1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <semaphore.h>
  99 # include <fcntl.h>
 100 # include <string.h>
 101 # include <syscall.h>
 102 # include <sys/sysinfo.h>
 103 # include <gnu/libc-version.h>
 104 # include <sys/ipc.h>
 105 # include <sys/shm.h>
 106 # include <link.h>
 107 # include <stdint.h>
 108 # include <inttypes.h>
 109 # include <sys/ioctl.h>
 110 
 111 #ifndef _GNU_SOURCE
 112   #define _GNU_SOURCE
 113   #include <sched.h>
 114   #undef _GNU_SOURCE
 115 #else
 116   #include <sched.h>
 117 #endif
 118 
 119 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 120 // getrusage() is prepared to handle the associated failure.
 121 #ifndef RUSAGE_THREAD
 122   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 123 #endif
 124 
 125 #define MAX_PATH    (2 * K)
 126 
 127 #define MAX_SECS 100000000
 128 
 129 // for timer info max values which include all bits
 130 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 131 
 132 #define LARGEPAGES_BIT (1 << 6)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   sysinfo(&si);
 177 
 178   return (julong)si.freeram * si.mem_unit;
 179 }
 180 
 181 julong os::physical_memory() {
 182   return Linux::physical_memory();
 183 }
 184 
 185 // Return true if user is running as root.
 186 
 187 bool os::have_special_privileges() {
 188   static bool init = false;
 189   static bool privileges = false;
 190   if (!init) {
 191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 192     init = true;
 193   }
 194   return privileges;
 195 }
 196 
 197 
 198 #ifndef SYS_gettid
 199 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 200   #ifdef __ia64__
 201     #define SYS_gettid 1105
 202   #else
 203     #ifdef __i386__
 204       #define SYS_gettid 224
 205     #else
 206       #ifdef __amd64__
 207         #define SYS_gettid 186
 208       #else
 209         #ifdef __sparc__
 210           #define SYS_gettid 143
 211         #else
 212           #error define gettid for the arch
 213         #endif
 214       #endif
 215     #endif
 216   #endif
 217 #endif
 218 
 219 
 220 // pid_t gettid()
 221 //
 222 // Returns the kernel thread id of the currently running thread. Kernel
 223 // thread id is used to access /proc.
 224 pid_t os::Linux::gettid() {
 225   int rslt = syscall(SYS_gettid);
 226   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 227   return (pid_t)rslt;
 228 }
 229 
 230 // Most versions of linux have a bug where the number of processors are
 231 // determined by looking at the /proc file system.  In a chroot environment,
 232 // the system call returns 1.  This causes the VM to act as if it is
 233 // a single processor and elide locking (see is_MP() call).
 234 static bool unsafe_chroot_detected = false;
 235 static const char *unstable_chroot_error = "/proc file system not found.\n"
 236                      "Java may be unstable running multithreaded in a chroot "
 237                      "environment on Linux when /proc filesystem is not mounted.";
 238 
 239 void os::Linux::initialize_system_info() {
 240   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 241   if (processor_count() == 1) {
 242     pid_t pid = os::Linux::gettid();
 243     char fname[32];
 244     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 245     FILE *fp = fopen(fname, "r");
 246     if (fp == NULL) {
 247       unsafe_chroot_detected = true;
 248     } else {
 249       fclose(fp);
 250     }
 251   }
 252   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 253   assert(processor_count() > 0, "linux error");
 254 }
 255 
 256 void os::init_system_properties_values() {
 257   // The next steps are taken in the product version:
 258   //
 259   // Obtain the JAVA_HOME value from the location of libjvm.so.
 260   // This library should be located at:
 261   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 262   //
 263   // If "/jre/lib/" appears at the right place in the path, then we
 264   // assume libjvm.so is installed in a JDK and we use this path.
 265   //
 266   // Otherwise exit with message: "Could not create the Java virtual machine."
 267   //
 268   // The following extra steps are taken in the debugging version:
 269   //
 270   // If "/jre/lib/" does NOT appear at the right place in the path
 271   // instead of exit check for $JAVA_HOME environment variable.
 272   //
 273   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 274   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 275   // it looks like libjvm.so is installed there
 276   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 277   //
 278   // Otherwise exit.
 279   //
 280   // Important note: if the location of libjvm.so changes this
 281   // code needs to be changed accordingly.
 282 
 283   // See ld(1):
 284   //      The linker uses the following search paths to locate required
 285   //      shared libraries:
 286   //        1: ...
 287   //        ...
 288   //        7: The default directories, normally /lib and /usr/lib.
 289 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 290   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 291 #else
 292   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 293 #endif
 294 
 295 // Base path of extensions installed on the system.
 296 #define SYS_EXT_DIR     "/usr/java/packages"
 297 #define EXTENSIONS_DIR  "/lib/ext"
 298 
 299   // Buffer that fits several sprintfs.
 300   // Note that the space for the colon and the trailing null are provided
 301   // by the nulls included by the sizeof operator.
 302   const size_t bufsize =
 303     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 304          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 305   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 306 
 307   // sysclasspath, java_home, dll_dir
 308   {
 309     char *pslash;
 310     os::jvm_path(buf, bufsize);
 311 
 312     // Found the full path to libjvm.so.
 313     // Now cut the path to <java_home>/jre if we can.
 314     pslash = strrchr(buf, '/');
 315     if (pslash != NULL) {
 316       *pslash = '\0';            // Get rid of /libjvm.so.
 317     }
 318     pslash = strrchr(buf, '/');
 319     if (pslash != NULL) {
 320       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 321     }
 322     Arguments::set_dll_dir(buf);
 323 
 324     if (pslash != NULL) {
 325       pslash = strrchr(buf, '/');
 326       if (pslash != NULL) {
 327         *pslash = '\0';        // Get rid of /lib.
 328       }
 329     }
 330     Arguments::set_java_home(buf);
 331     set_boot_path('/', ':');
 332   }
 333 
 334   // Where to look for native libraries.
 335   //
 336   // Note: Due to a legacy implementation, most of the library path
 337   // is set in the launcher. This was to accomodate linking restrictions
 338   // on legacy Linux implementations (which are no longer supported).
 339   // Eventually, all the library path setting will be done here.
 340   //
 341   // However, to prevent the proliferation of improperly built native
 342   // libraries, the new path component /usr/java/packages is added here.
 343   // Eventually, all the library path setting will be done here.
 344   {
 345     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 346     // should always exist (until the legacy problem cited above is
 347     // addressed).
 348     const char *v = ::getenv("LD_LIBRARY_PATH");
 349     const char *v_colon = ":";
 350     if (v == NULL) { v = ""; v_colon = ""; }
 351     // That's +1 for the colon and +1 for the trailing '\0'.
 352     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 353                                                      strlen(v) + 1 +
 354                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 355                                                      mtInternal);
 356     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 357     Arguments::set_library_path(ld_library_path);
 358     FREE_C_HEAP_ARRAY(char, ld_library_path);
 359   }
 360 
 361   // Extensions directories.
 362   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 363   Arguments::set_ext_dirs(buf);
 364 
 365   FREE_C_HEAP_ARRAY(char, buf);
 366 
 367 #undef DEFAULT_LIBPATH
 368 #undef SYS_EXT_DIR
 369 #undef EXTENSIONS_DIR
 370 }
 371 
 372 ////////////////////////////////////////////////////////////////////////////////
 373 // breakpoint support
 374 
 375 void os::breakpoint() {
 376   BREAKPOINT;
 377 }
 378 
 379 extern "C" void breakpoint() {
 380   // use debugger to set breakpoint here
 381 }
 382 
 383 ////////////////////////////////////////////////////////////////////////////////
 384 // signal support
 385 
 386 debug_only(static bool signal_sets_initialized = false);
 387 static sigset_t unblocked_sigs, vm_sigs;
 388 
 389 bool os::Linux::is_sig_ignored(int sig) {
 390   struct sigaction oact;
 391   sigaction(sig, (struct sigaction*)NULL, &oact);
 392   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 393                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 394   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 395     return true;
 396   } else {
 397     return false;
 398   }
 399 }
 400 
 401 void os::Linux::signal_sets_init() {
 402   // Should also have an assertion stating we are still single-threaded.
 403   assert(!signal_sets_initialized, "Already initialized");
 404   // Fill in signals that are necessarily unblocked for all threads in
 405   // the VM. Currently, we unblock the following signals:
 406   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 407   //                         by -Xrs (=ReduceSignalUsage));
 408   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 409   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 410   // the dispositions or masks wrt these signals.
 411   // Programs embedding the VM that want to use the above signals for their
 412   // own purposes must, at this time, use the "-Xrs" option to prevent
 413   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 414   // (See bug 4345157, and other related bugs).
 415   // In reality, though, unblocking these signals is really a nop, since
 416   // these signals are not blocked by default.
 417   sigemptyset(&unblocked_sigs);
 418   sigaddset(&unblocked_sigs, SIGILL);
 419   sigaddset(&unblocked_sigs, SIGSEGV);
 420   sigaddset(&unblocked_sigs, SIGBUS);
 421   sigaddset(&unblocked_sigs, SIGFPE);
 422 #if defined(PPC64)
 423   sigaddset(&unblocked_sigs, SIGTRAP);
 424 #endif
 425   sigaddset(&unblocked_sigs, SR_signum);
 426 
 427   if (!ReduceSignalUsage) {
 428     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 429       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 430     }
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 436     }
 437   }
 438   // Fill in signals that are blocked by all but the VM thread.
 439   sigemptyset(&vm_sigs);
 440   if (!ReduceSignalUsage) {
 441     sigaddset(&vm_sigs, BREAK_SIGNAL);
 442   }
 443   debug_only(signal_sets_initialized = true);
 444 
 445 }
 446 
 447 // These are signals that are unblocked while a thread is running Java.
 448 // (For some reason, they get blocked by default.)
 449 sigset_t* os::Linux::unblocked_signals() {
 450   assert(signal_sets_initialized, "Not initialized");
 451   return &unblocked_sigs;
 452 }
 453 
 454 // These are the signals that are blocked while a (non-VM) thread is
 455 // running Java. Only the VM thread handles these signals.
 456 sigset_t* os::Linux::vm_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &vm_sigs;
 459 }
 460 
 461 void os::Linux::hotspot_sigmask(Thread* thread) {
 462 
 463   //Save caller's signal mask before setting VM signal mask
 464   sigset_t caller_sigmask;
 465   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 466 
 467   OSThread* osthread = thread->osthread();
 468   osthread->set_caller_sigmask(caller_sigmask);
 469 
 470   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 471 
 472   if (!ReduceSignalUsage) {
 473     if (thread->is_VM_thread()) {
 474       // Only the VM thread handles BREAK_SIGNAL ...
 475       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 476     } else {
 477       // ... all other threads block BREAK_SIGNAL
 478       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 479     }
 480   }
 481 }
 482 
 483 //////////////////////////////////////////////////////////////////////////////
 484 // detecting pthread library
 485 
 486 void os::Linux::libpthread_init() {
 487   // Save glibc and pthread version strings.
 488 #if !defined(_CS_GNU_LIBC_VERSION) || \
 489     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 490   #error "glibc too old (< 2.3.2)"
 491 #endif
 492 
 493   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 494   assert(n > 0, "cannot retrieve glibc version");
 495   char *str = (char *)malloc(n, mtInternal);
 496   confstr(_CS_GNU_LIBC_VERSION, str, n);
 497   os::Linux::set_glibc_version(str);
 498 
 499   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 500   assert(n > 0, "cannot retrieve pthread version");
 501   str = (char *)malloc(n, mtInternal);
 502   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 503   os::Linux::set_libpthread_version(str);
 504 }
 505 
 506 /////////////////////////////////////////////////////////////////////////////
 507 // thread stack expansion
 508 
 509 // os::Linux::manually_expand_stack() takes care of expanding the thread
 510 // stack. Note that this is normally not needed: pthread stacks allocate
 511 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 512 // committed. Therefore it is not necessary to expand the stack manually.
 513 //
 514 // Manually expanding the stack was historically needed on LinuxThreads
 515 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 516 // it is kept to deal with very rare corner cases:
 517 //
 518 // For one, user may run the VM on an own implementation of threads
 519 // whose stacks are - like the old LinuxThreads - implemented using
 520 // mmap(MAP_GROWSDOWN).
 521 //
 522 // Also, this coding may be needed if the VM is running on the primordial
 523 // thread. Normally we avoid running on the primordial thread; however,
 524 // user may still invoke the VM on the primordial thread.
 525 //
 526 // The following historical comment describes the details about running
 527 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 528 
 529 
 530 // Force Linux kernel to expand current thread stack. If "bottom" is close
 531 // to the stack guard, caller should block all signals.
 532 //
 533 // MAP_GROWSDOWN:
 534 //   A special mmap() flag that is used to implement thread stacks. It tells
 535 //   kernel that the memory region should extend downwards when needed. This
 536 //   allows early versions of LinuxThreads to only mmap the first few pages
 537 //   when creating a new thread. Linux kernel will automatically expand thread
 538 //   stack as needed (on page faults).
 539 //
 540 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 541 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 542 //   region, it's hard to tell if the fault is due to a legitimate stack
 543 //   access or because of reading/writing non-exist memory (e.g. buffer
 544 //   overrun). As a rule, if the fault happens below current stack pointer,
 545 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 546 //   application (see Linux kernel fault.c).
 547 //
 548 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 549 //   stack overflow detection.
 550 //
 551 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 552 //   not use MAP_GROWSDOWN.
 553 //
 554 // To get around the problem and allow stack banging on Linux, we need to
 555 // manually expand thread stack after receiving the SIGSEGV.
 556 //
 557 // There are two ways to expand thread stack to address "bottom", we used
 558 // both of them in JVM before 1.5:
 559 //   1. adjust stack pointer first so that it is below "bottom", and then
 560 //      touch "bottom"
 561 //   2. mmap() the page in question
 562 //
 563 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 564 // if current sp is already near the lower end of page 101, and we need to
 565 // call mmap() to map page 100, it is possible that part of the mmap() frame
 566 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 567 // That will destroy the mmap() frame and cause VM to crash.
 568 //
 569 // The following code works by adjusting sp first, then accessing the "bottom"
 570 // page to force a page fault. Linux kernel will then automatically expand the
 571 // stack mapping.
 572 //
 573 // _expand_stack_to() assumes its frame size is less than page size, which
 574 // should always be true if the function is not inlined.
 575 
 576 static void NOINLINE _expand_stack_to(address bottom) {
 577   address sp;
 578   size_t size;
 579   volatile char *p;
 580 
 581   // Adjust bottom to point to the largest address within the same page, it
 582   // gives us a one-page buffer if alloca() allocates slightly more memory.
 583   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 584   bottom += os::Linux::page_size() - 1;
 585 
 586   // sp might be slightly above current stack pointer; if that's the case, we
 587   // will alloca() a little more space than necessary, which is OK. Don't use
 588   // os::current_stack_pointer(), as its result can be slightly below current
 589   // stack pointer, causing us to not alloca enough to reach "bottom".
 590   sp = (address)&sp;
 591 
 592   if (sp > bottom) {
 593     size = sp - bottom;
 594     p = (volatile char *)alloca(size);
 595     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 596     p[0] = '\0';
 597   }
 598 }
 599 
 600 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 601   assert(t!=NULL, "just checking");
 602   assert(t->osthread()->expanding_stack(), "expand should be set");
 603   assert(t->stack_base() != NULL, "stack_base was not initialized");
 604 
 605   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 606     sigset_t mask_all, old_sigset;
 607     sigfillset(&mask_all);
 608     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 609     _expand_stack_to(addr);
 610     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 611     return true;
 612   }
 613   return false;
 614 }
 615 
 616 //////////////////////////////////////////////////////////////////////////////
 617 // create new thread
 618 
 619 // Thread start routine for all newly created threads
 620 static void *thread_native_entry(Thread *thread) {
 621   // Try to randomize the cache line index of hot stack frames.
 622   // This helps when threads of the same stack traces evict each other's
 623   // cache lines. The threads can be either from the same JVM instance, or
 624   // from different JVM instances. The benefit is especially true for
 625   // processors with hyperthreading technology.
 626   static int counter = 0;
 627   int pid = os::current_process_id();
 628   alloca(((pid ^ counter++) & 7) * 128);
 629 
 630   thread->initialize_thread_current();
 631 
 632   OSThread* osthread = thread->osthread();
 633   Monitor* sync = osthread->startThread_lock();
 634 
 635   osthread->set_thread_id(os::current_thread_id());
 636 
 637   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 638     os::current_thread_id(), (uintx) pthread_self());
 639 
 640   if (UseNUMA) {
 641     int lgrp_id = os::numa_get_group_id();
 642     if (lgrp_id != -1) {
 643       thread->set_lgrp_id(lgrp_id);
 644     }
 645   }
 646   // initialize signal mask for this thread
 647   os::Linux::hotspot_sigmask(thread);
 648 
 649   // initialize floating point control register
 650   os::Linux::init_thread_fpu_state();
 651 
 652   // handshaking with parent thread
 653   {
 654     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 655 
 656     // notify parent thread
 657     osthread->set_state(INITIALIZED);
 658     sync->notify_all();
 659 
 660     // wait until os::start_thread()
 661     while (osthread->get_state() == INITIALIZED) {
 662       sync->wait(Mutex::_no_safepoint_check_flag);
 663     }
 664   }
 665 
 666   // call one more level start routine
 667   thread->run();
 668 
 669   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   // If a thread has not deleted itself ("delete this") as part of its
 673   // termination sequence, we have to ensure thread-local-storage is
 674   // cleared before we actually terminate. No threads should ever be
 675   // deleted asynchronously with respect to their termination.
 676   if (Thread::current_or_null_safe() != NULL) {
 677     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 678     thread->clear_thread_current();
 679   }
 680 
 681   return 0;
 682 }
 683 
 684 bool os::create_thread(Thread* thread, ThreadType thr_type,
 685                        size_t req_stack_size) {
 686   assert(thread->osthread() == NULL, "caller responsible");
 687 
 688   // Allocate the OSThread object
 689   OSThread* osthread = new OSThread(NULL, NULL);
 690   if (osthread == NULL) {
 691     return false;
 692   }
 693 
 694   // set the correct thread state
 695   osthread->set_thread_type(thr_type);
 696 
 697   // Initial state is ALLOCATED but not INITIALIZED
 698   osthread->set_state(ALLOCATED);
 699 
 700   thread->set_osthread(osthread);
 701 
 702   // init thread attributes
 703   pthread_attr_t attr;
 704   pthread_attr_init(&attr);
 705   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 706 
 707   // Calculate stack size if it's not specified by caller.
 708   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 709   // In the Linux NPTL pthread implementation the guard size mechanism
 710   // is not implemented properly. The posix standard requires adding
 711   // the size of the guard pages to the stack size, instead Linux
 712   // takes the space out of 'stacksize'. Thus we adapt the requested
 713   // stack_size by the size of the guard pages to mimick proper
 714   // behaviour. However, be careful not to end up with a size
 715   // of zero due to overflow. Don't add the guard page in that case.
 716   size_t guard_size = os::Linux::default_guard_size(thr_type);
 717   if (stack_size <= SIZE_MAX - guard_size) {
 718     stack_size += guard_size;
 719   }
 720   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 721 
 722   int status = pthread_attr_setstacksize(&attr, stack_size);
 723   assert_status(status == 0, status, "pthread_attr_setstacksize");
 724 
 725   // Configure glibc guard page.
 726   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 727 
 728   ThreadState state;
 729 
 730   {
 731     pthread_t tid;
 732     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 733 
 734     char buf[64];
 735     if (ret == 0) {
 736       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 737         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 738     } else {
 739       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 740         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 741     }
 742 
 743     pthread_attr_destroy(&attr);
 744 
 745     if (ret != 0) {
 746       // Need to clean up stuff we've allocated so far
 747       thread->set_osthread(NULL);
 748       delete osthread;
 749       return false;
 750     }
 751 
 752     // Store pthread info into the OSThread
 753     osthread->set_pthread_id(tid);
 754 
 755     // Wait until child thread is either initialized or aborted
 756     {
 757       Monitor* sync_with_child = osthread->startThread_lock();
 758       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 759       while ((state = osthread->get_state()) == ALLOCATED) {
 760         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 761       }
 762     }
 763   }
 764 
 765   // Aborted due to thread limit being reached
 766   if (state == ZOMBIE) {
 767     thread->set_osthread(NULL);
 768     delete osthread;
 769     return false;
 770   }
 771 
 772   // The thread is returned suspended (in state INITIALIZED),
 773   // and is started higher up in the call chain
 774   assert(state == INITIALIZED, "race condition");
 775   return true;
 776 }
 777 
 778 /////////////////////////////////////////////////////////////////////////////
 779 // attach existing thread
 780 
 781 // bootstrap the main thread
 782 bool os::create_main_thread(JavaThread* thread) {
 783   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 784   return create_attached_thread(thread);
 785 }
 786 
 787 bool os::create_attached_thread(JavaThread* thread) {
 788 #ifdef ASSERT
 789   thread->verify_not_published();
 790 #endif
 791 
 792   // Allocate the OSThread object
 793   OSThread* osthread = new OSThread(NULL, NULL);
 794 
 795   if (osthread == NULL) {
 796     return false;
 797   }
 798 
 799   // Store pthread info into the OSThread
 800   osthread->set_thread_id(os::Linux::gettid());
 801   osthread->set_pthread_id(::pthread_self());
 802 
 803   // initialize floating point control register
 804   os::Linux::init_thread_fpu_state();
 805 
 806   // Initial thread state is RUNNABLE
 807   osthread->set_state(RUNNABLE);
 808 
 809   thread->set_osthread(osthread);
 810 
 811   if (UseNUMA) {
 812     int lgrp_id = os::numa_get_group_id();
 813     if (lgrp_id != -1) {
 814       thread->set_lgrp_id(lgrp_id);
 815     }
 816   }
 817 
 818   if (os::Linux::is_initial_thread()) {
 819     // If current thread is initial thread, its stack is mapped on demand,
 820     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 821     // the entire stack region to avoid SEGV in stack banging.
 822     // It is also useful to get around the heap-stack-gap problem on SuSE
 823     // kernel (see 4821821 for details). We first expand stack to the top
 824     // of yellow zone, then enable stack yellow zone (order is significant,
 825     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 826     // is no gap between the last two virtual memory regions.
 827 
 828     JavaThread *jt = (JavaThread *)thread;
 829     address addr = jt->stack_reserved_zone_base();
 830     assert(addr != NULL, "initialization problem?");
 831     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 832 
 833     osthread->set_expanding_stack();
 834     os::Linux::manually_expand_stack(jt, addr);
 835     osthread->clear_expanding_stack();
 836   }
 837 
 838   // initialize signal mask for this thread
 839   // and save the caller's signal mask
 840   os::Linux::hotspot_sigmask(thread);
 841 
 842   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) pthread_self());
 844 
 845   return true;
 846 }
 847 
 848 void os::pd_start_thread(Thread* thread) {
 849   OSThread * osthread = thread->osthread();
 850   assert(osthread->get_state() != INITIALIZED, "just checking");
 851   Monitor* sync_with_child = osthread->startThread_lock();
 852   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 853   sync_with_child->notify();
 854 }
 855 
 856 // Free Linux resources related to the OSThread
 857 void os::free_thread(OSThread* osthread) {
 858   assert(osthread != NULL, "osthread not set");
 859 
 860   // We are told to free resources of the argument thread,
 861   // but we can only really operate on the current thread.
 862   assert(Thread::current()->osthread() == osthread,
 863          "os::free_thread but not current thread");
 864 
 865 #ifdef ASSERT
 866   sigset_t current;
 867   sigemptyset(&current);
 868   pthread_sigmask(SIG_SETMASK, NULL, &current);
 869   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 870 #endif
 871 
 872   // Restore caller's signal mask
 873   sigset_t sigmask = osthread->caller_sigmask();
 874   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 875 
 876   delete osthread;
 877 }
 878 
 879 //////////////////////////////////////////////////////////////////////////////
 880 // initial thread
 881 
 882 // Check if current thread is the initial thread, similar to Solaris thr_main.
 883 bool os::Linux::is_initial_thread(void) {
 884   char dummy;
 885   // If called before init complete, thread stack bottom will be null.
 886   // Can be called if fatal error occurs before initialization.
 887   if (initial_thread_stack_bottom() == NULL) return false;
 888   assert(initial_thread_stack_bottom() != NULL &&
 889          initial_thread_stack_size()   != 0,
 890          "os::init did not locate initial thread's stack region");
 891   if ((address)&dummy >= initial_thread_stack_bottom() &&
 892       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 893     return true;
 894   } else {
 895     return false;
 896   }
 897 }
 898 
 899 // Find the virtual memory area that contains addr
 900 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 901   FILE *fp = fopen("/proc/self/maps", "r");
 902   if (fp) {
 903     address low, high;
 904     while (!feof(fp)) {
 905       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 906         if (low <= addr && addr < high) {
 907           if (vma_low)  *vma_low  = low;
 908           if (vma_high) *vma_high = high;
 909           fclose(fp);
 910           return true;
 911         }
 912       }
 913       for (;;) {
 914         int ch = fgetc(fp);
 915         if (ch == EOF || ch == (int)'\n') break;
 916       }
 917     }
 918     fclose(fp);
 919   }
 920   return false;
 921 }
 922 
 923 // Locate initial thread stack. This special handling of initial thread stack
 924 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 925 // bogus value for the primordial process thread. While the launcher has created
 926 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 927 // JNI invocation API from a primordial thread.
 928 void os::Linux::capture_initial_stack(size_t max_size) {
 929 
 930   // max_size is either 0 (which means accept OS default for thread stacks) or
 931   // a user-specified value known to be at least the minimum needed. If we
 932   // are actually on the primordial thread we can make it appear that we have a
 933   // smaller max_size stack by inserting the guard pages at that location. But we
 934   // cannot do anything to emulate a larger stack than what has been provided by
 935   // the OS or threading library. In fact if we try to use a stack greater than
 936   // what is set by rlimit then we will crash the hosting process.
 937 
 938   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 939   // If this is "unlimited" then it will be a huge value.
 940   struct rlimit rlim;
 941   getrlimit(RLIMIT_STACK, &rlim);
 942   size_t stack_size = rlim.rlim_cur;
 943 
 944   // 6308388: a bug in ld.so will relocate its own .data section to the
 945   //   lower end of primordial stack; reduce ulimit -s value a little bit
 946   //   so we won't install guard page on ld.so's data section.
 947   stack_size -= 2 * page_size();
 948 
 949   // Try to figure out where the stack base (top) is. This is harder.
 950   //
 951   // When an application is started, glibc saves the initial stack pointer in
 952   // a global variable "__libc_stack_end", which is then used by system
 953   // libraries. __libc_stack_end should be pretty close to stack top. The
 954   // variable is available since the very early days. However, because it is
 955   // a private interface, it could disappear in the future.
 956   //
 957   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 958   // to __libc_stack_end, it is very close to stack top, but isn't the real
 959   // stack top. Note that /proc may not exist if VM is running as a chroot
 960   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 961   // /proc/<pid>/stat could change in the future (though unlikely).
 962   //
 963   // We try __libc_stack_end first. If that doesn't work, look for
 964   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 965   // as a hint, which should work well in most cases.
 966 
 967   uintptr_t stack_start;
 968 
 969   // try __libc_stack_end first
 970   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 971   if (p && *p) {
 972     stack_start = *p;
 973   } else {
 974     // see if we can get the start_stack field from /proc/self/stat
 975     FILE *fp;
 976     int pid;
 977     char state;
 978     int ppid;
 979     int pgrp;
 980     int session;
 981     int nr;
 982     int tpgrp;
 983     unsigned long flags;
 984     unsigned long minflt;
 985     unsigned long cminflt;
 986     unsigned long majflt;
 987     unsigned long cmajflt;
 988     unsigned long utime;
 989     unsigned long stime;
 990     long cutime;
 991     long cstime;
 992     long prio;
 993     long nice;
 994     long junk;
 995     long it_real;
 996     uintptr_t start;
 997     uintptr_t vsize;
 998     intptr_t rss;
 999     uintptr_t rsslim;
1000     uintptr_t scodes;
1001     uintptr_t ecode;
1002     int i;
1003 
1004     // Figure what the primordial thread stack base is. Code is inspired
1005     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1006     // followed by command name surrounded by parentheses, state, etc.
1007     char stat[2048];
1008     int statlen;
1009 
1010     fp = fopen("/proc/self/stat", "r");
1011     if (fp) {
1012       statlen = fread(stat, 1, 2047, fp);
1013       stat[statlen] = '\0';
1014       fclose(fp);
1015 
1016       // Skip pid and the command string. Note that we could be dealing with
1017       // weird command names, e.g. user could decide to rename java launcher
1018       // to "java 1.4.2 :)", then the stat file would look like
1019       //                1234 (java 1.4.2 :)) R ... ...
1020       // We don't really need to know the command string, just find the last
1021       // occurrence of ")" and then start parsing from there. See bug 4726580.
1022       char * s = strrchr(stat, ')');
1023 
1024       i = 0;
1025       if (s) {
1026         // Skip blank chars
1027         do { s++; } while (s && isspace(*s));
1028 
1029 #define _UFM UINTX_FORMAT
1030 #define _DFM INTX_FORMAT
1031 
1032         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1033         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1034         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1035                    &state,          // 3  %c
1036                    &ppid,           // 4  %d
1037                    &pgrp,           // 5  %d
1038                    &session,        // 6  %d
1039                    &nr,             // 7  %d
1040                    &tpgrp,          // 8  %d
1041                    &flags,          // 9  %lu
1042                    &minflt,         // 10 %lu
1043                    &cminflt,        // 11 %lu
1044                    &majflt,         // 12 %lu
1045                    &cmajflt,        // 13 %lu
1046                    &utime,          // 14 %lu
1047                    &stime,          // 15 %lu
1048                    &cutime,         // 16 %ld
1049                    &cstime,         // 17 %ld
1050                    &prio,           // 18 %ld
1051                    &nice,           // 19 %ld
1052                    &junk,           // 20 %ld
1053                    &it_real,        // 21 %ld
1054                    &start,          // 22 UINTX_FORMAT
1055                    &vsize,          // 23 UINTX_FORMAT
1056                    &rss,            // 24 INTX_FORMAT
1057                    &rsslim,         // 25 UINTX_FORMAT
1058                    &scodes,         // 26 UINTX_FORMAT
1059                    &ecode,          // 27 UINTX_FORMAT
1060                    &stack_start);   // 28 UINTX_FORMAT
1061       }
1062 
1063 #undef _UFM
1064 #undef _DFM
1065 
1066       if (i != 28 - 2) {
1067         assert(false, "Bad conversion from /proc/self/stat");
1068         // product mode - assume we are the initial thread, good luck in the
1069         // embedded case.
1070         warning("Can't detect initial thread stack location - bad conversion");
1071         stack_start = (uintptr_t) &rlim;
1072       }
1073     } else {
1074       // For some reason we can't open /proc/self/stat (for example, running on
1075       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1076       // most cases, so don't abort:
1077       warning("Can't detect initial thread stack location - no /proc/self/stat");
1078       stack_start = (uintptr_t) &rlim;
1079     }
1080   }
1081 
1082   // Now we have a pointer (stack_start) very close to the stack top, the
1083   // next thing to do is to figure out the exact location of stack top. We
1084   // can find out the virtual memory area that contains stack_start by
1085   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1086   // and its upper limit is the real stack top. (again, this would fail if
1087   // running inside chroot, because /proc may not exist.)
1088 
1089   uintptr_t stack_top;
1090   address low, high;
1091   if (find_vma((address)stack_start, &low, &high)) {
1092     // success, "high" is the true stack top. (ignore "low", because initial
1093     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1094     stack_top = (uintptr_t)high;
1095   } else {
1096     // failed, likely because /proc/self/maps does not exist
1097     warning("Can't detect initial thread stack location - find_vma failed");
1098     // best effort: stack_start is normally within a few pages below the real
1099     // stack top, use it as stack top, and reduce stack size so we won't put
1100     // guard page outside stack.
1101     stack_top = stack_start;
1102     stack_size -= 16 * page_size();
1103   }
1104 
1105   // stack_top could be partially down the page so align it
1106   stack_top = align_up(stack_top, page_size());
1107 
1108   // Allowed stack value is minimum of max_size and what we derived from rlimit
1109   if (max_size > 0) {
1110     _initial_thread_stack_size = MIN2(max_size, stack_size);
1111   } else {
1112     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1113     // clamp it at 8MB as we do on Solaris
1114     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1115   }
1116   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1117   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1118 
1119   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1120 
1121   if (log_is_enabled(Info, os, thread)) {
1122     // See if we seem to be on primordial process thread
1123     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1124                       uintptr_t(&rlim) < stack_top;
1125 
1126     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1127                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1128                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1129                          stack_top, intptr_t(_initial_thread_stack_bottom));
1130   }
1131 }
1132 
1133 ////////////////////////////////////////////////////////////////////////////////
1134 // time support
1135 
1136 // Time since start-up in seconds to a fine granularity.
1137 // Used by VMSelfDestructTimer and the MemProfiler.
1138 double os::elapsedTime() {
1139 
1140   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1141 }
1142 
1143 jlong os::elapsed_counter() {
1144   return javaTimeNanos() - initial_time_count;
1145 }
1146 
1147 jlong os::elapsed_frequency() {
1148   return NANOSECS_PER_SEC; // nanosecond resolution
1149 }
1150 
1151 bool os::supports_vtime() { return true; }
1152 bool os::enable_vtime()   { return false; }
1153 bool os::vtime_enabled()  { return false; }
1154 
1155 double os::elapsedVTime() {
1156   struct rusage usage;
1157   int retval = getrusage(RUSAGE_THREAD, &usage);
1158   if (retval == 0) {
1159     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1160   } else {
1161     // better than nothing, but not much
1162     return elapsedTime();
1163   }
1164 }
1165 
1166 jlong os::javaTimeMillis() {
1167   timeval time;
1168   int status = gettimeofday(&time, NULL);
1169   assert(status != -1, "linux error");
1170   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1171 }
1172 
1173 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1174   timeval time;
1175   int status = gettimeofday(&time, NULL);
1176   assert(status != -1, "linux error");
1177   seconds = jlong(time.tv_sec);
1178   nanos = jlong(time.tv_usec) * 1000;
1179 }
1180 
1181 
1182 #ifndef CLOCK_MONOTONIC
1183   #define CLOCK_MONOTONIC (1)
1184 #endif
1185 
1186 void os::Linux::clock_init() {
1187   // we do dlopen's in this particular order due to bug in linux
1188   // dynamical loader (see 6348968) leading to crash on exit
1189   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1190   if (handle == NULL) {
1191     handle = dlopen("librt.so", RTLD_LAZY);
1192   }
1193 
1194   if (handle) {
1195     int (*clock_getres_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1197     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1198            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1199     if (clock_getres_func && clock_gettime_func) {
1200       // See if monotonic clock is supported by the kernel. Note that some
1201       // early implementations simply return kernel jiffies (updated every
1202       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1203       // for nano time (though the monotonic property is still nice to have).
1204       // It's fixed in newer kernels, however clock_getres() still returns
1205       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1206       // resolution for now. Hopefully as people move to new kernels, this
1207       // won't be a problem.
1208       struct timespec res;
1209       struct timespec tp;
1210       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1211           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1212         // yes, monotonic clock is supported
1213         _clock_gettime = clock_gettime_func;
1214         return;
1215       } else {
1216         // close librt if there is no monotonic clock
1217         dlclose(handle);
1218       }
1219     }
1220   }
1221   warning("No monotonic clock was available - timed services may " \
1222           "be adversely affected if the time-of-day clock changes");
1223 }
1224 
1225 #ifndef SYS_clock_getres
1226   #if defined(X86) || defined(PPC64) || defined(S390)
1227     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1228     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1229   #else
1230     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1231     #define sys_clock_getres(x,y)  -1
1232   #endif
1233 #else
1234   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235 #endif
1236 
1237 void os::Linux::fast_thread_clock_init() {
1238   if (!UseLinuxPosixThreadCPUClocks) {
1239     return;
1240   }
1241   clockid_t clockid;
1242   struct timespec tp;
1243   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1244       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1245 
1246   // Switch to using fast clocks for thread cpu time if
1247   // the sys_clock_getres() returns 0 error code.
1248   // Note, that some kernels may support the current thread
1249   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1250   // returned by the pthread_getcpuclockid().
1251   // If the fast Posix clocks are supported then the sys_clock_getres()
1252   // must return at least tp.tv_sec == 0 which means a resolution
1253   // better than 1 sec. This is extra check for reliability.
1254 
1255   if (pthread_getcpuclockid_func &&
1256       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1257       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1258     _supports_fast_thread_cpu_time = true;
1259     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1260   }
1261 }
1262 
1263 jlong os::javaTimeNanos() {
1264   if (os::supports_monotonic_clock()) {
1265     struct timespec tp;
1266     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1267     assert(status == 0, "gettime error");
1268     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1269     return result;
1270   } else {
1271     timeval time;
1272     int status = gettimeofday(&time, NULL);
1273     assert(status != -1, "linux error");
1274     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1275     return 1000 * usecs;
1276   }
1277 }
1278 
1279 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1280   if (os::supports_monotonic_clock()) {
1281     info_ptr->max_value = ALL_64_BITS;
1282 
1283     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1284     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1285     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1286   } else {
1287     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1288     info_ptr->max_value = ALL_64_BITS;
1289 
1290     // gettimeofday is a real time clock so it skips
1291     info_ptr->may_skip_backward = true;
1292     info_ptr->may_skip_forward = true;
1293   }
1294 
1295   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1296 }
1297 
1298 // Return the real, user, and system times in seconds from an
1299 // arbitrary fixed point in the past.
1300 bool os::getTimesSecs(double* process_real_time,
1301                       double* process_user_time,
1302                       double* process_system_time) {
1303   struct tms ticks;
1304   clock_t real_ticks = times(&ticks);
1305 
1306   if (real_ticks == (clock_t) (-1)) {
1307     return false;
1308   } else {
1309     double ticks_per_second = (double) clock_tics_per_sec;
1310     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1311     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1312     *process_real_time = ((double) real_ticks) / ticks_per_second;
1313 
1314     return true;
1315   }
1316 }
1317 
1318 
1319 char * os::local_time_string(char *buf, size_t buflen) {
1320   struct tm t;
1321   time_t long_time;
1322   time(&long_time);
1323   localtime_r(&long_time, &t);
1324   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1325                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1326                t.tm_hour, t.tm_min, t.tm_sec);
1327   return buf;
1328 }
1329 
1330 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1331   return localtime_r(clock, res);
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // runtime exit support
1336 
1337 // Note: os::shutdown() might be called very early during initialization, or
1338 // called from signal handler. Before adding something to os::shutdown(), make
1339 // sure it is async-safe and can handle partially initialized VM.
1340 void os::shutdown() {
1341 
1342   // allow PerfMemory to attempt cleanup of any persistent resources
1343   perfMemory_exit();
1344 
1345   // needs to remove object in file system
1346   AttachListener::abort();
1347 
1348   // flush buffered output, finish log files
1349   ostream_abort();
1350 
1351   // Check for abort hook
1352   abort_hook_t abort_hook = Arguments::abort_hook();
1353   if (abort_hook != NULL) {
1354     abort_hook();
1355   }
1356 
1357 }
1358 
1359 // Note: os::abort() might be called very early during initialization, or
1360 // called from signal handler. Before adding something to os::abort(), make
1361 // sure it is async-safe and can handle partially initialized VM.
1362 void os::abort(bool dump_core, void* siginfo, const void* context) {
1363   os::shutdown();
1364   if (dump_core) {
1365 #ifndef PRODUCT
1366     fdStream out(defaultStream::output_fd());
1367     out.print_raw("Current thread is ");
1368     char buf[16];
1369     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1370     out.print_raw_cr(buf);
1371     out.print_raw_cr("Dumping core ...");
1372 #endif
1373     ::abort(); // dump core
1374   }
1375 
1376   ::exit(1);
1377 }
1378 
1379 // Die immediately, no exit hook, no abort hook, no cleanup.
1380 void os::die() {
1381   ::abort();
1382 }
1383 
1384 
1385 // This method is a copy of JDK's sysGetLastErrorString
1386 // from src/solaris/hpi/src/system_md.c
1387 
1388 size_t os::lasterror(char *buf, size_t len) {
1389   if (errno == 0)  return 0;
1390 
1391   const char *s = os::strerror(errno);
1392   size_t n = ::strlen(s);
1393   if (n >= len) {
1394     n = len - 1;
1395   }
1396   ::strncpy(buf, s, n);
1397   buf[n] = '\0';
1398   return n;
1399 }
1400 
1401 // thread_id is kernel thread id (similar to Solaris LWP id)
1402 intx os::current_thread_id() { return os::Linux::gettid(); }
1403 int os::current_process_id() {
1404   return ::getpid();
1405 }
1406 
1407 // DLL functions
1408 
1409 const char* os::dll_file_extension() { return ".so"; }
1410 
1411 // This must be hard coded because it's the system's temporary
1412 // directory not the java application's temp directory, ala java.io.tmpdir.
1413 const char* os::get_temp_directory() { return "/tmp"; }
1414 
1415 static bool file_exists(const char* filename) {
1416   struct stat statbuf;
1417   if (filename == NULL || strlen(filename) == 0) {
1418     return false;
1419   }
1420   return os::stat(filename, &statbuf) == 0;
1421 }
1422 
1423 // check if addr is inside libjvm.so
1424 bool os::address_is_in_vm(address addr) {
1425   static address libjvm_base_addr;
1426   Dl_info dlinfo;
1427 
1428   if (libjvm_base_addr == NULL) {
1429     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1430       libjvm_base_addr = (address)dlinfo.dli_fbase;
1431     }
1432     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1433   }
1434 
1435   if (dladdr((void *)addr, &dlinfo) != 0) {
1436     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1437   }
1438 
1439   return false;
1440 }
1441 
1442 bool os::dll_address_to_function_name(address addr, char *buf,
1443                                       int buflen, int *offset,
1444                                       bool demangle) {
1445   // buf is not optional, but offset is optional
1446   assert(buf != NULL, "sanity check");
1447 
1448   Dl_info dlinfo;
1449 
1450   if (dladdr((void*)addr, &dlinfo) != 0) {
1451     // see if we have a matching symbol
1452     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1453       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1454         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1455       }
1456       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1457       return true;
1458     }
1459     // no matching symbol so try for just file info
1460     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1461       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1462                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1463         return true;
1464       }
1465     }
1466   }
1467 
1468   buf[0] = '\0';
1469   if (offset != NULL) *offset = -1;
1470   return false;
1471 }
1472 
1473 struct _address_to_library_name {
1474   address addr;          // input : memory address
1475   size_t  buflen;        //         size of fname
1476   char*   fname;         // output: library name
1477   address base;          //         library base addr
1478 };
1479 
1480 static int address_to_library_name_callback(struct dl_phdr_info *info,
1481                                             size_t size, void *data) {
1482   int i;
1483   bool found = false;
1484   address libbase = NULL;
1485   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1486 
1487   // iterate through all loadable segments
1488   for (i = 0; i < info->dlpi_phnum; i++) {
1489     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1490     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1491       // base address of a library is the lowest address of its loaded
1492       // segments.
1493       if (libbase == NULL || libbase > segbase) {
1494         libbase = segbase;
1495       }
1496       // see if 'addr' is within current segment
1497       if (segbase <= d->addr &&
1498           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1499         found = true;
1500       }
1501     }
1502   }
1503 
1504   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1505   // so dll_address_to_library_name() can fall through to use dladdr() which
1506   // can figure out executable name from argv[0].
1507   if (found && info->dlpi_name && info->dlpi_name[0]) {
1508     d->base = libbase;
1509     if (d->fname) {
1510       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1511     }
1512     return 1;
1513   }
1514   return 0;
1515 }
1516 
1517 bool os::dll_address_to_library_name(address addr, char* buf,
1518                                      int buflen, int* offset) {
1519   // buf is not optional, but offset is optional
1520   assert(buf != NULL, "sanity check");
1521 
1522   Dl_info dlinfo;
1523   struct _address_to_library_name data;
1524 
1525   // There is a bug in old glibc dladdr() implementation that it could resolve
1526   // to wrong library name if the .so file has a base address != NULL. Here
1527   // we iterate through the program headers of all loaded libraries to find
1528   // out which library 'addr' really belongs to. This workaround can be
1529   // removed once the minimum requirement for glibc is moved to 2.3.x.
1530   data.addr = addr;
1531   data.fname = buf;
1532   data.buflen = buflen;
1533   data.base = NULL;
1534   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1535 
1536   if (rslt) {
1537     // buf already contains library name
1538     if (offset) *offset = addr - data.base;
1539     return true;
1540   }
1541   if (dladdr((void*)addr, &dlinfo) != 0) {
1542     if (dlinfo.dli_fname != NULL) {
1543       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1544     }
1545     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1546       *offset = addr - (address)dlinfo.dli_fbase;
1547     }
1548     return true;
1549   }
1550 
1551   buf[0] = '\0';
1552   if (offset) *offset = -1;
1553   return false;
1554 }
1555 
1556 // Loads .dll/.so and
1557 // in case of error it checks if .dll/.so was built for the
1558 // same architecture as Hotspot is running on
1559 
1560 
1561 // Remember the stack's state. The Linux dynamic linker will change
1562 // the stack to 'executable' at most once, so we must safepoint only once.
1563 bool os::Linux::_stack_is_executable = false;
1564 
1565 // VM operation that loads a library.  This is necessary if stack protection
1566 // of the Java stacks can be lost during loading the library.  If we
1567 // do not stop the Java threads, they can stack overflow before the stacks
1568 // are protected again.
1569 class VM_LinuxDllLoad: public VM_Operation {
1570  private:
1571   const char *_filename;
1572   char *_ebuf;
1573   int _ebuflen;
1574   void *_lib;
1575  public:
1576   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1577     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1578   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1579   void doit() {
1580     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1581     os::Linux::_stack_is_executable = true;
1582   }
1583   void* loaded_library() { return _lib; }
1584 };
1585 
1586 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1587   void * result = NULL;
1588   bool load_attempted = false;
1589 
1590   // Check whether the library to load might change execution rights
1591   // of the stack. If they are changed, the protection of the stack
1592   // guard pages will be lost. We need a safepoint to fix this.
1593   //
1594   // See Linux man page execstack(8) for more info.
1595   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1596     if (!ElfFile::specifies_noexecstack(filename)) {
1597       if (!is_init_completed()) {
1598         os::Linux::_stack_is_executable = true;
1599         // This is OK - No Java threads have been created yet, and hence no
1600         // stack guard pages to fix.
1601         //
1602         // This should happen only when you are building JDK7 using a very
1603         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1604         //
1605         // Dynamic loader will make all stacks executable after
1606         // this function returns, and will not do that again.
1607 #ifdef ASSERT
1608         ThreadsListHandle tlh;
1609         assert(tlh.length() == 0, "no Java threads should exist yet.");
1610 #endif
1611       } else {
1612         warning("You have loaded library %s which might have disabled stack guard. "
1613                 "The VM will try to fix the stack guard now.\n"
1614                 "It's highly recommended that you fix the library with "
1615                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1616                 filename);
1617 
1618         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1619         JavaThread *jt = JavaThread::current();
1620         if (jt->thread_state() != _thread_in_native) {
1621           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1622           // that requires ExecStack. Cannot enter safe point. Let's give up.
1623           warning("Unable to fix stack guard. Giving up.");
1624         } else {
1625           if (!LoadExecStackDllInVMThread) {
1626             // This is for the case where the DLL has an static
1627             // constructor function that executes JNI code. We cannot
1628             // load such DLLs in the VMThread.
1629             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1630           }
1631 
1632           ThreadInVMfromNative tiv(jt);
1633           debug_only(VMNativeEntryWrapper vew;)
1634 
1635           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1636           VMThread::execute(&op);
1637           if (LoadExecStackDllInVMThread) {
1638             result = op.loaded_library();
1639           }
1640           load_attempted = true;
1641         }
1642       }
1643     }
1644   }
1645 
1646   if (!load_attempted) {
1647     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1648   }
1649 
1650   if (result != NULL) {
1651     // Successful loading
1652     return result;
1653   }
1654 
1655   Elf32_Ehdr elf_head;
1656   int diag_msg_max_length=ebuflen-strlen(ebuf);
1657   char* diag_msg_buf=ebuf+strlen(ebuf);
1658 
1659   if (diag_msg_max_length==0) {
1660     // No more space in ebuf for additional diagnostics message
1661     return NULL;
1662   }
1663 
1664 
1665   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1666 
1667   if (file_descriptor < 0) {
1668     // Can't open library, report dlerror() message
1669     return NULL;
1670   }
1671 
1672   bool failed_to_read_elf_head=
1673     (sizeof(elf_head)!=
1674      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1675 
1676   ::close(file_descriptor);
1677   if (failed_to_read_elf_head) {
1678     // file i/o error - report dlerror() msg
1679     return NULL;
1680   }
1681 
1682   typedef struct {
1683     Elf32_Half    code;         // Actual value as defined in elf.h
1684     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1685     unsigned char elf_class;    // 32 or 64 bit
1686     unsigned char endianess;    // MSB or LSB
1687     char*         name;         // String representation
1688   } arch_t;
1689 
1690 #ifndef EM_486
1691   #define EM_486          6               /* Intel 80486 */
1692 #endif
1693 #ifndef EM_AARCH64
1694   #define EM_AARCH64    183               /* ARM AARCH64 */
1695 #endif
1696 
1697   static const arch_t arch_array[]={
1698     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1699     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1700     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1701     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1702     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1703     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1704     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1705     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1706 #if defined(VM_LITTLE_ENDIAN)
1707     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1708     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1709 #else
1710     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1711     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1712 #endif
1713     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1714     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1715     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1716     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1717     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1718     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1719     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1720     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1721   };
1722 
1723 #if  (defined IA32)
1724   static  Elf32_Half running_arch_code=EM_386;
1725 #elif   (defined AMD64)
1726   static  Elf32_Half running_arch_code=EM_X86_64;
1727 #elif  (defined IA64)
1728   static  Elf32_Half running_arch_code=EM_IA_64;
1729 #elif  (defined __sparc) && (defined _LP64)
1730   static  Elf32_Half running_arch_code=EM_SPARCV9;
1731 #elif  (defined __sparc) && (!defined _LP64)
1732   static  Elf32_Half running_arch_code=EM_SPARC;
1733 #elif  (defined __powerpc64__)
1734   static  Elf32_Half running_arch_code=EM_PPC64;
1735 #elif  (defined __powerpc__)
1736   static  Elf32_Half running_arch_code=EM_PPC;
1737 #elif  (defined AARCH64)
1738   static  Elf32_Half running_arch_code=EM_AARCH64;
1739 #elif  (defined ARM)
1740   static  Elf32_Half running_arch_code=EM_ARM;
1741 #elif  (defined S390)
1742   static  Elf32_Half running_arch_code=EM_S390;
1743 #elif  (defined ALPHA)
1744   static  Elf32_Half running_arch_code=EM_ALPHA;
1745 #elif  (defined MIPSEL)
1746   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1747 #elif  (defined PARISC)
1748   static  Elf32_Half running_arch_code=EM_PARISC;
1749 #elif  (defined MIPS)
1750   static  Elf32_Half running_arch_code=EM_MIPS;
1751 #elif  (defined M68K)
1752   static  Elf32_Half running_arch_code=EM_68K;
1753 #elif  (defined SH)
1754   static  Elf32_Half running_arch_code=EM_SH;
1755 #else
1756     #error Method os::dll_load requires that one of following is defined:\
1757         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1758 #endif
1759 
1760   // Identify compatability class for VM's architecture and library's architecture
1761   // Obtain string descriptions for architectures
1762 
1763   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1764   int running_arch_index=-1;
1765 
1766   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1767     if (running_arch_code == arch_array[i].code) {
1768       running_arch_index    = i;
1769     }
1770     if (lib_arch.code == arch_array[i].code) {
1771       lib_arch.compat_class = arch_array[i].compat_class;
1772       lib_arch.name         = arch_array[i].name;
1773     }
1774   }
1775 
1776   assert(running_arch_index != -1,
1777          "Didn't find running architecture code (running_arch_code) in arch_array");
1778   if (running_arch_index == -1) {
1779     // Even though running architecture detection failed
1780     // we may still continue with reporting dlerror() message
1781     return NULL;
1782   }
1783 
1784   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1785     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1786     return NULL;
1787   }
1788 
1789 #ifndef S390
1790   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1791     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1792     return NULL;
1793   }
1794 #endif // !S390
1795 
1796   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1797     if (lib_arch.name!=NULL) {
1798       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1800                  lib_arch.name, arch_array[running_arch_index].name);
1801     } else {
1802       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1803                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1804                  lib_arch.code,
1805                  arch_array[running_arch_index].name);
1806     }
1807   }
1808 
1809   return NULL;
1810 }
1811 
1812 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1813                                 int ebuflen) {
1814   void * result = ::dlopen(filename, RTLD_LAZY);
1815   if (result == NULL) {
1816     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1817     ebuf[ebuflen-1] = '\0';
1818   }
1819   return result;
1820 }
1821 
1822 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1823                                        int ebuflen) {
1824   void * result = NULL;
1825   if (LoadExecStackDllInVMThread) {
1826     result = dlopen_helper(filename, ebuf, ebuflen);
1827   }
1828 
1829   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1830   // library that requires an executable stack, or which does not have this
1831   // stack attribute set, dlopen changes the stack attribute to executable. The
1832   // read protection of the guard pages gets lost.
1833   //
1834   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1835   // may have been queued at the same time.
1836 
1837   if (!_stack_is_executable) {
1838     ThreadsListHandle tlh;
1839     JavaThreadIterator jti(tlh.list());
1840     for (JavaThread *jt = jti.first(); jt != NULL; jt = jti.next()) {
1841       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1842           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1843         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1844           warning("Attempt to reguard stack yellow zone failed.");
1845         }
1846       }
1847     }
1848   }
1849 
1850   return result;
1851 }
1852 
1853 void* os::dll_lookup(void* handle, const char* name) {
1854   void* res = dlsym(handle, name);
1855   return res;
1856 }
1857 
1858 void* os::get_default_process_handle() {
1859   return (void*)::dlopen(NULL, RTLD_LAZY);
1860 }
1861 
1862 static bool _print_ascii_file(const char* filename, outputStream* st) {
1863   int fd = ::open(filename, O_RDONLY);
1864   if (fd == -1) {
1865     return false;
1866   }
1867 
1868   char buf[33];
1869   int bytes;
1870   buf[32] = '\0';
1871   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1872     st->print_raw(buf, bytes);
1873   }
1874 
1875   ::close(fd);
1876 
1877   return true;
1878 }
1879 
1880 void os::print_dll_info(outputStream *st) {
1881   st->print_cr("Dynamic libraries:");
1882 
1883   char fname[32];
1884   pid_t pid = os::Linux::gettid();
1885 
1886   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1887 
1888   if (!_print_ascii_file(fname, st)) {
1889     st->print("Can not get library information for pid = %d\n", pid);
1890   }
1891 }
1892 
1893 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1894   FILE *procmapsFile = NULL;
1895 
1896   // Open the procfs maps file for the current process
1897   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1898     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1899     char line[PATH_MAX + 100];
1900 
1901     // Read line by line from 'file'
1902     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1903       u8 base, top, offset, inode;
1904       char permissions[5];
1905       char device[6];
1906       char name[PATH_MAX + 1];
1907 
1908       // Parse fields from line
1909       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1910              &base, &top, permissions, &offset, device, &inode, name);
1911 
1912       // Filter by device id '00:00' so that we only get file system mapped files.
1913       if (strcmp(device, "00:00") != 0) {
1914 
1915         // Call callback with the fields of interest
1916         if(callback(name, (address)base, (address)top, param)) {
1917           // Oops abort, callback aborted
1918           fclose(procmapsFile);
1919           return 1;
1920         }
1921       }
1922     }
1923     fclose(procmapsFile);
1924   }
1925   return 0;
1926 }
1927 
1928 void os::print_os_info_brief(outputStream* st) {
1929   os::Linux::print_distro_info(st);
1930 
1931   os::Posix::print_uname_info(st);
1932 
1933   os::Linux::print_libversion_info(st);
1934 
1935 }
1936 
1937 void os::print_os_info(outputStream* st) {
1938   st->print("OS:");
1939 
1940   os::Linux::print_distro_info(st);
1941 
1942   os::Posix::print_uname_info(st);
1943 
1944   // Print warning if unsafe chroot environment detected
1945   if (unsafe_chroot_detected) {
1946     st->print("WARNING!! ");
1947     st->print_cr("%s", unstable_chroot_error);
1948   }
1949 
1950   os::Linux::print_libversion_info(st);
1951 
1952   os::Posix::print_rlimit_info(st);
1953 
1954   os::Posix::print_load_average(st);
1955 
1956   os::Linux::print_full_memory_info(st);
1957 }
1958 
1959 // Try to identify popular distros.
1960 // Most Linux distributions have a /etc/XXX-release file, which contains
1961 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1962 // file that also contains the OS version string. Some have more than one
1963 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1964 // /etc/redhat-release.), so the order is important.
1965 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1966 // their own specific XXX-release file as well as a redhat-release file.
1967 // Because of this the XXX-release file needs to be searched for before the
1968 // redhat-release file.
1969 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1970 // search for redhat-release / SuSE-release needs to be before lsb-release.
1971 // Since the lsb-release file is the new standard it needs to be searched
1972 // before the older style release files.
1973 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1974 // next to last resort.  The os-release file is a new standard that contains
1975 // distribution information and the system-release file seems to be an old
1976 // standard that has been replaced by the lsb-release and os-release files.
1977 // Searching for the debian_version file is the last resort.  It contains
1978 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1979 // "Debian " is printed before the contents of the debian_version file.
1980 
1981 const char* distro_files[] = {
1982   "/etc/oracle-release",
1983   "/etc/mandriva-release",
1984   "/etc/mandrake-release",
1985   "/etc/sun-release",
1986   "/etc/redhat-release",
1987   "/etc/SuSE-release",
1988   "/etc/lsb-release",
1989   "/etc/turbolinux-release",
1990   "/etc/gentoo-release",
1991   "/etc/ltib-release",
1992   "/etc/angstrom-version",
1993   "/etc/system-release",
1994   "/etc/os-release",
1995   NULL };
1996 
1997 void os::Linux::print_distro_info(outputStream* st) {
1998   for (int i = 0;; i++) {
1999     const char* file = distro_files[i];
2000     if (file == NULL) {
2001       break;  // done
2002     }
2003     // If file prints, we found it.
2004     if (_print_ascii_file(file, st)) {
2005       return;
2006     }
2007   }
2008 
2009   if (file_exists("/etc/debian_version")) {
2010     st->print("Debian ");
2011     _print_ascii_file("/etc/debian_version", st);
2012   } else {
2013     st->print("Linux");
2014   }
2015   st->cr();
2016 }
2017 
2018 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2019   char buf[256];
2020   while (fgets(buf, sizeof(buf), fp)) {
2021     // Edit out extra stuff in expected format
2022     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2023       char* ptr = strstr(buf, "\"");  // the name is in quotes
2024       if (ptr != NULL) {
2025         ptr++; // go beyond first quote
2026         char* nl = strchr(ptr, '\"');
2027         if (nl != NULL) *nl = '\0';
2028         strncpy(distro, ptr, length);
2029       } else {
2030         ptr = strstr(buf, "=");
2031         ptr++; // go beyond equals then
2032         char* nl = strchr(ptr, '\n');
2033         if (nl != NULL) *nl = '\0';
2034         strncpy(distro, ptr, length);
2035       }
2036       return;
2037     } else if (get_first_line) {
2038       char* nl = strchr(buf, '\n');
2039       if (nl != NULL) *nl = '\0';
2040       strncpy(distro, buf, length);
2041       return;
2042     }
2043   }
2044   // print last line and close
2045   char* nl = strchr(buf, '\n');
2046   if (nl != NULL) *nl = '\0';
2047   strncpy(distro, buf, length);
2048 }
2049 
2050 static void parse_os_info(char* distro, size_t length, const char* file) {
2051   FILE* fp = fopen(file, "r");
2052   if (fp != NULL) {
2053     // if suse format, print out first line
2054     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2055     parse_os_info_helper(fp, distro, length, get_first_line);
2056     fclose(fp);
2057   }
2058 }
2059 
2060 void os::get_summary_os_info(char* buf, size_t buflen) {
2061   for (int i = 0;; i++) {
2062     const char* file = distro_files[i];
2063     if (file == NULL) {
2064       break; // ran out of distro_files
2065     }
2066     if (file_exists(file)) {
2067       parse_os_info(buf, buflen, file);
2068       return;
2069     }
2070   }
2071   // special case for debian
2072   if (file_exists("/etc/debian_version")) {
2073     strncpy(buf, "Debian ", buflen);
2074     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2075   } else {
2076     strncpy(buf, "Linux", buflen);
2077   }
2078 }
2079 
2080 void os::Linux::print_libversion_info(outputStream* st) {
2081   // libc, pthread
2082   st->print("libc:");
2083   st->print("%s ", os::Linux::glibc_version());
2084   st->print("%s ", os::Linux::libpthread_version());
2085   st->cr();
2086 }
2087 
2088 void os::Linux::print_full_memory_info(outputStream* st) {
2089   st->print("\n/proc/meminfo:\n");
2090   _print_ascii_file("/proc/meminfo", st);
2091   st->cr();
2092 }
2093 
2094 void os::print_memory_info(outputStream* st) {
2095 
2096   st->print("Memory:");
2097   st->print(" %dk page", os::vm_page_size()>>10);
2098 
2099   // values in struct sysinfo are "unsigned long"
2100   struct sysinfo si;
2101   sysinfo(&si);
2102 
2103   st->print(", physical " UINT64_FORMAT "k",
2104             os::physical_memory() >> 10);
2105   st->print("(" UINT64_FORMAT "k free)",
2106             os::available_memory() >> 10);
2107   st->print(", swap " UINT64_FORMAT "k",
2108             ((jlong)si.totalswap * si.mem_unit) >> 10);
2109   st->print("(" UINT64_FORMAT "k free)",
2110             ((jlong)si.freeswap * si.mem_unit) >> 10);
2111   st->cr();
2112 }
2113 
2114 // Print the first "model name" line and the first "flags" line
2115 // that we find and nothing more. We assume "model name" comes
2116 // before "flags" so if we find a second "model name", then the
2117 // "flags" field is considered missing.
2118 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2119 #if defined(IA32) || defined(AMD64)
2120   // Other platforms have less repetitive cpuinfo files
2121   FILE *fp = fopen("/proc/cpuinfo", "r");
2122   if (fp) {
2123     while (!feof(fp)) {
2124       if (fgets(buf, buflen, fp)) {
2125         // Assume model name comes before flags
2126         bool model_name_printed = false;
2127         if (strstr(buf, "model name") != NULL) {
2128           if (!model_name_printed) {
2129             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2130             st->print_raw(buf);
2131             model_name_printed = true;
2132           } else {
2133             // model name printed but not flags?  Odd, just return
2134             fclose(fp);
2135             return true;
2136           }
2137         }
2138         // print the flags line too
2139         if (strstr(buf, "flags") != NULL) {
2140           st->print_raw(buf);
2141           fclose(fp);
2142           return true;
2143         }
2144       }
2145     }
2146     fclose(fp);
2147   }
2148 #endif // x86 platforms
2149   return false;
2150 }
2151 
2152 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2153   // Only print the model name if the platform provides this as a summary
2154   if (!print_model_name_and_flags(st, buf, buflen)) {
2155     st->print("\n/proc/cpuinfo:\n");
2156     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2157       st->print_cr("  <Not Available>");
2158     }
2159   }
2160 }
2161 
2162 #if defined(AMD64) || defined(IA32) || defined(X32)
2163 const char* search_string = "model name";
2164 #elif defined(M68K)
2165 const char* search_string = "CPU";
2166 #elif defined(PPC64)
2167 const char* search_string = "cpu";
2168 #elif defined(S390)
2169 const char* search_string = "processor";
2170 #elif defined(SPARC)
2171 const char* search_string = "cpu";
2172 #else
2173 const char* search_string = "Processor";
2174 #endif
2175 
2176 // Parses the cpuinfo file for string representing the model name.
2177 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2178   FILE* fp = fopen("/proc/cpuinfo", "r");
2179   if (fp != NULL) {
2180     while (!feof(fp)) {
2181       char buf[256];
2182       if (fgets(buf, sizeof(buf), fp)) {
2183         char* start = strstr(buf, search_string);
2184         if (start != NULL) {
2185           char *ptr = start + strlen(search_string);
2186           char *end = buf + strlen(buf);
2187           while (ptr != end) {
2188              // skip whitespace and colon for the rest of the name.
2189              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2190                break;
2191              }
2192              ptr++;
2193           }
2194           if (ptr != end) {
2195             // reasonable string, get rid of newline and keep the rest
2196             char* nl = strchr(buf, '\n');
2197             if (nl != NULL) *nl = '\0';
2198             strncpy(cpuinfo, ptr, length);
2199             fclose(fp);
2200             return;
2201           }
2202         }
2203       }
2204     }
2205     fclose(fp);
2206   }
2207   // cpuinfo not found or parsing failed, just print generic string.  The entire
2208   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2209 #if   defined(AARCH64)
2210   strncpy(cpuinfo, "AArch64", length);
2211 #elif defined(AMD64)
2212   strncpy(cpuinfo, "x86_64", length);
2213 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2214   strncpy(cpuinfo, "ARM", length);
2215 #elif defined(IA32)
2216   strncpy(cpuinfo, "x86_32", length);
2217 #elif defined(IA64)
2218   strncpy(cpuinfo, "IA64", length);
2219 #elif defined(PPC)
2220   strncpy(cpuinfo, "PPC64", length);
2221 #elif defined(S390)
2222   strncpy(cpuinfo, "S390", length);
2223 #elif defined(SPARC)
2224   strncpy(cpuinfo, "sparcv9", length);
2225 #elif defined(ZERO_LIBARCH)
2226   strncpy(cpuinfo, ZERO_LIBARCH, length);
2227 #else
2228   strncpy(cpuinfo, "unknown", length);
2229 #endif
2230 }
2231 
2232 static void print_signal_handler(outputStream* st, int sig,
2233                                  char* buf, size_t buflen);
2234 
2235 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2236   st->print_cr("Signal Handlers:");
2237   print_signal_handler(st, SIGSEGV, buf, buflen);
2238   print_signal_handler(st, SIGBUS , buf, buflen);
2239   print_signal_handler(st, SIGFPE , buf, buflen);
2240   print_signal_handler(st, SIGPIPE, buf, buflen);
2241   print_signal_handler(st, SIGXFSZ, buf, buflen);
2242   print_signal_handler(st, SIGILL , buf, buflen);
2243   print_signal_handler(st, SR_signum, buf, buflen);
2244   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2245   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2246   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2247   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2248 #if defined(PPC64)
2249   print_signal_handler(st, SIGTRAP, buf, buflen);
2250 #endif
2251 }
2252 
2253 static char saved_jvm_path[MAXPATHLEN] = {0};
2254 
2255 // Find the full path to the current module, libjvm.so
2256 void os::jvm_path(char *buf, jint buflen) {
2257   // Error checking.
2258   if (buflen < MAXPATHLEN) {
2259     assert(false, "must use a large-enough buffer");
2260     buf[0] = '\0';
2261     return;
2262   }
2263   // Lazy resolve the path to current module.
2264   if (saved_jvm_path[0] != 0) {
2265     strcpy(buf, saved_jvm_path);
2266     return;
2267   }
2268 
2269   char dli_fname[MAXPATHLEN];
2270   bool ret = dll_address_to_library_name(
2271                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2272                                          dli_fname, sizeof(dli_fname), NULL);
2273   assert(ret, "cannot locate libjvm");
2274   char *rp = NULL;
2275   if (ret && dli_fname[0] != '\0') {
2276     rp = os::Posix::realpath(dli_fname, buf, buflen);
2277   }
2278   if (rp == NULL) {
2279     return;
2280   }
2281 
2282   if (Arguments::sun_java_launcher_is_altjvm()) {
2283     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2284     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2285     // If "/jre/lib/" appears at the right place in the string, then
2286     // assume we are installed in a JDK and we're done. Otherwise, check
2287     // for a JAVA_HOME environment variable and fix up the path so it
2288     // looks like libjvm.so is installed there (append a fake suffix
2289     // hotspot/libjvm.so).
2290     const char *p = buf + strlen(buf) - 1;
2291     for (int count = 0; p > buf && count < 5; ++count) {
2292       for (--p; p > buf && *p != '/'; --p)
2293         /* empty */ ;
2294     }
2295 
2296     if (strncmp(p, "/jre/lib/", 9) != 0) {
2297       // Look for JAVA_HOME in the environment.
2298       char* java_home_var = ::getenv("JAVA_HOME");
2299       if (java_home_var != NULL && java_home_var[0] != 0) {
2300         char* jrelib_p;
2301         int len;
2302 
2303         // Check the current module name "libjvm.so".
2304         p = strrchr(buf, '/');
2305         if (p == NULL) {
2306           return;
2307         }
2308         assert(strstr(p, "/libjvm") == p, "invalid library name");
2309 
2310         rp = os::Posix::realpath(java_home_var, buf, buflen);
2311         if (rp == NULL) {
2312           return;
2313         }
2314 
2315         // determine if this is a legacy image or modules image
2316         // modules image doesn't have "jre" subdirectory
2317         len = strlen(buf);
2318         assert(len < buflen, "Ran out of buffer room");
2319         jrelib_p = buf + len;
2320         snprintf(jrelib_p, buflen-len, "/jre/lib");
2321         if (0 != access(buf, F_OK)) {
2322           snprintf(jrelib_p, buflen-len, "/lib");
2323         }
2324 
2325         if (0 == access(buf, F_OK)) {
2326           // Use current module name "libjvm.so"
2327           len = strlen(buf);
2328           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2329         } else {
2330           // Go back to path of .so
2331           rp = os::Posix::realpath(dli_fname, buf, buflen);
2332           if (rp == NULL) {
2333             return;
2334           }
2335         }
2336       }
2337     }
2338   }
2339 
2340   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2341   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2342 }
2343 
2344 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2345   // no prefix required, not even "_"
2346 }
2347 
2348 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2349   // no suffix required
2350 }
2351 
2352 ////////////////////////////////////////////////////////////////////////////////
2353 // sun.misc.Signal support
2354 
2355 static volatile jint sigint_count = 0;
2356 
2357 static void UserHandler(int sig, void *siginfo, void *context) {
2358   // 4511530 - sem_post is serialized and handled by the manager thread. When
2359   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2360   // don't want to flood the manager thread with sem_post requests.
2361   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2362     return;
2363   }
2364 
2365   // Ctrl-C is pressed during error reporting, likely because the error
2366   // handler fails to abort. Let VM die immediately.
2367   if (sig == SIGINT && VMError::is_error_reported()) {
2368     os::die();
2369   }
2370 
2371   os::signal_notify(sig);
2372 }
2373 
2374 void* os::user_handler() {
2375   return CAST_FROM_FN_PTR(void*, UserHandler);
2376 }
2377 
2378 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2379   struct timespec ts;
2380   // Semaphore's are always associated with CLOCK_REALTIME
2381   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2382   // see unpackTime for discussion on overflow checking
2383   if (sec >= MAX_SECS) {
2384     ts.tv_sec += MAX_SECS;
2385     ts.tv_nsec = 0;
2386   } else {
2387     ts.tv_sec += sec;
2388     ts.tv_nsec += nsec;
2389     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2390       ts.tv_nsec -= NANOSECS_PER_SEC;
2391       ++ts.tv_sec; // note: this must be <= max_secs
2392     }
2393   }
2394 
2395   return ts;
2396 }
2397 
2398 extern "C" {
2399   typedef void (*sa_handler_t)(int);
2400   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2401 }
2402 
2403 void* os::signal(int signal_number, void* handler) {
2404   struct sigaction sigAct, oldSigAct;
2405 
2406   sigfillset(&(sigAct.sa_mask));
2407   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2408   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2409 
2410   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2411     // -1 means registration failed
2412     return (void *)-1;
2413   }
2414 
2415   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2416 }
2417 
2418 void os::signal_raise(int signal_number) {
2419   ::raise(signal_number);
2420 }
2421 
2422 // The following code is moved from os.cpp for making this
2423 // code platform specific, which it is by its very nature.
2424 
2425 // Will be modified when max signal is changed to be dynamic
2426 int os::sigexitnum_pd() {
2427   return NSIG;
2428 }
2429 
2430 // a counter for each possible signal value
2431 static volatile jint pending_signals[NSIG+1] = { 0 };
2432 
2433 // Linux(POSIX) specific hand shaking semaphore.
2434 static sem_t sig_sem;
2435 static PosixSemaphore sr_semaphore;
2436 
2437 void os::signal_init_pd() {
2438   // Initialize signal structures
2439   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2440 
2441   // Initialize signal semaphore
2442   ::sem_init(&sig_sem, 0, 0);
2443 }
2444 
2445 void os::signal_notify(int sig) {
2446   Atomic::inc(&pending_signals[sig]);
2447   ::sem_post(&sig_sem);
2448 }
2449 
2450 static int check_pending_signals(bool wait) {
2451   Atomic::store(0, &sigint_count);
2452   for (;;) {
2453     for (int i = 0; i < NSIG + 1; i++) {
2454       jint n = pending_signals[i];
2455       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2456         return i;
2457       }
2458     }
2459     if (!wait) {
2460       return -1;
2461     }
2462     JavaThread *thread = JavaThread::current();
2463     ThreadBlockInVM tbivm(thread);
2464 
2465     bool threadIsSuspended;
2466     do {
2467       thread->set_suspend_equivalent();
2468       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2469       ::sem_wait(&sig_sem);
2470 
2471       // were we externally suspended while we were waiting?
2472       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2473       if (threadIsSuspended) {
2474         // The semaphore has been incremented, but while we were waiting
2475         // another thread suspended us. We don't want to continue running
2476         // while suspended because that would surprise the thread that
2477         // suspended us.
2478         ::sem_post(&sig_sem);
2479 
2480         thread->java_suspend_self();
2481       }
2482     } while (threadIsSuspended);
2483   }
2484 }
2485 
2486 int os::signal_lookup() {
2487   return check_pending_signals(false);
2488 }
2489 
2490 int os::signal_wait() {
2491   return check_pending_signals(true);
2492 }
2493 
2494 ////////////////////////////////////////////////////////////////////////////////
2495 // Virtual Memory
2496 
2497 int os::vm_page_size() {
2498   // Seems redundant as all get out
2499   assert(os::Linux::page_size() != -1, "must call os::init");
2500   return os::Linux::page_size();
2501 }
2502 
2503 // Solaris allocates memory by pages.
2504 int os::vm_allocation_granularity() {
2505   assert(os::Linux::page_size() != -1, "must call os::init");
2506   return os::Linux::page_size();
2507 }
2508 
2509 // Rationale behind this function:
2510 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2511 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2512 //  samples for JITted code. Here we create private executable mapping over the code cache
2513 //  and then we can use standard (well, almost, as mapping can change) way to provide
2514 //  info for the reporting script by storing timestamp and location of symbol
2515 void linux_wrap_code(char* base, size_t size) {
2516   static volatile jint cnt = 0;
2517 
2518   if (!UseOprofile) {
2519     return;
2520   }
2521 
2522   char buf[PATH_MAX+1];
2523   int num = Atomic::add(1, &cnt);
2524 
2525   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2526            os::get_temp_directory(), os::current_process_id(), num);
2527   unlink(buf);
2528 
2529   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2530 
2531   if (fd != -1) {
2532     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2533     if (rv != (off_t)-1) {
2534       if (::write(fd, "", 1) == 1) {
2535         mmap(base, size,
2536              PROT_READ|PROT_WRITE|PROT_EXEC,
2537              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2538       }
2539     }
2540     ::close(fd);
2541     unlink(buf);
2542   }
2543 }
2544 
2545 static bool recoverable_mmap_error(int err) {
2546   // See if the error is one we can let the caller handle. This
2547   // list of errno values comes from JBS-6843484. I can't find a
2548   // Linux man page that documents this specific set of errno
2549   // values so while this list currently matches Solaris, it may
2550   // change as we gain experience with this failure mode.
2551   switch (err) {
2552   case EBADF:
2553   case EINVAL:
2554   case ENOTSUP:
2555     // let the caller deal with these errors
2556     return true;
2557 
2558   default:
2559     // Any remaining errors on this OS can cause our reserved mapping
2560     // to be lost. That can cause confusion where different data
2561     // structures think they have the same memory mapped. The worst
2562     // scenario is if both the VM and a library think they have the
2563     // same memory mapped.
2564     return false;
2565   }
2566 }
2567 
2568 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2569                                     int err) {
2570   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2571           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2572           os::strerror(err), err);
2573 }
2574 
2575 static void warn_fail_commit_memory(char* addr, size_t size,
2576                                     size_t alignment_hint, bool exec,
2577                                     int err) {
2578   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2579           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2580           alignment_hint, exec, os::strerror(err), err);
2581 }
2582 
2583 // NOTE: Linux kernel does not really reserve the pages for us.
2584 //       All it does is to check if there are enough free pages
2585 //       left at the time of mmap(). This could be a potential
2586 //       problem.
2587 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2588   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2589   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2590                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2591   if (res != (uintptr_t) MAP_FAILED) {
2592     if (UseNUMAInterleaving) {
2593       numa_make_global(addr, size);
2594     }
2595     return 0;
2596   }
2597 
2598   int err = errno;  // save errno from mmap() call above
2599 
2600   if (!recoverable_mmap_error(err)) {
2601     warn_fail_commit_memory(addr, size, exec, err);
2602     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2603   }
2604 
2605   return err;
2606 }
2607 
2608 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2609   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2610 }
2611 
2612 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2613                                   const char* mesg) {
2614   assert(mesg != NULL, "mesg must be specified");
2615   int err = os::Linux::commit_memory_impl(addr, size, exec);
2616   if (err != 0) {
2617     // the caller wants all commit errors to exit with the specified mesg:
2618     warn_fail_commit_memory(addr, size, exec, err);
2619     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2620   }
2621 }
2622 
2623 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2624 #ifndef MAP_HUGETLB
2625   #define MAP_HUGETLB 0x40000
2626 #endif
2627 
2628 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2629 #ifndef MADV_HUGEPAGE
2630   #define MADV_HUGEPAGE 14
2631 #endif
2632 
2633 int os::Linux::commit_memory_impl(char* addr, size_t size,
2634                                   size_t alignment_hint, bool exec) {
2635   int err = os::Linux::commit_memory_impl(addr, size, exec);
2636   if (err == 0) {
2637     realign_memory(addr, size, alignment_hint);
2638   }
2639   return err;
2640 }
2641 
2642 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2643                           bool exec) {
2644   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2645 }
2646 
2647 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2648                                   size_t alignment_hint, bool exec,
2649                                   const char* mesg) {
2650   assert(mesg != NULL, "mesg must be specified");
2651   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2652   if (err != 0) {
2653     // the caller wants all commit errors to exit with the specified mesg:
2654     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2655     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2656   }
2657 }
2658 
2659 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2660   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2661     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2662     // be supported or the memory may already be backed by huge pages.
2663     ::madvise(addr, bytes, MADV_HUGEPAGE);
2664   }
2665 }
2666 
2667 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2668   // This method works by doing an mmap over an existing mmaping and effectively discarding
2669   // the existing pages. However it won't work for SHM-based large pages that cannot be
2670   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2671   // small pages on top of the SHM segment. This method always works for small pages, so we
2672   // allow that in any case.
2673   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2674     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2675   }
2676 }
2677 
2678 void os::numa_make_global(char *addr, size_t bytes) {
2679   Linux::numa_interleave_memory(addr, bytes);
2680 }
2681 
2682 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2683 // bind policy to MPOL_PREFERRED for the current thread.
2684 #define USE_MPOL_PREFERRED 0
2685 
2686 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2687   // To make NUMA and large pages more robust when both enabled, we need to ease
2688   // the requirements on where the memory should be allocated. MPOL_BIND is the
2689   // default policy and it will force memory to be allocated on the specified
2690   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2691   // the specified node, but will not force it. Using this policy will prevent
2692   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2693   // free large pages.
2694   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2695   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2696 }
2697 
2698 bool os::numa_topology_changed() { return false; }
2699 
2700 size_t os::numa_get_groups_num() {
2701   // Return just the number of nodes in which it's possible to allocate memory
2702   // (in numa terminology, configured nodes).
2703   return Linux::numa_num_configured_nodes();
2704 }
2705 
2706 int os::numa_get_group_id() {
2707   int cpu_id = Linux::sched_getcpu();
2708   if (cpu_id != -1) {
2709     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2710     if (lgrp_id != -1) {
2711       return lgrp_id;
2712     }
2713   }
2714   return 0;
2715 }
2716 
2717 int os::Linux::get_existing_num_nodes() {
2718   size_t node;
2719   size_t highest_node_number = Linux::numa_max_node();
2720   int num_nodes = 0;
2721 
2722   // Get the total number of nodes in the system including nodes without memory.
2723   for (node = 0; node <= highest_node_number; node++) {
2724     if (isnode_in_existing_nodes(node)) {
2725       num_nodes++;
2726     }
2727   }
2728   return num_nodes;
2729 }
2730 
2731 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2732   size_t highest_node_number = Linux::numa_max_node();
2733   size_t i = 0;
2734 
2735   // Map all node ids in which is possible to allocate memory. Also nodes are
2736   // not always consecutively available, i.e. available from 0 to the highest
2737   // node number.
2738   for (size_t node = 0; node <= highest_node_number; node++) {
2739     if (Linux::isnode_in_configured_nodes(node)) {
2740       ids[i++] = node;
2741     }
2742   }
2743   return i;
2744 }
2745 
2746 bool os::get_page_info(char *start, page_info* info) {
2747   return false;
2748 }
2749 
2750 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2751                      page_info* page_found) {
2752   return end;
2753 }
2754 
2755 
2756 int os::Linux::sched_getcpu_syscall(void) {
2757   unsigned int cpu = 0;
2758   int retval = -1;
2759 
2760 #if defined(IA32)
2761   #ifndef SYS_getcpu
2762     #define SYS_getcpu 318
2763   #endif
2764   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2765 #elif defined(AMD64)
2766 // Unfortunately we have to bring all these macros here from vsyscall.h
2767 // to be able to compile on old linuxes.
2768   #define __NR_vgetcpu 2
2769   #define VSYSCALL_START (-10UL << 20)
2770   #define VSYSCALL_SIZE 1024
2771   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2772   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2773   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2774   retval = vgetcpu(&cpu, NULL, NULL);
2775 #endif
2776 
2777   return (retval == -1) ? retval : cpu;
2778 }
2779 
2780 void os::Linux::sched_getcpu_init() {
2781   // sched_getcpu() should be in libc.
2782   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2783                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2784 
2785   // If it's not, try a direct syscall.
2786   if (sched_getcpu() == -1) {
2787     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2788                                     (void*)&sched_getcpu_syscall));
2789   }
2790 }
2791 
2792 // Something to do with the numa-aware allocator needs these symbols
2793 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2794 extern "C" JNIEXPORT void numa_error(char *where) { }
2795 
2796 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2797 // load symbol from base version instead.
2798 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2799   void *f = dlvsym(handle, name, "libnuma_1.1");
2800   if (f == NULL) {
2801     f = dlsym(handle, name);
2802   }
2803   return f;
2804 }
2805 
2806 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2807 // Return NULL if the symbol is not defined in this particular version.
2808 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2809   return dlvsym(handle, name, "libnuma_1.2");
2810 }
2811 
2812 bool os::Linux::libnuma_init() {
2813   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2814     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2815     if (handle != NULL) {
2816       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2817                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2818       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2819                                        libnuma_dlsym(handle, "numa_max_node")));
2820       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2821                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2822       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2823                                         libnuma_dlsym(handle, "numa_available")));
2824       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2825                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2826       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2827                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2828       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2829                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2830       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2831                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2832       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2833                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2834       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2835                                        libnuma_dlsym(handle, "numa_distance")));
2836 
2837       if (numa_available() != -1) {
2838         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2839         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2840         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2841         // Create an index -> node mapping, since nodes are not always consecutive
2842         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2843         rebuild_nindex_to_node_map();
2844         // Create a cpu -> node mapping
2845         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2846         rebuild_cpu_to_node_map();
2847         return true;
2848       }
2849     }
2850   }
2851   return false;
2852 }
2853 
2854 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2855   // Creating guard page is very expensive. Java thread has HotSpot
2856   // guard pages, only enable glibc guard page for non-Java threads.
2857   // (Remember: compiler thread is a Java thread, too!)
2858   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2859 }
2860 
2861 void os::Linux::rebuild_nindex_to_node_map() {
2862   int highest_node_number = Linux::numa_max_node();
2863 
2864   nindex_to_node()->clear();
2865   for (int node = 0; node <= highest_node_number; node++) {
2866     if (Linux::isnode_in_existing_nodes(node)) {
2867       nindex_to_node()->append(node);
2868     }
2869   }
2870 }
2871 
2872 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2873 // The table is later used in get_node_by_cpu().
2874 void os::Linux::rebuild_cpu_to_node_map() {
2875   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2876                               // in libnuma (possible values are starting from 16,
2877                               // and continuing up with every other power of 2, but less
2878                               // than the maximum number of CPUs supported by kernel), and
2879                               // is a subject to change (in libnuma version 2 the requirements
2880                               // are more reasonable) we'll just hardcode the number they use
2881                               // in the library.
2882   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2883 
2884   size_t cpu_num = processor_count();
2885   size_t cpu_map_size = NCPUS / BitsPerCLong;
2886   size_t cpu_map_valid_size =
2887     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2888 
2889   cpu_to_node()->clear();
2890   cpu_to_node()->at_grow(cpu_num - 1);
2891 
2892   size_t node_num = get_existing_num_nodes();
2893 
2894   int distance = 0;
2895   int closest_distance = INT_MAX;
2896   int closest_node = 0;
2897   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2898   for (size_t i = 0; i < node_num; i++) {
2899     // Check if node is configured (not a memory-less node). If it is not, find
2900     // the closest configured node.
2901     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2902       closest_distance = INT_MAX;
2903       // Check distance from all remaining nodes in the system. Ignore distance
2904       // from itself and from another non-configured node.
2905       for (size_t m = 0; m < node_num; m++) {
2906         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2907           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2908           // If a closest node is found, update. There is always at least one
2909           // configured node in the system so there is always at least one node
2910           // close.
2911           if (distance != 0 && distance < closest_distance) {
2912             closest_distance = distance;
2913             closest_node = nindex_to_node()->at(m);
2914           }
2915         }
2916       }
2917      } else {
2918        // Current node is already a configured node.
2919        closest_node = nindex_to_node()->at(i);
2920      }
2921 
2922     // Get cpus from the original node and map them to the closest node. If node
2923     // is a configured node (not a memory-less node), then original node and
2924     // closest node are the same.
2925     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2926       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2927         if (cpu_map[j] != 0) {
2928           for (size_t k = 0; k < BitsPerCLong; k++) {
2929             if (cpu_map[j] & (1UL << k)) {
2930               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2931             }
2932           }
2933         }
2934       }
2935     }
2936   }
2937   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2938 }
2939 
2940 int os::Linux::get_node_by_cpu(int cpu_id) {
2941   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2942     return cpu_to_node()->at(cpu_id);
2943   }
2944   return -1;
2945 }
2946 
2947 GrowableArray<int>* os::Linux::_cpu_to_node;
2948 GrowableArray<int>* os::Linux::_nindex_to_node;
2949 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2950 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2951 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2952 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2953 os::Linux::numa_available_func_t os::Linux::_numa_available;
2954 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2955 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2956 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2957 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2958 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2959 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2960 unsigned long* os::Linux::_numa_all_nodes;
2961 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2962 struct bitmask* os::Linux::_numa_nodes_ptr;
2963 
2964 bool os::pd_uncommit_memory(char* addr, size_t size) {
2965   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2966                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2967   return res  != (uintptr_t) MAP_FAILED;
2968 }
2969 
2970 static address get_stack_commited_bottom(address bottom, size_t size) {
2971   address nbot = bottom;
2972   address ntop = bottom + size;
2973 
2974   size_t page_sz = os::vm_page_size();
2975   unsigned pages = size / page_sz;
2976 
2977   unsigned char vec[1];
2978   unsigned imin = 1, imax = pages + 1, imid;
2979   int mincore_return_value = 0;
2980 
2981   assert(imin <= imax, "Unexpected page size");
2982 
2983   while (imin < imax) {
2984     imid = (imax + imin) / 2;
2985     nbot = ntop - (imid * page_sz);
2986 
2987     // Use a trick with mincore to check whether the page is mapped or not.
2988     // mincore sets vec to 1 if page resides in memory and to 0 if page
2989     // is swapped output but if page we are asking for is unmapped
2990     // it returns -1,ENOMEM
2991     mincore_return_value = mincore(nbot, page_sz, vec);
2992 
2993     if (mincore_return_value == -1) {
2994       // Page is not mapped go up
2995       // to find first mapped page
2996       if (errno != EAGAIN) {
2997         assert(errno == ENOMEM, "Unexpected mincore errno");
2998         imax = imid;
2999       }
3000     } else {
3001       // Page is mapped go down
3002       // to find first not mapped page
3003       imin = imid + 1;
3004     }
3005   }
3006 
3007   nbot = nbot + page_sz;
3008 
3009   // Adjust stack bottom one page up if last checked page is not mapped
3010   if (mincore_return_value == -1) {
3011     nbot = nbot + page_sz;
3012   }
3013 
3014   return nbot;
3015 }
3016 
3017 
3018 // Linux uses a growable mapping for the stack, and if the mapping for
3019 // the stack guard pages is not removed when we detach a thread the
3020 // stack cannot grow beyond the pages where the stack guard was
3021 // mapped.  If at some point later in the process the stack expands to
3022 // that point, the Linux kernel cannot expand the stack any further
3023 // because the guard pages are in the way, and a segfault occurs.
3024 //
3025 // However, it's essential not to split the stack region by unmapping
3026 // a region (leaving a hole) that's already part of the stack mapping,
3027 // so if the stack mapping has already grown beyond the guard pages at
3028 // the time we create them, we have to truncate the stack mapping.
3029 // So, we need to know the extent of the stack mapping when
3030 // create_stack_guard_pages() is called.
3031 
3032 // We only need this for stacks that are growable: at the time of
3033 // writing thread stacks don't use growable mappings (i.e. those
3034 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3035 // only applies to the main thread.
3036 
3037 // If the (growable) stack mapping already extends beyond the point
3038 // where we're going to put our guard pages, truncate the mapping at
3039 // that point by munmap()ping it.  This ensures that when we later
3040 // munmap() the guard pages we don't leave a hole in the stack
3041 // mapping. This only affects the main/initial thread
3042 
3043 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3044   if (os::Linux::is_initial_thread()) {
3045     // As we manually grow stack up to bottom inside create_attached_thread(),
3046     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3047     // we don't need to do anything special.
3048     // Check it first, before calling heavy function.
3049     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3050     unsigned char vec[1];
3051 
3052     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3053       // Fallback to slow path on all errors, including EAGAIN
3054       stack_extent = (uintptr_t) get_stack_commited_bottom(
3055                                                            os::Linux::initial_thread_stack_bottom(),
3056                                                            (size_t)addr - stack_extent);
3057     }
3058 
3059     if (stack_extent < (uintptr_t)addr) {
3060       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3061     }
3062   }
3063 
3064   return os::commit_memory(addr, size, !ExecMem);
3065 }
3066 
3067 // If this is a growable mapping, remove the guard pages entirely by
3068 // munmap()ping them.  If not, just call uncommit_memory(). This only
3069 // affects the main/initial thread, but guard against future OS changes
3070 // It's safe to always unmap guard pages for initial thread because we
3071 // always place it right after end of the mapped region
3072 
3073 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3074   uintptr_t stack_extent, stack_base;
3075 
3076   if (os::Linux::is_initial_thread()) {
3077     return ::munmap(addr, size) == 0;
3078   }
3079 
3080   return os::uncommit_memory(addr, size);
3081 }
3082 
3083 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3084 // at 'requested_addr'. If there are existing memory mappings at the same
3085 // location, however, they will be overwritten. If 'fixed' is false,
3086 // 'requested_addr' is only treated as a hint, the return value may or
3087 // may not start from the requested address. Unlike Linux mmap(), this
3088 // function returns NULL to indicate failure.
3089 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3090   char * addr;
3091   int flags;
3092 
3093   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3094   if (fixed) {
3095     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3096     flags |= MAP_FIXED;
3097   }
3098 
3099   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3100   // touch an uncommitted page. Otherwise, the read/write might
3101   // succeed if we have enough swap space to back the physical page.
3102   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3103                        flags, -1, 0);
3104 
3105   return addr == MAP_FAILED ? NULL : addr;
3106 }
3107 
3108 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3109 //   (req_addr != NULL) or with a given alignment.
3110 //  - bytes shall be a multiple of alignment.
3111 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3112 //  - alignment sets the alignment at which memory shall be allocated.
3113 //     It must be a multiple of allocation granularity.
3114 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3115 //  req_addr or NULL.
3116 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3117 
3118   size_t extra_size = bytes;
3119   if (req_addr == NULL && alignment > 0) {
3120     extra_size += alignment;
3121   }
3122 
3123   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3124     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3125     -1, 0);
3126   if (start == MAP_FAILED) {
3127     start = NULL;
3128   } else {
3129     if (req_addr != NULL) {
3130       if (start != req_addr) {
3131         ::munmap(start, extra_size);
3132         start = NULL;
3133       }
3134     } else {
3135       char* const start_aligned = align_up(start, alignment);
3136       char* const end_aligned = start_aligned + bytes;
3137       char* const end = start + extra_size;
3138       if (start_aligned > start) {
3139         ::munmap(start, start_aligned - start);
3140       }
3141       if (end_aligned < end) {
3142         ::munmap(end_aligned, end - end_aligned);
3143       }
3144       start = start_aligned;
3145     }
3146   }
3147   return start;
3148 }
3149 
3150 static int anon_munmap(char * addr, size_t size) {
3151   return ::munmap(addr, size) == 0;
3152 }
3153 
3154 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3155                             size_t alignment_hint) {
3156   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3157 }
3158 
3159 bool os::pd_release_memory(char* addr, size_t size) {
3160   return anon_munmap(addr, size);
3161 }
3162 
3163 static bool linux_mprotect(char* addr, size_t size, int prot) {
3164   // Linux wants the mprotect address argument to be page aligned.
3165   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3166 
3167   // According to SUSv3, mprotect() should only be used with mappings
3168   // established by mmap(), and mmap() always maps whole pages. Unaligned
3169   // 'addr' likely indicates problem in the VM (e.g. trying to change
3170   // protection of malloc'ed or statically allocated memory). Check the
3171   // caller if you hit this assert.
3172   assert(addr == bottom, "sanity check");
3173 
3174   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3175   return ::mprotect(bottom, size, prot) == 0;
3176 }
3177 
3178 // Set protections specified
3179 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3180                         bool is_committed) {
3181   unsigned int p = 0;
3182   switch (prot) {
3183   case MEM_PROT_NONE: p = PROT_NONE; break;
3184   case MEM_PROT_READ: p = PROT_READ; break;
3185   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3186   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3187   default:
3188     ShouldNotReachHere();
3189   }
3190   // is_committed is unused.
3191   return linux_mprotect(addr, bytes, p);
3192 }
3193 
3194 bool os::guard_memory(char* addr, size_t size) {
3195   return linux_mprotect(addr, size, PROT_NONE);
3196 }
3197 
3198 bool os::unguard_memory(char* addr, size_t size) {
3199   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3200 }
3201 
3202 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3203                                                     size_t page_size) {
3204   bool result = false;
3205   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3206                  MAP_ANONYMOUS|MAP_PRIVATE,
3207                  -1, 0);
3208   if (p != MAP_FAILED) {
3209     void *aligned_p = align_up(p, page_size);
3210 
3211     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3212 
3213     munmap(p, page_size * 2);
3214   }
3215 
3216   if (warn && !result) {
3217     warning("TransparentHugePages is not supported by the operating system.");
3218   }
3219 
3220   return result;
3221 }
3222 
3223 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3224   bool result = false;
3225   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3226                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3227                  -1, 0);
3228 
3229   if (p != MAP_FAILED) {
3230     // We don't know if this really is a huge page or not.
3231     FILE *fp = fopen("/proc/self/maps", "r");
3232     if (fp) {
3233       while (!feof(fp)) {
3234         char chars[257];
3235         long x = 0;
3236         if (fgets(chars, sizeof(chars), fp)) {
3237           if (sscanf(chars, "%lx-%*x", &x) == 1
3238               && x == (long)p) {
3239             if (strstr (chars, "hugepage")) {
3240               result = true;
3241               break;
3242             }
3243           }
3244         }
3245       }
3246       fclose(fp);
3247     }
3248     munmap(p, page_size);
3249   }
3250 
3251   if (warn && !result) {
3252     warning("HugeTLBFS is not supported by the operating system.");
3253   }
3254 
3255   return result;
3256 }
3257 
3258 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3259 //
3260 // From the coredump_filter documentation:
3261 //
3262 // - (bit 0) anonymous private memory
3263 // - (bit 1) anonymous shared memory
3264 // - (bit 2) file-backed private memory
3265 // - (bit 3) file-backed shared memory
3266 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3267 //           effective only if the bit 2 is cleared)
3268 // - (bit 5) hugetlb private memory
3269 // - (bit 6) hugetlb shared memory
3270 //
3271 static void set_coredump_filter(void) {
3272   FILE *f;
3273   long cdm;
3274 
3275   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3276     return;
3277   }
3278 
3279   if (fscanf(f, "%lx", &cdm) != 1) {
3280     fclose(f);
3281     return;
3282   }
3283 
3284   rewind(f);
3285 
3286   if ((cdm & LARGEPAGES_BIT) == 0) {
3287     cdm |= LARGEPAGES_BIT;
3288     fprintf(f, "%#lx", cdm);
3289   }
3290 
3291   fclose(f);
3292 }
3293 
3294 // Large page support
3295 
3296 static size_t _large_page_size = 0;
3297 
3298 size_t os::Linux::find_large_page_size() {
3299   size_t large_page_size = 0;
3300 
3301   // large_page_size on Linux is used to round up heap size. x86 uses either
3302   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3303   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3304   // page as large as 256M.
3305   //
3306   // Here we try to figure out page size by parsing /proc/meminfo and looking
3307   // for a line with the following format:
3308   //    Hugepagesize:     2048 kB
3309   //
3310   // If we can't determine the value (e.g. /proc is not mounted, or the text
3311   // format has been changed), we'll use the largest page size supported by
3312   // the processor.
3313 
3314 #ifndef ZERO
3315   large_page_size =
3316     AARCH64_ONLY(2 * M)
3317     AMD64_ONLY(2 * M)
3318     ARM32_ONLY(2 * M)
3319     IA32_ONLY(4 * M)
3320     IA64_ONLY(256 * M)
3321     PPC_ONLY(4 * M)
3322     S390_ONLY(1 * M)
3323     SPARC_ONLY(4 * M);
3324 #endif // ZERO
3325 
3326   FILE *fp = fopen("/proc/meminfo", "r");
3327   if (fp) {
3328     while (!feof(fp)) {
3329       int x = 0;
3330       char buf[16];
3331       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3332         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3333           large_page_size = x * K;
3334           break;
3335         }
3336       } else {
3337         // skip to next line
3338         for (;;) {
3339           int ch = fgetc(fp);
3340           if (ch == EOF || ch == (int)'\n') break;
3341         }
3342       }
3343     }
3344     fclose(fp);
3345   }
3346 
3347   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3348     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3349             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3350             proper_unit_for_byte_size(large_page_size));
3351   }
3352 
3353   return large_page_size;
3354 }
3355 
3356 size_t os::Linux::setup_large_page_size() {
3357   _large_page_size = Linux::find_large_page_size();
3358   const size_t default_page_size = (size_t)Linux::page_size();
3359   if (_large_page_size > default_page_size) {
3360     _page_sizes[0] = _large_page_size;
3361     _page_sizes[1] = default_page_size;
3362     _page_sizes[2] = 0;
3363   }
3364 
3365   return _large_page_size;
3366 }
3367 
3368 bool os::Linux::setup_large_page_type(size_t page_size) {
3369   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3370       FLAG_IS_DEFAULT(UseSHM) &&
3371       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3372 
3373     // The type of large pages has not been specified by the user.
3374 
3375     // Try UseHugeTLBFS and then UseSHM.
3376     UseHugeTLBFS = UseSHM = true;
3377 
3378     // Don't try UseTransparentHugePages since there are known
3379     // performance issues with it turned on. This might change in the future.
3380     UseTransparentHugePages = false;
3381   }
3382 
3383   if (UseTransparentHugePages) {
3384     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3385     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3386       UseHugeTLBFS = false;
3387       UseSHM = false;
3388       return true;
3389     }
3390     UseTransparentHugePages = false;
3391   }
3392 
3393   if (UseHugeTLBFS) {
3394     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3395     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3396       UseSHM = false;
3397       return true;
3398     }
3399     UseHugeTLBFS = false;
3400   }
3401 
3402   return UseSHM;
3403 }
3404 
3405 void os::large_page_init() {
3406   if (!UseLargePages &&
3407       !UseTransparentHugePages &&
3408       !UseHugeTLBFS &&
3409       !UseSHM) {
3410     // Not using large pages.
3411     return;
3412   }
3413 
3414   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3415     // The user explicitly turned off large pages.
3416     // Ignore the rest of the large pages flags.
3417     UseTransparentHugePages = false;
3418     UseHugeTLBFS = false;
3419     UseSHM = false;
3420     return;
3421   }
3422 
3423   size_t large_page_size = Linux::setup_large_page_size();
3424   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3425 
3426   set_coredump_filter();
3427 }
3428 
3429 #ifndef SHM_HUGETLB
3430   #define SHM_HUGETLB 04000
3431 #endif
3432 
3433 #define shm_warning_format(format, ...)              \
3434   do {                                               \
3435     if (UseLargePages &&                             \
3436         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3437          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3438          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3439       warning(format, __VA_ARGS__);                  \
3440     }                                                \
3441   } while (0)
3442 
3443 #define shm_warning(str) shm_warning_format("%s", str)
3444 
3445 #define shm_warning_with_errno(str)                \
3446   do {                                             \
3447     int err = errno;                               \
3448     shm_warning_format(str " (error = %d)", err);  \
3449   } while (0)
3450 
3451 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3452   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3453 
3454   if (!is_aligned(alignment, SHMLBA)) {
3455     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3456     return NULL;
3457   }
3458 
3459   // To ensure that we get 'alignment' aligned memory from shmat,
3460   // we pre-reserve aligned virtual memory and then attach to that.
3461 
3462   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3463   if (pre_reserved_addr == NULL) {
3464     // Couldn't pre-reserve aligned memory.
3465     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3466     return NULL;
3467   }
3468 
3469   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3470   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3471 
3472   if ((intptr_t)addr == -1) {
3473     int err = errno;
3474     shm_warning_with_errno("Failed to attach shared memory.");
3475 
3476     assert(err != EACCES, "Unexpected error");
3477     assert(err != EIDRM,  "Unexpected error");
3478     assert(err != EINVAL, "Unexpected error");
3479 
3480     // Since we don't know if the kernel unmapped the pre-reserved memory area
3481     // we can't unmap it, since that would potentially unmap memory that was
3482     // mapped from other threads.
3483     return NULL;
3484   }
3485 
3486   return addr;
3487 }
3488 
3489 static char* shmat_at_address(int shmid, char* req_addr) {
3490   if (!is_aligned(req_addr, SHMLBA)) {
3491     assert(false, "Requested address needs to be SHMLBA aligned");
3492     return NULL;
3493   }
3494 
3495   char* addr = (char*)shmat(shmid, req_addr, 0);
3496 
3497   if ((intptr_t)addr == -1) {
3498     shm_warning_with_errno("Failed to attach shared memory.");
3499     return NULL;
3500   }
3501 
3502   return addr;
3503 }
3504 
3505 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3506   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3507   if (req_addr != NULL) {
3508     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3509     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3510     return shmat_at_address(shmid, req_addr);
3511   }
3512 
3513   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3514   // return large page size aligned memory addresses when req_addr == NULL.
3515   // However, if the alignment is larger than the large page size, we have
3516   // to manually ensure that the memory returned is 'alignment' aligned.
3517   if (alignment > os::large_page_size()) {
3518     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3519     return shmat_with_alignment(shmid, bytes, alignment);
3520   } else {
3521     return shmat_at_address(shmid, NULL);
3522   }
3523 }
3524 
3525 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3526                                             char* req_addr, bool exec) {
3527   // "exec" is passed in but not used.  Creating the shared image for
3528   // the code cache doesn't have an SHM_X executable permission to check.
3529   assert(UseLargePages && UseSHM, "only for SHM large pages");
3530   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3531   assert(is_aligned(req_addr, alignment), "Unaligned address");
3532 
3533   if (!is_aligned(bytes, os::large_page_size())) {
3534     return NULL; // Fallback to small pages.
3535   }
3536 
3537   // Create a large shared memory region to attach to based on size.
3538   // Currently, size is the total size of the heap.
3539   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3540   if (shmid == -1) {
3541     // Possible reasons for shmget failure:
3542     // 1. shmmax is too small for Java heap.
3543     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3544     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3545     // 2. not enough large page memory.
3546     //    > check available large pages: cat /proc/meminfo
3547     //    > increase amount of large pages:
3548     //          echo new_value > /proc/sys/vm/nr_hugepages
3549     //      Note 1: different Linux may use different name for this property,
3550     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3551     //      Note 2: it's possible there's enough physical memory available but
3552     //            they are so fragmented after a long run that they can't
3553     //            coalesce into large pages. Try to reserve large pages when
3554     //            the system is still "fresh".
3555     shm_warning_with_errno("Failed to reserve shared memory.");
3556     return NULL;
3557   }
3558 
3559   // Attach to the region.
3560   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3561 
3562   // Remove shmid. If shmat() is successful, the actual shared memory segment
3563   // will be deleted when it's detached by shmdt() or when the process
3564   // terminates. If shmat() is not successful this will remove the shared
3565   // segment immediately.
3566   shmctl(shmid, IPC_RMID, NULL);
3567 
3568   return addr;
3569 }
3570 
3571 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3572                                         int error) {
3573   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3574 
3575   bool warn_on_failure = UseLargePages &&
3576       (!FLAG_IS_DEFAULT(UseLargePages) ||
3577        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3578        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3579 
3580   if (warn_on_failure) {
3581     char msg[128];
3582     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3583                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3584     warning("%s", msg);
3585   }
3586 }
3587 
3588 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3589                                                         char* req_addr,
3590                                                         bool exec) {
3591   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3592   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3593   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3594 
3595   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3596   char* addr = (char*)::mmap(req_addr, bytes, prot,
3597                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3598                              -1, 0);
3599 
3600   if (addr == MAP_FAILED) {
3601     warn_on_large_pages_failure(req_addr, bytes, errno);
3602     return NULL;
3603   }
3604 
3605   assert(is_aligned(addr, os::large_page_size()), "Must be");
3606 
3607   return addr;
3608 }
3609 
3610 // Reserve memory using mmap(MAP_HUGETLB).
3611 //  - bytes shall be a multiple of alignment.
3612 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3613 //  - alignment sets the alignment at which memory shall be allocated.
3614 //     It must be a multiple of allocation granularity.
3615 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3616 //  req_addr or NULL.
3617 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3618                                                          size_t alignment,
3619                                                          char* req_addr,
3620                                                          bool exec) {
3621   size_t large_page_size = os::large_page_size();
3622   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3623 
3624   assert(is_aligned(req_addr, alignment), "Must be");
3625   assert(is_aligned(bytes, alignment), "Must be");
3626 
3627   // First reserve - but not commit - the address range in small pages.
3628   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3629 
3630   if (start == NULL) {
3631     return NULL;
3632   }
3633 
3634   assert(is_aligned(start, alignment), "Must be");
3635 
3636   char* end = start + bytes;
3637 
3638   // Find the regions of the allocated chunk that can be promoted to large pages.
3639   char* lp_start = align_up(start, large_page_size);
3640   char* lp_end   = align_down(end, large_page_size);
3641 
3642   size_t lp_bytes = lp_end - lp_start;
3643 
3644   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3645 
3646   if (lp_bytes == 0) {
3647     // The mapped region doesn't even span the start and the end of a large page.
3648     // Fall back to allocate a non-special area.
3649     ::munmap(start, end - start);
3650     return NULL;
3651   }
3652 
3653   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3654 
3655   void* result;
3656 
3657   // Commit small-paged leading area.
3658   if (start != lp_start) {
3659     result = ::mmap(start, lp_start - start, prot,
3660                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3661                     -1, 0);
3662     if (result == MAP_FAILED) {
3663       ::munmap(lp_start, end - lp_start);
3664       return NULL;
3665     }
3666   }
3667 
3668   // Commit large-paged area.
3669   result = ::mmap(lp_start, lp_bytes, prot,
3670                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3671                   -1, 0);
3672   if (result == MAP_FAILED) {
3673     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3674     // If the mmap above fails, the large pages region will be unmapped and we
3675     // have regions before and after with small pages. Release these regions.
3676     //
3677     // |  mapped  |  unmapped  |  mapped  |
3678     // ^          ^            ^          ^
3679     // start      lp_start     lp_end     end
3680     //
3681     ::munmap(start, lp_start - start);
3682     ::munmap(lp_end, end - lp_end);
3683     return NULL;
3684   }
3685 
3686   // Commit small-paged trailing area.
3687   if (lp_end != end) {
3688     result = ::mmap(lp_end, end - lp_end, prot,
3689                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3690                     -1, 0);
3691     if (result == MAP_FAILED) {
3692       ::munmap(start, lp_end - start);
3693       return NULL;
3694     }
3695   }
3696 
3697   return start;
3698 }
3699 
3700 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3701                                                    size_t alignment,
3702                                                    char* req_addr,
3703                                                    bool exec) {
3704   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3705   assert(is_aligned(req_addr, alignment), "Must be");
3706   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3707   assert(is_power_of_2(os::large_page_size()), "Must be");
3708   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3709 
3710   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3711     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3712   } else {
3713     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3714   }
3715 }
3716 
3717 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3718                                  char* req_addr, bool exec) {
3719   assert(UseLargePages, "only for large pages");
3720 
3721   char* addr;
3722   if (UseSHM) {
3723     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3724   } else {
3725     assert(UseHugeTLBFS, "must be");
3726     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3727   }
3728 
3729   if (addr != NULL) {
3730     if (UseNUMAInterleaving) {
3731       numa_make_global(addr, bytes);
3732     }
3733 
3734     // The memory is committed
3735     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3736   }
3737 
3738   return addr;
3739 }
3740 
3741 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3742   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3743   return shmdt(base) == 0;
3744 }
3745 
3746 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3747   return pd_release_memory(base, bytes);
3748 }
3749 
3750 bool os::release_memory_special(char* base, size_t bytes) {
3751   bool res;
3752   if (MemTracker::tracking_level() > NMT_minimal) {
3753     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3754     res = os::Linux::release_memory_special_impl(base, bytes);
3755     if (res) {
3756       tkr.record((address)base, bytes);
3757     }
3758 
3759   } else {
3760     res = os::Linux::release_memory_special_impl(base, bytes);
3761   }
3762   return res;
3763 }
3764 
3765 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3766   assert(UseLargePages, "only for large pages");
3767   bool res;
3768 
3769   if (UseSHM) {
3770     res = os::Linux::release_memory_special_shm(base, bytes);
3771   } else {
3772     assert(UseHugeTLBFS, "must be");
3773     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3774   }
3775   return res;
3776 }
3777 
3778 size_t os::large_page_size() {
3779   return _large_page_size;
3780 }
3781 
3782 // With SysV SHM the entire memory region must be allocated as shared
3783 // memory.
3784 // HugeTLBFS allows application to commit large page memory on demand.
3785 // However, when committing memory with HugeTLBFS fails, the region
3786 // that was supposed to be committed will lose the old reservation
3787 // and allow other threads to steal that memory region. Because of this
3788 // behavior we can't commit HugeTLBFS memory.
3789 bool os::can_commit_large_page_memory() {
3790   return UseTransparentHugePages;
3791 }
3792 
3793 bool os::can_execute_large_page_memory() {
3794   return UseTransparentHugePages || UseHugeTLBFS;
3795 }
3796 
3797 // Reserve memory at an arbitrary address, only if that area is
3798 // available (and not reserved for something else).
3799 
3800 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3801   const int max_tries = 10;
3802   char* base[max_tries];
3803   size_t size[max_tries];
3804   const size_t gap = 0x000000;
3805 
3806   // Assert only that the size is a multiple of the page size, since
3807   // that's all that mmap requires, and since that's all we really know
3808   // about at this low abstraction level.  If we need higher alignment,
3809   // we can either pass an alignment to this method or verify alignment
3810   // in one of the methods further up the call chain.  See bug 5044738.
3811   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3812 
3813   // Repeatedly allocate blocks until the block is allocated at the
3814   // right spot.
3815 
3816   // Linux mmap allows caller to pass an address as hint; give it a try first,
3817   // if kernel honors the hint then we can return immediately.
3818   char * addr = anon_mmap(requested_addr, bytes, false);
3819   if (addr == requested_addr) {
3820     return requested_addr;
3821   }
3822 
3823   if (addr != NULL) {
3824     // mmap() is successful but it fails to reserve at the requested address
3825     anon_munmap(addr, bytes);
3826   }
3827 
3828   int i;
3829   for (i = 0; i < max_tries; ++i) {
3830     base[i] = reserve_memory(bytes);
3831 
3832     if (base[i] != NULL) {
3833       // Is this the block we wanted?
3834       if (base[i] == requested_addr) {
3835         size[i] = bytes;
3836         break;
3837       }
3838 
3839       // Does this overlap the block we wanted? Give back the overlapped
3840       // parts and try again.
3841 
3842       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3843       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3844         unmap_memory(base[i], top_overlap);
3845         base[i] += top_overlap;
3846         size[i] = bytes - top_overlap;
3847       } else {
3848         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3849         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3850           unmap_memory(requested_addr, bottom_overlap);
3851           size[i] = bytes - bottom_overlap;
3852         } else {
3853           size[i] = bytes;
3854         }
3855       }
3856     }
3857   }
3858 
3859   // Give back the unused reserved pieces.
3860 
3861   for (int j = 0; j < i; ++j) {
3862     if (base[j] != NULL) {
3863       unmap_memory(base[j], size[j]);
3864     }
3865   }
3866 
3867   if (i < max_tries) {
3868     return requested_addr;
3869   } else {
3870     return NULL;
3871   }
3872 }
3873 
3874 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3875   return ::read(fd, buf, nBytes);
3876 }
3877 
3878 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3879   return ::pread(fd, buf, nBytes, offset);
3880 }
3881 
3882 // Short sleep, direct OS call.
3883 //
3884 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3885 // sched_yield(2) will actually give up the CPU:
3886 //
3887 //   * Alone on this pariticular CPU, keeps running.
3888 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3889 //     (pre 2.6.39).
3890 //
3891 // So calling this with 0 is an alternative.
3892 //
3893 void os::naked_short_sleep(jlong ms) {
3894   struct timespec req;
3895 
3896   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3897   req.tv_sec = 0;
3898   if (ms > 0) {
3899     req.tv_nsec = (ms % 1000) * 1000000;
3900   } else {
3901     req.tv_nsec = 1;
3902   }
3903 
3904   nanosleep(&req, NULL);
3905 
3906   return;
3907 }
3908 
3909 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3910 void os::infinite_sleep() {
3911   while (true) {    // sleep forever ...
3912     ::sleep(100);   // ... 100 seconds at a time
3913   }
3914 }
3915 
3916 // Used to convert frequent JVM_Yield() to nops
3917 bool os::dont_yield() {
3918   return DontYieldALot;
3919 }
3920 
3921 void os::naked_yield() {
3922   sched_yield();
3923 }
3924 
3925 ////////////////////////////////////////////////////////////////////////////////
3926 // thread priority support
3927 
3928 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3929 // only supports dynamic priority, static priority must be zero. For real-time
3930 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3931 // However, for large multi-threaded applications, SCHED_RR is not only slower
3932 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3933 // of 5 runs - Sep 2005).
3934 //
3935 // The following code actually changes the niceness of kernel-thread/LWP. It
3936 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3937 // not the entire user process, and user level threads are 1:1 mapped to kernel
3938 // threads. It has always been the case, but could change in the future. For
3939 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3940 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3941 
3942 int os::java_to_os_priority[CriticalPriority + 1] = {
3943   19,              // 0 Entry should never be used
3944 
3945    4,              // 1 MinPriority
3946    3,              // 2
3947    2,              // 3
3948 
3949    1,              // 4
3950    0,              // 5 NormPriority
3951   -1,              // 6
3952 
3953   -2,              // 7
3954   -3,              // 8
3955   -4,              // 9 NearMaxPriority
3956 
3957   -5,              // 10 MaxPriority
3958 
3959   -5               // 11 CriticalPriority
3960 };
3961 
3962 static int prio_init() {
3963   if (ThreadPriorityPolicy == 1) {
3964     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3965     // if effective uid is not root. Perhaps, a more elegant way of doing
3966     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3967     if (geteuid() != 0) {
3968       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3969         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3970       }
3971       ThreadPriorityPolicy = 0;
3972     }
3973   }
3974   if (UseCriticalJavaThreadPriority) {
3975     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3976   }
3977   return 0;
3978 }
3979 
3980 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3981   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3982 
3983   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3984   return (ret == 0) ? OS_OK : OS_ERR;
3985 }
3986 
3987 OSReturn os::get_native_priority(const Thread* const thread,
3988                                  int *priority_ptr) {
3989   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3990     *priority_ptr = java_to_os_priority[NormPriority];
3991     return OS_OK;
3992   }
3993 
3994   errno = 0;
3995   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3996   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3997 }
3998 
3999 // Hint to the underlying OS that a task switch would not be good.
4000 // Void return because it's a hint and can fail.
4001 void os::hint_no_preempt() {}
4002 
4003 ////////////////////////////////////////////////////////////////////////////////
4004 // suspend/resume support
4005 
4006 //  The low-level signal-based suspend/resume support is a remnant from the
4007 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4008 //  within hotspot. Currently used by JFR's OSThreadSampler
4009 //
4010 //  The remaining code is greatly simplified from the more general suspension
4011 //  code that used to be used.
4012 //
4013 //  The protocol is quite simple:
4014 //  - suspend:
4015 //      - sends a signal to the target thread
4016 //      - polls the suspend state of the osthread using a yield loop
4017 //      - target thread signal handler (SR_handler) sets suspend state
4018 //        and blocks in sigsuspend until continued
4019 //  - resume:
4020 //      - sets target osthread state to continue
4021 //      - sends signal to end the sigsuspend loop in the SR_handler
4022 //
4023 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4024 //  but is checked for NULL in SR_handler as a thread termination indicator.
4025 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4026 //
4027 //  Note that resume_clear_context() and suspend_save_context() are needed
4028 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4029 //  which in part is used by:
4030 //    - Forte Analyzer: AsyncGetCallTrace()
4031 //    - StackBanging: get_frame_at_stack_banging_point()
4032 
4033 static void resume_clear_context(OSThread *osthread) {
4034   osthread->set_ucontext(NULL);
4035   osthread->set_siginfo(NULL);
4036 }
4037 
4038 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4039                                  ucontext_t* context) {
4040   osthread->set_ucontext(context);
4041   osthread->set_siginfo(siginfo);
4042 }
4043 
4044 // Handler function invoked when a thread's execution is suspended or
4045 // resumed. We have to be careful that only async-safe functions are
4046 // called here (Note: most pthread functions are not async safe and
4047 // should be avoided.)
4048 //
4049 // Note: sigwait() is a more natural fit than sigsuspend() from an
4050 // interface point of view, but sigwait() prevents the signal hander
4051 // from being run. libpthread would get very confused by not having
4052 // its signal handlers run and prevents sigwait()'s use with the
4053 // mutex granting granting signal.
4054 //
4055 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4056 //
4057 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4058   // Save and restore errno to avoid confusing native code with EINTR
4059   // after sigsuspend.
4060   int old_errno = errno;
4061 
4062   Thread* thread = Thread::current_or_null_safe();
4063   assert(thread != NULL, "Missing current thread in SR_handler");
4064 
4065   // On some systems we have seen signal delivery get "stuck" until the signal
4066   // mask is changed as part of thread termination. Check that the current thread
4067   // has not already terminated (via SR_lock()) - else the following assertion
4068   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4069   // destructor has completed.
4070 
4071   if (thread->SR_lock() == NULL) {
4072     return;
4073   }
4074 
4075   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4076 
4077   OSThread* osthread = thread->osthread();
4078 
4079   os::SuspendResume::State current = osthread->sr.state();
4080   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4081     suspend_save_context(osthread, siginfo, context);
4082 
4083     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4084     os::SuspendResume::State state = osthread->sr.suspended();
4085     if (state == os::SuspendResume::SR_SUSPENDED) {
4086       sigset_t suspend_set;  // signals for sigsuspend()
4087       sigemptyset(&suspend_set);
4088       // get current set of blocked signals and unblock resume signal
4089       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4090       sigdelset(&suspend_set, SR_signum);
4091 
4092       sr_semaphore.signal();
4093       // wait here until we are resumed
4094       while (1) {
4095         sigsuspend(&suspend_set);
4096 
4097         os::SuspendResume::State result = osthread->sr.running();
4098         if (result == os::SuspendResume::SR_RUNNING) {
4099           sr_semaphore.signal();
4100           break;
4101         }
4102       }
4103 
4104     } else if (state == os::SuspendResume::SR_RUNNING) {
4105       // request was cancelled, continue
4106     } else {
4107       ShouldNotReachHere();
4108     }
4109 
4110     resume_clear_context(osthread);
4111   } else if (current == os::SuspendResume::SR_RUNNING) {
4112     // request was cancelled, continue
4113   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4114     // ignore
4115   } else {
4116     // ignore
4117   }
4118 
4119   errno = old_errno;
4120 }
4121 
4122 static int SR_initialize() {
4123   struct sigaction act;
4124   char *s;
4125 
4126   // Get signal number to use for suspend/resume
4127   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4128     int sig = ::strtol(s, 0, 10);
4129     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4130         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4131       SR_signum = sig;
4132     } else {
4133       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4134               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4135     }
4136   }
4137 
4138   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4139          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4140 
4141   sigemptyset(&SR_sigset);
4142   sigaddset(&SR_sigset, SR_signum);
4143 
4144   // Set up signal handler for suspend/resume
4145   act.sa_flags = SA_RESTART|SA_SIGINFO;
4146   act.sa_handler = (void (*)(int)) SR_handler;
4147 
4148   // SR_signum is blocked by default.
4149   // 4528190 - We also need to block pthread restart signal (32 on all
4150   // supported Linux platforms). Note that LinuxThreads need to block
4151   // this signal for all threads to work properly. So we don't have
4152   // to use hard-coded signal number when setting up the mask.
4153   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4154 
4155   if (sigaction(SR_signum, &act, 0) == -1) {
4156     return -1;
4157   }
4158 
4159   // Save signal flag
4160   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4161   return 0;
4162 }
4163 
4164 static int sr_notify(OSThread* osthread) {
4165   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4166   assert_status(status == 0, status, "pthread_kill");
4167   return status;
4168 }
4169 
4170 // "Randomly" selected value for how long we want to spin
4171 // before bailing out on suspending a thread, also how often
4172 // we send a signal to a thread we want to resume
4173 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4174 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4175 
4176 // returns true on success and false on error - really an error is fatal
4177 // but this seems the normal response to library errors
4178 static bool do_suspend(OSThread* osthread) {
4179   assert(osthread->sr.is_running(), "thread should be running");
4180   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4181 
4182   // mark as suspended and send signal
4183   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4184     // failed to switch, state wasn't running?
4185     ShouldNotReachHere();
4186     return false;
4187   }
4188 
4189   if (sr_notify(osthread) != 0) {
4190     ShouldNotReachHere();
4191   }
4192 
4193   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4194   while (true) {
4195     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4196       break;
4197     } else {
4198       // timeout
4199       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4200       if (cancelled == os::SuspendResume::SR_RUNNING) {
4201         return false;
4202       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4203         // make sure that we consume the signal on the semaphore as well
4204         sr_semaphore.wait();
4205         break;
4206       } else {
4207         ShouldNotReachHere();
4208         return false;
4209       }
4210     }
4211   }
4212 
4213   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4214   return true;
4215 }
4216 
4217 static void do_resume(OSThread* osthread) {
4218   assert(osthread->sr.is_suspended(), "thread should be suspended");
4219   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4220 
4221   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4222     // failed to switch to WAKEUP_REQUEST
4223     ShouldNotReachHere();
4224     return;
4225   }
4226 
4227   while (true) {
4228     if (sr_notify(osthread) == 0) {
4229       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4230         if (osthread->sr.is_running()) {
4231           return;
4232         }
4233       }
4234     } else {
4235       ShouldNotReachHere();
4236     }
4237   }
4238 
4239   guarantee(osthread->sr.is_running(), "Must be running!");
4240 }
4241 
4242 ///////////////////////////////////////////////////////////////////////////////////
4243 // signal handling (except suspend/resume)
4244 
4245 // This routine may be used by user applications as a "hook" to catch signals.
4246 // The user-defined signal handler must pass unrecognized signals to this
4247 // routine, and if it returns true (non-zero), then the signal handler must
4248 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4249 // routine will never retun false (zero), but instead will execute a VM panic
4250 // routine kill the process.
4251 //
4252 // If this routine returns false, it is OK to call it again.  This allows
4253 // the user-defined signal handler to perform checks either before or after
4254 // the VM performs its own checks.  Naturally, the user code would be making
4255 // a serious error if it tried to handle an exception (such as a null check
4256 // or breakpoint) that the VM was generating for its own correct operation.
4257 //
4258 // This routine may recognize any of the following kinds of signals:
4259 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4260 // It should be consulted by handlers for any of those signals.
4261 //
4262 // The caller of this routine must pass in the three arguments supplied
4263 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4264 // field of the structure passed to sigaction().  This routine assumes that
4265 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4266 //
4267 // Note that the VM will print warnings if it detects conflicting signal
4268 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4269 //
4270 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4271                                                  siginfo_t* siginfo,
4272                                                  void* ucontext,
4273                                                  int abort_if_unrecognized);
4274 
4275 void signalHandler(int sig, siginfo_t* info, void* uc) {
4276   assert(info != NULL && uc != NULL, "it must be old kernel");
4277   int orig_errno = errno;  // Preserve errno value over signal handler.
4278   JVM_handle_linux_signal(sig, info, uc, true);
4279   errno = orig_errno;
4280 }
4281 
4282 
4283 // This boolean allows users to forward their own non-matching signals
4284 // to JVM_handle_linux_signal, harmlessly.
4285 bool os::Linux::signal_handlers_are_installed = false;
4286 
4287 // For signal-chaining
4288 struct sigaction sigact[NSIG];
4289 uint64_t sigs = 0;
4290 #if (64 < NSIG-1)
4291 #error "Not all signals can be encoded in sigs. Adapt its type!"
4292 #endif
4293 bool os::Linux::libjsig_is_loaded = false;
4294 typedef struct sigaction *(*get_signal_t)(int);
4295 get_signal_t os::Linux::get_signal_action = NULL;
4296 
4297 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4298   struct sigaction *actp = NULL;
4299 
4300   if (libjsig_is_loaded) {
4301     // Retrieve the old signal handler from libjsig
4302     actp = (*get_signal_action)(sig);
4303   }
4304   if (actp == NULL) {
4305     // Retrieve the preinstalled signal handler from jvm
4306     actp = get_preinstalled_handler(sig);
4307   }
4308 
4309   return actp;
4310 }
4311 
4312 static bool call_chained_handler(struct sigaction *actp, int sig,
4313                                  siginfo_t *siginfo, void *context) {
4314   // Call the old signal handler
4315   if (actp->sa_handler == SIG_DFL) {
4316     // It's more reasonable to let jvm treat it as an unexpected exception
4317     // instead of taking the default action.
4318     return false;
4319   } else if (actp->sa_handler != SIG_IGN) {
4320     if ((actp->sa_flags & SA_NODEFER) == 0) {
4321       // automaticlly block the signal
4322       sigaddset(&(actp->sa_mask), sig);
4323     }
4324 
4325     sa_handler_t hand = NULL;
4326     sa_sigaction_t sa = NULL;
4327     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4328     // retrieve the chained handler
4329     if (siginfo_flag_set) {
4330       sa = actp->sa_sigaction;
4331     } else {
4332       hand = actp->sa_handler;
4333     }
4334 
4335     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4336       actp->sa_handler = SIG_DFL;
4337     }
4338 
4339     // try to honor the signal mask
4340     sigset_t oset;
4341     sigemptyset(&oset);
4342     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4343 
4344     // call into the chained handler
4345     if (siginfo_flag_set) {
4346       (*sa)(sig, siginfo, context);
4347     } else {
4348       (*hand)(sig);
4349     }
4350 
4351     // restore the signal mask
4352     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4353   }
4354   // Tell jvm's signal handler the signal is taken care of.
4355   return true;
4356 }
4357 
4358 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4359   bool chained = false;
4360   // signal-chaining
4361   if (UseSignalChaining) {
4362     struct sigaction *actp = get_chained_signal_action(sig);
4363     if (actp != NULL) {
4364       chained = call_chained_handler(actp, sig, siginfo, context);
4365     }
4366   }
4367   return chained;
4368 }
4369 
4370 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4371   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4372     return &sigact[sig];
4373   }
4374   return NULL;
4375 }
4376 
4377 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4378   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4379   sigact[sig] = oldAct;
4380   sigs |= (uint64_t)1 << (sig-1);
4381 }
4382 
4383 // for diagnostic
4384 int sigflags[NSIG];
4385 
4386 int os::Linux::get_our_sigflags(int sig) {
4387   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4388   return sigflags[sig];
4389 }
4390 
4391 void os::Linux::set_our_sigflags(int sig, int flags) {
4392   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4393   if (sig > 0 && sig < NSIG) {
4394     sigflags[sig] = flags;
4395   }
4396 }
4397 
4398 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4399   // Check for overwrite.
4400   struct sigaction oldAct;
4401   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4402 
4403   void* oldhand = oldAct.sa_sigaction
4404                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4405                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4406   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4407       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4408       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4409     if (AllowUserSignalHandlers || !set_installed) {
4410       // Do not overwrite; user takes responsibility to forward to us.
4411       return;
4412     } else if (UseSignalChaining) {
4413       // save the old handler in jvm
4414       save_preinstalled_handler(sig, oldAct);
4415       // libjsig also interposes the sigaction() call below and saves the
4416       // old sigaction on it own.
4417     } else {
4418       fatal("Encountered unexpected pre-existing sigaction handler "
4419             "%#lx for signal %d.", (long)oldhand, sig);
4420     }
4421   }
4422 
4423   struct sigaction sigAct;
4424   sigfillset(&(sigAct.sa_mask));
4425   sigAct.sa_handler = SIG_DFL;
4426   if (!set_installed) {
4427     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4428   } else {
4429     sigAct.sa_sigaction = signalHandler;
4430     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4431   }
4432   // Save flags, which are set by ours
4433   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4434   sigflags[sig] = sigAct.sa_flags;
4435 
4436   int ret = sigaction(sig, &sigAct, &oldAct);
4437   assert(ret == 0, "check");
4438 
4439   void* oldhand2  = oldAct.sa_sigaction
4440                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4441                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4442   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4443 }
4444 
4445 // install signal handlers for signals that HotSpot needs to
4446 // handle in order to support Java-level exception handling.
4447 
4448 void os::Linux::install_signal_handlers() {
4449   if (!signal_handlers_are_installed) {
4450     signal_handlers_are_installed = true;
4451 
4452     // signal-chaining
4453     typedef void (*signal_setting_t)();
4454     signal_setting_t begin_signal_setting = NULL;
4455     signal_setting_t end_signal_setting = NULL;
4456     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4457                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4458     if (begin_signal_setting != NULL) {
4459       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4460                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4461       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4462                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4463       libjsig_is_loaded = true;
4464       assert(UseSignalChaining, "should enable signal-chaining");
4465     }
4466     if (libjsig_is_loaded) {
4467       // Tell libjsig jvm is setting signal handlers
4468       (*begin_signal_setting)();
4469     }
4470 
4471     set_signal_handler(SIGSEGV, true);
4472     set_signal_handler(SIGPIPE, true);
4473     set_signal_handler(SIGBUS, true);
4474     set_signal_handler(SIGILL, true);
4475     set_signal_handler(SIGFPE, true);
4476 #if defined(PPC64)
4477     set_signal_handler(SIGTRAP, true);
4478 #endif
4479     set_signal_handler(SIGXFSZ, true);
4480 
4481     if (libjsig_is_loaded) {
4482       // Tell libjsig jvm finishes setting signal handlers
4483       (*end_signal_setting)();
4484     }
4485 
4486     // We don't activate signal checker if libjsig is in place, we trust ourselves
4487     // and if UserSignalHandler is installed all bets are off.
4488     // Log that signal checking is off only if -verbose:jni is specified.
4489     if (CheckJNICalls) {
4490       if (libjsig_is_loaded) {
4491         if (PrintJNIResolving) {
4492           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4493         }
4494         check_signals = false;
4495       }
4496       if (AllowUserSignalHandlers) {
4497         if (PrintJNIResolving) {
4498           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4499         }
4500         check_signals = false;
4501       }
4502     }
4503   }
4504 }
4505 
4506 // This is the fastest way to get thread cpu time on Linux.
4507 // Returns cpu time (user+sys) for any thread, not only for current.
4508 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4509 // It might work on 2.6.10+ with a special kernel/glibc patch.
4510 // For reference, please, see IEEE Std 1003.1-2004:
4511 //   http://www.unix.org/single_unix_specification
4512 
4513 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4514   struct timespec tp;
4515   int rc = os::Linux::clock_gettime(clockid, &tp);
4516   assert(rc == 0, "clock_gettime is expected to return 0 code");
4517 
4518   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4519 }
4520 
4521 void os::Linux::initialize_os_info() {
4522   assert(_os_version == 0, "OS info already initialized");
4523 
4524   struct utsname _uname;
4525 
4526   uint32_t major;
4527   uint32_t minor;
4528   uint32_t fix;
4529 
4530   int rc;
4531 
4532   // Kernel version is unknown if
4533   // verification below fails.
4534   _os_version = 0x01000000;
4535 
4536   rc = uname(&_uname);
4537   if (rc != -1) {
4538 
4539     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4540     if (rc == 3) {
4541 
4542       if (major < 256 && minor < 256 && fix < 256) {
4543         // Kernel version format is as expected,
4544         // set it overriding unknown state.
4545         _os_version = (major << 16) |
4546                       (minor << 8 ) |
4547                       (fix   << 0 ) ;
4548       }
4549     }
4550   }
4551 }
4552 
4553 uint32_t os::Linux::os_version() {
4554   assert(_os_version != 0, "not initialized");
4555   return _os_version & 0x00FFFFFF;
4556 }
4557 
4558 bool os::Linux::os_version_is_known() {
4559   assert(_os_version != 0, "not initialized");
4560   return _os_version & 0x01000000 ? false : true;
4561 }
4562 
4563 /////
4564 // glibc on Linux platform uses non-documented flag
4565 // to indicate, that some special sort of signal
4566 // trampoline is used.
4567 // We will never set this flag, and we should
4568 // ignore this flag in our diagnostic
4569 #ifdef SIGNIFICANT_SIGNAL_MASK
4570   #undef SIGNIFICANT_SIGNAL_MASK
4571 #endif
4572 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4573 
4574 static const char* get_signal_handler_name(address handler,
4575                                            char* buf, int buflen) {
4576   int offset = 0;
4577   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4578   if (found) {
4579     // skip directory names
4580     const char *p1, *p2;
4581     p1 = buf;
4582     size_t len = strlen(os::file_separator());
4583     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4584     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4585   } else {
4586     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4587   }
4588   return buf;
4589 }
4590 
4591 static void print_signal_handler(outputStream* st, int sig,
4592                                  char* buf, size_t buflen) {
4593   struct sigaction sa;
4594 
4595   sigaction(sig, NULL, &sa);
4596 
4597   // See comment for SIGNIFICANT_SIGNAL_MASK define
4598   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4599 
4600   st->print("%s: ", os::exception_name(sig, buf, buflen));
4601 
4602   address handler = (sa.sa_flags & SA_SIGINFO)
4603     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4604     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4605 
4606   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4607     st->print("SIG_DFL");
4608   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4609     st->print("SIG_IGN");
4610   } else {
4611     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4612   }
4613 
4614   st->print(", sa_mask[0]=");
4615   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4616 
4617   address rh = VMError::get_resetted_sighandler(sig);
4618   // May be, handler was resetted by VMError?
4619   if (rh != NULL) {
4620     handler = rh;
4621     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4622   }
4623 
4624   st->print(", sa_flags=");
4625   os::Posix::print_sa_flags(st, sa.sa_flags);
4626 
4627   // Check: is it our handler?
4628   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4629       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4630     // It is our signal handler
4631     // check for flags, reset system-used one!
4632     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4633       st->print(
4634                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4635                 os::Linux::get_our_sigflags(sig));
4636     }
4637   }
4638   st->cr();
4639 }
4640 
4641 
4642 #define DO_SIGNAL_CHECK(sig)                      \
4643   do {                                            \
4644     if (!sigismember(&check_signal_done, sig)) {  \
4645       os::Linux::check_signal_handler(sig);       \
4646     }                                             \
4647   } while (0)
4648 
4649 // This method is a periodic task to check for misbehaving JNI applications
4650 // under CheckJNI, we can add any periodic checks here
4651 
4652 void os::run_periodic_checks() {
4653   if (check_signals == false) return;
4654 
4655   // SEGV and BUS if overridden could potentially prevent
4656   // generation of hs*.log in the event of a crash, debugging
4657   // such a case can be very challenging, so we absolutely
4658   // check the following for a good measure:
4659   DO_SIGNAL_CHECK(SIGSEGV);
4660   DO_SIGNAL_CHECK(SIGILL);
4661   DO_SIGNAL_CHECK(SIGFPE);
4662   DO_SIGNAL_CHECK(SIGBUS);
4663   DO_SIGNAL_CHECK(SIGPIPE);
4664   DO_SIGNAL_CHECK(SIGXFSZ);
4665 #if defined(PPC64)
4666   DO_SIGNAL_CHECK(SIGTRAP);
4667 #endif
4668 
4669   // ReduceSignalUsage allows the user to override these handlers
4670   // see comments at the very top and jvm_solaris.h
4671   if (!ReduceSignalUsage) {
4672     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4673     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4674     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4675     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4676   }
4677 
4678   DO_SIGNAL_CHECK(SR_signum);
4679 }
4680 
4681 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4682 
4683 static os_sigaction_t os_sigaction = NULL;
4684 
4685 void os::Linux::check_signal_handler(int sig) {
4686   char buf[O_BUFLEN];
4687   address jvmHandler = NULL;
4688 
4689 
4690   struct sigaction act;
4691   if (os_sigaction == NULL) {
4692     // only trust the default sigaction, in case it has been interposed
4693     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4694     if (os_sigaction == NULL) return;
4695   }
4696 
4697   os_sigaction(sig, (struct sigaction*)NULL, &act);
4698 
4699 
4700   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4701 
4702   address thisHandler = (act.sa_flags & SA_SIGINFO)
4703     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4704     : CAST_FROM_FN_PTR(address, act.sa_handler);
4705 
4706 
4707   switch (sig) {
4708   case SIGSEGV:
4709   case SIGBUS:
4710   case SIGFPE:
4711   case SIGPIPE:
4712   case SIGILL:
4713   case SIGXFSZ:
4714     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4715     break;
4716 
4717   case SHUTDOWN1_SIGNAL:
4718   case SHUTDOWN2_SIGNAL:
4719   case SHUTDOWN3_SIGNAL:
4720   case BREAK_SIGNAL:
4721     jvmHandler = (address)user_handler();
4722     break;
4723 
4724   default:
4725     if (sig == SR_signum) {
4726       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4727     } else {
4728       return;
4729     }
4730     break;
4731   }
4732 
4733   if (thisHandler != jvmHandler) {
4734     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4735     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4736     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4737     // No need to check this sig any longer
4738     sigaddset(&check_signal_done, sig);
4739     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4740     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4741       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4742                     exception_name(sig, buf, O_BUFLEN));
4743     }
4744   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4745     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4746     tty->print("expected:");
4747     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4748     tty->cr();
4749     tty->print("  found:");
4750     os::Posix::print_sa_flags(tty, act.sa_flags);
4751     tty->cr();
4752     // No need to check this sig any longer
4753     sigaddset(&check_signal_done, sig);
4754   }
4755 
4756   // Dump all the signal
4757   if (sigismember(&check_signal_done, sig)) {
4758     print_signal_handlers(tty, buf, O_BUFLEN);
4759   }
4760 }
4761 
4762 extern void report_error(char* file_name, int line_no, char* title,
4763                          char* format, ...);
4764 
4765 // this is called _before_ the most of global arguments have been parsed
4766 void os::init(void) {
4767   char dummy;   // used to get a guess on initial stack address
4768 //  first_hrtime = gethrtime();
4769 
4770   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4771 
4772   init_random(1234567);
4773 
4774   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4775   if (Linux::page_size() == -1) {
4776     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4777           os::strerror(errno));
4778   }
4779   init_page_sizes((size_t) Linux::page_size());
4780 
4781   Linux::initialize_system_info();
4782 
4783   Linux::initialize_os_info();
4784 
4785   // main_thread points to the aboriginal thread
4786   Linux::_main_thread = pthread_self();
4787 
4788   Linux::clock_init();
4789   initial_time_count = javaTimeNanos();
4790 
4791   // retrieve entry point for pthread_setname_np
4792   Linux::_pthread_setname_np =
4793     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4794 
4795   os::Posix::init();
4796 }
4797 
4798 // To install functions for atexit system call
4799 extern "C" {
4800   static void perfMemory_exit_helper() {
4801     perfMemory_exit();
4802   }
4803 }
4804 
4805 // this is called _after_ the global arguments have been parsed
4806 jint os::init_2(void) {
4807 
4808   os::Posix::init_2();
4809 
4810   Linux::fast_thread_clock_init();
4811 
4812   // Allocate a single page and mark it as readable for safepoint polling
4813   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4814   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4815 
4816   os::set_polling_page(polling_page);
4817   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4818 
4819   if (!UseMembar) {
4820     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4821     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4822     os::set_memory_serialize_page(mem_serialize_page);
4823     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4824   }
4825 
4826   // initialize suspend/resume support - must do this before signal_sets_init()
4827   if (SR_initialize() != 0) {
4828     perror("SR_initialize failed");
4829     return JNI_ERR;
4830   }
4831 
4832   Linux::signal_sets_init();
4833   Linux::install_signal_handlers();
4834 
4835   // Check and sets minimum stack sizes against command line options
4836   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4837     return JNI_ERR;
4838   }
4839   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4840 
4841 #if defined(IA32)
4842   workaround_expand_exec_shield_cs_limit();
4843 #endif
4844 
4845   Linux::libpthread_init();
4846   Linux::sched_getcpu_init();
4847   log_info(os)("HotSpot is running with %s, %s",
4848                Linux::glibc_version(), Linux::libpthread_version());
4849 
4850   if (UseNUMA) {
4851     if (!Linux::libnuma_init()) {
4852       UseNUMA = false;
4853     } else {
4854       if ((Linux::numa_max_node() < 1)) {
4855         // There's only one node(they start from 0), disable NUMA.
4856         UseNUMA = false;
4857       }
4858     }
4859     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4860     // we can make the adaptive lgrp chunk resizing work. If the user specified
4861     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4862     // disable adaptive resizing.
4863     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4864       if (FLAG_IS_DEFAULT(UseNUMA)) {
4865         UseNUMA = false;
4866       } else {
4867         if (FLAG_IS_DEFAULT(UseLargePages) &&
4868             FLAG_IS_DEFAULT(UseSHM) &&
4869             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4870           UseLargePages = false;
4871         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4872           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4873           UseAdaptiveSizePolicy = false;
4874           UseAdaptiveNUMAChunkSizing = false;
4875         }
4876       }
4877     }
4878     if (!UseNUMA && ForceNUMA) {
4879       UseNUMA = true;
4880     }
4881   }
4882 
4883   if (MaxFDLimit) {
4884     // set the number of file descriptors to max. print out error
4885     // if getrlimit/setrlimit fails but continue regardless.
4886     struct rlimit nbr_files;
4887     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4888     if (status != 0) {
4889       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4890     } else {
4891       nbr_files.rlim_cur = nbr_files.rlim_max;
4892       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4893       if (status != 0) {
4894         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4895       }
4896     }
4897   }
4898 
4899   // Initialize lock used to serialize thread creation (see os::create_thread)
4900   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4901 
4902   // at-exit methods are called in the reverse order of their registration.
4903   // atexit functions are called on return from main or as a result of a
4904   // call to exit(3C). There can be only 32 of these functions registered
4905   // and atexit() does not set errno.
4906 
4907   if (PerfAllowAtExitRegistration) {
4908     // only register atexit functions if PerfAllowAtExitRegistration is set.
4909     // atexit functions can be delayed until process exit time, which
4910     // can be problematic for embedded VM situations. Embedded VMs should
4911     // call DestroyJavaVM() to assure that VM resources are released.
4912 
4913     // note: perfMemory_exit_helper atexit function may be removed in
4914     // the future if the appropriate cleanup code can be added to the
4915     // VM_Exit VMOperation's doit method.
4916     if (atexit(perfMemory_exit_helper) != 0) {
4917       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4918     }
4919   }
4920 
4921   // initialize thread priority policy
4922   prio_init();
4923 
4924   return JNI_OK;
4925 }
4926 
4927 // Mark the polling page as unreadable
4928 void os::make_polling_page_unreadable(void) {
4929   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4930     fatal("Could not disable polling page");
4931   }
4932 }
4933 
4934 // Mark the polling page as readable
4935 void os::make_polling_page_readable(void) {
4936   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4937     fatal("Could not enable polling page");
4938   }
4939 }
4940 
4941 // older glibc versions don't have this macro (which expands to
4942 // an optimized bit-counting function) so we have to roll our own
4943 #ifndef CPU_COUNT
4944 
4945 static int _cpu_count(const cpu_set_t* cpus) {
4946   int count = 0;
4947   // only look up to the number of configured processors
4948   for (int i = 0; i < os::processor_count(); i++) {
4949     if (CPU_ISSET(i, cpus)) {
4950       count++;
4951     }
4952   }
4953   return count;
4954 }
4955 
4956 #define CPU_COUNT(cpus) _cpu_count(cpus)
4957 
4958 #endif // CPU_COUNT
4959 
4960 // Get the current number of available processors for this process.
4961 // This value can change at any time during a process's lifetime.
4962 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4963 // If it appears there may be more than 1024 processors then we do a
4964 // dynamic check - see 6515172 for details.
4965 // If anything goes wrong we fallback to returning the number of online
4966 // processors - which can be greater than the number available to the process.
4967 int os::active_processor_count() {
4968   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4969   cpu_set_t* cpus_p = &cpus;
4970   int cpus_size = sizeof(cpu_set_t);
4971 
4972   int configured_cpus = processor_count();  // upper bound on available cpus
4973   int cpu_count = 0;
4974 
4975 // old build platforms may not support dynamic cpu sets
4976 #ifdef CPU_ALLOC
4977 
4978   // To enable easy testing of the dynamic path on different platforms we
4979   // introduce a diagnostic flag: UseCpuAllocPath
4980   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4981     // kernel may use a mask bigger than cpu_set_t
4982     log_trace(os)("active_processor_count: using dynamic path %s"
4983                   "- configured processors: %d",
4984                   UseCpuAllocPath ? "(forced) " : "",
4985                   configured_cpus);
4986     cpus_p = CPU_ALLOC(configured_cpus);
4987     if (cpus_p != NULL) {
4988       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4989       // zero it just to be safe
4990       CPU_ZERO_S(cpus_size, cpus_p);
4991     }
4992     else {
4993        // failed to allocate so fallback to online cpus
4994        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4995        log_trace(os)("active_processor_count: "
4996                      "CPU_ALLOC failed (%s) - using "
4997                      "online processor count: %d",
4998                      os::strerror(errno), online_cpus);
4999        return online_cpus;
5000     }
5001   }
5002   else {
5003     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5004                   configured_cpus);
5005   }
5006 #else // CPU_ALLOC
5007 // these stubs won't be executed
5008 #define CPU_COUNT_S(size, cpus) -1
5009 #define CPU_FREE(cpus)
5010 
5011   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5012                 configured_cpus);
5013 #endif // CPU_ALLOC
5014 
5015   // pid 0 means the current thread - which we have to assume represents the process
5016   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5017     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5018       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5019     }
5020     else {
5021       cpu_count = CPU_COUNT(cpus_p);
5022     }
5023     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5024   }
5025   else {
5026     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5027     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5028             "which may exceed available processors", os::strerror(errno), cpu_count);
5029   }
5030 
5031   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5032     CPU_FREE(cpus_p);
5033   }
5034 
5035   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5036   return cpu_count;
5037 }
5038 
5039 void os::set_native_thread_name(const char *name) {
5040   if (Linux::_pthread_setname_np) {
5041     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5042     snprintf(buf, sizeof(buf), "%s", name);
5043     buf[sizeof(buf) - 1] = '\0';
5044     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5045     // ERANGE should not happen; all other errors should just be ignored.
5046     assert(rc != ERANGE, "pthread_setname_np failed");
5047   }
5048 }
5049 
5050 bool os::distribute_processes(uint length, uint* distribution) {
5051   // Not yet implemented.
5052   return false;
5053 }
5054 
5055 bool os::bind_to_processor(uint processor_id) {
5056   // Not yet implemented.
5057   return false;
5058 }
5059 
5060 ///
5061 
5062 void os::SuspendedThreadTask::internal_do_task() {
5063   if (do_suspend(_thread->osthread())) {
5064     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5065     do_task(context);
5066     do_resume(_thread->osthread());
5067   }
5068 }
5069 
5070 ////////////////////////////////////////////////////////////////////////////////
5071 // debug support
5072 
5073 bool os::find(address addr, outputStream* st) {
5074   Dl_info dlinfo;
5075   memset(&dlinfo, 0, sizeof(dlinfo));
5076   if (dladdr(addr, &dlinfo) != 0) {
5077     st->print(PTR_FORMAT ": ", p2i(addr));
5078     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5079       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5080                 p2i(addr) - p2i(dlinfo.dli_saddr));
5081     } else if (dlinfo.dli_fbase != NULL) {
5082       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5083     } else {
5084       st->print("<absolute address>");
5085     }
5086     if (dlinfo.dli_fname != NULL) {
5087       st->print(" in %s", dlinfo.dli_fname);
5088     }
5089     if (dlinfo.dli_fbase != NULL) {
5090       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5091     }
5092     st->cr();
5093 
5094     if (Verbose) {
5095       // decode some bytes around the PC
5096       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5097       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5098       address       lowest = (address) dlinfo.dli_sname;
5099       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5100       if (begin < lowest)  begin = lowest;
5101       Dl_info dlinfo2;
5102       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5103           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5104         end = (address) dlinfo2.dli_saddr;
5105       }
5106       Disassembler::decode(begin, end, st);
5107     }
5108     return true;
5109   }
5110   return false;
5111 }
5112 
5113 ////////////////////////////////////////////////////////////////////////////////
5114 // misc
5115 
5116 // This does not do anything on Linux. This is basically a hook for being
5117 // able to use structured exception handling (thread-local exception filters)
5118 // on, e.g., Win32.
5119 void
5120 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5121                          JavaCallArguments* args, Thread* thread) {
5122   f(value, method, args, thread);
5123 }
5124 
5125 void os::print_statistics() {
5126 }
5127 
5128 bool os::message_box(const char* title, const char* message) {
5129   int i;
5130   fdStream err(defaultStream::error_fd());
5131   for (i = 0; i < 78; i++) err.print_raw("=");
5132   err.cr();
5133   err.print_raw_cr(title);
5134   for (i = 0; i < 78; i++) err.print_raw("-");
5135   err.cr();
5136   err.print_raw_cr(message);
5137   for (i = 0; i < 78; i++) err.print_raw("=");
5138   err.cr();
5139 
5140   char buf[16];
5141   // Prevent process from exiting upon "read error" without consuming all CPU
5142   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5143 
5144   return buf[0] == 'y' || buf[0] == 'Y';
5145 }
5146 
5147 int os::stat(const char *path, struct stat *sbuf) {
5148   char pathbuf[MAX_PATH];
5149   if (strlen(path) > MAX_PATH - 1) {
5150     errno = ENAMETOOLONG;
5151     return -1;
5152   }
5153   os::native_path(strcpy(pathbuf, path));
5154   return ::stat(pathbuf, sbuf);
5155 }
5156 
5157 // Is a (classpath) directory empty?
5158 bool os::dir_is_empty(const char* path) {
5159   DIR *dir = NULL;
5160   struct dirent *ptr;
5161 
5162   dir = opendir(path);
5163   if (dir == NULL) return true;
5164 
5165   // Scan the directory
5166   bool result = true;
5167   char buf[sizeof(struct dirent) + MAX_PATH];
5168   while (result && (ptr = ::readdir(dir)) != NULL) {
5169     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5170       result = false;
5171     }
5172   }
5173   closedir(dir);
5174   return result;
5175 }
5176 
5177 // This code originates from JDK's sysOpen and open64_w
5178 // from src/solaris/hpi/src/system_md.c
5179 
5180 int os::open(const char *path, int oflag, int mode) {
5181   if (strlen(path) > MAX_PATH - 1) {
5182     errno = ENAMETOOLONG;
5183     return -1;
5184   }
5185 
5186   // All file descriptors that are opened in the Java process and not
5187   // specifically destined for a subprocess should have the close-on-exec
5188   // flag set.  If we don't set it, then careless 3rd party native code
5189   // might fork and exec without closing all appropriate file descriptors
5190   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5191   // turn might:
5192   //
5193   // - cause end-of-file to fail to be detected on some file
5194   //   descriptors, resulting in mysterious hangs, or
5195   //
5196   // - might cause an fopen in the subprocess to fail on a system
5197   //   suffering from bug 1085341.
5198   //
5199   // (Yes, the default setting of the close-on-exec flag is a Unix
5200   // design flaw)
5201   //
5202   // See:
5203   // 1085341: 32-bit stdio routines should support file descriptors >255
5204   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5205   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5206   //
5207   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5208   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5209   // because it saves a system call and removes a small window where the flag
5210   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5211   // and we fall back to using FD_CLOEXEC (see below).
5212 #ifdef O_CLOEXEC
5213   oflag |= O_CLOEXEC;
5214 #endif
5215 
5216   int fd = ::open64(path, oflag, mode);
5217   if (fd == -1) return -1;
5218 
5219   //If the open succeeded, the file might still be a directory
5220   {
5221     struct stat64 buf64;
5222     int ret = ::fstat64(fd, &buf64);
5223     int st_mode = buf64.st_mode;
5224 
5225     if (ret != -1) {
5226       if ((st_mode & S_IFMT) == S_IFDIR) {
5227         errno = EISDIR;
5228         ::close(fd);
5229         return -1;
5230       }
5231     } else {
5232       ::close(fd);
5233       return -1;
5234     }
5235   }
5236 
5237 #ifdef FD_CLOEXEC
5238   // Validate that the use of the O_CLOEXEC flag on open above worked.
5239   // With recent kernels, we will perform this check exactly once.
5240   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5241   if (!O_CLOEXEC_is_known_to_work) {
5242     int flags = ::fcntl(fd, F_GETFD);
5243     if (flags != -1) {
5244       if ((flags & FD_CLOEXEC) != 0)
5245         O_CLOEXEC_is_known_to_work = 1;
5246       else
5247         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5248     }
5249   }
5250 #endif
5251 
5252   return fd;
5253 }
5254 
5255 
5256 // create binary file, rewriting existing file if required
5257 int os::create_binary_file(const char* path, bool rewrite_existing) {
5258   int oflags = O_WRONLY | O_CREAT;
5259   if (!rewrite_existing) {
5260     oflags |= O_EXCL;
5261   }
5262   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5263 }
5264 
5265 // return current position of file pointer
5266 jlong os::current_file_offset(int fd) {
5267   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5268 }
5269 
5270 // move file pointer to the specified offset
5271 jlong os::seek_to_file_offset(int fd, jlong offset) {
5272   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5273 }
5274 
5275 // This code originates from JDK's sysAvailable
5276 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5277 
5278 int os::available(int fd, jlong *bytes) {
5279   jlong cur, end;
5280   int mode;
5281   struct stat64 buf64;
5282 
5283   if (::fstat64(fd, &buf64) >= 0) {
5284     mode = buf64.st_mode;
5285     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5286       int n;
5287       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5288         *bytes = n;
5289         return 1;
5290       }
5291     }
5292   }
5293   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5294     return 0;
5295   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5296     return 0;
5297   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5298     return 0;
5299   }
5300   *bytes = end - cur;
5301   return 1;
5302 }
5303 
5304 // Map a block of memory.
5305 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5306                         char *addr, size_t bytes, bool read_only,
5307                         bool allow_exec) {
5308   int prot;
5309   int flags = MAP_PRIVATE;
5310 
5311   if (read_only) {
5312     prot = PROT_READ;
5313   } else {
5314     prot = PROT_READ | PROT_WRITE;
5315   }
5316 
5317   if (allow_exec) {
5318     prot |= PROT_EXEC;
5319   }
5320 
5321   if (addr != NULL) {
5322     flags |= MAP_FIXED;
5323   }
5324 
5325   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5326                                      fd, file_offset);
5327   if (mapped_address == MAP_FAILED) {
5328     return NULL;
5329   }
5330   return mapped_address;
5331 }
5332 
5333 
5334 // Remap a block of memory.
5335 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5336                           char *addr, size_t bytes, bool read_only,
5337                           bool allow_exec) {
5338   // same as map_memory() on this OS
5339   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5340                         allow_exec);
5341 }
5342 
5343 
5344 // Unmap a block of memory.
5345 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5346   return munmap(addr, bytes) == 0;
5347 }
5348 
5349 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5350 
5351 static clockid_t thread_cpu_clockid(Thread* thread) {
5352   pthread_t tid = thread->osthread()->pthread_id();
5353   clockid_t clockid;
5354 
5355   // Get thread clockid
5356   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5357   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5358   return clockid;
5359 }
5360 
5361 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5362 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5363 // of a thread.
5364 //
5365 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5366 // the fast estimate available on the platform.
5367 
5368 jlong os::current_thread_cpu_time() {
5369   if (os::Linux::supports_fast_thread_cpu_time()) {
5370     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5371   } else {
5372     // return user + sys since the cost is the same
5373     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5374   }
5375 }
5376 
5377 jlong os::thread_cpu_time(Thread* thread) {
5378   // consistent with what current_thread_cpu_time() returns
5379   if (os::Linux::supports_fast_thread_cpu_time()) {
5380     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5381   } else {
5382     return slow_thread_cpu_time(thread, true /* user + sys */);
5383   }
5384 }
5385 
5386 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5387   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5388     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5389   } else {
5390     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5391   }
5392 }
5393 
5394 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5395   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5396     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5397   } else {
5398     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5399   }
5400 }
5401 
5402 //  -1 on error.
5403 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5404   pid_t  tid = thread->osthread()->thread_id();
5405   char *s;
5406   char stat[2048];
5407   int statlen;
5408   char proc_name[64];
5409   int count;
5410   long sys_time, user_time;
5411   char cdummy;
5412   int idummy;
5413   long ldummy;
5414   FILE *fp;
5415 
5416   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5417   fp = fopen(proc_name, "r");
5418   if (fp == NULL) return -1;
5419   statlen = fread(stat, 1, 2047, fp);
5420   stat[statlen] = '\0';
5421   fclose(fp);
5422 
5423   // Skip pid and the command string. Note that we could be dealing with
5424   // weird command names, e.g. user could decide to rename java launcher
5425   // to "java 1.4.2 :)", then the stat file would look like
5426   //                1234 (java 1.4.2 :)) R ... ...
5427   // We don't really need to know the command string, just find the last
5428   // occurrence of ")" and then start parsing from there. See bug 4726580.
5429   s = strrchr(stat, ')');
5430   if (s == NULL) return -1;
5431 
5432   // Skip blank chars
5433   do { s++; } while (s && isspace(*s));
5434 
5435   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5436                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5437                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5438                  &user_time, &sys_time);
5439   if (count != 13) return -1;
5440   if (user_sys_cpu_time) {
5441     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5442   } else {
5443     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5444   }
5445 }
5446 
5447 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5448   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5449   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5450   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5451   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5452 }
5453 
5454 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5455   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5456   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5457   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5458   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5459 }
5460 
5461 bool os::is_thread_cpu_time_supported() {
5462   return true;
5463 }
5464 
5465 // System loadavg support.  Returns -1 if load average cannot be obtained.
5466 // Linux doesn't yet have a (official) notion of processor sets,
5467 // so just return the system wide load average.
5468 int os::loadavg(double loadavg[], int nelem) {
5469   return ::getloadavg(loadavg, nelem);
5470 }
5471 
5472 void os::pause() {
5473   char filename[MAX_PATH];
5474   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5475     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5476   } else {
5477     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5478   }
5479 
5480   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5481   if (fd != -1) {
5482     struct stat buf;
5483     ::close(fd);
5484     while (::stat(filename, &buf) == 0) {
5485       (void)::poll(NULL, 0, 100);
5486     }
5487   } else {
5488     jio_fprintf(stderr,
5489                 "Could not open pause file '%s', continuing immediately.\n", filename);
5490   }
5491 }
5492 
5493 extern char** environ;
5494 
5495 // Run the specified command in a separate process. Return its exit value,
5496 // or -1 on failure (e.g. can't fork a new process).
5497 // Unlike system(), this function can be called from signal handler. It
5498 // doesn't block SIGINT et al.
5499 int os::fork_and_exec(char* cmd) {
5500   const char * argv[4] = {"sh", "-c", cmd, NULL};
5501 
5502   pid_t pid = fork();
5503 
5504   if (pid < 0) {
5505     // fork failed
5506     return -1;
5507 
5508   } else if (pid == 0) {
5509     // child process
5510 
5511     execve("/bin/sh", (char* const*)argv, environ);
5512 
5513     // execve failed
5514     _exit(-1);
5515 
5516   } else  {
5517     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5518     // care about the actual exit code, for now.
5519 
5520     int status;
5521 
5522     // Wait for the child process to exit.  This returns immediately if
5523     // the child has already exited. */
5524     while (waitpid(pid, &status, 0) < 0) {
5525       switch (errno) {
5526       case ECHILD: return 0;
5527       case EINTR: break;
5528       default: return -1;
5529       }
5530     }
5531 
5532     if (WIFEXITED(status)) {
5533       // The child exited normally; get its exit code.
5534       return WEXITSTATUS(status);
5535     } else if (WIFSIGNALED(status)) {
5536       // The child exited because of a signal
5537       // The best value to return is 0x80 + signal number,
5538       // because that is what all Unix shells do, and because
5539       // it allows callers to distinguish between process exit and
5540       // process death by signal.
5541       return 0x80 + WTERMSIG(status);
5542     } else {
5543       // Unknown exit code; pass it through
5544       return status;
5545     }
5546   }
5547 }
5548 
5549 // is_headless_jre()
5550 //
5551 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5552 // in order to report if we are running in a headless jre
5553 //
5554 // Since JDK8 xawt/libmawt.so was moved into the same directory
5555 // as libawt.so, and renamed libawt_xawt.so
5556 //
5557 bool os::is_headless_jre() {
5558   struct stat statbuf;
5559   char buf[MAXPATHLEN];
5560   char libmawtpath[MAXPATHLEN];
5561   const char *xawtstr  = "/xawt/libmawt.so";
5562   const char *new_xawtstr = "/libawt_xawt.so";
5563   char *p;
5564 
5565   // Get path to libjvm.so
5566   os::jvm_path(buf, sizeof(buf));
5567 
5568   // Get rid of libjvm.so
5569   p = strrchr(buf, '/');
5570   if (p == NULL) {
5571     return false;
5572   } else {
5573     *p = '\0';
5574   }
5575 
5576   // Get rid of client or server
5577   p = strrchr(buf, '/');
5578   if (p == NULL) {
5579     return false;
5580   } else {
5581     *p = '\0';
5582   }
5583 
5584   // check xawt/libmawt.so
5585   strcpy(libmawtpath, buf);
5586   strcat(libmawtpath, xawtstr);
5587   if (::stat(libmawtpath, &statbuf) == 0) return false;
5588 
5589   // check libawt_xawt.so
5590   strcpy(libmawtpath, buf);
5591   strcat(libmawtpath, new_xawtstr);
5592   if (::stat(libmawtpath, &statbuf) == 0) return false;
5593 
5594   return true;
5595 }
5596 
5597 // Get the default path to the core file
5598 // Returns the length of the string
5599 int os::get_core_path(char* buffer, size_t bufferSize) {
5600   /*
5601    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5602    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5603    */
5604   const int core_pattern_len = 129;
5605   char core_pattern[core_pattern_len] = {0};
5606 
5607   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5608   if (core_pattern_file == -1) {
5609     return -1;
5610   }
5611 
5612   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5613   ::close(core_pattern_file);
5614   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5615     return -1;
5616   }
5617   if (core_pattern[ret-1] == '\n') {
5618     core_pattern[ret-1] = '\0';
5619   } else {
5620     core_pattern[ret] = '\0';
5621   }
5622 
5623   char *pid_pos = strstr(core_pattern, "%p");
5624   int written;
5625 
5626   if (core_pattern[0] == '/') {
5627     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5628   } else {
5629     char cwd[PATH_MAX];
5630 
5631     const char* p = get_current_directory(cwd, PATH_MAX);
5632     if (p == NULL) {
5633       return -1;
5634     }
5635 
5636     if (core_pattern[0] == '|') {
5637       written = jio_snprintf(buffer, bufferSize,
5638                              "\"%s\" (or dumping to %s/core.%d)",
5639                              &core_pattern[1], p, current_process_id());
5640     } else {
5641       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5642     }
5643   }
5644 
5645   if (written < 0) {
5646     return -1;
5647   }
5648 
5649   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5650     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5651 
5652     if (core_uses_pid_file != -1) {
5653       char core_uses_pid = 0;
5654       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5655       ::close(core_uses_pid_file);
5656 
5657       if (core_uses_pid == '1') {
5658         jio_snprintf(buffer + written, bufferSize - written,
5659                                           ".%d", current_process_id());
5660       }
5661     }
5662   }
5663 
5664   return strlen(buffer);
5665 }
5666 
5667 bool os::start_debugging(char *buf, int buflen) {
5668   int len = (int)strlen(buf);
5669   char *p = &buf[len];
5670 
5671   jio_snprintf(p, buflen-len,
5672                "\n\n"
5673                "Do you want to debug the problem?\n\n"
5674                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5675                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5676                "Otherwise, press RETURN to abort...",
5677                os::current_process_id(), os::current_process_id(),
5678                os::current_thread_id(), os::current_thread_id());
5679 
5680   bool yes = os::message_box("Unexpected Error", buf);
5681 
5682   if (yes) {
5683     // yes, user asked VM to launch debugger
5684     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5685                  os::current_process_id(), os::current_process_id());
5686 
5687     os::fork_and_exec(buf);
5688     yes = false;
5689   }
5690   return yes;
5691 }
5692 
5693 
5694 // Java/Compiler thread:
5695 //
5696 //   Low memory addresses
5697 // P0 +------------------------+
5698 //    |                        |\  Java thread created by VM does not have glibc
5699 //    |    glibc guard page    | - guard page, attached Java thread usually has
5700 //    |                        |/  1 glibc guard page.
5701 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5702 //    |                        |\
5703 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5704 //    |                        |/
5705 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5706 //    |                        |\
5707 //    |      Normal Stack      | -
5708 //    |                        |/
5709 // P2 +------------------------+ Thread::stack_base()
5710 //
5711 // Non-Java thread:
5712 //
5713 //   Low memory addresses
5714 // P0 +------------------------+
5715 //    |                        |\
5716 //    |  glibc guard page      | - usually 1 page
5717 //    |                        |/
5718 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5719 //    |                        |\
5720 //    |      Normal Stack      | -
5721 //    |                        |/
5722 // P2 +------------------------+ Thread::stack_base()
5723 //
5724 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5725 //    returned from pthread_attr_getstack().
5726 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5727 //    of the stack size given in pthread_attr. We work around this for
5728 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5729 //
5730 #ifndef ZERO
5731 static void current_stack_region(address * bottom, size_t * size) {
5732   if (os::Linux::is_initial_thread()) {
5733     // initial thread needs special handling because pthread_getattr_np()
5734     // may return bogus value.
5735     *bottom = os::Linux::initial_thread_stack_bottom();
5736     *size   = os::Linux::initial_thread_stack_size();
5737   } else {
5738     pthread_attr_t attr;
5739 
5740     int rslt = pthread_getattr_np(pthread_self(), &attr);
5741 
5742     // JVM needs to know exact stack location, abort if it fails
5743     if (rslt != 0) {
5744       if (rslt == ENOMEM) {
5745         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5746       } else {
5747         fatal("pthread_getattr_np failed with error = %d", rslt);
5748       }
5749     }
5750 
5751     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5752       fatal("Cannot locate current stack attributes!");
5753     }
5754 
5755     // Work around NPTL stack guard error.
5756     size_t guard_size = 0;
5757     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5758     if (rslt != 0) {
5759       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5760     }
5761     *bottom += guard_size;
5762     *size   -= guard_size;
5763 
5764     pthread_attr_destroy(&attr);
5765 
5766   }
5767   assert(os::current_stack_pointer() >= *bottom &&
5768          os::current_stack_pointer() < *bottom + *size, "just checking");
5769 }
5770 
5771 address os::current_stack_base() {
5772   address bottom;
5773   size_t size;
5774   current_stack_region(&bottom, &size);
5775   return (bottom + size);
5776 }
5777 
5778 size_t os::current_stack_size() {
5779   // This stack size includes the usable stack and HotSpot guard pages
5780   // (for the threads that have Hotspot guard pages).
5781   address bottom;
5782   size_t size;
5783   current_stack_region(&bottom, &size);
5784   return size;
5785 }
5786 #endif
5787 
5788 static inline struct timespec get_mtime(const char* filename) {
5789   struct stat st;
5790   int ret = os::stat(filename, &st);
5791   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5792   return st.st_mtim;
5793 }
5794 
5795 int os::compare_file_modified_times(const char* file1, const char* file2) {
5796   struct timespec filetime1 = get_mtime(file1);
5797   struct timespec filetime2 = get_mtime(file2);
5798   int diff = filetime1.tv_sec - filetime2.tv_sec;
5799   if (diff == 0) {
5800     return filetime1.tv_nsec - filetime2.tv_nsec;
5801   }
5802   return diff;
5803 }
5804 
5805 /////////////// Unit tests ///////////////
5806 
5807 #ifndef PRODUCT
5808 
5809 #define test_log(...)              \
5810   do {                             \
5811     if (VerboseInternalVMTests) {  \
5812       tty->print_cr(__VA_ARGS__);  \
5813       tty->flush();                \
5814     }                              \
5815   } while (false)
5816 
5817 class TestReserveMemorySpecial : AllStatic {
5818  public:
5819   static void small_page_write(void* addr, size_t size) {
5820     size_t page_size = os::vm_page_size();
5821 
5822     char* end = (char*)addr + size;
5823     for (char* p = (char*)addr; p < end; p += page_size) {
5824       *p = 1;
5825     }
5826   }
5827 
5828   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5829     if (!UseHugeTLBFS) {
5830       return;
5831     }
5832 
5833     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5834 
5835     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5836 
5837     if (addr != NULL) {
5838       small_page_write(addr, size);
5839 
5840       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5841     }
5842   }
5843 
5844   static void test_reserve_memory_special_huge_tlbfs_only() {
5845     if (!UseHugeTLBFS) {
5846       return;
5847     }
5848 
5849     size_t lp = os::large_page_size();
5850 
5851     for (size_t size = lp; size <= lp * 10; size += lp) {
5852       test_reserve_memory_special_huge_tlbfs_only(size);
5853     }
5854   }
5855 
5856   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5857     size_t lp = os::large_page_size();
5858     size_t ag = os::vm_allocation_granularity();
5859 
5860     // sizes to test
5861     const size_t sizes[] = {
5862       lp, lp + ag, lp + lp / 2, lp * 2,
5863       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5864       lp * 10, lp * 10 + lp / 2
5865     };
5866     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5867 
5868     // For each size/alignment combination, we test three scenarios:
5869     // 1) with req_addr == NULL
5870     // 2) with a non-null req_addr at which we expect to successfully allocate
5871     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5872     //    expect the allocation to either fail or to ignore req_addr
5873 
5874     // Pre-allocate two areas; they shall be as large as the largest allocation
5875     //  and aligned to the largest alignment we will be testing.
5876     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5877     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5878       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5879       -1, 0);
5880     assert(mapping1 != MAP_FAILED, "should work");
5881 
5882     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5883       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5884       -1, 0);
5885     assert(mapping2 != MAP_FAILED, "should work");
5886 
5887     // Unmap the first mapping, but leave the second mapping intact: the first
5888     // mapping will serve as a value for a "good" req_addr (case 2). The second
5889     // mapping, still intact, as "bad" req_addr (case 3).
5890     ::munmap(mapping1, mapping_size);
5891 
5892     // Case 1
5893     test_log("%s, req_addr NULL:", __FUNCTION__);
5894     test_log("size            align           result");
5895 
5896     for (int i = 0; i < num_sizes; i++) {
5897       const size_t size = sizes[i];
5898       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5899         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5900         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5901                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5902         if (p != NULL) {
5903           assert(is_aligned(p, alignment), "must be");
5904           small_page_write(p, size);
5905           os::Linux::release_memory_special_huge_tlbfs(p, size);
5906         }
5907       }
5908     }
5909 
5910     // Case 2
5911     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5912     test_log("size            align           req_addr         result");
5913 
5914     for (int i = 0; i < num_sizes; i++) {
5915       const size_t size = sizes[i];
5916       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5917         char* const req_addr = align_up(mapping1, alignment);
5918         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5919         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5920                  size, alignment, p2i(req_addr), p2i(p),
5921                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5922         if (p != NULL) {
5923           assert(p == req_addr, "must be");
5924           small_page_write(p, size);
5925           os::Linux::release_memory_special_huge_tlbfs(p, size);
5926         }
5927       }
5928     }
5929 
5930     // Case 3
5931     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5932     test_log("size            align           req_addr         result");
5933 
5934     for (int i = 0; i < num_sizes; i++) {
5935       const size_t size = sizes[i];
5936       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5937         char* const req_addr = align_up(mapping2, alignment);
5938         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5939         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5940                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5941         // as the area around req_addr contains already existing mappings, the API should always
5942         // return NULL (as per contract, it cannot return another address)
5943         assert(p == NULL, "must be");
5944       }
5945     }
5946 
5947     ::munmap(mapping2, mapping_size);
5948 
5949   }
5950 
5951   static void test_reserve_memory_special_huge_tlbfs() {
5952     if (!UseHugeTLBFS) {
5953       return;
5954     }
5955 
5956     test_reserve_memory_special_huge_tlbfs_only();
5957     test_reserve_memory_special_huge_tlbfs_mixed();
5958   }
5959 
5960   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5961     if (!UseSHM) {
5962       return;
5963     }
5964 
5965     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5966 
5967     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5968 
5969     if (addr != NULL) {
5970       assert(is_aligned(addr, alignment), "Check");
5971       assert(is_aligned(addr, os::large_page_size()), "Check");
5972 
5973       small_page_write(addr, size);
5974 
5975       os::Linux::release_memory_special_shm(addr, size);
5976     }
5977   }
5978 
5979   static void test_reserve_memory_special_shm() {
5980     size_t lp = os::large_page_size();
5981     size_t ag = os::vm_allocation_granularity();
5982 
5983     for (size_t size = ag; size < lp * 3; size += ag) {
5984       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5985         test_reserve_memory_special_shm(size, alignment);
5986       }
5987     }
5988   }
5989 
5990   static void test() {
5991     test_reserve_memory_special_huge_tlbfs();
5992     test_reserve_memory_special_shm();
5993   }
5994 };
5995 
5996 void TestReserveMemorySpecial_test() {
5997   TestReserveMemorySpecial::test();
5998 }
5999 
6000 #endif