1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullGCScope.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1SerialFullCollector.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/suspendibleThreadSet.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "logging/log.hpp"
  74 #include "memory/allocation.hpp"
  75 #include "memory/iterator.hpp"
  76 #include "memory/resourceArea.hpp"
  77 #include "oops/oop.inline.hpp"
  78 #include "prims/resolvedMethodTable.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/align.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/stack.inline.hpp"
  86 
  87 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  88 
  89 // INVARIANTS/NOTES
  90 //
  91 // All allocation activity covered by the G1CollectedHeap interface is
  92 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  93 // and allocate_new_tlab, which are the "entry" points to the
  94 // allocation code from the rest of the JVM.  (Note that this does not
  95 // apply to TLAB allocation, which is not part of this interface: it
  96 // is done by clients of this interface.)
  97 
  98 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
  99  private:
 100   size_t _num_dirtied;
 101   G1CollectedHeap* _g1h;
 102   G1SATBCardTableLoggingModRefBS* _g1_bs;
 103 
 104   HeapRegion* region_for_card(jbyte* card_ptr) const {
 105     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 106   }
 107 
 108   bool will_become_free(HeapRegion* hr) const {
 109     // A region will be freed by free_collection_set if the region is in the
 110     // collection set and has not had an evacuation failure.
 111     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 112   }
 113 
 114  public:
 115   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 116     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 117 
 118   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 119     HeapRegion* hr = region_for_card(card_ptr);
 120 
 121     // Should only dirty cards in regions that won't be freed.
 122     if (!will_become_free(hr)) {
 123       *card_ptr = CardTableModRefBS::dirty_card_val();
 124       _num_dirtied++;
 125     }
 126 
 127     return true;
 128   }
 129 
 130   size_t num_dirtied()   const { return _num_dirtied; }
 131 };
 132 
 133 
 134 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 135   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 136 }
 137 
 138 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 139   // The from card cache is not the memory that is actually committed. So we cannot
 140   // take advantage of the zero_filled parameter.
 141   reset_from_card_cache(start_idx, num_regions);
 142 }
 143 
 144 // Returns true if the reference points to an object that
 145 // can move in an incremental collection.
 146 bool G1CollectedHeap::is_scavengable(const void* p) {
 147   HeapRegion* hr = heap_region_containing(p);
 148   return !hr->is_pinned();
 149 }
 150 
 151 // Private methods.
 152 
 153 HeapRegion*
 154 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 155   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 156   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 157     if (!_secondary_free_list.is_empty()) {
 158       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 159                                       "secondary_free_list has %u entries",
 160                                       _secondary_free_list.length());
 161       // It looks as if there are free regions available on the
 162       // secondary_free_list. Let's move them to the free_list and try
 163       // again to allocate from it.
 164       append_secondary_free_list();
 165 
 166       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 167              "empty we should have moved at least one entry to the free_list");
 168       HeapRegion* res = _hrm.allocate_free_region(is_old);
 169       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 170                                       "allocated " HR_FORMAT " from secondary_free_list",
 171                                       HR_FORMAT_PARAMS(res));
 172       return res;
 173     }
 174 
 175     // Wait here until we get notified either when (a) there are no
 176     // more free regions coming or (b) some regions have been moved on
 177     // the secondary_free_list.
 178     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 179   }
 180 
 181   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                   "could not allocate from secondary_free_list");
 183   return NULL;
 184 }
 185 
 186 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 187   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 188          "the only time we use this to allocate a humongous region is "
 189          "when we are allocating a single humongous region");
 190 
 191   HeapRegion* res;
 192   if (G1StressConcRegionFreeing) {
 193     if (!_secondary_free_list.is_empty()) {
 194       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 195                                       "forced to look at the secondary_free_list");
 196       res = new_region_try_secondary_free_list(is_old);
 197       if (res != NULL) {
 198         return res;
 199       }
 200     }
 201   }
 202 
 203   res = _hrm.allocate_free_region(is_old);
 204 
 205   if (res == NULL) {
 206     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 207                                     "res == NULL, trying the secondary_free_list");
 208     res = new_region_try_secondary_free_list(is_old);
 209   }
 210   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 211     // Currently, only attempts to allocate GC alloc regions set
 212     // do_expand to true. So, we should only reach here during a
 213     // safepoint. If this assumption changes we might have to
 214     // reconsider the use of _expand_heap_after_alloc_failure.
 215     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 216 
 217     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 218                               word_size * HeapWordSize);
 219 
 220     if (expand(word_size * HeapWordSize)) {
 221       // Given that expand() succeeded in expanding the heap, and we
 222       // always expand the heap by an amount aligned to the heap
 223       // region size, the free list should in theory not be empty.
 224       // In either case allocate_free_region() will check for NULL.
 225       res = _hrm.allocate_free_region(is_old);
 226     } else {
 227       _expand_heap_after_alloc_failure = false;
 228     }
 229   }
 230   return res;
 231 }
 232 
 233 HeapWord*
 234 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 235                                                            uint num_regions,
 236                                                            size_t word_size,
 237                                                            AllocationContext_t context) {
 238   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 239   assert(is_humongous(word_size), "word_size should be humongous");
 240   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 241 
 242   // Index of last region in the series.
 243   uint last = first + num_regions - 1;
 244 
 245   // We need to initialize the region(s) we just discovered. This is
 246   // a bit tricky given that it can happen concurrently with
 247   // refinement threads refining cards on these regions and
 248   // potentially wanting to refine the BOT as they are scanning
 249   // those cards (this can happen shortly after a cleanup; see CR
 250   // 6991377). So we have to set up the region(s) carefully and in
 251   // a specific order.
 252 
 253   // The word size sum of all the regions we will allocate.
 254   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 255   assert(word_size <= word_size_sum, "sanity");
 256 
 257   // This will be the "starts humongous" region.
 258   HeapRegion* first_hr = region_at(first);
 259   // The header of the new object will be placed at the bottom of
 260   // the first region.
 261   HeapWord* new_obj = first_hr->bottom();
 262   // This will be the new top of the new object.
 263   HeapWord* obj_top = new_obj + word_size;
 264 
 265   // First, we need to zero the header of the space that we will be
 266   // allocating. When we update top further down, some refinement
 267   // threads might try to scan the region. By zeroing the header we
 268   // ensure that any thread that will try to scan the region will
 269   // come across the zero klass word and bail out.
 270   //
 271   // NOTE: It would not have been correct to have used
 272   // CollectedHeap::fill_with_object() and make the space look like
 273   // an int array. The thread that is doing the allocation will
 274   // later update the object header to a potentially different array
 275   // type and, for a very short period of time, the klass and length
 276   // fields will be inconsistent. This could cause a refinement
 277   // thread to calculate the object size incorrectly.
 278   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 279 
 280   // Next, pad out the unused tail of the last region with filler
 281   // objects, for improved usage accounting.
 282   // How many words we use for filler objects.
 283   size_t word_fill_size = word_size_sum - word_size;
 284 
 285   // How many words memory we "waste" which cannot hold a filler object.
 286   size_t words_not_fillable = 0;
 287 
 288   if (word_fill_size >= min_fill_size()) {
 289     fill_with_objects(obj_top, word_fill_size);
 290   } else if (word_fill_size > 0) {
 291     // We have space to fill, but we cannot fit an object there.
 292     words_not_fillable = word_fill_size;
 293     word_fill_size = 0;
 294   }
 295 
 296   // We will set up the first region as "starts humongous". This
 297   // will also update the BOT covering all the regions to reflect
 298   // that there is a single object that starts at the bottom of the
 299   // first region.
 300   first_hr->set_starts_humongous(obj_top, word_fill_size);
 301   first_hr->set_allocation_context(context);
 302   // Then, if there are any, we will set up the "continues
 303   // humongous" regions.
 304   HeapRegion* hr = NULL;
 305   for (uint i = first + 1; i <= last; ++i) {
 306     hr = region_at(i);
 307     hr->set_continues_humongous(first_hr);
 308     hr->set_allocation_context(context);
 309   }
 310 
 311   // Up to this point no concurrent thread would have been able to
 312   // do any scanning on any region in this series. All the top
 313   // fields still point to bottom, so the intersection between
 314   // [bottom,top] and [card_start,card_end] will be empty. Before we
 315   // update the top fields, we'll do a storestore to make sure that
 316   // no thread sees the update to top before the zeroing of the
 317   // object header and the BOT initialization.
 318   OrderAccess::storestore();
 319 
 320   // Now, we will update the top fields of the "continues humongous"
 321   // regions except the last one.
 322   for (uint i = first; i < last; ++i) {
 323     hr = region_at(i);
 324     hr->set_top(hr->end());
 325   }
 326 
 327   hr = region_at(last);
 328   // If we cannot fit a filler object, we must set top to the end
 329   // of the humongous object, otherwise we cannot iterate the heap
 330   // and the BOT will not be complete.
 331   hr->set_top(hr->end() - words_not_fillable);
 332 
 333   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 334          "obj_top should be in last region");
 335 
 336   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 337 
 338   assert(words_not_fillable == 0 ||
 339          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 340          "Miscalculation in humongous allocation");
 341 
 342   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 343 
 344   for (uint i = first; i <= last; ++i) {
 345     hr = region_at(i);
 346     _humongous_set.add(hr);
 347     _hr_printer.alloc(hr);
 348   }
 349 
 350   return new_obj;
 351 }
 352 
 353 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 354   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 355   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 356 }
 357 
 358 // If could fit into free regions w/o expansion, try.
 359 // Otherwise, if can expand, do so.
 360 // Otherwise, if using ex regions might help, try with ex given back.
 361 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 363 
 364   _verifier->verify_region_sets_optional();
 365 
 366   uint first = G1_NO_HRM_INDEX;
 367   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 368 
 369   if (obj_regions == 1) {
 370     // Only one region to allocate, try to use a fast path by directly allocating
 371     // from the free lists. Do not try to expand here, we will potentially do that
 372     // later.
 373     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 374     if (hr != NULL) {
 375       first = hr->hrm_index();
 376     }
 377   } else {
 378     // We can't allocate humongous regions spanning more than one region while
 379     // cleanupComplete() is running, since some of the regions we find to be
 380     // empty might not yet be added to the free list. It is not straightforward
 381     // to know in which list they are on so that we can remove them. We only
 382     // need to do this if we need to allocate more than one region to satisfy the
 383     // current humongous allocation request. If we are only allocating one region
 384     // we use the one-region region allocation code (see above), that already
 385     // potentially waits for regions from the secondary free list.
 386     wait_while_free_regions_coming();
 387     append_secondary_free_list_if_not_empty_with_lock();
 388 
 389     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 390     // are lucky enough to find some.
 391     first = _hrm.find_contiguous_only_empty(obj_regions);
 392     if (first != G1_NO_HRM_INDEX) {
 393       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 394     }
 395   }
 396 
 397   if (first == G1_NO_HRM_INDEX) {
 398     // Policy: We could not find enough regions for the humongous object in the
 399     // free list. Look through the heap to find a mix of free and uncommitted regions.
 400     // If so, try expansion.
 401     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 402     if (first != G1_NO_HRM_INDEX) {
 403       // We found something. Make sure these regions are committed, i.e. expand
 404       // the heap. Alternatively we could do a defragmentation GC.
 405       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 406                                     word_size * HeapWordSize);
 407 
 408       _hrm.expand_at(first, obj_regions, workers());
 409       g1_policy()->record_new_heap_size(num_regions());
 410 
 411 #ifdef ASSERT
 412       for (uint i = first; i < first + obj_regions; ++i) {
 413         HeapRegion* hr = region_at(i);
 414         assert(hr->is_free(), "sanity");
 415         assert(hr->is_empty(), "sanity");
 416         assert(is_on_master_free_list(hr), "sanity");
 417       }
 418 #endif
 419       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 420     } else {
 421       // Policy: Potentially trigger a defragmentation GC.
 422     }
 423   }
 424 
 425   HeapWord* result = NULL;
 426   if (first != G1_NO_HRM_INDEX) {
 427     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 428                                                        word_size, context);
 429     assert(result != NULL, "it should always return a valid result");
 430 
 431     // A successful humongous object allocation changes the used space
 432     // information of the old generation so we need to recalculate the
 433     // sizes and update the jstat counters here.
 434     g1mm()->update_sizes();
 435   }
 436 
 437   _verifier->verify_region_sets_optional();
 438 
 439   return result;
 440 }
 441 
 442 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 443   assert_heap_not_locked_and_not_at_safepoint();
 444   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 445 
 446   uint dummy_gc_count_before;
 447   uint dummy_gclocker_retry_count = 0;
 448   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 449 }
 450 
 451 HeapWord*
 452 G1CollectedHeap::mem_allocate(size_t word_size,
 453                               bool*  gc_overhead_limit_was_exceeded) {
 454   assert_heap_not_locked_and_not_at_safepoint();
 455 
 456   // Loop until the allocation is satisfied, or unsatisfied after GC.
 457   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 458     uint gc_count_before;
 459 
 460     HeapWord* result = NULL;
 461     if (!is_humongous(word_size)) {
 462       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 463     } else {
 464       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 465     }
 466     if (result != NULL) {
 467       return result;
 468     }
 469 
 470     // Create the garbage collection operation...
 471     VM_G1CollectForAllocation op(gc_count_before, word_size);
 472     op.set_allocation_context(AllocationContext::current());
 473 
 474     // ...and get the VM thread to execute it.
 475     VMThread::execute(&op);
 476 
 477     if (op.prologue_succeeded() && op.pause_succeeded()) {
 478       // If the operation was successful we'll return the result even
 479       // if it is NULL. If the allocation attempt failed immediately
 480       // after a Full GC, it's unlikely we'll be able to allocate now.
 481       HeapWord* result = op.result();
 482       if (result != NULL && !is_humongous(word_size)) {
 483         // Allocations that take place on VM operations do not do any
 484         // card dirtying and we have to do it here. We only have to do
 485         // this for non-humongous allocations, though.
 486         dirty_young_block(result, word_size);
 487       }
 488       return result;
 489     } else {
 490       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 491         return NULL;
 492       }
 493       assert(op.result() == NULL,
 494              "the result should be NULL if the VM op did not succeed");
 495     }
 496 
 497     // Give a warning if we seem to be looping forever.
 498     if ((QueuedAllocationWarningCount > 0) &&
 499         (try_count % QueuedAllocationWarningCount == 0)) {
 500       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 509                                                    AllocationContext_t context,
 510                                                    uint* gc_count_before_ret,
 511                                                    uint* gclocker_retry_count_ret) {
 512   // Make sure you read the note in attempt_allocation_humongous().
 513 
 514   assert_heap_not_locked_and_not_at_safepoint();
 515   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 516          "be called for humongous allocation requests");
 517 
 518   // We should only get here after the first-level allocation attempt
 519   // (attempt_allocation()) failed to allocate.
 520 
 521   // We will loop until a) we manage to successfully perform the
 522   // allocation or b) we successfully schedule a collection which
 523   // fails to perform the allocation. b) is the only case when we'll
 524   // return NULL.
 525   HeapWord* result = NULL;
 526   for (int try_count = 1; /* we'll return */; try_count += 1) {
 527     bool should_try_gc;
 528     uint gc_count_before;
 529 
 530     {
 531       MutexLockerEx x(Heap_lock);
 532       result = _allocator->attempt_allocation_locked(word_size, context);
 533       if (result != NULL) {
 534         return result;
 535       }
 536 
 537       if (GCLocker::is_active_and_needs_gc()) {
 538         if (g1_policy()->can_expand_young_list()) {
 539           // No need for an ergo verbose message here,
 540           // can_expand_young_list() does this when it returns true.
 541           result = _allocator->attempt_allocation_force(word_size, context);
 542           if (result != NULL) {
 543             return result;
 544           }
 545         }
 546         should_try_gc = false;
 547       } else {
 548         // The GCLocker may not be active but the GCLocker initiated
 549         // GC may not yet have been performed (GCLocker::needs_gc()
 550         // returns true). In this case we do not try this GC and
 551         // wait until the GCLocker initiated GC is performed, and
 552         // then retry the allocation.
 553         if (GCLocker::needs_gc()) {
 554           should_try_gc = false;
 555         } else {
 556           // Read the GC count while still holding the Heap_lock.
 557           gc_count_before = total_collections();
 558           should_try_gc = true;
 559         }
 560       }
 561     }
 562 
 563     if (should_try_gc) {
 564       bool succeeded;
 565       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 566                                    GCCause::_g1_inc_collection_pause);
 567       if (result != NULL) {
 568         assert(succeeded, "only way to get back a non-NULL result");
 569         return result;
 570       }
 571 
 572       if (succeeded) {
 573         // If we get here we successfully scheduled a collection which
 574         // failed to allocate. No point in trying to allocate
 575         // further. We'll just return NULL.
 576         MutexLockerEx x(Heap_lock);
 577         *gc_count_before_ret = total_collections();
 578         return NULL;
 579       }
 580     } else {
 581       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 582         MutexLockerEx x(Heap_lock);
 583         *gc_count_before_ret = total_collections();
 584         return NULL;
 585       }
 586       // The GCLocker is either active or the GCLocker initiated
 587       // GC has not yet been performed. Stall until it is and
 588       // then retry the allocation.
 589       GCLocker::stall_until_clear();
 590       (*gclocker_retry_count_ret) += 1;
 591     }
 592 
 593     // We can reach here if we were unsuccessful in scheduling a
 594     // collection (because another thread beat us to it) or if we were
 595     // stalled due to the GC locker. In either can we should retry the
 596     // allocation attempt in case another thread successfully
 597     // performed a collection and reclaimed enough space. We do the
 598     // first attempt (without holding the Heap_lock) here and the
 599     // follow-on attempt will be at the start of the next loop
 600     // iteration (after taking the Heap_lock).
 601     result = _allocator->attempt_allocation(word_size, context);
 602     if (result != NULL) {
 603       return result;
 604     }
 605 
 606     // Give a warning if we seem to be looping forever.
 607     if ((QueuedAllocationWarningCount > 0) &&
 608         (try_count % QueuedAllocationWarningCount == 0)) {
 609       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 610                       "retries %d times", try_count);
 611     }
 612   }
 613 
 614   ShouldNotReachHere();
 615   return NULL;
 616 }
 617 
 618 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 619   assert_at_safepoint(true /* should_be_vm_thread */);
 620   if (_archive_allocator == NULL) {
 621     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 622   }
 623 }
 624 
 625 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 626   // Allocations in archive regions cannot be of a size that would be considered
 627   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 628   // may be different at archive-restore time.
 629   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 630 }
 631 
 632 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 633   assert_at_safepoint(true /* should_be_vm_thread */);
 634   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 635   if (is_archive_alloc_too_large(word_size)) {
 636     return NULL;
 637   }
 638   return _archive_allocator->archive_mem_allocate(word_size);
 639 }
 640 
 641 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 642                                               size_t end_alignment_in_bytes) {
 643   assert_at_safepoint(true /* should_be_vm_thread */);
 644   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 645 
 646   // Call complete_archive to do the real work, filling in the MemRegion
 647   // array with the archive regions.
 648   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 649   delete _archive_allocator;
 650   _archive_allocator = NULL;
 651 }
 652 
 653 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 654   assert(ranges != NULL, "MemRegion array NULL");
 655   assert(count != 0, "No MemRegions provided");
 656   MemRegion reserved = _hrm.reserved();
 657   for (size_t i = 0; i < count; i++) {
 658     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 659       return false;
 660     }
 661   }
 662   return true;
 663 }
 664 
 665 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 666                                             size_t count,
 667                                             bool open) {
 668   assert(!is_init_completed(), "Expect to be called at JVM init time");
 669   assert(ranges != NULL, "MemRegion array NULL");
 670   assert(count != 0, "No MemRegions provided");
 671   MutexLockerEx x(Heap_lock);
 672 
 673   MemRegion reserved = _hrm.reserved();
 674   HeapWord* prev_last_addr = NULL;
 675   HeapRegion* prev_last_region = NULL;
 676 
 677   // Temporarily disable pretouching of heap pages. This interface is used
 678   // when mmap'ing archived heap data in, so pre-touching is wasted.
 679   FlagSetting fs(AlwaysPreTouch, false);
 680 
 681   // Enable archive object checking used by G1MarkSweep. We have to let it know
 682   // about each archive range, so that objects in those ranges aren't marked.
 683   G1ArchiveAllocator::enable_archive_object_check();
 684 
 685   // For each specified MemRegion range, allocate the corresponding G1
 686   // regions and mark them as archive regions. We expect the ranges
 687   // in ascending starting address order, without overlap.
 688   for (size_t i = 0; i < count; i++) {
 689     MemRegion curr_range = ranges[i];
 690     HeapWord* start_address = curr_range.start();
 691     size_t word_size = curr_range.word_size();
 692     HeapWord* last_address = curr_range.last();
 693     size_t commits = 0;
 694 
 695     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 696               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 697               p2i(start_address), p2i(last_address));
 698     guarantee(start_address > prev_last_addr,
 699               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 700               p2i(start_address), p2i(prev_last_addr));
 701     prev_last_addr = last_address;
 702 
 703     // Check for ranges that start in the same G1 region in which the previous
 704     // range ended, and adjust the start address so we don't try to allocate
 705     // the same region again. If the current range is entirely within that
 706     // region, skip it, just adjusting the recorded top.
 707     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 708     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 709       start_address = start_region->end();
 710       if (start_address > last_address) {
 711         increase_used(word_size * HeapWordSize);
 712         start_region->set_top(last_address + 1);
 713         continue;
 714       }
 715       start_region->set_top(start_address);
 716       curr_range = MemRegion(start_address, last_address + 1);
 717       start_region = _hrm.addr_to_region(start_address);
 718     }
 719 
 720     // Perform the actual region allocation, exiting if it fails.
 721     // Then note how much new space we have allocated.
 722     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 723       return false;
 724     }
 725     increase_used(word_size * HeapWordSize);
 726     if (commits != 0) {
 727       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 728                                 HeapRegion::GrainWords * HeapWordSize * commits);
 729 
 730     }
 731 
 732     // Mark each G1 region touched by the range as archive, add it to
 733     // the old set, and set the allocation context and top.
 734     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 735     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 736     prev_last_region = last_region;
 737 
 738     while (curr_region != NULL) {
 739       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 740              "Region already in use (index %u)", curr_region->hrm_index());
 741       curr_region->set_allocation_context(AllocationContext::system());
 742       if (open) {
 743         curr_region->set_open_archive();
 744       } else {
 745         curr_region->set_closed_archive();
 746       }
 747       _hr_printer.alloc(curr_region);
 748       _old_set.add(curr_region);
 749       HeapWord* top;
 750       HeapRegion* next_region;
 751       if (curr_region != last_region) {
 752         top = curr_region->end();
 753         next_region = _hrm.next_region_in_heap(curr_region);
 754       } else {
 755         top = last_address + 1;
 756         next_region = NULL;
 757       }
 758       curr_region->set_top(top);
 759       curr_region->set_first_dead(top);
 760       curr_region->set_end_of_live(top);
 761       curr_region = next_region;
 762     }
 763 
 764     // Notify mark-sweep of the archive
 765     G1ArchiveAllocator::set_range_archive(curr_range, open);
 766   }
 767   return true;
 768 }
 769 
 770 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 771   assert(!is_init_completed(), "Expect to be called at JVM init time");
 772   assert(ranges != NULL, "MemRegion array NULL");
 773   assert(count != 0, "No MemRegions provided");
 774   MemRegion reserved = _hrm.reserved();
 775   HeapWord *prev_last_addr = NULL;
 776   HeapRegion* prev_last_region = NULL;
 777 
 778   // For each MemRegion, create filler objects, if needed, in the G1 regions
 779   // that contain the address range. The address range actually within the
 780   // MemRegion will not be modified. That is assumed to have been initialized
 781   // elsewhere, probably via an mmap of archived heap data.
 782   MutexLockerEx x(Heap_lock);
 783   for (size_t i = 0; i < count; i++) {
 784     HeapWord* start_address = ranges[i].start();
 785     HeapWord* last_address = ranges[i].last();
 786 
 787     assert(reserved.contains(start_address) && reserved.contains(last_address),
 788            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 789            p2i(start_address), p2i(last_address));
 790     assert(start_address > prev_last_addr,
 791            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 792            p2i(start_address), p2i(prev_last_addr));
 793 
 794     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 795     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 796     HeapWord* bottom_address = start_region->bottom();
 797 
 798     // Check for a range beginning in the same region in which the
 799     // previous one ended.
 800     if (start_region == prev_last_region) {
 801       bottom_address = prev_last_addr + 1;
 802     }
 803 
 804     // Verify that the regions were all marked as archive regions by
 805     // alloc_archive_regions.
 806     HeapRegion* curr_region = start_region;
 807     while (curr_region != NULL) {
 808       guarantee(curr_region->is_archive(),
 809                 "Expected archive region at index %u", curr_region->hrm_index());
 810       if (curr_region != last_region) {
 811         curr_region = _hrm.next_region_in_heap(curr_region);
 812       } else {
 813         curr_region = NULL;
 814       }
 815     }
 816 
 817     prev_last_addr = last_address;
 818     prev_last_region = last_region;
 819 
 820     // Fill the memory below the allocated range with dummy object(s),
 821     // if the region bottom does not match the range start, or if the previous
 822     // range ended within the same G1 region, and there is a gap.
 823     if (start_address != bottom_address) {
 824       size_t fill_size = pointer_delta(start_address, bottom_address);
 825       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 826       increase_used(fill_size * HeapWordSize);
 827     }
 828   }
 829 }
 830 
 831 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 832                                                      uint* gc_count_before_ret,
 833                                                      uint* gclocker_retry_count_ret) {
 834   assert_heap_not_locked_and_not_at_safepoint();
 835   assert(!is_humongous(word_size), "attempt_allocation() should not "
 836          "be called for humongous allocation requests");
 837 
 838   AllocationContext_t context = AllocationContext::current();
 839   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 840 
 841   if (result == NULL) {
 842     result = attempt_allocation_slow(word_size,
 843                                      context,
 844                                      gc_count_before_ret,
 845                                      gclocker_retry_count_ret);
 846   }
 847   assert_heap_not_locked();
 848   if (result != NULL) {
 849     dirty_young_block(result, word_size);
 850   }
 851   return result;
 852 }
 853 
 854 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 855   assert(!is_init_completed(), "Expect to be called at JVM init time");
 856   assert(ranges != NULL, "MemRegion array NULL");
 857   assert(count != 0, "No MemRegions provided");
 858   MemRegion reserved = _hrm.reserved();
 859   HeapWord* prev_last_addr = NULL;
 860   HeapRegion* prev_last_region = NULL;
 861   size_t size_used = 0;
 862   size_t uncommitted_regions = 0;
 863 
 864   // For each Memregion, free the G1 regions that constitute it, and
 865   // notify mark-sweep that the range is no longer to be considered 'archive.'
 866   MutexLockerEx x(Heap_lock);
 867   for (size_t i = 0; i < count; i++) {
 868     HeapWord* start_address = ranges[i].start();
 869     HeapWord* last_address = ranges[i].last();
 870 
 871     assert(reserved.contains(start_address) && reserved.contains(last_address),
 872            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 873            p2i(start_address), p2i(last_address));
 874     assert(start_address > prev_last_addr,
 875            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 876            p2i(start_address), p2i(prev_last_addr));
 877     size_used += ranges[i].byte_size();
 878     prev_last_addr = last_address;
 879 
 880     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 881     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 882 
 883     // Check for ranges that start in the same G1 region in which the previous
 884     // range ended, and adjust the start address so we don't try to free
 885     // the same region again. If the current range is entirely within that
 886     // region, skip it.
 887     if (start_region == prev_last_region) {
 888       start_address = start_region->end();
 889       if (start_address > last_address) {
 890         continue;
 891       }
 892       start_region = _hrm.addr_to_region(start_address);
 893     }
 894     prev_last_region = last_region;
 895 
 896     // After verifying that each region was marked as an archive region by
 897     // alloc_archive_regions, set it free and empty and uncommit it.
 898     HeapRegion* curr_region = start_region;
 899     while (curr_region != NULL) {
 900       guarantee(curr_region->is_archive(),
 901                 "Expected archive region at index %u", curr_region->hrm_index());
 902       uint curr_index = curr_region->hrm_index();
 903       _old_set.remove(curr_region);
 904       curr_region->set_free();
 905       curr_region->set_top(curr_region->bottom());
 906       if (curr_region != last_region) {
 907         curr_region = _hrm.next_region_in_heap(curr_region);
 908       } else {
 909         curr_region = NULL;
 910       }
 911       _hrm.shrink_at(curr_index, 1);
 912       uncommitted_regions++;
 913     }
 914 
 915     // Notify mark-sweep that this is no longer an archive range.
 916     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 917   }
 918 
 919   if (uncommitted_regions != 0) {
 920     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 921                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 922   }
 923   decrease_used(size_used);
 924 }
 925 
 926 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 927                                                         uint* gc_count_before_ret,
 928                                                         uint* gclocker_retry_count_ret) {
 929   // The structure of this method has a lot of similarities to
 930   // attempt_allocation_slow(). The reason these two were not merged
 931   // into a single one is that such a method would require several "if
 932   // allocation is not humongous do this, otherwise do that"
 933   // conditional paths which would obscure its flow. In fact, an early
 934   // version of this code did use a unified method which was harder to
 935   // follow and, as a result, it had subtle bugs that were hard to
 936   // track down. So keeping these two methods separate allows each to
 937   // be more readable. It will be good to keep these two in sync as
 938   // much as possible.
 939 
 940   assert_heap_not_locked_and_not_at_safepoint();
 941   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 942          "should only be called for humongous allocations");
 943 
 944   // Humongous objects can exhaust the heap quickly, so we should check if we
 945   // need to start a marking cycle at each humongous object allocation. We do
 946   // the check before we do the actual allocation. The reason for doing it
 947   // before the allocation is that we avoid having to keep track of the newly
 948   // allocated memory while we do a GC.
 949   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 950                                            word_size)) {
 951     collect(GCCause::_g1_humongous_allocation);
 952   }
 953 
 954   // We will loop until a) we manage to successfully perform the
 955   // allocation or b) we successfully schedule a collection which
 956   // fails to perform the allocation. b) is the only case when we'll
 957   // return NULL.
 958   HeapWord* result = NULL;
 959   for (int try_count = 1; /* we'll return */; try_count += 1) {
 960     bool should_try_gc;
 961     uint gc_count_before;
 962 
 963     {
 964       MutexLockerEx x(Heap_lock);
 965 
 966       // Given that humongous objects are not allocated in young
 967       // regions, we'll first try to do the allocation without doing a
 968       // collection hoping that there's enough space in the heap.
 969       result = humongous_obj_allocate(word_size, AllocationContext::current());
 970       if (result != NULL) {
 971         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 972         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 973         return result;
 974       }
 975 
 976       if (GCLocker::is_active_and_needs_gc()) {
 977         should_try_gc = false;
 978       } else {
 979          // The GCLocker may not be active but the GCLocker initiated
 980         // GC may not yet have been performed (GCLocker::needs_gc()
 981         // returns true). In this case we do not try this GC and
 982         // wait until the GCLocker initiated GC is performed, and
 983         // then retry the allocation.
 984         if (GCLocker::needs_gc()) {
 985           should_try_gc = false;
 986         } else {
 987           // Read the GC count while still holding the Heap_lock.
 988           gc_count_before = total_collections();
 989           should_try_gc = true;
 990         }
 991       }
 992     }
 993 
 994     if (should_try_gc) {
 995       // If we failed to allocate the humongous object, we should try to
 996       // do a collection pause (if we're allowed) in case it reclaims
 997       // enough space for the allocation to succeed after the pause.
 998 
 999       bool succeeded;
1000       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1001                                    GCCause::_g1_humongous_allocation);
1002       if (result != NULL) {
1003         assert(succeeded, "only way to get back a non-NULL result");
1004         return result;
1005       }
1006 
1007       if (succeeded) {
1008         // If we get here we successfully scheduled a collection which
1009         // failed to allocate. No point in trying to allocate
1010         // further. We'll just return NULL.
1011         MutexLockerEx x(Heap_lock);
1012         *gc_count_before_ret = total_collections();
1013         return NULL;
1014       }
1015     } else {
1016       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1017         MutexLockerEx x(Heap_lock);
1018         *gc_count_before_ret = total_collections();
1019         return NULL;
1020       }
1021       // The GCLocker is either active or the GCLocker initiated
1022       // GC has not yet been performed. Stall until it is and
1023       // then retry the allocation.
1024       GCLocker::stall_until_clear();
1025       (*gclocker_retry_count_ret) += 1;
1026     }
1027 
1028     // We can reach here if we were unsuccessful in scheduling a
1029     // collection (because another thread beat us to it) or if we were
1030     // stalled due to the GC locker. In either can we should retry the
1031     // allocation attempt in case another thread successfully
1032     // performed a collection and reclaimed enough space.  Give a
1033     // warning if we seem to be looping forever.
1034 
1035     if ((QueuedAllocationWarningCount > 0) &&
1036         (try_count % QueuedAllocationWarningCount == 0)) {
1037       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1038                       "retries %d times", try_count);
1039     }
1040   }
1041 
1042   ShouldNotReachHere();
1043   return NULL;
1044 }
1045 
1046 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1047                                                            AllocationContext_t context,
1048                                                            bool expect_null_mutator_alloc_region) {
1049   assert_at_safepoint(true /* should_be_vm_thread */);
1050   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1051          "the current alloc region was unexpectedly found to be non-NULL");
1052 
1053   if (!is_humongous(word_size)) {
1054     return _allocator->attempt_allocation_locked(word_size, context);
1055   } else {
1056     HeapWord* result = humongous_obj_allocate(word_size, context);
1057     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1058       collector_state()->set_initiate_conc_mark_if_possible(true);
1059     }
1060     return result;
1061   }
1062 
1063   ShouldNotReachHere();
1064 }
1065 
1066 class PostCompactionPrinterClosure: public HeapRegionClosure {
1067 private:
1068   G1HRPrinter* _hr_printer;
1069 public:
1070   bool doHeapRegion(HeapRegion* hr) {
1071     assert(!hr->is_young(), "not expecting to find young regions");
1072     _hr_printer->post_compaction(hr);
1073     return false;
1074   }
1075 
1076   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1077     : _hr_printer(hr_printer) { }
1078 };
1079 
1080 void G1CollectedHeap::print_hrm_post_compaction() {
1081   if (_hr_printer.is_active()) {
1082     PostCompactionPrinterClosure cl(hr_printer());
1083     heap_region_iterate(&cl);
1084   }
1085 
1086 }
1087 
1088 void G1CollectedHeap::abort_concurrent_cycle() {
1089   // Note: When we have a more flexible GC logging framework that
1090   // allows us to add optional attributes to a GC log record we
1091   // could consider timing and reporting how long we wait in the
1092   // following two methods.
1093   wait_while_free_regions_coming();
1094   // If we start the compaction before the CM threads finish
1095   // scanning the root regions we might trip them over as we'll
1096   // be moving objects / updating references. So let's wait until
1097   // they are done. By telling them to abort, they should complete
1098   // early.
1099   _cm->root_regions()->abort();
1100   _cm->root_regions()->wait_until_scan_finished();
1101   append_secondary_free_list_if_not_empty_with_lock();
1102 
1103   // Disable discovery and empty the discovered lists
1104   // for the CM ref processor.
1105   ref_processor_cm()->disable_discovery();
1106   ref_processor_cm()->abandon_partial_discovery();
1107   ref_processor_cm()->verify_no_references_recorded();
1108 
1109   // Abandon current iterations of concurrent marking and concurrent
1110   // refinement, if any are in progress.
1111   concurrent_mark()->abort();
1112 }
1113 
1114 void G1CollectedHeap::prepare_heap_for_full_collection() {
1115   // Make sure we'll choose a new allocation region afterwards.
1116   _allocator->release_mutator_alloc_region();
1117   _allocator->abandon_gc_alloc_regions();
1118   g1_rem_set()->cleanupHRRS();
1119 
1120   // We may have added regions to the current incremental collection
1121   // set between the last GC or pause and now. We need to clear the
1122   // incremental collection set and then start rebuilding it afresh
1123   // after this full GC.
1124   abandon_collection_set(collection_set());
1125 
1126   tear_down_region_sets(false /* free_list_only */);
1127   collector_state()->set_gcs_are_young(true);
1128 }
1129 
1130 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1131   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1132   assert(used() == recalculate_used(), "Should be equal");
1133   _verifier->verify_region_sets_optional();
1134   _verifier->verify_before_gc();
1135   _verifier->check_bitmaps("Full GC Start");
1136 }
1137 
1138 void G1CollectedHeap::prepare_heap_for_mutators() {
1139   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1140   ClassLoaderDataGraph::purge();
1141   MetaspaceAux::verify_metrics();
1142 
1143   // Prepare heap for normal collections.
1144   assert(num_free_regions() == 0, "we should not have added any free regions");
1145   rebuild_region_sets(false /* free_list_only */);
1146   abort_refinement();
1147   resize_if_necessary_after_full_collection();
1148 
1149   // Rebuild the strong code root lists for each region
1150   rebuild_strong_code_roots();
1151 
1152   // Start a new incremental collection set for the next pause
1153   start_new_collection_set();
1154 
1155   _allocator->init_mutator_alloc_region();
1156 
1157   // Post collection state updates.
1158   MetaspaceGC::compute_new_size();
1159 }
1160 
1161 void G1CollectedHeap::abort_refinement() {
1162   if (_hot_card_cache->use_cache()) {
1163     _hot_card_cache->reset_card_counts();
1164     _hot_card_cache->reset_hot_cache();
1165   }
1166 
1167   // Discard all remembered set updates.
1168   JavaThread::dirty_card_queue_set().abandon_logs();
1169   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1170 }
1171 
1172 void G1CollectedHeap::verify_after_full_collection() {
1173   check_gc_time_stamps();
1174   _hrm.verify_optional();
1175   _verifier->verify_region_sets_optional();
1176   _verifier->verify_after_gc();
1177   // Clear the previous marking bitmap, if needed for bitmap verification.
1178   // Note we cannot do this when we clear the next marking bitmap in
1179   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1180   // objects marked during a full GC against the previous bitmap.
1181   // But we need to clear it before calling check_bitmaps below since
1182   // the full GC has compacted objects and updated TAMS but not updated
1183   // the prev bitmap.
1184   if (G1VerifyBitmaps) {
1185     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1186     _cm->clear_prev_bitmap(workers());
1187   }
1188   _verifier->check_bitmaps("Full GC End");
1189 
1190   // At this point there should be no regions in the
1191   // entire heap tagged as young.
1192   assert(check_young_list_empty(), "young list should be empty at this point");
1193 
1194   // Note: since we've just done a full GC, concurrent
1195   // marking is no longer active. Therefore we need not
1196   // re-enable reference discovery for the CM ref processor.
1197   // That will be done at the start of the next marking cycle.
1198   // We also know that the STW processor should no longer
1199   // discover any new references.
1200   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1201   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1202   ref_processor_stw()->verify_no_references_recorded();
1203   ref_processor_cm()->verify_no_references_recorded();
1204 }
1205 
1206 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1207   print_hrm_post_compaction();
1208   heap_transition->print();
1209   print_heap_after_gc();
1210   print_heap_regions();
1211 #ifdef TRACESPINNING
1212   ParallelTaskTerminator::print_termination_counts();
1213 #endif
1214 }
1215 
1216 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1217   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1218   g1_policy()->record_full_collection_start();
1219 
1220   print_heap_before_gc();
1221   print_heap_regions();
1222 
1223   abort_concurrent_cycle();
1224   verify_before_full_collection(scope->is_explicit_gc());
1225 
1226   gc_prologue(true);
1227   prepare_heap_for_full_collection();
1228 
1229   G1SerialFullCollector serial(scope, ref_processor_stw());
1230   serial.prepare_collection();
1231   serial.collect();
1232   serial.complete_collection();
1233 
1234   prepare_heap_for_mutators();
1235 
1236   g1_policy()->record_full_collection_end();
1237   gc_epilogue(true);
1238 
1239   // Post collection verification.
1240   verify_after_full_collection();
1241 
1242   // Post collection logging.
1243   // We should do this after we potentially resize the heap so
1244   // that all the COMMIT / UNCOMMIT events are generated before
1245   // the compaction events.
1246   print_heap_after_full_collection(scope->heap_transition());
1247 }
1248 
1249 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1250                                          bool clear_all_soft_refs) {
1251   assert_at_safepoint(true /* should_be_vm_thread */);
1252 
1253   if (GCLocker::check_active_before_gc()) {
1254     // Full GC was not completed.
1255     return false;
1256   }
1257 
1258   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1259       collector_policy()->should_clear_all_soft_refs();
1260 
1261   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1262   do_full_collection_inner(&scope);
1263 
1264   // Full collection was successfully completed.
1265   return true;
1266 }
1267 
1268 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1269   // Currently, there is no facility in the do_full_collection(bool) API to notify
1270   // the caller that the collection did not succeed (e.g., because it was locked
1271   // out by the GC locker). So, right now, we'll ignore the return value.
1272   bool dummy = do_full_collection(true,                /* explicit_gc */
1273                                   clear_all_soft_refs);
1274 }
1275 
1276 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1277   // Include bytes that will be pre-allocated to support collections, as "used".
1278   const size_t used_after_gc = used();
1279   const size_t capacity_after_gc = capacity();
1280   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1281 
1282   // This is enforced in arguments.cpp.
1283   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1284          "otherwise the code below doesn't make sense");
1285 
1286   // We don't have floating point command-line arguments
1287   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1288   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1289   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1290   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1291 
1292   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1293   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1294 
1295   // We have to be careful here as these two calculations can overflow
1296   // 32-bit size_t's.
1297   double used_after_gc_d = (double) used_after_gc;
1298   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1299   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1300 
1301   // Let's make sure that they are both under the max heap size, which
1302   // by default will make them fit into a size_t.
1303   double desired_capacity_upper_bound = (double) max_heap_size;
1304   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1305                                     desired_capacity_upper_bound);
1306   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1307                                     desired_capacity_upper_bound);
1308 
1309   // We can now safely turn them into size_t's.
1310   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1311   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1312 
1313   // This assert only makes sense here, before we adjust them
1314   // with respect to the min and max heap size.
1315   assert(minimum_desired_capacity <= maximum_desired_capacity,
1316          "minimum_desired_capacity = " SIZE_FORMAT ", "
1317          "maximum_desired_capacity = " SIZE_FORMAT,
1318          minimum_desired_capacity, maximum_desired_capacity);
1319 
1320   // Should not be greater than the heap max size. No need to adjust
1321   // it with respect to the heap min size as it's a lower bound (i.e.,
1322   // we'll try to make the capacity larger than it, not smaller).
1323   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1324   // Should not be less than the heap min size. No need to adjust it
1325   // with respect to the heap max size as it's an upper bound (i.e.,
1326   // we'll try to make the capacity smaller than it, not greater).
1327   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1328 
1329   if (capacity_after_gc < minimum_desired_capacity) {
1330     // Don't expand unless it's significant
1331     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1332 
1333     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1334                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1335                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1336 
1337     expand(expand_bytes, _workers);
1338 
1339     // No expansion, now see if we want to shrink
1340   } else if (capacity_after_gc > maximum_desired_capacity) {
1341     // Capacity too large, compute shrinking size
1342     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1343 
1344     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1345                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1346                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1347 
1348     shrink(shrink_bytes);
1349   }
1350 }
1351 
1352 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1353                                                             AllocationContext_t context,
1354                                                             bool do_gc,
1355                                                             bool clear_all_soft_refs,
1356                                                             bool expect_null_mutator_alloc_region,
1357                                                             bool* gc_succeeded) {
1358   *gc_succeeded = true;
1359   // Let's attempt the allocation first.
1360   HeapWord* result =
1361     attempt_allocation_at_safepoint(word_size,
1362                                     context,
1363                                     expect_null_mutator_alloc_region);
1364   if (result != NULL) {
1365     assert(*gc_succeeded, "sanity");
1366     return result;
1367   }
1368 
1369   // In a G1 heap, we're supposed to keep allocation from failing by
1370   // incremental pauses.  Therefore, at least for now, we'll favor
1371   // expansion over collection.  (This might change in the future if we can
1372   // do something smarter than full collection to satisfy a failed alloc.)
1373   result = expand_and_allocate(word_size, context);
1374   if (result != NULL) {
1375     assert(*gc_succeeded, "sanity");
1376     return result;
1377   }
1378 
1379   if (do_gc) {
1380     // Expansion didn't work, we'll try to do a Full GC.
1381     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1382                                        clear_all_soft_refs);
1383   }
1384 
1385   return NULL;
1386 }
1387 
1388 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1389                                                      AllocationContext_t context,
1390                                                      bool* succeeded) {
1391   assert_at_safepoint(true /* should_be_vm_thread */);
1392 
1393   // Attempts to allocate followed by Full GC.
1394   HeapWord* result =
1395     satisfy_failed_allocation_helper(word_size,
1396                                      context,
1397                                      true,  /* do_gc */
1398                                      false, /* clear_all_soft_refs */
1399                                      false, /* expect_null_mutator_alloc_region */
1400                                      succeeded);
1401 
1402   if (result != NULL || !*succeeded) {
1403     return result;
1404   }
1405 
1406   // Attempts to allocate followed by Full GC that will collect all soft references.
1407   result = satisfy_failed_allocation_helper(word_size,
1408                                             context,
1409                                             true, /* do_gc */
1410                                             true, /* clear_all_soft_refs */
1411                                             true, /* expect_null_mutator_alloc_region */
1412                                             succeeded);
1413 
1414   if (result != NULL || !*succeeded) {
1415     return result;
1416   }
1417 
1418   // Attempts to allocate, no GC
1419   result = satisfy_failed_allocation_helper(word_size,
1420                                             context,
1421                                             false, /* do_gc */
1422                                             false, /* clear_all_soft_refs */
1423                                             true,  /* expect_null_mutator_alloc_region */
1424                                             succeeded);
1425 
1426   if (result != NULL) {
1427     assert(*succeeded, "sanity");
1428     return result;
1429   }
1430 
1431   assert(!collector_policy()->should_clear_all_soft_refs(),
1432          "Flag should have been handled and cleared prior to this point");
1433 
1434   // What else?  We might try synchronous finalization later.  If the total
1435   // space available is large enough for the allocation, then a more
1436   // complete compaction phase than we've tried so far might be
1437   // appropriate.
1438   assert(*succeeded, "sanity");
1439   return NULL;
1440 }
1441 
1442 // Attempting to expand the heap sufficiently
1443 // to support an allocation of the given "word_size".  If
1444 // successful, perform the allocation and return the address of the
1445 // allocated block, or else "NULL".
1446 
1447 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1448   assert_at_safepoint(true /* should_be_vm_thread */);
1449 
1450   _verifier->verify_region_sets_optional();
1451 
1452   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1453   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1454                             word_size * HeapWordSize);
1455 
1456 
1457   if (expand(expand_bytes, _workers)) {
1458     _hrm.verify_optional();
1459     _verifier->verify_region_sets_optional();
1460     return attempt_allocation_at_safepoint(word_size,
1461                                            context,
1462                                            false /* expect_null_mutator_alloc_region */);
1463   }
1464   return NULL;
1465 }
1466 
1467 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1468   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1469   aligned_expand_bytes = align_up(aligned_expand_bytes,
1470                                        HeapRegion::GrainBytes);
1471 
1472   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1473                             expand_bytes, aligned_expand_bytes);
1474 
1475   if (is_maximal_no_gc()) {
1476     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1477     return false;
1478   }
1479 
1480   double expand_heap_start_time_sec = os::elapsedTime();
1481   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1482   assert(regions_to_expand > 0, "Must expand by at least one region");
1483 
1484   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1485   if (expand_time_ms != NULL) {
1486     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1487   }
1488 
1489   if (expanded_by > 0) {
1490     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1491     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1492     g1_policy()->record_new_heap_size(num_regions());
1493   } else {
1494     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1495 
1496     // The expansion of the virtual storage space was unsuccessful.
1497     // Let's see if it was because we ran out of swap.
1498     if (G1ExitOnExpansionFailure &&
1499         _hrm.available() >= regions_to_expand) {
1500       // We had head room...
1501       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1502     }
1503   }
1504   return regions_to_expand > 0;
1505 }
1506 
1507 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1508   size_t aligned_shrink_bytes =
1509     ReservedSpace::page_align_size_down(shrink_bytes);
1510   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1511                                          HeapRegion::GrainBytes);
1512   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1513 
1514   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1515   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1516 
1517 
1518   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1519                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1520   if (num_regions_removed > 0) {
1521     g1_policy()->record_new_heap_size(num_regions());
1522   } else {
1523     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1524   }
1525 }
1526 
1527 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1528   _verifier->verify_region_sets_optional();
1529 
1530   // We should only reach here at the end of a Full GC which means we
1531   // should not not be holding to any GC alloc regions. The method
1532   // below will make sure of that and do any remaining clean up.
1533   _allocator->abandon_gc_alloc_regions();
1534 
1535   // Instead of tearing down / rebuilding the free lists here, we
1536   // could instead use the remove_all_pending() method on free_list to
1537   // remove only the ones that we need to remove.
1538   tear_down_region_sets(true /* free_list_only */);
1539   shrink_helper(shrink_bytes);
1540   rebuild_region_sets(true /* free_list_only */);
1541 
1542   _hrm.verify_optional();
1543   _verifier->verify_region_sets_optional();
1544 }
1545 
1546 // Public methods.
1547 
1548 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1549   CollectedHeap(),
1550   _collector_policy(collector_policy),
1551   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1552   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1553   _g1_policy(create_g1_policy(_gc_timer_stw)),
1554   _collection_set(this, _g1_policy),
1555   _dirty_card_queue_set(false),
1556   _is_alive_closure_cm(this),
1557   _is_alive_closure_stw(this),
1558   _ref_processor_cm(NULL),
1559   _ref_processor_stw(NULL),
1560   _bot(NULL),
1561   _hot_card_cache(NULL),
1562   _g1_rem_set(NULL),
1563   _cg1r(NULL),
1564   _g1mm(NULL),
1565   _preserved_marks_set(true /* in_c_heap */),
1566   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1567   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1568   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1569   _humongous_reclaim_candidates(),
1570   _has_humongous_reclaim_candidates(false),
1571   _archive_allocator(NULL),
1572   _free_regions_coming(false),
1573   _gc_time_stamp(0),
1574   _summary_bytes_used(0),
1575   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1576   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1577   _expand_heap_after_alloc_failure(true),
1578   _old_marking_cycles_started(0),
1579   _old_marking_cycles_completed(0),
1580   _in_cset_fast_test() {
1581 
1582   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1583                           /* are_GC_task_threads */true,
1584                           /* are_ConcurrentGC_threads */false);
1585   _workers->initialize_workers();
1586   _verifier = new G1HeapVerifier(this);
1587 
1588   _allocator = G1Allocator::create_allocator(this);
1589 
1590   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1591 
1592   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1593 
1594   // Override the default _filler_array_max_size so that no humongous filler
1595   // objects are created.
1596   _filler_array_max_size = _humongous_object_threshold_in_words;
1597 
1598   uint n_queues = ParallelGCThreads;
1599   _task_queues = new RefToScanQueueSet(n_queues);
1600 
1601   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1602 
1603   for (uint i = 0; i < n_queues; i++) {
1604     RefToScanQueue* q = new RefToScanQueue();
1605     q->initialize();
1606     _task_queues->register_queue(i, q);
1607     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1608   }
1609 
1610   // Initialize the G1EvacuationFailureALot counters and flags.
1611   NOT_PRODUCT(reset_evacuation_should_fail();)
1612 
1613   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1614 }
1615 
1616 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1617                                                                  size_t size,
1618                                                                  size_t translation_factor) {
1619   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1620   // Allocate a new reserved space, preferring to use large pages.
1621   ReservedSpace rs(size, preferred_page_size);
1622   G1RegionToSpaceMapper* result  =
1623     G1RegionToSpaceMapper::create_mapper(rs,
1624                                          size,
1625                                          rs.alignment(),
1626                                          HeapRegion::GrainBytes,
1627                                          translation_factor,
1628                                          mtGC);
1629 
1630   os::trace_page_sizes_for_requested_size(description,
1631                                           size,
1632                                           preferred_page_size,
1633                                           rs.alignment(),
1634                                           rs.base(),
1635                                           rs.size());
1636 
1637   return result;
1638 }
1639 
1640 jint G1CollectedHeap::initialize_concurrent_refinement() {
1641   jint ecode = JNI_OK;
1642   _cg1r = ConcurrentG1Refine::create(&ecode);
1643   return ecode;
1644 }
1645 
1646 jint G1CollectedHeap::initialize() {
1647   CollectedHeap::pre_initialize();
1648   os::enable_vtime();
1649 
1650   // Necessary to satisfy locking discipline assertions.
1651 
1652   MutexLocker x(Heap_lock);
1653 
1654   // While there are no constraints in the GC code that HeapWordSize
1655   // be any particular value, there are multiple other areas in the
1656   // system which believe this to be true (e.g. oop->object_size in some
1657   // cases incorrectly returns the size in wordSize units rather than
1658   // HeapWordSize).
1659   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1660 
1661   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1662   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1663   size_t heap_alignment = collector_policy()->heap_alignment();
1664 
1665   // Ensure that the sizes are properly aligned.
1666   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1667   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1668   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1669 
1670   // Reserve the maximum.
1671 
1672   // When compressed oops are enabled, the preferred heap base
1673   // is calculated by subtracting the requested size from the
1674   // 32Gb boundary and using the result as the base address for
1675   // heap reservation. If the requested size is not aligned to
1676   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1677   // into the ReservedHeapSpace constructor) then the actual
1678   // base of the reserved heap may end up differing from the
1679   // address that was requested (i.e. the preferred heap base).
1680   // If this happens then we could end up using a non-optimal
1681   // compressed oops mode.
1682 
1683   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1684                                                  heap_alignment);
1685 
1686   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1687 
1688   // Create the barrier set for the entire reserved region.
1689   G1SATBCardTableLoggingModRefBS* bs
1690     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1691   bs->initialize();
1692   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1693   set_barrier_set(bs);
1694 
1695   // Create the hot card cache.
1696   _hot_card_cache = new G1HotCardCache(this);
1697 
1698   // Carve out the G1 part of the heap.
1699   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1700   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1701   G1RegionToSpaceMapper* heap_storage =
1702     G1RegionToSpaceMapper::create_mapper(g1_rs,
1703                                          g1_rs.size(),
1704                                          page_size,
1705                                          HeapRegion::GrainBytes,
1706                                          1,
1707                                          mtJavaHeap);
1708   os::trace_page_sizes("Heap",
1709                        collector_policy()->min_heap_byte_size(),
1710                        max_byte_size,
1711                        page_size,
1712                        heap_rs.base(),
1713                        heap_rs.size());
1714   heap_storage->set_mapping_changed_listener(&_listener);
1715 
1716   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1717   G1RegionToSpaceMapper* bot_storage =
1718     create_aux_memory_mapper("Block Offset Table",
1719                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1720                              G1BlockOffsetTable::heap_map_factor());
1721 
1722   G1RegionToSpaceMapper* cardtable_storage =
1723     create_aux_memory_mapper("Card Table",
1724                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1725                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1726 
1727   G1RegionToSpaceMapper* card_counts_storage =
1728     create_aux_memory_mapper("Card Counts Table",
1729                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1730                              G1CardCounts::heap_map_factor());
1731 
1732   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1733   G1RegionToSpaceMapper* prev_bitmap_storage =
1734     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1735   G1RegionToSpaceMapper* next_bitmap_storage =
1736     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1737 
1738   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1739   g1_barrier_set()->initialize(cardtable_storage);
1740   // Do later initialization work for concurrent refinement.
1741   _hot_card_cache->initialize(card_counts_storage);
1742 
1743   // 6843694 - ensure that the maximum region index can fit
1744   // in the remembered set structures.
1745   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1746   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1747 
1748   // Also create a G1 rem set.
1749   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1750   _g1_rem_set->initialize(max_capacity(), max_regions());
1751 
1752   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1753   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1754   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1755             "too many cards per region");
1756 
1757   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1758 
1759   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1760 
1761   {
1762     HeapWord* start = _hrm.reserved().start();
1763     HeapWord* end = _hrm.reserved().end();
1764     size_t granularity = HeapRegion::GrainBytes;
1765 
1766     _in_cset_fast_test.initialize(start, end, granularity);
1767     _humongous_reclaim_candidates.initialize(start, end, granularity);
1768   }
1769 
1770   // Create the G1ConcurrentMark data structure and thread.
1771   // (Must do this late, so that "max_regions" is defined.)
1772   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1773   if (_cm == NULL || !_cm->completed_initialization()) {
1774     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1775     return JNI_ENOMEM;
1776   }
1777   _cmThread = _cm->cmThread();
1778 
1779   // Now expand into the initial heap size.
1780   if (!expand(init_byte_size, _workers)) {
1781     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1782     return JNI_ENOMEM;
1783   }
1784 
1785   // Perform any initialization actions delegated to the policy.
1786   g1_policy()->init(this, &_collection_set);
1787 
1788   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1789                                                SATB_Q_FL_lock,
1790                                                G1SATBProcessCompletedThreshold,
1791                                                Shared_SATB_Q_lock);
1792 
1793   jint ecode = initialize_concurrent_refinement();
1794   if (ecode != JNI_OK) {
1795     return ecode;
1796   }
1797 
1798   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1799                                                 DirtyCardQ_FL_lock,
1800                                                 (int)concurrent_g1_refine()->yellow_zone(),
1801                                                 (int)concurrent_g1_refine()->red_zone(),
1802                                                 Shared_DirtyCardQ_lock,
1803                                                 NULL,  // fl_owner
1804                                                 true); // init_free_ids
1805 
1806   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1807                                     DirtyCardQ_FL_lock,
1808                                     -1, // never trigger processing
1809                                     -1, // no limit on length
1810                                     Shared_DirtyCardQ_lock,
1811                                     &JavaThread::dirty_card_queue_set());
1812 
1813   // Here we allocate the dummy HeapRegion that is required by the
1814   // G1AllocRegion class.
1815   HeapRegion* dummy_region = _hrm.get_dummy_region();
1816 
1817   // We'll re-use the same region whether the alloc region will
1818   // require BOT updates or not and, if it doesn't, then a non-young
1819   // region will complain that it cannot support allocations without
1820   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1821   dummy_region->set_eden();
1822   // Make sure it's full.
1823   dummy_region->set_top(dummy_region->end());
1824   G1AllocRegion::setup(this, dummy_region);
1825 
1826   _allocator->init_mutator_alloc_region();
1827 
1828   // Do create of the monitoring and management support so that
1829   // values in the heap have been properly initialized.
1830   _g1mm = new G1MonitoringSupport(this);
1831 
1832   G1StringDedup::initialize();
1833 
1834   _preserved_marks_set.init(ParallelGCThreads);
1835 
1836   _collection_set.initialize(max_regions());
1837 
1838   return JNI_OK;
1839 }
1840 
1841 void G1CollectedHeap::stop() {
1842   // Stop all concurrent threads. We do this to make sure these threads
1843   // do not continue to execute and access resources (e.g. logging)
1844   // that are destroyed during shutdown.
1845   _cg1r->stop();
1846   _cmThread->stop();
1847   if (G1StringDedup::is_enabled()) {
1848     G1StringDedup::stop();
1849   }
1850 }
1851 
1852 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1853   return HeapRegion::max_region_size();
1854 }
1855 
1856 void G1CollectedHeap::post_initialize() {
1857   ref_processing_init();
1858 }
1859 
1860 void G1CollectedHeap::ref_processing_init() {
1861   // Reference processing in G1 currently works as follows:
1862   //
1863   // * There are two reference processor instances. One is
1864   //   used to record and process discovered references
1865   //   during concurrent marking; the other is used to
1866   //   record and process references during STW pauses
1867   //   (both full and incremental).
1868   // * Both ref processors need to 'span' the entire heap as
1869   //   the regions in the collection set may be dotted around.
1870   //
1871   // * For the concurrent marking ref processor:
1872   //   * Reference discovery is enabled at initial marking.
1873   //   * Reference discovery is disabled and the discovered
1874   //     references processed etc during remarking.
1875   //   * Reference discovery is MT (see below).
1876   //   * Reference discovery requires a barrier (see below).
1877   //   * Reference processing may or may not be MT
1878   //     (depending on the value of ParallelRefProcEnabled
1879   //     and ParallelGCThreads).
1880   //   * A full GC disables reference discovery by the CM
1881   //     ref processor and abandons any entries on it's
1882   //     discovered lists.
1883   //
1884   // * For the STW processor:
1885   //   * Non MT discovery is enabled at the start of a full GC.
1886   //   * Processing and enqueueing during a full GC is non-MT.
1887   //   * During a full GC, references are processed after marking.
1888   //
1889   //   * Discovery (may or may not be MT) is enabled at the start
1890   //     of an incremental evacuation pause.
1891   //   * References are processed near the end of a STW evacuation pause.
1892   //   * For both types of GC:
1893   //     * Discovery is atomic - i.e. not concurrent.
1894   //     * Reference discovery will not need a barrier.
1895 
1896   MemRegion mr = reserved_region();
1897 
1898   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1899 
1900   // Concurrent Mark ref processor
1901   _ref_processor_cm =
1902     new ReferenceProcessor(mr,    // span
1903                            mt_processing,
1904                                 // mt processing
1905                            ParallelGCThreads,
1906                                 // degree of mt processing
1907                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1908                                 // mt discovery
1909                            MAX2(ParallelGCThreads, ConcGCThreads),
1910                                 // degree of mt discovery
1911                            false,
1912                                 // Reference discovery is not atomic
1913                            &_is_alive_closure_cm);
1914                                 // is alive closure
1915                                 // (for efficiency/performance)
1916 
1917   // STW ref processor
1918   _ref_processor_stw =
1919     new ReferenceProcessor(mr,    // span
1920                            mt_processing,
1921                                 // mt processing
1922                            ParallelGCThreads,
1923                                 // degree of mt processing
1924                            (ParallelGCThreads > 1),
1925                                 // mt discovery
1926                            ParallelGCThreads,
1927                                 // degree of mt discovery
1928                            true,
1929                                 // Reference discovery is atomic
1930                            &_is_alive_closure_stw);
1931                                 // is alive closure
1932                                 // (for efficiency/performance)
1933 }
1934 
1935 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1936   return _collector_policy;
1937 }
1938 
1939 size_t G1CollectedHeap::capacity() const {
1940   return _hrm.length() * HeapRegion::GrainBytes;
1941 }
1942 
1943 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1944   hr->reset_gc_time_stamp();
1945 }
1946 
1947 #ifndef PRODUCT
1948 
1949 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1950 private:
1951   unsigned _gc_time_stamp;
1952   bool _failures;
1953 
1954 public:
1955   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1956     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1957 
1958   virtual bool doHeapRegion(HeapRegion* hr) {
1959     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1960     if (_gc_time_stamp != region_gc_time_stamp) {
1961       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1962                             region_gc_time_stamp, _gc_time_stamp);
1963       _failures = true;
1964     }
1965     return false;
1966   }
1967 
1968   bool failures() { return _failures; }
1969 };
1970 
1971 void G1CollectedHeap::check_gc_time_stamps() {
1972   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1973   heap_region_iterate(&cl);
1974   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1975 }
1976 #endif // PRODUCT
1977 
1978 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1979   _hot_card_cache->drain(cl, worker_i);
1980 }
1981 
1982 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1983   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1984   size_t n_completed_buffers = 0;
1985   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1986     n_completed_buffers++;
1987   }
1988   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1989   dcqs.clear_n_completed_buffers();
1990   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1991 }
1992 
1993 // Computes the sum of the storage used by the various regions.
1994 size_t G1CollectedHeap::used() const {
1995   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1996   if (_archive_allocator != NULL) {
1997     result += _archive_allocator->used();
1998   }
1999   return result;
2000 }
2001 
2002 size_t G1CollectedHeap::used_unlocked() const {
2003   return _summary_bytes_used;
2004 }
2005 
2006 class SumUsedClosure: public HeapRegionClosure {
2007   size_t _used;
2008 public:
2009   SumUsedClosure() : _used(0) {}
2010   bool doHeapRegion(HeapRegion* r) {
2011     _used += r->used();
2012     return false;
2013   }
2014   size_t result() { return _used; }
2015 };
2016 
2017 size_t G1CollectedHeap::recalculate_used() const {
2018   double recalculate_used_start = os::elapsedTime();
2019 
2020   SumUsedClosure blk;
2021   heap_region_iterate(&blk);
2022 
2023   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2024   return blk.result();
2025 }
2026 
2027 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2028   switch (cause) {
2029     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2030     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2031     case GCCause::_update_allocation_context_stats_inc: return true;
2032     case GCCause::_wb_conc_mark:                        return true;
2033     default :                                           return false;
2034   }
2035 }
2036 
2037 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2038   switch (cause) {
2039     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2040     case GCCause::_g1_humongous_allocation: return true;
2041     default:                                return is_user_requested_concurrent_full_gc(cause);
2042   }
2043 }
2044 
2045 #ifndef PRODUCT
2046 void G1CollectedHeap::allocate_dummy_regions() {
2047   // Let's fill up most of the region
2048   size_t word_size = HeapRegion::GrainWords - 1024;
2049   // And as a result the region we'll allocate will be humongous.
2050   guarantee(is_humongous(word_size), "sanity");
2051 
2052   // _filler_array_max_size is set to humongous object threshold
2053   // but temporarily change it to use CollectedHeap::fill_with_object().
2054   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2055 
2056   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2057     // Let's use the existing mechanism for the allocation
2058     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2059                                                  AllocationContext::system());
2060     if (dummy_obj != NULL) {
2061       MemRegion mr(dummy_obj, word_size);
2062       CollectedHeap::fill_with_object(mr);
2063     } else {
2064       // If we can't allocate once, we probably cannot allocate
2065       // again. Let's get out of the loop.
2066       break;
2067     }
2068   }
2069 }
2070 #endif // !PRODUCT
2071 
2072 void G1CollectedHeap::increment_old_marking_cycles_started() {
2073   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2074          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2075          "Wrong marking cycle count (started: %d, completed: %d)",
2076          _old_marking_cycles_started, _old_marking_cycles_completed);
2077 
2078   _old_marking_cycles_started++;
2079 }
2080 
2081 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2082   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2083 
2084   // We assume that if concurrent == true, then the caller is a
2085   // concurrent thread that was joined the Suspendible Thread
2086   // Set. If there's ever a cheap way to check this, we should add an
2087   // assert here.
2088 
2089   // Given that this method is called at the end of a Full GC or of a
2090   // concurrent cycle, and those can be nested (i.e., a Full GC can
2091   // interrupt a concurrent cycle), the number of full collections
2092   // completed should be either one (in the case where there was no
2093   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2094   // behind the number of full collections started.
2095 
2096   // This is the case for the inner caller, i.e. a Full GC.
2097   assert(concurrent ||
2098          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2099          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2100          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2101          "is inconsistent with _old_marking_cycles_completed = %u",
2102          _old_marking_cycles_started, _old_marking_cycles_completed);
2103 
2104   // This is the case for the outer caller, i.e. the concurrent cycle.
2105   assert(!concurrent ||
2106          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2107          "for outer caller (concurrent cycle): "
2108          "_old_marking_cycles_started = %u "
2109          "is inconsistent with _old_marking_cycles_completed = %u",
2110          _old_marking_cycles_started, _old_marking_cycles_completed);
2111 
2112   _old_marking_cycles_completed += 1;
2113 
2114   // We need to clear the "in_progress" flag in the CM thread before
2115   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2116   // is set) so that if a waiter requests another System.gc() it doesn't
2117   // incorrectly see that a marking cycle is still in progress.
2118   if (concurrent) {
2119     _cmThread->set_idle();
2120   }
2121 
2122   // This notify_all() will ensure that a thread that called
2123   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2124   // and it's waiting for a full GC to finish will be woken up. It is
2125   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2126   FullGCCount_lock->notify_all();
2127 }
2128 
2129 void G1CollectedHeap::collect(GCCause::Cause cause) {
2130   assert_heap_not_locked();
2131 
2132   uint gc_count_before;
2133   uint old_marking_count_before;
2134   uint full_gc_count_before;
2135   bool retry_gc;
2136 
2137   do {
2138     retry_gc = false;
2139 
2140     {
2141       MutexLocker ml(Heap_lock);
2142 
2143       // Read the GC count while holding the Heap_lock
2144       gc_count_before = total_collections();
2145       full_gc_count_before = total_full_collections();
2146       old_marking_count_before = _old_marking_cycles_started;
2147     }
2148 
2149     if (should_do_concurrent_full_gc(cause)) {
2150       // Schedule an initial-mark evacuation pause that will start a
2151       // concurrent cycle. We're setting word_size to 0 which means that
2152       // we are not requesting a post-GC allocation.
2153       VM_G1IncCollectionPause op(gc_count_before,
2154                                  0,     /* word_size */
2155                                  true,  /* should_initiate_conc_mark */
2156                                  g1_policy()->max_pause_time_ms(),
2157                                  cause);
2158       op.set_allocation_context(AllocationContext::current());
2159 
2160       VMThread::execute(&op);
2161       if (!op.pause_succeeded()) {
2162         if (old_marking_count_before == _old_marking_cycles_started) {
2163           retry_gc = op.should_retry_gc();
2164         } else {
2165           // A Full GC happened while we were trying to schedule the
2166           // initial-mark GC. No point in starting a new cycle given
2167           // that the whole heap was collected anyway.
2168         }
2169 
2170         if (retry_gc) {
2171           if (GCLocker::is_active_and_needs_gc()) {
2172             GCLocker::stall_until_clear();
2173           }
2174         }
2175       }
2176     } else {
2177       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2178           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2179 
2180         // Schedule a standard evacuation pause. We're setting word_size
2181         // to 0 which means that we are not requesting a post-GC allocation.
2182         VM_G1IncCollectionPause op(gc_count_before,
2183                                    0,     /* word_size */
2184                                    false, /* should_initiate_conc_mark */
2185                                    g1_policy()->max_pause_time_ms(),
2186                                    cause);
2187         VMThread::execute(&op);
2188       } else {
2189         // Schedule a Full GC.
2190         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2191         VMThread::execute(&op);
2192       }
2193     }
2194   } while (retry_gc);
2195 }
2196 
2197 bool G1CollectedHeap::is_in(const void* p) const {
2198   if (_hrm.reserved().contains(p)) {
2199     // Given that we know that p is in the reserved space,
2200     // heap_region_containing() should successfully
2201     // return the containing region.
2202     HeapRegion* hr = heap_region_containing(p);
2203     return hr->is_in(p);
2204   } else {
2205     return false;
2206   }
2207 }
2208 
2209 #ifdef ASSERT
2210 bool G1CollectedHeap::is_in_exact(const void* p) const {
2211   bool contains = reserved_region().contains(p);
2212   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2213   if (contains && available) {
2214     return true;
2215   } else {
2216     return false;
2217   }
2218 }
2219 #endif
2220 
2221 // Iteration functions.
2222 
2223 // Iterates an ObjectClosure over all objects within a HeapRegion.
2224 
2225 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2226   ObjectClosure* _cl;
2227 public:
2228   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2229   bool doHeapRegion(HeapRegion* r) {
2230     if (!r->is_continues_humongous()) {
2231       r->object_iterate(_cl);
2232     }
2233     return false;
2234   }
2235 };
2236 
2237 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2238   IterateObjectClosureRegionClosure blk(cl);
2239   heap_region_iterate(&blk);
2240 }
2241 
2242 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2243   _hrm.iterate(cl);
2244 }
2245 
2246 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2247                                               uint worker_id,
2248                                               HeapRegionClaimer *hrclaimer) const {
2249   _hrm.par_iterate(cl, worker_id, hrclaimer);
2250 }
2251 
2252 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2253   _collection_set.iterate(cl);
2254 }
2255 
2256 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2257   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2258 }
2259 
2260 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2261   HeapRegion* result = _hrm.next_region_in_heap(from);
2262   while (result != NULL && result->is_pinned()) {
2263     result = _hrm.next_region_in_heap(result);
2264   }
2265   return result;
2266 }
2267 
2268 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2269   HeapRegion* hr = heap_region_containing(addr);
2270   return hr->block_start(addr);
2271 }
2272 
2273 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2274   HeapRegion* hr = heap_region_containing(addr);
2275   return hr->block_size(addr);
2276 }
2277 
2278 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2279   HeapRegion* hr = heap_region_containing(addr);
2280   return hr->block_is_obj(addr);
2281 }
2282 
2283 bool G1CollectedHeap::supports_tlab_allocation() const {
2284   return true;
2285 }
2286 
2287 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2288   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2289 }
2290 
2291 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2292   return _eden.length() * HeapRegion::GrainBytes;
2293 }
2294 
2295 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2296 // must be equal to the humongous object limit.
2297 size_t G1CollectedHeap::max_tlab_size() const {
2298   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2299 }
2300 
2301 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2302   AllocationContext_t context = AllocationContext::current();
2303   return _allocator->unsafe_max_tlab_alloc(context);
2304 }
2305 
2306 size_t G1CollectedHeap::max_capacity() const {
2307   return _hrm.reserved().byte_size();
2308 }
2309 
2310 jlong G1CollectedHeap::millis_since_last_gc() {
2311   // See the notes in GenCollectedHeap::millis_since_last_gc()
2312   // for more information about the implementation.
2313   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2314     _g1_policy->collection_pause_end_millis();
2315   if (ret_val < 0) {
2316     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2317       ". returning zero instead.", ret_val);
2318     return 0;
2319   }
2320   return ret_val;
2321 }
2322 
2323 void G1CollectedHeap::prepare_for_verify() {
2324   _verifier->prepare_for_verify();
2325 }
2326 
2327 void G1CollectedHeap::verify(VerifyOption vo) {
2328   _verifier->verify(vo);
2329 }
2330 
2331 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2332   return true;
2333 }
2334 
2335 const char* const* G1CollectedHeap::concurrent_phases() const {
2336   return _cmThread->concurrent_phases();
2337 }
2338 
2339 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2340   return _cmThread->request_concurrent_phase(phase);
2341 }
2342 
2343 class PrintRegionClosure: public HeapRegionClosure {
2344   outputStream* _st;
2345 public:
2346   PrintRegionClosure(outputStream* st) : _st(st) {}
2347   bool doHeapRegion(HeapRegion* r) {
2348     r->print_on(_st);
2349     return false;
2350   }
2351 };
2352 
2353 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2354                                        const HeapRegion* hr,
2355                                        const VerifyOption vo) const {
2356   switch (vo) {
2357   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2358   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2359   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2360   default:                            ShouldNotReachHere();
2361   }
2362   return false; // keep some compilers happy
2363 }
2364 
2365 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2366                                        const VerifyOption vo) const {
2367   switch (vo) {
2368   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2369   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2370   case VerifyOption_G1UseMarkWord: {
2371     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2372     return !obj->is_gc_marked() && !hr->is_archive();
2373   }
2374   default:                            ShouldNotReachHere();
2375   }
2376   return false; // keep some compilers happy
2377 }
2378 
2379 void G1CollectedHeap::print_heap_regions() const {
2380   LogTarget(Trace, gc, heap, region) lt;
2381   if (lt.is_enabled()) {
2382     LogStream ls(lt);
2383     print_regions_on(&ls);
2384   }
2385 }
2386 
2387 void G1CollectedHeap::print_on(outputStream* st) const {
2388   st->print(" %-20s", "garbage-first heap");
2389   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2390             capacity()/K, used_unlocked()/K);
2391   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2392             p2i(_hrm.reserved().start()),
2393             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2394             p2i(_hrm.reserved().end()));
2395   st->cr();
2396   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2397   uint young_regions = young_regions_count();
2398   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2399             (size_t) young_regions * HeapRegion::GrainBytes / K);
2400   uint survivor_regions = survivor_regions_count();
2401   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2402             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2403   st->cr();
2404   MetaspaceAux::print_on(st);
2405 }
2406 
2407 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2408   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2409                "HS=humongous(starts), HC=humongous(continues), "
2410                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2411                "AC=allocation context, "
2412                "TAMS=top-at-mark-start (previous, next)");
2413   PrintRegionClosure blk(st);
2414   heap_region_iterate(&blk);
2415 }
2416 
2417 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2418   print_on(st);
2419 
2420   // Print the per-region information.
2421   print_regions_on(st);
2422 }
2423 
2424 void G1CollectedHeap::print_on_error(outputStream* st) const {
2425   this->CollectedHeap::print_on_error(st);
2426 
2427   if (_cm != NULL) {
2428     st->cr();
2429     _cm->print_on_error(st);
2430   }
2431 }
2432 
2433 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2434   workers()->print_worker_threads_on(st);
2435   _cmThread->print_on(st);
2436   st->cr();
2437   _cm->print_worker_threads_on(st);
2438   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2439   if (G1StringDedup::is_enabled()) {
2440     G1StringDedup::print_worker_threads_on(st);
2441   }
2442 }
2443 
2444 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2445   workers()->threads_do(tc);
2446   tc->do_thread(_cmThread);
2447   _cm->threads_do(tc);
2448   _cg1r->threads_do(tc); // also iterates over the sample thread
2449   if (G1StringDedup::is_enabled()) {
2450     G1StringDedup::threads_do(tc);
2451   }
2452 }
2453 
2454 void G1CollectedHeap::print_tracing_info() const {
2455   g1_rem_set()->print_summary_info();
2456   concurrent_mark()->print_summary_info();
2457 }
2458 
2459 #ifndef PRODUCT
2460 // Helpful for debugging RSet issues.
2461 
2462 class PrintRSetsClosure : public HeapRegionClosure {
2463 private:
2464   const char* _msg;
2465   size_t _occupied_sum;
2466 
2467 public:
2468   bool doHeapRegion(HeapRegion* r) {
2469     HeapRegionRemSet* hrrs = r->rem_set();
2470     size_t occupied = hrrs->occupied();
2471     _occupied_sum += occupied;
2472 
2473     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2474     if (occupied == 0) {
2475       tty->print_cr("  RSet is empty");
2476     } else {
2477       hrrs->print();
2478     }
2479     tty->print_cr("----------");
2480     return false;
2481   }
2482 
2483   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2484     tty->cr();
2485     tty->print_cr("========================================");
2486     tty->print_cr("%s", msg);
2487     tty->cr();
2488   }
2489 
2490   ~PrintRSetsClosure() {
2491     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2492     tty->print_cr("========================================");
2493     tty->cr();
2494   }
2495 };
2496 
2497 void G1CollectedHeap::print_cset_rsets() {
2498   PrintRSetsClosure cl("Printing CSet RSets");
2499   collection_set_iterate(&cl);
2500 }
2501 
2502 void G1CollectedHeap::print_all_rsets() {
2503   PrintRSetsClosure cl("Printing All RSets");;
2504   heap_region_iterate(&cl);
2505 }
2506 #endif // PRODUCT
2507 
2508 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2509 
2510   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2511   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2512   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2513 
2514   size_t eden_capacity_bytes =
2515     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2516 
2517   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2518   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2519                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2520 }
2521 
2522 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2523   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2524                        stats->unused(), stats->used(), stats->region_end_waste(),
2525                        stats->regions_filled(), stats->direct_allocated(),
2526                        stats->failure_used(), stats->failure_waste());
2527 }
2528 
2529 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2530   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2531   gc_tracer->report_gc_heap_summary(when, heap_summary);
2532 
2533   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2534   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2535 }
2536 
2537 G1CollectedHeap* G1CollectedHeap::heap() {
2538   CollectedHeap* heap = Universe::heap();
2539   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2540   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2541   return (G1CollectedHeap*)heap;
2542 }
2543 
2544 void G1CollectedHeap::gc_prologue(bool full) {
2545   // always_do_update_barrier = false;
2546   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2547 
2548   // This summary needs to be printed before incrementing total collections.
2549   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2550 
2551   // Update common counters.
2552   increment_total_collections(full /* full gc */);
2553   if (full) {
2554     increment_old_marking_cycles_started();
2555     reset_gc_time_stamp();
2556   } else {
2557     increment_gc_time_stamp();
2558   }
2559 
2560   // Fill TLAB's and such
2561   double start = os::elapsedTime();
2562   accumulate_statistics_all_tlabs();
2563   ensure_parsability(true);
2564   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2565 }
2566 
2567 void G1CollectedHeap::gc_epilogue(bool full) {
2568   // Update common counters.
2569   if (full) {
2570     // Update the number of full collections that have been completed.
2571     increment_old_marking_cycles_completed(false /* concurrent */);
2572   }
2573 
2574   // We are at the end of the GC. Total collections has already been increased.
2575   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2576 
2577   // FIXME: what is this about?
2578   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2579   // is set.
2580 #if defined(COMPILER2) || INCLUDE_JVMCI
2581   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2582 #endif
2583   // always_do_update_barrier = true;
2584 
2585   double start = os::elapsedTime();
2586   resize_all_tlabs();
2587   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2588 
2589   allocation_context_stats().update(full);
2590 
2591   MemoryService::track_memory_usage();
2592   // We have just completed a GC. Update the soft reference
2593   // policy with the new heap occupancy
2594   Universe::update_heap_info_at_gc();
2595 }
2596 
2597 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2598                                                uint gc_count_before,
2599                                                bool* succeeded,
2600                                                GCCause::Cause gc_cause) {
2601   assert_heap_not_locked_and_not_at_safepoint();
2602   VM_G1IncCollectionPause op(gc_count_before,
2603                              word_size,
2604                              false, /* should_initiate_conc_mark */
2605                              g1_policy()->max_pause_time_ms(),
2606                              gc_cause);
2607 
2608   op.set_allocation_context(AllocationContext::current());
2609   VMThread::execute(&op);
2610 
2611   HeapWord* result = op.result();
2612   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2613   assert(result == NULL || ret_succeeded,
2614          "the result should be NULL if the VM did not succeed");
2615   *succeeded = ret_succeeded;
2616 
2617   assert_heap_not_locked();
2618   return result;
2619 }
2620 
2621 void
2622 G1CollectedHeap::doConcurrentMark() {
2623   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2624   if (!_cmThread->in_progress()) {
2625     _cmThread->set_started();
2626     CGC_lock->notify();
2627   }
2628 }
2629 
2630 size_t G1CollectedHeap::pending_card_num() {
2631   size_t extra_cards = 0;
2632   JavaThread *curr = Threads::first();
2633   while (curr != NULL) {
2634     DirtyCardQueue& dcq = curr->dirty_card_queue();
2635     extra_cards += dcq.size();
2636     curr = curr->next();
2637   }
2638   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2639   size_t buffer_size = dcqs.buffer_size();
2640   size_t buffer_num = dcqs.completed_buffers_num();
2641 
2642   return buffer_size * buffer_num + extra_cards;
2643 }
2644 
2645 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2646  private:
2647   size_t _total_humongous;
2648   size_t _candidate_humongous;
2649 
2650   DirtyCardQueue _dcq;
2651 
2652   // We don't nominate objects with many remembered set entries, on
2653   // the assumption that such objects are likely still live.
2654   bool is_remset_small(HeapRegion* region) const {
2655     HeapRegionRemSet* const rset = region->rem_set();
2656     return G1EagerReclaimHumongousObjectsWithStaleRefs
2657       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2658       : rset->is_empty();
2659   }
2660 
2661   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2662     assert(region->is_starts_humongous(), "Must start a humongous object");
2663 
2664     oop obj = oop(region->bottom());
2665 
2666     // Dead objects cannot be eager reclaim candidates. Due to class
2667     // unloading it is unsafe to query their classes so we return early.
2668     if (heap->is_obj_dead(obj, region)) {
2669       return false;
2670     }
2671 
2672     // Candidate selection must satisfy the following constraints
2673     // while concurrent marking is in progress:
2674     //
2675     // * In order to maintain SATB invariants, an object must not be
2676     // reclaimed if it was allocated before the start of marking and
2677     // has not had its references scanned.  Such an object must have
2678     // its references (including type metadata) scanned to ensure no
2679     // live objects are missed by the marking process.  Objects
2680     // allocated after the start of concurrent marking don't need to
2681     // be scanned.
2682     //
2683     // * An object must not be reclaimed if it is on the concurrent
2684     // mark stack.  Objects allocated after the start of concurrent
2685     // marking are never pushed on the mark stack.
2686     //
2687     // Nominating only objects allocated after the start of concurrent
2688     // marking is sufficient to meet both constraints.  This may miss
2689     // some objects that satisfy the constraints, but the marking data
2690     // structures don't support efficiently performing the needed
2691     // additional tests or scrubbing of the mark stack.
2692     //
2693     // However, we presently only nominate is_typeArray() objects.
2694     // A humongous object containing references induces remembered
2695     // set entries on other regions.  In order to reclaim such an
2696     // object, those remembered sets would need to be cleaned up.
2697     //
2698     // We also treat is_typeArray() objects specially, allowing them
2699     // to be reclaimed even if allocated before the start of
2700     // concurrent mark.  For this we rely on mark stack insertion to
2701     // exclude is_typeArray() objects, preventing reclaiming an object
2702     // that is in the mark stack.  We also rely on the metadata for
2703     // such objects to be built-in and so ensured to be kept live.
2704     // Frequent allocation and drop of large binary blobs is an
2705     // important use case for eager reclaim, and this special handling
2706     // may reduce needed headroom.
2707 
2708     return obj->is_typeArray() && is_remset_small(region);
2709   }
2710 
2711  public:
2712   RegisterHumongousWithInCSetFastTestClosure()
2713   : _total_humongous(0),
2714     _candidate_humongous(0),
2715     _dcq(&JavaThread::dirty_card_queue_set()) {
2716   }
2717 
2718   virtual bool doHeapRegion(HeapRegion* r) {
2719     if (!r->is_starts_humongous()) {
2720       return false;
2721     }
2722     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2723 
2724     bool is_candidate = humongous_region_is_candidate(g1h, r);
2725     uint rindex = r->hrm_index();
2726     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2727     if (is_candidate) {
2728       _candidate_humongous++;
2729       g1h->register_humongous_region_with_cset(rindex);
2730       // Is_candidate already filters out humongous object with large remembered sets.
2731       // If we have a humongous object with a few remembered sets, we simply flush these
2732       // remembered set entries into the DCQS. That will result in automatic
2733       // re-evaluation of their remembered set entries during the following evacuation
2734       // phase.
2735       if (!r->rem_set()->is_empty()) {
2736         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2737                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2738         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2739         HeapRegionRemSetIterator hrrs(r->rem_set());
2740         size_t card_index;
2741         while (hrrs.has_next(card_index)) {
2742           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2743           // The remembered set might contain references to already freed
2744           // regions. Filter out such entries to avoid failing card table
2745           // verification.
2746           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2747             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2748               *card_ptr = CardTableModRefBS::dirty_card_val();
2749               _dcq.enqueue(card_ptr);
2750             }
2751           }
2752         }
2753         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2754                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2755                hrrs.n_yielded(), r->rem_set()->occupied());
2756         r->rem_set()->clear_locked();
2757       }
2758       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2759     }
2760     _total_humongous++;
2761 
2762     return false;
2763   }
2764 
2765   size_t total_humongous() const { return _total_humongous; }
2766   size_t candidate_humongous() const { return _candidate_humongous; }
2767 
2768   void flush_rem_set_entries() { _dcq.flush(); }
2769 };
2770 
2771 void G1CollectedHeap::register_humongous_regions_with_cset() {
2772   if (!G1EagerReclaimHumongousObjects) {
2773     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2774     return;
2775   }
2776   double time = os::elapsed_counter();
2777 
2778   // Collect reclaim candidate information and register candidates with cset.
2779   RegisterHumongousWithInCSetFastTestClosure cl;
2780   heap_region_iterate(&cl);
2781 
2782   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2783   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2784                                                                   cl.total_humongous(),
2785                                                                   cl.candidate_humongous());
2786   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2787 
2788   // Finally flush all remembered set entries to re-check into the global DCQS.
2789   cl.flush_rem_set_entries();
2790 }
2791 
2792 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2793   public:
2794     bool doHeapRegion(HeapRegion* hr) {
2795       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2796         hr->verify_rem_set();
2797       }
2798       return false;
2799     }
2800 };
2801 
2802 uint G1CollectedHeap::num_task_queues() const {
2803   return _task_queues->size();
2804 }
2805 
2806 #if TASKQUEUE_STATS
2807 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2808   st->print_raw_cr("GC Task Stats");
2809   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2810   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2811 }
2812 
2813 void G1CollectedHeap::print_taskqueue_stats() const {
2814   if (!log_is_enabled(Trace, gc, task, stats)) {
2815     return;
2816   }
2817   Log(gc, task, stats) log;
2818   ResourceMark rm;
2819   LogStream ls(log.trace());
2820   outputStream* st = &ls;
2821 
2822   print_taskqueue_stats_hdr(st);
2823 
2824   TaskQueueStats totals;
2825   const uint n = num_task_queues();
2826   for (uint i = 0; i < n; ++i) {
2827     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2828     totals += task_queue(i)->stats;
2829   }
2830   st->print_raw("tot "); totals.print(st); st->cr();
2831 
2832   DEBUG_ONLY(totals.verify());
2833 }
2834 
2835 void G1CollectedHeap::reset_taskqueue_stats() {
2836   const uint n = num_task_queues();
2837   for (uint i = 0; i < n; ++i) {
2838     task_queue(i)->stats.reset();
2839   }
2840 }
2841 #endif // TASKQUEUE_STATS
2842 
2843 void G1CollectedHeap::wait_for_root_region_scanning() {
2844   double scan_wait_start = os::elapsedTime();
2845   // We have to wait until the CM threads finish scanning the
2846   // root regions as it's the only way to ensure that all the
2847   // objects on them have been correctly scanned before we start
2848   // moving them during the GC.
2849   bool waited = _cm->root_regions()->wait_until_scan_finished();
2850   double wait_time_ms = 0.0;
2851   if (waited) {
2852     double scan_wait_end = os::elapsedTime();
2853     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2854   }
2855   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2856 }
2857 
2858 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2859 private:
2860   G1HRPrinter* _hr_printer;
2861 public:
2862   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2863 
2864   virtual bool doHeapRegion(HeapRegion* r) {
2865     _hr_printer->cset(r);
2866     return false;
2867   }
2868 };
2869 
2870 void G1CollectedHeap::start_new_collection_set() {
2871   collection_set()->start_incremental_building();
2872 
2873   clear_cset_fast_test();
2874 
2875   guarantee(_eden.length() == 0, "eden should have been cleared");
2876   g1_policy()->transfer_survivors_to_cset(survivor());
2877 }
2878 
2879 bool
2880 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2881   assert_at_safepoint(true /* should_be_vm_thread */);
2882   guarantee(!is_gc_active(), "collection is not reentrant");
2883 
2884   if (GCLocker::check_active_before_gc()) {
2885     return false;
2886   }
2887 
2888   _gc_timer_stw->register_gc_start();
2889 
2890   GCIdMark gc_id_mark;
2891   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2892 
2893   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2894   ResourceMark rm;
2895 
2896   g1_policy()->note_gc_start();
2897 
2898   wait_for_root_region_scanning();
2899 
2900   print_heap_before_gc();
2901   print_heap_regions();
2902   trace_heap_before_gc(_gc_tracer_stw);
2903 
2904   _verifier->verify_region_sets_optional();
2905   _verifier->verify_dirty_young_regions();
2906 
2907   // We should not be doing initial mark unless the conc mark thread is running
2908   if (!_cmThread->should_terminate()) {
2909     // This call will decide whether this pause is an initial-mark
2910     // pause. If it is, during_initial_mark_pause() will return true
2911     // for the duration of this pause.
2912     g1_policy()->decide_on_conc_mark_initiation();
2913   }
2914 
2915   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2916   assert(!collector_state()->during_initial_mark_pause() ||
2917           collector_state()->gcs_are_young(), "sanity");
2918 
2919   // We also do not allow mixed GCs during marking.
2920   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2921 
2922   // Record whether this pause is an initial mark. When the current
2923   // thread has completed its logging output and it's safe to signal
2924   // the CM thread, the flag's value in the policy has been reset.
2925   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2926 
2927   // Inner scope for scope based logging, timers, and stats collection
2928   {
2929     EvacuationInfo evacuation_info;
2930 
2931     if (collector_state()->during_initial_mark_pause()) {
2932       // We are about to start a marking cycle, so we increment the
2933       // full collection counter.
2934       increment_old_marking_cycles_started();
2935       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2936     }
2937 
2938     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2939 
2940     GCTraceCPUTime tcpu;
2941 
2942     FormatBuffer<> gc_string("Pause ");
2943     if (collector_state()->during_initial_mark_pause()) {
2944       gc_string.append("Initial Mark");
2945     } else if (collector_state()->gcs_are_young()) {
2946       gc_string.append("Young");
2947     } else {
2948       gc_string.append("Mixed");
2949     }
2950     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2951 
2952     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2953                                                                   workers()->active_workers(),
2954                                                                   Threads::number_of_non_daemon_threads());
2955     workers()->update_active_workers(active_workers);
2956     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2957 
2958     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2959     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2960 
2961     // If the secondary_free_list is not empty, append it to the
2962     // free_list. No need to wait for the cleanup operation to finish;
2963     // the region allocation code will check the secondary_free_list
2964     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2965     // set, skip this step so that the region allocation code has to
2966     // get entries from the secondary_free_list.
2967     if (!G1StressConcRegionFreeing) {
2968       append_secondary_free_list_if_not_empty_with_lock();
2969     }
2970 
2971     G1HeapTransition heap_transition(this);
2972     size_t heap_used_bytes_before_gc = used();
2973 
2974     // Don't dynamically change the number of GC threads this early.  A value of
2975     // 0 is used to indicate serial work.  When parallel work is done,
2976     // it will be set.
2977 
2978     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2979       IsGCActiveMark x;
2980 
2981       gc_prologue(false);
2982 
2983       if (VerifyRememberedSets) {
2984         log_info(gc, verify)("[Verifying RemSets before GC]");
2985         VerifyRegionRemSetClosure v_cl;
2986         heap_region_iterate(&v_cl);
2987       }
2988 
2989       _verifier->verify_before_gc();
2990 
2991       _verifier->check_bitmaps("GC Start");
2992 
2993 #if defined(COMPILER2) || INCLUDE_JVMCI
2994       DerivedPointerTable::clear();
2995 #endif
2996 
2997       // Please see comment in g1CollectedHeap.hpp and
2998       // G1CollectedHeap::ref_processing_init() to see how
2999       // reference processing currently works in G1.
3000 
3001       // Enable discovery in the STW reference processor
3002       if (g1_policy()->should_process_references()) {
3003         ref_processor_stw()->enable_discovery();
3004       } else {
3005         ref_processor_stw()->disable_discovery();
3006       }
3007 
3008       {
3009         // We want to temporarily turn off discovery by the
3010         // CM ref processor, if necessary, and turn it back on
3011         // on again later if we do. Using a scoped
3012         // NoRefDiscovery object will do this.
3013         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3014 
3015         // Forget the current alloc region (we might even choose it to be part
3016         // of the collection set!).
3017         _allocator->release_mutator_alloc_region();
3018 
3019         // This timing is only used by the ergonomics to handle our pause target.
3020         // It is unclear why this should not include the full pause. We will
3021         // investigate this in CR 7178365.
3022         //
3023         // Preserving the old comment here if that helps the investigation:
3024         //
3025         // The elapsed time induced by the start time below deliberately elides
3026         // the possible verification above.
3027         double sample_start_time_sec = os::elapsedTime();
3028 
3029         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3030 
3031         if (collector_state()->during_initial_mark_pause()) {
3032           concurrent_mark()->checkpointRootsInitialPre();
3033         }
3034 
3035         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3036 
3037         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3038 
3039         // Make sure the remembered sets are up to date. This needs to be
3040         // done before register_humongous_regions_with_cset(), because the
3041         // remembered sets are used there to choose eager reclaim candidates.
3042         // If the remembered sets are not up to date we might miss some
3043         // entries that need to be handled.
3044         g1_rem_set()->cleanupHRRS();
3045 
3046         register_humongous_regions_with_cset();
3047 
3048         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3049 
3050         // We call this after finalize_cset() to
3051         // ensure that the CSet has been finalized.
3052         _cm->verify_no_cset_oops();
3053 
3054         if (_hr_printer.is_active()) {
3055           G1PrintCollectionSetClosure cl(&_hr_printer);
3056           _collection_set.iterate(&cl);
3057         }
3058 
3059         // Initialize the GC alloc regions.
3060         _allocator->init_gc_alloc_regions(evacuation_info);
3061 
3062         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3063         pre_evacuate_collection_set();
3064 
3065         // Actually do the work...
3066         evacuate_collection_set(evacuation_info, &per_thread_states);
3067 
3068         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3069 
3070         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3071         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3072 
3073         eagerly_reclaim_humongous_regions();
3074 
3075         record_obj_copy_mem_stats();
3076         _survivor_evac_stats.adjust_desired_plab_sz();
3077         _old_evac_stats.adjust_desired_plab_sz();
3078 
3079         double start = os::elapsedTime();
3080         start_new_collection_set();
3081         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3082 
3083         if (evacuation_failed()) {
3084           set_used(recalculate_used());
3085           if (_archive_allocator != NULL) {
3086             _archive_allocator->clear_used();
3087           }
3088           for (uint i = 0; i < ParallelGCThreads; i++) {
3089             if (_evacuation_failed_info_array[i].has_failed()) {
3090               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3091             }
3092           }
3093         } else {
3094           // The "used" of the the collection set have already been subtracted
3095           // when they were freed.  Add in the bytes evacuated.
3096           increase_used(g1_policy()->bytes_copied_during_gc());
3097         }
3098 
3099         if (collector_state()->during_initial_mark_pause()) {
3100           // We have to do this before we notify the CM threads that
3101           // they can start working to make sure that all the
3102           // appropriate initialization is done on the CM object.
3103           concurrent_mark()->checkpointRootsInitialPost();
3104           collector_state()->set_mark_in_progress(true);
3105           // Note that we don't actually trigger the CM thread at
3106           // this point. We do that later when we're sure that
3107           // the current thread has completed its logging output.
3108         }
3109 
3110         allocate_dummy_regions();
3111 
3112         _allocator->init_mutator_alloc_region();
3113 
3114         {
3115           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3116           if (expand_bytes > 0) {
3117             size_t bytes_before = capacity();
3118             // No need for an ergo logging here,
3119             // expansion_amount() does this when it returns a value > 0.
3120             double expand_ms;
3121             if (!expand(expand_bytes, _workers, &expand_ms)) {
3122               // We failed to expand the heap. Cannot do anything about it.
3123             }
3124             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3125           }
3126         }
3127 
3128         // We redo the verification but now wrt to the new CSet which
3129         // has just got initialized after the previous CSet was freed.
3130         _cm->verify_no_cset_oops();
3131 
3132         // This timing is only used by the ergonomics to handle our pause target.
3133         // It is unclear why this should not include the full pause. We will
3134         // investigate this in CR 7178365.
3135         double sample_end_time_sec = os::elapsedTime();
3136         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3137         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3138         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3139 
3140         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3141         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3142 
3143         if (VerifyRememberedSets) {
3144           log_info(gc, verify)("[Verifying RemSets after GC]");
3145           VerifyRegionRemSetClosure v_cl;
3146           heap_region_iterate(&v_cl);
3147         }
3148 
3149         _verifier->verify_after_gc();
3150         _verifier->check_bitmaps("GC End");
3151 
3152         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3153         ref_processor_stw()->verify_no_references_recorded();
3154 
3155         // CM reference discovery will be re-enabled if necessary.
3156       }
3157 
3158 #ifdef TRACESPINNING
3159       ParallelTaskTerminator::print_termination_counts();
3160 #endif
3161 
3162       gc_epilogue(false);
3163     }
3164 
3165     // Print the remainder of the GC log output.
3166     if (evacuation_failed()) {
3167       log_info(gc)("To-space exhausted");
3168     }
3169 
3170     g1_policy()->print_phases();
3171     heap_transition.print();
3172 
3173     // It is not yet to safe to tell the concurrent mark to
3174     // start as we have some optional output below. We don't want the
3175     // output from the concurrent mark thread interfering with this
3176     // logging output either.
3177 
3178     _hrm.verify_optional();
3179     _verifier->verify_region_sets_optional();
3180 
3181     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3182     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3183 
3184     print_heap_after_gc();
3185     print_heap_regions();
3186     trace_heap_after_gc(_gc_tracer_stw);
3187 
3188     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3189     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3190     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3191     // before any GC notifications are raised.
3192     g1mm()->update_sizes();
3193 
3194     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3195     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3196     _gc_timer_stw->register_gc_end();
3197     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3198   }
3199   // It should now be safe to tell the concurrent mark thread to start
3200   // without its logging output interfering with the logging output
3201   // that came from the pause.
3202 
3203   if (should_start_conc_mark) {
3204     // CAUTION: after the doConcurrentMark() call below,
3205     // the concurrent marking thread(s) could be running
3206     // concurrently with us. Make sure that anything after
3207     // this point does not assume that we are the only GC thread
3208     // running. Note: of course, the actual marking work will
3209     // not start until the safepoint itself is released in
3210     // SuspendibleThreadSet::desynchronize().
3211     doConcurrentMark();
3212   }
3213 
3214   return true;
3215 }
3216 
3217 void G1CollectedHeap::remove_self_forwarding_pointers() {
3218   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3219   workers()->run_task(&rsfp_task);
3220 }
3221 
3222 void G1CollectedHeap::restore_after_evac_failure() {
3223   double remove_self_forwards_start = os::elapsedTime();
3224 
3225   remove_self_forwarding_pointers();
3226   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3227   _preserved_marks_set.restore(&task_executor);
3228 
3229   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3230 }
3231 
3232 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3233   if (!_evacuation_failed) {
3234     _evacuation_failed = true;
3235   }
3236 
3237   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3238   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3239 }
3240 
3241 bool G1ParEvacuateFollowersClosure::offer_termination() {
3242   G1ParScanThreadState* const pss = par_scan_state();
3243   start_term_time();
3244   const bool res = terminator()->offer_termination();
3245   end_term_time();
3246   return res;
3247 }
3248 
3249 void G1ParEvacuateFollowersClosure::do_void() {
3250   G1ParScanThreadState* const pss = par_scan_state();
3251   pss->trim_queue();
3252   do {
3253     pss->steal_and_trim_queue(queues());
3254   } while (!offer_termination());
3255 }
3256 
3257 class G1ParTask : public AbstractGangTask {
3258 protected:
3259   G1CollectedHeap*         _g1h;
3260   G1ParScanThreadStateSet* _pss;
3261   RefToScanQueueSet*       _queues;
3262   G1RootProcessor*         _root_processor;
3263   ParallelTaskTerminator   _terminator;
3264   uint                     _n_workers;
3265 
3266 public:
3267   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3268     : AbstractGangTask("G1 collection"),
3269       _g1h(g1h),
3270       _pss(per_thread_states),
3271       _queues(task_queues),
3272       _root_processor(root_processor),
3273       _terminator(n_workers, _queues),
3274       _n_workers(n_workers)
3275   {}
3276 
3277   void work(uint worker_id) {
3278     if (worker_id >= _n_workers) return;  // no work needed this round
3279 
3280     double start_sec = os::elapsedTime();
3281     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3282 
3283     {
3284       ResourceMark rm;
3285       HandleMark   hm;
3286 
3287       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3288 
3289       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3290       pss->set_ref_processor(rp);
3291 
3292       double start_strong_roots_sec = os::elapsedTime();
3293 
3294       _root_processor->evacuate_roots(pss->closures(), worker_id);
3295 
3296       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3297       // treating the nmethods visited to act as roots for concurrent marking.
3298       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3299       // objects copied by the current evacuation.
3300       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3301                                                       pss->closures()->weak_codeblobs(),
3302                                                       worker_id);
3303 
3304       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3305 
3306       double term_sec = 0.0;
3307       size_t evac_term_attempts = 0;
3308       {
3309         double start = os::elapsedTime();
3310         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3311         evac.do_void();
3312 
3313         evac_term_attempts = evac.term_attempts();
3314         term_sec = evac.term_time();
3315         double elapsed_sec = os::elapsedTime() - start;
3316         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3317         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3318         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3319       }
3320 
3321       assert(pss->queue_is_empty(), "should be empty");
3322 
3323       if (log_is_enabled(Debug, gc, task, stats)) {
3324         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3325         size_t lab_waste;
3326         size_t lab_undo_waste;
3327         pss->waste(lab_waste, lab_undo_waste);
3328         _g1h->print_termination_stats(worker_id,
3329                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3330                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3331                                       term_sec * 1000.0,                          /* evac term time */
3332                                       evac_term_attempts,                         /* evac term attempts */
3333                                       lab_waste,                                  /* alloc buffer waste */
3334                                       lab_undo_waste                              /* undo waste */
3335                                       );
3336       }
3337 
3338       // Close the inner scope so that the ResourceMark and HandleMark
3339       // destructors are executed here and are included as part of the
3340       // "GC Worker Time".
3341     }
3342     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3343   }
3344 };
3345 
3346 void G1CollectedHeap::print_termination_stats_hdr() {
3347   log_debug(gc, task, stats)("GC Termination Stats");
3348   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3349   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3350   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3351 }
3352 
3353 void G1CollectedHeap::print_termination_stats(uint worker_id,
3354                                               double elapsed_ms,
3355                                               double strong_roots_ms,
3356                                               double term_ms,
3357                                               size_t term_attempts,
3358                                               size_t alloc_buffer_waste,
3359                                               size_t undo_waste) const {
3360   log_debug(gc, task, stats)
3361               ("%3d %9.2f %9.2f %6.2f "
3362                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3363                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3364                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3365                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3366                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3367                alloc_buffer_waste * HeapWordSize / K,
3368                undo_waste * HeapWordSize / K);
3369 }
3370 
3371 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3372 private:
3373   BoolObjectClosure* _is_alive;
3374   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3375 
3376   int _initial_string_table_size;
3377   int _initial_symbol_table_size;
3378 
3379   bool  _process_strings;
3380   int _strings_processed;
3381   int _strings_removed;
3382 
3383   bool  _process_symbols;
3384   int _symbols_processed;
3385   int _symbols_removed;
3386 
3387   bool _process_string_dedup;
3388 
3389 public:
3390   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3391     AbstractGangTask("String/Symbol Unlinking"),
3392     _is_alive(is_alive),
3393     _dedup_closure(is_alive, NULL, false),
3394     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3395     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3396     _process_string_dedup(process_string_dedup) {
3397 
3398     _initial_string_table_size = StringTable::the_table()->table_size();
3399     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3400     if (process_strings) {
3401       StringTable::clear_parallel_claimed_index();
3402     }
3403     if (process_symbols) {
3404       SymbolTable::clear_parallel_claimed_index();
3405     }
3406   }
3407 
3408   ~G1StringAndSymbolCleaningTask() {
3409     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3410               "claim value %d after unlink less than initial string table size %d",
3411               StringTable::parallel_claimed_index(), _initial_string_table_size);
3412     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3413               "claim value %d after unlink less than initial symbol table size %d",
3414               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3415 
3416     log_info(gc, stringtable)(
3417         "Cleaned string and symbol table, "
3418         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3419         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3420         strings_processed(), strings_removed(),
3421         symbols_processed(), symbols_removed());
3422   }
3423 
3424   void work(uint worker_id) {
3425     int strings_processed = 0;
3426     int strings_removed = 0;
3427     int symbols_processed = 0;
3428     int symbols_removed = 0;
3429     if (_process_strings) {
3430       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3431       Atomic::add(strings_processed, &_strings_processed);
3432       Atomic::add(strings_removed, &_strings_removed);
3433     }
3434     if (_process_symbols) {
3435       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3436       Atomic::add(symbols_processed, &_symbols_processed);
3437       Atomic::add(symbols_removed, &_symbols_removed);
3438     }
3439     if (_process_string_dedup) {
3440       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3441     }
3442   }
3443 
3444   size_t strings_processed() const { return (size_t)_strings_processed; }
3445   size_t strings_removed()   const { return (size_t)_strings_removed; }
3446 
3447   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3448   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3449 };
3450 
3451 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3452 private:
3453   static Monitor* _lock;
3454 
3455   BoolObjectClosure* const _is_alive;
3456   const bool               _unloading_occurred;
3457   const uint               _num_workers;
3458 
3459   // Variables used to claim nmethods.
3460   CompiledMethod* _first_nmethod;
3461   volatile CompiledMethod* _claimed_nmethod;
3462 
3463   // The list of nmethods that need to be processed by the second pass.
3464   volatile CompiledMethod* _postponed_list;
3465   volatile uint            _num_entered_barrier;
3466 
3467  public:
3468   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3469       _is_alive(is_alive),
3470       _unloading_occurred(unloading_occurred),
3471       _num_workers(num_workers),
3472       _first_nmethod(NULL),
3473       _claimed_nmethod(NULL),
3474       _postponed_list(NULL),
3475       _num_entered_barrier(0)
3476   {
3477     CompiledMethod::increase_unloading_clock();
3478     // Get first alive nmethod
3479     CompiledMethodIterator iter = CompiledMethodIterator();
3480     if(iter.next_alive()) {
3481       _first_nmethod = iter.method();
3482     }
3483     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3484   }
3485 
3486   ~G1CodeCacheUnloadingTask() {
3487     CodeCache::verify_clean_inline_caches();
3488 
3489     CodeCache::set_needs_cache_clean(false);
3490     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3491 
3492     CodeCache::verify_icholder_relocations();
3493   }
3494 
3495  private:
3496   void add_to_postponed_list(CompiledMethod* nm) {
3497       CompiledMethod* old;
3498       do {
3499         old = (CompiledMethod*)_postponed_list;
3500         nm->set_unloading_next(old);
3501       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3502   }
3503 
3504   void clean_nmethod(CompiledMethod* nm) {
3505     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3506 
3507     if (postponed) {
3508       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3509       add_to_postponed_list(nm);
3510     }
3511 
3512     // Mark that this thread has been cleaned/unloaded.
3513     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3514     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3515   }
3516 
3517   void clean_nmethod_postponed(CompiledMethod* nm) {
3518     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3519   }
3520 
3521   static const int MaxClaimNmethods = 16;
3522 
3523   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3524     CompiledMethod* first;
3525     CompiledMethodIterator last;
3526 
3527     do {
3528       *num_claimed_nmethods = 0;
3529 
3530       first = (CompiledMethod*)_claimed_nmethod;
3531       last = CompiledMethodIterator(first);
3532 
3533       if (first != NULL) {
3534 
3535         for (int i = 0; i < MaxClaimNmethods; i++) {
3536           if (!last.next_alive()) {
3537             break;
3538           }
3539           claimed_nmethods[i] = last.method();
3540           (*num_claimed_nmethods)++;
3541         }
3542       }
3543 
3544     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3545   }
3546 
3547   CompiledMethod* claim_postponed_nmethod() {
3548     CompiledMethod* claim;
3549     CompiledMethod* next;
3550 
3551     do {
3552       claim = (CompiledMethod*)_postponed_list;
3553       if (claim == NULL) {
3554         return NULL;
3555       }
3556 
3557       next = claim->unloading_next();
3558 
3559     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3560 
3561     return claim;
3562   }
3563 
3564  public:
3565   // Mark that we're done with the first pass of nmethod cleaning.
3566   void barrier_mark(uint worker_id) {
3567     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3568     _num_entered_barrier++;
3569     if (_num_entered_barrier == _num_workers) {
3570       ml.notify_all();
3571     }
3572   }
3573 
3574   // See if we have to wait for the other workers to
3575   // finish their first-pass nmethod cleaning work.
3576   void barrier_wait(uint worker_id) {
3577     if (_num_entered_barrier < _num_workers) {
3578       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3579       while (_num_entered_barrier < _num_workers) {
3580           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3581       }
3582     }
3583   }
3584 
3585   // Cleaning and unloading of nmethods. Some work has to be postponed
3586   // to the second pass, when we know which nmethods survive.
3587   void work_first_pass(uint worker_id) {
3588     // The first nmethods is claimed by the first worker.
3589     if (worker_id == 0 && _first_nmethod != NULL) {
3590       clean_nmethod(_first_nmethod);
3591       _first_nmethod = NULL;
3592     }
3593 
3594     int num_claimed_nmethods;
3595     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3596 
3597     while (true) {
3598       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3599 
3600       if (num_claimed_nmethods == 0) {
3601         break;
3602       }
3603 
3604       for (int i = 0; i < num_claimed_nmethods; i++) {
3605         clean_nmethod(claimed_nmethods[i]);
3606       }
3607     }
3608   }
3609 
3610   void work_second_pass(uint worker_id) {
3611     CompiledMethod* nm;
3612     // Take care of postponed nmethods.
3613     while ((nm = claim_postponed_nmethod()) != NULL) {
3614       clean_nmethod_postponed(nm);
3615     }
3616   }
3617 };
3618 
3619 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3620 
3621 class G1KlassCleaningTask : public StackObj {
3622   BoolObjectClosure*                      _is_alive;
3623   volatile jint                           _clean_klass_tree_claimed;
3624   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3625 
3626  public:
3627   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3628       _is_alive(is_alive),
3629       _clean_klass_tree_claimed(0),
3630       _klass_iterator() {
3631   }
3632 
3633  private:
3634   bool claim_clean_klass_tree_task() {
3635     if (_clean_klass_tree_claimed) {
3636       return false;
3637     }
3638 
3639     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3640   }
3641 
3642   InstanceKlass* claim_next_klass() {
3643     Klass* klass;
3644     do {
3645       klass =_klass_iterator.next_klass();
3646     } while (klass != NULL && !klass->is_instance_klass());
3647 
3648     // this can be null so don't call InstanceKlass::cast
3649     return static_cast<InstanceKlass*>(klass);
3650   }
3651 
3652 public:
3653 
3654   void clean_klass(InstanceKlass* ik) {
3655     ik->clean_weak_instanceklass_links(_is_alive);
3656   }
3657 
3658   void work() {
3659     ResourceMark rm;
3660 
3661     // One worker will clean the subklass/sibling klass tree.
3662     if (claim_clean_klass_tree_task()) {
3663       Klass::clean_subklass_tree(_is_alive);
3664     }
3665 
3666     // All workers will help cleaning the classes,
3667     InstanceKlass* klass;
3668     while ((klass = claim_next_klass()) != NULL) {
3669       clean_klass(klass);
3670     }
3671   }
3672 };
3673 
3674 class G1ResolvedMethodCleaningTask : public StackObj {
3675   BoolObjectClosure* _is_alive;
3676   volatile jint      _resolved_method_task_claimed;
3677 public:
3678   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3679       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3680 
3681   bool claim_resolved_method_task() {
3682     if (_resolved_method_task_claimed) {
3683       return false;
3684     }
3685     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3686   }
3687 
3688   // These aren't big, one thread can do it all.
3689   void work() {
3690     if (claim_resolved_method_task()) {
3691       ResolvedMethodTable::unlink(_is_alive);
3692     }
3693   }
3694 };
3695 
3696 
3697 // To minimize the remark pause times, the tasks below are done in parallel.
3698 class G1ParallelCleaningTask : public AbstractGangTask {
3699 private:
3700   G1StringAndSymbolCleaningTask _string_symbol_task;
3701   G1CodeCacheUnloadingTask      _code_cache_task;
3702   G1KlassCleaningTask           _klass_cleaning_task;
3703   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3704 
3705 public:
3706   // The constructor is run in the VMThread.
3707   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3708       AbstractGangTask("Parallel Cleaning"),
3709       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3710       _code_cache_task(num_workers, is_alive, unloading_occurred),
3711       _klass_cleaning_task(is_alive),
3712       _resolved_method_cleaning_task(is_alive) {
3713   }
3714 
3715   // The parallel work done by all worker threads.
3716   void work(uint worker_id) {
3717     // Do first pass of code cache cleaning.
3718     _code_cache_task.work_first_pass(worker_id);
3719 
3720     // Let the threads mark that the first pass is done.
3721     _code_cache_task.barrier_mark(worker_id);
3722 
3723     // Clean the Strings and Symbols.
3724     _string_symbol_task.work(worker_id);
3725 
3726     // Clean unreferenced things in the ResolvedMethodTable
3727     _resolved_method_cleaning_task.work();
3728 
3729     // Wait for all workers to finish the first code cache cleaning pass.
3730     _code_cache_task.barrier_wait(worker_id);
3731 
3732     // Do the second code cache cleaning work, which realize on
3733     // the liveness information gathered during the first pass.
3734     _code_cache_task.work_second_pass(worker_id);
3735 
3736     // Clean all klasses that were not unloaded.
3737     _klass_cleaning_task.work();
3738   }
3739 };
3740 
3741 
3742 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3743                                         bool class_unloading_occurred) {
3744   uint n_workers = workers()->active_workers();
3745 
3746   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3747   workers()->run_task(&g1_unlink_task);
3748 }
3749 
3750 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3751                                        bool process_strings,
3752                                        bool process_symbols,
3753                                        bool process_string_dedup) {
3754   if (!process_strings && !process_symbols && !process_string_dedup) {
3755     // Nothing to clean.
3756     return;
3757   }
3758 
3759   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3760   workers()->run_task(&g1_unlink_task);
3761 
3762 }
3763 
3764 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3765  private:
3766   DirtyCardQueueSet* _queue;
3767   G1CollectedHeap* _g1h;
3768  public:
3769   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3770     _queue(queue), _g1h(g1h) { }
3771 
3772   virtual void work(uint worker_id) {
3773     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3774     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3775 
3776     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3777     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3778 
3779     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3780   }
3781 };
3782 
3783 void G1CollectedHeap::redirty_logged_cards() {
3784   double redirty_logged_cards_start = os::elapsedTime();
3785 
3786   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3787   dirty_card_queue_set().reset_for_par_iteration();
3788   workers()->run_task(&redirty_task);
3789 
3790   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3791   dcq.merge_bufferlists(&dirty_card_queue_set());
3792   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3793 
3794   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3795 }
3796 
3797 // Weak Reference Processing support
3798 
3799 // An always "is_alive" closure that is used to preserve referents.
3800 // If the object is non-null then it's alive.  Used in the preservation
3801 // of referent objects that are pointed to by reference objects
3802 // discovered by the CM ref processor.
3803 class G1AlwaysAliveClosure: public BoolObjectClosure {
3804   G1CollectedHeap* _g1;
3805 public:
3806   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3807   bool do_object_b(oop p) {
3808     if (p != NULL) {
3809       return true;
3810     }
3811     return false;
3812   }
3813 };
3814 
3815 bool G1STWIsAliveClosure::do_object_b(oop p) {
3816   // An object is reachable if it is outside the collection set,
3817   // or is inside and copied.
3818   return !_g1->is_in_cset(p) || p->is_forwarded();
3819 }
3820 
3821 // Non Copying Keep Alive closure
3822 class G1KeepAliveClosure: public OopClosure {
3823   G1CollectedHeap* _g1;
3824 public:
3825   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3826   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3827   void do_oop(oop* p) {
3828     oop obj = *p;
3829     assert(obj != NULL, "the caller should have filtered out NULL values");
3830 
3831     const InCSetState cset_state = _g1->in_cset_state(obj);
3832     if (!cset_state.is_in_cset_or_humongous()) {
3833       return;
3834     }
3835     if (cset_state.is_in_cset()) {
3836       assert( obj->is_forwarded(), "invariant" );
3837       *p = obj->forwardee();
3838     } else {
3839       assert(!obj->is_forwarded(), "invariant" );
3840       assert(cset_state.is_humongous(),
3841              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3842       _g1->set_humongous_is_live(obj);
3843     }
3844   }
3845 };
3846 
3847 // Copying Keep Alive closure - can be called from both
3848 // serial and parallel code as long as different worker
3849 // threads utilize different G1ParScanThreadState instances
3850 // and different queues.
3851 
3852 class G1CopyingKeepAliveClosure: public OopClosure {
3853   G1CollectedHeap*         _g1h;
3854   OopClosure*              _copy_non_heap_obj_cl;
3855   G1ParScanThreadState*    _par_scan_state;
3856 
3857 public:
3858   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3859                             OopClosure* non_heap_obj_cl,
3860                             G1ParScanThreadState* pss):
3861     _g1h(g1h),
3862     _copy_non_heap_obj_cl(non_heap_obj_cl),
3863     _par_scan_state(pss)
3864   {}
3865 
3866   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3867   virtual void do_oop(      oop* p) { do_oop_work(p); }
3868 
3869   template <class T> void do_oop_work(T* p) {
3870     oop obj = oopDesc::load_decode_heap_oop(p);
3871 
3872     if (_g1h->is_in_cset_or_humongous(obj)) {
3873       // If the referent object has been forwarded (either copied
3874       // to a new location or to itself in the event of an
3875       // evacuation failure) then we need to update the reference
3876       // field and, if both reference and referent are in the G1
3877       // heap, update the RSet for the referent.
3878       //
3879       // If the referent has not been forwarded then we have to keep
3880       // it alive by policy. Therefore we have copy the referent.
3881       //
3882       // If the reference field is in the G1 heap then we can push
3883       // on the PSS queue. When the queue is drained (after each
3884       // phase of reference processing) the object and it's followers
3885       // will be copied, the reference field set to point to the
3886       // new location, and the RSet updated. Otherwise we need to
3887       // use the the non-heap or metadata closures directly to copy
3888       // the referent object and update the pointer, while avoiding
3889       // updating the RSet.
3890 
3891       if (_g1h->is_in_g1_reserved(p)) {
3892         _par_scan_state->push_on_queue(p);
3893       } else {
3894         assert(!Metaspace::contains((const void*)p),
3895                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3896         _copy_non_heap_obj_cl->do_oop(p);
3897       }
3898     }
3899   }
3900 };
3901 
3902 // Serial drain queue closure. Called as the 'complete_gc'
3903 // closure for each discovered list in some of the
3904 // reference processing phases.
3905 
3906 class G1STWDrainQueueClosure: public VoidClosure {
3907 protected:
3908   G1CollectedHeap* _g1h;
3909   G1ParScanThreadState* _par_scan_state;
3910 
3911   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3912 
3913 public:
3914   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3915     _g1h(g1h),
3916     _par_scan_state(pss)
3917   { }
3918 
3919   void do_void() {
3920     G1ParScanThreadState* const pss = par_scan_state();
3921     pss->trim_queue();
3922   }
3923 };
3924 
3925 // Parallel Reference Processing closures
3926 
3927 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3928 // processing during G1 evacuation pauses.
3929 
3930 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3931 private:
3932   G1CollectedHeap*          _g1h;
3933   G1ParScanThreadStateSet*  _pss;
3934   RefToScanQueueSet*        _queues;
3935   WorkGang*                 _workers;
3936   uint                      _active_workers;
3937 
3938 public:
3939   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3940                            G1ParScanThreadStateSet* per_thread_states,
3941                            WorkGang* workers,
3942                            RefToScanQueueSet *task_queues,
3943                            uint n_workers) :
3944     _g1h(g1h),
3945     _pss(per_thread_states),
3946     _queues(task_queues),
3947     _workers(workers),
3948     _active_workers(n_workers)
3949   {
3950     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3951   }
3952 
3953   // Executes the given task using concurrent marking worker threads.
3954   virtual void execute(ProcessTask& task);
3955   virtual void execute(EnqueueTask& task);
3956 };
3957 
3958 // Gang task for possibly parallel reference processing
3959 
3960 class G1STWRefProcTaskProxy: public AbstractGangTask {
3961   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3962   ProcessTask&     _proc_task;
3963   G1CollectedHeap* _g1h;
3964   G1ParScanThreadStateSet* _pss;
3965   RefToScanQueueSet* _task_queues;
3966   ParallelTaskTerminator* _terminator;
3967 
3968 public:
3969   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3970                         G1CollectedHeap* g1h,
3971                         G1ParScanThreadStateSet* per_thread_states,
3972                         RefToScanQueueSet *task_queues,
3973                         ParallelTaskTerminator* terminator) :
3974     AbstractGangTask("Process reference objects in parallel"),
3975     _proc_task(proc_task),
3976     _g1h(g1h),
3977     _pss(per_thread_states),
3978     _task_queues(task_queues),
3979     _terminator(terminator)
3980   {}
3981 
3982   virtual void work(uint worker_id) {
3983     // The reference processing task executed by a single worker.
3984     ResourceMark rm;
3985     HandleMark   hm;
3986 
3987     G1STWIsAliveClosure is_alive(_g1h);
3988 
3989     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3990     pss->set_ref_processor(NULL);
3991 
3992     // Keep alive closure.
3993     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3994 
3995     // Complete GC closure
3996     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3997 
3998     // Call the reference processing task's work routine.
3999     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4000 
4001     // Note we cannot assert that the refs array is empty here as not all
4002     // of the processing tasks (specifically phase2 - pp2_work) execute
4003     // the complete_gc closure (which ordinarily would drain the queue) so
4004     // the queue may not be empty.
4005   }
4006 };
4007 
4008 // Driver routine for parallel reference processing.
4009 // Creates an instance of the ref processing gang
4010 // task and has the worker threads execute it.
4011 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4012   assert(_workers != NULL, "Need parallel worker threads.");
4013 
4014   ParallelTaskTerminator terminator(_active_workers, _queues);
4015   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4016 
4017   _workers->run_task(&proc_task_proxy);
4018 }
4019 
4020 // Gang task for parallel reference enqueueing.
4021 
4022 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4023   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4024   EnqueueTask& _enq_task;
4025 
4026 public:
4027   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4028     AbstractGangTask("Enqueue reference objects in parallel"),
4029     _enq_task(enq_task)
4030   { }
4031 
4032   virtual void work(uint worker_id) {
4033     _enq_task.work(worker_id);
4034   }
4035 };
4036 
4037 // Driver routine for parallel reference enqueueing.
4038 // Creates an instance of the ref enqueueing gang
4039 // task and has the worker threads execute it.
4040 
4041 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4042   assert(_workers != NULL, "Need parallel worker threads.");
4043 
4044   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4045 
4046   _workers->run_task(&enq_task_proxy);
4047 }
4048 
4049 // End of weak reference support closures
4050 
4051 // Abstract task used to preserve (i.e. copy) any referent objects
4052 // that are in the collection set and are pointed to by reference
4053 // objects discovered by the CM ref processor.
4054 
4055 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4056 protected:
4057   G1CollectedHeap*         _g1h;
4058   G1ParScanThreadStateSet* _pss;
4059   RefToScanQueueSet*       _queues;
4060   ParallelTaskTerminator   _terminator;
4061   uint                     _n_workers;
4062 
4063 public:
4064   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4065     AbstractGangTask("ParPreserveCMReferents"),
4066     _g1h(g1h),
4067     _pss(per_thread_states),
4068     _queues(task_queues),
4069     _terminator(workers, _queues),
4070     _n_workers(workers)
4071   {
4072     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4073   }
4074 
4075   void work(uint worker_id) {
4076     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4077 
4078     ResourceMark rm;
4079     HandleMark   hm;
4080 
4081     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4082     pss->set_ref_processor(NULL);
4083     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4084 
4085     // Is alive closure
4086     G1AlwaysAliveClosure always_alive(_g1h);
4087 
4088     // Copying keep alive closure. Applied to referent objects that need
4089     // to be copied.
4090     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4091 
4092     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4093 
4094     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4095     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4096 
4097     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4098     // So this must be true - but assert just in case someone decides to
4099     // change the worker ids.
4100     assert(worker_id < limit, "sanity");
4101     assert(!rp->discovery_is_atomic(), "check this code");
4102 
4103     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4104     for (uint idx = worker_id; idx < limit; idx += stride) {
4105       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4106 
4107       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4108       while (iter.has_next()) {
4109         // Since discovery is not atomic for the CM ref processor, we
4110         // can see some null referent objects.
4111         iter.load_ptrs(DEBUG_ONLY(true));
4112         oop ref = iter.obj();
4113 
4114         // This will filter nulls.
4115         if (iter.is_referent_alive()) {
4116           iter.make_referent_alive();
4117         }
4118         iter.move_to_next();
4119       }
4120     }
4121 
4122     // Drain the queue - which may cause stealing
4123     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4124     drain_queue.do_void();
4125     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4126     assert(pss->queue_is_empty(), "should be");
4127   }
4128 };
4129 
4130 void G1CollectedHeap::process_weak_jni_handles() {
4131   double ref_proc_start = os::elapsedTime();
4132 
4133   G1STWIsAliveClosure is_alive(this);
4134   G1KeepAliveClosure keep_alive(this);
4135   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4136 
4137   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4138   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4139 }
4140 
4141 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4142   // Any reference objects, in the collection set, that were 'discovered'
4143   // by the CM ref processor should have already been copied (either by
4144   // applying the external root copy closure to the discovered lists, or
4145   // by following an RSet entry).
4146   //
4147   // But some of the referents, that are in the collection set, that these
4148   // reference objects point to may not have been copied: the STW ref
4149   // processor would have seen that the reference object had already
4150   // been 'discovered' and would have skipped discovering the reference,
4151   // but would not have treated the reference object as a regular oop.
4152   // As a result the copy closure would not have been applied to the
4153   // referent object.
4154   //
4155   // We need to explicitly copy these referent objects - the references
4156   // will be processed at the end of remarking.
4157   //
4158   // We also need to do this copying before we process the reference
4159   // objects discovered by the STW ref processor in case one of these
4160   // referents points to another object which is also referenced by an
4161   // object discovered by the STW ref processor.
4162   double preserve_cm_referents_time = 0.0;
4163 
4164   // To avoid spawning task when there is no work to do, check that
4165   // a concurrent cycle is active and that some references have been
4166   // discovered.
4167   if (concurrent_mark()->cmThread()->during_cycle() &&
4168       ref_processor_cm()->has_discovered_references()) {
4169     double preserve_cm_referents_start = os::elapsedTime();
4170     uint no_of_gc_workers = workers()->active_workers();
4171     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4172                                                    per_thread_states,
4173                                                    no_of_gc_workers,
4174                                                    _task_queues);
4175     workers()->run_task(&keep_cm_referents);
4176     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4177   }
4178 
4179   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4180 }
4181 
4182 // Weak Reference processing during an evacuation pause (part 1).
4183 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4184   double ref_proc_start = os::elapsedTime();
4185 
4186   ReferenceProcessor* rp = _ref_processor_stw;
4187   assert(rp->discovery_enabled(), "should have been enabled");
4188 
4189   // Closure to test whether a referent is alive.
4190   G1STWIsAliveClosure is_alive(this);
4191 
4192   // Even when parallel reference processing is enabled, the processing
4193   // of JNI refs is serial and performed serially by the current thread
4194   // rather than by a worker. The following PSS will be used for processing
4195   // JNI refs.
4196 
4197   // Use only a single queue for this PSS.
4198   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4199   pss->set_ref_processor(NULL);
4200   assert(pss->queue_is_empty(), "pre-condition");
4201 
4202   // Keep alive closure.
4203   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4204 
4205   // Serial Complete GC closure
4206   G1STWDrainQueueClosure drain_queue(this, pss);
4207 
4208   // Setup the soft refs policy...
4209   rp->setup_policy(false);
4210 
4211   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4212 
4213   ReferenceProcessorStats stats;
4214   if (!rp->processing_is_mt()) {
4215     // Serial reference processing...
4216     stats = rp->process_discovered_references(&is_alive,
4217                                               &keep_alive,
4218                                               &drain_queue,
4219                                               NULL,
4220                                               pt);
4221   } else {
4222     uint no_of_gc_workers = workers()->active_workers();
4223 
4224     // Parallel reference processing
4225     assert(no_of_gc_workers <= rp->max_num_q(),
4226            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4227            no_of_gc_workers,  rp->max_num_q());
4228 
4229     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4230     stats = rp->process_discovered_references(&is_alive,
4231                                               &keep_alive,
4232                                               &drain_queue,
4233                                               &par_task_executor,
4234                                               pt);
4235   }
4236 
4237   _gc_tracer_stw->report_gc_reference_stats(stats);
4238 
4239   // We have completed copying any necessary live referent objects.
4240   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4241 
4242   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4243   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4244 }
4245 
4246 // Weak Reference processing during an evacuation pause (part 2).
4247 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4248   double ref_enq_start = os::elapsedTime();
4249 
4250   ReferenceProcessor* rp = _ref_processor_stw;
4251   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4252 
4253   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4254 
4255   // Now enqueue any remaining on the discovered lists on to
4256   // the pending list.
4257   if (!rp->processing_is_mt()) {
4258     // Serial reference processing...
4259     rp->enqueue_discovered_references(NULL, pt);
4260   } else {
4261     // Parallel reference enqueueing
4262 
4263     uint n_workers = workers()->active_workers();
4264 
4265     assert(n_workers <= rp->max_num_q(),
4266            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4267            n_workers,  rp->max_num_q());
4268 
4269     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4270     rp->enqueue_discovered_references(&par_task_executor, pt);
4271   }
4272 
4273   rp->verify_no_references_recorded();
4274   assert(!rp->discovery_enabled(), "should have been disabled");
4275 
4276   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4277   // ensure that it is marked in the bitmap for concurrent marking to discover.
4278   if (collector_state()->during_initial_mark_pause()) {
4279     oop pll_head = Universe::reference_pending_list();
4280     if (pll_head != NULL) {
4281       _cm->mark_in_next_bitmap(pll_head);
4282     }
4283   }
4284 
4285   // FIXME
4286   // CM's reference processing also cleans up the string and symbol tables.
4287   // Should we do that here also? We could, but it is a serial operation
4288   // and could significantly increase the pause time.
4289 
4290   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4291   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4292 }
4293 
4294 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4295   double merge_pss_time_start = os::elapsedTime();
4296   per_thread_states->flush();
4297   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4298 }
4299 
4300 void G1CollectedHeap::pre_evacuate_collection_set() {
4301   _expand_heap_after_alloc_failure = true;
4302   _evacuation_failed = false;
4303 
4304   // Disable the hot card cache.
4305   _hot_card_cache->reset_hot_cache_claimed_index();
4306   _hot_card_cache->set_use_cache(false);
4307 
4308   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4309   _preserved_marks_set.assert_empty();
4310 
4311   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4312 
4313   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4314   if (collector_state()->during_initial_mark_pause()) {
4315     double start_clear_claimed_marks = os::elapsedTime();
4316 
4317     ClassLoaderDataGraph::clear_claimed_marks();
4318 
4319     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4320     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4321   }
4322 }
4323 
4324 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4325   // Should G1EvacuationFailureALot be in effect for this GC?
4326   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4327 
4328   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4329 
4330   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4331 
4332   double start_par_time_sec = os::elapsedTime();
4333   double end_par_time_sec;
4334 
4335   {
4336     const uint n_workers = workers()->active_workers();
4337     G1RootProcessor root_processor(this, n_workers);
4338     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4339 
4340     print_termination_stats_hdr();
4341 
4342     workers()->run_task(&g1_par_task);
4343     end_par_time_sec = os::elapsedTime();
4344 
4345     // Closing the inner scope will execute the destructor
4346     // for the G1RootProcessor object. We record the current
4347     // elapsed time before closing the scope so that time
4348     // taken for the destructor is NOT included in the
4349     // reported parallel time.
4350   }
4351 
4352   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4353   phase_times->record_par_time(par_time_ms);
4354 
4355   double code_root_fixup_time_ms =
4356         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4357   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4358 }
4359 
4360 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4361   // Process any discovered reference objects - we have
4362   // to do this _before_ we retire the GC alloc regions
4363   // as we may have to copy some 'reachable' referent
4364   // objects (and their reachable sub-graphs) that were
4365   // not copied during the pause.
4366   if (g1_policy()->should_process_references()) {
4367     preserve_cm_referents(per_thread_states);
4368     process_discovered_references(per_thread_states);
4369   } else {
4370     ref_processor_stw()->verify_no_references_recorded();
4371     process_weak_jni_handles();
4372   }
4373 
4374   if (G1StringDedup::is_enabled()) {
4375     double fixup_start = os::elapsedTime();
4376 
4377     G1STWIsAliveClosure is_alive(this);
4378     G1KeepAliveClosure keep_alive(this);
4379     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4380 
4381     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4382     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4383   }
4384 
4385   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4386 
4387   if (evacuation_failed()) {
4388     restore_after_evac_failure();
4389 
4390     // Reset the G1EvacuationFailureALot counters and flags
4391     // Note: the values are reset only when an actual
4392     // evacuation failure occurs.
4393     NOT_PRODUCT(reset_evacuation_should_fail();)
4394   }
4395 
4396   _preserved_marks_set.assert_empty();
4397 
4398   // Enqueue any remaining references remaining on the STW
4399   // reference processor's discovered lists. We need to do
4400   // this after the card table is cleaned (and verified) as
4401   // the act of enqueueing entries on to the pending list
4402   // will log these updates (and dirty their associated
4403   // cards). We need these updates logged to update any
4404   // RSets.
4405   if (g1_policy()->should_process_references()) {
4406     enqueue_discovered_references(per_thread_states);
4407   } else {
4408     g1_policy()->phase_times()->record_ref_enq_time(0);
4409   }
4410 
4411   _allocator->release_gc_alloc_regions(evacuation_info);
4412 
4413   merge_per_thread_state_info(per_thread_states);
4414 
4415   // Reset and re-enable the hot card cache.
4416   // Note the counts for the cards in the regions in the
4417   // collection set are reset when the collection set is freed.
4418   _hot_card_cache->reset_hot_cache();
4419   _hot_card_cache->set_use_cache(true);
4420 
4421   purge_code_root_memory();
4422 
4423   redirty_logged_cards();
4424 #if defined(COMPILER2) || INCLUDE_JVMCI
4425   double start = os::elapsedTime();
4426   DerivedPointerTable::update_pointers();
4427   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4428 #endif
4429   g1_policy()->print_age_table();
4430 }
4431 
4432 void G1CollectedHeap::record_obj_copy_mem_stats() {
4433   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4434 
4435   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4436                                                create_g1_evac_summary(&_old_evac_stats));
4437 }
4438 
4439 void G1CollectedHeap::free_region(HeapRegion* hr,
4440                                   FreeRegionList* free_list,
4441                                   bool skip_remset,
4442                                   bool skip_hot_card_cache,
4443                                   bool locked) {
4444   assert(!hr->is_free(), "the region should not be free");
4445   assert(!hr->is_empty(), "the region should not be empty");
4446   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4447   assert(free_list != NULL, "pre-condition");
4448 
4449   if (G1VerifyBitmaps) {
4450     MemRegion mr(hr->bottom(), hr->end());
4451     concurrent_mark()->clearRangePrevBitmap(mr);
4452   }
4453 
4454   // Clear the card counts for this region.
4455   // Note: we only need to do this if the region is not young
4456   // (since we don't refine cards in young regions).
4457   if (!skip_hot_card_cache && !hr->is_young()) {
4458     _hot_card_cache->reset_card_counts(hr);
4459   }
4460   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4461   free_list->add_ordered(hr);
4462 }
4463 
4464 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4465                                             FreeRegionList* free_list,
4466                                             bool skip_remset) {
4467   assert(hr->is_humongous(), "this is only for humongous regions");
4468   assert(free_list != NULL, "pre-condition");
4469   hr->clear_humongous();
4470   free_region(hr, free_list, skip_remset);
4471 }
4472 
4473 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4474                                            const uint humongous_regions_removed) {
4475   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4476     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4477     _old_set.bulk_remove(old_regions_removed);
4478     _humongous_set.bulk_remove(humongous_regions_removed);
4479   }
4480 
4481 }
4482 
4483 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4484   assert(list != NULL, "list can't be null");
4485   if (!list->is_empty()) {
4486     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4487     _hrm.insert_list_into_free_list(list);
4488   }
4489 }
4490 
4491 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4492   decrease_used(bytes);
4493 }
4494 
4495 class G1ParScrubRemSetTask: public AbstractGangTask {
4496 protected:
4497   G1RemSet* _g1rs;
4498   HeapRegionClaimer _hrclaimer;
4499 
4500 public:
4501   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4502     AbstractGangTask("G1 ScrubRS"),
4503     _g1rs(g1_rs),
4504     _hrclaimer(num_workers) {
4505   }
4506 
4507   void work(uint worker_id) {
4508     _g1rs->scrub(worker_id, &_hrclaimer);
4509   }
4510 };
4511 
4512 void G1CollectedHeap::scrub_rem_set() {
4513   uint num_workers = workers()->active_workers();
4514   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4515   workers()->run_task(&g1_par_scrub_rs_task);
4516 }
4517 
4518 class G1FreeCollectionSetTask : public AbstractGangTask {
4519 private:
4520 
4521   // Closure applied to all regions in the collection set to do work that needs to
4522   // be done serially in a single thread.
4523   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4524   private:
4525     EvacuationInfo* _evacuation_info;
4526     const size_t* _surviving_young_words;
4527 
4528     // Bytes used in successfully evacuated regions before the evacuation.
4529     size_t _before_used_bytes;
4530     // Bytes used in unsucessfully evacuated regions before the evacuation
4531     size_t _after_used_bytes;
4532 
4533     size_t _bytes_allocated_in_old_since_last_gc;
4534 
4535     size_t _failure_used_words;
4536     size_t _failure_waste_words;
4537 
4538     FreeRegionList _local_free_list;
4539   public:
4540     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4541       HeapRegionClosure(),
4542       _evacuation_info(evacuation_info),
4543       _surviving_young_words(surviving_young_words),
4544       _before_used_bytes(0),
4545       _after_used_bytes(0),
4546       _bytes_allocated_in_old_since_last_gc(0),
4547       _failure_used_words(0),
4548       _failure_waste_words(0),
4549       _local_free_list("Local Region List for CSet Freeing") {
4550     }
4551 
4552     virtual bool doHeapRegion(HeapRegion* r) {
4553       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4554 
4555       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4556       g1h->clear_in_cset(r);
4557 
4558       if (r->is_young()) {
4559         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4560                "Young index %d is wrong for region %u of type %s with %u young regions",
4561                r->young_index_in_cset(),
4562                r->hrm_index(),
4563                r->get_type_str(),
4564                g1h->collection_set()->young_region_length());
4565         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4566         r->record_surv_words_in_group(words_survived);
4567       }
4568 
4569       if (!r->evacuation_failed()) {
4570         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4571         _before_used_bytes += r->used();
4572         g1h->free_region(r,
4573                          &_local_free_list,
4574                          true, /* skip_remset */
4575                          true, /* skip_hot_card_cache */
4576                          true  /* locked */);
4577       } else {
4578         r->uninstall_surv_rate_group();
4579         r->set_young_index_in_cset(-1);
4580         r->set_evacuation_failed(false);
4581         // When moving a young gen region to old gen, we "allocate" that whole region
4582         // there. This is in addition to any already evacuated objects. Notify the
4583         // policy about that.
4584         // Old gen regions do not cause an additional allocation: both the objects
4585         // still in the region and the ones already moved are accounted for elsewhere.
4586         if (r->is_young()) {
4587           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4588         }
4589         // The region is now considered to be old.
4590         r->set_old();
4591         // Do some allocation statistics accounting. Regions that failed evacuation
4592         // are always made old, so there is no need to update anything in the young
4593         // gen statistics, but we need to update old gen statistics.
4594         size_t used_words = r->marked_bytes() / HeapWordSize;
4595 
4596         _failure_used_words += used_words;
4597         _failure_waste_words += HeapRegion::GrainWords - used_words;
4598 
4599         g1h->old_set_add(r);
4600         _after_used_bytes += r->used();
4601       }
4602       return false;
4603     }
4604 
4605     void complete_work() {
4606       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4607 
4608       _evacuation_info->set_regions_freed(_local_free_list.length());
4609       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4610 
4611       g1h->prepend_to_freelist(&_local_free_list);
4612       g1h->decrement_summary_bytes(_before_used_bytes);
4613 
4614       G1Policy* policy = g1h->g1_policy();
4615       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4616 
4617       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4618     }
4619   };
4620 
4621   G1CollectionSet* _collection_set;
4622   G1SerialFreeCollectionSetClosure _cl;
4623   const size_t* _surviving_young_words;
4624 
4625   size_t _rs_lengths;
4626 
4627   volatile jint _serial_work_claim;
4628 
4629   struct WorkItem {
4630     uint region_idx;
4631     bool is_young;
4632     bool evacuation_failed;
4633 
4634     WorkItem(HeapRegion* r) {
4635       region_idx = r->hrm_index();
4636       is_young = r->is_young();
4637       evacuation_failed = r->evacuation_failed();
4638     }
4639   };
4640 
4641   volatile size_t _parallel_work_claim;
4642   size_t _num_work_items;
4643   WorkItem* _work_items;
4644 
4645   void do_serial_work() {
4646     // Need to grab the lock to be allowed to modify the old region list.
4647     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4648     _collection_set->iterate(&_cl);
4649   }
4650 
4651   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4652     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4653 
4654     HeapRegion* r = g1h->region_at(region_idx);
4655     assert(!g1h->is_on_master_free_list(r), "sanity");
4656 
4657     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4658 
4659     if (!is_young) {
4660       g1h->_hot_card_cache->reset_card_counts(r);
4661     }
4662 
4663     if (!evacuation_failed) {
4664       r->rem_set()->clear_locked();
4665     }
4666   }
4667 
4668   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4669   private:
4670     size_t _cur_idx;
4671     WorkItem* _work_items;
4672   public:
4673     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4674 
4675     virtual bool doHeapRegion(HeapRegion* r) {
4676       _work_items[_cur_idx++] = WorkItem(r);
4677       return false;
4678     }
4679   };
4680 
4681   void prepare_work() {
4682     G1PrepareFreeCollectionSetClosure cl(_work_items);
4683     _collection_set->iterate(&cl);
4684   }
4685 
4686   void complete_work() {
4687     _cl.complete_work();
4688 
4689     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4690     policy->record_max_rs_lengths(_rs_lengths);
4691     policy->cset_regions_freed();
4692   }
4693 public:
4694   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4695     AbstractGangTask("G1 Free Collection Set"),
4696     _cl(evacuation_info, surviving_young_words),
4697     _collection_set(collection_set),
4698     _surviving_young_words(surviving_young_words),
4699     _serial_work_claim(0),
4700     _rs_lengths(0),
4701     _parallel_work_claim(0),
4702     _num_work_items(collection_set->region_length()),
4703     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4704     prepare_work();
4705   }
4706 
4707   ~G1FreeCollectionSetTask() {
4708     complete_work();
4709     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4710   }
4711 
4712   // Chunk size for work distribution. The chosen value has been determined experimentally
4713   // to be a good tradeoff between overhead and achievable parallelism.
4714   static uint chunk_size() { return 32; }
4715 
4716   virtual void work(uint worker_id) {
4717     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4718 
4719     // Claim serial work.
4720     if (_serial_work_claim == 0) {
4721       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4722       if (value == 0) {
4723         double serial_time = os::elapsedTime();
4724         do_serial_work();
4725         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4726       }
4727     }
4728 
4729     // Start parallel work.
4730     double young_time = 0.0;
4731     bool has_young_time = false;
4732     double non_young_time = 0.0;
4733     bool has_non_young_time = false;
4734 
4735     while (true) {
4736       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4737       size_t cur = end - chunk_size();
4738 
4739       if (cur >= _num_work_items) {
4740         break;
4741       }
4742 
4743       double start_time = os::elapsedTime();
4744 
4745       end = MIN2(end, _num_work_items);
4746 
4747       for (; cur < end; cur++) {
4748         bool is_young = _work_items[cur].is_young;
4749 
4750         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4751 
4752         double end_time = os::elapsedTime();
4753         double time_taken = end_time - start_time;
4754         if (is_young) {
4755           young_time += time_taken;
4756           has_young_time = true;
4757         } else {
4758           non_young_time += time_taken;
4759           has_non_young_time = true;
4760         }
4761         start_time = end_time;
4762       }
4763     }
4764 
4765     if (has_young_time) {
4766       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4767     }
4768     if (has_non_young_time) {
4769       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4770     }
4771   }
4772 };
4773 
4774 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4775   _eden.clear();
4776 
4777   double free_cset_start_time = os::elapsedTime();
4778 
4779   {
4780     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4781     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4782 
4783     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4784 
4785     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4786                         cl.name(),
4787                         num_workers,
4788                         _collection_set.region_length());
4789     workers()->run_task(&cl, num_workers);
4790   }
4791   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4792 
4793   collection_set->clear();
4794 }
4795 
4796 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4797  private:
4798   FreeRegionList* _free_region_list;
4799   HeapRegionSet* _proxy_set;
4800   uint _humongous_objects_reclaimed;
4801   uint _humongous_regions_reclaimed;
4802   size_t _freed_bytes;
4803  public:
4804 
4805   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4806     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4807   }
4808 
4809   virtual bool doHeapRegion(HeapRegion* r) {
4810     if (!r->is_starts_humongous()) {
4811       return false;
4812     }
4813 
4814     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4815 
4816     oop obj = (oop)r->bottom();
4817     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4818 
4819     // The following checks whether the humongous object is live are sufficient.
4820     // The main additional check (in addition to having a reference from the roots
4821     // or the young gen) is whether the humongous object has a remembered set entry.
4822     //
4823     // A humongous object cannot be live if there is no remembered set for it
4824     // because:
4825     // - there can be no references from within humongous starts regions referencing
4826     // the object because we never allocate other objects into them.
4827     // (I.e. there are no intra-region references that may be missed by the
4828     // remembered set)
4829     // - as soon there is a remembered set entry to the humongous starts region
4830     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4831     // until the end of a concurrent mark.
4832     //
4833     // It is not required to check whether the object has been found dead by marking
4834     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4835     // all objects allocated during that time are considered live.
4836     // SATB marking is even more conservative than the remembered set.
4837     // So if at this point in the collection there is no remembered set entry,
4838     // nobody has a reference to it.
4839     // At the start of collection we flush all refinement logs, and remembered sets
4840     // are completely up-to-date wrt to references to the humongous object.
4841     //
4842     // Other implementation considerations:
4843     // - never consider object arrays at this time because they would pose
4844     // considerable effort for cleaning up the the remembered sets. This is
4845     // required because stale remembered sets might reference locations that
4846     // are currently allocated into.
4847     uint region_idx = r->hrm_index();
4848     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4849         !r->rem_set()->is_empty()) {
4850       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4851                                region_idx,
4852                                (size_t)obj->size() * HeapWordSize,
4853                                p2i(r->bottom()),
4854                                r->rem_set()->occupied(),
4855                                r->rem_set()->strong_code_roots_list_length(),
4856                                next_bitmap->is_marked(r->bottom()),
4857                                g1h->is_humongous_reclaim_candidate(region_idx),
4858                                obj->is_typeArray()
4859                               );
4860       return false;
4861     }
4862 
4863     guarantee(obj->is_typeArray(),
4864               "Only eagerly reclaiming type arrays is supported, but the object "
4865               PTR_FORMAT " is not.", p2i(r->bottom()));
4866 
4867     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4868                              region_idx,
4869                              (size_t)obj->size() * HeapWordSize,
4870                              p2i(r->bottom()),
4871                              r->rem_set()->occupied(),
4872                              r->rem_set()->strong_code_roots_list_length(),
4873                              next_bitmap->is_marked(r->bottom()),
4874                              g1h->is_humongous_reclaim_candidate(region_idx),
4875                              obj->is_typeArray()
4876                             );
4877 
4878     // Need to clear mark bit of the humongous object if already set.
4879     if (next_bitmap->is_marked(r->bottom())) {
4880       next_bitmap->clear(r->bottom());
4881     }
4882     _humongous_objects_reclaimed++;
4883     do {
4884       HeapRegion* next = g1h->next_region_in_humongous(r);
4885       _freed_bytes += r->used();
4886       r->set_containing_set(NULL);
4887       _humongous_regions_reclaimed++;
4888       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4889       r = next;
4890     } while (r != NULL);
4891 
4892     return false;
4893   }
4894 
4895   uint humongous_objects_reclaimed() {
4896     return _humongous_objects_reclaimed;
4897   }
4898 
4899   uint humongous_regions_reclaimed() {
4900     return _humongous_regions_reclaimed;
4901   }
4902 
4903   size_t bytes_freed() const {
4904     return _freed_bytes;
4905   }
4906 };
4907 
4908 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4909   assert_at_safepoint(true);
4910 
4911   if (!G1EagerReclaimHumongousObjects ||
4912       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4913     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4914     return;
4915   }
4916 
4917   double start_time = os::elapsedTime();
4918 
4919   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4920 
4921   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4922   heap_region_iterate(&cl);
4923 
4924   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4925 
4926   G1HRPrinter* hrp = hr_printer();
4927   if (hrp->is_active()) {
4928     FreeRegionListIterator iter(&local_cleanup_list);
4929     while (iter.more_available()) {
4930       HeapRegion* hr = iter.get_next();
4931       hrp->cleanup(hr);
4932     }
4933   }
4934 
4935   prepend_to_freelist(&local_cleanup_list);
4936   decrement_summary_bytes(cl.bytes_freed());
4937 
4938   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4939                                                                     cl.humongous_objects_reclaimed());
4940 }
4941 
4942 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4943 public:
4944   virtual bool doHeapRegion(HeapRegion* r) {
4945     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4946     G1CollectedHeap::heap()->clear_in_cset(r);
4947     r->set_young_index_in_cset(-1);
4948     return false;
4949   }
4950 };
4951 
4952 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4953   G1AbandonCollectionSetClosure cl;
4954   collection_set->iterate(&cl);
4955 
4956   collection_set->clear();
4957   collection_set->stop_incremental_building();
4958 }
4959 
4960 void G1CollectedHeap::set_free_regions_coming() {
4961   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4962 
4963   assert(!free_regions_coming(), "pre-condition");
4964   _free_regions_coming = true;
4965 }
4966 
4967 void G1CollectedHeap::reset_free_regions_coming() {
4968   assert(free_regions_coming(), "pre-condition");
4969 
4970   {
4971     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4972     _free_regions_coming = false;
4973     SecondaryFreeList_lock->notify_all();
4974   }
4975 
4976   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4977 }
4978 
4979 void G1CollectedHeap::wait_while_free_regions_coming() {
4980   // Most of the time we won't have to wait, so let's do a quick test
4981   // first before we take the lock.
4982   if (!free_regions_coming()) {
4983     return;
4984   }
4985 
4986   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4987 
4988   {
4989     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4990     while (free_regions_coming()) {
4991       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4992     }
4993   }
4994 
4995   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4996 }
4997 
4998 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4999   return _allocator->is_retained_old_region(hr);
5000 }
5001 
5002 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5003   _eden.add(hr);
5004   _g1_policy->set_region_eden(hr);
5005 }
5006 
5007 #ifdef ASSERT
5008 
5009 class NoYoungRegionsClosure: public HeapRegionClosure {
5010 private:
5011   bool _success;
5012 public:
5013   NoYoungRegionsClosure() : _success(true) { }
5014   bool doHeapRegion(HeapRegion* r) {
5015     if (r->is_young()) {
5016       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5017                             p2i(r->bottom()), p2i(r->end()));
5018       _success = false;
5019     }
5020     return false;
5021   }
5022   bool success() { return _success; }
5023 };
5024 
5025 bool G1CollectedHeap::check_young_list_empty() {
5026   bool ret = (young_regions_count() == 0);
5027 
5028   NoYoungRegionsClosure closure;
5029   heap_region_iterate(&closure);
5030   ret = ret && closure.success();
5031 
5032   return ret;
5033 }
5034 
5035 #endif // ASSERT
5036 
5037 class TearDownRegionSetsClosure : public HeapRegionClosure {
5038 private:
5039   HeapRegionSet *_old_set;
5040 
5041 public:
5042   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5043 
5044   bool doHeapRegion(HeapRegion* r) {
5045     if (r->is_old()) {
5046       _old_set->remove(r);
5047     } else if(r->is_young()) {
5048       r->uninstall_surv_rate_group();
5049     } else {
5050       // We ignore free regions, we'll empty the free list afterwards.
5051       // We ignore humongous regions, we're not tearing down the
5052       // humongous regions set.
5053       assert(r->is_free() || r->is_humongous(),
5054              "it cannot be another type");
5055     }
5056     return false;
5057   }
5058 
5059   ~TearDownRegionSetsClosure() {
5060     assert(_old_set->is_empty(), "post-condition");
5061   }
5062 };
5063 
5064 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5065   assert_at_safepoint(true /* should_be_vm_thread */);
5066 
5067   if (!free_list_only) {
5068     TearDownRegionSetsClosure cl(&_old_set);
5069     heap_region_iterate(&cl);
5070 
5071     // Note that emptying the _young_list is postponed and instead done as
5072     // the first step when rebuilding the regions sets again. The reason for
5073     // this is that during a full GC string deduplication needs to know if
5074     // a collected region was young or old when the full GC was initiated.
5075   }
5076   _hrm.remove_all_free_regions();
5077 }
5078 
5079 void G1CollectedHeap::increase_used(size_t bytes) {
5080   _summary_bytes_used += bytes;
5081 }
5082 
5083 void G1CollectedHeap::decrease_used(size_t bytes) {
5084   assert(_summary_bytes_used >= bytes,
5085          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5086          _summary_bytes_used, bytes);
5087   _summary_bytes_used -= bytes;
5088 }
5089 
5090 void G1CollectedHeap::set_used(size_t bytes) {
5091   _summary_bytes_used = bytes;
5092 }
5093 
5094 class RebuildRegionSetsClosure : public HeapRegionClosure {
5095 private:
5096   bool            _free_list_only;
5097   HeapRegionSet*   _old_set;
5098   HeapRegionManager*   _hrm;
5099   size_t          _total_used;
5100 
5101 public:
5102   RebuildRegionSetsClosure(bool free_list_only,
5103                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5104     _free_list_only(free_list_only),
5105     _old_set(old_set), _hrm(hrm), _total_used(0) {
5106     assert(_hrm->num_free_regions() == 0, "pre-condition");
5107     if (!free_list_only) {
5108       assert(_old_set->is_empty(), "pre-condition");
5109     }
5110   }
5111 
5112   bool doHeapRegion(HeapRegion* r) {
5113     if (r->is_empty()) {
5114       // Add free regions to the free list
5115       r->set_free();
5116       r->set_allocation_context(AllocationContext::system());
5117       _hrm->insert_into_free_list(r);
5118     } else if (!_free_list_only) {
5119 
5120       if (r->is_humongous()) {
5121         // We ignore humongous regions. We left the humongous set unchanged.
5122       } else {
5123         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5124         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5125         r->move_to_old();
5126         _old_set->add(r);
5127       }
5128       _total_used += r->used();
5129     }
5130 
5131     return false;
5132   }
5133 
5134   size_t total_used() {
5135     return _total_used;
5136   }
5137 };
5138 
5139 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5140   assert_at_safepoint(true /* should_be_vm_thread */);
5141 
5142   if (!free_list_only) {
5143     _eden.clear();
5144     _survivor.clear();
5145   }
5146 
5147   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5148   heap_region_iterate(&cl);
5149 
5150   if (!free_list_only) {
5151     set_used(cl.total_used());
5152     if (_archive_allocator != NULL) {
5153       _archive_allocator->clear_used();
5154     }
5155   }
5156   assert(used_unlocked() == recalculate_used(),
5157          "inconsistent used_unlocked(), "
5158          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5159          used_unlocked(), recalculate_used());
5160 }
5161 
5162 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5163   HeapRegion* hr = heap_region_containing(p);
5164   return hr->is_in(p);
5165 }
5166 
5167 // Methods for the mutator alloc region
5168 
5169 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5170                                                       bool force) {
5171   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5172   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5173   if (force || should_allocate) {
5174     HeapRegion* new_alloc_region = new_region(word_size,
5175                                               false /* is_old */,
5176                                               false /* do_expand */);
5177     if (new_alloc_region != NULL) {
5178       set_region_short_lived_locked(new_alloc_region);
5179       _hr_printer.alloc(new_alloc_region, !should_allocate);
5180       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5181       return new_alloc_region;
5182     }
5183   }
5184   return NULL;
5185 }
5186 
5187 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5188                                                   size_t allocated_bytes) {
5189   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5190   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5191 
5192   collection_set()->add_eden_region(alloc_region);
5193   increase_used(allocated_bytes);
5194   _hr_printer.retire(alloc_region);
5195   // We update the eden sizes here, when the region is retired,
5196   // instead of when it's allocated, since this is the point that its
5197   // used space has been recored in _summary_bytes_used.
5198   g1mm()->update_eden_size();
5199 }
5200 
5201 // Methods for the GC alloc regions
5202 
5203 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5204   if (dest.is_old()) {
5205     return true;
5206   } else {
5207     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5208   }
5209 }
5210 
5211 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5212   assert(FreeList_lock->owned_by_self(), "pre-condition");
5213 
5214   if (!has_more_regions(dest)) {
5215     return NULL;
5216   }
5217 
5218   const bool is_survivor = dest.is_young();
5219 
5220   HeapRegion* new_alloc_region = new_region(word_size,
5221                                             !is_survivor,
5222                                             true /* do_expand */);
5223   if (new_alloc_region != NULL) {
5224     // We really only need to do this for old regions given that we
5225     // should never scan survivors. But it doesn't hurt to do it
5226     // for survivors too.
5227     new_alloc_region->record_timestamp();
5228     if (is_survivor) {
5229       new_alloc_region->set_survivor();
5230       _survivor.add(new_alloc_region);
5231       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5232     } else {
5233       new_alloc_region->set_old();
5234       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5235     }
5236     _hr_printer.alloc(new_alloc_region);
5237     bool during_im = collector_state()->during_initial_mark_pause();
5238     new_alloc_region->note_start_of_copying(during_im);
5239     return new_alloc_region;
5240   }
5241   return NULL;
5242 }
5243 
5244 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5245                                              size_t allocated_bytes,
5246                                              InCSetState dest) {
5247   bool during_im = collector_state()->during_initial_mark_pause();
5248   alloc_region->note_end_of_copying(during_im);
5249   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5250   if (dest.is_old()) {
5251     _old_set.add(alloc_region);
5252   }
5253   _hr_printer.retire(alloc_region);
5254 }
5255 
5256 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5257   bool expanded = false;
5258   uint index = _hrm.find_highest_free(&expanded);
5259 
5260   if (index != G1_NO_HRM_INDEX) {
5261     if (expanded) {
5262       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5263                                 HeapRegion::GrainWords * HeapWordSize);
5264     }
5265     _hrm.allocate_free_regions_starting_at(index, 1);
5266     return region_at(index);
5267   }
5268   return NULL;
5269 }
5270 
5271 // Optimized nmethod scanning
5272 
5273 class RegisterNMethodOopClosure: public OopClosure {
5274   G1CollectedHeap* _g1h;
5275   nmethod* _nm;
5276 
5277   template <class T> void do_oop_work(T* p) {
5278     T heap_oop = oopDesc::load_heap_oop(p);
5279     if (!oopDesc::is_null(heap_oop)) {
5280       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5281       HeapRegion* hr = _g1h->heap_region_containing(obj);
5282       assert(!hr->is_continues_humongous(),
5283              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5284              " starting at " HR_FORMAT,
5285              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5286 
5287       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5288       hr->add_strong_code_root_locked(_nm);
5289     }
5290   }
5291 
5292 public:
5293   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5294     _g1h(g1h), _nm(nm) {}
5295 
5296   void do_oop(oop* p)       { do_oop_work(p); }
5297   void do_oop(narrowOop* p) { do_oop_work(p); }
5298 };
5299 
5300 class UnregisterNMethodOopClosure: public OopClosure {
5301   G1CollectedHeap* _g1h;
5302   nmethod* _nm;
5303 
5304   template <class T> void do_oop_work(T* p) {
5305     T heap_oop = oopDesc::load_heap_oop(p);
5306     if (!oopDesc::is_null(heap_oop)) {
5307       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5308       HeapRegion* hr = _g1h->heap_region_containing(obj);
5309       assert(!hr->is_continues_humongous(),
5310              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5311              " starting at " HR_FORMAT,
5312              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5313 
5314       hr->remove_strong_code_root(_nm);
5315     }
5316   }
5317 
5318 public:
5319   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5320     _g1h(g1h), _nm(nm) {}
5321 
5322   void do_oop(oop* p)       { do_oop_work(p); }
5323   void do_oop(narrowOop* p) { do_oop_work(p); }
5324 };
5325 
5326 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5327   CollectedHeap::register_nmethod(nm);
5328 
5329   guarantee(nm != NULL, "sanity");
5330   RegisterNMethodOopClosure reg_cl(this, nm);
5331   nm->oops_do(&reg_cl);
5332 }
5333 
5334 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5335   CollectedHeap::unregister_nmethod(nm);
5336 
5337   guarantee(nm != NULL, "sanity");
5338   UnregisterNMethodOopClosure reg_cl(this, nm);
5339   nm->oops_do(&reg_cl, true);
5340 }
5341 
5342 void G1CollectedHeap::purge_code_root_memory() {
5343   double purge_start = os::elapsedTime();
5344   G1CodeRootSet::purge();
5345   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5346   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5347 }
5348 
5349 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5350   G1CollectedHeap* _g1h;
5351 
5352 public:
5353   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5354     _g1h(g1h) {}
5355 
5356   void do_code_blob(CodeBlob* cb) {
5357     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5358     if (nm == NULL) {
5359       return;
5360     }
5361 
5362     if (ScavengeRootsInCode) {
5363       _g1h->register_nmethod(nm);
5364     }
5365   }
5366 };
5367 
5368 void G1CollectedHeap::rebuild_strong_code_roots() {
5369   RebuildStrongCodeRootClosure blob_cl(this);
5370   CodeCache::blobs_do(&blob_cl);
5371 }