1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "runtime/vframe_hp.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/xmlstream.hpp"
  58 
  59 #if INCLUDE_JVMCI
  60 #include "jvmci/jvmciRuntime.hpp"
  61 #include "jvmci/jvmciJavaClasses.hpp"
  62 #endif
  63 
  64 
  65 bool DeoptimizationMarker::_is_active = false;
  66 
  67 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  68                                          int  caller_adjustment,
  69                                          int  caller_actual_parameters,
  70                                          int  number_of_frames,
  71                                          intptr_t* frame_sizes,
  72                                          address* frame_pcs,
  73                                          BasicType return_type,
  74                                          int exec_mode) {
  75   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  76   _caller_adjustment         = caller_adjustment;
  77   _caller_actual_parameters  = caller_actual_parameters;
  78   _number_of_frames          = number_of_frames;
  79   _frame_sizes               = frame_sizes;
  80   _frame_pcs                 = frame_pcs;
  81   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  82   _return_type               = return_type;
  83   _initial_info              = 0;
  84   // PD (x86 only)
  85   _counter_temp              = 0;
  86   _unpack_kind               = exec_mode;
  87   _sender_sp_temp            = 0;
  88 
  89   _total_frame_sizes         = size_of_frames();
  90   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  91 }
  92 
  93 
  94 Deoptimization::UnrollBlock::~UnrollBlock() {
  95   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  96   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  97   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  98 }
  99 
 100 
 101 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 102   assert(register_number < RegisterMap::reg_count, "checking register number");
 103   return &_register_block[register_number * 2];
 104 }
 105 
 106 
 107 
 108 int Deoptimization::UnrollBlock::size_of_frames() const {
 109   // Acount first for the adjustment of the initial frame
 110   int result = _caller_adjustment;
 111   for (int index = 0; index < number_of_frames(); index++) {
 112     result += frame_sizes()[index];
 113   }
 114   return result;
 115 }
 116 
 117 
 118 void Deoptimization::UnrollBlock::print() {
 119   ttyLocker ttyl;
 120   tty->print_cr("UnrollBlock");
 121   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 122   tty->print(   "  frame_sizes: ");
 123   for (int index = 0; index < number_of_frames(); index++) {
 124     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 125   }
 126   tty->cr();
 127 }
 128 
 129 
 130 // In order to make fetch_unroll_info work properly with escape
 131 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 132 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 133 // of previously eliminated objects occurs in realloc_objects, which is
 134 // called from the method fetch_unroll_info_helper below.
 135 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 136   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 137   // but makes the entry a little slower. There is however a little dance we have to
 138   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 139 
 140   // fetch_unroll_info() is called at the beginning of the deoptimization
 141   // handler. Note this fact before we start generating temporary frames
 142   // that can confuse an asynchronous stack walker. This counter is
 143   // decremented at the end of unpack_frames().
 144   if (TraceDeoptimization) {
 145     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 146   }
 147   thread->inc_in_deopt_handler();
 148 
 149   return fetch_unroll_info_helper(thread, exec_mode);
 150 JRT_END
 151 
 152 
 153 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 154 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 155 
 156   // Note: there is a safepoint safety issue here. No matter whether we enter
 157   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 158   // the vframeArray is created.
 159   //
 160 
 161   // Allocate our special deoptimization ResourceMark
 162   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 163   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 164   thread->set_deopt_mark(dmark);
 165 
 166   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 167   RegisterMap map(thread, true);
 168   RegisterMap dummy_map(thread, false);
 169   // Now get the deoptee with a valid map
 170   frame deoptee = stub_frame.sender(&map);
 171   // Set the deoptee nmethod
 172   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 173   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 174   thread->set_deopt_compiled_method(cm);
 175 
 176   if (VerifyStack) {
 177     thread->validate_frame_layout();
 178   }
 179 
 180   // Create a growable array of VFrames where each VFrame represents an inlined
 181   // Java frame.  This storage is allocated with the usual system arena.
 182   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 183   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 184   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 185   while (!vf->is_top()) {
 186     assert(vf->is_compiled_frame(), "Wrong frame type");
 187     chunk->push(compiledVFrame::cast(vf));
 188     vf = vf->sender();
 189   }
 190   assert(vf->is_compiled_frame(), "Wrong frame type");
 191   chunk->push(compiledVFrame::cast(vf));
 192 
 193   bool realloc_failures = false;
 194 
 195 #if defined(COMPILER2) || INCLUDE_JVMCI
 196   // Reallocate the non-escaping objects and restore their fields. Then
 197   // relock objects if synchronization on them was eliminated.
 198 #ifndef INCLUDE_JVMCI
 199   if (DoEscapeAnalysis || EliminateNestedLocks) {
 200     if (EliminateAllocations) {
 201 #endif // INCLUDE_JVMCI
 202       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 203       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 204 
 205       // The flag return_oop() indicates call sites which return oop
 206       // in compiled code. Such sites include java method calls,
 207       // runtime calls (for example, used to allocate new objects/arrays
 208       // on slow code path) and any other calls generated in compiled code.
 209       // It is not guaranteed that we can get such information here only
 210       // by analyzing bytecode in deoptimized frames. This is why this flag
 211       // is set during method compilation (see Compile::Process_OopMap_Node()).
 212       // If the previous frame was popped or if we are dispatching an exception,
 213       // we don't have an oop result.
 214       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 215       Handle return_value;
 216       if (save_oop_result) {
 217         // Reallocation may trigger GC. If deoptimization happened on return from
 218         // call which returns oop we need to save it since it is not in oopmap.
 219         oop result = deoptee.saved_oop_result(&map);
 220         assert(oopDesc::is_oop_or_null(result), "must be oop");
 221         return_value = Handle(thread, result);
 222         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 223         if (TraceDeoptimization) {
 224           ttyLocker ttyl;
 225           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 226         }
 227       }
 228       if (objects != NULL) {
 229         JRT_BLOCK
 230           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 231         JRT_END
 232         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 233         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 234 #ifndef PRODUCT
 235         if (TraceDeoptimization) {
 236           ttyLocker ttyl;
 237           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 238           print_objects(objects, realloc_failures);
 239         }
 240 #endif
 241       }
 242       if (save_oop_result) {
 243         // Restore result.
 244         deoptee.set_saved_oop_result(&map, return_value());
 245       }
 246 #ifndef INCLUDE_JVMCI
 247     }
 248     if (EliminateLocks) {
 249 #endif // INCLUDE_JVMCI
 250 #ifndef PRODUCT
 251       bool first = true;
 252 #endif
 253       for (int i = 0; i < chunk->length(); i++) {
 254         compiledVFrame* cvf = chunk->at(i);
 255         assert (cvf->scope() != NULL,"expect only compiled java frames");
 256         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 257         if (monitors->is_nonempty()) {
 258           relock_objects(monitors, thread, realloc_failures);
 259 #ifndef PRODUCT
 260           if (PrintDeoptimizationDetails) {
 261             ttyLocker ttyl;
 262             for (int j = 0; j < monitors->length(); j++) {
 263               MonitorInfo* mi = monitors->at(j);
 264               if (mi->eliminated()) {
 265                 if (first) {
 266                   first = false;
 267                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 268                 }
 269                 if (mi->owner_is_scalar_replaced()) {
 270                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 271                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 272                 } else {
 273                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 274                 }
 275               }
 276             }
 277           }
 278 #endif // !PRODUCT
 279         }
 280       }
 281 #ifndef INCLUDE_JVMCI
 282     }
 283   }
 284 #endif // INCLUDE_JVMCI
 285 #endif // COMPILER2 || INCLUDE_JVMCI
 286 
 287   ScopeDesc* trap_scope = chunk->at(0)->scope();
 288   Handle exceptionObject;
 289   if (trap_scope->rethrow_exception()) {
 290     if (PrintDeoptimizationDetails) {
 291       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 292     }
 293     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 294     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 295     ScopeValue* topOfStack = expressions->top();
 296     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 297     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 298   }
 299 
 300   // Ensure that no safepoint is taken after pointers have been stored
 301   // in fields of rematerialized objects.  If a safepoint occurs from here on
 302   // out the java state residing in the vframeArray will be missed.
 303   NoSafepointVerifier no_safepoint;
 304 
 305   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 306 #if defined(COMPILER2) || INCLUDE_JVMCI
 307   if (realloc_failures) {
 308     pop_frames_failed_reallocs(thread, array);
 309   }
 310 #endif
 311 
 312   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 313   thread->set_vframe_array_head(array);
 314 
 315   // Now that the vframeArray has been created if we have any deferred local writes
 316   // added by jvmti then we can free up that structure as the data is now in the
 317   // vframeArray
 318 
 319   if (thread->deferred_locals() != NULL) {
 320     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 321     int i = 0;
 322     do {
 323       // Because of inlining we could have multiple vframes for a single frame
 324       // and several of the vframes could have deferred writes. Find them all.
 325       if (list->at(i)->id() == array->original().id()) {
 326         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 327         list->remove_at(i);
 328         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 329         delete dlv;
 330       } else {
 331         i++;
 332       }
 333     } while ( i < list->length() );
 334     if (list->length() == 0) {
 335       thread->set_deferred_locals(NULL);
 336       // free the list and elements back to C heap.
 337       delete list;
 338     }
 339 
 340   }
 341 
 342 #ifndef SHARK
 343   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 344   CodeBlob* cb = stub_frame.cb();
 345   // Verify we have the right vframeArray
 346   assert(cb->frame_size() >= 0, "Unexpected frame size");
 347   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 348 
 349   // If the deopt call site is a MethodHandle invoke call site we have
 350   // to adjust the unpack_sp.
 351   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 352   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 353     unpack_sp = deoptee.unextended_sp();
 354 
 355 #ifdef ASSERT
 356   assert(cb->is_deoptimization_stub() ||
 357          cb->is_uncommon_trap_stub() ||
 358          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 359          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 360          "unexpected code blob: %s", cb->name());
 361 #endif
 362 #else
 363   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 364 #endif // !SHARK
 365 
 366   // This is a guarantee instead of an assert because if vframe doesn't match
 367   // we will unpack the wrong deoptimized frame and wind up in strange places
 368   // where it will be very difficult to figure out what went wrong. Better
 369   // to die an early death here than some very obscure death later when the
 370   // trail is cold.
 371   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 372   // in that it will fail to detect a problem when there is one. This needs
 373   // more work in tiger timeframe.
 374   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 375 
 376   int number_of_frames = array->frames();
 377 
 378   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 379   // virtual activation, which is the reverse of the elements in the vframes array.
 380   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 381   // +1 because we always have an interpreter return address for the final slot.
 382   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 383   int popframe_extra_args = 0;
 384   // Create an interpreter return address for the stub to use as its return
 385   // address so the skeletal frames are perfectly walkable
 386   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 387 
 388   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 389   // activation be put back on the expression stack of the caller for reexecution
 390   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 391     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 392   }
 393 
 394   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 395   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 396   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 397   //
 398   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 399   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 400 
 401   // It's possible that the number of parameters at the call site is
 402   // different than number of arguments in the callee when method
 403   // handles are used.  If the caller is interpreted get the real
 404   // value so that the proper amount of space can be added to it's
 405   // frame.
 406   bool caller_was_method_handle = false;
 407   if (deopt_sender.is_interpreted_frame()) {
 408     methodHandle method = deopt_sender.interpreter_frame_method();
 409     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 410     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 411       // Method handle invokes may involve fairly arbitrary chains of
 412       // calls so it's impossible to know how much actual space the
 413       // caller has for locals.
 414       caller_was_method_handle = true;
 415     }
 416   }
 417 
 418   //
 419   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 420   // frame_sizes/frame_pcs[1] next oldest frame (int)
 421   // frame_sizes/frame_pcs[n] youngest frame (int)
 422   //
 423   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 424   // owns the space for the return address to it's caller).  Confusing ain't it.
 425   //
 426   // The vframe array can address vframes with indices running from
 427   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 428   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 429   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 430   // so things look a little strange in this loop.
 431   //
 432   int callee_parameters = 0;
 433   int callee_locals = 0;
 434   for (int index = 0; index < array->frames(); index++ ) {
 435     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 436     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 437     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 438     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 439                                                                                                     callee_locals,
 440                                                                                                     index == 0,
 441                                                                                                     popframe_extra_args);
 442     // This pc doesn't have to be perfect just good enough to identify the frame
 443     // as interpreted so the skeleton frame will be walkable
 444     // The correct pc will be set when the skeleton frame is completely filled out
 445     // The final pc we store in the loop is wrong and will be overwritten below
 446     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 447 
 448     callee_parameters = array->element(index)->method()->size_of_parameters();
 449     callee_locals = array->element(index)->method()->max_locals();
 450     popframe_extra_args = 0;
 451   }
 452 
 453   // Compute whether the root vframe returns a float or double value.
 454   BasicType return_type;
 455   {
 456     methodHandle method(thread, array->element(0)->method());
 457     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 458     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 459   }
 460 
 461   // Compute information for handling adapters and adjusting the frame size of the caller.
 462   int caller_adjustment = 0;
 463 
 464   // Compute the amount the oldest interpreter frame will have to adjust
 465   // its caller's stack by. If the caller is a compiled frame then
 466   // we pretend that the callee has no parameters so that the
 467   // extension counts for the full amount of locals and not just
 468   // locals-parms. This is because without a c2i adapter the parm
 469   // area as created by the compiled frame will not be usable by
 470   // the interpreter. (Depending on the calling convention there
 471   // may not even be enough space).
 472 
 473   // QQQ I'd rather see this pushed down into last_frame_adjust
 474   // and have it take the sender (aka caller).
 475 
 476   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 477     caller_adjustment = last_frame_adjust(0, callee_locals);
 478   } else if (callee_locals > callee_parameters) {
 479     // The caller frame may need extending to accommodate
 480     // non-parameter locals of the first unpacked interpreted frame.
 481     // Compute that adjustment.
 482     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 483   }
 484 
 485   // If the sender is deoptimized the we must retrieve the address of the handler
 486   // since the frame will "magically" show the original pc before the deopt
 487   // and we'd undo the deopt.
 488 
 489   frame_pcs[0] = deopt_sender.raw_pc();
 490 
 491 #ifndef SHARK
 492   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 493 #endif // SHARK
 494 
 495 #ifdef INCLUDE_JVMCI
 496   if (exceptionObject() != NULL) {
 497     thread->set_exception_oop(exceptionObject());
 498     exec_mode = Unpack_exception;
 499   }
 500 #endif
 501 
 502   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 503     assert(thread->has_pending_exception(), "should have thrown OOME");
 504     thread->set_exception_oop(thread->pending_exception());
 505     thread->clear_pending_exception();
 506     exec_mode = Unpack_exception;
 507   }
 508 
 509 #if INCLUDE_JVMCI
 510   if (thread->frames_to_pop_failed_realloc() > 0) {
 511     thread->set_pending_monitorenter(false);
 512   }
 513 #endif
 514 
 515   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 516                                       caller_adjustment * BytesPerWord,
 517                                       caller_was_method_handle ? 0 : callee_parameters,
 518                                       number_of_frames,
 519                                       frame_sizes,
 520                                       frame_pcs,
 521                                       return_type,
 522                                       exec_mode);
 523   // On some platforms, we need a way to pass some platform dependent
 524   // information to the unpacking code so the skeletal frames come out
 525   // correct (initial fp value, unextended sp, ...)
 526   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 527 
 528   if (array->frames() > 1) {
 529     if (VerifyStack && TraceDeoptimization) {
 530       ttyLocker ttyl;
 531       tty->print_cr("Deoptimizing method containing inlining");
 532     }
 533   }
 534 
 535   array->set_unroll_block(info);
 536   return info;
 537 }
 538 
 539 // Called to cleanup deoptimization data structures in normal case
 540 // after unpacking to stack and when stack overflow error occurs
 541 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 542                                         vframeArray *array) {
 543 
 544   // Get array if coming from exception
 545   if (array == NULL) {
 546     array = thread->vframe_array_head();
 547   }
 548   thread->set_vframe_array_head(NULL);
 549 
 550   // Free the previous UnrollBlock
 551   vframeArray* old_array = thread->vframe_array_last();
 552   thread->set_vframe_array_last(array);
 553 
 554   if (old_array != NULL) {
 555     UnrollBlock* old_info = old_array->unroll_block();
 556     old_array->set_unroll_block(NULL);
 557     delete old_info;
 558     delete old_array;
 559   }
 560 
 561   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 562   // inside the vframeArray (StackValueCollections)
 563 
 564   delete thread->deopt_mark();
 565   thread->set_deopt_mark(NULL);
 566   thread->set_deopt_compiled_method(NULL);
 567 
 568 
 569   if (JvmtiExport::can_pop_frame()) {
 570 #ifndef CC_INTERP
 571     // Regardless of whether we entered this routine with the pending
 572     // popframe condition bit set, we should always clear it now
 573     thread->clear_popframe_condition();
 574 #else
 575     // C++ interpreter will clear has_pending_popframe when it enters
 576     // with method_resume. For deopt_resume2 we clear it now.
 577     if (thread->popframe_forcing_deopt_reexecution())
 578         thread->clear_popframe_condition();
 579 #endif /* CC_INTERP */
 580   }
 581 
 582   // unpack_frames() is called at the end of the deoptimization handler
 583   // and (in C2) at the end of the uncommon trap handler. Note this fact
 584   // so that an asynchronous stack walker can work again. This counter is
 585   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 586   // the beginning of uncommon_trap().
 587   thread->dec_in_deopt_handler();
 588 }
 589 
 590 // Moved from cpu directories because none of the cpus has callee save values.
 591 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 592 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 593 
 594   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 595   // the days we had adapter frames. When we deoptimize a situation where a
 596   // compiled caller calls a compiled caller will have registers it expects
 597   // to survive the call to the callee. If we deoptimize the callee the only
 598   // way we can restore these registers is to have the oldest interpreter
 599   // frame that we create restore these values. That is what this routine
 600   // will accomplish.
 601 
 602   // At the moment we have modified c2 to not have any callee save registers
 603   // so this problem does not exist and this routine is just a place holder.
 604 
 605   assert(f->is_interpreted_frame(), "must be interpreted");
 606 }
 607 
 608 // Return BasicType of value being returned
 609 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 610 
 611   // We are already active int he special DeoptResourceMark any ResourceObj's we
 612   // allocate will be freed at the end of the routine.
 613 
 614   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 615   // but makes the entry a little slower. There is however a little dance we have to
 616   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 617   ResetNoHandleMark rnhm; // No-op in release/product versions
 618   HandleMark hm;
 619 
 620   frame stub_frame = thread->last_frame();
 621 
 622   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 623   // must point to the vframeArray for the unpack frame.
 624   vframeArray* array = thread->vframe_array_head();
 625 
 626 #ifndef PRODUCT
 627   if (TraceDeoptimization) {
 628     ttyLocker ttyl;
 629     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 630                   p2i(thread), p2i(array), exec_mode);
 631   }
 632 #endif
 633   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 634               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 635 
 636   UnrollBlock* info = array->unroll_block();
 637 
 638   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 639   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 640 
 641   BasicType bt = info->return_type();
 642 
 643   // If we have an exception pending, claim that the return type is an oop
 644   // so the deopt_blob does not overwrite the exception_oop.
 645 
 646   if (exec_mode == Unpack_exception)
 647     bt = T_OBJECT;
 648 
 649   // Cleanup thread deopt data
 650   cleanup_deopt_info(thread, array);
 651 
 652 #ifndef PRODUCT
 653   if (VerifyStack) {
 654     ResourceMark res_mark;
 655 
 656     thread->validate_frame_layout();
 657 
 658     // Verify that the just-unpacked frames match the interpreter's
 659     // notions of expression stack and locals
 660     vframeArray* cur_array = thread->vframe_array_last();
 661     RegisterMap rm(thread, false);
 662     rm.set_include_argument_oops(false);
 663     bool is_top_frame = true;
 664     int callee_size_of_parameters = 0;
 665     int callee_max_locals = 0;
 666     for (int i = 0; i < cur_array->frames(); i++) {
 667       vframeArrayElement* el = cur_array->element(i);
 668       frame* iframe = el->iframe();
 669       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 670 
 671       // Get the oop map for this bci
 672       InterpreterOopMap mask;
 673       int cur_invoke_parameter_size = 0;
 674       bool try_next_mask = false;
 675       int next_mask_expression_stack_size = -1;
 676       int top_frame_expression_stack_adjustment = 0;
 677       methodHandle mh(thread, iframe->interpreter_frame_method());
 678       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 679       BytecodeStream str(mh);
 680       str.set_start(iframe->interpreter_frame_bci());
 681       int max_bci = mh->code_size();
 682       // Get to the next bytecode if possible
 683       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 684       // Check to see if we can grab the number of outgoing arguments
 685       // at an uncommon trap for an invoke (where the compiler
 686       // generates debug info before the invoke has executed)
 687       Bytecodes::Code cur_code = str.next();
 688       if (cur_code == Bytecodes::_invokevirtual   ||
 689           cur_code == Bytecodes::_invokespecial   ||
 690           cur_code == Bytecodes::_invokestatic    ||
 691           cur_code == Bytecodes::_invokeinterface ||
 692           cur_code == Bytecodes::_invokedynamic) {
 693         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 694         Symbol* signature = invoke.signature();
 695         ArgumentSizeComputer asc(signature);
 696         cur_invoke_parameter_size = asc.size();
 697         if (invoke.has_receiver()) {
 698           // Add in receiver
 699           ++cur_invoke_parameter_size;
 700         }
 701         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 702           callee_size_of_parameters++;
 703         }
 704       }
 705       if (str.bci() < max_bci) {
 706         Bytecodes::Code bc = str.next();
 707         if (bc >= 0) {
 708           // The interpreter oop map generator reports results before
 709           // the current bytecode has executed except in the case of
 710           // calls. It seems to be hard to tell whether the compiler
 711           // has emitted debug information matching the "state before"
 712           // a given bytecode or the state after, so we try both
 713           switch (cur_code) {
 714             case Bytecodes::_invokevirtual:
 715             case Bytecodes::_invokespecial:
 716             case Bytecodes::_invokestatic:
 717             case Bytecodes::_invokeinterface:
 718             case Bytecodes::_invokedynamic:
 719             case Bytecodes::_athrow:
 720               break;
 721             default: {
 722               InterpreterOopMap next_mask;
 723               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 724               next_mask_expression_stack_size = next_mask.expression_stack_size();
 725               // Need to subtract off the size of the result type of
 726               // the bytecode because this is not described in the
 727               // debug info but returned to the interpreter in the TOS
 728               // caching register
 729               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 730               if (bytecode_result_type != T_ILLEGAL) {
 731                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 732               }
 733               assert(top_frame_expression_stack_adjustment >= 0, "");
 734               try_next_mask = true;
 735               break;
 736             }
 737           }
 738         }
 739       }
 740 
 741       // Verify stack depth and oops in frame
 742       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 743       if (!(
 744             /* SPARC */
 745             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 746             /* x86 */
 747             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 748             (try_next_mask &&
 749              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 750                                                                     top_frame_expression_stack_adjustment))) ||
 751             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 752             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 753              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 754             )) {
 755         ttyLocker ttyl;
 756 
 757         // Print out some information that will help us debug the problem
 758         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 759         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 760         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 761                       iframe->interpreter_frame_expression_stack_size());
 762         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 763         tty->print_cr("  try_next_mask = %d", try_next_mask);
 764         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 765         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 766         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 767         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 768         tty->print_cr("  exec_mode = %d", exec_mode);
 769         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 770         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 771         tty->print_cr("  Interpreted frames:");
 772         for (int k = 0; k < cur_array->frames(); k++) {
 773           vframeArrayElement* el = cur_array->element(k);
 774           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 775         }
 776         cur_array->print_on_2(tty);
 777         guarantee(false, "wrong number of expression stack elements during deopt");
 778       }
 779       VerifyOopClosure verify;
 780       iframe->oops_interpreted_do(&verify, &rm, false);
 781       callee_size_of_parameters = mh->size_of_parameters();
 782       callee_max_locals = mh->max_locals();
 783       is_top_frame = false;
 784     }
 785   }
 786 #endif /* !PRODUCT */
 787 
 788 
 789   return bt;
 790 JRT_END
 791 
 792 
 793 int Deoptimization::deoptimize_dependents() {
 794   Threads::deoptimized_wrt_marked_nmethods();
 795   return 0;
 796 }
 797 
 798 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 799   = Deoptimization::Action_reinterpret;
 800 
 801 #if defined(COMPILER2) || INCLUDE_JVMCI
 802 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 803   Handle pending_exception(THREAD, thread->pending_exception());
 804   const char* exception_file = thread->exception_file();
 805   int exception_line = thread->exception_line();
 806   thread->clear_pending_exception();
 807 
 808   bool failures = false;
 809 
 810   for (int i = 0; i < objects->length(); i++) {
 811     assert(objects->at(i)->is_object(), "invalid debug information");
 812     ObjectValue* sv = (ObjectValue*) objects->at(i);
 813 
 814     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 815     oop obj = NULL;
 816 
 817     if (k->is_instance_klass()) {
 818       InstanceKlass* ik = InstanceKlass::cast(k);
 819       obj = ik->allocate_instance(THREAD);
 820     } else if (k->is_typeArray_klass()) {
 821       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 822       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 823       int len = sv->field_size() / type2size[ak->element_type()];
 824       obj = ak->allocate(len, THREAD);
 825     } else if (k->is_objArray_klass()) {
 826       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 827       obj = ak->allocate(sv->field_size(), THREAD);
 828     }
 829 
 830     if (obj == NULL) {
 831       failures = true;
 832     }
 833 
 834     assert(sv->value().is_null(), "redundant reallocation");
 835     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 836     CLEAR_PENDING_EXCEPTION;
 837     sv->set_value(obj);
 838   }
 839 
 840   if (failures) {
 841     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 842   } else if (pending_exception.not_null()) {
 843     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 844   }
 845 
 846   return failures;
 847 }
 848 
 849 // restore elements of an eliminated type array
 850 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 851   int index = 0;
 852   intptr_t val;
 853 
 854   for (int i = 0; i < sv->field_size(); i++) {
 855     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 856     switch(type) {
 857     case T_LONG: case T_DOUBLE: {
 858       assert(value->type() == T_INT, "Agreement.");
 859       StackValue* low =
 860         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 861 #ifdef _LP64
 862       jlong res = (jlong)low->get_int();
 863 #else
 864 #ifdef SPARC
 865       // For SPARC we have to swap high and low words.
 866       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 867 #else
 868       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 869 #endif //SPARC
 870 #endif
 871       obj->long_at_put(index, res);
 872       break;
 873     }
 874 
 875     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 876     case T_INT: case T_FLOAT: { // 4 bytes.
 877       assert(value->type() == T_INT, "Agreement.");
 878       bool big_value = false;
 879       if (i + 1 < sv->field_size() && type == T_INT) {
 880         if (sv->field_at(i)->is_location()) {
 881           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 882           if (type == Location::dbl || type == Location::lng) {
 883             big_value = true;
 884           }
 885         } else if (sv->field_at(i)->is_constant_int()) {
 886           ScopeValue* next_scope_field = sv->field_at(i + 1);
 887           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 888             big_value = true;
 889           }
 890         }
 891       }
 892 
 893       if (big_value) {
 894         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 895   #ifdef _LP64
 896         jlong res = (jlong)low->get_int();
 897   #else
 898   #ifdef SPARC
 899         // For SPARC we have to swap high and low words.
 900         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 901   #else
 902         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 903   #endif //SPARC
 904   #endif
 905         obj->int_at_put(index, (jint)*((jint*)&res));
 906         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 907       } else {
 908         val = value->get_int();
 909         obj->int_at_put(index, (jint)*((jint*)&val));
 910       }
 911       break;
 912     }
 913 
 914     case T_SHORT:
 915       assert(value->type() == T_INT, "Agreement.");
 916       val = value->get_int();
 917       obj->short_at_put(index, (jshort)*((jint*)&val));
 918       break;
 919 
 920     case T_CHAR:
 921       assert(value->type() == T_INT, "Agreement.");
 922       val = value->get_int();
 923       obj->char_at_put(index, (jchar)*((jint*)&val));
 924       break;
 925 
 926     case T_BYTE:
 927       assert(value->type() == T_INT, "Agreement.");
 928       val = value->get_int();
 929       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 930       break;
 931 
 932     case T_BOOLEAN:
 933       assert(value->type() == T_INT, "Agreement.");
 934       val = value->get_int();
 935       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 936       break;
 937 
 938       default:
 939         ShouldNotReachHere();
 940     }
 941     index++;
 942   }
 943 }
 944 
 945 
 946 // restore fields of an eliminated object array
 947 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 948   for (int i = 0; i < sv->field_size(); i++) {
 949     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 950     assert(value->type() == T_OBJECT, "object element expected");
 951     obj->obj_at_put(i, value->get_obj()());
 952   }
 953 }
 954 
 955 class ReassignedField {
 956 public:
 957   int _offset;
 958   BasicType _type;
 959 public:
 960   ReassignedField() {
 961     _offset = 0;
 962     _type = T_ILLEGAL;
 963   }
 964 };
 965 
 966 int compare(ReassignedField* left, ReassignedField* right) {
 967   return left->_offset - right->_offset;
 968 }
 969 
 970 // Restore fields of an eliminated instance object using the same field order
 971 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 972 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 973   if (klass->superklass() != NULL) {
 974     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 975   }
 976 
 977   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 978   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 979     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 980       ReassignedField field;
 981       field._offset = fs.offset();
 982       field._type = FieldType::basic_type(fs.signature());
 983       fields->append(field);
 984     }
 985   }
 986   fields->sort(compare);
 987   for (int i = 0; i < fields->length(); i++) {
 988     intptr_t val;
 989     ScopeValue* scope_field = sv->field_at(svIndex);
 990     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 991     int offset = fields->at(i)._offset;
 992     BasicType type = fields->at(i)._type;
 993     switch (type) {
 994       case T_OBJECT: case T_ARRAY:
 995         assert(value->type() == T_OBJECT, "Agreement.");
 996         obj->obj_field_put(offset, value->get_obj()());
 997         break;
 998 
 999       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1000       case T_INT: case T_FLOAT: { // 4 bytes.
1001         assert(value->type() == T_INT, "Agreement.");
1002         bool big_value = false;
1003         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1004           if (scope_field->is_location()) {
1005             Location::Type type = ((LocationValue*) scope_field)->location().type();
1006             if (type == Location::dbl || type == Location::lng) {
1007               big_value = true;
1008             }
1009           }
1010           if (scope_field->is_constant_int()) {
1011             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1012             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1013               big_value = true;
1014             }
1015           }
1016         }
1017 
1018         if (big_value) {
1019           i++;
1020           assert(i < fields->length(), "second T_INT field needed");
1021           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1022         } else {
1023           val = value->get_int();
1024           obj->int_field_put(offset, (jint)*((jint*)&val));
1025           break;
1026         }
1027       }
1028         /* no break */
1029 
1030       case T_LONG: case T_DOUBLE: {
1031         assert(value->type() == T_INT, "Agreement.");
1032         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1033 #ifdef _LP64
1034         jlong res = (jlong)low->get_int();
1035 #else
1036 #ifdef SPARC
1037         // For SPARC we have to swap high and low words.
1038         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1039 #else
1040         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1041 #endif //SPARC
1042 #endif
1043         obj->long_field_put(offset, res);
1044         break;
1045       }
1046 
1047       case T_SHORT:
1048         assert(value->type() == T_INT, "Agreement.");
1049         val = value->get_int();
1050         obj->short_field_put(offset, (jshort)*((jint*)&val));
1051         break;
1052 
1053       case T_CHAR:
1054         assert(value->type() == T_INT, "Agreement.");
1055         val = value->get_int();
1056         obj->char_field_put(offset, (jchar)*((jint*)&val));
1057         break;
1058 
1059       case T_BYTE:
1060         assert(value->type() == T_INT, "Agreement.");
1061         val = value->get_int();
1062         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1063         break;
1064 
1065       case T_BOOLEAN:
1066         assert(value->type() == T_INT, "Agreement.");
1067         val = value->get_int();
1068         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1069         break;
1070 
1071       default:
1072         ShouldNotReachHere();
1073     }
1074     svIndex++;
1075   }
1076   return svIndex;
1077 }
1078 
1079 // restore fields of all eliminated objects and arrays
1080 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1081   for (int i = 0; i < objects->length(); i++) {
1082     ObjectValue* sv = (ObjectValue*) objects->at(i);
1083     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1084     Handle obj = sv->value();
1085     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1086     if (PrintDeoptimizationDetails) {
1087       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1088     }
1089     if (obj.is_null()) {
1090       continue;
1091     }
1092 
1093     if (k->is_instance_klass()) {
1094       InstanceKlass* ik = InstanceKlass::cast(k);
1095       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1096     } else if (k->is_typeArray_klass()) {
1097       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1098       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1099     } else if (k->is_objArray_klass()) {
1100       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1101     }
1102   }
1103 }
1104 
1105 
1106 // relock objects for which synchronization was eliminated
1107 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1108   for (int i = 0; i < monitors->length(); i++) {
1109     MonitorInfo* mon_info = monitors->at(i);
1110     if (mon_info->eliminated()) {
1111       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1112       if (!mon_info->owner_is_scalar_replaced()) {
1113         Handle obj(thread, mon_info->owner());
1114         markOop mark = obj->mark();
1115         if (UseBiasedLocking && mark->has_bias_pattern()) {
1116           // New allocated objects may have the mark set to anonymously biased.
1117           // Also the deoptimized method may called methods with synchronization
1118           // where the thread-local object is bias locked to the current thread.
1119           assert(mark->is_biased_anonymously() ||
1120                  mark->biased_locker() == thread, "should be locked to current thread");
1121           // Reset mark word to unbiased prototype.
1122           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1123           obj->set_mark(unbiased_prototype);
1124         }
1125         BasicLock* lock = mon_info->lock();
1126         ObjectSynchronizer::slow_enter(obj, lock, thread);
1127         assert(mon_info->owner()->is_locked(), "object must be locked now");
1128       }
1129     }
1130   }
1131 }
1132 
1133 
1134 #ifndef PRODUCT
1135 // print information about reallocated objects
1136 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1137   fieldDescriptor fd;
1138 
1139   for (int i = 0; i < objects->length(); i++) {
1140     ObjectValue* sv = (ObjectValue*) objects->at(i);
1141     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1142     Handle obj = sv->value();
1143 
1144     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1145     k->print_value();
1146     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1147     if (obj.is_null()) {
1148       tty->print(" allocation failed");
1149     } else {
1150       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1151     }
1152     tty->cr();
1153 
1154     if (Verbose && !obj.is_null()) {
1155       k->oop_print_on(obj(), tty);
1156     }
1157   }
1158 }
1159 #endif
1160 #endif // COMPILER2 || INCLUDE_JVMCI
1161 
1162 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1163   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1164 
1165 #ifndef PRODUCT
1166   if (PrintDeoptimizationDetails) {
1167     ttyLocker ttyl;
1168     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1169     fr.print_on(tty);
1170     tty->print_cr("     Virtual frames (innermost first):");
1171     for (int index = 0; index < chunk->length(); index++) {
1172       compiledVFrame* vf = chunk->at(index);
1173       tty->print("       %2d - ", index);
1174       vf->print_value();
1175       int bci = chunk->at(index)->raw_bci();
1176       const char* code_name;
1177       if (bci == SynchronizationEntryBCI) {
1178         code_name = "sync entry";
1179       } else {
1180         Bytecodes::Code code = vf->method()->code_at(bci);
1181         code_name = Bytecodes::name(code);
1182       }
1183       tty->print(" - %s", code_name);
1184       tty->print_cr(" @ bci %d ", bci);
1185       if (Verbose) {
1186         vf->print();
1187         tty->cr();
1188       }
1189     }
1190   }
1191 #endif
1192 
1193   // Register map for next frame (used for stack crawl).  We capture
1194   // the state of the deopt'ing frame's caller.  Thus if we need to
1195   // stuff a C2I adapter we can properly fill in the callee-save
1196   // register locations.
1197   frame caller = fr.sender(reg_map);
1198   int frame_size = caller.sp() - fr.sp();
1199 
1200   frame sender = caller;
1201 
1202   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1203   // the vframeArray containing the unpacking information is allocated in the C heap.
1204   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1205   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1206 
1207   // Compare the vframeArray to the collected vframes
1208   assert(array->structural_compare(thread, chunk), "just checking");
1209 
1210 #ifndef PRODUCT
1211   if (PrintDeoptimizationDetails) {
1212     ttyLocker ttyl;
1213     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1214   }
1215 #endif // PRODUCT
1216 
1217   return array;
1218 }
1219 
1220 #if defined(COMPILER2) || INCLUDE_JVMCI
1221 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1222   // Reallocation of some scalar replaced objects failed. Record
1223   // that we need to pop all the interpreter frames for the
1224   // deoptimized compiled frame.
1225   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1226   thread->set_frames_to_pop_failed_realloc(array->frames());
1227   // Unlock all monitors here otherwise the interpreter will see a
1228   // mix of locked and unlocked monitors (because of failed
1229   // reallocations of synchronized objects) and be confused.
1230   for (int i = 0; i < array->frames(); i++) {
1231     MonitorChunk* monitors = array->element(i)->monitors();
1232     if (monitors != NULL) {
1233       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1234         BasicObjectLock* src = monitors->at(j);
1235         if (src->obj() != NULL) {
1236           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1237         }
1238       }
1239       array->element(i)->free_monitors(thread);
1240 #ifdef ASSERT
1241       array->element(i)->set_removed_monitors();
1242 #endif
1243     }
1244   }
1245 }
1246 #endif
1247 
1248 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1249   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1250   Thread* thread = Thread::current();
1251   for (int i = 0; i < monitors->length(); i++) {
1252     MonitorInfo* mon_info = monitors->at(i);
1253     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1254       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1255     }
1256   }
1257 }
1258 
1259 
1260 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1261   if (!UseBiasedLocking) {
1262     return;
1263   }
1264 
1265   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1266 
1267   // Unfortunately we don't have a RegisterMap available in most of
1268   // the places we want to call this routine so we need to walk the
1269   // stack again to update the register map.
1270   if (map == NULL || !map->update_map()) {
1271     StackFrameStream sfs(thread, true);
1272     bool found = false;
1273     while (!found && !sfs.is_done()) {
1274       frame* cur = sfs.current();
1275       sfs.next();
1276       found = cur->id() == fr.id();
1277     }
1278     assert(found, "frame to be deoptimized not found on target thread's stack");
1279     map = sfs.register_map();
1280   }
1281 
1282   vframe* vf = vframe::new_vframe(&fr, map, thread);
1283   compiledVFrame* cvf = compiledVFrame::cast(vf);
1284   // Revoke monitors' biases in all scopes
1285   while (!cvf->is_top()) {
1286     collect_monitors(cvf, objects_to_revoke);
1287     cvf = compiledVFrame::cast(cvf->sender());
1288   }
1289   collect_monitors(cvf, objects_to_revoke);
1290 
1291   if (SafepointSynchronize::is_at_safepoint()) {
1292     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1293   } else {
1294     BiasedLocking::revoke(objects_to_revoke);
1295   }
1296 }
1297 
1298 
1299 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1300   if (!UseBiasedLocking) {
1301     return;
1302   }
1303 
1304   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1305   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1306   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1307     if (jt->has_last_Java_frame()) {
1308       StackFrameStream sfs(jt, true);
1309       while (!sfs.is_done()) {
1310         frame* cur = sfs.current();
1311         if (cb->contains(cur->pc())) {
1312           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1313           compiledVFrame* cvf = compiledVFrame::cast(vf);
1314           // Revoke monitors' biases in all scopes
1315           while (!cvf->is_top()) {
1316             collect_monitors(cvf, objects_to_revoke);
1317             cvf = compiledVFrame::cast(cvf->sender());
1318           }
1319           collect_monitors(cvf, objects_to_revoke);
1320         }
1321         sfs.next();
1322       }
1323     }
1324   }
1325   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1326 }
1327 
1328 
1329 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1330   assert(fr.can_be_deoptimized(), "checking frame type");
1331 
1332   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1333 
1334   if (LogCompilation && xtty != NULL) {
1335     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1336     assert(cm != NULL, "only compiled methods can deopt");
1337 
1338     ttyLocker ttyl;
1339     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1340     cm->log_identity(xtty);
1341     xtty->end_head();
1342     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1343       xtty->begin_elem("jvms bci='%d'", sd->bci());
1344       xtty->method(sd->method());
1345       xtty->end_elem();
1346       if (sd->is_top())  break;
1347     }
1348     xtty->tail("deoptimized");
1349   }
1350 
1351   // Patch the compiled method so that when execution returns to it we will
1352   // deopt the execution state and return to the interpreter.
1353   fr.deoptimize(thread);
1354 }
1355 
1356 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1357   deoptimize(thread, fr, map, Reason_constraint);
1358 }
1359 
1360 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1361   // Deoptimize only if the frame comes from compile code.
1362   // Do not deoptimize the frame which is already patched
1363   // during the execution of the loops below.
1364   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1365     return;
1366   }
1367   ResourceMark rm;
1368   DeoptimizationMarker dm;
1369   if (UseBiasedLocking) {
1370     revoke_biases_of_monitors(thread, fr, map);
1371   }
1372   deoptimize_single_frame(thread, fr, reason);
1373 
1374 }
1375 
1376 #if INCLUDE_JVMCI
1377 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1378   // there is no exception handler for this pc => deoptimize
1379   cm->make_not_entrant();
1380 
1381   // Use Deoptimization::deoptimize for all of its side-effects:
1382   // revoking biases of monitors, gathering traps statistics, logging...
1383   // it also patches the return pc but we do not care about that
1384   // since we return a continuation to the deopt_blob below.
1385   JavaThread* thread = JavaThread::current();
1386   RegisterMap reg_map(thread, UseBiasedLocking);
1387   frame runtime_frame = thread->last_frame();
1388   frame caller_frame = runtime_frame.sender(&reg_map);
1389   assert(caller_frame.cb()->as_nmethod_or_null() == cm, "expect top frame nmethod");
1390   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1391 
1392   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1393   if (trap_mdo != NULL) {
1394     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1395   }
1396 
1397   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1398 }
1399 #endif
1400 
1401 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1402   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1403          "can only deoptimize other thread at a safepoint");
1404   // Compute frame and register map based on thread and sp.
1405   RegisterMap reg_map(thread, UseBiasedLocking);
1406   frame fr = thread->last_frame();
1407   while (fr.id() != id) {
1408     fr = fr.sender(&reg_map);
1409   }
1410   deoptimize(thread, fr, &reg_map, reason);
1411 }
1412 
1413 
1414 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1415   if (thread == Thread::current()) {
1416     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1417   } else {
1418     VM_DeoptimizeFrame deopt(thread, id, reason);
1419     VMThread::execute(&deopt);
1420   }
1421 }
1422 
1423 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1424   deoptimize_frame(thread, id, Reason_constraint);
1425 }
1426 
1427 // JVMTI PopFrame support
1428 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1429 {
1430   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1431 }
1432 JRT_END
1433 
1434 MethodData*
1435 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1436                                 bool create_if_missing) {
1437   Thread* THREAD = thread;
1438   MethodData* mdo = m()->method_data();
1439   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1440     // Build an MDO.  Ignore errors like OutOfMemory;
1441     // that simply means we won't have an MDO to update.
1442     Method::build_interpreter_method_data(m, THREAD);
1443     if (HAS_PENDING_EXCEPTION) {
1444       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1445       CLEAR_PENDING_EXCEPTION;
1446     }
1447     mdo = m()->method_data();
1448   }
1449   return mdo;
1450 }
1451 
1452 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1453 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1454   // in case of an unresolved klass entry, load the class.
1455   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1456     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1457     return;
1458   }
1459 
1460   if (!constant_pool->tag_at(index).is_symbol()) return;
1461 
1462   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1463   Symbol*  symbol  = constant_pool->symbol_at(index);
1464 
1465   // class name?
1466   if (symbol->byte_at(0) != '(') {
1467     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1468     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1469     return;
1470   }
1471 
1472   // then it must be a signature!
1473   ResourceMark rm(THREAD);
1474   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1475     if (ss.is_object()) {
1476       Symbol* class_name = ss.as_symbol(CHECK);
1477       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1478       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1479     }
1480   }
1481 }
1482 
1483 
1484 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1485   EXCEPTION_MARK;
1486   load_class_by_index(constant_pool, index, THREAD);
1487   if (HAS_PENDING_EXCEPTION) {
1488     // Exception happened during classloading. We ignore the exception here, since it
1489     // is going to be rethrown since the current activation is going to be deoptimized and
1490     // the interpreter will re-execute the bytecode.
1491     CLEAR_PENDING_EXCEPTION;
1492     // Class loading called java code which may have caused a stack
1493     // overflow. If the exception was thrown right before the return
1494     // to the runtime the stack is no longer guarded. Reguard the
1495     // stack otherwise if we return to the uncommon trap blob and the
1496     // stack bang causes a stack overflow we crash.
1497     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1498     JavaThread* thread = (JavaThread*)THREAD;
1499     bool guard_pages_enabled = thread->stack_guards_enabled();
1500     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1501     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1502   }
1503 }
1504 
1505 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1506   HandleMark hm;
1507 
1508   // uncommon_trap() is called at the beginning of the uncommon trap
1509   // handler. Note this fact before we start generating temporary frames
1510   // that can confuse an asynchronous stack walker. This counter is
1511   // decremented at the end of unpack_frames().
1512   thread->inc_in_deopt_handler();
1513 
1514   // We need to update the map if we have biased locking.
1515 #if INCLUDE_JVMCI
1516   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1517   RegisterMap reg_map(thread, true);
1518 #else
1519   RegisterMap reg_map(thread, UseBiasedLocking);
1520 #endif
1521   frame stub_frame = thread->last_frame();
1522   frame fr = stub_frame.sender(&reg_map);
1523   // Make sure the calling nmethod is not getting deoptimized and removed
1524   // before we are done with it.
1525   nmethodLocker nl(fr.pc());
1526 
1527   // Log a message
1528   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1529               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1530 
1531   {
1532     ResourceMark rm;
1533 
1534     // Revoke biases of any monitors in the frame to ensure we can migrate them
1535     revoke_biases_of_monitors(thread, fr, &reg_map);
1536 
1537     DeoptReason reason = trap_request_reason(trap_request);
1538     DeoptAction action = trap_request_action(trap_request);
1539 #if INCLUDE_JVMCI
1540     int debug_id = trap_request_debug_id(trap_request);
1541 #endif
1542     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1543 
1544     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1545     compiledVFrame* cvf = compiledVFrame::cast(vf);
1546 
1547     CompiledMethod* nm = cvf->code();
1548 
1549     ScopeDesc*      trap_scope  = cvf->scope();
1550 
1551     if (TraceDeoptimization) {
1552       ttyLocker ttyl;
1553       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1554 #if INCLUDE_JVMCI
1555           , debug_id
1556 #endif
1557           );
1558     }
1559 
1560     methodHandle    trap_method = trap_scope->method();
1561     int             trap_bci    = trap_scope->bci();
1562 #if INCLUDE_JVMCI
1563     oop speculation = thread->pending_failed_speculation();
1564     if (nm->is_compiled_by_jvmci()) {
1565       if (speculation != NULL) {
1566         oop speculation_log = nm->as_nmethod()->speculation_log();
1567         if (speculation_log != NULL) {
1568           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1569             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1570               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1571             }
1572           }
1573           if (TraceDeoptimization) {
1574             tty->print_cr("Saving speculation to speculation log");
1575           }
1576           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1577         } else {
1578           if (TraceDeoptimization) {
1579             tty->print_cr("Speculation present but no speculation log");
1580           }
1581         }
1582         thread->set_pending_failed_speculation(NULL);
1583       } else {
1584         if (TraceDeoptimization) {
1585           tty->print_cr("No speculation");
1586         }
1587       }
1588     } else {
1589       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1590     }
1591 
1592     if (trap_bci == SynchronizationEntryBCI) {
1593       trap_bci = 0;
1594       thread->set_pending_monitorenter(true);
1595     }
1596 
1597     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1598       thread->set_pending_transfer_to_interpreter(true);
1599     }
1600 #endif
1601 
1602     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1603     // Record this event in the histogram.
1604     gather_statistics(reason, action, trap_bc);
1605 
1606     // Ensure that we can record deopt. history:
1607     // Need MDO to record RTM code generation state.
1608     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1609 
1610     methodHandle profiled_method;
1611 #if INCLUDE_JVMCI
1612     if (nm->is_compiled_by_jvmci()) {
1613       profiled_method = nm->method();
1614     } else {
1615       profiled_method = trap_method;
1616     }
1617 #else
1618     profiled_method = trap_method;
1619 #endif
1620 
1621     MethodData* trap_mdo =
1622       get_method_data(thread, profiled_method, create_if_missing);
1623 
1624     // Log a message
1625     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1626                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1627                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1628 
1629     // Print a bunch of diagnostics, if requested.
1630     if (TraceDeoptimization || LogCompilation) {
1631       ResourceMark rm;
1632       ttyLocker ttyl;
1633       char buf[100];
1634       if (xtty != NULL) {
1635         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1636                          os::current_thread_id(),
1637                          format_trap_request(buf, sizeof(buf), trap_request));
1638         nm->log_identity(xtty);
1639       }
1640       Symbol* class_name = NULL;
1641       bool unresolved = false;
1642       if (unloaded_class_index >= 0) {
1643         constantPoolHandle constants (THREAD, trap_method->constants());
1644         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1645           class_name = constants->klass_name_at(unloaded_class_index);
1646           unresolved = true;
1647           if (xtty != NULL)
1648             xtty->print(" unresolved='1'");
1649         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1650           class_name = constants->symbol_at(unloaded_class_index);
1651         }
1652         if (xtty != NULL)
1653           xtty->name(class_name);
1654       }
1655       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1656         // Dump the relevant MDO state.
1657         // This is the deopt count for the current reason, any previous
1658         // reasons or recompiles seen at this point.
1659         int dcnt = trap_mdo->trap_count(reason);
1660         if (dcnt != 0)
1661           xtty->print(" count='%d'", dcnt);
1662         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1663         int dos = (pdata == NULL)? 0: pdata->trap_state();
1664         if (dos != 0) {
1665           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1666           if (trap_state_is_recompiled(dos)) {
1667             int recnt2 = trap_mdo->overflow_recompile_count();
1668             if (recnt2 != 0)
1669               xtty->print(" recompiles2='%d'", recnt2);
1670           }
1671         }
1672       }
1673       if (xtty != NULL) {
1674         xtty->stamp();
1675         xtty->end_head();
1676       }
1677       if (TraceDeoptimization) {  // make noise on the tty
1678         tty->print("Uncommon trap occurred in");
1679         nm->method()->print_short_name(tty);
1680         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1681 #if INCLUDE_JVMCI
1682         if (nm->is_nmethod()) {
1683           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1684           if (installedCode != NULL) {
1685             oop installedCodeName = NULL;
1686             if (installedCode->is_a(InstalledCode::klass())) {
1687               installedCodeName = InstalledCode::name(installedCode);
1688             }
1689             if (installedCodeName != NULL) {
1690               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1691             } else {
1692               tty->print(" (JVMCI: installed code has no name) ");
1693             }
1694           } else if (nm->is_compiled_by_jvmci()) {
1695             tty->print(" (JVMCI: no installed code) ");
1696           }
1697         }
1698 #endif
1699         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1700                    p2i(fr.pc()),
1701                    os::current_thread_id(),
1702                    trap_reason_name(reason),
1703                    trap_action_name(action),
1704                    unloaded_class_index
1705 #if INCLUDE_JVMCI
1706                    , debug_id
1707 #endif
1708                    );
1709         if (class_name != NULL) {
1710           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1711           class_name->print_symbol_on(tty);
1712         }
1713         tty->cr();
1714       }
1715       if (xtty != NULL) {
1716         // Log the precise location of the trap.
1717         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1718           xtty->begin_elem("jvms bci='%d'", sd->bci());
1719           xtty->method(sd->method());
1720           xtty->end_elem();
1721           if (sd->is_top())  break;
1722         }
1723         xtty->tail("uncommon_trap");
1724       }
1725     }
1726     // (End diagnostic printout.)
1727 
1728     // Load class if necessary
1729     if (unloaded_class_index >= 0) {
1730       constantPoolHandle constants(THREAD, trap_method->constants());
1731       load_class_by_index(constants, unloaded_class_index);
1732     }
1733 
1734     // Flush the nmethod if necessary and desirable.
1735     //
1736     // We need to avoid situations where we are re-flushing the nmethod
1737     // because of a hot deoptimization site.  Repeated flushes at the same
1738     // point need to be detected by the compiler and avoided.  If the compiler
1739     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1740     // module must take measures to avoid an infinite cycle of recompilation
1741     // and deoptimization.  There are several such measures:
1742     //
1743     //   1. If a recompilation is ordered a second time at some site X
1744     //   and for the same reason R, the action is adjusted to 'reinterpret',
1745     //   to give the interpreter time to exercise the method more thoroughly.
1746     //   If this happens, the method's overflow_recompile_count is incremented.
1747     //
1748     //   2. If the compiler fails to reduce the deoptimization rate, then
1749     //   the method's overflow_recompile_count will begin to exceed the set
1750     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1751     //   is adjusted to 'make_not_compilable', and the method is abandoned
1752     //   to the interpreter.  This is a performance hit for hot methods,
1753     //   but is better than a disastrous infinite cycle of recompilations.
1754     //   (Actually, only the method containing the site X is abandoned.)
1755     //
1756     //   3. In parallel with the previous measures, if the total number of
1757     //   recompilations of a method exceeds the much larger set limit
1758     //   PerMethodRecompilationCutoff, the method is abandoned.
1759     //   This should only happen if the method is very large and has
1760     //   many "lukewarm" deoptimizations.  The code which enforces this
1761     //   limit is elsewhere (class nmethod, class Method).
1762     //
1763     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1764     // to recompile at each bytecode independently of the per-BCI cutoff.
1765     //
1766     // The decision to update code is up to the compiler, and is encoded
1767     // in the Action_xxx code.  If the compiler requests Action_none
1768     // no trap state is changed, no compiled code is changed, and the
1769     // computation suffers along in the interpreter.
1770     //
1771     // The other action codes specify various tactics for decompilation
1772     // and recompilation.  Action_maybe_recompile is the loosest, and
1773     // allows the compiled code to stay around until enough traps are seen,
1774     // and until the compiler gets around to recompiling the trapping method.
1775     //
1776     // The other actions cause immediate removal of the present code.
1777 
1778     // Traps caused by injected profile shouldn't pollute trap counts.
1779     bool injected_profile_trap = trap_method->has_injected_profile() &&
1780                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1781 
1782     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1783     bool make_not_entrant = false;
1784     bool make_not_compilable = false;
1785     bool reprofile = false;
1786     switch (action) {
1787     case Action_none:
1788       // Keep the old code.
1789       update_trap_state = false;
1790       break;
1791     case Action_maybe_recompile:
1792       // Do not need to invalidate the present code, but we can
1793       // initiate another
1794       // Start compiler without (necessarily) invalidating the nmethod.
1795       // The system will tolerate the old code, but new code should be
1796       // generated when possible.
1797       break;
1798     case Action_reinterpret:
1799       // Go back into the interpreter for a while, and then consider
1800       // recompiling form scratch.
1801       make_not_entrant = true;
1802       // Reset invocation counter for outer most method.
1803       // This will allow the interpreter to exercise the bytecodes
1804       // for a while before recompiling.
1805       // By contrast, Action_make_not_entrant is immediate.
1806       //
1807       // Note that the compiler will track null_check, null_assert,
1808       // range_check, and class_check events and log them as if they
1809       // had been traps taken from compiled code.  This will update
1810       // the MDO trap history so that the next compilation will
1811       // properly detect hot trap sites.
1812       reprofile = true;
1813       break;
1814     case Action_make_not_entrant:
1815       // Request immediate recompilation, and get rid of the old code.
1816       // Make them not entrant, so next time they are called they get
1817       // recompiled.  Unloaded classes are loaded now so recompile before next
1818       // time they are called.  Same for uninitialized.  The interpreter will
1819       // link the missing class, if any.
1820       make_not_entrant = true;
1821       break;
1822     case Action_make_not_compilable:
1823       // Give up on compiling this method at all.
1824       make_not_entrant = true;
1825       make_not_compilable = true;
1826       break;
1827     default:
1828       ShouldNotReachHere();
1829     }
1830 
1831     // Setting +ProfileTraps fixes the following, on all platforms:
1832     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1833     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1834     // recompile relies on a MethodData* to record heroic opt failures.
1835 
1836     // Whether the interpreter is producing MDO data or not, we also need
1837     // to use the MDO to detect hot deoptimization points and control
1838     // aggressive optimization.
1839     bool inc_recompile_count = false;
1840     ProfileData* pdata = NULL;
1841     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1842       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1843       uint this_trap_count = 0;
1844       bool maybe_prior_trap = false;
1845       bool maybe_prior_recompile = false;
1846       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1847 #if INCLUDE_JVMCI
1848                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1849 #endif
1850                                    nm->method(),
1851                                    //outputs:
1852                                    this_trap_count,
1853                                    maybe_prior_trap,
1854                                    maybe_prior_recompile);
1855       // Because the interpreter also counts null, div0, range, and class
1856       // checks, these traps from compiled code are double-counted.
1857       // This is harmless; it just means that the PerXTrapLimit values
1858       // are in effect a little smaller than they look.
1859 
1860       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1861       if (per_bc_reason != Reason_none) {
1862         // Now take action based on the partially known per-BCI history.
1863         if (maybe_prior_trap
1864             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1865           // If there are too many traps at this BCI, force a recompile.
1866           // This will allow the compiler to see the limit overflow, and
1867           // take corrective action, if possible.  The compiler generally
1868           // does not use the exact PerBytecodeTrapLimit value, but instead
1869           // changes its tactics if it sees any traps at all.  This provides
1870           // a little hysteresis, delaying a recompile until a trap happens
1871           // several times.
1872           //
1873           // Actually, since there is only one bit of counter per BCI,
1874           // the possible per-BCI counts are {0,1,(per-method count)}.
1875           // This produces accurate results if in fact there is only
1876           // one hot trap site, but begins to get fuzzy if there are
1877           // many sites.  For example, if there are ten sites each
1878           // trapping two or more times, they each get the blame for
1879           // all of their traps.
1880           make_not_entrant = true;
1881         }
1882 
1883         // Detect repeated recompilation at the same BCI, and enforce a limit.
1884         if (make_not_entrant && maybe_prior_recompile) {
1885           // More than one recompile at this point.
1886           inc_recompile_count = maybe_prior_trap;
1887         }
1888       } else {
1889         // For reasons which are not recorded per-bytecode, we simply
1890         // force recompiles unconditionally.
1891         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1892         make_not_entrant = true;
1893       }
1894 
1895       // Go back to the compiler if there are too many traps in this method.
1896       if (this_trap_count >= per_method_trap_limit(reason)) {
1897         // If there are too many traps in this method, force a recompile.
1898         // This will allow the compiler to see the limit overflow, and
1899         // take corrective action, if possible.
1900         // (This condition is an unlikely backstop only, because the
1901         // PerBytecodeTrapLimit is more likely to take effect first,
1902         // if it is applicable.)
1903         make_not_entrant = true;
1904       }
1905 
1906       // Here's more hysteresis:  If there has been a recompile at
1907       // this trap point already, run the method in the interpreter
1908       // for a while to exercise it more thoroughly.
1909       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1910         reprofile = true;
1911       }
1912     }
1913 
1914     // Take requested actions on the method:
1915 
1916     // Recompile
1917     if (make_not_entrant) {
1918       if (!nm->make_not_entrant()) {
1919         return; // the call did not change nmethod's state
1920       }
1921 
1922       if (pdata != NULL) {
1923         // Record the recompilation event, if any.
1924         int tstate0 = pdata->trap_state();
1925         int tstate1 = trap_state_set_recompiled(tstate0, true);
1926         if (tstate1 != tstate0)
1927           pdata->set_trap_state(tstate1);
1928       }
1929 
1930 #if INCLUDE_RTM_OPT
1931       // Restart collecting RTM locking abort statistic if the method
1932       // is recompiled for a reason other than RTM state change.
1933       // Assume that in new recompiled code the statistic could be different,
1934       // for example, due to different inlining.
1935       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1936           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1937         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1938       }
1939 #endif
1940       // For code aging we count traps separately here, using make_not_entrant()
1941       // as a guard against simultaneous deopts in multiple threads.
1942       if (reason == Reason_tenured && trap_mdo != NULL) {
1943         trap_mdo->inc_tenure_traps();
1944       }
1945     }
1946 
1947     if (inc_recompile_count) {
1948       trap_mdo->inc_overflow_recompile_count();
1949       if ((uint)trap_mdo->overflow_recompile_count() >
1950           (uint)PerBytecodeRecompilationCutoff) {
1951         // Give up on the method containing the bad BCI.
1952         if (trap_method() == nm->method()) {
1953           make_not_compilable = true;
1954         } else {
1955           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1956           // But give grace to the enclosing nm->method().
1957         }
1958       }
1959     }
1960 
1961     // Reprofile
1962     if (reprofile) {
1963       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1964     }
1965 
1966     // Give up compiling
1967     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1968       assert(make_not_entrant, "consistent");
1969       nm->method()->set_not_compilable(CompLevel_full_optimization);
1970     }
1971 
1972   } // Free marked resources
1973 
1974 }
1975 JRT_END
1976 
1977 ProfileData*
1978 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1979                                          int trap_bci,
1980                                          Deoptimization::DeoptReason reason,
1981                                          bool update_total_trap_count,
1982 #if INCLUDE_JVMCI
1983                                          bool is_osr,
1984 #endif
1985                                          Method* compiled_method,
1986                                          //outputs:
1987                                          uint& ret_this_trap_count,
1988                                          bool& ret_maybe_prior_trap,
1989                                          bool& ret_maybe_prior_recompile) {
1990   bool maybe_prior_trap = false;
1991   bool maybe_prior_recompile = false;
1992   uint this_trap_count = 0;
1993   if (update_total_trap_count) {
1994     uint idx = reason;
1995 #if INCLUDE_JVMCI
1996     if (is_osr) {
1997       idx += Reason_LIMIT;
1998     }
1999 #endif
2000     uint prior_trap_count = trap_mdo->trap_count(idx);
2001     this_trap_count  = trap_mdo->inc_trap_count(idx);
2002 
2003     // If the runtime cannot find a place to store trap history,
2004     // it is estimated based on the general condition of the method.
2005     // If the method has ever been recompiled, or has ever incurred
2006     // a trap with the present reason , then this BCI is assumed
2007     // (pessimistically) to be the culprit.
2008     maybe_prior_trap      = (prior_trap_count != 0);
2009     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2010   }
2011   ProfileData* pdata = NULL;
2012 
2013 
2014   // For reasons which are recorded per bytecode, we check per-BCI data.
2015   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2016   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2017   if (per_bc_reason != Reason_none) {
2018     // Find the profile data for this BCI.  If there isn't one,
2019     // try to allocate one from the MDO's set of spares.
2020     // This will let us detect a repeated trap at this point.
2021     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2022 
2023     if (pdata != NULL) {
2024       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2025         if (LogCompilation && xtty != NULL) {
2026           ttyLocker ttyl;
2027           // no more room for speculative traps in this MDO
2028           xtty->elem("speculative_traps_oom");
2029         }
2030       }
2031       // Query the trap state of this profile datum.
2032       int tstate0 = pdata->trap_state();
2033       if (!trap_state_has_reason(tstate0, per_bc_reason))
2034         maybe_prior_trap = false;
2035       if (!trap_state_is_recompiled(tstate0))
2036         maybe_prior_recompile = false;
2037 
2038       // Update the trap state of this profile datum.
2039       int tstate1 = tstate0;
2040       // Record the reason.
2041       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2042       // Store the updated state on the MDO, for next time.
2043       if (tstate1 != tstate0)
2044         pdata->set_trap_state(tstate1);
2045     } else {
2046       if (LogCompilation && xtty != NULL) {
2047         ttyLocker ttyl;
2048         // Missing MDP?  Leave a small complaint in the log.
2049         xtty->elem("missing_mdp bci='%d'", trap_bci);
2050       }
2051     }
2052   }
2053 
2054   // Return results:
2055   ret_this_trap_count = this_trap_count;
2056   ret_maybe_prior_trap = maybe_prior_trap;
2057   ret_maybe_prior_recompile = maybe_prior_recompile;
2058   return pdata;
2059 }
2060 
2061 void
2062 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2063   ResourceMark rm;
2064   // Ignored outputs:
2065   uint ignore_this_trap_count;
2066   bool ignore_maybe_prior_trap;
2067   bool ignore_maybe_prior_recompile;
2068   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2069   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2070   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2071   query_update_method_data(trap_mdo, trap_bci,
2072                            (DeoptReason)reason,
2073                            update_total_counts,
2074 #if INCLUDE_JVMCI
2075                            false,
2076 #endif
2077                            NULL,
2078                            ignore_this_trap_count,
2079                            ignore_maybe_prior_trap,
2080                            ignore_maybe_prior_recompile);
2081 }
2082 
2083 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2084   if (TraceDeoptimization) {
2085     tty->print("Uncommon trap ");
2086   }
2087   // Still in Java no safepoints
2088   {
2089     // This enters VM and may safepoint
2090     uncommon_trap_inner(thread, trap_request);
2091   }
2092   return fetch_unroll_info_helper(thread, exec_mode);
2093 }
2094 
2095 // Local derived constants.
2096 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2097 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2098 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2099 
2100 //---------------------------trap_state_reason---------------------------------
2101 Deoptimization::DeoptReason
2102 Deoptimization::trap_state_reason(int trap_state) {
2103   // This assert provides the link between the width of DataLayout::trap_bits
2104   // and the encoding of "recorded" reasons.  It ensures there are enough
2105   // bits to store all needed reasons in the per-BCI MDO profile.
2106   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2107   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2108   trap_state -= recompile_bit;
2109   if (trap_state == DS_REASON_MASK) {
2110     return Reason_many;
2111   } else {
2112     assert((int)Reason_none == 0, "state=0 => Reason_none");
2113     return (DeoptReason)trap_state;
2114   }
2115 }
2116 //-------------------------trap_state_has_reason-------------------------------
2117 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2118   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2119   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2120   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2121   trap_state -= recompile_bit;
2122   if (trap_state == DS_REASON_MASK) {
2123     return -1;  // true, unspecifically (bottom of state lattice)
2124   } else if (trap_state == reason) {
2125     return 1;   // true, definitely
2126   } else if (trap_state == 0) {
2127     return 0;   // false, definitely (top of state lattice)
2128   } else {
2129     return 0;   // false, definitely
2130   }
2131 }
2132 //-------------------------trap_state_add_reason-------------------------------
2133 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2134   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2135   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2136   trap_state -= recompile_bit;
2137   if (trap_state == DS_REASON_MASK) {
2138     return trap_state + recompile_bit;     // already at state lattice bottom
2139   } else if (trap_state == reason) {
2140     return trap_state + recompile_bit;     // the condition is already true
2141   } else if (trap_state == 0) {
2142     return reason + recompile_bit;          // no condition has yet been true
2143   } else {
2144     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2145   }
2146 }
2147 //-----------------------trap_state_is_recompiled------------------------------
2148 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2149   return (trap_state & DS_RECOMPILE_BIT) != 0;
2150 }
2151 //-----------------------trap_state_set_recompiled-----------------------------
2152 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2153   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2154   else    return trap_state & ~DS_RECOMPILE_BIT;
2155 }
2156 //---------------------------format_trap_state---------------------------------
2157 // This is used for debugging and diagnostics, including LogFile output.
2158 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2159                                               int trap_state) {
2160   assert(buflen > 0, "sanity");
2161   DeoptReason reason      = trap_state_reason(trap_state);
2162   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2163   // Re-encode the state from its decoded components.
2164   int decoded_state = 0;
2165   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2166     decoded_state = trap_state_add_reason(decoded_state, reason);
2167   if (recomp_flag)
2168     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2169   // If the state re-encodes properly, format it symbolically.
2170   // Because this routine is used for debugging and diagnostics,
2171   // be robust even if the state is a strange value.
2172   size_t len;
2173   if (decoded_state != trap_state) {
2174     // Random buggy state that doesn't decode??
2175     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2176   } else {
2177     len = jio_snprintf(buf, buflen, "%s%s",
2178                        trap_reason_name(reason),
2179                        recomp_flag ? " recompiled" : "");
2180   }
2181   return buf;
2182 }
2183 
2184 
2185 //--------------------------------statics--------------------------------------
2186 const char* Deoptimization::_trap_reason_name[] = {
2187   // Note:  Keep this in sync. with enum DeoptReason.
2188   "none",
2189   "null_check",
2190   "null_assert" JVMCI_ONLY("_or_unreached0"),
2191   "range_check",
2192   "class_check",
2193   "array_check",
2194   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2195   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2196   "unloaded",
2197   "uninitialized",
2198   "unreached",
2199   "unhandled",
2200   "constraint",
2201   "div0_check",
2202   "age",
2203   "predicate",
2204   "loop_limit_check",
2205   "speculate_class_check",
2206   "speculate_null_check",
2207   "speculate_null_assert",
2208   "rtm_state_change",
2209   "unstable_if",
2210   "unstable_fused_if",
2211 #if INCLUDE_JVMCI
2212   "aliasing",
2213   "transfer_to_interpreter",
2214   "not_compiled_exception_handler",
2215   "unresolved",
2216   "jsr_mismatch",
2217 #endif
2218   "tenured"
2219 };
2220 const char* Deoptimization::_trap_action_name[] = {
2221   // Note:  Keep this in sync. with enum DeoptAction.
2222   "none",
2223   "maybe_recompile",
2224   "reinterpret",
2225   "make_not_entrant",
2226   "make_not_compilable"
2227 };
2228 
2229 const char* Deoptimization::trap_reason_name(int reason) {
2230   // Check that every reason has a name
2231   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2232 
2233   if (reason == Reason_many)  return "many";
2234   if ((uint)reason < Reason_LIMIT)
2235     return _trap_reason_name[reason];
2236   static char buf[20];
2237   sprintf(buf, "reason%d", reason);
2238   return buf;
2239 }
2240 const char* Deoptimization::trap_action_name(int action) {
2241   // Check that every action has a name
2242   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2243 
2244   if ((uint)action < Action_LIMIT)
2245     return _trap_action_name[action];
2246   static char buf[20];
2247   sprintf(buf, "action%d", action);
2248   return buf;
2249 }
2250 
2251 // This is used for debugging and diagnostics, including LogFile output.
2252 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2253                                                 int trap_request) {
2254   jint unloaded_class_index = trap_request_index(trap_request);
2255   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2256   const char* action = trap_action_name(trap_request_action(trap_request));
2257 #if INCLUDE_JVMCI
2258   int debug_id = trap_request_debug_id(trap_request);
2259 #endif
2260   size_t len;
2261   if (unloaded_class_index < 0) {
2262     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2263                        reason, action
2264 #if INCLUDE_JVMCI
2265                        ,debug_id
2266 #endif
2267                        );
2268   } else {
2269     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2270                        reason, action, unloaded_class_index
2271 #if INCLUDE_JVMCI
2272                        ,debug_id
2273 #endif
2274                        );
2275   }
2276   return buf;
2277 }
2278 
2279 juint Deoptimization::_deoptimization_hist
2280         [Deoptimization::Reason_LIMIT]
2281     [1 + Deoptimization::Action_LIMIT]
2282         [Deoptimization::BC_CASE_LIMIT]
2283   = {0};
2284 
2285 enum {
2286   LSB_BITS = 8,
2287   LSB_MASK = right_n_bits(LSB_BITS)
2288 };
2289 
2290 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2291                                        Bytecodes::Code bc) {
2292   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2293   assert(action >= 0 && action < Action_LIMIT, "oob");
2294   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2295   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2296   juint* cases = _deoptimization_hist[reason][1+action];
2297   juint* bc_counter_addr = NULL;
2298   juint  bc_counter      = 0;
2299   // Look for an unused counter, or an exact match to this BC.
2300   if (bc != Bytecodes::_illegal) {
2301     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2302       juint* counter_addr = &cases[bc_case];
2303       juint  counter = *counter_addr;
2304       if ((counter == 0 && bc_counter_addr == NULL)
2305           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2306         // this counter is either free or is already devoted to this BC
2307         bc_counter_addr = counter_addr;
2308         bc_counter = counter | bc;
2309       }
2310     }
2311   }
2312   if (bc_counter_addr == NULL) {
2313     // Overflow, or no given bytecode.
2314     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2315     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2316   }
2317   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2318 }
2319 
2320 jint Deoptimization::total_deoptimization_count() {
2321   return _deoptimization_hist[Reason_none][0][0];
2322 }
2323 
2324 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2325   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2326   return _deoptimization_hist[reason][0][0];
2327 }
2328 
2329 void Deoptimization::print_statistics() {
2330   juint total = total_deoptimization_count();
2331   juint account = total;
2332   if (total != 0) {
2333     ttyLocker ttyl;
2334     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2335     tty->print_cr("Deoptimization traps recorded:");
2336     #define PRINT_STAT_LINE(name, r) \
2337       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2338     PRINT_STAT_LINE("total", total);
2339     // For each non-zero entry in the histogram, print the reason,
2340     // the action, and (if specifically known) the type of bytecode.
2341     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2342       for (int action = 0; action < Action_LIMIT; action++) {
2343         juint* cases = _deoptimization_hist[reason][1+action];
2344         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2345           juint counter = cases[bc_case];
2346           if (counter != 0) {
2347             char name[1*K];
2348             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2349             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2350               bc = Bytecodes::_illegal;
2351             sprintf(name, "%s/%s/%s",
2352                     trap_reason_name(reason),
2353                     trap_action_name(action),
2354                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2355             juint r = counter >> LSB_BITS;
2356             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2357             account -= r;
2358           }
2359         }
2360       }
2361     }
2362     if (account != 0) {
2363       PRINT_STAT_LINE("unaccounted", account);
2364     }
2365     #undef PRINT_STAT_LINE
2366     if (xtty != NULL)  xtty->tail("statistics");
2367   }
2368 }
2369 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2370 
2371 
2372 // Stubs for C1 only system.
2373 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2374   return false;
2375 }
2376 
2377 const char* Deoptimization::trap_reason_name(int reason) {
2378   return "unknown";
2379 }
2380 
2381 void Deoptimization::print_statistics() {
2382   // no output
2383 }
2384 
2385 void
2386 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2387   // no udpate
2388 }
2389 
2390 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2391   return 0;
2392 }
2393 
2394 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2395                                        Bytecodes::Code bc) {
2396   // no update
2397 }
2398 
2399 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2400                                               int trap_state) {
2401   jio_snprintf(buf, buflen, "#%d", trap_state);
2402   return buf;
2403 }
2404 
2405 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI