1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/strongRootsScope.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/frame.inline.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/orderAccess.inline.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/safepoint.hpp"
  54 #include "runtime/signature.hpp"
  55 #include "runtime/stubCodeGenerator.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/sweeper.hpp"
  58 #include "runtime/synchronizer.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/timerTrace.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "trace/tracing.hpp"
  63 #include "trace/traceMacros.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/macros.hpp"
  66 #if INCLUDE_ALL_GCS
  67 #include "gc/cms/concurrentMarkSweepThread.hpp"
  68 #include "gc/g1/suspendibleThreadSet.hpp"
  69 #endif // INCLUDE_ALL_GCS
  70 #ifdef COMPILER1
  71 #include "c1/c1_globals.hpp"
  72 #endif
  73 
  74 // --------------------------------------------------------------------------------------------------
  75 // Implementation of Safepoint begin/end
  76 
  77 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  78 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  79 volatile int SafepointSynchronize::_safepoint_counter = 0;
  80 int SafepointSynchronize::_current_jni_active_count = 0;
  81 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  82 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  83 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  84 static bool timeout_error_printed = false;
  85 
  86 // Roll all threads forward to a safepoint and suspend them all
  87 void SafepointSynchronize::begin() {
  88   EventSafepointBegin begin_event;
  89   Thread* myThread = Thread::current();
  90   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  91 
  92   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  93     _safepoint_begin_time = os::javaTimeNanos();
  94     _ts_of_current_safepoint = tty->time_stamp().seconds();
  95   }
  96 
  97 #if INCLUDE_ALL_GCS
  98   if (UseConcMarkSweepGC) {
  99     // In the future we should investigate whether CMS can use the
 100     // more-general mechanism below.  DLD (01/05).
 101     ConcurrentMarkSweepThread::synchronize(false);
 102   } else if (UseG1GC) {
 103     SuspendibleThreadSet::synchronize();
 104   }
 105 #endif // INCLUDE_ALL_GCS
 106 
 107   // By getting the Threads_lock, we assure that no threads are about to start or
 108   // exit. It is released again in SafepointSynchronize::end().
 109   Threads_lock->lock();
 110 
 111   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 112 
 113   int nof_threads = Threads::number_of_threads();
 114 
 115   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 116 
 117   RuntimeService::record_safepoint_begin();
 118 
 119   MutexLocker mu(Safepoint_lock);
 120 
 121   // Reset the count of active JNI critical threads
 122   _current_jni_active_count = 0;
 123 
 124   // Set number of threads to wait for, before we initiate the callbacks
 125   _waiting_to_block = nof_threads;
 126   TryingToBlock     = 0 ;
 127   int still_running = nof_threads;
 128 
 129   // Save the starting time, so that it can be compared to see if this has taken
 130   // too long to complete.
 131   jlong safepoint_limit_time = 0;
 132   timeout_error_printed = false;
 133 
 134   // PrintSafepointStatisticsTimeout can be specified separately. When
 135   // specified, PrintSafepointStatistics will be set to true in
 136   // deferred_initialize_stat method. The initialization has to be done
 137   // early enough to avoid any races. See bug 6880029 for details.
 138   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 139     deferred_initialize_stat();
 140   }
 141 
 142   // Begin the process of bringing the system to a safepoint.
 143   // Java threads can be in several different states and are
 144   // stopped by different mechanisms:
 145   //
 146   //  1. Running interpreted
 147   //     The interpreter dispatch table is changed to force it to
 148   //     check for a safepoint condition between bytecodes.
 149   //  2. Running in native code
 150   //     When returning from the native code, a Java thread must check
 151   //     the safepoint _state to see if we must block.  If the
 152   //     VM thread sees a Java thread in native, it does
 153   //     not wait for this thread to block.  The order of the memory
 154   //     writes and reads of both the safepoint state and the Java
 155   //     threads state is critical.  In order to guarantee that the
 156   //     memory writes are serialized with respect to each other,
 157   //     the VM thread issues a memory barrier instruction
 158   //     (on MP systems).  In order to avoid the overhead of issuing
 159   //     a memory barrier for each Java thread making native calls, each Java
 160   //     thread performs a write to a single memory page after changing
 161   //     the thread state.  The VM thread performs a sequence of
 162   //     mprotect OS calls which forces all previous writes from all
 163   //     Java threads to be serialized.  This is done in the
 164   //     os::serialize_thread_states() call.  This has proven to be
 165   //     much more efficient than executing a membar instruction
 166   //     on every call to native code.
 167   //  3. Running compiled Code
 168   //     Compiled code reads a global (Safepoint Polling) page that
 169   //     is set to fault if we are trying to get to a safepoint.
 170   //  4. Blocked
 171   //     A thread which is blocked will not be allowed to return from the
 172   //     block condition until the safepoint operation is complete.
 173   //  5. In VM or Transitioning between states
 174   //     If a Java thread is currently running in the VM or transitioning
 175   //     between states, the safepointing code will wait for the thread to
 176   //     block itself when it attempts transitions to a new state.
 177   //
 178   {
 179     EventSafepointStateSynchronization sync_event;
 180     int initial_running = 0;
 181 
 182     _state            = _synchronizing;
 183     OrderAccess::fence();
 184 
 185     // Flush all thread states to memory
 186     if (!UseMembar) {
 187       os::serialize_thread_states();
 188     }
 189 
 190     // Make interpreter safepoint aware
 191     Interpreter::notice_safepoints();
 192 
 193     if (DeferPollingPageLoopCount < 0) {
 194       // Make polling safepoint aware
 195       guarantee (PageArmed == 0, "invariant") ;
 196       PageArmed = 1 ;
 197       os::make_polling_page_unreadable();
 198     }
 199 
 200     // Consider using active_processor_count() ... but that call is expensive.
 201     int ncpus = os::processor_count() ;
 202 
 203 #ifdef ASSERT
 204     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 205       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 206       // Clear the visited flag to ensure that the critical counts are collected properly.
 207       cur->set_visited_for_critical_count(false);
 208     }
 209 #endif // ASSERT
 210 
 211     if (SafepointTimeout)
 212       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 213 
 214     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 215     unsigned int iterations = 0;
 216     int steps = 0 ;
 217     while(still_running > 0) {
 218       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 219         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 220         ThreadSafepointState *cur_state = cur->safepoint_state();
 221         if (cur_state->is_running()) {
 222           cur_state->examine_state_of_thread();
 223           if (!cur_state->is_running()) {
 224             still_running--;
 225             // consider adjusting steps downward:
 226             //   steps = 0
 227             //   steps -= NNN
 228             //   steps >>= 1
 229             //   steps = MIN(steps, 2000-100)
 230             //   if (iterations != 0) steps -= NNN
 231           }
 232           LogTarget(Trace, safepoint) lt;
 233           if (lt.is_enabled()) {
 234             ResourceMark rm;
 235             LogStream ls(lt);
 236             cur_state->print_on(&ls);
 237           }
 238         }
 239       }
 240 
 241       if (iterations == 0) {
 242         initial_running = still_running;
 243         if (PrintSafepointStatistics) {
 244           begin_statistics(nof_threads, still_running);
 245         }
 246       }
 247 
 248       if (still_running > 0) {
 249         // Check for if it takes to long
 250         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 251           print_safepoint_timeout(_spinning_timeout);
 252         }
 253 
 254         // Spin to avoid context switching.
 255         // There's a tension between allowing the mutators to run (and rendezvous)
 256         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 257         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 258         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 259         // Blocking or yielding incur their own penalties in the form of context switching
 260         // and the resultant loss of $ residency.
 261         //
 262         // Further complicating matters is that yield() does not work as naively expected
 263         // on many platforms -- yield() does not guarantee that any other ready threads
 264         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 265         // nakes_short_sleep() is implemented as a short unconditional sleep.
 266         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 267         // can actually increase the time it takes the VM thread to detect that a system-wide
 268         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 269         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 270         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 271         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 272         // will eventually wake up and detect that all mutators are safe, at which point
 273         // we'll again make progress.
 274         //
 275         // Beware too that that the VMThread typically runs at elevated priority.
 276         // Its default priority is higher than the default mutator priority.
 277         // Obviously, this complicates spinning.
 278         //
 279         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 280         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 281         //
 282         // See the comments in synchronizer.cpp for additional remarks on spinning.
 283         //
 284         // In the future we might:
 285         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 286         //    This is tricky as the path used by a thread exiting the JVM (say on
 287         //    on JNI call-out) simply stores into its state field.  The burden
 288         //    is placed on the VM thread, which must poll (spin).
 289         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 290         //    we might aggressively scan the stacks of threads that are already safe.
 291         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 292         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 293         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 294         // 5. Check system saturation.  If the system is not fully saturated then
 295         //    simply spin and avoid sleep/yield.
 296         // 6. As still-running mutators rendezvous they could unpark the sleeping
 297         //    VMthread.  This works well for still-running mutators that become
 298         //    safe.  The VMthread must still poll for mutators that call-out.
 299         // 7. Drive the policy on time-since-begin instead of iterations.
 300         // 8. Consider making the spin duration a function of the # of CPUs:
 301         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 302         //    Alternately, instead of counting iterations of the outer loop
 303         //    we could count the # of threads visited in the inner loop, above.
 304         // 9. On windows consider using the return value from SwitchThreadTo()
 305         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 306 
 307         if (int(iterations) == DeferPollingPageLoopCount) {
 308           guarantee (PageArmed == 0, "invariant") ;
 309           PageArmed = 1 ;
 310           os::make_polling_page_unreadable();
 311         }
 312 
 313         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 314         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 315         ++steps ;
 316         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 317           SpinPause() ;     // MP-Polite spin
 318         } else
 319           if (steps < DeferThrSuspendLoopCount) {
 320             os::naked_yield() ;
 321           } else {
 322             os::naked_short_sleep(1);
 323           }
 324 
 325         iterations ++ ;
 326       }
 327       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 328     }
 329     assert(still_running == 0, "sanity check");
 330 
 331     if (PrintSafepointStatistics) {
 332       update_statistics_on_spin_end();
 333     }
 334 
 335     if (sync_event.should_commit()) {
 336       sync_event.set_safepointId(safepoint_counter());
 337       sync_event.set_initialThreadCount(initial_running);
 338       sync_event.set_runningThreadCount(_waiting_to_block);
 339       sync_event.set_iterations(iterations);
 340       sync_event.commit();
 341     }
 342   } //EventSafepointStateSync
 343 
 344   // wait until all threads are stopped
 345   {
 346     EventSafepointWaitBlocked wait_blocked_event;
 347     int initial_waiting_to_block = _waiting_to_block;
 348 
 349     while (_waiting_to_block > 0) {
 350       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 351       if (!SafepointTimeout || timeout_error_printed) {
 352         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 353       } else {
 354         // Compute remaining time
 355         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 356 
 357         // If there is no remaining time, then there is an error
 358         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 359           print_safepoint_timeout(_blocking_timeout);
 360         }
 361       }
 362     }
 363     assert(_waiting_to_block == 0, "sanity check");
 364 
 365 #ifndef PRODUCT
 366     if (SafepointTimeout) {
 367       jlong current_time = os::javaTimeNanos();
 368       if (safepoint_limit_time < current_time) {
 369         tty->print_cr("# SafepointSynchronize: Finished after "
 370                       INT64_FORMAT_W(6) " ms",
 371                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 372                                 (jlong)SafepointTimeoutDelay));
 373       }
 374     }
 375 #endif
 376 
 377     assert((_safepoint_counter & 0x1) == 0, "must be even");
 378     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 379     _safepoint_counter ++;
 380 
 381     // Record state
 382     _state = _synchronized;
 383 
 384     OrderAccess::fence();
 385 
 386     if (wait_blocked_event.should_commit()) {
 387       wait_blocked_event.set_safepointId(safepoint_counter());
 388       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 389       wait_blocked_event.commit();
 390     }
 391   } // EventSafepointWaitBlocked
 392 
 393 #ifdef ASSERT
 394   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 395     // make sure all the threads were visited
 396     assert(cur->was_visited_for_critical_count(), "missed a thread");
 397   }
 398 #endif // ASSERT
 399 
 400   // Update the count of active JNI critical regions
 401   GCLocker::set_jni_lock_count(_current_jni_active_count);
 402 
 403   if (log_is_enabled(Debug, safepoint)) {
 404     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 405   }
 406 
 407   RuntimeService::record_safepoint_synchronized();
 408   if (PrintSafepointStatistics) {
 409     update_statistics_on_sync_end(os::javaTimeNanos());
 410   }
 411 
 412   // Call stuff that needs to be run when a safepoint is just about to be completed
 413   {
 414     EventSafepointCleanup cleanup_event;
 415     do_cleanup_tasks();
 416     if (cleanup_event.should_commit()) {
 417       cleanup_event.set_safepointId(safepoint_counter());
 418       cleanup_event.commit();
 419     }
 420   }
 421 
 422   if (PrintSafepointStatistics) {
 423     // Record how much time spend on the above cleanup tasks
 424     update_statistics_on_cleanup_end(os::javaTimeNanos());
 425   }
 426   if (begin_event.should_commit()) {
 427     begin_event.set_safepointId(safepoint_counter());
 428     begin_event.set_totalThreadCount(nof_threads);
 429     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 430     begin_event.commit();
 431   }
 432 }
 433 
 434 // Wake up all threads, so they are ready to resume execution after the safepoint
 435 // operation has been carried out
 436 void SafepointSynchronize::end() {
 437   EventSafepointEnd event;
 438   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 439 
 440   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 441   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 442   _safepoint_counter ++;
 443   // memory fence isn't required here since an odd _safepoint_counter
 444   // value can do no harm and a fence is issued below anyway.
 445 
 446   DEBUG_ONLY(Thread* myThread = Thread::current();)
 447   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 448 
 449   if (PrintSafepointStatistics) {
 450     end_statistics(os::javaTimeNanos());
 451   }
 452 
 453 #ifdef ASSERT
 454   // A pending_exception cannot be installed during a safepoint.  The threads
 455   // may install an async exception after they come back from a safepoint into
 456   // pending_exception after they unblock.  But that should happen later.
 457   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 458     assert (!(cur->has_pending_exception() &&
 459               cur->safepoint_state()->is_at_poll_safepoint()),
 460             "safepoint installed a pending exception");
 461   }
 462 #endif // ASSERT
 463 
 464   if (PageArmed) {
 465     // Make polling safepoint aware
 466     os::make_polling_page_readable();
 467     PageArmed = 0 ;
 468   }
 469 
 470   // Remove safepoint check from interpreter
 471   Interpreter::ignore_safepoints();
 472 
 473   {
 474     MutexLocker mu(Safepoint_lock);
 475 
 476     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 477 
 478     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 479     // when they get restarted.
 480     _state = _not_synchronized;
 481     OrderAccess::fence();
 482 
 483     log_debug(safepoint)("Leaving safepoint region");
 484 
 485     // Start suspended threads
 486     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 487       // A problem occurring on Solaris is when attempting to restart threads
 488       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 489       // to the next one (since it has been running the longest).  We then have
 490       // to wait for a cpu to become available before we can continue restarting
 491       // threads.
 492       // FIXME: This causes the performance of the VM to degrade when active and with
 493       // large numbers of threads.  Apparently this is due to the synchronous nature
 494       // of suspending threads.
 495       //
 496       // TODO-FIXME: the comments above are vestigial and no longer apply.
 497       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 498       if (VMThreadHintNoPreempt) {
 499         os::hint_no_preempt();
 500       }
 501       ThreadSafepointState* cur_state = current->safepoint_state();
 502       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 503       cur_state->restart();
 504       assert(cur_state->is_running(), "safepoint state has not been reset");
 505     }
 506 
 507     RuntimeService::record_safepoint_end();
 508 
 509     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 510     // blocked in signal_thread_blocked
 511     Threads_lock->unlock();
 512 
 513   }
 514 #if INCLUDE_ALL_GCS
 515   // If there are any concurrent GC threads resume them.
 516   if (UseConcMarkSweepGC) {
 517     ConcurrentMarkSweepThread::desynchronize(false);
 518   } else if (UseG1GC) {
 519     SuspendibleThreadSet::desynchronize();
 520   }
 521 #endif // INCLUDE_ALL_GCS
 522   // record this time so VMThread can keep track how much time has elapsed
 523   // since last safepoint.
 524   _end_of_last_safepoint = os::javaTimeMillis();
 525 
 526   if (event.should_commit()) {
 527     event.set_safepointId(safepoint_id);
 528     event.commit();
 529   }
 530 }
 531 
 532 bool SafepointSynchronize::is_cleanup_needed() {
 533   // Need a safepoint if there are many monitors to deflate.
 534   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 535   // Need a safepoint if some inline cache buffers is non-empty
 536   if (!InlineCacheBuffer::is_empty()) return true;
 537   return false;
 538 }
 539 
 540 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 541   if (event.should_commit()) {
 542     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 543     event.set_name(name);
 544     event.commit();
 545   }
 546 }
 547 
 548 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 549 private:
 550   CodeBlobClosure* _nmethod_cl;
 551   DeflateMonitorCounters* _counters;
 552 
 553 public:
 554   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 555     _counters(counters),
 556     _nmethod_cl(NMethodSweeper::prepare_mark_active_nmethods()) {}
 557 
 558   void do_thread(Thread* thread) {
 559     ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters);
 560     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 561         ! thread->is_Code_cache_sweeper_thread()) {
 562       JavaThread* jt = (JavaThread*) thread;
 563       jt->nmethods_do(_nmethod_cl);
 564     }
 565   }
 566 };
 567 
 568 class ParallelSPCleanupTask : public AbstractGangTask {
 569 private:
 570   SubTasksDone _subtasks;
 571   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 572   uint _num_workers;
 573   DeflateMonitorCounters* _counters;
 574 public:
 575   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 576     AbstractGangTask("Parallel Safepoint Cleanup"),
 577     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 578     _num_workers(num_workers),
 579     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 580     _counters(counters) {}
 581 
 582   void work(uint worker_id) {
 583     // All threads deflate monitors and mark nmethods (if necessary).
 584     Threads::parallel_java_threads_do(&_cleanup_threads_cl);
 585 
 586     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 587       const char* name = "deflating idle monitors";
 588       EventSafepointCleanupTask event;
 589       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 590       ObjectSynchronizer::deflate_idle_monitors(_counters);
 591       event_safepoint_cleanup_task_commit(event, name);
 592     }
 593 
 594     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 595       const char* name = "updating inline caches";
 596       EventSafepointCleanupTask event;
 597       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 598       InlineCacheBuffer::update_inline_caches();
 599       event_safepoint_cleanup_task_commit(event, name);
 600     }
 601 
 602     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 603       const char* name = "compilation policy safepoint handler";
 604       EventSafepointCleanupTask event;
 605       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 606       CompilationPolicy::policy()->do_safepoint_work();
 607       event_safepoint_cleanup_task_commit(event, name);
 608     }
 609 
 610     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 611       if (SymbolTable::needs_rehashing()) {
 612         const char* name = "rehashing symbol table";
 613         EventSafepointCleanupTask event;
 614         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 615         SymbolTable::rehash_table();
 616         event_safepoint_cleanup_task_commit(event, name);
 617       }
 618     }
 619 
 620     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 621       if (StringTable::needs_rehashing()) {
 622         const char* name = "rehashing string table";
 623         EventSafepointCleanupTask event;
 624         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 625         StringTable::rehash_table();
 626         event_safepoint_cleanup_task_commit(event, name);
 627       }
 628     }
 629 
 630     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 631       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 632       // make sure concurrent sweep is done
 633       const char* name = "purging class loader data graph";
 634       EventSafepointCleanupTask event;
 635       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 636       ClassLoaderDataGraph::purge_if_needed();
 637       event_safepoint_cleanup_task_commit(event, name);
 638     }
 639     _subtasks.all_tasks_completed(_num_workers);
 640   }
 641 };
 642 
 643 // Various cleaning tasks that should be done periodically at safepoints.
 644 void SafepointSynchronize::do_cleanup_tasks() {
 645 
 646   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 647 
 648   // Prepare for monitor deflation.
 649   DeflateMonitorCounters deflate_counters;
 650   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 651 
 652   CollectedHeap* heap = Universe::heap();
 653   assert(heap != NULL, "heap not initialized yet?");
 654   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 655   if (cleanup_workers != NULL) {
 656     // Parallel cleanup using GC provided thread pool.
 657     uint num_cleanup_workers = cleanup_workers->active_workers();
 658     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 659     StrongRootsScope srs(num_cleanup_workers);
 660     cleanup_workers->run_task(&cleanup);
 661   } else {
 662     // Serial cleanup using VMThread.
 663     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 664     StrongRootsScope srs(1);
 665     cleanup.work(0);
 666   }
 667 
 668   // Finish monitor deflation.
 669   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 670 }
 671 
 672 
 673 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 674   switch(state) {
 675   case _thread_in_native:
 676     // native threads are safe if they have no java stack or have walkable stack
 677     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 678 
 679    // blocked threads should have already have walkable stack
 680   case _thread_blocked:
 681     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 682     return true;
 683 
 684   default:
 685     return false;
 686   }
 687 }
 688 
 689 
 690 // See if the thread is running inside a lazy critical native and
 691 // update the thread critical count if so.  Also set a suspend flag to
 692 // cause the native wrapper to return into the JVM to do the unlock
 693 // once the native finishes.
 694 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 695   if (state == _thread_in_native &&
 696       thread->has_last_Java_frame() &&
 697       thread->frame_anchor()->walkable()) {
 698     // This thread might be in a critical native nmethod so look at
 699     // the top of the stack and increment the critical count if it
 700     // is.
 701     frame wrapper_frame = thread->last_frame();
 702     CodeBlob* stub_cb = wrapper_frame.cb();
 703     if (stub_cb != NULL &&
 704         stub_cb->is_nmethod() &&
 705         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 706       // A thread could potentially be in a critical native across
 707       // more than one safepoint, so only update the critical state on
 708       // the first one.  When it returns it will perform the unlock.
 709       if (!thread->do_critical_native_unlock()) {
 710 #ifdef ASSERT
 711         if (!thread->in_critical()) {
 712           GCLocker::increment_debug_jni_lock_count();
 713         }
 714 #endif
 715         thread->enter_critical();
 716         // Make sure the native wrapper calls back on return to
 717         // perform the needed critical unlock.
 718         thread->set_critical_native_unlock();
 719       }
 720     }
 721   }
 722 }
 723 
 724 
 725 
 726 // -------------------------------------------------------------------------------------------------------
 727 // Implementation of Safepoint callback point
 728 
 729 void SafepointSynchronize::block(JavaThread *thread) {
 730   assert(thread != NULL, "thread must be set");
 731   assert(thread->is_Java_thread(), "not a Java thread");
 732 
 733   // Threads shouldn't block if they are in the middle of printing, but...
 734   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 735 
 736   // Only bail from the block() call if the thread is gone from the
 737   // thread list; starting to exit should still block.
 738   if (thread->is_terminated()) {
 739      // block current thread if we come here from native code when VM is gone
 740      thread->block_if_vm_exited();
 741 
 742      // otherwise do nothing
 743      return;
 744   }
 745 
 746   JavaThreadState state = thread->thread_state();
 747   thread->frame_anchor()->make_walkable(thread);
 748 
 749   // Check that we have a valid thread_state at this point
 750   switch(state) {
 751     case _thread_in_vm_trans:
 752     case _thread_in_Java:        // From compiled code
 753 
 754       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 755       // we pretend we are still in the VM.
 756       thread->set_thread_state(_thread_in_vm);
 757 
 758       if (is_synchronizing()) {
 759          Atomic::inc (&TryingToBlock) ;
 760       }
 761 
 762       // We will always be holding the Safepoint_lock when we are examine the state
 763       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 764       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 765       Safepoint_lock->lock_without_safepoint_check();
 766       if (is_synchronizing()) {
 767         // Decrement the number of threads to wait for and signal vm thread
 768         assert(_waiting_to_block > 0, "sanity check");
 769         _waiting_to_block--;
 770         thread->safepoint_state()->set_has_called_back(true);
 771 
 772         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 773         if (thread->in_critical()) {
 774           // Notice that this thread is in a critical section
 775           increment_jni_active_count();
 776         }
 777 
 778         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 779         if (_waiting_to_block == 0) {
 780           Safepoint_lock->notify_all();
 781         }
 782       }
 783 
 784       // We transition the thread to state _thread_blocked here, but
 785       // we can't do our usual check for external suspension and then
 786       // self-suspend after the lock_without_safepoint_check() call
 787       // below because we are often called during transitions while
 788       // we hold different locks. That would leave us suspended while
 789       // holding a resource which results in deadlocks.
 790       thread->set_thread_state(_thread_blocked);
 791       Safepoint_lock->unlock();
 792 
 793       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 794       // the entire safepoint, the threads will all line up here during the safepoint.
 795       Threads_lock->lock_without_safepoint_check();
 796       // restore original state. This is important if the thread comes from compiled code, so it
 797       // will continue to execute with the _thread_in_Java state.
 798       thread->set_thread_state(state);
 799       Threads_lock->unlock();
 800       break;
 801 
 802     case _thread_in_native_trans:
 803     case _thread_blocked_trans:
 804     case _thread_new_trans:
 805       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 806         thread->print_thread_state();
 807         fatal("Deadlock in safepoint code.  "
 808               "Should have called back to the VM before blocking.");
 809       }
 810 
 811       // We transition the thread to state _thread_blocked here, but
 812       // we can't do our usual check for external suspension and then
 813       // self-suspend after the lock_without_safepoint_check() call
 814       // below because we are often called during transitions while
 815       // we hold different locks. That would leave us suspended while
 816       // holding a resource which results in deadlocks.
 817       thread->set_thread_state(_thread_blocked);
 818 
 819       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 820       // the safepoint code might still be waiting for it to block. We need to change the state here,
 821       // so it can see that it is at a safepoint.
 822 
 823       // Block until the safepoint operation is completed.
 824       Threads_lock->lock_without_safepoint_check();
 825 
 826       // Restore state
 827       thread->set_thread_state(state);
 828 
 829       Threads_lock->unlock();
 830       break;
 831 
 832     default:
 833      fatal("Illegal threadstate encountered: %d", state);
 834   }
 835 
 836   // Check for pending. async. exceptions or suspends - except if the
 837   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 838   // is called last since it grabs a lock and we only want to do that when
 839   // we must.
 840   //
 841   // Note: we never deliver an async exception at a polling point as the
 842   // compiler may not have an exception handler for it. The polling
 843   // code will notice the async and deoptimize and the exception will
 844   // be delivered. (Polling at a return point is ok though). Sure is
 845   // a lot of bother for a deprecated feature...
 846   //
 847   // We don't deliver an async exception if the thread state is
 848   // _thread_in_native_trans so JNI functions won't be called with
 849   // a surprising pending exception. If the thread state is going back to java,
 850   // async exception is checked in check_special_condition_for_native_trans().
 851 
 852   if (state != _thread_blocked_trans &&
 853       state != _thread_in_vm_trans &&
 854       thread->has_special_runtime_exit_condition()) {
 855     thread->handle_special_runtime_exit_condition(
 856       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 857   }
 858 }
 859 
 860 // ------------------------------------------------------------------------------------------------------
 861 // Exception handlers
 862 
 863 
 864 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 865   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 866   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 867   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 868 
 869   if (ShowSafepointMsgs) {
 870     tty->print("handle_polling_page_exception: ");
 871   }
 872 
 873   if (PrintSafepointStatistics) {
 874     inc_page_trap_count();
 875   }
 876 
 877   ThreadSafepointState* state = thread->safepoint_state();
 878 
 879   state->handle_polling_page_exception();
 880 }
 881 
 882 
 883 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 884   if (!timeout_error_printed) {
 885     timeout_error_printed = true;
 886     // Print out the thread info which didn't reach the safepoint for debugging
 887     // purposes (useful when there are lots of threads in the debugger).
 888     tty->cr();
 889     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 890     if (reason ==  _spinning_timeout) {
 891       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 892     } else if (reason == _blocking_timeout) {
 893       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 894     }
 895 
 896     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 897     ThreadSafepointState *cur_state;
 898     ResourceMark rm;
 899     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 900         cur_thread = cur_thread->next()) {
 901       cur_state = cur_thread->safepoint_state();
 902 
 903       if (cur_thread->thread_state() != _thread_blocked &&
 904           ((reason == _spinning_timeout && cur_state->is_running()) ||
 905            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 906         tty->print("# ");
 907         cur_thread->print();
 908         tty->cr();
 909       }
 910     }
 911     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 912   }
 913 
 914   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 915   // ShowMessageBoxOnError.
 916   if (DieOnSafepointTimeout) {
 917     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 918           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 919   }
 920 }
 921 
 922 
 923 // -------------------------------------------------------------------------------------------------------
 924 // Implementation of ThreadSafepointState
 925 
 926 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 927   _thread = thread;
 928   _type   = _running;
 929   _has_called_back = false;
 930   _at_poll_safepoint = false;
 931 }
 932 
 933 void ThreadSafepointState::create(JavaThread *thread) {
 934   ThreadSafepointState *state = new ThreadSafepointState(thread);
 935   thread->set_safepoint_state(state);
 936 }
 937 
 938 void ThreadSafepointState::destroy(JavaThread *thread) {
 939   if (thread->safepoint_state()) {
 940     delete(thread->safepoint_state());
 941     thread->set_safepoint_state(NULL);
 942   }
 943 }
 944 
 945 void ThreadSafepointState::examine_state_of_thread() {
 946   assert(is_running(), "better be running or just have hit safepoint poll");
 947 
 948   JavaThreadState state = _thread->thread_state();
 949 
 950   // Save the state at the start of safepoint processing.
 951   _orig_thread_state = state;
 952 
 953   // Check for a thread that is suspended. Note that thread resume tries
 954   // to grab the Threads_lock which we own here, so a thread cannot be
 955   // resumed during safepoint synchronization.
 956 
 957   // We check to see if this thread is suspended without locking to
 958   // avoid deadlocking with a third thread that is waiting for this
 959   // thread to be suspended. The third thread can notice the safepoint
 960   // that we're trying to start at the beginning of its SR_lock->wait()
 961   // call. If that happens, then the third thread will block on the
 962   // safepoint while still holding the underlying SR_lock. We won't be
 963   // able to get the SR_lock and we'll deadlock.
 964   //
 965   // We don't need to grab the SR_lock here for two reasons:
 966   // 1) The suspend flags are both volatile and are set with an
 967   //    Atomic::cmpxchg() call so we should see the suspended
 968   //    state right away.
 969   // 2) We're being called from the safepoint polling loop; if
 970   //    we don't see the suspended state on this iteration, then
 971   //    we'll come around again.
 972   //
 973   bool is_suspended = _thread->is_ext_suspended();
 974   if (is_suspended) {
 975     roll_forward(_at_safepoint);
 976     return;
 977   }
 978 
 979   // Some JavaThread states have an initial safepoint state of
 980   // running, but are actually at a safepoint. We will happily
 981   // agree and update the safepoint state here.
 982   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 983     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 984     roll_forward(_at_safepoint);
 985     return;
 986   }
 987 
 988   if (state == _thread_in_vm) {
 989     roll_forward(_call_back);
 990     return;
 991   }
 992 
 993   // All other thread states will continue to run until they
 994   // transition and self-block in state _blocked
 995   // Safepoint polling in compiled code causes the Java threads to do the same.
 996   // Note: new threads may require a malloc so they must be allowed to finish
 997 
 998   assert(is_running(), "examine_state_of_thread on non-running thread");
 999   return;
1000 }
1001 
1002 // Returns true is thread could not be rolled forward at present position.
1003 void ThreadSafepointState::roll_forward(suspend_type type) {
1004   _type = type;
1005 
1006   switch(_type) {
1007     case _at_safepoint:
1008       SafepointSynchronize::signal_thread_at_safepoint();
1009       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1010       if (_thread->in_critical()) {
1011         // Notice that this thread is in a critical section
1012         SafepointSynchronize::increment_jni_active_count();
1013       }
1014       break;
1015 
1016     case _call_back:
1017       set_has_called_back(false);
1018       break;
1019 
1020     case _running:
1021     default:
1022       ShouldNotReachHere();
1023   }
1024 }
1025 
1026 void ThreadSafepointState::restart() {
1027   switch(type()) {
1028     case _at_safepoint:
1029     case _call_back:
1030       break;
1031 
1032     case _running:
1033     default:
1034        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1035                      p2i(_thread), _type);
1036        _thread->print();
1037       ShouldNotReachHere();
1038   }
1039   _type = _running;
1040   set_has_called_back(false);
1041 }
1042 
1043 
1044 void ThreadSafepointState::print_on(outputStream *st) const {
1045   const char *s = NULL;
1046 
1047   switch(_type) {
1048     case _running                : s = "_running";              break;
1049     case _at_safepoint           : s = "_at_safepoint";         break;
1050     case _call_back              : s = "_call_back";            break;
1051     default:
1052       ShouldNotReachHere();
1053   }
1054 
1055   st->print_cr("Thread: " INTPTR_FORMAT
1056               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1057                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1058                _at_poll_safepoint);
1059 
1060   _thread->print_thread_state_on(st);
1061 }
1062 
1063 // ---------------------------------------------------------------------------------------------------------------------
1064 
1065 // Block the thread at the safepoint poll or poll return.
1066 void ThreadSafepointState::handle_polling_page_exception() {
1067 
1068   // Check state.  block() will set thread state to thread_in_vm which will
1069   // cause the safepoint state _type to become _call_back.
1070   assert(type() == ThreadSafepointState::_running,
1071          "polling page exception on thread not running state");
1072 
1073   // Step 1: Find the nmethod from the return address
1074   if (ShowSafepointMsgs && Verbose) {
1075     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1076   }
1077   address real_return_addr = thread()->saved_exception_pc();
1078 
1079   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1080   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1081   CompiledMethod* nm = (CompiledMethod*)cb;
1082 
1083   // Find frame of caller
1084   frame stub_fr = thread()->last_frame();
1085   CodeBlob* stub_cb = stub_fr.cb();
1086   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1087   RegisterMap map(thread(), true);
1088   frame caller_fr = stub_fr.sender(&map);
1089 
1090   // Should only be poll_return or poll
1091   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1092 
1093   // This is a poll immediately before a return. The exception handling code
1094   // has already had the effect of causing the return to occur, so the execution
1095   // will continue immediately after the call. In addition, the oopmap at the
1096   // return point does not mark the return value as an oop (if it is), so
1097   // it needs a handle here to be updated.
1098   if( nm->is_at_poll_return(real_return_addr) ) {
1099     // See if return type is an oop.
1100     bool return_oop = nm->method()->is_returning_oop();
1101     Handle return_value;
1102     if (return_oop) {
1103       // The oop result has been saved on the stack together with all
1104       // the other registers. In order to preserve it over GCs we need
1105       // to keep it in a handle.
1106       oop result = caller_fr.saved_oop_result(&map);
1107       assert(oopDesc::is_oop_or_null(result), "must be oop");
1108       return_value = Handle(thread(), result);
1109       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1110     }
1111 
1112     // Block the thread
1113     SafepointSynchronize::block(thread());
1114 
1115     // restore oop result, if any
1116     if (return_oop) {
1117       caller_fr.set_saved_oop_result(&map, return_value());
1118     }
1119   }
1120 
1121   // This is a safepoint poll. Verify the return address and block.
1122   else {
1123     set_at_poll_safepoint(true);
1124 
1125     // verify the blob built the "return address" correctly
1126     assert(real_return_addr == caller_fr.pc(), "must match");
1127 
1128     // Block the thread
1129     SafepointSynchronize::block(thread());
1130     set_at_poll_safepoint(false);
1131 
1132     // If we have a pending async exception deoptimize the frame
1133     // as otherwise we may never deliver it.
1134     if (thread()->has_async_condition()) {
1135       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1136       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1137     }
1138 
1139     // If an exception has been installed we must check for a pending deoptimization
1140     // Deoptimize frame if exception has been thrown.
1141 
1142     if (thread()->has_pending_exception() ) {
1143       RegisterMap map(thread(), true);
1144       frame caller_fr = stub_fr.sender(&map);
1145       if (caller_fr.is_deoptimized_frame()) {
1146         // The exception patch will destroy registers that are still
1147         // live and will be needed during deoptimization. Defer the
1148         // Async exception should have deferred the exception until the
1149         // next safepoint which will be detected when we get into
1150         // the interpreter so if we have an exception now things
1151         // are messed up.
1152 
1153         fatal("Exception installed and deoptimization is pending");
1154       }
1155     }
1156   }
1157 }
1158 
1159 
1160 //
1161 //                     Statistics & Instrumentations
1162 //
1163 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1164 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1165 int    SafepointSynchronize::_cur_stat_index = 0;
1166 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1167 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1168 jlong  SafepointSynchronize::_max_sync_time = 0;
1169 jlong  SafepointSynchronize::_max_vmop_time = 0;
1170 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1171 
1172 static jlong  cleanup_end_time = 0;
1173 static bool   need_to_track_page_armed_status = false;
1174 static bool   init_done = false;
1175 
1176 // Helper method to print the header.
1177 static void print_header() {
1178   // The number of spaces is significant here, and should match the format
1179   // specifiers in print_statistics().
1180 
1181   tty->print("          vmop                            "
1182              "[ threads:    total initially_running wait_to_block ]"
1183              "[ time:    spin   block    sync cleanup    vmop ] ");
1184 
1185   // no page armed status printed out if it is always armed.
1186   if (need_to_track_page_armed_status) {
1187     tty->print("page_armed ");
1188   }
1189 
1190   tty->print_cr("page_trap_count");
1191 }
1192 
1193 void SafepointSynchronize::deferred_initialize_stat() {
1194   if (init_done) return;
1195 
1196   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1197   // be printed right away, in which case, _safepoint_stats will regress to
1198   // a single element array. Otherwise, it is a circular ring buffer with default
1199   // size of PrintSafepointStatisticsCount.
1200   int stats_array_size;
1201   if (PrintSafepointStatisticsTimeout > 0) {
1202     stats_array_size = 1;
1203     PrintSafepointStatistics = true;
1204   } else {
1205     stats_array_size = PrintSafepointStatisticsCount;
1206   }
1207   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1208                                                  * sizeof(SafepointStats), mtInternal);
1209   guarantee(_safepoint_stats != NULL,
1210             "not enough memory for safepoint instrumentation data");
1211 
1212   if (DeferPollingPageLoopCount >= 0) {
1213     need_to_track_page_armed_status = true;
1214   }
1215   init_done = true;
1216 }
1217 
1218 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1219   assert(init_done, "safepoint statistics array hasn't been initialized");
1220   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1221 
1222   spstat->_time_stamp = _ts_of_current_safepoint;
1223 
1224   VM_Operation *op = VMThread::vm_operation();
1225   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1226   if (op != NULL) {
1227     _safepoint_reasons[spstat->_vmop_type]++;
1228   }
1229 
1230   spstat->_nof_total_threads = nof_threads;
1231   spstat->_nof_initial_running_threads = nof_running;
1232   spstat->_nof_threads_hit_page_trap = 0;
1233 
1234   // Records the start time of spinning. The real time spent on spinning
1235   // will be adjusted when spin is done. Same trick is applied for time
1236   // spent on waiting for threads to block.
1237   if (nof_running != 0) {
1238     spstat->_time_to_spin = os::javaTimeNanos();
1239   }  else {
1240     spstat->_time_to_spin = 0;
1241   }
1242 }
1243 
1244 void SafepointSynchronize::update_statistics_on_spin_end() {
1245   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1246 
1247   jlong cur_time = os::javaTimeNanos();
1248 
1249   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1250   if (spstat->_nof_initial_running_threads != 0) {
1251     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1252   }
1253 
1254   if (need_to_track_page_armed_status) {
1255     spstat->_page_armed = (PageArmed == 1);
1256   }
1257 
1258   // Records the start time of waiting for to block. Updated when block is done.
1259   if (_waiting_to_block != 0) {
1260     spstat->_time_to_wait_to_block = cur_time;
1261   } else {
1262     spstat->_time_to_wait_to_block = 0;
1263   }
1264 }
1265 
1266 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1267   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1268 
1269   if (spstat->_nof_threads_wait_to_block != 0) {
1270     spstat->_time_to_wait_to_block = end_time -
1271       spstat->_time_to_wait_to_block;
1272   }
1273 
1274   // Records the end time of sync which will be used to calculate the total
1275   // vm operation time. Again, the real time spending in syncing will be deducted
1276   // from the start of the sync time later when end_statistics is called.
1277   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1278   if (spstat->_time_to_sync > _max_sync_time) {
1279     _max_sync_time = spstat->_time_to_sync;
1280   }
1281 
1282   spstat->_time_to_do_cleanups = end_time;
1283 }
1284 
1285 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1286   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1287 
1288   // Record how long spent in cleanup tasks.
1289   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1290 
1291   cleanup_end_time = end_time;
1292 }
1293 
1294 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1295   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1296 
1297   // Update the vm operation time.
1298   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1299   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1300     _max_vmop_time = spstat->_time_to_exec_vmop;
1301   }
1302   // Only the sync time longer than the specified
1303   // PrintSafepointStatisticsTimeout will be printed out right away.
1304   // By default, it is -1 meaning all samples will be put into the list.
1305   if ( PrintSafepointStatisticsTimeout > 0) {
1306     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1307       print_statistics();
1308     }
1309   } else {
1310     // The safepoint statistics will be printed out when the _safepoin_stats
1311     // array fills up.
1312     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1313       print_statistics();
1314       _cur_stat_index = 0;
1315     } else {
1316       _cur_stat_index++;
1317     }
1318   }
1319 }
1320 
1321 void SafepointSynchronize::print_statistics() {
1322   for (int index = 0; index <= _cur_stat_index; index++) {
1323     if (index % 30 == 0) {
1324       print_header();
1325     }
1326     SafepointStats* sstats = &_safepoint_stats[index];
1327     tty->print("%8.3f: ", sstats->_time_stamp);
1328     tty->print("%-30s  [          "
1329                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1330                "]",
1331                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1332                sstats->_nof_total_threads,
1333                sstats->_nof_initial_running_threads,
1334                sstats->_nof_threads_wait_to_block);
1335     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1336     tty->print("[       "
1337                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1338                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1339                INT64_FORMAT_W(7) " ] ",
1340                (int64_t)(sstats->_time_to_spin / MICROUNITS),
1341                (int64_t)(sstats->_time_to_wait_to_block / MICROUNITS),
1342                (int64_t)(sstats->_time_to_sync / MICROUNITS),
1343                (int64_t)(sstats->_time_to_do_cleanups / MICROUNITS),
1344                (int64_t)(sstats->_time_to_exec_vmop / MICROUNITS));
1345 
1346     if (need_to_track_page_armed_status) {
1347       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1348     }
1349     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1350   }
1351 }
1352 
1353 // This method will be called when VM exits. It will first call
1354 // print_statistics to print out the rest of the sampling.  Then
1355 // it tries to summarize the sampling.
1356 void SafepointSynchronize::print_stat_on_exit() {
1357   if (_safepoint_stats == NULL) return;
1358 
1359   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1360 
1361   // During VM exit, end_statistics may not get called and in that
1362   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1363   // don't print it out.
1364   // Approximate the vm op time.
1365   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1366     os::javaTimeNanos() - cleanup_end_time;
1367 
1368   if ( PrintSafepointStatisticsTimeout < 0 ||
1369        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1370     print_statistics();
1371   }
1372   tty->cr();
1373 
1374   // Print out polling page sampling status.
1375   if (!need_to_track_page_armed_status) {
1376     tty->print_cr("Polling page always armed");
1377   } else {
1378     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1379                   DeferPollingPageLoopCount);
1380   }
1381 
1382   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1383     if (_safepoint_reasons[index] != 0) {
1384       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1385                     _safepoint_reasons[index]);
1386     }
1387   }
1388 
1389   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1390                 _coalesced_vmop_count);
1391   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1392                 (int64_t)(_max_sync_time / MICROUNITS));
1393   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1394                 INT64_FORMAT_W(5) " ms",
1395                 (int64_t)(_max_vmop_time / MICROUNITS));
1396 }
1397 
1398 // ------------------------------------------------------------------------------------------------
1399 // Non-product code
1400 
1401 #ifndef PRODUCT
1402 
1403 void SafepointSynchronize::print_state() {
1404   if (_state == _not_synchronized) {
1405     tty->print_cr("not synchronized");
1406   } else if (_state == _synchronizing || _state == _synchronized) {
1407     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1408                   "synchronized");
1409 
1410     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1411        cur->safepoint_state()->print();
1412     }
1413   }
1414 }
1415 
1416 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1417   if (ShowSafepointMsgs) {
1418     va_list ap;
1419     va_start(ap, format);
1420     tty->vprint_cr(format, ap);
1421     va_end(ap);
1422   }
1423 }
1424 
1425 #endif // !PRODUCT