enter(THREAD);
 438   THREAD->set_current_pending_monitor_is_from_java(true);
 439 }
 440 
 441 // NOTE: must use heavy weight monitor to handle jni monitor exit
 442 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 443   if (UseBiasedLocking) {
 444     Handle h_obj(THREAD, obj);
 445     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 446     obj = h_obj();
 447   }
 448   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 449 
 450   ObjectMonitorHandle omh;
 451   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 452   ObjectMonitor * monitor = omh.om_ptr();
 453   // If this thread has locked the object, exit the monitor.  Note:  can't use
 454   // monitor->check(CHECK); must exit even if an exception is pending.
 455   if (monitor->check(THREAD)) {
 456     monitor->exit(true, THREAD);
 457   }
 458 }
 459 
 460 // -----------------------------------------------------------------------------
 461 // Internal VM locks on java objects
 462 // standard constructor, allows locking failures
 463 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 464   _dolock = doLock;
 465   _thread = thread;
 466   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 467   _obj = obj;
 468 
 469   if (_dolock) {
 470     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 471   }
 472 }
 473 
 474 ObjectLocker::~ObjectLocker() {
 475   if (_dolock) {
 476     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 477   }
 478 }
 479 
 480 
 481 // -----------------------------------------------------------------------------
 482 //  Wait/Notify/NotifyAll
 483 // NOTE: must use heavy weight monitor to handle wait()
 484 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   ObjectMonitorHandle omh;
 493   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 494   ObjectMonitor * monitor = omh.om_ptr();
 495 
 496   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 497   monitor->wait(millis, true, THREAD);
 498 
 499   // This dummy call is in place to get around dtrace bug 6254741.  Once
 500   // that's fixed we can uncomment the following line, remove the call
 501   // and change this function back into a "void" func.
 502   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 503   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 504   return ret_code;
 505 }
 506 
 507 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 508   if (UseBiasedLocking) {
 509     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 510     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 511   }
 512   if (millis < 0) {
 513     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 514   }
 515   ObjectMonitorHandle omh;
 516   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 517   omh.om_ptr()->wait(millis, false, THREAD);
 518 }
 519 
 520 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 521   if (UseBiasedLocking) {
 522     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 523     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 524   }
 525 
 526   markOop mark = obj->mark();
 527   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 528     return;
 529   }
 530   ObjectMonitorHandle omh;
 531   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 532   omh.om_ptr()->notify(THREAD);
 533 }
 534 
 535 // NOTE: see comment of notify()
 536 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 537   if (UseBiasedLocking) {
 538     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 539     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 540   }
 541 
 542   markOop mark = obj->mark();
 543   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 544     return;
 545   }
 546   ObjectMonitorHandle omh;
 547   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 548   omh.om_ptr()->notifyAll(THREAD);
 549 }
 550 
 551 // -----------------------------------------------------------------------------
 552 // Hash Code handling
 553 //
 554 // Performance concern:
 555 // OrderAccess::storestore() calls release() which at one time stored 0
 556 // into the global volatile OrderAccess::dummy variable. This store was
 557 // unnecessary for correctness. Many threads storing into a common location
 558 // causes considerable cache migration or "sloshing" on large SMP systems.
 559 // As such, I avoided using OrderAccess::storestore(). In some cases
 560 // OrderAccess::fence() -- which incurs local latency on the executing
 561 // processor -- is a better choice as it scales on SMP systems.
 562 //
 563 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 564 // a discussion of coherency costs. Note that all our current reference
 565 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 566 // x64, and SPARC.
 567 //
 568 // As a general policy we use "volatile" to control compiler-based reordering
 569 // and explicit fences (barriers) to control for architectural reordering
 570 // performed by the CPU(s) or platform.
 571 
 572 struct SharedGlobals {
 573   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 574   // These are highly shared mostly-read variables.
 575   // To avoid false-sharing they need to be the sole occupants of a cache line.
 576   volatile int stwRandom;
 577   volatile int stwCycle;
 578   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 579   // Hot RW variable -- Sequester to avoid false-sharing
 580   volatile int hcSequence;
 581   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 582 };
 583 
 584 static SharedGlobals GVars;
 585 static int MonitorScavengeThreshold = 1000000;
 586 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 587 
 588 static markOop ReadStableMark(oop obj) {
 589   markOop mark = obj->mark();
 590   if (!mark->is_being_inflated()) {
 591     return mark;       // normal fast-path return
 592   }
 593 
 594   int its = 0;
 595   for (;;) {
 596     markOop mark = obj->mark();
 597     if (!mark->is_being_inflated()) {
 598       return mark;    // normal fast-path return
 599     }
 600 
 601     // The object is being inflated by some other thread.
 602     // The caller of ReadStableMark() must wait for inflation to complete.
 603     // Avoid live-lock
 604     // TODO: consider calling SafepointSynchronize::do_call_back() while
 605     // spinning to see if there's a safepoint pending.  If so, immediately
 606     // yielding or blocking would be appropriate.  Avoid spinning while
 607     // there is a safepoint pending.
 608     // TODO: add inflation contention performance counters.
 609     // TODO: restrict the aggregate number of spinners.
 610 
 611     ++its;
 612     if (its > 10000 || !os::is_MP()) {
 613       if (its & 1) {
 614         os::naked_yield();
 615       } else {
 616         // Note that the following code attenuates the livelock problem but is not
 617         // a complete remedy.  A more complete solution would require that the inflating
 618         // thread hold the associated inflation lock.  The following code simply restricts
 619         // the number of spinners to at most one.  We'll have N-2 threads blocked
 620         // on the inflationlock, 1 thread holding the inflation lock and using
 621         // a yield/park strategy, and 1 thread in the midst of inflation.
 622         // A more refined approach would be to change the encoding of INFLATING
 623         // to allow encapsulation of a native thread pointer.  Threads waiting for
 624         // inflation to complete would use CAS to push themselves onto a singly linked
 625         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 626         // and calling park().  When inflation was complete the thread that accomplished inflation
 627         // would detach the list and set the markword to inflated with a single CAS and
 628         // then for each thread on the list, set the flag and unpark() the thread.
 629         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 630         // wakes at most one thread whereas we need to wake the entire list.
 631         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 632         int YieldThenBlock = 0;
 633         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 634         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 635         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 636         while (obj->mark() == markOopDesc::INFLATING()) {
 637           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 638           // so we periodically call Self->_ParkEvent->park(1).
 639           // We use a mixed spin/yield/block mechanism.
 640           if ((YieldThenBlock++) >= 16) {
 641             Thread::current()->_ParkEvent->park(1);
 642           } else {
 643             os::naked_yield();
 644           }
 645         }
 646         Thread::muxRelease(gInflationLocks + ix);
 647       }
 648     } else {
 649       SpinPause();       // SMP-polite spinning
 650     }
 651   }
 652 }
 653 
 654 // hashCode() generation :
 655 //
 656 // Possibilities:
 657 // * MD5Digest of {obj,stwRandom}
 658 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 659 // * A DES- or AES-style SBox[] mechanism
 660 // * One of the Phi-based schemes, such as:
 661 //   2654435761 = 2^32 * Phi (golden ratio)
 662 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 663 // * A variation of Marsaglia's shift-xor RNG scheme.
 664 // * (obj ^ stwRandom) is appealing, but can result
 665 //   in undesirable regularity in the hashCode values of adjacent objects
 666 //   (objects allocated back-to-back, in particular).  This could potentially
 667 //   result in hashtable collisions and reduced hashtable efficiency.
 668 //   There are simple ways to "diffuse" the middle address bits over the
 669 //   generated hashCode values:
 670 
 671 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 672   intptr_t value = 0;
 673   if (hashCode == 0) {
 674     // This form uses global Park-Miller RNG.
 675     // On MP system we'll have lots of RW access to a global, so the
 676     // mechanism induces lots of coherency traffic.
 677     value = os::random();
 678   } else if (hashCode == 1) {
 679     // This variation has the property of being stable (idempotent)
 680     // between STW operations.  This can be useful in some of the 1-0
 681     // synchronization schemes.
 682     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 683     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 684   } else if (hashCode == 2) {
 685     value = 1;            // for sensitivity testing
 686   } else if (hashCode == 3) {
 687     value = ++GVars.hcSequence;
 688   } else if (hashCode == 4) {
 689     value = cast_from_oop<intptr_t>(obj);
 690   } else {
 691     // Marsaglia's xor-shift scheme with thread-specific state
 692     // This is probably the best overall implementation -- we'll
 693     // likely make this the default in future releases.
 694     unsigned t = Self->_hashStateX;
 695     t ^= (t << 11);
 696     Self->_hashStateX = Self->_hashStateY;
 697     Self->_hashStateY = Self->_hashStateZ;
 698     Self->_hashStateZ = Self->_hashStateW;
 699     unsigned v = Self->_hashStateW;
 700     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 701     Self->_hashStateW = v;
 702     value = v;
 703   }
 704 
 705   value &= markOopDesc::hash_mask;
 706   if (value == 0) value = 0xBAD;
 707   assert(value != markOopDesc::no_hash, "invariant");
 708   return value;
 709 }
 710 
 711 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 712   if (UseBiasedLocking) {
 713     // NOTE: many places throughout the JVM do not expect a safepoint
 714     // to be taken here, in particular most operations on perm gen
 715     // objects. However, we only ever bias Java instances and all of
 716     // the call sites of identity_hash that might revoke biases have
 717     // been checked to make sure they can handle a safepoint. The
 718     // added check of the bias pattern is to avoid useless calls to
 719     // thread-local storage.
 720     if (obj->mark()->has_bias_pattern()) {
 721       // Handle for oop obj in case of STW safepoint
 722       Handle hobj(Self, obj);
 723       // Relaxing assertion for bug 6320749.
 724       assert(Universe::verify_in_progress() ||
 725              !SafepointSynchronize::is_at_safepoint(),
 726              "biases should not be seen by VM thread here");
 727       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 728       obj = hobj();
 729       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 730     }
 731   }
 732 
 733   // hashCode() is a heap mutator ...
 734   // Relaxing assertion for bug 6320749.
 735   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 736          !SafepointSynchronize::is_at_safepoint(), "invariant");
 737   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 738          Self->is_Java_thread() , "invariant");
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 741 
 742   while (true) {
 743     ObjectMonitor* monitor = NULL;
 744     markOop temp, test;
 745     intptr_t hash;
 746     markOop mark = ReadStableMark(obj);
 747 
 748     // object should remain ineligible for biased locking
 749     assert(!mark->has_bias_pattern(), "invariant");
 750 
 751     if (mark->is_neutral()) {
 752       hash = mark->hash();              // this is a normal header
 753       if (hash != 0) {                  // if it has hash, just return it
 754         return hash;
 755       }
 756       hash = get_next_hash(Self, obj);  // allocate a new hash code
 757       temp = mark->copy_set_hash(hash); // merge the hash code into header
 758       // use (machine word version) atomic operation to install the hash
 759       test = obj->cas_set_mark(temp, mark);
 760       if (test == mark) {
 761         return hash;
 762       }
 763       // If atomic operation failed, we must inflate the header
 764       // into heavy weight monitor. We could add more code here
 765       // for fast path, but it does not worth the complexity.
 766     } else if (mark->has_monitor()) {
 767       ObjectMonitorHandle omh;
 768       if (!omh.save_om_ptr(obj, mark)) {
 769         // Lost a race with async deflation so try again.
 770         assert(AsyncDeflateIdleMonitors, "sanity check");
 771         continue;
 772       }
 773       monitor = omh.om_ptr();
 774       temp = monitor->header();
 775       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 776       hash = temp->hash();
 777       if (hash != 0) {
 778         return hash;
 779       }
 780       // Skip to the following code to reduce code size
 781     } else if (Self->is_lock_owned((address)mark->locker())) {
 782       temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 783       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 784       hash = temp->hash();              // by current thread, check if the displaced
 785       if (hash != 0) {                  // header contains hash code
 786         return hash;
 787       }
 788       // WARNING:
 789       // The displaced header in the BasicLock on a thread's stack
 790       // is strictly immutable. It CANNOT be changed in ANY cases.
 791       // So we have to inflate the stack lock into an ObjectMonitor
 792       // even if the current thread owns the lock. The BasicLock on
 793       // a thread's stack can be asynchronously read by other threads
 794       // during an inflate() call so any change to that stack memory
 795       // may not propagate to other threads correctly.
 796     }
 797 
 798     // Inflate the monitor to set hash code
 799     ObjectMonitorHandle omh;
 800     inflate(&omh, Self, obj, inflate_cause_hash_code);
 801     monitor = omh.om_ptr();
 802     // Load displaced header and check it has hash code
 803     mark = monitor->header();
 804     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 805     hash = mark->hash();
 806     if (hash == 0) {
 807       hash = get_next_hash(Self, obj);
 808       temp = mark->copy_set_hash(hash); // merge hash code into header
 809       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 810       test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 811       if (test != mark) {
 812         // The only non-deflation update to the ObjectMonitor's
 813         // header/dmw field is to merge in the hash code. If someone
 814         // adds a new usage of the header/dmw field, please update
 815         // this code.
 816         // ObjectMonitor::install_displaced_markword_in_object()
 817         // does mark the header/dmw field as part of async deflation,
 818         // but that protocol cannot happen now due to the
 819         // ObjectMonitorHandle above.
 820         hash = test->hash();
 821         assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 822         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 823       }
 824     }
 825     // We finally get the hash
 826     return hash;
 827   }
 828 }
 829 
 830 // Deprecated -- use FastHashCode() instead.
 831 
 832 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 833   return FastHashCode(Thread::current(), obj());
 834 }
 835 
 836 
 837 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 838                                                    Handle h_obj) {
 839   if (UseBiasedLocking) {
 840     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 841     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 842   }
 843 
 844   assert(thread == JavaThread::current(), "Can only be called on current thread");
 845   oop obj = h_obj();
 846 
 847   while (true) {
 848     markOop mark = ReadStableMark(obj);
 849 
 850     // Uncontended case, header points to stack
 851     if (mark->has_locker()) {
 852       return thread->is_lock_owned((address)mark->locker());
 853     }
 854     // Contended case, header points to ObjectMonitor (tagged pointer)
 855     if (mark->has_monitor()) {
 856       ObjectMonitorHandle omh;
 857       if (!omh.save_om_ptr(obj, mark)) {
 858         // Lost a race with async deflation so try again.
 859         assert(AsyncDeflateIdleMonitors, "sanity check");
 860         continue;
 861       }
 862       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 863       return ret_code;
 864     }
 865     // Unlocked case, header in place
 866     assert(mark->is_neutral(), "sanity check");
 867     return false;
 868   }
 869 }
 870 
 871 // Be aware of this method could revoke bias of the lock object.
 872 // This method queries the ownership of the lock handle specified by 'h_obj'.
 873 // If the current thread owns the lock, it returns owner_self. If no
 874 // thread owns the lock, it returns owner_none. Otherwise, it will return
 875 // owner_other.
 876 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 877 (JavaThread *self, Handle h_obj) {
 878   // The caller must beware this method can revoke bias, and
 879   // revocation can result in a safepoint.
 880   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 881   assert(self->thread_state() != _thread_blocked, "invariant");
 882 
 883   // Possible mark states: neutral, biased, stack-locked, inflated
 884 
 885   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 886     // CASE: biased
 887     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 888     assert(!h_obj->mark()->has_bias_pattern(),
 889            "biases should be revoked by now");
 890   }
 891 
 892   assert(self == JavaThread::current(), "Can only be called on current thread");
 893   oop obj = h_obj();
 894 
 895   while (true) {
 896     markOop mark = ReadStableMark(obj);
 897 
 898     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 899     if (mark->has_locker()) {
 900       return self->is_lock_owned((address)mark->locker()) ?
 901         owner_self : owner_other;
 902     }
 903 
 904     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 905     // The Object:ObjectMonitor relationship is stable as long as we're
 906     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 907     if (mark->has_monitor()) {
 908       ObjectMonitorHandle omh;
 909       if (!omh.save_om_ptr(obj, mark)) {
 910         // Lost a race with async deflation so try again.
 911         assert(AsyncDeflateIdleMonitors, "sanity check");
 912         continue;
 913       }
 914       ObjectMonitor * monitor = omh.om_ptr();
 915       void * owner = monitor->_owner;
 916       if (owner == NULL) return owner_none;
 917       return (owner == self ||
 918               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 919     }
 920 
 921     // CASE: neutral
 922     assert(mark->is_neutral(), "sanity check");
 923     return owner_none;           // it's unlocked
 924   }
 925 }
 926 
 927 // FIXME: jvmti should call this
 928 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 929   if (UseBiasedLocking) {
 930     if (SafepointSynchronize::is_at_safepoint()) {
 931       BiasedLocking::revoke_at_safepoint(h_obj);
 932     } else {
 933       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 934     }
 935     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 936   }
 937 
 938   oop obj = h_obj();
 939 
 940   while (true) {
 941     address owner = NULL;
 942     markOop mark = ReadStableMark(obj);
 943 
 944     // Uncontended case, header points to stack
 945     if (mark->has_locker()) {
 946       owner = (address) mark->locker();
 947     }
 948 
 949     // Contended case, header points to ObjectMonitor (tagged pointer)
 950     else if (mark->has_monitor()) {
 951       ObjectMonitorHandle omh;
 952       if (!omh.save_om_ptr(obj, mark)) {
 953         // Lost a race with async deflation so try again.
 954         assert(AsyncDeflateIdleMonitors, "sanity check");
 955         continue;
 956       }
 957       ObjectMonitor* monitor = omh.om_ptr();
 958       assert(monitor != NULL, "monitor should be non-null");
 959       owner = (address) monitor->owner();
 960     }
 961 
 962     if (owner != NULL) {
 963       // owning_thread_from_monitor_owner() may also return NULL here
 964       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 965     }
 966 
 967     // Unlocked case, header in place
 968     // Cannot have assertion since this object may have been
 969     // locked by another thread when reaching here.
 970     // assert(mark->is_neutral(), "sanity check");
 971 
 972     return NULL;
 973   }
 974 }
 975 
 976 // Visitors ...
 977 
 978 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 979   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 980   while (block != NULL) {
 981     assert(block->object() == CHAINMARKER, "must be a block header");
 982     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 983       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 984       if (mid->is_active()) {
 985         ObjectMonitorHandle omh(mid);
 986 
 987         if (mid->object() == NULL ||
 988             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 989           // Only process with closure if the object is set.
 990           // For async deflation, race here if monitor is not owned!
 991           // The above ref_count bump (in ObjectMonitorHandle ctr)
 992           // will cause subsequent async deflation to skip it.
 993           // However, previous or concurrent async deflation is a race.
 994           continue;
 995         }
 996         closure->do_monitor(mid);
 997       }
 998     }
 999     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1000   }
1001 }
1002 
1003 // Get the next block in the block list.
1004 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1005   assert(block->object() == CHAINMARKER, "must be a block header");
1006   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1007   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1008   return block;
1009 }
1010 
1011 static bool monitors_used_above_threshold() {
1012   if (gMonitorPopulation == 0) {
1013     return false;
1014   }
1015   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1016   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1017   return monitor_usage > MonitorUsedDeflationThreshold;
1018 }
1019 
1020 bool ObjectSynchronizer::is_cleanup_needed() {
1021   if (MonitorUsedDeflationThreshold > 0) {
1022     return monitors_used_above_threshold();
1023   }
1024   return false;
1025 }
1026 
1027 void ObjectSynchronizer::oops_do(OopClosure* f) {
1028   // We only scan the global used list here (for moribund threads), and
1029   // the thread-local monitors in Thread::oops_do().
1030   global_used_oops_do(f);
1031 }
1032 
1033 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1034   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1035   list_oops_do(gOmInUseList, f);
1036 }
1037 
1038 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1039   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1040   list_oops_do(thread->omInUseList, f);
1041 }
1042 
1043 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1044   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1045   ObjectMonitor* mid;
1046   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1047     if (mid->object() != NULL) {
1048       f->do_oop((oop*)mid->object_addr());
1049     }
1050   }
1051 }
1052 
1053 
1054 // -----------------------------------------------------------------------------
1055 // ObjectMonitor Lifecycle
1056 // -----------------------
1057 // Inflation unlinks monitors from the global gFreeList and
1058 // associates them with objects.  Deflation -- which occurs at
1059 // STW-time -- disassociates idle monitors from objects.  Such
1060 // scavenged monitors are returned to the gFreeList.
1061 //
1062 // The global list is protected by gListLock.  All the critical sections
1063 // are short and operate in constant-time.
1064 //
1065 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1066 //
1067 // Lifecycle:
1068 // --   unassigned and on the global free list
1069 // --   unassigned and on a thread's private omFreeList
1070 // --   assigned to an object.  The object is inflated and the mark refers
1071 //      to the objectmonitor.
1072 
1073 
1074 // Constraining monitor pool growth via MonitorBound ...
1075 //
1076 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1077 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1078 // an inordinate number of monitors in circulation.
1079 // To avoid that scenario we can artificially induce a STW safepoint
1080 // if the pool appears to be growing past some reasonable bound.
1081 // Generally we favor time in space-time tradeoffs, but as there's no
1082 // natural back-pressure on the # of extant monitors we need to impose some
1083 // type of limit.  Beware that if MonitorBound is set to too low a value
1084 // we could just loop. In addition, if MonitorBound is set to a low value
1085 // we'll incur more safepoints, which are harmful to performance.
1086 // See also: GuaranteedSafepointInterval
1087 //
1088 // The current implementation uses asynchronous VM operations.
1089 
1090 static void InduceScavenge(Thread * Self, const char * Whence) {
1091   // Induce STW safepoint to trim monitors
1092   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1093   // More precisely, trigger an asynchronous STW safepoint as the number
1094   // of active monitors passes the specified threshold.
1095   // TODO: assert thread state is reasonable
1096 
1097   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1098     // Induce a 'null' safepoint to scavenge monitors
1099     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1100     // to the VMthread and have a lifespan longer than that of this activation record.
1101     // The VMThread will delete the op when completed.
1102     VMThread::execute(new VM_ScavengeMonitors());
1103   }
1104 }
1105 
1106 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1107                                            const InflateCause cause) {
1108   // A large MAXPRIVATE value reduces both list lock contention
1109   // and list coherency traffic, but also tends to increase the
1110   // number of objectMonitors in circulation as well as the STW
1111   // scavenge costs.  As usual, we lean toward time in space-time
1112   // tradeoffs.
1113   const int MAXPRIVATE = 1024;
1114 
1115   if (AsyncDeflateIdleMonitors) {
1116     JavaThread * jt = (JavaThread *)Self;
1117     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1118         cause != inflate_cause_vm_internal) {
1119       // Deflate any per-thread idle monitors for this JavaThread if
1120       // this is not an internal inflation. Clean up your own mess.
1121       // (Gibbs Rule 45) Otherwise, skip this cleanup.
1122       // deflate_global_idle_monitors_using_JT() is called by the ServiceThread.
1123       debug_only(jt->check_for_valid_safepoint_state(false);)
1124       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1125     }
1126   }
1127 
1128   for (;;) {
1129     ObjectMonitor * m;
1130 
1131     // 1: try to allocate from the thread's local omFreeList.
1132     // Threads will attempt to allocate first from their local list, then
1133     // from the global list, and only after those attempts fail will the thread
1134     // attempt to instantiate new monitors.   Thread-local free lists take
1135     // heat off the gListLock and improve allocation latency, as well as reducing
1136     // coherency traffic on the shared global list.
1137     m = Self->omFreeList;
1138     if (m != NULL) {
1139       Self->omFreeList = m->FreeNext;
1140       Self->omFreeCount--;
1141       guarantee(m->object() == NULL, "invariant");
1142       m->set_allocation_state(ObjectMonitor::New);
1143       m->FreeNext = Self->omInUseList;
1144       Self->omInUseList = m;
1145       Self->omInUseCount++;
1146       return m;
1147     }
1148 
1149     // 2: try to allocate from the global gFreeList
1150     // CONSIDER: use muxTry() instead of muxAcquire().
1151     // If the muxTry() fails then drop immediately into case 3.
1152     // If we're using thread-local free lists then try
1153     // to reprovision the caller's free list.
1154     if (gFreeList != NULL) {
1155       // Reprovision the thread's omFreeList.
1156       // Use bulk transfers to reduce the allocation rate and heat
1157       // on various locks.
1158       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1159       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1160         gMonitorFreeCount--;
1161         ObjectMonitor * take = gFreeList;
1162         gFreeList = take->FreeNext;
1163         guarantee(take->object() == NULL, "invariant");
1164         if (AsyncDeflateIdleMonitors) {
1165           // Clear any values we allowed to linger during async deflation.
1166           take->_header = NULL;
1167           take->set_owner(NULL);
1168 
1169           if (take->ref_count() < 0) {
1170             // Add back max_jint to restore the ref_count field to its
1171             // proper value.
1172             Atomic::add(max_jint, &take->_ref_count);
1173 
1174             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1175                    take->ref_count());
1176           }
1177         }
1178         guarantee(!take->is_busy(), "invariant");
1179         take->Recycle();
1180         assert(take->is_free(), "invariant");
1181         omRelease(Self, take, false);
1182       }
1183       Thread::muxRelease(&gListLock);
1184       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1185       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1186 
1187       const int mx = MonitorBound;
1188       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1189         // We can't safely induce a STW safepoint from omAlloc() as our thread
1190         // state may not be appropriate for such activities and callers may hold
1191         // naked oops, so instead we defer the action.
1192         InduceScavenge(Self, "omAlloc");
1193       }
1194       continue;
1195     }
1196 
1197     // 3: allocate a block of new ObjectMonitors
1198     // Both the local and global free lists are empty -- resort to malloc().
1199     // In the current implementation objectMonitors are TSM - immortal.
1200     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1201     // each ObjectMonitor to start at the beginning of a cache line,
1202     // so we use align_up().
1203     // A better solution would be to use C++ placement-new.
1204     // BEWARE: As it stands currently, we don't run the ctors!
1205     assert(_BLOCKSIZE > 1, "invariant");
1206     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1207     PaddedEnd<ObjectMonitor> * temp;
1208     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1209     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1210                                                       mtInternal);
1211     temp = (PaddedEnd<ObjectMonitor> *)
1212              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1213 
1214     // NOTE: (almost) no way to recover if allocation failed.
1215     // We might be able to induce a STW safepoint and scavenge enough
1216     // objectMonitors to permit progress.
1217     if (temp == NULL) {
1218       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1219                             "Allocate ObjectMonitors");
1220     }
1221     (void)memset((void *) temp, 0, neededsize);
1222 
1223     // Format the block.
1224     // initialize the linked list, each monitor points to its next
1225     // forming the single linked free list, the very first monitor
1226     // will points to next block, which forms the block list.
1227     // The trick of using the 1st element in the block as gBlockList
1228     // linkage should be reconsidered.  A better implementation would
1229     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1230 
1231     for (int i = 1; i < _BLOCKSIZE; i++) {
1232       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1233       assert(temp[i].is_free(), "invariant");
1234     }
1235 
1236     // terminate the last monitor as the end of list
1237     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1238 
1239     // Element [0] is reserved for global list linkage
1240     temp[0].set_object(CHAINMARKER);
1241 
1242     // Consider carving out this thread's current request from the
1243     // block in hand.  This avoids some lock traffic and redundant
1244     // list activity.
1245 
1246     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1247     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1248     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1249     gMonitorPopulation += _BLOCKSIZE-1;
1250     gMonitorFreeCount += _BLOCKSIZE-1;
1251 
1252     // Add the new block to the list of extant blocks (gBlockList).
1253     // The very first objectMonitor in a block is reserved and dedicated.
1254     // It serves as blocklist "next" linkage.
1255     temp[0].FreeNext = gBlockList;
1256     // There are lock-free uses of gBlockList so make sure that
1257     // the previous stores happen before we update gBlockList.
1258     OrderAccess::release_store(&gBlockList, temp);
1259 
1260     // Add the new string of objectMonitors to the global free list
1261     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1262     gFreeList = temp + 1;
1263     Thread::muxRelease(&gListLock);
1264   }
1265 }
1266 
1267 // Place "m" on the caller's private per-thread omFreeList.
1268 // In practice there's no need to clamp or limit the number of
1269 // monitors on a thread's omFreeList as the only time we'll call
1270 // omRelease is to return a monitor to the free list after a CAS
1271 // attempt failed.  This doesn't allow unbounded #s of monitors to
1272 // accumulate on a thread's free list.
1273 //
1274 // Key constraint: all ObjectMonitors on a thread's free list and the global
1275 // free list must have their object field set to null. This prevents the
1276 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1277 // -- from reclaiming them while we are trying to release them.
1278 
1279 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1280                                    bool fromPerThreadAlloc) {
1281   guarantee(m->header() == NULL, "invariant");
1282   guarantee(m->object() == NULL, "invariant");
1283   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1284   m->set_allocation_state(ObjectMonitor::Free);
1285   // Remove from omInUseList
1286   if (fromPerThreadAlloc) {
1287     ObjectMonitor* cur_mid_in_use = NULL;
1288     bool extracted = false;
1289     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1290       if (m == mid) {
1291         // extract from per-thread in-use list
1292         if (mid == Self->omInUseList) {
1293           Self->omInUseList = mid->FreeNext;
1294         } else if (cur_mid_in_use != NULL) {
1295           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1296         }
1297         extracted = true;
1298         Self->omInUseCount--;
1299         break;
1300       }
1301     }
1302     assert(extracted, "Should have extracted from in-use list");
1303   }
1304 
1305   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1306   m->FreeNext = Self->omFreeList;
1307   guarantee(m->is_free(), "invariant");
1308   Self->omFreeList = m;
1309   Self->omFreeCount++;
1310 }
1311 
1312 // Return the monitors of a moribund thread's local free list to
1313 // the global free list.  Typically a thread calls omFlush() when
1314 // it's dying.  We could also consider having the VM thread steal
1315 // monitors from threads that have not run java code over a few
1316 // consecutive STW safepoints.  Relatedly, we might decay
1317 // omFreeProvision at STW safepoints.
1318 //
1319 // Also return the monitors of a moribund thread's omInUseList to
1320 // a global gOmInUseList under the global list lock so these
1321 // will continue to be scanned.
1322 //
1323 // We currently call omFlush() from Threads::remove() _before the thread
1324 // has been excised from the thread list and is no longer a mutator.
1325 // This means that omFlush() cannot run concurrently with a safepoint and
1326 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1327 // this ensures that the thread's monitors are scanned by a GC safepoint,
1328 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1329 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1330 // monitors have been transferred to the global in-use list).
1331 //
1332 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1333 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1334 // run at the same time as omFlush() so we have to be careful.
1335 
1336 void ObjectSynchronizer::omFlush(Thread * Self) {
1337   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1338   ObjectMonitor * tail = NULL;
1339   int tally = 0;
1340   if (list != NULL) {
1341     ObjectMonitor * s;
1342     // The thread is going away, the per-thread free monitors
1343     // are freed via set_owner(NULL)
1344     // Link them to tail, which will be linked into the global free list
1345     // gFreeList below, under the gListLock
1346     for (s = list; s != NULL; s = s->FreeNext) {
1347       tally++;
1348       tail = s;
1349       guarantee(s->object() == NULL, "invariant");
1350       guarantee(!s->is_busy(), "invariant");
1351       s->set_owner(NULL);   // redundant but good hygiene
1352     }
1353     guarantee(tail != NULL, "invariant");
1354     ADIM_guarantee(Self->omFreeCount == tally, "free-count off");
1355     Self->omFreeList = NULL;
1356     Self->omFreeCount = 0;
1357   }
1358 
1359   ObjectMonitor * inUseList = Self->omInUseList;
1360   ObjectMonitor * inUseTail = NULL;
1361   int inUseTally = 0;
1362   if (inUseList != NULL) {
1363     ObjectMonitor *cur_om;
1364     // The thread is going away, however the omInUseList inflated
1365     // monitors may still be in-use by other threads.
1366     // Link them to inUseTail, which will be linked into the global in-use list
1367     // gOmInUseList below, under the gListLock
1368     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1369       inUseTail = cur_om;
1370       inUseTally++;
1371       ADIM_guarantee(cur_om->is_active(), "invariant");
1372     }
1373     guarantee(inUseTail != NULL, "invariant");
1374     ADIM_guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1375     Self->omInUseList = NULL;
1376     Self->omInUseCount = 0;
1377   }
1378 
1379   Thread::muxAcquire(&gListLock, "omFlush");
1380   if (tail != NULL) {
1381     tail->FreeNext = gFreeList;
1382     gFreeList = list;
1383     gMonitorFreeCount += tally;
1384   }
1385 
1386   if (inUseTail != NULL) {
1387     inUseTail->FreeNext = gOmInUseList;
1388     gOmInUseList = inUseList;
1389     gOmInUseCount += inUseTally;
1390   }
1391 
1392   Thread::muxRelease(&gListLock);
1393 
1394   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1395   LogStreamHandle(Info, monitorinflation) lsh_info;
1396   LogStream * ls = NULL;
1397   if (log_is_enabled(Debug, monitorinflation)) {
1398     ls = &lsh_debug;
1399   } else if ((tally != 0 || inUseTally != 0) &&
1400              log_is_enabled(Info, monitorinflation)) {
1401     ls = &lsh_info;
1402   }
1403   if (ls != NULL) {
1404     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1405                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1406                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1407   }
1408 }
1409 
1410 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1411                                        const oop obj,
1412                                        ObjectSynchronizer::InflateCause cause) {
1413   assert(event != NULL, "invariant");
1414   assert(event->should_commit(), "invariant");
1415   event->set_monitorClass(obj->klass());
1416   event->set_address((uintptr_t)(void*)obj);
1417   event->set_cause((u1)cause);
1418   event->commit();
1419 }
1420 
1421 // Fast path code shared by multiple functions
1422 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1423   while (true) {
1424     markOop mark = obj->mark();
1425     if (mark->has_monitor()) {
1426       if (!omh_p->save_om_ptr(obj, mark)) {
1427         // Lost a race with async deflation so try again.
1428         assert(AsyncDeflateIdleMonitors, "sanity check");
1429         continue;
1430       }
1431       ObjectMonitor * monitor = omh_p->om_ptr();
1432       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1433       markOop dmw = monitor->header();
1434       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1435       return;
1436     }
1437     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1438     return;
1439   }
1440 }
1441 
1442 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1443                                  oop object, const InflateCause cause) {
1444   // Inflate mutates the heap ...
1445   // Relaxing assertion for bug 6320749.
1446   assert(Universe::verify_in_progress() ||
1447          !SafepointSynchronize::is_at_safepoint(), "invariant");
1448 
1449   EventJavaMonitorInflate event;
1450 
1451   for (;;) {
1452     const markOop mark = object->mark();
1453     assert(!mark->has_bias_pattern(), "invariant");
1454 
1455     // The mark can be in one of the following states:
1456     // *  Inflated     - just return
1457     // *  Stack-locked - coerce it to inflated
1458     // *  INFLATING    - busy wait for conversion to complete
1459     // *  Neutral      - aggressively inflate the object.
1460     // *  BIASED       - Illegal.  We should never see this
1461 
1462     // CASE: inflated
1463     if (mark->has_monitor()) {
1464       if (!omh_p->save_om_ptr(object, mark)) {
1465         // Lost a race with async deflation so try again.
1466         assert(AsyncDeflateIdleMonitors, "sanity check");
1467         continue;
1468       }
1469       ObjectMonitor * inf = omh_p->om_ptr();
1470       markOop dmw = inf->header();
1471       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1472       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1473       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1474       return;
1475     }
1476 
1477     // CASE: inflation in progress - inflating over a stack-lock.
1478     // Some other thread is converting from stack-locked to inflated.
1479     // Only that thread can complete inflation -- other threads must wait.
1480     // The INFLATING value is transient.
1481     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1482     // We could always eliminate polling by parking the thread on some auxiliary list.
1483     if (mark == markOopDesc::INFLATING()) {
1484       ReadStableMark(object);
1485       continue;
1486     }
1487 
1488     // CASE: stack-locked
1489     // Could be stack-locked either by this thread or by some other thread.
1490     //
1491     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1492     // to install INFLATING into the mark word.  We originally installed INFLATING,
1493     // allocated the objectmonitor, and then finally STed the address of the
1494     // objectmonitor into the mark.  This was correct, but artificially lengthened
1495     // the interval in which INFLATED appeared in the mark, thus increasing
1496     // the odds of inflation contention.
1497     //
1498     // We now use per-thread private objectmonitor free lists.
1499     // These list are reprovisioned from the global free list outside the
1500     // critical INFLATING...ST interval.  A thread can transfer
1501     // multiple objectmonitors en-mass from the global free list to its local free list.
1502     // This reduces coherency traffic and lock contention on the global free list.
1503     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1504     // before or after the CAS(INFLATING) operation.
1505     // See the comments in omAlloc().
1506 
1507     LogStreamHandle(Trace, monitorinflation) lsh;
1508 
1509     if (mark->has_locker()) {
1510       ObjectMonitor * m;
1511       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1512         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1513         // we won't stop for a potential safepoint in omAlloc.
1514         m = omAlloc(Self, cause);
1515       } else {
1516         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1517         // we may stop for a safepoint in omAlloc() so protect object.
1518         Handle h_obj(Self, object);
1519         m = omAlloc(Self, cause);
1520         object = h_obj();  // Refresh object.
1521       }
1522       // Optimistically prepare the objectmonitor - anticipate successful CAS
1523       // We do this before the CAS in order to minimize the length of time
1524       // in which INFLATING appears in the mark.
1525       m->Recycle();
1526       m->_Responsible  = NULL;
1527       m->_recursions   = 0;
1528       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1529 
1530       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1531       if (cmp != mark) {
1532         omRelease(Self, m, true);
1533         continue;       // Interference -- just retry
1534       }
1535 
1536       // We've successfully installed INFLATING (0) into the mark-word.
1537       // This is the only case where 0 will appear in a mark-word.
1538       // Only the singular thread that successfully swings the mark-word
1539       // to 0 can perform (or more precisely, complete) inflation.
1540       //
1541       // Why do we CAS a 0 into the mark-word instead of just CASing the
1542       // mark-word from the stack-locked value directly to the new inflated state?
1543       // Consider what happens when a thread unlocks a stack-locked object.
1544       // It attempts to use CAS to swing the displaced header value from the
1545       // on-stack basiclock back into the object header.  Recall also that the
1546       // header value (hash code, etc) can reside in (a) the object header, or
1547       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1548       // header in an objectMonitor.  The inflate() routine must copy the header
1549       // value from the basiclock on the owner's stack to the objectMonitor, all
1550       // the while preserving the hashCode stability invariants.  If the owner
1551       // decides to release the lock while the value is 0, the unlock will fail
1552       // and control will eventually pass from slow_exit() to inflate.  The owner
1553       // will then spin, waiting for the 0 value to disappear.   Put another way,
1554       // the 0 causes the owner to stall if the owner happens to try to
1555       // drop the lock (restoring the header from the basiclock to the object)
1556       // while inflation is in-progress.  This protocol avoids races that might
1557       // would otherwise permit hashCode values to change or "flicker" for an object.
1558       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1559       // 0 serves as a "BUSY" inflate-in-progress indicator.
1560 
1561 
1562       // fetch the displaced mark from the owner's stack.
1563       // The owner can't die or unwind past the lock while our INFLATING
1564       // object is in the mark.  Furthermore the owner can't complete
1565       // an unlock on the object, either.
1566       markOop dmw = mark->displaced_mark_helper();
1567       // Catch if the object's header is not neutral (not locked and
1568       // not marked is what we care about here).
1569       ADIM_guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1570 
1571       // Setup monitor fields to proper values -- prepare the monitor
1572       m->set_header(dmw);
1573 
1574       // Optimization: if the mark->locker stack address is associated
1575       // with this thread we could simply set m->_owner = Self.
1576       // Note that a thread can inflate an object
1577       // that it has stack-locked -- as might happen in wait() -- directly
1578       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1579       m->set_owner(mark->locker());
1580       m->set_object(object);
1581       // TODO-FIXME: assert BasicLock->dhw != 0.
1582 
1583       omh_p->set_om_ptr(m);
1584       assert(m->is_new(), "freshly allocated monitor must be new");
1585       m->set_allocation_state(ObjectMonitor::Old);
1586 
1587       // Must preserve store ordering. The monitor state must
1588       // be stable at the time of publishing the monitor address.
1589       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1590       object->release_set_mark(markOopDesc::encode(m));
1591 
1592       // Hopefully the performance counters are allocated on distinct cache lines
1593       // to avoid false sharing on MP systems ...
1594       OM_PERFDATA_OP(Inflations, inc());
1595       if (log_is_enabled(Trace, monitorinflation)) {
1596         ResourceMark rm(Self);
1597         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1598                      INTPTR_FORMAT ", type='%s'", p2i(object),
1599                      p2i(object->mark()), object->klass()->external_name());
1600       }
1601       if (event.should_commit()) {
1602         post_monitor_inflate_event(&event, object, cause);
1603       }
1604       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1605       return;
1606     }
1607 
1608     // CASE: neutral
1609     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1610     // If we know we're inflating for entry it's better to inflate by swinging a
1611     // pre-locked objectMonitor pointer into the object header.   A successful
1612     // CAS inflates the object *and* confers ownership to the inflating thread.
1613     // In the current implementation we use a 2-step mechanism where we CAS()
1614     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1615     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1616     // would be useful.
1617 
1618     // Catch if the object's header is not neutral (not locked and
1619     // not marked is what we care about here).
1620     ADIM_guarantee(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1621     ObjectMonitor * m;
1622     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1623       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1624       // we won't stop for a potential safepoint in omAlloc.
1625       m = omAlloc(Self, cause);
1626     } else {
1627       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1628       // we may stop for a safepoint in omAlloc() so protect object.
1629       Handle h_obj(Self, object);
1630       m = omAlloc(Self, cause);
1631       object = h_obj();  // Refresh object.
1632     }
1633     // prepare m for installation - set monitor to initial state
1634     m->Recycle();
1635     m->set_header(mark);
1636     m->set_owner(NULL);
1637     m->set_object(object);
1638     m->_recursions   = 0;
1639     m->_Responsible  = NULL;
1640     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1641 
1642     omh_p->set_om_ptr(m);
1643     assert(m->is_new(), "freshly allocated monitor must be new");
1644     m->set_allocation_state(ObjectMonitor::Old);
1645 
1646     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1647       m->set_header(NULL);
1648       m->set_object(NULL);
1649       m->Recycle();
1650       omh_p->set_om_ptr(NULL);
1651       // omRelease() will reset the allocation state
1652       omRelease(Self, m, true);
1653       m = NULL;
1654       continue;
1655       // interference - the markword changed - just retry.
1656       // The state-transitions are one-way, so there's no chance of
1657       // live-lock -- "Inflated" is an absorbing state.
1658     }
1659 
1660     // Hopefully the performance counters are allocated on distinct
1661     // cache lines to avoid false sharing on MP systems ...
1662     OM_PERFDATA_OP(Inflations, inc());
1663     if (log_is_enabled(Trace, monitorinflation)) {
1664       ResourceMark rm(Self);
1665       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1666                    INTPTR_FORMAT ", type='%s'", p2i(object),
1667                    p2i(object->mark()), object->klass()->external_name());
1668     }
1669     if (event.should_commit()) {
1670       post_monitor_inflate_event(&event, object, cause);
1671     }
1672     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1673     return;
1674   }
1675 }
1676 
1677 
1678 // We maintain a list of in-use monitors for each thread.
1679 //
1680 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1681 // deflate_idle_monitors() scans only a global list of in-use monitors which
1682 // is populated only as a thread dies (see omFlush()).
1683 //
1684 // These operations are called at all safepoints, immediately after mutators
1685 // are stopped, but before any objects have moved. Collectively they traverse
1686 // the population of in-use monitors, deflating where possible. The scavenged
1687 // monitors are returned to the global monitor free list.
1688 //
1689 // Beware that we scavenge at *every* stop-the-world point. Having a large
1690 // number of monitors in-use could negatively impact performance. We also want
1691 // to minimize the total # of monitors in circulation, as they incur a small
1692 // footprint penalty.
1693 //
1694 // Perversely, the heap size -- and thus the STW safepoint rate --
1695 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1696 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1697 // This is an unfortunate aspect of this design.
1698 
1699 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1700   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1701 
1702   // The per-thread in-use lists are handled in
1703   // ParallelSPCleanupThreadClosure::do_thread().
1704 
1705   if (!AsyncDeflateIdleMonitors || is_cleanup_requested()) {
1706     // Use the older mechanism for the global in-use list or
1707     // if a special cleanup has been requested.
1708     ObjectSynchronizer::deflate_idle_monitors(_counters);
1709     return;
1710   }
1711 
1712   log_debug(monitorinflation)("requesting deflation of idle monitors.");
1713   // Request deflation of global idle monitors by the ServiceThread:
1714   _gOmShouldDeflateIdleMonitors = true;
1715   MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
1716   Service_lock->notify_all();
1717 }
1718 
1719 // Deflate a single monitor if not in-use
1720 // Return true if deflated, false if in-use
1721 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1722                                          ObjectMonitor** freeHeadp,
1723                                          ObjectMonitor** freeTailp) {
1724   bool deflated;
1725   // Normal case ... The monitor is associated with obj.
1726   const markOop mark = obj->mark();
1727   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1728             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1729             p2i(markOopDesc::encode(mid)));
1730   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1731   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1732             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1733   const markOop dmw = mid->header();
1734   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1735 
1736   if (mid->is_busy()) {
1737     deflated = false;
1738   } else {
1739     // Deflate the monitor if it is no longer being used
1740     // It's idle - scavenge and return to the global free list
1741     // plain old deflation ...
1742     if (log_is_enabled(Trace, monitorinflation)) {
1743       ResourceMark rm;
1744       log_trace(monitorinflation)("deflate_monitor: "
1745                                   "object=" INTPTR_FORMAT ", mark="
1746                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1747                                   p2i(mark), obj->klass()->external_name());
1748     }
1749 
1750     // Restore the header back to obj
1751     obj->release_set_mark(dmw);
1752     mid->clear();
1753 
1754     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1755            p2i(mid->object()));
1756     assert(mid->is_free(), "invariant");
1757 
1758     // Move the object to the working free list defined by freeHeadp, freeTailp
1759     if (*freeHeadp == NULL) *freeHeadp = mid;
1760     if (*freeTailp != NULL) {
1761       ObjectMonitor * prevtail = *freeTailp;
1762       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1763       prevtail->FreeNext = mid;
1764     }
1765     *freeTailp = mid;
1766     deflated = true;
1767   }
1768   return deflated;
1769 }
1770 
1771 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1772 // Returns true if it was deflated and false otherwise.
1773 //
1774 // The async deflation protocol sets owner to DEFLATER_MARKER and
1775 // makes ref_count negative as signals to contending threads that
1776 // an async deflation is in progress. There are a number of checks
1777 // as part of the protocol to make sure that the calling thread has
1778 // not lost the race to a contending thread or to a thread that just
1779 // wants to use the ObjectMonitor*.
1780 //
1781 // The ObjectMonitor has been successfully async deflated when:
1782 // (owner == DEFLATER_MARKER && ref_count < 0)
1783 // Contending threads or ObjectMonitor* using threads that see those
1784 // values know to retry their operation.
1785 //
1786 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1787                                                   ObjectMonitor** freeHeadp,
1788                                                   ObjectMonitor** freeTailp) {
1789   assert(AsyncDeflateIdleMonitors, "sanity check");
1790   assert(Thread::current()->is_Java_thread(), "precondition");
1791   // A newly allocated ObjectMonitor should not be seen here so we
1792   // avoid an endless inflate/deflate cycle.
1793   assert(mid->is_old(), "must be old: allocation_state=%d",
1794          (int) mid->allocation_state());
1795 
1796   if (mid->is_busy() || mid->ref_count() != 0) {
1797     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1798     // is in use so no deflation.
1799     return false;
1800   }
1801 
1802   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1803     // ObjectMonitor is not owned by another thread. Our setting
1804     // owner to DEFLATER_MARKER forces any contending thread through
1805     // the slow path. This is just the first part of the async
1806     // deflation dance.
1807 
1808     if (mid->_contentions != 0 || mid->_waiters != 0) {
1809       // Another thread has raced to enter the ObjectMonitor after
1810       // mid->is_busy() above or has already entered and waited on
1811       // it which makes it busy so no deflation. Restore owner to
1812       // NULL if it is still DEFLATER_MARKER.
1813       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1814       return false;
1815     }
1816 
1817     if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
1818       // Make ref_count negative to force any contending threads or
1819       // ObjectMonitor* using threads to retry. This is the second
1820       // part of the async deflation dance.
1821 
1822       if (mid->_owner == DEFLATER_MARKER) {
1823         // If owner is still DEFLATER_MARKER, then we have successfully
1824         // signaled any contending threads to retry. If it is not, then we
1825         // have lost the race to an entering thread and the ObjectMonitor
1826         // is now busy. This is the third and final part of the async
1827         // deflation dance.
1828         // Note: This owner check solves the ABA problem with ref_count
1829         // where another thread acquired the ObjectMonitor, finished
1830         // using it and restored the ref_count to zero.
1831 
1832         // Sanity checks for the races:
1833         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
1834                   mid->_contentions);
1835         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1836         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1837                   INTPTR_FORMAT, p2i(mid->_cxq));
1838         guarantee(mid->_EntryList == NULL,
1839                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1840                   p2i(mid->_EntryList));
1841 
1842         const oop obj = (oop) mid->object();
1843         if (log_is_enabled(Trace, monitorinflation)) {
1844           ResourceMark rm;
1845           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1846                                       "object=" INTPTR_FORMAT ", mark="
1847                                       INTPTR_FORMAT ", type='%s'",
1848                                       p2i(obj), p2i(obj->mark()),
1849                                       obj->klass()->external_name());
1850         }
1851 
1852         // Install the old mark word if nobody else has already done it.
1853         mid->install_displaced_markword_in_object(obj);
1854         mid->clear_using_JT();
1855 
1856         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1857                p2i(mid->object()));
1858         assert(mid->is_free(), "must be free: allocation_state=%d",
1859                (int) mid->allocation_state());
1860 
1861         // Move the deflated ObjectMonitor to the working free list
1862         // defined by freeHeadp and freeTailp.
1863         if (*freeHeadp == NULL) {
1864           // First one on the list.
1865           *freeHeadp = mid;
1866         }
1867         if (*freeTailp != NULL) {
1868           // We append to the list so the caller can use mid->FreeNext
1869           // to fix the linkages in its context.
1870           ObjectMonitor * prevtail = *freeTailp;
1871           // Should have been cleaned up by the caller:
1872           assert(prevtail->FreeNext == NULL, "must be NULL: FreeNext="
1873                  INTPTR_FORMAT, p2i(prevtail->FreeNext));
1874           prevtail->FreeNext = mid;
1875         }
1876         *freeTailp = mid;
1877 
1878         // At this point, mid->FreeNext still refers to its current
1879         // value and another ObjectMonitor's FreeNext field still
1880         // refers to this ObjectMonitor. Those linkages have to be
1881         // cleaned up by the caller who has the complete context.
1882 
1883         // We leave owner == DEFLATER_MARKER and ref_count < 0
1884         // to force any racing threads to retry.
1885         return true;  // Success, ObjectMonitor has been deflated.
1886       }
1887 
1888       // The owner was changed from DEFLATER_MARKER so we lost the
1889       // race since the ObjectMonitor is now busy.
1890 
1891       // Add back max_jint to restore the ref_count field to its
1892       // proper value (which may not be what we saw above):
1893       Atomic::add(max_jint, &mid->_ref_count);
1894 
1895       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
1896              mid->ref_count());
1897       return false;
1898     }
1899 
1900     // The ref_count was no longer 0 so we lost the race since the
1901     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
1902     // Restore owner to NULL if it is still DEFLATER_MARKER:
1903     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1904   }
1905 
1906   // The owner field is no longer NULL so we lost the race since the
1907   // ObjectMonitor is now busy.
1908   return false;
1909 }
1910 
1911 // Walk a given monitor list, and deflate idle monitors
1912 // The given list could be a per-thread list or a global list
1913 // Caller acquires gListLock as needed.
1914 //
1915 // In the case of parallel processing of thread local monitor lists,
1916 // work is done by Threads::parallel_threads_do() which ensures that
1917 // each Java thread is processed by exactly one worker thread, and
1918 // thus avoid conflicts that would arise when worker threads would
1919 // process the same monitor lists concurrently.
1920 //
1921 // See also ParallelSPCleanupTask and
1922 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1923 // Threads::parallel_java_threads_do() in thread.cpp.
1924 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1925                                              ObjectMonitor** freeHeadp,
1926                                              ObjectMonitor** freeTailp) {
1927   ObjectMonitor* mid;
1928   ObjectMonitor* next;
1929   ObjectMonitor* cur_mid_in_use = NULL;
1930   int deflated_count = 0;
1931 
1932   for (mid = *listHeadp; mid != NULL;) {
1933     oop obj = (oop) mid->object();
1934     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1935       // if deflate_monitor succeeded,
1936       // extract from per-thread in-use list
1937       if (mid == *listHeadp) {
1938         *listHeadp = mid->FreeNext;
1939       } else if (cur_mid_in_use != NULL) {
1940         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1941       }
1942       next = mid->FreeNext;
1943       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1944       mid = next;
1945       deflated_count++;
1946     } else {
1947       cur_mid_in_use = mid;
1948       mid = mid->FreeNext;
1949     }
1950   }
1951   return deflated_count;
1952 }
1953 
1954 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1955 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1956 // list could be a per-thread in-use list or the global in-use list.
1957 // Caller acquires gListLock as appropriate. If a safepoint has started,
1958 // then we save state via savedMidInUsep and return to the caller to
1959 // honor the safepoint.
1960 //
1961 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
1962                                                       ObjectMonitor** freeHeadp,
1963                                                       ObjectMonitor** freeTailp,
1964                                                       ObjectMonitor** savedMidInUsep) {
1965   assert(AsyncDeflateIdleMonitors, "sanity check");
1966   assert(Thread::current()->is_Java_thread(), "precondition");
1967 
1968   ObjectMonitor* mid;
1969   ObjectMonitor* next;
1970   ObjectMonitor* cur_mid_in_use = NULL;
1971   int deflated_count = 0;
1972 
1973   if (*savedMidInUsep == NULL) {
1974     // No saved state so start at the beginning.
1975     mid = *listHeadp;
1976   } else {
1977     // We're restarting after a safepoint so restore the necessary state
1978     // before we resume.
1979     cur_mid_in_use = *savedMidInUsep;
1980     mid = cur_mid_in_use->FreeNext;
1981   }
1982   while (mid != NULL) {
1983     // Only try to deflate if there is an associated Java object and if
1984     // mid is old (is not newly allocated and is not newly freed).
1985     if (mid->object() != NULL && mid->is_old() &&
1986         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
1987       // Deflation succeeded so update the in-use list.
1988       if (mid == *listHeadp) {
1989         *listHeadp = mid->FreeNext;
1990       } else if (cur_mid_in_use != NULL) {
1991         // Maintain the current in-use list.
1992         cur_mid_in_use->FreeNext = mid->FreeNext;
1993       }
1994       next = mid->FreeNext;
1995       mid->FreeNext = NULL;
1996       // At this point mid is disconnected from the in-use list
1997       // and is the current tail in the freeHeadp list.
1998       mid = next;
1999       deflated_count++;
2000     } else {
2001       // mid is considered in-use if it does not have an associated
2002       // Java object or mid is not old or deflation did not succeed.
2003       // A mid->is_new() node can be seen here when it is freshly
2004       // returned by omAlloc() (and skips the deflation code path).
2005       // A mid->is_old() node can be seen here when deflation failed.
2006       // A mid->is_free() node can be seen here when a fresh node from
2007       // omAlloc() is released by omRelease() due to losing the race
2008       // in inflate().
2009 
2010       cur_mid_in_use = mid;
2011       mid = mid->FreeNext;
2012 
2013       if (SafepointSynchronize::is_synchronizing() &&
2014           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
2015         // If a safepoint has started and cur_mid_in_use is not the list
2016         // head and is old, then it is safe to use as saved state. Return
2017         // to the caller so gListLock can be dropped as appropriate
2018         // before blocking.
2019         *savedMidInUsep = cur_mid_in_use;
2020         return deflated_count;
2021       }
2022     }
2023   }
2024   // We finished the list without a safepoint starting so there's
2025   // no need to save state.
2026   *savedMidInUsep = NULL;
2027   return deflated_count;
2028 }
2029 
2030 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2031   counters->nInuse = 0;              // currently associated with objects
2032   counters->nInCirculation = 0;      // extant
2033   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2034   counters->perThreadScavenged = 0;  // per-thread scavenge total
2035   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2036 }
2037 
2038 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2039   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2040 
2041   if (AsyncDeflateIdleMonitors) {
2042     // Nothing to do when global idle ObjectMonitors are deflated using
2043     // a JavaThread unless a special cleanup has been requested.
2044     if (!is_cleanup_requested()) {
2045       return;
2046     }
2047   }
2048 
2049   bool deflated = false;
2050 
2051   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2052   ObjectMonitor * freeTailp = NULL;
2053   elapsedTimer timer;
2054 
2055   if (log_is_enabled(Info, monitorinflation)) {
2056     timer.start();
2057   }
2058 
2059   // Prevent omFlush from changing mids in Thread dtor's during deflation
2060   // And in case the vm thread is acquiring a lock during a safepoint
2061   // See e.g. 6320749
2062   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2063 
2064   // Note: the thread-local monitors lists get deflated in
2065   // a separate pass. See deflate_thread_local_monitors().
2066 
2067   // For moribund threads, scan gOmInUseList
2068   int deflated_count = 0;
2069   if (gOmInUseList) {
2070     counters->nInCirculation += gOmInUseCount;
2071     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
2072     gOmInUseCount -= deflated_count;
2073     counters->nScavenged += deflated_count;
2074     counters->nInuse += gOmInUseCount;
2075   }
2076 
2077   // Move the scavenged monitors back to the global free list.
2078   if (freeHeadp != NULL) {
2079     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
2080     assert(freeTailp->FreeNext == NULL, "invariant");
2081     // constant-time list splice - prepend scavenged segment to gFreeList
2082     freeTailp->FreeNext = gFreeList;
2083     gFreeList = freeHeadp;
2084   }
2085   Thread::muxRelease(&gListLock);
2086   timer.stop();
2087 
2088   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2089   LogStreamHandle(Info, monitorinflation) lsh_info;
2090   LogStream * ls = NULL;
2091   if (log_is_enabled(Debug, monitorinflation)) {
2092     ls = &lsh_debug;
2093   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2094     ls = &lsh_info;
2095   }
2096   if (ls != NULL) {
2097     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2098   }
2099 }
2100 
2101 // Deflate global idle ObjectMonitors using a JavaThread.
2102 //
2103 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2104   assert(AsyncDeflateIdleMonitors, "sanity check");
2105   assert(Thread::current()->is_Java_thread(), "precondition");
2106   JavaThread * self = JavaThread::current();
2107 
2108   _gOmShouldDeflateIdleMonitors = false;
2109 
2110   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2111 }
2112 
2113 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2114 //
2115 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2116   assert(AsyncDeflateIdleMonitors, "sanity check");
2117   assert(Thread::current()->is_Java_thread(), "precondition");
2118   JavaThread * self = JavaThread::current();
2119 
2120   self->omShouldDeflateIdleMonitors = false;
2121 
2122   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2123 }
2124 
2125 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2126 //
2127 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread * self) {
2128   int deflated_count = 0;
2129   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2130   ObjectMonitor * freeTailp = NULL;
2131   ObjectMonitor * savedMidInUsep = NULL;
2132   elapsedTimer timer;
2133 
2134   if (log_is_enabled(Info, monitorinflation)) {
2135     timer.start();
2136   }
2137 
2138   if (is_global) {
2139     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2140     OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2141   } else {
2142     OM_PERFDATA_OP(MonExtant, inc(self->omInUseCount));
2143   }
2144 
2145   do {
2146     int local_deflated_count;
2147     if (is_global) {
2148       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2149       gOmInUseCount -= local_deflated_count;
2150     } else {
2151       local_deflated_count = deflate_monitor_list_using_JT(self->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2152       self->omInUseCount -= local_deflated_count;
2153     }
2154     deflated_count += local_deflated_count;
2155 
2156     if (freeHeadp != NULL) {
2157       // Move the scavenged ObjectMonitors to the global free list.
2158       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2159       assert(freeTailp->FreeNext == NULL, "invariant");
2160 
2161       if (!is_global) {
2162         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2163       }
2164       // Constant-time list splice - prepend scavenged segment to gFreeList.
2165       freeTailp->FreeNext = gFreeList;
2166       gFreeList = freeHeadp;
2167 
2168       gMonitorFreeCount += local_deflated_count;
2169       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2170       if (!is_global) {
2171         Thread::muxRelease(&gListLock);
2172       }
2173     }
2174 
2175     if (savedMidInUsep != NULL) {
2176       // deflate_monitor_list_using_JT() detected a safepoint starting.
2177       if (is_global) {
2178         Thread::muxRelease(&gListLock);
2179       }
2180       timer.stop();
2181       {
2182         if (is_global) {
2183           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2184         } else {
2185           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2186         }
2187         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2188         ThreadBlockInVM blocker(self);
2189       }
2190       // Prepare for another loop after the safepoint.
2191       freeHeadp = NULL;
2192       freeTailp = NULL;
2193       if (log_is_enabled(Info, monitorinflation)) {
2194         timer.start();
2195       }
2196       if (is_global) {
2197         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2198       }
2199     }
2200   } while (savedMidInUsep != NULL);
2201   if (is_global) {
2202     Thread::muxRelease(&gListLock);
2203   }
2204   timer.stop();
2205 
2206   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2207   LogStreamHandle(Info, monitorinflation) lsh_info;
2208   LogStream * ls = NULL;
2209   if (log_is_enabled(Debug, monitorinflation)) {
2210     ls = &lsh_debug;
2211   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2212     ls = &lsh_info;
2213   }
2214   if (ls != NULL) {
2215     if (is_global) {
2216       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2217     } else {
2218       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2219     }
2220   }
2221 }
2222 
2223 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2224   // Report the cumulative time for deflating each thread's idle
2225   // monitors. Note: if the work is split among more than one
2226   // worker thread, then the reported time will likely be more
2227   // than a beginning to end measurement of the phase.
2228   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2229   // monitors at a safepoint when a special cleanup has been requested.
2230   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2231 
2232   bool needs_special_cleanup = is_cleanup_requested();
2233   if (!AsyncDeflateIdleMonitors || needs_special_cleanup) {
2234     // AsyncDeflateIdleMonitors does not use these counters unless
2235     // there is a special cleanup request.
2236 
2237     gMonitorFreeCount += counters->nScavenged;
2238 
2239     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2240     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2241   }
2242 
2243   if (log_is_enabled(Debug, monitorinflation)) {
2244     // exit_globals()'s call to audit_and_print_stats() is done
2245     // at the Info level.
2246     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2247   } else if (log_is_enabled(Info, monitorinflation)) {
2248     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2249     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2250                                "gMonitorFreeCount=%d", gMonitorPopulation,
2251                                gOmInUseCount, gMonitorFreeCount);
2252     Thread::muxRelease(&gListLock);
2253   }
2254 
2255   ForceMonitorScavenge = 0;    // Reset
2256   GVars.stwRandom = os::random();
2257   GVars.stwCycle++;
2258   if (needs_special_cleanup) {
2259     set_is_cleanup_requested(false);  // special clean up is done
2260   }
2261 }
2262 
2263 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2264   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2265 
2266   if (AsyncDeflateIdleMonitors) {
2267     if (!is_cleanup_requested()) {
2268       // Mark the JavaThread for idle monitor cleanup if a special
2269       // cleanup has NOT been requested.
2270       if (thread->omInUseCount > 0) {
2271         // This JavaThread is using monitors so mark it.
2272         thread->omShouldDeflateIdleMonitors = true;
2273       }
2274       return;
2275     }
2276   }
2277 
2278   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2279   ObjectMonitor * freeTailp = NULL;
2280   elapsedTimer timer;
2281 
2282   if (log_is_enabled(Info, safepoint, cleanup) ||
2283       log_is_enabled(Info, monitorinflation)) {
2284     timer.start();
2285   }
2286 
2287   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2288 
2289   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2290 
2291   // Adjust counters
2292   counters->nInCirculation += thread->omInUseCount;
2293   thread->omInUseCount -= deflated_count;
2294   counters->nScavenged += deflated_count;
2295   counters->nInuse += thread->omInUseCount;
2296   counters->perThreadScavenged += deflated_count;
2297 
2298   // Move the scavenged monitors back to the global free list.
2299   if (freeHeadp != NULL) {
2300     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
2301     assert(freeTailp->FreeNext == NULL, "invariant");
2302 
2303     // constant-time list splice - prepend scavenged segment to gFreeList
2304     freeTailp->FreeNext = gFreeList;
2305     gFreeList = freeHeadp;
2306   }
2307 
2308   timer.stop();
2309   // Safepoint logging cares about cumulative perThreadTimes and
2310   // we'll capture most of the cost, but not the muxRelease() which
2311   // should be cheap.
2312   counters->perThreadTimes += timer.seconds();
2313 
2314   Thread::muxRelease(&gListLock);
2315 
2316   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2317   LogStreamHandle(Info, monitorinflation) lsh_info;
2318   LogStream * ls = NULL;
2319   if (log_is_enabled(Debug, monitorinflation)) {
2320     ls = &lsh_debug;
2321   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2322     ls = &lsh_info;
2323   }
2324   if (ls != NULL) {
2325     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2326   }
2327 }
2328 
2329 // Monitor cleanup on JavaThread::exit
2330 
2331 // Iterate through monitor cache and attempt to release thread's monitors
2332 // Gives up on a particular monitor if an exception occurs, but continues
2333 // the overall iteration, swallowing the exception.
2334 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2335  private:
2336   TRAPS;
2337 
2338  public:
2339   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2340   void do_monitor(ObjectMonitor* mid) {
2341     if (mid->owner() == THREAD) {
2342       (void)mid->complete_exit(CHECK);
2343     }
2344   }
2345 };
2346 
2347 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2348 // ignored.  This is meant to be called during JNI thread detach which assumes
2349 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2350 // Scanning the extant monitor list can be time consuming.
2351 // A simple optimization is to add a per-thread flag that indicates a thread
2352 // called jni_monitorenter() during its lifetime.
2353 //
2354 // Instead of No_Savepoint_Verifier it might be cheaper to
2355 // use an idiom of the form:
2356 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2357 //   <code that must not run at safepoint>
2358 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2359 // Since the tests are extremely cheap we could leave them enabled
2360 // for normal product builds.
2361 
2362 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2363   assert(THREAD == JavaThread::current(), "must be current Java thread");
2364   NoSafepointVerifier nsv;
2365   ReleaseJavaMonitorsClosure rjmc(THREAD);
2366   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2367   ObjectSynchronizer::monitors_iterate(&rjmc);
2368   Thread::muxRelease(&gListLock);
2369   THREAD->clear_pending_exception();
2370 }
2371 
2372 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2373   switch (cause) {
2374     case inflate_cause_vm_internal:    return "VM Internal";
2375     case inflate_cause_monitor_enter:  return "Monitor Enter";
2376     case inflate_cause_wait:           return "Monitor Wait";
2377     case inflate_cause_notify:         return "Monitor Notify";
2378     case inflate_cause_hash_code:      return "Monitor Hash Code";
2379     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2380     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2381     default:
2382       ShouldNotReachHere();
2383   }
2384   return "Unknown";
2385 }
2386 
2387 //------------------------------------------------------------------------------
2388 // Debugging code
2389 
2390 u_char* ObjectSynchronizer::get_gvars_addr() {
2391   return (u_char*)&GVars;
2392 }
2393 
2394 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
2395   return (u_char*)&GVars.hcSequence;
2396 }
2397 
2398 size_t ObjectSynchronizer::get_gvars_size() {
2399   return sizeof(SharedGlobals);
2400 }
2401 
2402 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
2403   return (u_char*)&GVars.stwRandom;
2404 }
2405 
2406 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2407   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2408 
2409   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2410   LogStreamHandle(Info, monitorinflation) lsh_info;
2411   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2412   LogStream * ls = NULL;
2413   if (log_is_enabled(Trace, monitorinflation)) {
2414     ls = &lsh_trace;
2415   } else if (log_is_enabled(Debug, monitorinflation)) {
2416     ls = &lsh_debug;
2417   } else if (log_is_enabled(Info, monitorinflation)) {
2418     ls = &lsh_info;
2419   }
2420   assert(ls != NULL, "sanity check");
2421 
2422   if (!on_exit) {
2423     // Not at VM exit so grab the global list lock.
2424     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2425   }
2426 
2427   // Log counts for the global and per-thread monitor lists:
2428   int chkMonitorPopulation = log_monitor_list_counts(ls);
2429   int error_cnt = 0;
2430 
2431   ls->print_cr("Checking global lists:");
2432 
2433   // Check gMonitorPopulation:
2434   if (gMonitorPopulation == chkMonitorPopulation) {
2435     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
2436                  gMonitorPopulation, chkMonitorPopulation);
2437   } else {
2438     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
2439                  "chkMonitorPopulation=%d", gMonitorPopulation,
2440                  chkMonitorPopulation);
2441     error_cnt++;
2442   }
2443 
2444   // Check gOmInUseList and gOmInUseCount:
2445   chk_global_in_use_list_and_count(ls, &error_cnt);
2446 
2447   // Check gFreeList and gMonitorFreeCount:
2448   chk_global_free_list_and_count(ls, &error_cnt);
2449 
2450   if (!on_exit) {
2451     Thread::muxRelease(&gListLock);
2452   }
2453 
2454   ls->print_cr("Checking per-thread lists:");
2455 
2456   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2457     // Check omInUseList and omInUseCount:
2458     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2459 
2460     // Check omFreeList and omFreeCount:
2461     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2462   }
2463 
2464   if (error_cnt == 0) {
2465     ls->print_cr("No errors found in monitor list checks.");
2466   } else {
2467     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2468   }
2469 
2470   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2471       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2472     // When exiting this log output is at the Info level. When called
2473     // at a safepoint, this log output is at the Trace level since
2474     // there can be a lot of it.
2475     log_in_use_monitor_details(ls, on_exit);
2476   }
2477 
2478   ls->flush();
2479 
2480   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2481 }
2482 
2483 // Check a free monitor entry; log any errors.
2484 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2485                                         outputStream * out, int *error_cnt_p) {
2486   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2487       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2488     if (jt != NULL) {
2489       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2490                     ": free per-thread monitor must not be busy.", p2i(jt),
2491                     p2i(n));
2492     } else {
2493       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2494                     "must not be busy.", p2i(n));
2495     }
2496     *error_cnt_p = *error_cnt_p + 1;
2497   }
2498   if (n->header() != NULL) {
2499     if (jt != NULL) {
2500       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2501                     ": free per-thread monitor must have NULL _header "
2502                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2503                     p2i(n->header()));
2504       *error_cnt_p = *error_cnt_p + 1;
2505     } else if (!AsyncDeflateIdleMonitors) {
2506       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2507                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2508                     p2i(n), p2i(n->header()));
2509       *error_cnt_p = *error_cnt_p + 1;
2510     }
2511   }
2512   if (n->object() != NULL) {
2513     if (jt != NULL) {
2514       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2515                     ": free per-thread monitor must have NULL _object "
2516                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2517                     p2i(n->object()));
2518     } else {
2519       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2520                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2521                     p2i(n), p2i(n->object()));
2522     }
2523     *error_cnt_p = *error_cnt_p + 1;
2524   }
2525 }
2526 
2527 // Check the global free list and count; log the results of the checks.
2528 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2529                                                         int *error_cnt_p) {
2530   int chkMonitorFreeCount = 0;
2531   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
2532     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2533     chkMonitorFreeCount++;
2534   }
2535   if (gMonitorFreeCount == chkMonitorFreeCount) {
2536     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
2537                   gMonitorFreeCount, chkMonitorFreeCount);
2538   } else {
2539     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
2540                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
2541                   chkMonitorFreeCount);
2542     *error_cnt_p = *error_cnt_p + 1;
2543   }
2544 }
2545 
2546 // Check the global in-use list and count; log the results of the checks.
2547 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2548                                                           int *error_cnt_p) {
2549   int chkOmInUseCount = 0;
2550   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2551     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2552     chkOmInUseCount++;
2553   }
2554   if (gOmInUseCount == chkOmInUseCount) {
2555     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
2556                   chkOmInUseCount);
2557   } else {
2558     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
2559                   gOmInUseCount, chkOmInUseCount);
2560     *error_cnt_p = *error_cnt_p + 1;
2561   }
2562 }
2563 
2564 // Check an in-use monitor entry; log any errors.
2565 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2566                                           outputStream * out, int *error_cnt_p) {
2567   if (n->header() == NULL) {
2568     if (jt != NULL) {
2569       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2570                     ": in-use per-thread monitor must have non-NULL _header "
2571                     "field.", p2i(jt), p2i(n));
2572     } else {
2573       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2574                     "must have non-NULL _header field.", p2i(n));
2575     }
2576     *error_cnt_p = *error_cnt_p + 1;
2577   }
2578   if (n->object() == NULL) {
2579     if (jt != NULL) {
2580       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2581                     ": in-use per-thread monitor must have non-NULL _object "
2582                     "field.", p2i(jt), p2i(n));
2583     } else {
2584       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2585                     "must have non-NULL _object field.", p2i(n));
2586     }
2587     *error_cnt_p = *error_cnt_p + 1;
2588   }
2589   const oop obj = (oop)n->object();
2590   const markOop mark = obj->mark();
2591   if (!mark->has_monitor()) {
2592     if (jt != NULL) {
2593       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2594                     ": in-use per-thread monitor's object does not think "
2595                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2596                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2597     } else {
2598       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2599                     "monitor's object does not think it has a monitor: obj="
2600                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2601                     p2i(obj), p2i(mark));
2602     }
2603     *error_cnt_p = *error_cnt_p + 1;
2604   }
2605   ObjectMonitor * const obj_mon = mark->monitor();
2606   if (n != obj_mon) {
2607     if (jt != NULL) {
2608       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2609                     ": in-use per-thread monitor's object does not refer "
2610                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2611                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2612                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2613     } else {
2614       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2615                     "monitor's object does not refer to the same monitor: obj="
2616                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2617                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2618     }
2619     *error_cnt_p = *error_cnt_p + 1;
2620   }
2621 }
2622 
2623 // Check the thread's free list and count; log the results of the checks.
2624 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2625                                                             outputStream * out,
2626                                                             int *error_cnt_p) {
2627   int chkOmFreeCount = 0;
2628   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2629     chk_free_entry(jt, n, out, error_cnt_p);
2630     chkOmFreeCount++;
2631   }
2632   if (jt->omFreeCount == chkOmFreeCount) {
2633     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2634                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2635   } else {
2636     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2637                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2638                   chkOmFreeCount);
2639     *error_cnt_p = *error_cnt_p + 1;
2640   }
2641 }
2642 
2643 // Check the thread's in-use list and count; log the results of the checks.
2644 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2645                                                               outputStream * out,
2646                                                               int *error_cnt_p) {
2647   int chkOmInUseCount = 0;
2648   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2649     chk_in_use_entry(jt, n, out, error_cnt_p);
2650     chkOmInUseCount++;
2651   }
2652   if (jt->omInUseCount == chkOmInUseCount) {
2653     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2654                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2655                   chkOmInUseCount);
2656   } else {
2657     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2658                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2659                   chkOmInUseCount);
2660     *error_cnt_p = *error_cnt_p + 1;
2661   }
2662 }
2663 
2664 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2665 // flags indicate why the entry is in-use, 'object' and 'object type'
2666 // indicate the associated object and its type.
2667 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2668                                                     bool on_exit) {
2669   if (!on_exit) {
2670     // Not at VM exit so grab the global list lock.
2671     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2672   }
2673 
2674   if (gOmInUseCount > 0) {
2675     out->print_cr("In-use global monitor info:");
2676     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2677     out->print_cr("%18s  %s  %7s  %18s  %18s",
2678                   "monitor", "BHL", "ref_cnt", "object", "object type");
2679     out->print_cr("==================  ===  =======  ==================  ==================");
2680     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2681       const oop obj = (oop) n->object();
2682       const markOop mark = n->header();
2683       ResourceMark rm;
2684       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2685                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2686                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2687                     obj->klass()->external_name());
2688     }
2689   }
2690 
2691   if (!on_exit) {
2692     Thread::muxRelease(&gListLock);
2693   }
2694 
2695   out->print_cr("In-use per-thread monitor info:");
2696   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2697   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2698                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2699   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2700   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2701     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2702       const oop obj = (oop) n->object();
2703       const markOop mark = n->header();
2704       ResourceMark rm;
2705       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2706                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2707                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2708                     p2i(obj), obj->klass()->external_name());
2709     }
2710   }
2711 
2712   out->flush();
2713 }
2714 
2715 // Log counts for the global and per-thread monitor lists and return
2716 // the population count.
2717 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2718   int popCount = 0;
2719   out->print_cr("%18s  %10s  %10s  %10s",
2720                 "Global Lists:", "InUse", "Free", "Total");
2721   out->print_cr("==================  ==========  ==========  ==========");
2722   out->print_cr("%18s  %10d  %10d  %10d", "",
2723                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2724   popCount += gOmInUseCount + gMonitorFreeCount;
2725 
2726   out->print_cr("%18s  %10s  %10s  %10s",
2727                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2728   out->print_cr("==================  ==========  ==========  ==========");
2729 
2730   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2731     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2732                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2733     popCount += jt->omInUseCount + jt->omFreeCount;
2734   }
2735   return popCount;
2736 }
2737 
2738 #ifndef PRODUCT
2739 
2740 // Check if monitor belongs to the monitor cache
2741 // The list is grow-only so it's *relatively* safe to traverse
2742 // the list of extant blocks without taking a lock.
2743 
2744 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2745   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2746   while (block != NULL) {
2747     assert(block->object() == CHAINMARKER, "must be a block header");
2748     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2749       address mon = (address)monitor;
2750       address blk = (address)block;
2751       size_t diff = mon - blk;
2752       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2753       return 1;
2754     }
2755     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2756   }
2757   return 0;
2758 }
2759 
2760 #endif