1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <semaphore.h>
  99 # include <fcntl.h>
 100 # include <string.h>
 101 # include <syscall.h>
 102 # include <sys/sysinfo.h>
 103 # include <gnu/libc-version.h>
 104 # include <sys/ipc.h>
 105 # include <sys/shm.h>
 106 # include <link.h>
 107 # include <stdint.h>
 108 # include <inttypes.h>
 109 # include <sys/ioctl.h>
 110 
 111 #ifndef _GNU_SOURCE
 112   #define _GNU_SOURCE
 113   #include <sched.h>
 114   #undef _GNU_SOURCE
 115 #else
 116   #include <sched.h>
 117 #endif
 118 
 119 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 120 // getrusage() is prepared to handle the associated failure.
 121 #ifndef RUSAGE_THREAD
 122   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 123 #endif
 124 
 125 #define MAX_PATH    (2 * K)
 126 
 127 #define MAX_SECS 100000000
 128 
 129 // for timer info max values which include all bits
 130 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 131 
 132 #define LARGEPAGES_BIT (1 << 6)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   sysinfo(&si);
 177 
 178   return (julong)si.freeram * si.mem_unit;
 179 }
 180 
 181 julong os::physical_memory() {
 182   return Linux::physical_memory();
 183 }
 184 
 185 // Return true if user is running as root.
 186 
 187 bool os::have_special_privileges() {
 188   static bool init = false;
 189   static bool privileges = false;
 190   if (!init) {
 191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 192     init = true;
 193   }
 194   return privileges;
 195 }
 196 
 197 
 198 #ifndef SYS_gettid
 199 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 200   #ifdef __ia64__
 201     #define SYS_gettid 1105
 202   #else
 203     #ifdef __i386__
 204       #define SYS_gettid 224
 205     #else
 206       #ifdef __amd64__
 207         #define SYS_gettid 186
 208       #else
 209         #ifdef __sparc__
 210           #define SYS_gettid 143
 211         #else
 212           #error define gettid for the arch
 213         #endif
 214       #endif
 215     #endif
 216   #endif
 217 #endif
 218 
 219 
 220 // pid_t gettid()
 221 //
 222 // Returns the kernel thread id of the currently running thread. Kernel
 223 // thread id is used to access /proc.
 224 pid_t os::Linux::gettid() {
 225   int rslt = syscall(SYS_gettid);
 226   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 227   return (pid_t)rslt;
 228 }
 229 
 230 // Most versions of linux have a bug where the number of processors are
 231 // determined by looking at the /proc file system.  In a chroot environment,
 232 // the system call returns 1.  This causes the VM to act as if it is
 233 // a single processor and elide locking (see is_MP() call).
 234 static bool unsafe_chroot_detected = false;
 235 static const char *unstable_chroot_error = "/proc file system not found.\n"
 236                      "Java may be unstable running multithreaded in a chroot "
 237                      "environment on Linux when /proc filesystem is not mounted.";
 238 
 239 void os::Linux::initialize_system_info() {
 240   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 241   if (processor_count() == 1) {
 242     pid_t pid = os::Linux::gettid();
 243     char fname[32];
 244     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 245     FILE *fp = fopen(fname, "r");
 246     if (fp == NULL) {
 247       unsafe_chroot_detected = true;
 248     } else {
 249       fclose(fp);
 250     }
 251   }
 252   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 253   assert(processor_count() > 0, "linux error");
 254 }
 255 
 256 void os::init_system_properties_values() {
 257   // The next steps are taken in the product version:
 258   //
 259   // Obtain the JAVA_HOME value from the location of libjvm.so.
 260   // This library should be located at:
 261   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 262   //
 263   // If "/jre/lib/" appears at the right place in the path, then we
 264   // assume libjvm.so is installed in a JDK and we use this path.
 265   //
 266   // Otherwise exit with message: "Could not create the Java virtual machine."
 267   //
 268   // The following extra steps are taken in the debugging version:
 269   //
 270   // If "/jre/lib/" does NOT appear at the right place in the path
 271   // instead of exit check for $JAVA_HOME environment variable.
 272   //
 273   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 274   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 275   // it looks like libjvm.so is installed there
 276   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 277   //
 278   // Otherwise exit.
 279   //
 280   // Important note: if the location of libjvm.so changes this
 281   // code needs to be changed accordingly.
 282 
 283   // See ld(1):
 284   //      The linker uses the following search paths to locate required
 285   //      shared libraries:
 286   //        1: ...
 287   //        ...
 288   //        7: The default directories, normally /lib and /usr/lib.
 289 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 290   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 291 #else
 292   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 293 #endif
 294 
 295 // Base path of extensions installed on the system.
 296 #define SYS_EXT_DIR     "/usr/java/packages"
 297 #define EXTENSIONS_DIR  "/lib/ext"
 298 
 299   // Buffer that fits several sprintfs.
 300   // Note that the space for the colon and the trailing null are provided
 301   // by the nulls included by the sizeof operator.
 302   const size_t bufsize =
 303     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 304          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 305   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 306 
 307   // sysclasspath, java_home, dll_dir
 308   {
 309     char *pslash;
 310     os::jvm_path(buf, bufsize);
 311 
 312     // Found the full path to libjvm.so.
 313     // Now cut the path to <java_home>/jre if we can.
 314     pslash = strrchr(buf, '/');
 315     if (pslash != NULL) {
 316       *pslash = '\0';            // Get rid of /libjvm.so.
 317     }
 318     pslash = strrchr(buf, '/');
 319     if (pslash != NULL) {
 320       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 321     }
 322     Arguments::set_dll_dir(buf);
 323 
 324     if (pslash != NULL) {
 325       pslash = strrchr(buf, '/');
 326       if (pslash != NULL) {
 327         *pslash = '\0';        // Get rid of /lib.
 328       }
 329     }
 330     Arguments::set_java_home(buf);
 331     set_boot_path('/', ':');
 332   }
 333 
 334   // Where to look for native libraries.
 335   //
 336   // Note: Due to a legacy implementation, most of the library path
 337   // is set in the launcher. This was to accomodate linking restrictions
 338   // on legacy Linux implementations (which are no longer supported).
 339   // Eventually, all the library path setting will be done here.
 340   //
 341   // However, to prevent the proliferation of improperly built native
 342   // libraries, the new path component /usr/java/packages is added here.
 343   // Eventually, all the library path setting will be done here.
 344   {
 345     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 346     // should always exist (until the legacy problem cited above is
 347     // addressed).
 348     const char *v = ::getenv("LD_LIBRARY_PATH");
 349     const char *v_colon = ":";
 350     if (v == NULL) { v = ""; v_colon = ""; }
 351     // That's +1 for the colon and +1 for the trailing '\0'.
 352     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 353                                                      strlen(v) + 1 +
 354                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 355                                                      mtInternal);
 356     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 357     Arguments::set_library_path(ld_library_path);
 358     FREE_C_HEAP_ARRAY(char, ld_library_path);
 359   }
 360 
 361   // Extensions directories.
 362   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 363   Arguments::set_ext_dirs(buf);
 364 
 365   FREE_C_HEAP_ARRAY(char, buf);
 366 
 367 #undef DEFAULT_LIBPATH
 368 #undef SYS_EXT_DIR
 369 #undef EXTENSIONS_DIR
 370 }
 371 
 372 ////////////////////////////////////////////////////////////////////////////////
 373 // breakpoint support
 374 
 375 void os::breakpoint() {
 376   BREAKPOINT;
 377 }
 378 
 379 extern "C" void breakpoint() {
 380   // use debugger to set breakpoint here
 381 }
 382 
 383 ////////////////////////////////////////////////////////////////////////////////
 384 // signal support
 385 
 386 debug_only(static bool signal_sets_initialized = false);
 387 static sigset_t unblocked_sigs, vm_sigs;
 388 
 389 bool os::Linux::is_sig_ignored(int sig) {
 390   struct sigaction oact;
 391   sigaction(sig, (struct sigaction*)NULL, &oact);
 392   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 393                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 394   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 395     return true;
 396   } else {
 397     return false;
 398   }
 399 }
 400 
 401 void os::Linux::signal_sets_init() {
 402   // Should also have an assertion stating we are still single-threaded.
 403   assert(!signal_sets_initialized, "Already initialized");
 404   // Fill in signals that are necessarily unblocked for all threads in
 405   // the VM. Currently, we unblock the following signals:
 406   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 407   //                         by -Xrs (=ReduceSignalUsage));
 408   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 409   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 410   // the dispositions or masks wrt these signals.
 411   // Programs embedding the VM that want to use the above signals for their
 412   // own purposes must, at this time, use the "-Xrs" option to prevent
 413   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 414   // (See bug 4345157, and other related bugs).
 415   // In reality, though, unblocking these signals is really a nop, since
 416   // these signals are not blocked by default.
 417   sigemptyset(&unblocked_sigs);
 418   sigaddset(&unblocked_sigs, SIGILL);
 419   sigaddset(&unblocked_sigs, SIGSEGV);
 420   sigaddset(&unblocked_sigs, SIGBUS);
 421   sigaddset(&unblocked_sigs, SIGFPE);
 422 #if defined(PPC64)
 423   sigaddset(&unblocked_sigs, SIGTRAP);
 424 #endif
 425   sigaddset(&unblocked_sigs, SR_signum);
 426 
 427   if (!ReduceSignalUsage) {
 428     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 429       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 430     }
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 436     }
 437   }
 438   // Fill in signals that are blocked by all but the VM thread.
 439   sigemptyset(&vm_sigs);
 440   if (!ReduceSignalUsage) {
 441     sigaddset(&vm_sigs, BREAK_SIGNAL);
 442   }
 443   debug_only(signal_sets_initialized = true);
 444 
 445 }
 446 
 447 // These are signals that are unblocked while a thread is running Java.
 448 // (For some reason, they get blocked by default.)
 449 sigset_t* os::Linux::unblocked_signals() {
 450   assert(signal_sets_initialized, "Not initialized");
 451   return &unblocked_sigs;
 452 }
 453 
 454 // These are the signals that are blocked while a (non-VM) thread is
 455 // running Java. Only the VM thread handles these signals.
 456 sigset_t* os::Linux::vm_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &vm_sigs;
 459 }
 460 
 461 void os::Linux::hotspot_sigmask(Thread* thread) {
 462 
 463   //Save caller's signal mask before setting VM signal mask
 464   sigset_t caller_sigmask;
 465   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 466 
 467   OSThread* osthread = thread->osthread();
 468   osthread->set_caller_sigmask(caller_sigmask);
 469 
 470   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 471 
 472   if (!ReduceSignalUsage) {
 473     if (thread->is_VM_thread()) {
 474       // Only the VM thread handles BREAK_SIGNAL ...
 475       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 476     } else {
 477       // ... all other threads block BREAK_SIGNAL
 478       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 479     }
 480   }
 481 }
 482 
 483 //////////////////////////////////////////////////////////////////////////////
 484 // detecting pthread library
 485 
 486 void os::Linux::libpthread_init() {
 487   // Save glibc and pthread version strings.
 488 #if !defined(_CS_GNU_LIBC_VERSION) || \
 489     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 490   #error "glibc too old (< 2.3.2)"
 491 #endif
 492 
 493   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 494   assert(n > 0, "cannot retrieve glibc version");
 495   char *str = (char *)malloc(n, mtInternal);
 496   confstr(_CS_GNU_LIBC_VERSION, str, n);
 497   os::Linux::set_glibc_version(str);
 498 
 499   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 500   assert(n > 0, "cannot retrieve pthread version");
 501   str = (char *)malloc(n, mtInternal);
 502   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 503   os::Linux::set_libpthread_version(str);
 504 }
 505 
 506 /////////////////////////////////////////////////////////////////////////////
 507 // thread stack expansion
 508 
 509 // os::Linux::manually_expand_stack() takes care of expanding the thread
 510 // stack. Note that this is normally not needed: pthread stacks allocate
 511 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 512 // committed. Therefore it is not necessary to expand the stack manually.
 513 //
 514 // Manually expanding the stack was historically needed on LinuxThreads
 515 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 516 // it is kept to deal with very rare corner cases:
 517 //
 518 // For one, user may run the VM on an own implementation of threads
 519 // whose stacks are - like the old LinuxThreads - implemented using
 520 // mmap(MAP_GROWSDOWN).
 521 //
 522 // Also, this coding may be needed if the VM is running on the primordial
 523 // thread. Normally we avoid running on the primordial thread; however,
 524 // user may still invoke the VM on the primordial thread.
 525 //
 526 // The following historical comment describes the details about running
 527 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 528 
 529 
 530 // Force Linux kernel to expand current thread stack. If "bottom" is close
 531 // to the stack guard, caller should block all signals.
 532 //
 533 // MAP_GROWSDOWN:
 534 //   A special mmap() flag that is used to implement thread stacks. It tells
 535 //   kernel that the memory region should extend downwards when needed. This
 536 //   allows early versions of LinuxThreads to only mmap the first few pages
 537 //   when creating a new thread. Linux kernel will automatically expand thread
 538 //   stack as needed (on page faults).
 539 //
 540 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 541 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 542 //   region, it's hard to tell if the fault is due to a legitimate stack
 543 //   access or because of reading/writing non-exist memory (e.g. buffer
 544 //   overrun). As a rule, if the fault happens below current stack pointer,
 545 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 546 //   application (see Linux kernel fault.c).
 547 //
 548 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 549 //   stack overflow detection.
 550 //
 551 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 552 //   not use MAP_GROWSDOWN.
 553 //
 554 // To get around the problem and allow stack banging on Linux, we need to
 555 // manually expand thread stack after receiving the SIGSEGV.
 556 //
 557 // There are two ways to expand thread stack to address "bottom", we used
 558 // both of them in JVM before 1.5:
 559 //   1. adjust stack pointer first so that it is below "bottom", and then
 560 //      touch "bottom"
 561 //   2. mmap() the page in question
 562 //
 563 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 564 // if current sp is already near the lower end of page 101, and we need to
 565 // call mmap() to map page 100, it is possible that part of the mmap() frame
 566 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 567 // That will destroy the mmap() frame and cause VM to crash.
 568 //
 569 // The following code works by adjusting sp first, then accessing the "bottom"
 570 // page to force a page fault. Linux kernel will then automatically expand the
 571 // stack mapping.
 572 //
 573 // _expand_stack_to() assumes its frame size is less than page size, which
 574 // should always be true if the function is not inlined.
 575 
 576 static void NOINLINE _expand_stack_to(address bottom) {
 577   address sp;
 578   size_t size;
 579   volatile char *p;
 580 
 581   // Adjust bottom to point to the largest address within the same page, it
 582   // gives us a one-page buffer if alloca() allocates slightly more memory.
 583   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 584   bottom += os::Linux::page_size() - 1;
 585 
 586   // sp might be slightly above current stack pointer; if that's the case, we
 587   // will alloca() a little more space than necessary, which is OK. Don't use
 588   // os::current_stack_pointer(), as its result can be slightly below current
 589   // stack pointer, causing us to not alloca enough to reach "bottom".
 590   sp = (address)&sp;
 591 
 592   if (sp > bottom) {
 593     size = sp - bottom;
 594     p = (volatile char *)alloca(size);
 595     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 596     p[0] = '\0';
 597   }
 598 }
 599 
 600 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 601   assert(t!=NULL, "just checking");
 602   assert(t->osthread()->expanding_stack(), "expand should be set");
 603   assert(t->stack_base() != NULL, "stack_base was not initialized");
 604 
 605   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 606     sigset_t mask_all, old_sigset;
 607     sigfillset(&mask_all);
 608     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 609     _expand_stack_to(addr);
 610     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 611     return true;
 612   }
 613   return false;
 614 }
 615 
 616 //////////////////////////////////////////////////////////////////////////////
 617 // create new thread
 618 
 619 // Thread start routine for all newly created threads
 620 static void *thread_native_entry(Thread *thread) {
 621   // Try to randomize the cache line index of hot stack frames.
 622   // This helps when threads of the same stack traces evict each other's
 623   // cache lines. The threads can be either from the same JVM instance, or
 624   // from different JVM instances. The benefit is especially true for
 625   // processors with hyperthreading technology.
 626   static int counter = 0;
 627   int pid = os::current_process_id();
 628   alloca(((pid ^ counter++) & 7) * 128);
 629 
 630   thread->initialize_thread_current();
 631 
 632   OSThread* osthread = thread->osthread();
 633   Monitor* sync = osthread->startThread_lock();
 634 
 635   osthread->set_thread_id(os::current_thread_id());
 636 
 637   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 638     os::current_thread_id(), (uintx) pthread_self());
 639 
 640   if (UseNUMA) {
 641     int lgrp_id = os::numa_get_group_id();
 642     if (lgrp_id != -1) {
 643       thread->set_lgrp_id(lgrp_id);
 644     }
 645   }
 646   // initialize signal mask for this thread
 647   os::Linux::hotspot_sigmask(thread);
 648 
 649   // initialize floating point control register
 650   os::Linux::init_thread_fpu_state();
 651 
 652   // handshaking with parent thread
 653   {
 654     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 655 
 656     // notify parent thread
 657     osthread->set_state(INITIALIZED);
 658     sync->notify_all();
 659 
 660     // wait until os::start_thread()
 661     while (osthread->get_state() == INITIALIZED) {
 662       sync->wait(Mutex::_no_safepoint_check_flag);
 663     }
 664   }
 665 
 666   // call one more level start routine
 667   thread->run();
 668 
 669   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   // If a thread has not deleted itself ("delete this") as part of its
 673   // termination sequence, we have to ensure thread-local-storage is
 674   // cleared before we actually terminate. No threads should ever be
 675   // deleted asynchronously with respect to their termination.
 676   if (Thread::current_or_null_safe() != NULL) {
 677     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 678     thread->clear_thread_current();
 679   }
 680 
 681   return 0;
 682 }
 683 
 684 bool os::create_thread(Thread* thread, ThreadType thr_type,
 685                        size_t req_stack_size) {
 686   assert(thread->osthread() == NULL, "caller responsible");
 687 
 688   // Allocate the OSThread object
 689   OSThread* osthread = new OSThread(NULL, NULL);
 690   if (osthread == NULL) {
 691     return false;
 692   }
 693 
 694   // set the correct thread state
 695   osthread->set_thread_type(thr_type);
 696 
 697   // Initial state is ALLOCATED but not INITIALIZED
 698   osthread->set_state(ALLOCATED);
 699 
 700   thread->set_osthread(osthread);
 701 
 702   // init thread attributes
 703   pthread_attr_t attr;
 704   pthread_attr_init(&attr);
 705   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 706 
 707   // Calculate stack size if it's not specified by caller.
 708   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 709   // In the Linux NPTL pthread implementation the guard size mechanism
 710   // is not implemented properly. The posix standard requires adding
 711   // the size of the guard pages to the stack size, instead Linux
 712   // takes the space out of 'stacksize'. Thus we adapt the requested
 713   // stack_size by the size of the guard pages to mimick proper
 714   // behaviour. However, be careful not to end up with a size
 715   // of zero due to overflow. Don't add the guard page in that case.
 716   size_t guard_size = os::Linux::default_guard_size(thr_type);
 717   if (stack_size <= SIZE_MAX - guard_size) {
 718     stack_size += guard_size;
 719   }
 720   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 721 
 722   int status = pthread_attr_setstacksize(&attr, stack_size);
 723   assert_status(status == 0, status, "pthread_attr_setstacksize");
 724 
 725   // Configure glibc guard page.
 726   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 727 
 728   ThreadState state;
 729 
 730   {
 731     pthread_t tid;
 732     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 733 
 734     char buf[64];
 735     if (ret == 0) {
 736       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 737         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 738     } else {
 739       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 740         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 741     }
 742 
 743     pthread_attr_destroy(&attr);
 744 
 745     if (ret != 0) {
 746       // Need to clean up stuff we've allocated so far
 747       thread->set_osthread(NULL);
 748       delete osthread;
 749       return false;
 750     }
 751 
 752     // Store pthread info into the OSThread
 753     osthread->set_pthread_id(tid);
 754 
 755     // Wait until child thread is either initialized or aborted
 756     {
 757       Monitor* sync_with_child = osthread->startThread_lock();
 758       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 759       while ((state = osthread->get_state()) == ALLOCATED) {
 760         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 761       }
 762     }
 763   }
 764 
 765   // Aborted due to thread limit being reached
 766   if (state == ZOMBIE) {
 767     thread->set_osthread(NULL);
 768     delete osthread;
 769     return false;
 770   }
 771 
 772   // The thread is returned suspended (in state INITIALIZED),
 773   // and is started higher up in the call chain
 774   assert(state == INITIALIZED, "race condition");
 775   return true;
 776 }
 777 
 778 /////////////////////////////////////////////////////////////////////////////
 779 // attach existing thread
 780 
 781 // bootstrap the main thread
 782 bool os::create_main_thread(JavaThread* thread) {
 783   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 784   return create_attached_thread(thread);
 785 }
 786 
 787 bool os::create_attached_thread(JavaThread* thread) {
 788 #ifdef ASSERT
 789   thread->verify_not_published();
 790 #endif
 791 
 792   // Allocate the OSThread object
 793   OSThread* osthread = new OSThread(NULL, NULL);
 794 
 795   if (osthread == NULL) {
 796     return false;
 797   }
 798 
 799   // Store pthread info into the OSThread
 800   osthread->set_thread_id(os::Linux::gettid());
 801   osthread->set_pthread_id(::pthread_self());
 802 
 803   // initialize floating point control register
 804   os::Linux::init_thread_fpu_state();
 805 
 806   // Initial thread state is RUNNABLE
 807   osthread->set_state(RUNNABLE);
 808 
 809   thread->set_osthread(osthread);
 810 
 811   if (UseNUMA) {
 812     int lgrp_id = os::numa_get_group_id();
 813     if (lgrp_id != -1) {
 814       thread->set_lgrp_id(lgrp_id);
 815     }
 816   }
 817 
 818   if (os::Linux::is_initial_thread()) {
 819     // If current thread is initial thread, its stack is mapped on demand,
 820     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 821     // the entire stack region to avoid SEGV in stack banging.
 822     // It is also useful to get around the heap-stack-gap problem on SuSE
 823     // kernel (see 4821821 for details). We first expand stack to the top
 824     // of yellow zone, then enable stack yellow zone (order is significant,
 825     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 826     // is no gap between the last two virtual memory regions.
 827 
 828     JavaThread *jt = (JavaThread *)thread;
 829     address addr = jt->stack_reserved_zone_base();
 830     assert(addr != NULL, "initialization problem?");
 831     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 832 
 833     osthread->set_expanding_stack();
 834     os::Linux::manually_expand_stack(jt, addr);
 835     osthread->clear_expanding_stack();
 836   }
 837 
 838   // initialize signal mask for this thread
 839   // and save the caller's signal mask
 840   os::Linux::hotspot_sigmask(thread);
 841 
 842   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) pthread_self());
 844 
 845   return true;
 846 }
 847 
 848 void os::pd_start_thread(Thread* thread) {
 849   OSThread * osthread = thread->osthread();
 850   assert(osthread->get_state() != INITIALIZED, "just checking");
 851   Monitor* sync_with_child = osthread->startThread_lock();
 852   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 853   sync_with_child->notify();
 854 }
 855 
 856 // Free Linux resources related to the OSThread
 857 void os::free_thread(OSThread* osthread) {
 858   assert(osthread != NULL, "osthread not set");
 859 
 860   // We are told to free resources of the argument thread,
 861   // but we can only really operate on the current thread.
 862   assert(Thread::current()->osthread() == osthread,
 863          "os::free_thread but not current thread");
 864 
 865 #ifdef ASSERT
 866   sigset_t current;
 867   sigemptyset(&current);
 868   pthread_sigmask(SIG_SETMASK, NULL, &current);
 869   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 870 #endif
 871 
 872   // Restore caller's signal mask
 873   sigset_t sigmask = osthread->caller_sigmask();
 874   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 875 
 876   delete osthread;
 877 }
 878 
 879 //////////////////////////////////////////////////////////////////////////////
 880 // initial thread
 881 
 882 // Check if current thread is the initial thread, similar to Solaris thr_main.
 883 bool os::Linux::is_initial_thread(void) {
 884   char dummy;
 885   // If called before init complete, thread stack bottom will be null.
 886   // Can be called if fatal error occurs before initialization.
 887   if (initial_thread_stack_bottom() == NULL) return false;
 888   assert(initial_thread_stack_bottom() != NULL &&
 889          initial_thread_stack_size()   != 0,
 890          "os::init did not locate initial thread's stack region");
 891   if ((address)&dummy >= initial_thread_stack_bottom() &&
 892       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 893     return true;
 894   } else {
 895     return false;
 896   }
 897 }
 898 
 899 // Find the virtual memory area that contains addr
 900 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 901   FILE *fp = fopen("/proc/self/maps", "r");
 902   if (fp) {
 903     address low, high;
 904     while (!feof(fp)) {
 905       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 906         if (low <= addr && addr < high) {
 907           if (vma_low)  *vma_low  = low;
 908           if (vma_high) *vma_high = high;
 909           fclose(fp);
 910           return true;
 911         }
 912       }
 913       for (;;) {
 914         int ch = fgetc(fp);
 915         if (ch == EOF || ch == (int)'\n') break;
 916       }
 917     }
 918     fclose(fp);
 919   }
 920   return false;
 921 }
 922 
 923 // Locate initial thread stack. This special handling of initial thread stack
 924 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 925 // bogus value for the primordial process thread. While the launcher has created
 926 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 927 // JNI invocation API from a primordial thread.
 928 void os::Linux::capture_initial_stack(size_t max_size) {
 929 
 930   // max_size is either 0 (which means accept OS default for thread stacks) or
 931   // a user-specified value known to be at least the minimum needed. If we
 932   // are actually on the primordial thread we can make it appear that we have a
 933   // smaller max_size stack by inserting the guard pages at that location. But we
 934   // cannot do anything to emulate a larger stack than what has been provided by
 935   // the OS or threading library. In fact if we try to use a stack greater than
 936   // what is set by rlimit then we will crash the hosting process.
 937 
 938   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 939   // If this is "unlimited" then it will be a huge value.
 940   struct rlimit rlim;
 941   getrlimit(RLIMIT_STACK, &rlim);
 942   size_t stack_size = rlim.rlim_cur;
 943 
 944   // 6308388: a bug in ld.so will relocate its own .data section to the
 945   //   lower end of primordial stack; reduce ulimit -s value a little bit
 946   //   so we won't install guard page on ld.so's data section.
 947   stack_size -= 2 * page_size();
 948 
 949   // Try to figure out where the stack base (top) is. This is harder.
 950   //
 951   // When an application is started, glibc saves the initial stack pointer in
 952   // a global variable "__libc_stack_end", which is then used by system
 953   // libraries. __libc_stack_end should be pretty close to stack top. The
 954   // variable is available since the very early days. However, because it is
 955   // a private interface, it could disappear in the future.
 956   //
 957   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 958   // to __libc_stack_end, it is very close to stack top, but isn't the real
 959   // stack top. Note that /proc may not exist if VM is running as a chroot
 960   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 961   // /proc/<pid>/stat could change in the future (though unlikely).
 962   //
 963   // We try __libc_stack_end first. If that doesn't work, look for
 964   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 965   // as a hint, which should work well in most cases.
 966 
 967   uintptr_t stack_start;
 968 
 969   // try __libc_stack_end first
 970   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 971   if (p && *p) {
 972     stack_start = *p;
 973   } else {
 974     // see if we can get the start_stack field from /proc/self/stat
 975     FILE *fp;
 976     int pid;
 977     char state;
 978     int ppid;
 979     int pgrp;
 980     int session;
 981     int nr;
 982     int tpgrp;
 983     unsigned long flags;
 984     unsigned long minflt;
 985     unsigned long cminflt;
 986     unsigned long majflt;
 987     unsigned long cmajflt;
 988     unsigned long utime;
 989     unsigned long stime;
 990     long cutime;
 991     long cstime;
 992     long prio;
 993     long nice;
 994     long junk;
 995     long it_real;
 996     uintptr_t start;
 997     uintptr_t vsize;
 998     intptr_t rss;
 999     uintptr_t rsslim;
1000     uintptr_t scodes;
1001     uintptr_t ecode;
1002     int i;
1003 
1004     // Figure what the primordial thread stack base is. Code is inspired
1005     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1006     // followed by command name surrounded by parentheses, state, etc.
1007     char stat[2048];
1008     int statlen;
1009 
1010     fp = fopen("/proc/self/stat", "r");
1011     if (fp) {
1012       statlen = fread(stat, 1, 2047, fp);
1013       stat[statlen] = '\0';
1014       fclose(fp);
1015 
1016       // Skip pid and the command string. Note that we could be dealing with
1017       // weird command names, e.g. user could decide to rename java launcher
1018       // to "java 1.4.2 :)", then the stat file would look like
1019       //                1234 (java 1.4.2 :)) R ... ...
1020       // We don't really need to know the command string, just find the last
1021       // occurrence of ")" and then start parsing from there. See bug 4726580.
1022       char * s = strrchr(stat, ')');
1023 
1024       i = 0;
1025       if (s) {
1026         // Skip blank chars
1027         do { s++; } while (s && isspace(*s));
1028 
1029 #define _UFM UINTX_FORMAT
1030 #define _DFM INTX_FORMAT
1031 
1032         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1033         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1034         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1035                    &state,          // 3  %c
1036                    &ppid,           // 4  %d
1037                    &pgrp,           // 5  %d
1038                    &session,        // 6  %d
1039                    &nr,             // 7  %d
1040                    &tpgrp,          // 8  %d
1041                    &flags,          // 9  %lu
1042                    &minflt,         // 10 %lu
1043                    &cminflt,        // 11 %lu
1044                    &majflt,         // 12 %lu
1045                    &cmajflt,        // 13 %lu
1046                    &utime,          // 14 %lu
1047                    &stime,          // 15 %lu
1048                    &cutime,         // 16 %ld
1049                    &cstime,         // 17 %ld
1050                    &prio,           // 18 %ld
1051                    &nice,           // 19 %ld
1052                    &junk,           // 20 %ld
1053                    &it_real,        // 21 %ld
1054                    &start,          // 22 UINTX_FORMAT
1055                    &vsize,          // 23 UINTX_FORMAT
1056                    &rss,            // 24 INTX_FORMAT
1057                    &rsslim,         // 25 UINTX_FORMAT
1058                    &scodes,         // 26 UINTX_FORMAT
1059                    &ecode,          // 27 UINTX_FORMAT
1060                    &stack_start);   // 28 UINTX_FORMAT
1061       }
1062 
1063 #undef _UFM
1064 #undef _DFM
1065 
1066       if (i != 28 - 2) {
1067         assert(false, "Bad conversion from /proc/self/stat");
1068         // product mode - assume we are the initial thread, good luck in the
1069         // embedded case.
1070         warning("Can't detect initial thread stack location - bad conversion");
1071         stack_start = (uintptr_t) &rlim;
1072       }
1073     } else {
1074       // For some reason we can't open /proc/self/stat (for example, running on
1075       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1076       // most cases, so don't abort:
1077       warning("Can't detect initial thread stack location - no /proc/self/stat");
1078       stack_start = (uintptr_t) &rlim;
1079     }
1080   }
1081 
1082   // Now we have a pointer (stack_start) very close to the stack top, the
1083   // next thing to do is to figure out the exact location of stack top. We
1084   // can find out the virtual memory area that contains stack_start by
1085   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1086   // and its upper limit is the real stack top. (again, this would fail if
1087   // running inside chroot, because /proc may not exist.)
1088 
1089   uintptr_t stack_top;
1090   address low, high;
1091   if (find_vma((address)stack_start, &low, &high)) {
1092     // success, "high" is the true stack top. (ignore "low", because initial
1093     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1094     stack_top = (uintptr_t)high;
1095   } else {
1096     // failed, likely because /proc/self/maps does not exist
1097     warning("Can't detect initial thread stack location - find_vma failed");
1098     // best effort: stack_start is normally within a few pages below the real
1099     // stack top, use it as stack top, and reduce stack size so we won't put
1100     // guard page outside stack.
1101     stack_top = stack_start;
1102     stack_size -= 16 * page_size();
1103   }
1104 
1105   // stack_top could be partially down the page so align it
1106   stack_top = align_up(stack_top, page_size());
1107 
1108   // Allowed stack value is minimum of max_size and what we derived from rlimit
1109   if (max_size > 0) {
1110     _initial_thread_stack_size = MIN2(max_size, stack_size);
1111   } else {
1112     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1113     // clamp it at 8MB as we do on Solaris
1114     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1115   }
1116   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1117   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1118 
1119   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1120 
1121   if (log_is_enabled(Info, os, thread)) {
1122     // See if we seem to be on primordial process thread
1123     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1124                       uintptr_t(&rlim) < stack_top;
1125 
1126     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1127                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1128                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1129                          stack_top, intptr_t(_initial_thread_stack_bottom));
1130   }
1131 }
1132 
1133 ////////////////////////////////////////////////////////////////////////////////
1134 // time support
1135 
1136 // Time since start-up in seconds to a fine granularity.
1137 // Used by VMSelfDestructTimer and the MemProfiler.
1138 double os::elapsedTime() {
1139 
1140   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1141 }
1142 
1143 jlong os::elapsed_counter() {
1144   return javaTimeNanos() - initial_time_count;
1145 }
1146 
1147 jlong os::elapsed_frequency() {
1148   return NANOSECS_PER_SEC; // nanosecond resolution
1149 }
1150 
1151 bool os::supports_vtime() { return true; }
1152 bool os::enable_vtime()   { return false; }
1153 bool os::vtime_enabled()  { return false; }
1154 
1155 double os::elapsedVTime() {
1156   struct rusage usage;
1157   int retval = getrusage(RUSAGE_THREAD, &usage);
1158   if (retval == 0) {
1159     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1160   } else {
1161     // better than nothing, but not much
1162     return elapsedTime();
1163   }
1164 }
1165 
1166 jlong os::javaTimeMillis() {
1167   timeval time;
1168   int status = gettimeofday(&time, NULL);
1169   assert(status != -1, "linux error");
1170   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1171 }
1172 
1173 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1174   timeval time;
1175   int status = gettimeofday(&time, NULL);
1176   assert(status != -1, "linux error");
1177   seconds = jlong(time.tv_sec);
1178   nanos = jlong(time.tv_usec) * 1000;
1179 }
1180 
1181 
1182 #ifndef CLOCK_MONOTONIC
1183   #define CLOCK_MONOTONIC (1)
1184 #endif
1185 
1186 void os::Linux::clock_init() {
1187   // we do dlopen's in this particular order due to bug in linux
1188   // dynamical loader (see 6348968) leading to crash on exit
1189   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1190   if (handle == NULL) {
1191     handle = dlopen("librt.so", RTLD_LAZY);
1192   }
1193 
1194   if (handle) {
1195     int (*clock_getres_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1197     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1198            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1199     if (clock_getres_func && clock_gettime_func) {
1200       // See if monotonic clock is supported by the kernel. Note that some
1201       // early implementations simply return kernel jiffies (updated every
1202       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1203       // for nano time (though the monotonic property is still nice to have).
1204       // It's fixed in newer kernels, however clock_getres() still returns
1205       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1206       // resolution for now. Hopefully as people move to new kernels, this
1207       // won't be a problem.
1208       struct timespec res;
1209       struct timespec tp;
1210       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1211           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1212         // yes, monotonic clock is supported
1213         _clock_gettime = clock_gettime_func;
1214         return;
1215       } else {
1216         // close librt if there is no monotonic clock
1217         dlclose(handle);
1218       }
1219     }
1220   }
1221   warning("No monotonic clock was available - timed services may " \
1222           "be adversely affected if the time-of-day clock changes");
1223 }
1224 
1225 #ifndef SYS_clock_getres
1226   #if defined(X86) || defined(PPC64) || defined(S390)
1227     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1228     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1229   #else
1230     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1231     #define sys_clock_getres(x,y)  -1
1232   #endif
1233 #else
1234   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235 #endif
1236 
1237 void os::Linux::fast_thread_clock_init() {
1238   if (!UseLinuxPosixThreadCPUClocks) {
1239     return;
1240   }
1241   clockid_t clockid;
1242   struct timespec tp;
1243   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1244       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1245 
1246   // Switch to using fast clocks for thread cpu time if
1247   // the sys_clock_getres() returns 0 error code.
1248   // Note, that some kernels may support the current thread
1249   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1250   // returned by the pthread_getcpuclockid().
1251   // If the fast Posix clocks are supported then the sys_clock_getres()
1252   // must return at least tp.tv_sec == 0 which means a resolution
1253   // better than 1 sec. This is extra check for reliability.
1254 
1255   if (pthread_getcpuclockid_func &&
1256       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1257       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1258     _supports_fast_thread_cpu_time = true;
1259     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1260   }
1261 }
1262 
1263 jlong os::javaTimeNanos() {
1264   if (os::supports_monotonic_clock()) {
1265     struct timespec tp;
1266     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1267     assert(status == 0, "gettime error");
1268     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1269     return result;
1270   } else {
1271     timeval time;
1272     int status = gettimeofday(&time, NULL);
1273     assert(status != -1, "linux error");
1274     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1275     return 1000 * usecs;
1276   }
1277 }
1278 
1279 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1280   if (os::supports_monotonic_clock()) {
1281     info_ptr->max_value = ALL_64_BITS;
1282 
1283     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1284     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1285     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1286   } else {
1287     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1288     info_ptr->max_value = ALL_64_BITS;
1289 
1290     // gettimeofday is a real time clock so it skips
1291     info_ptr->may_skip_backward = true;
1292     info_ptr->may_skip_forward = true;
1293   }
1294 
1295   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1296 }
1297 
1298 // Return the real, user, and system times in seconds from an
1299 // arbitrary fixed point in the past.
1300 bool os::getTimesSecs(double* process_real_time,
1301                       double* process_user_time,
1302                       double* process_system_time) {
1303   struct tms ticks;
1304   clock_t real_ticks = times(&ticks);
1305 
1306   if (real_ticks == (clock_t) (-1)) {
1307     return false;
1308   } else {
1309     double ticks_per_second = (double) clock_tics_per_sec;
1310     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1311     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1312     *process_real_time = ((double) real_ticks) / ticks_per_second;
1313 
1314     return true;
1315   }
1316 }
1317 
1318 
1319 char * os::local_time_string(char *buf, size_t buflen) {
1320   struct tm t;
1321   time_t long_time;
1322   time(&long_time);
1323   localtime_r(&long_time, &t);
1324   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1325                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1326                t.tm_hour, t.tm_min, t.tm_sec);
1327   return buf;
1328 }
1329 
1330 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1331   return localtime_r(clock, res);
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // runtime exit support
1336 
1337 // Note: os::shutdown() might be called very early during initialization, or
1338 // called from signal handler. Before adding something to os::shutdown(), make
1339 // sure it is async-safe and can handle partially initialized VM.
1340 void os::shutdown() {
1341 
1342   // allow PerfMemory to attempt cleanup of any persistent resources
1343   perfMemory_exit();
1344 
1345   // needs to remove object in file system
1346   AttachListener::abort();
1347 
1348   // flush buffered output, finish log files
1349   ostream_abort();
1350 
1351   // Check for abort hook
1352   abort_hook_t abort_hook = Arguments::abort_hook();
1353   if (abort_hook != NULL) {
1354     abort_hook();
1355   }
1356 
1357 }
1358 
1359 // Note: os::abort() might be called very early during initialization, or
1360 // called from signal handler. Before adding something to os::abort(), make
1361 // sure it is async-safe and can handle partially initialized VM.
1362 void os::abort(bool dump_core, void* siginfo, const void* context) {
1363   os::shutdown();
1364   if (dump_core) {
1365 #ifndef PRODUCT
1366     fdStream out(defaultStream::output_fd());
1367     out.print_raw("Current thread is ");
1368     char buf[16];
1369     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1370     out.print_raw_cr(buf);
1371     out.print_raw_cr("Dumping core ...");
1372 #endif
1373     ::abort(); // dump core
1374   }
1375 
1376   ::exit(1);
1377 }
1378 
1379 // Die immediately, no exit hook, no abort hook, no cleanup.
1380 void os::die() {
1381   ::abort();
1382 }
1383 
1384 
1385 // This method is a copy of JDK's sysGetLastErrorString
1386 // from src/solaris/hpi/src/system_md.c
1387 
1388 size_t os::lasterror(char *buf, size_t len) {
1389   if (errno == 0)  return 0;
1390 
1391   const char *s = os::strerror(errno);
1392   size_t n = ::strlen(s);
1393   if (n >= len) {
1394     n = len - 1;
1395   }
1396   ::strncpy(buf, s, n);
1397   buf[n] = '\0';
1398   return n;
1399 }
1400 
1401 // thread_id is kernel thread id (similar to Solaris LWP id)
1402 intx os::current_thread_id() { return os::Linux::gettid(); }
1403 int os::current_process_id() {
1404   return ::getpid();
1405 }
1406 
1407 // DLL functions
1408 
1409 const char* os::dll_file_extension() { return ".so"; }
1410 
1411 // This must be hard coded because it's the system's temporary
1412 // directory not the java application's temp directory, ala java.io.tmpdir.
1413 const char* os::get_temp_directory() { return "/tmp"; }
1414 
1415 static bool file_exists(const char* filename) {
1416   struct stat statbuf;
1417   if (filename == NULL || strlen(filename) == 0) {
1418     return false;
1419   }
1420   return os::stat(filename, &statbuf) == 0;
1421 }
1422 
1423 // check if addr is inside libjvm.so
1424 bool os::address_is_in_vm(address addr) {
1425   static address libjvm_base_addr;
1426   Dl_info dlinfo;
1427 
1428   if (libjvm_base_addr == NULL) {
1429     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1430       libjvm_base_addr = (address)dlinfo.dli_fbase;
1431     }
1432     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1433   }
1434 
1435   if (dladdr((void *)addr, &dlinfo) != 0) {
1436     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1437   }
1438 
1439   return false;
1440 }
1441 
1442 bool os::dll_address_to_function_name(address addr, char *buf,
1443                                       int buflen, int *offset,
1444                                       bool demangle) {
1445   // buf is not optional, but offset is optional
1446   assert(buf != NULL, "sanity check");
1447 
1448   Dl_info dlinfo;
1449 
1450   if (dladdr((void*)addr, &dlinfo) != 0) {
1451     // see if we have a matching symbol
1452     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1453       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1454         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1455       }
1456       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1457       return true;
1458     }
1459     // no matching symbol so try for just file info
1460     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1461       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1462                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1463         return true;
1464       }
1465     }
1466   }
1467 
1468   buf[0] = '\0';
1469   if (offset != NULL) *offset = -1;
1470   return false;
1471 }
1472 
1473 struct _address_to_library_name {
1474   address addr;          // input : memory address
1475   size_t  buflen;        //         size of fname
1476   char*   fname;         // output: library name
1477   address base;          //         library base addr
1478 };
1479 
1480 static int address_to_library_name_callback(struct dl_phdr_info *info,
1481                                             size_t size, void *data) {
1482   int i;
1483   bool found = false;
1484   address libbase = NULL;
1485   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1486 
1487   // iterate through all loadable segments
1488   for (i = 0; i < info->dlpi_phnum; i++) {
1489     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1490     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1491       // base address of a library is the lowest address of its loaded
1492       // segments.
1493       if (libbase == NULL || libbase > segbase) {
1494         libbase = segbase;
1495       }
1496       // see if 'addr' is within current segment
1497       if (segbase <= d->addr &&
1498           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1499         found = true;
1500       }
1501     }
1502   }
1503 
1504   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1505   // so dll_address_to_library_name() can fall through to use dladdr() which
1506   // can figure out executable name from argv[0].
1507   if (found && info->dlpi_name && info->dlpi_name[0]) {
1508     d->base = libbase;
1509     if (d->fname) {
1510       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1511     }
1512     return 1;
1513   }
1514   return 0;
1515 }
1516 
1517 bool os::dll_address_to_library_name(address addr, char* buf,
1518                                      int buflen, int* offset) {
1519   // buf is not optional, but offset is optional
1520   assert(buf != NULL, "sanity check");
1521 
1522   Dl_info dlinfo;
1523   struct _address_to_library_name data;
1524 
1525   // There is a bug in old glibc dladdr() implementation that it could resolve
1526   // to wrong library name if the .so file has a base address != NULL. Here
1527   // we iterate through the program headers of all loaded libraries to find
1528   // out which library 'addr' really belongs to. This workaround can be
1529   // removed once the minimum requirement for glibc is moved to 2.3.x.
1530   data.addr = addr;
1531   data.fname = buf;
1532   data.buflen = buflen;
1533   data.base = NULL;
1534   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1535 
1536   if (rslt) {
1537     // buf already contains library name
1538     if (offset) *offset = addr - data.base;
1539     return true;
1540   }
1541   if (dladdr((void*)addr, &dlinfo) != 0) {
1542     if (dlinfo.dli_fname != NULL) {
1543       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1544     }
1545     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1546       *offset = addr - (address)dlinfo.dli_fbase;
1547     }
1548     return true;
1549   }
1550 
1551   buf[0] = '\0';
1552   if (offset) *offset = -1;
1553   return false;
1554 }
1555 
1556 // Loads .dll/.so and
1557 // in case of error it checks if .dll/.so was built for the
1558 // same architecture as Hotspot is running on
1559 
1560 
1561 // Remember the stack's state. The Linux dynamic linker will change
1562 // the stack to 'executable' at most once, so we must safepoint only once.
1563 bool os::Linux::_stack_is_executable = false;
1564 
1565 // VM operation that loads a library.  This is necessary if stack protection
1566 // of the Java stacks can be lost during loading the library.  If we
1567 // do not stop the Java threads, they can stack overflow before the stacks
1568 // are protected again.
1569 class VM_LinuxDllLoad: public VM_Operation {
1570  private:
1571   const char *_filename;
1572   char *_ebuf;
1573   int _ebuflen;
1574   void *_lib;
1575  public:
1576   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1577     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1578   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1579   void doit() {
1580     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1581     os::Linux::_stack_is_executable = true;
1582   }
1583   void* loaded_library() { return _lib; }
1584 };
1585 
1586 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1587   void * result = NULL;
1588   bool load_attempted = false;
1589 
1590   // Check whether the library to load might change execution rights
1591   // of the stack. If they are changed, the protection of the stack
1592   // guard pages will be lost. We need a safepoint to fix this.
1593   //
1594   // See Linux man page execstack(8) for more info.
1595   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1596     if (!ElfFile::specifies_noexecstack(filename)) {
1597       if (!is_init_completed()) {
1598         os::Linux::_stack_is_executable = true;
1599         // This is OK - No Java threads have been created yet, and hence no
1600         // stack guard pages to fix.
1601         //
1602         // This should happen only when you are building JDK7 using a very
1603         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1604         //
1605         // Dynamic loader will make all stacks executable after
1606         // this function returns, and will not do that again.
1607 #ifdef ASSERT
1608         ThreadsListHandle tlh;
1609         assert(tlh.length() == 0, "no Java threads should exist yet.");
1610 #endif
1611       } else {
1612         warning("You have loaded library %s which might have disabled stack guard. "
1613                 "The VM will try to fix the stack guard now.\n"
1614                 "It's highly recommended that you fix the library with "
1615                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1616                 filename);
1617 
1618         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1619         JavaThread *jt = JavaThread::current();
1620         if (jt->thread_state() != _thread_in_native) {
1621           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1622           // that requires ExecStack. Cannot enter safe point. Let's give up.
1623           warning("Unable to fix stack guard. Giving up.");
1624         } else {
1625           if (!LoadExecStackDllInVMThread) {
1626             // This is for the case where the DLL has an static
1627             // constructor function that executes JNI code. We cannot
1628             // load such DLLs in the VMThread.
1629             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1630           }
1631 
1632           ThreadInVMfromNative tiv(jt);
1633           debug_only(VMNativeEntryWrapper vew;)
1634 
1635           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1636           VMThread::execute(&op);
1637           if (LoadExecStackDllInVMThread) {
1638             result = op.loaded_library();
1639           }
1640           load_attempted = true;
1641         }
1642       }
1643     }
1644   }
1645 
1646   if (!load_attempted) {
1647     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1648   }
1649 
1650   if (result != NULL) {
1651     // Successful loading
1652     return result;
1653   }
1654 
1655   Elf32_Ehdr elf_head;
1656   int diag_msg_max_length=ebuflen-strlen(ebuf);
1657   char* diag_msg_buf=ebuf+strlen(ebuf);
1658 
1659   if (diag_msg_max_length==0) {
1660     // No more space in ebuf for additional diagnostics message
1661     return NULL;
1662   }
1663 
1664 
1665   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1666 
1667   if (file_descriptor < 0) {
1668     // Can't open library, report dlerror() message
1669     return NULL;
1670   }
1671 
1672   bool failed_to_read_elf_head=
1673     (sizeof(elf_head)!=
1674      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1675 
1676   ::close(file_descriptor);
1677   if (failed_to_read_elf_head) {
1678     // file i/o error - report dlerror() msg
1679     return NULL;
1680   }
1681 
1682   typedef struct {
1683     Elf32_Half    code;         // Actual value as defined in elf.h
1684     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1685     unsigned char elf_class;    // 32 or 64 bit
1686     unsigned char endianess;    // MSB or LSB
1687     char*         name;         // String representation
1688   } arch_t;
1689 
1690 #ifndef EM_486
1691   #define EM_486          6               /* Intel 80486 */
1692 #endif
1693 #ifndef EM_AARCH64
1694   #define EM_AARCH64    183               /* ARM AARCH64 */
1695 #endif
1696 
1697   static const arch_t arch_array[]={
1698     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1699     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1700     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1701     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1702     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1703     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1704     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1705     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1706 #if defined(VM_LITTLE_ENDIAN)
1707     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1708     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1709 #else
1710     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1711     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1712 #endif
1713     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1714     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1715     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1716     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1717     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1718     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1719     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1720     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1721   };
1722 
1723 #if  (defined IA32)
1724   static  Elf32_Half running_arch_code=EM_386;
1725 #elif   (defined AMD64)
1726   static  Elf32_Half running_arch_code=EM_X86_64;
1727 #elif  (defined IA64)
1728   static  Elf32_Half running_arch_code=EM_IA_64;
1729 #elif  (defined __sparc) && (defined _LP64)
1730   static  Elf32_Half running_arch_code=EM_SPARCV9;
1731 #elif  (defined __sparc) && (!defined _LP64)
1732   static  Elf32_Half running_arch_code=EM_SPARC;
1733 #elif  (defined __powerpc64__)
1734   static  Elf32_Half running_arch_code=EM_PPC64;
1735 #elif  (defined __powerpc__)
1736   static  Elf32_Half running_arch_code=EM_PPC;
1737 #elif  (defined AARCH64)
1738   static  Elf32_Half running_arch_code=EM_AARCH64;
1739 #elif  (defined ARM)
1740   static  Elf32_Half running_arch_code=EM_ARM;
1741 #elif  (defined S390)
1742   static  Elf32_Half running_arch_code=EM_S390;
1743 #elif  (defined ALPHA)
1744   static  Elf32_Half running_arch_code=EM_ALPHA;
1745 #elif  (defined MIPSEL)
1746   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1747 #elif  (defined PARISC)
1748   static  Elf32_Half running_arch_code=EM_PARISC;
1749 #elif  (defined MIPS)
1750   static  Elf32_Half running_arch_code=EM_MIPS;
1751 #elif  (defined M68K)
1752   static  Elf32_Half running_arch_code=EM_68K;
1753 #elif  (defined SH)
1754   static  Elf32_Half running_arch_code=EM_SH;
1755 #else
1756     #error Method os::dll_load requires that one of following is defined:\
1757         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1758 #endif
1759 
1760   // Identify compatability class for VM's architecture and library's architecture
1761   // Obtain string descriptions for architectures
1762 
1763   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1764   int running_arch_index=-1;
1765 
1766   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1767     if (running_arch_code == arch_array[i].code) {
1768       running_arch_index    = i;
1769     }
1770     if (lib_arch.code == arch_array[i].code) {
1771       lib_arch.compat_class = arch_array[i].compat_class;
1772       lib_arch.name         = arch_array[i].name;
1773     }
1774   }
1775 
1776   assert(running_arch_index != -1,
1777          "Didn't find running architecture code (running_arch_code) in arch_array");
1778   if (running_arch_index == -1) {
1779     // Even though running architecture detection failed
1780     // we may still continue with reporting dlerror() message
1781     return NULL;
1782   }
1783 
1784   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1785     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1786     return NULL;
1787   }
1788 
1789 #ifndef S390
1790   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1791     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1792     return NULL;
1793   }
1794 #endif // !S390
1795 
1796   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1797     if (lib_arch.name!=NULL) {
1798       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1799                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1800                  lib_arch.name, arch_array[running_arch_index].name);
1801     } else {
1802       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1803                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1804                  lib_arch.code,
1805                  arch_array[running_arch_index].name);
1806     }
1807   }
1808 
1809   return NULL;
1810 }
1811 
1812 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1813                                 int ebuflen) {
1814   void * result = ::dlopen(filename, RTLD_LAZY);
1815   if (result == NULL) {
1816     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1817     ebuf[ebuflen-1] = '\0';
1818   }
1819   return result;
1820 }
1821 
1822 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1823                                        int ebuflen) {
1824   void * result = NULL;
1825   if (LoadExecStackDllInVMThread) {
1826     result = dlopen_helper(filename, ebuf, ebuflen);
1827   }
1828 
1829   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1830   // library that requires an executable stack, or which does not have this
1831   // stack attribute set, dlopen changes the stack attribute to executable. The
1832   // read protection of the guard pages gets lost.
1833   //
1834   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1835   // may have been queued at the same time.
1836 
1837   if (!_stack_is_executable) {
1838     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1839       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1840           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1841         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1842           warning("Attempt to reguard stack yellow zone failed.");
1843         }
1844       }
1845     }
1846   }
1847 
1848   return result;
1849 }
1850 
1851 void* os::dll_lookup(void* handle, const char* name) {
1852   void* res = dlsym(handle, name);
1853   return res;
1854 }
1855 
1856 void* os::get_default_process_handle() {
1857   return (void*)::dlopen(NULL, RTLD_LAZY);
1858 }
1859 
1860 static bool _print_ascii_file(const char* filename, outputStream* st) {
1861   int fd = ::open(filename, O_RDONLY);
1862   if (fd == -1) {
1863     return false;
1864   }
1865 
1866   char buf[33];
1867   int bytes;
1868   buf[32] = '\0';
1869   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1870     st->print_raw(buf, bytes);
1871   }
1872 
1873   ::close(fd);
1874 
1875   return true;
1876 }
1877 
1878 void os::print_dll_info(outputStream *st) {
1879   st->print_cr("Dynamic libraries:");
1880 
1881   char fname[32];
1882   pid_t pid = os::Linux::gettid();
1883 
1884   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1885 
1886   if (!_print_ascii_file(fname, st)) {
1887     st->print("Can not get library information for pid = %d\n", pid);
1888   }
1889 }
1890 
1891 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1892   FILE *procmapsFile = NULL;
1893 
1894   // Open the procfs maps file for the current process
1895   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1896     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1897     char line[PATH_MAX + 100];
1898 
1899     // Read line by line from 'file'
1900     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1901       u8 base, top, offset, inode;
1902       char permissions[5];
1903       char device[6];
1904       char name[PATH_MAX + 1];
1905 
1906       // Parse fields from line
1907       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1908              &base, &top, permissions, &offset, device, &inode, name);
1909 
1910       // Filter by device id '00:00' so that we only get file system mapped files.
1911       if (strcmp(device, "00:00") != 0) {
1912 
1913         // Call callback with the fields of interest
1914         if(callback(name, (address)base, (address)top, param)) {
1915           // Oops abort, callback aborted
1916           fclose(procmapsFile);
1917           return 1;
1918         }
1919       }
1920     }
1921     fclose(procmapsFile);
1922   }
1923   return 0;
1924 }
1925 
1926 void os::print_os_info_brief(outputStream* st) {
1927   os::Linux::print_distro_info(st);
1928 
1929   os::Posix::print_uname_info(st);
1930 
1931   os::Linux::print_libversion_info(st);
1932 
1933 }
1934 
1935 void os::print_os_info(outputStream* st) {
1936   st->print("OS:");
1937 
1938   os::Linux::print_distro_info(st);
1939 
1940   os::Posix::print_uname_info(st);
1941 
1942   // Print warning if unsafe chroot environment detected
1943   if (unsafe_chroot_detected) {
1944     st->print("WARNING!! ");
1945     st->print_cr("%s", unstable_chroot_error);
1946   }
1947 
1948   os::Linux::print_libversion_info(st);
1949 
1950   os::Posix::print_rlimit_info(st);
1951 
1952   os::Posix::print_load_average(st);
1953 
1954   os::Linux::print_full_memory_info(st);
1955 }
1956 
1957 // Try to identify popular distros.
1958 // Most Linux distributions have a /etc/XXX-release file, which contains
1959 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1960 // file that also contains the OS version string. Some have more than one
1961 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1962 // /etc/redhat-release.), so the order is important.
1963 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1964 // their own specific XXX-release file as well as a redhat-release file.
1965 // Because of this the XXX-release file needs to be searched for before the
1966 // redhat-release file.
1967 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1968 // search for redhat-release / SuSE-release needs to be before lsb-release.
1969 // Since the lsb-release file is the new standard it needs to be searched
1970 // before the older style release files.
1971 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1972 // next to last resort.  The os-release file is a new standard that contains
1973 // distribution information and the system-release file seems to be an old
1974 // standard that has been replaced by the lsb-release and os-release files.
1975 // Searching for the debian_version file is the last resort.  It contains
1976 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1977 // "Debian " is printed before the contents of the debian_version file.
1978 
1979 const char* distro_files[] = {
1980   "/etc/oracle-release",
1981   "/etc/mandriva-release",
1982   "/etc/mandrake-release",
1983   "/etc/sun-release",
1984   "/etc/redhat-release",
1985   "/etc/SuSE-release",
1986   "/etc/lsb-release",
1987   "/etc/turbolinux-release",
1988   "/etc/gentoo-release",
1989   "/etc/ltib-release",
1990   "/etc/angstrom-version",
1991   "/etc/system-release",
1992   "/etc/os-release",
1993   NULL };
1994 
1995 void os::Linux::print_distro_info(outputStream* st) {
1996   for (int i = 0;; i++) {
1997     const char* file = distro_files[i];
1998     if (file == NULL) {
1999       break;  // done
2000     }
2001     // If file prints, we found it.
2002     if (_print_ascii_file(file, st)) {
2003       return;
2004     }
2005   }
2006 
2007   if (file_exists("/etc/debian_version")) {
2008     st->print("Debian ");
2009     _print_ascii_file("/etc/debian_version", st);
2010   } else {
2011     st->print("Linux");
2012   }
2013   st->cr();
2014 }
2015 
2016 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2017   char buf[256];
2018   while (fgets(buf, sizeof(buf), fp)) {
2019     // Edit out extra stuff in expected format
2020     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2021       char* ptr = strstr(buf, "\"");  // the name is in quotes
2022       if (ptr != NULL) {
2023         ptr++; // go beyond first quote
2024         char* nl = strchr(ptr, '\"');
2025         if (nl != NULL) *nl = '\0';
2026         strncpy(distro, ptr, length);
2027       } else {
2028         ptr = strstr(buf, "=");
2029         ptr++; // go beyond equals then
2030         char* nl = strchr(ptr, '\n');
2031         if (nl != NULL) *nl = '\0';
2032         strncpy(distro, ptr, length);
2033       }
2034       return;
2035     } else if (get_first_line) {
2036       char* nl = strchr(buf, '\n');
2037       if (nl != NULL) *nl = '\0';
2038       strncpy(distro, buf, length);
2039       return;
2040     }
2041   }
2042   // print last line and close
2043   char* nl = strchr(buf, '\n');
2044   if (nl != NULL) *nl = '\0';
2045   strncpy(distro, buf, length);
2046 }
2047 
2048 static void parse_os_info(char* distro, size_t length, const char* file) {
2049   FILE* fp = fopen(file, "r");
2050   if (fp != NULL) {
2051     // if suse format, print out first line
2052     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2053     parse_os_info_helper(fp, distro, length, get_first_line);
2054     fclose(fp);
2055   }
2056 }
2057 
2058 void os::get_summary_os_info(char* buf, size_t buflen) {
2059   for (int i = 0;; i++) {
2060     const char* file = distro_files[i];
2061     if (file == NULL) {
2062       break; // ran out of distro_files
2063     }
2064     if (file_exists(file)) {
2065       parse_os_info(buf, buflen, file);
2066       return;
2067     }
2068   }
2069   // special case for debian
2070   if (file_exists("/etc/debian_version")) {
2071     strncpy(buf, "Debian ", buflen);
2072     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2073   } else {
2074     strncpy(buf, "Linux", buflen);
2075   }
2076 }
2077 
2078 void os::Linux::print_libversion_info(outputStream* st) {
2079   // libc, pthread
2080   st->print("libc:");
2081   st->print("%s ", os::Linux::glibc_version());
2082   st->print("%s ", os::Linux::libpthread_version());
2083   st->cr();
2084 }
2085 
2086 void os::Linux::print_full_memory_info(outputStream* st) {
2087   st->print("\n/proc/meminfo:\n");
2088   _print_ascii_file("/proc/meminfo", st);
2089   st->cr();
2090 }
2091 
2092 void os::print_memory_info(outputStream* st) {
2093 
2094   st->print("Memory:");
2095   st->print(" %dk page", os::vm_page_size()>>10);
2096 
2097   // values in struct sysinfo are "unsigned long"
2098   struct sysinfo si;
2099   sysinfo(&si);
2100 
2101   st->print(", physical " UINT64_FORMAT "k",
2102             os::physical_memory() >> 10);
2103   st->print("(" UINT64_FORMAT "k free)",
2104             os::available_memory() >> 10);
2105   st->print(", swap " UINT64_FORMAT "k",
2106             ((jlong)si.totalswap * si.mem_unit) >> 10);
2107   st->print("(" UINT64_FORMAT "k free)",
2108             ((jlong)si.freeswap * si.mem_unit) >> 10);
2109   st->cr();
2110 }
2111 
2112 // Print the first "model name" line and the first "flags" line
2113 // that we find and nothing more. We assume "model name" comes
2114 // before "flags" so if we find a second "model name", then the
2115 // "flags" field is considered missing.
2116 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2117 #if defined(IA32) || defined(AMD64)
2118   // Other platforms have less repetitive cpuinfo files
2119   FILE *fp = fopen("/proc/cpuinfo", "r");
2120   if (fp) {
2121     while (!feof(fp)) {
2122       if (fgets(buf, buflen, fp)) {
2123         // Assume model name comes before flags
2124         bool model_name_printed = false;
2125         if (strstr(buf, "model name") != NULL) {
2126           if (!model_name_printed) {
2127             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2128             st->print_raw(buf);
2129             model_name_printed = true;
2130           } else {
2131             // model name printed but not flags?  Odd, just return
2132             fclose(fp);
2133             return true;
2134           }
2135         }
2136         // print the flags line too
2137         if (strstr(buf, "flags") != NULL) {
2138           st->print_raw(buf);
2139           fclose(fp);
2140           return true;
2141         }
2142       }
2143     }
2144     fclose(fp);
2145   }
2146 #endif // x86 platforms
2147   return false;
2148 }
2149 
2150 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2151   // Only print the model name if the platform provides this as a summary
2152   if (!print_model_name_and_flags(st, buf, buflen)) {
2153     st->print("\n/proc/cpuinfo:\n");
2154     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2155       st->print_cr("  <Not Available>");
2156     }
2157   }
2158 }
2159 
2160 #if defined(AMD64) || defined(IA32) || defined(X32)
2161 const char* search_string = "model name";
2162 #elif defined(M68K)
2163 const char* search_string = "CPU";
2164 #elif defined(PPC64)
2165 const char* search_string = "cpu";
2166 #elif defined(S390)
2167 const char* search_string = "processor";
2168 #elif defined(SPARC)
2169 const char* search_string = "cpu";
2170 #else
2171 const char* search_string = "Processor";
2172 #endif
2173 
2174 // Parses the cpuinfo file for string representing the model name.
2175 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2176   FILE* fp = fopen("/proc/cpuinfo", "r");
2177   if (fp != NULL) {
2178     while (!feof(fp)) {
2179       char buf[256];
2180       if (fgets(buf, sizeof(buf), fp)) {
2181         char* start = strstr(buf, search_string);
2182         if (start != NULL) {
2183           char *ptr = start + strlen(search_string);
2184           char *end = buf + strlen(buf);
2185           while (ptr != end) {
2186              // skip whitespace and colon for the rest of the name.
2187              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2188                break;
2189              }
2190              ptr++;
2191           }
2192           if (ptr != end) {
2193             // reasonable string, get rid of newline and keep the rest
2194             char* nl = strchr(buf, '\n');
2195             if (nl != NULL) *nl = '\0';
2196             strncpy(cpuinfo, ptr, length);
2197             fclose(fp);
2198             return;
2199           }
2200         }
2201       }
2202     }
2203     fclose(fp);
2204   }
2205   // cpuinfo not found or parsing failed, just print generic string.  The entire
2206   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2207 #if   defined(AARCH64)
2208   strncpy(cpuinfo, "AArch64", length);
2209 #elif defined(AMD64)
2210   strncpy(cpuinfo, "x86_64", length);
2211 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2212   strncpy(cpuinfo, "ARM", length);
2213 #elif defined(IA32)
2214   strncpy(cpuinfo, "x86_32", length);
2215 #elif defined(IA64)
2216   strncpy(cpuinfo, "IA64", length);
2217 #elif defined(PPC)
2218   strncpy(cpuinfo, "PPC64", length);
2219 #elif defined(S390)
2220   strncpy(cpuinfo, "S390", length);
2221 #elif defined(SPARC)
2222   strncpy(cpuinfo, "sparcv9", length);
2223 #elif defined(ZERO_LIBARCH)
2224   strncpy(cpuinfo, ZERO_LIBARCH, length);
2225 #else
2226   strncpy(cpuinfo, "unknown", length);
2227 #endif
2228 }
2229 
2230 static void print_signal_handler(outputStream* st, int sig,
2231                                  char* buf, size_t buflen);
2232 
2233 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2234   st->print_cr("Signal Handlers:");
2235   print_signal_handler(st, SIGSEGV, buf, buflen);
2236   print_signal_handler(st, SIGBUS , buf, buflen);
2237   print_signal_handler(st, SIGFPE , buf, buflen);
2238   print_signal_handler(st, SIGPIPE, buf, buflen);
2239   print_signal_handler(st, SIGXFSZ, buf, buflen);
2240   print_signal_handler(st, SIGILL , buf, buflen);
2241   print_signal_handler(st, SR_signum, buf, buflen);
2242   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2243   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2244   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2245   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2246 #if defined(PPC64)
2247   print_signal_handler(st, SIGTRAP, buf, buflen);
2248 #endif
2249 }
2250 
2251 static char saved_jvm_path[MAXPATHLEN] = {0};
2252 
2253 // Find the full path to the current module, libjvm.so
2254 void os::jvm_path(char *buf, jint buflen) {
2255   // Error checking.
2256   if (buflen < MAXPATHLEN) {
2257     assert(false, "must use a large-enough buffer");
2258     buf[0] = '\0';
2259     return;
2260   }
2261   // Lazy resolve the path to current module.
2262   if (saved_jvm_path[0] != 0) {
2263     strcpy(buf, saved_jvm_path);
2264     return;
2265   }
2266 
2267   char dli_fname[MAXPATHLEN];
2268   bool ret = dll_address_to_library_name(
2269                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2270                                          dli_fname, sizeof(dli_fname), NULL);
2271   assert(ret, "cannot locate libjvm");
2272   char *rp = NULL;
2273   if (ret && dli_fname[0] != '\0') {
2274     rp = os::Posix::realpath(dli_fname, buf, buflen);
2275   }
2276   if (rp == NULL) {
2277     return;
2278   }
2279 
2280   if (Arguments::sun_java_launcher_is_altjvm()) {
2281     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2282     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2283     // If "/jre/lib/" appears at the right place in the string, then
2284     // assume we are installed in a JDK and we're done. Otherwise, check
2285     // for a JAVA_HOME environment variable and fix up the path so it
2286     // looks like libjvm.so is installed there (append a fake suffix
2287     // hotspot/libjvm.so).
2288     const char *p = buf + strlen(buf) - 1;
2289     for (int count = 0; p > buf && count < 5; ++count) {
2290       for (--p; p > buf && *p != '/'; --p)
2291         /* empty */ ;
2292     }
2293 
2294     if (strncmp(p, "/jre/lib/", 9) != 0) {
2295       // Look for JAVA_HOME in the environment.
2296       char* java_home_var = ::getenv("JAVA_HOME");
2297       if (java_home_var != NULL && java_home_var[0] != 0) {
2298         char* jrelib_p;
2299         int len;
2300 
2301         // Check the current module name "libjvm.so".
2302         p = strrchr(buf, '/');
2303         if (p == NULL) {
2304           return;
2305         }
2306         assert(strstr(p, "/libjvm") == p, "invalid library name");
2307 
2308         rp = os::Posix::realpath(java_home_var, buf, buflen);
2309         if (rp == NULL) {
2310           return;
2311         }
2312 
2313         // determine if this is a legacy image or modules image
2314         // modules image doesn't have "jre" subdirectory
2315         len = strlen(buf);
2316         assert(len < buflen, "Ran out of buffer room");
2317         jrelib_p = buf + len;
2318         snprintf(jrelib_p, buflen-len, "/jre/lib");
2319         if (0 != access(buf, F_OK)) {
2320           snprintf(jrelib_p, buflen-len, "/lib");
2321         }
2322 
2323         if (0 == access(buf, F_OK)) {
2324           // Use current module name "libjvm.so"
2325           len = strlen(buf);
2326           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2327         } else {
2328           // Go back to path of .so
2329           rp = os::Posix::realpath(dli_fname, buf, buflen);
2330           if (rp == NULL) {
2331             return;
2332           }
2333         }
2334       }
2335     }
2336   }
2337 
2338   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2339   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2340 }
2341 
2342 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2343   // no prefix required, not even "_"
2344 }
2345 
2346 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2347   // no suffix required
2348 }
2349 
2350 ////////////////////////////////////////////////////////////////////////////////
2351 // sun.misc.Signal support
2352 
2353 static volatile jint sigint_count = 0;
2354 
2355 static void UserHandler(int sig, void *siginfo, void *context) {
2356   // 4511530 - sem_post is serialized and handled by the manager thread. When
2357   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2358   // don't want to flood the manager thread with sem_post requests.
2359   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2360     return;
2361   }
2362 
2363   // Ctrl-C is pressed during error reporting, likely because the error
2364   // handler fails to abort. Let VM die immediately.
2365   if (sig == SIGINT && VMError::is_error_reported()) {
2366     os::die();
2367   }
2368 
2369   os::signal_notify(sig);
2370 }
2371 
2372 void* os::user_handler() {
2373   return CAST_FROM_FN_PTR(void*, UserHandler);
2374 }
2375 
2376 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2377   struct timespec ts;
2378   // Semaphore's are always associated with CLOCK_REALTIME
2379   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2380   // see unpackTime for discussion on overflow checking
2381   if (sec >= MAX_SECS) {
2382     ts.tv_sec += MAX_SECS;
2383     ts.tv_nsec = 0;
2384   } else {
2385     ts.tv_sec += sec;
2386     ts.tv_nsec += nsec;
2387     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2388       ts.tv_nsec -= NANOSECS_PER_SEC;
2389       ++ts.tv_sec; // note: this must be <= max_secs
2390     }
2391   }
2392 
2393   return ts;
2394 }
2395 
2396 extern "C" {
2397   typedef void (*sa_handler_t)(int);
2398   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2399 }
2400 
2401 void* os::signal(int signal_number, void* handler) {
2402   struct sigaction sigAct, oldSigAct;
2403 
2404   sigfillset(&(sigAct.sa_mask));
2405   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2406   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2407 
2408   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2409     // -1 means registration failed
2410     return (void *)-1;
2411   }
2412 
2413   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2414 }
2415 
2416 void os::signal_raise(int signal_number) {
2417   ::raise(signal_number);
2418 }
2419 
2420 // The following code is moved from os.cpp for making this
2421 // code platform specific, which it is by its very nature.
2422 
2423 // Will be modified when max signal is changed to be dynamic
2424 int os::sigexitnum_pd() {
2425   return NSIG;
2426 }
2427 
2428 // a counter for each possible signal value
2429 static volatile jint pending_signals[NSIG+1] = { 0 };
2430 
2431 // Linux(POSIX) specific hand shaking semaphore.
2432 static sem_t sig_sem;
2433 static PosixSemaphore sr_semaphore;
2434 
2435 void os::signal_init_pd() {
2436   // Initialize signal structures
2437   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2438 
2439   // Initialize signal semaphore
2440   ::sem_init(&sig_sem, 0, 0);
2441 }
2442 
2443 void os::signal_notify(int sig) {
2444   Atomic::inc(&pending_signals[sig]);
2445   ::sem_post(&sig_sem);
2446 }
2447 
2448 static int check_pending_signals(bool wait) {
2449   Atomic::store(0, &sigint_count);
2450   for (;;) {
2451     for (int i = 0; i < NSIG + 1; i++) {
2452       jint n = pending_signals[i];
2453       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2454         return i;
2455       }
2456     }
2457     if (!wait) {
2458       return -1;
2459     }
2460     JavaThread *thread = JavaThread::current();
2461     ThreadBlockInVM tbivm(thread);
2462 
2463     bool threadIsSuspended;
2464     do {
2465       thread->set_suspend_equivalent();
2466       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2467       ::sem_wait(&sig_sem);
2468 
2469       // were we externally suspended while we were waiting?
2470       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2471       if (threadIsSuspended) {
2472         // The semaphore has been incremented, but while we were waiting
2473         // another thread suspended us. We don't want to continue running
2474         // while suspended because that would surprise the thread that
2475         // suspended us.
2476         ::sem_post(&sig_sem);
2477 
2478         thread->java_suspend_self();
2479       }
2480     } while (threadIsSuspended);
2481   }
2482 }
2483 
2484 int os::signal_lookup() {
2485   return check_pending_signals(false);
2486 }
2487 
2488 int os::signal_wait() {
2489   return check_pending_signals(true);
2490 }
2491 
2492 ////////////////////////////////////////////////////////////////////////////////
2493 // Virtual Memory
2494 
2495 int os::vm_page_size() {
2496   // Seems redundant as all get out
2497   assert(os::Linux::page_size() != -1, "must call os::init");
2498   return os::Linux::page_size();
2499 }
2500 
2501 // Solaris allocates memory by pages.
2502 int os::vm_allocation_granularity() {
2503   assert(os::Linux::page_size() != -1, "must call os::init");
2504   return os::Linux::page_size();
2505 }
2506 
2507 // Rationale behind this function:
2508 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2509 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2510 //  samples for JITted code. Here we create private executable mapping over the code cache
2511 //  and then we can use standard (well, almost, as mapping can change) way to provide
2512 //  info for the reporting script by storing timestamp and location of symbol
2513 void linux_wrap_code(char* base, size_t size) {
2514   static volatile jint cnt = 0;
2515 
2516   if (!UseOprofile) {
2517     return;
2518   }
2519 
2520   char buf[PATH_MAX+1];
2521   int num = Atomic::add(1, &cnt);
2522 
2523   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2524            os::get_temp_directory(), os::current_process_id(), num);
2525   unlink(buf);
2526 
2527   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2528 
2529   if (fd != -1) {
2530     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2531     if (rv != (off_t)-1) {
2532       if (::write(fd, "", 1) == 1) {
2533         mmap(base, size,
2534              PROT_READ|PROT_WRITE|PROT_EXEC,
2535              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2536       }
2537     }
2538     ::close(fd);
2539     unlink(buf);
2540   }
2541 }
2542 
2543 static bool recoverable_mmap_error(int err) {
2544   // See if the error is one we can let the caller handle. This
2545   // list of errno values comes from JBS-6843484. I can't find a
2546   // Linux man page that documents this specific set of errno
2547   // values so while this list currently matches Solaris, it may
2548   // change as we gain experience with this failure mode.
2549   switch (err) {
2550   case EBADF:
2551   case EINVAL:
2552   case ENOTSUP:
2553     // let the caller deal with these errors
2554     return true;
2555 
2556   default:
2557     // Any remaining errors on this OS can cause our reserved mapping
2558     // to be lost. That can cause confusion where different data
2559     // structures think they have the same memory mapped. The worst
2560     // scenario is if both the VM and a library think they have the
2561     // same memory mapped.
2562     return false;
2563   }
2564 }
2565 
2566 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2567                                     int err) {
2568   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2569           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2570           os::strerror(err), err);
2571 }
2572 
2573 static void warn_fail_commit_memory(char* addr, size_t size,
2574                                     size_t alignment_hint, bool exec,
2575                                     int err) {
2576   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2577           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2578           alignment_hint, exec, os::strerror(err), err);
2579 }
2580 
2581 // NOTE: Linux kernel does not really reserve the pages for us.
2582 //       All it does is to check if there are enough free pages
2583 //       left at the time of mmap(). This could be a potential
2584 //       problem.
2585 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2586   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2587   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2588                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2589   if (res != (uintptr_t) MAP_FAILED) {
2590     if (UseNUMAInterleaving) {
2591       numa_make_global(addr, size);
2592     }
2593     return 0;
2594   }
2595 
2596   int err = errno;  // save errno from mmap() call above
2597 
2598   if (!recoverable_mmap_error(err)) {
2599     warn_fail_commit_memory(addr, size, exec, err);
2600     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2601   }
2602 
2603   return err;
2604 }
2605 
2606 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2607   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2608 }
2609 
2610 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2611                                   const char* mesg) {
2612   assert(mesg != NULL, "mesg must be specified");
2613   int err = os::Linux::commit_memory_impl(addr, size, exec);
2614   if (err != 0) {
2615     // the caller wants all commit errors to exit with the specified mesg:
2616     warn_fail_commit_memory(addr, size, exec, err);
2617     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2618   }
2619 }
2620 
2621 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2622 #ifndef MAP_HUGETLB
2623   #define MAP_HUGETLB 0x40000
2624 #endif
2625 
2626 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2627 #ifndef MADV_HUGEPAGE
2628   #define MADV_HUGEPAGE 14
2629 #endif
2630 
2631 int os::Linux::commit_memory_impl(char* addr, size_t size,
2632                                   size_t alignment_hint, bool exec) {
2633   int err = os::Linux::commit_memory_impl(addr, size, exec);
2634   if (err == 0) {
2635     realign_memory(addr, size, alignment_hint);
2636   }
2637   return err;
2638 }
2639 
2640 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2641                           bool exec) {
2642   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2643 }
2644 
2645 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2646                                   size_t alignment_hint, bool exec,
2647                                   const char* mesg) {
2648   assert(mesg != NULL, "mesg must be specified");
2649   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2650   if (err != 0) {
2651     // the caller wants all commit errors to exit with the specified mesg:
2652     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2653     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2654   }
2655 }
2656 
2657 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2658   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2659     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2660     // be supported or the memory may already be backed by huge pages.
2661     ::madvise(addr, bytes, MADV_HUGEPAGE);
2662   }
2663 }
2664 
2665 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2666   // This method works by doing an mmap over an existing mmaping and effectively discarding
2667   // the existing pages. However it won't work for SHM-based large pages that cannot be
2668   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2669   // small pages on top of the SHM segment. This method always works for small pages, so we
2670   // allow that in any case.
2671   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2672     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2673   }
2674 }
2675 
2676 void os::numa_make_global(char *addr, size_t bytes) {
2677   Linux::numa_interleave_memory(addr, bytes);
2678 }
2679 
2680 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2681 // bind policy to MPOL_PREFERRED for the current thread.
2682 #define USE_MPOL_PREFERRED 0
2683 
2684 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2685   // To make NUMA and large pages more robust when both enabled, we need to ease
2686   // the requirements on where the memory should be allocated. MPOL_BIND is the
2687   // default policy and it will force memory to be allocated on the specified
2688   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2689   // the specified node, but will not force it. Using this policy will prevent
2690   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2691   // free large pages.
2692   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2693   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2694 }
2695 
2696 bool os::numa_topology_changed() { return false; }
2697 
2698 size_t os::numa_get_groups_num() {
2699   // Return just the number of nodes in which it's possible to allocate memory
2700   // (in numa terminology, configured nodes).
2701   return Linux::numa_num_configured_nodes();
2702 }
2703 
2704 int os::numa_get_group_id() {
2705   int cpu_id = Linux::sched_getcpu();
2706   if (cpu_id != -1) {
2707     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2708     if (lgrp_id != -1) {
2709       return lgrp_id;
2710     }
2711   }
2712   return 0;
2713 }
2714 
2715 int os::Linux::get_existing_num_nodes() {
2716   size_t node;
2717   size_t highest_node_number = Linux::numa_max_node();
2718   int num_nodes = 0;
2719 
2720   // Get the total number of nodes in the system including nodes without memory.
2721   for (node = 0; node <= highest_node_number; node++) {
2722     if (isnode_in_existing_nodes(node)) {
2723       num_nodes++;
2724     }
2725   }
2726   return num_nodes;
2727 }
2728 
2729 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2730   size_t highest_node_number = Linux::numa_max_node();
2731   size_t i = 0;
2732 
2733   // Map all node ids in which is possible to allocate memory. Also nodes are
2734   // not always consecutively available, i.e. available from 0 to the highest
2735   // node number.
2736   for (size_t node = 0; node <= highest_node_number; node++) {
2737     if (Linux::isnode_in_configured_nodes(node)) {
2738       ids[i++] = node;
2739     }
2740   }
2741   return i;
2742 }
2743 
2744 bool os::get_page_info(char *start, page_info* info) {
2745   return false;
2746 }
2747 
2748 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2749                      page_info* page_found) {
2750   return end;
2751 }
2752 
2753 
2754 int os::Linux::sched_getcpu_syscall(void) {
2755   unsigned int cpu = 0;
2756   int retval = -1;
2757 
2758 #if defined(IA32)
2759   #ifndef SYS_getcpu
2760     #define SYS_getcpu 318
2761   #endif
2762   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2763 #elif defined(AMD64)
2764 // Unfortunately we have to bring all these macros here from vsyscall.h
2765 // to be able to compile on old linuxes.
2766   #define __NR_vgetcpu 2
2767   #define VSYSCALL_START (-10UL << 20)
2768   #define VSYSCALL_SIZE 1024
2769   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2770   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2771   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2772   retval = vgetcpu(&cpu, NULL, NULL);
2773 #endif
2774 
2775   return (retval == -1) ? retval : cpu;
2776 }
2777 
2778 void os::Linux::sched_getcpu_init() {
2779   // sched_getcpu() should be in libc.
2780   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2781                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2782 
2783   // If it's not, try a direct syscall.
2784   if (sched_getcpu() == -1) {
2785     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2786                                     (void*)&sched_getcpu_syscall));
2787   }
2788 }
2789 
2790 // Something to do with the numa-aware allocator needs these symbols
2791 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2792 extern "C" JNIEXPORT void numa_error(char *where) { }
2793 
2794 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2795 // load symbol from base version instead.
2796 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2797   void *f = dlvsym(handle, name, "libnuma_1.1");
2798   if (f == NULL) {
2799     f = dlsym(handle, name);
2800   }
2801   return f;
2802 }
2803 
2804 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2805 // Return NULL if the symbol is not defined in this particular version.
2806 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2807   return dlvsym(handle, name, "libnuma_1.2");
2808 }
2809 
2810 bool os::Linux::libnuma_init() {
2811   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2812     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2813     if (handle != NULL) {
2814       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2815                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2816       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2817                                        libnuma_dlsym(handle, "numa_max_node")));
2818       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2819                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2820       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2821                                         libnuma_dlsym(handle, "numa_available")));
2822       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2823                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2824       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2825                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2826       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2827                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2828       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2829                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2830       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2831                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2832       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2833                                        libnuma_dlsym(handle, "numa_distance")));
2834 
2835       if (numa_available() != -1) {
2836         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2837         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2838         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2839         // Create an index -> node mapping, since nodes are not always consecutive
2840         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2841         rebuild_nindex_to_node_map();
2842         // Create a cpu -> node mapping
2843         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2844         rebuild_cpu_to_node_map();
2845         return true;
2846       }
2847     }
2848   }
2849   return false;
2850 }
2851 
2852 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2853   // Creating guard page is very expensive. Java thread has HotSpot
2854   // guard pages, only enable glibc guard page for non-Java threads.
2855   // (Remember: compiler thread is a Java thread, too!)
2856   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2857 }
2858 
2859 void os::Linux::rebuild_nindex_to_node_map() {
2860   int highest_node_number = Linux::numa_max_node();
2861 
2862   nindex_to_node()->clear();
2863   for (int node = 0; node <= highest_node_number; node++) {
2864     if (Linux::isnode_in_existing_nodes(node)) {
2865       nindex_to_node()->append(node);
2866     }
2867   }
2868 }
2869 
2870 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2871 // The table is later used in get_node_by_cpu().
2872 void os::Linux::rebuild_cpu_to_node_map() {
2873   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2874                               // in libnuma (possible values are starting from 16,
2875                               // and continuing up with every other power of 2, but less
2876                               // than the maximum number of CPUs supported by kernel), and
2877                               // is a subject to change (in libnuma version 2 the requirements
2878                               // are more reasonable) we'll just hardcode the number they use
2879                               // in the library.
2880   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2881 
2882   size_t cpu_num = processor_count();
2883   size_t cpu_map_size = NCPUS / BitsPerCLong;
2884   size_t cpu_map_valid_size =
2885     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2886 
2887   cpu_to_node()->clear();
2888   cpu_to_node()->at_grow(cpu_num - 1);
2889 
2890   size_t node_num = get_existing_num_nodes();
2891 
2892   int distance = 0;
2893   int closest_distance = INT_MAX;
2894   int closest_node = 0;
2895   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2896   for (size_t i = 0; i < node_num; i++) {
2897     // Check if node is configured (not a memory-less node). If it is not, find
2898     // the closest configured node.
2899     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2900       closest_distance = INT_MAX;
2901       // Check distance from all remaining nodes in the system. Ignore distance
2902       // from itself and from another non-configured node.
2903       for (size_t m = 0; m < node_num; m++) {
2904         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2905           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2906           // If a closest node is found, update. There is always at least one
2907           // configured node in the system so there is always at least one node
2908           // close.
2909           if (distance != 0 && distance < closest_distance) {
2910             closest_distance = distance;
2911             closest_node = nindex_to_node()->at(m);
2912           }
2913         }
2914       }
2915      } else {
2916        // Current node is already a configured node.
2917        closest_node = nindex_to_node()->at(i);
2918      }
2919 
2920     // Get cpus from the original node and map them to the closest node. If node
2921     // is a configured node (not a memory-less node), then original node and
2922     // closest node are the same.
2923     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2924       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2925         if (cpu_map[j] != 0) {
2926           for (size_t k = 0; k < BitsPerCLong; k++) {
2927             if (cpu_map[j] & (1UL << k)) {
2928               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2929             }
2930           }
2931         }
2932       }
2933     }
2934   }
2935   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2936 }
2937 
2938 int os::Linux::get_node_by_cpu(int cpu_id) {
2939   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2940     return cpu_to_node()->at(cpu_id);
2941   }
2942   return -1;
2943 }
2944 
2945 GrowableArray<int>* os::Linux::_cpu_to_node;
2946 GrowableArray<int>* os::Linux::_nindex_to_node;
2947 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2948 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2949 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2950 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2951 os::Linux::numa_available_func_t os::Linux::_numa_available;
2952 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2953 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2954 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2955 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2956 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2957 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2958 unsigned long* os::Linux::_numa_all_nodes;
2959 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2960 struct bitmask* os::Linux::_numa_nodes_ptr;
2961 
2962 bool os::pd_uncommit_memory(char* addr, size_t size) {
2963   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2964                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2965   return res  != (uintptr_t) MAP_FAILED;
2966 }
2967 
2968 static address get_stack_commited_bottom(address bottom, size_t size) {
2969   address nbot = bottom;
2970   address ntop = bottom + size;
2971 
2972   size_t page_sz = os::vm_page_size();
2973   unsigned pages = size / page_sz;
2974 
2975   unsigned char vec[1];
2976   unsigned imin = 1, imax = pages + 1, imid;
2977   int mincore_return_value = 0;
2978 
2979   assert(imin <= imax, "Unexpected page size");
2980 
2981   while (imin < imax) {
2982     imid = (imax + imin) / 2;
2983     nbot = ntop - (imid * page_sz);
2984 
2985     // Use a trick with mincore to check whether the page is mapped or not.
2986     // mincore sets vec to 1 if page resides in memory and to 0 if page
2987     // is swapped output but if page we are asking for is unmapped
2988     // it returns -1,ENOMEM
2989     mincore_return_value = mincore(nbot, page_sz, vec);
2990 
2991     if (mincore_return_value == -1) {
2992       // Page is not mapped go up
2993       // to find first mapped page
2994       if (errno != EAGAIN) {
2995         assert(errno == ENOMEM, "Unexpected mincore errno");
2996         imax = imid;
2997       }
2998     } else {
2999       // Page is mapped go down
3000       // to find first not mapped page
3001       imin = imid + 1;
3002     }
3003   }
3004 
3005   nbot = nbot + page_sz;
3006 
3007   // Adjust stack bottom one page up if last checked page is not mapped
3008   if (mincore_return_value == -1) {
3009     nbot = nbot + page_sz;
3010   }
3011 
3012   return nbot;
3013 }
3014 
3015 
3016 // Linux uses a growable mapping for the stack, and if the mapping for
3017 // the stack guard pages is not removed when we detach a thread the
3018 // stack cannot grow beyond the pages where the stack guard was
3019 // mapped.  If at some point later in the process the stack expands to
3020 // that point, the Linux kernel cannot expand the stack any further
3021 // because the guard pages are in the way, and a segfault occurs.
3022 //
3023 // However, it's essential not to split the stack region by unmapping
3024 // a region (leaving a hole) that's already part of the stack mapping,
3025 // so if the stack mapping has already grown beyond the guard pages at
3026 // the time we create them, we have to truncate the stack mapping.
3027 // So, we need to know the extent of the stack mapping when
3028 // create_stack_guard_pages() is called.
3029 
3030 // We only need this for stacks that are growable: at the time of
3031 // writing thread stacks don't use growable mappings (i.e. those
3032 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3033 // only applies to the main thread.
3034 
3035 // If the (growable) stack mapping already extends beyond the point
3036 // where we're going to put our guard pages, truncate the mapping at
3037 // that point by munmap()ping it.  This ensures that when we later
3038 // munmap() the guard pages we don't leave a hole in the stack
3039 // mapping. This only affects the main/initial thread
3040 
3041 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3042   if (os::Linux::is_initial_thread()) {
3043     // As we manually grow stack up to bottom inside create_attached_thread(),
3044     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3045     // we don't need to do anything special.
3046     // Check it first, before calling heavy function.
3047     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3048     unsigned char vec[1];
3049 
3050     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3051       // Fallback to slow path on all errors, including EAGAIN
3052       stack_extent = (uintptr_t) get_stack_commited_bottom(
3053                                                            os::Linux::initial_thread_stack_bottom(),
3054                                                            (size_t)addr - stack_extent);
3055     }
3056 
3057     if (stack_extent < (uintptr_t)addr) {
3058       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3059     }
3060   }
3061 
3062   return os::commit_memory(addr, size, !ExecMem);
3063 }
3064 
3065 // If this is a growable mapping, remove the guard pages entirely by
3066 // munmap()ping them.  If not, just call uncommit_memory(). This only
3067 // affects the main/initial thread, but guard against future OS changes
3068 // It's safe to always unmap guard pages for initial thread because we
3069 // always place it right after end of the mapped region
3070 
3071 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3072   uintptr_t stack_extent, stack_base;
3073 
3074   if (os::Linux::is_initial_thread()) {
3075     return ::munmap(addr, size) == 0;
3076   }
3077 
3078   return os::uncommit_memory(addr, size);
3079 }
3080 
3081 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3082 // at 'requested_addr'. If there are existing memory mappings at the same
3083 // location, however, they will be overwritten. If 'fixed' is false,
3084 // 'requested_addr' is only treated as a hint, the return value may or
3085 // may not start from the requested address. Unlike Linux mmap(), this
3086 // function returns NULL to indicate failure.
3087 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3088   char * addr;
3089   int flags;
3090 
3091   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3092   if (fixed) {
3093     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3094     flags |= MAP_FIXED;
3095   }
3096 
3097   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3098   // touch an uncommitted page. Otherwise, the read/write might
3099   // succeed if we have enough swap space to back the physical page.
3100   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3101                        flags, -1, 0);
3102 
3103   return addr == MAP_FAILED ? NULL : addr;
3104 }
3105 
3106 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3107 //   (req_addr != NULL) or with a given alignment.
3108 //  - bytes shall be a multiple of alignment.
3109 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3110 //  - alignment sets the alignment at which memory shall be allocated.
3111 //     It must be a multiple of allocation granularity.
3112 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3113 //  req_addr or NULL.
3114 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3115 
3116   size_t extra_size = bytes;
3117   if (req_addr == NULL && alignment > 0) {
3118     extra_size += alignment;
3119   }
3120 
3121   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3122     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3123     -1, 0);
3124   if (start == MAP_FAILED) {
3125     start = NULL;
3126   } else {
3127     if (req_addr != NULL) {
3128       if (start != req_addr) {
3129         ::munmap(start, extra_size);
3130         start = NULL;
3131       }
3132     } else {
3133       char* const start_aligned = align_up(start, alignment);
3134       char* const end_aligned = start_aligned + bytes;
3135       char* const end = start + extra_size;
3136       if (start_aligned > start) {
3137         ::munmap(start, start_aligned - start);
3138       }
3139       if (end_aligned < end) {
3140         ::munmap(end_aligned, end - end_aligned);
3141       }
3142       start = start_aligned;
3143     }
3144   }
3145   return start;
3146 }
3147 
3148 static int anon_munmap(char * addr, size_t size) {
3149   return ::munmap(addr, size) == 0;
3150 }
3151 
3152 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3153                             size_t alignment_hint) {
3154   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3155 }
3156 
3157 bool os::pd_release_memory(char* addr, size_t size) {
3158   return anon_munmap(addr, size);
3159 }
3160 
3161 static bool linux_mprotect(char* addr, size_t size, int prot) {
3162   // Linux wants the mprotect address argument to be page aligned.
3163   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3164 
3165   // According to SUSv3, mprotect() should only be used with mappings
3166   // established by mmap(), and mmap() always maps whole pages. Unaligned
3167   // 'addr' likely indicates problem in the VM (e.g. trying to change
3168   // protection of malloc'ed or statically allocated memory). Check the
3169   // caller if you hit this assert.
3170   assert(addr == bottom, "sanity check");
3171 
3172   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3173   return ::mprotect(bottom, size, prot) == 0;
3174 }
3175 
3176 // Set protections specified
3177 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3178                         bool is_committed) {
3179   unsigned int p = 0;
3180   switch (prot) {
3181   case MEM_PROT_NONE: p = PROT_NONE; break;
3182   case MEM_PROT_READ: p = PROT_READ; break;
3183   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3184   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3185   default:
3186     ShouldNotReachHere();
3187   }
3188   // is_committed is unused.
3189   return linux_mprotect(addr, bytes, p);
3190 }
3191 
3192 bool os::guard_memory(char* addr, size_t size) {
3193   return linux_mprotect(addr, size, PROT_NONE);
3194 }
3195 
3196 bool os::unguard_memory(char* addr, size_t size) {
3197   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3198 }
3199 
3200 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3201                                                     size_t page_size) {
3202   bool result = false;
3203   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3204                  MAP_ANONYMOUS|MAP_PRIVATE,
3205                  -1, 0);
3206   if (p != MAP_FAILED) {
3207     void *aligned_p = align_up(p, page_size);
3208 
3209     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3210 
3211     munmap(p, page_size * 2);
3212   }
3213 
3214   if (warn && !result) {
3215     warning("TransparentHugePages is not supported by the operating system.");
3216   }
3217 
3218   return result;
3219 }
3220 
3221 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3222   bool result = false;
3223   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3224                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3225                  -1, 0);
3226 
3227   if (p != MAP_FAILED) {
3228     // We don't know if this really is a huge page or not.
3229     FILE *fp = fopen("/proc/self/maps", "r");
3230     if (fp) {
3231       while (!feof(fp)) {
3232         char chars[257];
3233         long x = 0;
3234         if (fgets(chars, sizeof(chars), fp)) {
3235           if (sscanf(chars, "%lx-%*x", &x) == 1
3236               && x == (long)p) {
3237             if (strstr (chars, "hugepage")) {
3238               result = true;
3239               break;
3240             }
3241           }
3242         }
3243       }
3244       fclose(fp);
3245     }
3246     munmap(p, page_size);
3247   }
3248 
3249   if (warn && !result) {
3250     warning("HugeTLBFS is not supported by the operating system.");
3251   }
3252 
3253   return result;
3254 }
3255 
3256 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3257 //
3258 // From the coredump_filter documentation:
3259 //
3260 // - (bit 0) anonymous private memory
3261 // - (bit 1) anonymous shared memory
3262 // - (bit 2) file-backed private memory
3263 // - (bit 3) file-backed shared memory
3264 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3265 //           effective only if the bit 2 is cleared)
3266 // - (bit 5) hugetlb private memory
3267 // - (bit 6) hugetlb shared memory
3268 //
3269 static void set_coredump_filter(void) {
3270   FILE *f;
3271   long cdm;
3272 
3273   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3274     return;
3275   }
3276 
3277   if (fscanf(f, "%lx", &cdm) != 1) {
3278     fclose(f);
3279     return;
3280   }
3281 
3282   rewind(f);
3283 
3284   if ((cdm & LARGEPAGES_BIT) == 0) {
3285     cdm |= LARGEPAGES_BIT;
3286     fprintf(f, "%#lx", cdm);
3287   }
3288 
3289   fclose(f);
3290 }
3291 
3292 // Large page support
3293 
3294 static size_t _large_page_size = 0;
3295 
3296 size_t os::Linux::find_large_page_size() {
3297   size_t large_page_size = 0;
3298 
3299   // large_page_size on Linux is used to round up heap size. x86 uses either
3300   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3301   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3302   // page as large as 256M.
3303   //
3304   // Here we try to figure out page size by parsing /proc/meminfo and looking
3305   // for a line with the following format:
3306   //    Hugepagesize:     2048 kB
3307   //
3308   // If we can't determine the value (e.g. /proc is not mounted, or the text
3309   // format has been changed), we'll use the largest page size supported by
3310   // the processor.
3311 
3312 #ifndef ZERO
3313   large_page_size =
3314     AARCH64_ONLY(2 * M)
3315     AMD64_ONLY(2 * M)
3316     ARM32_ONLY(2 * M)
3317     IA32_ONLY(4 * M)
3318     IA64_ONLY(256 * M)
3319     PPC_ONLY(4 * M)
3320     S390_ONLY(1 * M)
3321     SPARC_ONLY(4 * M);
3322 #endif // ZERO
3323 
3324   FILE *fp = fopen("/proc/meminfo", "r");
3325   if (fp) {
3326     while (!feof(fp)) {
3327       int x = 0;
3328       char buf[16];
3329       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3330         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3331           large_page_size = x * K;
3332           break;
3333         }
3334       } else {
3335         // skip to next line
3336         for (;;) {
3337           int ch = fgetc(fp);
3338           if (ch == EOF || ch == (int)'\n') break;
3339         }
3340       }
3341     }
3342     fclose(fp);
3343   }
3344 
3345   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3346     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3347             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3348             proper_unit_for_byte_size(large_page_size));
3349   }
3350 
3351   return large_page_size;
3352 }
3353 
3354 size_t os::Linux::setup_large_page_size() {
3355   _large_page_size = Linux::find_large_page_size();
3356   const size_t default_page_size = (size_t)Linux::page_size();
3357   if (_large_page_size > default_page_size) {
3358     _page_sizes[0] = _large_page_size;
3359     _page_sizes[1] = default_page_size;
3360     _page_sizes[2] = 0;
3361   }
3362 
3363   return _large_page_size;
3364 }
3365 
3366 bool os::Linux::setup_large_page_type(size_t page_size) {
3367   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3368       FLAG_IS_DEFAULT(UseSHM) &&
3369       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3370 
3371     // The type of large pages has not been specified by the user.
3372 
3373     // Try UseHugeTLBFS and then UseSHM.
3374     UseHugeTLBFS = UseSHM = true;
3375 
3376     // Don't try UseTransparentHugePages since there are known
3377     // performance issues with it turned on. This might change in the future.
3378     UseTransparentHugePages = false;
3379   }
3380 
3381   if (UseTransparentHugePages) {
3382     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3383     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3384       UseHugeTLBFS = false;
3385       UseSHM = false;
3386       return true;
3387     }
3388     UseTransparentHugePages = false;
3389   }
3390 
3391   if (UseHugeTLBFS) {
3392     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3393     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3394       UseSHM = false;
3395       return true;
3396     }
3397     UseHugeTLBFS = false;
3398   }
3399 
3400   return UseSHM;
3401 }
3402 
3403 void os::large_page_init() {
3404   if (!UseLargePages &&
3405       !UseTransparentHugePages &&
3406       !UseHugeTLBFS &&
3407       !UseSHM) {
3408     // Not using large pages.
3409     return;
3410   }
3411 
3412   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3413     // The user explicitly turned off large pages.
3414     // Ignore the rest of the large pages flags.
3415     UseTransparentHugePages = false;
3416     UseHugeTLBFS = false;
3417     UseSHM = false;
3418     return;
3419   }
3420 
3421   size_t large_page_size = Linux::setup_large_page_size();
3422   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3423 
3424   set_coredump_filter();
3425 }
3426 
3427 #ifndef SHM_HUGETLB
3428   #define SHM_HUGETLB 04000
3429 #endif
3430 
3431 #define shm_warning_format(format, ...)              \
3432   do {                                               \
3433     if (UseLargePages &&                             \
3434         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3435          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3436          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3437       warning(format, __VA_ARGS__);                  \
3438     }                                                \
3439   } while (0)
3440 
3441 #define shm_warning(str) shm_warning_format("%s", str)
3442 
3443 #define shm_warning_with_errno(str)                \
3444   do {                                             \
3445     int err = errno;                               \
3446     shm_warning_format(str " (error = %d)", err);  \
3447   } while (0)
3448 
3449 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3450   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3451 
3452   if (!is_aligned(alignment, SHMLBA)) {
3453     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3454     return NULL;
3455   }
3456 
3457   // To ensure that we get 'alignment' aligned memory from shmat,
3458   // we pre-reserve aligned virtual memory and then attach to that.
3459 
3460   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3461   if (pre_reserved_addr == NULL) {
3462     // Couldn't pre-reserve aligned memory.
3463     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3464     return NULL;
3465   }
3466 
3467   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3468   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3469 
3470   if ((intptr_t)addr == -1) {
3471     int err = errno;
3472     shm_warning_with_errno("Failed to attach shared memory.");
3473 
3474     assert(err != EACCES, "Unexpected error");
3475     assert(err != EIDRM,  "Unexpected error");
3476     assert(err != EINVAL, "Unexpected error");
3477 
3478     // Since we don't know if the kernel unmapped the pre-reserved memory area
3479     // we can't unmap it, since that would potentially unmap memory that was
3480     // mapped from other threads.
3481     return NULL;
3482   }
3483 
3484   return addr;
3485 }
3486 
3487 static char* shmat_at_address(int shmid, char* req_addr) {
3488   if (!is_aligned(req_addr, SHMLBA)) {
3489     assert(false, "Requested address needs to be SHMLBA aligned");
3490     return NULL;
3491   }
3492 
3493   char* addr = (char*)shmat(shmid, req_addr, 0);
3494 
3495   if ((intptr_t)addr == -1) {
3496     shm_warning_with_errno("Failed to attach shared memory.");
3497     return NULL;
3498   }
3499 
3500   return addr;
3501 }
3502 
3503 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3504   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3505   if (req_addr != NULL) {
3506     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3507     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3508     return shmat_at_address(shmid, req_addr);
3509   }
3510 
3511   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3512   // return large page size aligned memory addresses when req_addr == NULL.
3513   // However, if the alignment is larger than the large page size, we have
3514   // to manually ensure that the memory returned is 'alignment' aligned.
3515   if (alignment > os::large_page_size()) {
3516     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3517     return shmat_with_alignment(shmid, bytes, alignment);
3518   } else {
3519     return shmat_at_address(shmid, NULL);
3520   }
3521 }
3522 
3523 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3524                                             char* req_addr, bool exec) {
3525   // "exec" is passed in but not used.  Creating the shared image for
3526   // the code cache doesn't have an SHM_X executable permission to check.
3527   assert(UseLargePages && UseSHM, "only for SHM large pages");
3528   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3529   assert(is_aligned(req_addr, alignment), "Unaligned address");
3530 
3531   if (!is_aligned(bytes, os::large_page_size())) {
3532     return NULL; // Fallback to small pages.
3533   }
3534 
3535   // Create a large shared memory region to attach to based on size.
3536   // Currently, size is the total size of the heap.
3537   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3538   if (shmid == -1) {
3539     // Possible reasons for shmget failure:
3540     // 1. shmmax is too small for Java heap.
3541     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3542     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3543     // 2. not enough large page memory.
3544     //    > check available large pages: cat /proc/meminfo
3545     //    > increase amount of large pages:
3546     //          echo new_value > /proc/sys/vm/nr_hugepages
3547     //      Note 1: different Linux may use different name for this property,
3548     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3549     //      Note 2: it's possible there's enough physical memory available but
3550     //            they are so fragmented after a long run that they can't
3551     //            coalesce into large pages. Try to reserve large pages when
3552     //            the system is still "fresh".
3553     shm_warning_with_errno("Failed to reserve shared memory.");
3554     return NULL;
3555   }
3556 
3557   // Attach to the region.
3558   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3559 
3560   // Remove shmid. If shmat() is successful, the actual shared memory segment
3561   // will be deleted when it's detached by shmdt() or when the process
3562   // terminates. If shmat() is not successful this will remove the shared
3563   // segment immediately.
3564   shmctl(shmid, IPC_RMID, NULL);
3565 
3566   return addr;
3567 }
3568 
3569 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3570                                         int error) {
3571   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3572 
3573   bool warn_on_failure = UseLargePages &&
3574       (!FLAG_IS_DEFAULT(UseLargePages) ||
3575        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3576        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3577 
3578   if (warn_on_failure) {
3579     char msg[128];
3580     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3581                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3582     warning("%s", msg);
3583   }
3584 }
3585 
3586 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3587                                                         char* req_addr,
3588                                                         bool exec) {
3589   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3590   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3591   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3592 
3593   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3594   char* addr = (char*)::mmap(req_addr, bytes, prot,
3595                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3596                              -1, 0);
3597 
3598   if (addr == MAP_FAILED) {
3599     warn_on_large_pages_failure(req_addr, bytes, errno);
3600     return NULL;
3601   }
3602 
3603   assert(is_aligned(addr, os::large_page_size()), "Must be");
3604 
3605   return addr;
3606 }
3607 
3608 // Reserve memory using mmap(MAP_HUGETLB).
3609 //  - bytes shall be a multiple of alignment.
3610 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3611 //  - alignment sets the alignment at which memory shall be allocated.
3612 //     It must be a multiple of allocation granularity.
3613 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3614 //  req_addr or NULL.
3615 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3616                                                          size_t alignment,
3617                                                          char* req_addr,
3618                                                          bool exec) {
3619   size_t large_page_size = os::large_page_size();
3620   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3621 
3622   assert(is_aligned(req_addr, alignment), "Must be");
3623   assert(is_aligned(bytes, alignment), "Must be");
3624 
3625   // First reserve - but not commit - the address range in small pages.
3626   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3627 
3628   if (start == NULL) {
3629     return NULL;
3630   }
3631 
3632   assert(is_aligned(start, alignment), "Must be");
3633 
3634   char* end = start + bytes;
3635 
3636   // Find the regions of the allocated chunk that can be promoted to large pages.
3637   char* lp_start = align_up(start, large_page_size);
3638   char* lp_end   = align_down(end, large_page_size);
3639 
3640   size_t lp_bytes = lp_end - lp_start;
3641 
3642   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3643 
3644   if (lp_bytes == 0) {
3645     // The mapped region doesn't even span the start and the end of a large page.
3646     // Fall back to allocate a non-special area.
3647     ::munmap(start, end - start);
3648     return NULL;
3649   }
3650 
3651   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3652 
3653   void* result;
3654 
3655   // Commit small-paged leading area.
3656   if (start != lp_start) {
3657     result = ::mmap(start, lp_start - start, prot,
3658                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3659                     -1, 0);
3660     if (result == MAP_FAILED) {
3661       ::munmap(lp_start, end - lp_start);
3662       return NULL;
3663     }
3664   }
3665 
3666   // Commit large-paged area.
3667   result = ::mmap(lp_start, lp_bytes, prot,
3668                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3669                   -1, 0);
3670   if (result == MAP_FAILED) {
3671     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3672     // If the mmap above fails, the large pages region will be unmapped and we
3673     // have regions before and after with small pages. Release these regions.
3674     //
3675     // |  mapped  |  unmapped  |  mapped  |
3676     // ^          ^            ^          ^
3677     // start      lp_start     lp_end     end
3678     //
3679     ::munmap(start, lp_start - start);
3680     ::munmap(lp_end, end - lp_end);
3681     return NULL;
3682   }
3683 
3684   // Commit small-paged trailing area.
3685   if (lp_end != end) {
3686     result = ::mmap(lp_end, end - lp_end, prot,
3687                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3688                     -1, 0);
3689     if (result == MAP_FAILED) {
3690       ::munmap(start, lp_end - start);
3691       return NULL;
3692     }
3693   }
3694 
3695   return start;
3696 }
3697 
3698 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3699                                                    size_t alignment,
3700                                                    char* req_addr,
3701                                                    bool exec) {
3702   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3703   assert(is_aligned(req_addr, alignment), "Must be");
3704   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3705   assert(is_power_of_2(os::large_page_size()), "Must be");
3706   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3707 
3708   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3709     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3710   } else {
3711     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3712   }
3713 }
3714 
3715 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3716                                  char* req_addr, bool exec) {
3717   assert(UseLargePages, "only for large pages");
3718 
3719   char* addr;
3720   if (UseSHM) {
3721     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3722   } else {
3723     assert(UseHugeTLBFS, "must be");
3724     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3725   }
3726 
3727   if (addr != NULL) {
3728     if (UseNUMAInterleaving) {
3729       numa_make_global(addr, bytes);
3730     }
3731 
3732     // The memory is committed
3733     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3734   }
3735 
3736   return addr;
3737 }
3738 
3739 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3740   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3741   return shmdt(base) == 0;
3742 }
3743 
3744 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3745   return pd_release_memory(base, bytes);
3746 }
3747 
3748 bool os::release_memory_special(char* base, size_t bytes) {
3749   bool res;
3750   if (MemTracker::tracking_level() > NMT_minimal) {
3751     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3752     res = os::Linux::release_memory_special_impl(base, bytes);
3753     if (res) {
3754       tkr.record((address)base, bytes);
3755     }
3756 
3757   } else {
3758     res = os::Linux::release_memory_special_impl(base, bytes);
3759   }
3760   return res;
3761 }
3762 
3763 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3764   assert(UseLargePages, "only for large pages");
3765   bool res;
3766 
3767   if (UseSHM) {
3768     res = os::Linux::release_memory_special_shm(base, bytes);
3769   } else {
3770     assert(UseHugeTLBFS, "must be");
3771     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3772   }
3773   return res;
3774 }
3775 
3776 size_t os::large_page_size() {
3777   return _large_page_size;
3778 }
3779 
3780 // With SysV SHM the entire memory region must be allocated as shared
3781 // memory.
3782 // HugeTLBFS allows application to commit large page memory on demand.
3783 // However, when committing memory with HugeTLBFS fails, the region
3784 // that was supposed to be committed will lose the old reservation
3785 // and allow other threads to steal that memory region. Because of this
3786 // behavior we can't commit HugeTLBFS memory.
3787 bool os::can_commit_large_page_memory() {
3788   return UseTransparentHugePages;
3789 }
3790 
3791 bool os::can_execute_large_page_memory() {
3792   return UseTransparentHugePages || UseHugeTLBFS;
3793 }
3794 
3795 // Reserve memory at an arbitrary address, only if that area is
3796 // available (and not reserved for something else).
3797 
3798 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3799   const int max_tries = 10;
3800   char* base[max_tries];
3801   size_t size[max_tries];
3802   const size_t gap = 0x000000;
3803 
3804   // Assert only that the size is a multiple of the page size, since
3805   // that's all that mmap requires, and since that's all we really know
3806   // about at this low abstraction level.  If we need higher alignment,
3807   // we can either pass an alignment to this method or verify alignment
3808   // in one of the methods further up the call chain.  See bug 5044738.
3809   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3810 
3811   // Repeatedly allocate blocks until the block is allocated at the
3812   // right spot.
3813 
3814   // Linux mmap allows caller to pass an address as hint; give it a try first,
3815   // if kernel honors the hint then we can return immediately.
3816   char * addr = anon_mmap(requested_addr, bytes, false);
3817   if (addr == requested_addr) {
3818     return requested_addr;
3819   }
3820 
3821   if (addr != NULL) {
3822     // mmap() is successful but it fails to reserve at the requested address
3823     anon_munmap(addr, bytes);
3824   }
3825 
3826   int i;
3827   for (i = 0; i < max_tries; ++i) {
3828     base[i] = reserve_memory(bytes);
3829 
3830     if (base[i] != NULL) {
3831       // Is this the block we wanted?
3832       if (base[i] == requested_addr) {
3833         size[i] = bytes;
3834         break;
3835       }
3836 
3837       // Does this overlap the block we wanted? Give back the overlapped
3838       // parts and try again.
3839 
3840       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3841       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3842         unmap_memory(base[i], top_overlap);
3843         base[i] += top_overlap;
3844         size[i] = bytes - top_overlap;
3845       } else {
3846         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3847         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3848           unmap_memory(requested_addr, bottom_overlap);
3849           size[i] = bytes - bottom_overlap;
3850         } else {
3851           size[i] = bytes;
3852         }
3853       }
3854     }
3855   }
3856 
3857   // Give back the unused reserved pieces.
3858 
3859   for (int j = 0; j < i; ++j) {
3860     if (base[j] != NULL) {
3861       unmap_memory(base[j], size[j]);
3862     }
3863   }
3864 
3865   if (i < max_tries) {
3866     return requested_addr;
3867   } else {
3868     return NULL;
3869   }
3870 }
3871 
3872 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3873   return ::read(fd, buf, nBytes);
3874 }
3875 
3876 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3877   return ::pread(fd, buf, nBytes, offset);
3878 }
3879 
3880 // Short sleep, direct OS call.
3881 //
3882 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3883 // sched_yield(2) will actually give up the CPU:
3884 //
3885 //   * Alone on this pariticular CPU, keeps running.
3886 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3887 //     (pre 2.6.39).
3888 //
3889 // So calling this with 0 is an alternative.
3890 //
3891 void os::naked_short_sleep(jlong ms) {
3892   struct timespec req;
3893 
3894   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3895   req.tv_sec = 0;
3896   if (ms > 0) {
3897     req.tv_nsec = (ms % 1000) * 1000000;
3898   } else {
3899     req.tv_nsec = 1;
3900   }
3901 
3902   nanosleep(&req, NULL);
3903 
3904   return;
3905 }
3906 
3907 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3908 void os::infinite_sleep() {
3909   while (true) {    // sleep forever ...
3910     ::sleep(100);   // ... 100 seconds at a time
3911   }
3912 }
3913 
3914 // Used to convert frequent JVM_Yield() to nops
3915 bool os::dont_yield() {
3916   return DontYieldALot;
3917 }
3918 
3919 void os::naked_yield() {
3920   sched_yield();
3921 }
3922 
3923 ////////////////////////////////////////////////////////////////////////////////
3924 // thread priority support
3925 
3926 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3927 // only supports dynamic priority, static priority must be zero. For real-time
3928 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3929 // However, for large multi-threaded applications, SCHED_RR is not only slower
3930 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3931 // of 5 runs - Sep 2005).
3932 //
3933 // The following code actually changes the niceness of kernel-thread/LWP. It
3934 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3935 // not the entire user process, and user level threads are 1:1 mapped to kernel
3936 // threads. It has always been the case, but could change in the future. For
3937 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3938 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3939 
3940 int os::java_to_os_priority[CriticalPriority + 1] = {
3941   19,              // 0 Entry should never be used
3942 
3943    4,              // 1 MinPriority
3944    3,              // 2
3945    2,              // 3
3946 
3947    1,              // 4
3948    0,              // 5 NormPriority
3949   -1,              // 6
3950 
3951   -2,              // 7
3952   -3,              // 8
3953   -4,              // 9 NearMaxPriority
3954 
3955   -5,              // 10 MaxPriority
3956 
3957   -5               // 11 CriticalPriority
3958 };
3959 
3960 static int prio_init() {
3961   if (ThreadPriorityPolicy == 1) {
3962     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3963     // if effective uid is not root. Perhaps, a more elegant way of doing
3964     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3965     if (geteuid() != 0) {
3966       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3967         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3968       }
3969       ThreadPriorityPolicy = 0;
3970     }
3971   }
3972   if (UseCriticalJavaThreadPriority) {
3973     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3974   }
3975   return 0;
3976 }
3977 
3978 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3979   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3980 
3981   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3982   return (ret == 0) ? OS_OK : OS_ERR;
3983 }
3984 
3985 OSReturn os::get_native_priority(const Thread* const thread,
3986                                  int *priority_ptr) {
3987   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3988     *priority_ptr = java_to_os_priority[NormPriority];
3989     return OS_OK;
3990   }
3991 
3992   errno = 0;
3993   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3994   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3995 }
3996 
3997 // Hint to the underlying OS that a task switch would not be good.
3998 // Void return because it's a hint and can fail.
3999 void os::hint_no_preempt() {}
4000 
4001 ////////////////////////////////////////////////////////////////////////////////
4002 // suspend/resume support
4003 
4004 //  The low-level signal-based suspend/resume support is a remnant from the
4005 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4006 //  within hotspot. Currently used by JFR's OSThreadSampler
4007 //
4008 //  The remaining code is greatly simplified from the more general suspension
4009 //  code that used to be used.
4010 //
4011 //  The protocol is quite simple:
4012 //  - suspend:
4013 //      - sends a signal to the target thread
4014 //      - polls the suspend state of the osthread using a yield loop
4015 //      - target thread signal handler (SR_handler) sets suspend state
4016 //        and blocks in sigsuspend until continued
4017 //  - resume:
4018 //      - sets target osthread state to continue
4019 //      - sends signal to end the sigsuspend loop in the SR_handler
4020 //
4021 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4022 //  but is checked for NULL in SR_handler as a thread termination indicator.
4023 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4024 //
4025 //  Note that resume_clear_context() and suspend_save_context() are needed
4026 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4027 //  which in part is used by:
4028 //    - Forte Analyzer: AsyncGetCallTrace()
4029 //    - StackBanging: get_frame_at_stack_banging_point()
4030 
4031 static void resume_clear_context(OSThread *osthread) {
4032   osthread->set_ucontext(NULL);
4033   osthread->set_siginfo(NULL);
4034 }
4035 
4036 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4037                                  ucontext_t* context) {
4038   osthread->set_ucontext(context);
4039   osthread->set_siginfo(siginfo);
4040 }
4041 
4042 // Handler function invoked when a thread's execution is suspended or
4043 // resumed. We have to be careful that only async-safe functions are
4044 // called here (Note: most pthread functions are not async safe and
4045 // should be avoided.)
4046 //
4047 // Note: sigwait() is a more natural fit than sigsuspend() from an
4048 // interface point of view, but sigwait() prevents the signal hander
4049 // from being run. libpthread would get very confused by not having
4050 // its signal handlers run and prevents sigwait()'s use with the
4051 // mutex granting granting signal.
4052 //
4053 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4054 //
4055 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4056   // Save and restore errno to avoid confusing native code with EINTR
4057   // after sigsuspend.
4058   int old_errno = errno;
4059 
4060   Thread* thread = Thread::current_or_null_safe();
4061   assert(thread != NULL, "Missing current thread in SR_handler");
4062 
4063   // On some systems we have seen signal delivery get "stuck" until the signal
4064   // mask is changed as part of thread termination. Check that the current thread
4065   // has not already terminated (via SR_lock()) - else the following assertion
4066   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4067   // destructor has completed.
4068 
4069   if (thread->SR_lock() == NULL) {
4070     return;
4071   }
4072 
4073   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4074 
4075   OSThread* osthread = thread->osthread();
4076 
4077   os::SuspendResume::State current = osthread->sr.state();
4078   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4079     suspend_save_context(osthread, siginfo, context);
4080 
4081     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4082     os::SuspendResume::State state = osthread->sr.suspended();
4083     if (state == os::SuspendResume::SR_SUSPENDED) {
4084       sigset_t suspend_set;  // signals for sigsuspend()
4085       sigemptyset(&suspend_set);
4086       // get current set of blocked signals and unblock resume signal
4087       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4088       sigdelset(&suspend_set, SR_signum);
4089 
4090       sr_semaphore.signal();
4091       // wait here until we are resumed
4092       while (1) {
4093         sigsuspend(&suspend_set);
4094 
4095         os::SuspendResume::State result = osthread->sr.running();
4096         if (result == os::SuspendResume::SR_RUNNING) {
4097           sr_semaphore.signal();
4098           break;
4099         }
4100       }
4101 
4102     } else if (state == os::SuspendResume::SR_RUNNING) {
4103       // request was cancelled, continue
4104     } else {
4105       ShouldNotReachHere();
4106     }
4107 
4108     resume_clear_context(osthread);
4109   } else if (current == os::SuspendResume::SR_RUNNING) {
4110     // request was cancelled, continue
4111   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4112     // ignore
4113   } else {
4114     // ignore
4115   }
4116 
4117   errno = old_errno;
4118 }
4119 
4120 static int SR_initialize() {
4121   struct sigaction act;
4122   char *s;
4123 
4124   // Get signal number to use for suspend/resume
4125   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4126     int sig = ::strtol(s, 0, 10);
4127     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4128         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4129       SR_signum = sig;
4130     } else {
4131       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4132               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4133     }
4134   }
4135 
4136   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4137          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4138 
4139   sigemptyset(&SR_sigset);
4140   sigaddset(&SR_sigset, SR_signum);
4141 
4142   // Set up signal handler for suspend/resume
4143   act.sa_flags = SA_RESTART|SA_SIGINFO;
4144   act.sa_handler = (void (*)(int)) SR_handler;
4145 
4146   // SR_signum is blocked by default.
4147   // 4528190 - We also need to block pthread restart signal (32 on all
4148   // supported Linux platforms). Note that LinuxThreads need to block
4149   // this signal for all threads to work properly. So we don't have
4150   // to use hard-coded signal number when setting up the mask.
4151   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4152 
4153   if (sigaction(SR_signum, &act, 0) == -1) {
4154     return -1;
4155   }
4156 
4157   // Save signal flag
4158   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4159   return 0;
4160 }
4161 
4162 static int sr_notify(OSThread* osthread) {
4163   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4164   assert_status(status == 0, status, "pthread_kill");
4165   return status;
4166 }
4167 
4168 // "Randomly" selected value for how long we want to spin
4169 // before bailing out on suspending a thread, also how often
4170 // we send a signal to a thread we want to resume
4171 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4172 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4173 
4174 // returns true on success and false on error - really an error is fatal
4175 // but this seems the normal response to library errors
4176 static bool do_suspend(OSThread* osthread) {
4177   assert(osthread->sr.is_running(), "thread should be running");
4178   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4179 
4180   // mark as suspended and send signal
4181   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4182     // failed to switch, state wasn't running?
4183     ShouldNotReachHere();
4184     return false;
4185   }
4186 
4187   if (sr_notify(osthread) != 0) {
4188     ShouldNotReachHere();
4189   }
4190 
4191   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4192   while (true) {
4193     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4194       break;
4195     } else {
4196       // timeout
4197       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4198       if (cancelled == os::SuspendResume::SR_RUNNING) {
4199         return false;
4200       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4201         // make sure that we consume the signal on the semaphore as well
4202         sr_semaphore.wait();
4203         break;
4204       } else {
4205         ShouldNotReachHere();
4206         return false;
4207       }
4208     }
4209   }
4210 
4211   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4212   return true;
4213 }
4214 
4215 static void do_resume(OSThread* osthread) {
4216   assert(osthread->sr.is_suspended(), "thread should be suspended");
4217   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4218 
4219   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4220     // failed to switch to WAKEUP_REQUEST
4221     ShouldNotReachHere();
4222     return;
4223   }
4224 
4225   while (true) {
4226     if (sr_notify(osthread) == 0) {
4227       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4228         if (osthread->sr.is_running()) {
4229           return;
4230         }
4231       }
4232     } else {
4233       ShouldNotReachHere();
4234     }
4235   }
4236 
4237   guarantee(osthread->sr.is_running(), "Must be running!");
4238 }
4239 
4240 ///////////////////////////////////////////////////////////////////////////////////
4241 // signal handling (except suspend/resume)
4242 
4243 // This routine may be used by user applications as a "hook" to catch signals.
4244 // The user-defined signal handler must pass unrecognized signals to this
4245 // routine, and if it returns true (non-zero), then the signal handler must
4246 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4247 // routine will never retun false (zero), but instead will execute a VM panic
4248 // routine kill the process.
4249 //
4250 // If this routine returns false, it is OK to call it again.  This allows
4251 // the user-defined signal handler to perform checks either before or after
4252 // the VM performs its own checks.  Naturally, the user code would be making
4253 // a serious error if it tried to handle an exception (such as a null check
4254 // or breakpoint) that the VM was generating for its own correct operation.
4255 //
4256 // This routine may recognize any of the following kinds of signals:
4257 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4258 // It should be consulted by handlers for any of those signals.
4259 //
4260 // The caller of this routine must pass in the three arguments supplied
4261 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4262 // field of the structure passed to sigaction().  This routine assumes that
4263 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4264 //
4265 // Note that the VM will print warnings if it detects conflicting signal
4266 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4267 //
4268 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4269                                                  siginfo_t* siginfo,
4270                                                  void* ucontext,
4271                                                  int abort_if_unrecognized);
4272 
4273 void signalHandler(int sig, siginfo_t* info, void* uc) {
4274   assert(info != NULL && uc != NULL, "it must be old kernel");
4275   int orig_errno = errno;  // Preserve errno value over signal handler.
4276   JVM_handle_linux_signal(sig, info, uc, true);
4277   errno = orig_errno;
4278 }
4279 
4280 
4281 // This boolean allows users to forward their own non-matching signals
4282 // to JVM_handle_linux_signal, harmlessly.
4283 bool os::Linux::signal_handlers_are_installed = false;
4284 
4285 // For signal-chaining
4286 struct sigaction sigact[NSIG];
4287 uint64_t sigs = 0;
4288 #if (64 < NSIG-1)
4289 #error "Not all signals can be encoded in sigs. Adapt its type!"
4290 #endif
4291 bool os::Linux::libjsig_is_loaded = false;
4292 typedef struct sigaction *(*get_signal_t)(int);
4293 get_signal_t os::Linux::get_signal_action = NULL;
4294 
4295 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4296   struct sigaction *actp = NULL;
4297 
4298   if (libjsig_is_loaded) {
4299     // Retrieve the old signal handler from libjsig
4300     actp = (*get_signal_action)(sig);
4301   }
4302   if (actp == NULL) {
4303     // Retrieve the preinstalled signal handler from jvm
4304     actp = get_preinstalled_handler(sig);
4305   }
4306 
4307   return actp;
4308 }
4309 
4310 static bool call_chained_handler(struct sigaction *actp, int sig,
4311                                  siginfo_t *siginfo, void *context) {
4312   // Call the old signal handler
4313   if (actp->sa_handler == SIG_DFL) {
4314     // It's more reasonable to let jvm treat it as an unexpected exception
4315     // instead of taking the default action.
4316     return false;
4317   } else if (actp->sa_handler != SIG_IGN) {
4318     if ((actp->sa_flags & SA_NODEFER) == 0) {
4319       // automaticlly block the signal
4320       sigaddset(&(actp->sa_mask), sig);
4321     }
4322 
4323     sa_handler_t hand = NULL;
4324     sa_sigaction_t sa = NULL;
4325     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4326     // retrieve the chained handler
4327     if (siginfo_flag_set) {
4328       sa = actp->sa_sigaction;
4329     } else {
4330       hand = actp->sa_handler;
4331     }
4332 
4333     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4334       actp->sa_handler = SIG_DFL;
4335     }
4336 
4337     // try to honor the signal mask
4338     sigset_t oset;
4339     sigemptyset(&oset);
4340     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4341 
4342     // call into the chained handler
4343     if (siginfo_flag_set) {
4344       (*sa)(sig, siginfo, context);
4345     } else {
4346       (*hand)(sig);
4347     }
4348 
4349     // restore the signal mask
4350     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4351   }
4352   // Tell jvm's signal handler the signal is taken care of.
4353   return true;
4354 }
4355 
4356 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4357   bool chained = false;
4358   // signal-chaining
4359   if (UseSignalChaining) {
4360     struct sigaction *actp = get_chained_signal_action(sig);
4361     if (actp != NULL) {
4362       chained = call_chained_handler(actp, sig, siginfo, context);
4363     }
4364   }
4365   return chained;
4366 }
4367 
4368 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4369   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4370     return &sigact[sig];
4371   }
4372   return NULL;
4373 }
4374 
4375 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4376   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4377   sigact[sig] = oldAct;
4378   sigs |= (uint64_t)1 << (sig-1);
4379 }
4380 
4381 // for diagnostic
4382 int sigflags[NSIG];
4383 
4384 int os::Linux::get_our_sigflags(int sig) {
4385   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4386   return sigflags[sig];
4387 }
4388 
4389 void os::Linux::set_our_sigflags(int sig, int flags) {
4390   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4391   if (sig > 0 && sig < NSIG) {
4392     sigflags[sig] = flags;
4393   }
4394 }
4395 
4396 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4397   // Check for overwrite.
4398   struct sigaction oldAct;
4399   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4400 
4401   void* oldhand = oldAct.sa_sigaction
4402                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4403                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4404   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4405       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4406       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4407     if (AllowUserSignalHandlers || !set_installed) {
4408       // Do not overwrite; user takes responsibility to forward to us.
4409       return;
4410     } else if (UseSignalChaining) {
4411       // save the old handler in jvm
4412       save_preinstalled_handler(sig, oldAct);
4413       // libjsig also interposes the sigaction() call below and saves the
4414       // old sigaction on it own.
4415     } else {
4416       fatal("Encountered unexpected pre-existing sigaction handler "
4417             "%#lx for signal %d.", (long)oldhand, sig);
4418     }
4419   }
4420 
4421   struct sigaction sigAct;
4422   sigfillset(&(sigAct.sa_mask));
4423   sigAct.sa_handler = SIG_DFL;
4424   if (!set_installed) {
4425     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4426   } else {
4427     sigAct.sa_sigaction = signalHandler;
4428     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4429   }
4430   // Save flags, which are set by ours
4431   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4432   sigflags[sig] = sigAct.sa_flags;
4433 
4434   int ret = sigaction(sig, &sigAct, &oldAct);
4435   assert(ret == 0, "check");
4436 
4437   void* oldhand2  = oldAct.sa_sigaction
4438                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4439                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4440   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4441 }
4442 
4443 // install signal handlers for signals that HotSpot needs to
4444 // handle in order to support Java-level exception handling.
4445 
4446 void os::Linux::install_signal_handlers() {
4447   if (!signal_handlers_are_installed) {
4448     signal_handlers_are_installed = true;
4449 
4450     // signal-chaining
4451     typedef void (*signal_setting_t)();
4452     signal_setting_t begin_signal_setting = NULL;
4453     signal_setting_t end_signal_setting = NULL;
4454     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4455                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4456     if (begin_signal_setting != NULL) {
4457       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4458                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4459       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4460                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4461       libjsig_is_loaded = true;
4462       assert(UseSignalChaining, "should enable signal-chaining");
4463     }
4464     if (libjsig_is_loaded) {
4465       // Tell libjsig jvm is setting signal handlers
4466       (*begin_signal_setting)();
4467     }
4468 
4469     set_signal_handler(SIGSEGV, true);
4470     set_signal_handler(SIGPIPE, true);
4471     set_signal_handler(SIGBUS, true);
4472     set_signal_handler(SIGILL, true);
4473     set_signal_handler(SIGFPE, true);
4474 #if defined(PPC64)
4475     set_signal_handler(SIGTRAP, true);
4476 #endif
4477     set_signal_handler(SIGXFSZ, true);
4478 
4479     if (libjsig_is_loaded) {
4480       // Tell libjsig jvm finishes setting signal handlers
4481       (*end_signal_setting)();
4482     }
4483 
4484     // We don't activate signal checker if libjsig is in place, we trust ourselves
4485     // and if UserSignalHandler is installed all bets are off.
4486     // Log that signal checking is off only if -verbose:jni is specified.
4487     if (CheckJNICalls) {
4488       if (libjsig_is_loaded) {
4489         if (PrintJNIResolving) {
4490           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4491         }
4492         check_signals = false;
4493       }
4494       if (AllowUserSignalHandlers) {
4495         if (PrintJNIResolving) {
4496           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4497         }
4498         check_signals = false;
4499       }
4500     }
4501   }
4502 }
4503 
4504 // This is the fastest way to get thread cpu time on Linux.
4505 // Returns cpu time (user+sys) for any thread, not only for current.
4506 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4507 // It might work on 2.6.10+ with a special kernel/glibc patch.
4508 // For reference, please, see IEEE Std 1003.1-2004:
4509 //   http://www.unix.org/single_unix_specification
4510 
4511 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4512   struct timespec tp;
4513   int rc = os::Linux::clock_gettime(clockid, &tp);
4514   assert(rc == 0, "clock_gettime is expected to return 0 code");
4515 
4516   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4517 }
4518 
4519 void os::Linux::initialize_os_info() {
4520   assert(_os_version == 0, "OS info already initialized");
4521 
4522   struct utsname _uname;
4523 
4524   uint32_t major;
4525   uint32_t minor;
4526   uint32_t fix;
4527 
4528   int rc;
4529 
4530   // Kernel version is unknown if
4531   // verification below fails.
4532   _os_version = 0x01000000;
4533 
4534   rc = uname(&_uname);
4535   if (rc != -1) {
4536 
4537     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4538     if (rc == 3) {
4539 
4540       if (major < 256 && minor < 256 && fix < 256) {
4541         // Kernel version format is as expected,
4542         // set it overriding unknown state.
4543         _os_version = (major << 16) |
4544                       (minor << 8 ) |
4545                       (fix   << 0 ) ;
4546       }
4547     }
4548   }
4549 }
4550 
4551 uint32_t os::Linux::os_version() {
4552   assert(_os_version != 0, "not initialized");
4553   return _os_version & 0x00FFFFFF;
4554 }
4555 
4556 bool os::Linux::os_version_is_known() {
4557   assert(_os_version != 0, "not initialized");
4558   return _os_version & 0x01000000 ? false : true;
4559 }
4560 
4561 /////
4562 // glibc on Linux platform uses non-documented flag
4563 // to indicate, that some special sort of signal
4564 // trampoline is used.
4565 // We will never set this flag, and we should
4566 // ignore this flag in our diagnostic
4567 #ifdef SIGNIFICANT_SIGNAL_MASK
4568   #undef SIGNIFICANT_SIGNAL_MASK
4569 #endif
4570 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4571 
4572 static const char* get_signal_handler_name(address handler,
4573                                            char* buf, int buflen) {
4574   int offset = 0;
4575   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4576   if (found) {
4577     // skip directory names
4578     const char *p1, *p2;
4579     p1 = buf;
4580     size_t len = strlen(os::file_separator());
4581     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4582     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4583   } else {
4584     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4585   }
4586   return buf;
4587 }
4588 
4589 static void print_signal_handler(outputStream* st, int sig,
4590                                  char* buf, size_t buflen) {
4591   struct sigaction sa;
4592 
4593   sigaction(sig, NULL, &sa);
4594 
4595   // See comment for SIGNIFICANT_SIGNAL_MASK define
4596   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4597 
4598   st->print("%s: ", os::exception_name(sig, buf, buflen));
4599 
4600   address handler = (sa.sa_flags & SA_SIGINFO)
4601     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4602     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4603 
4604   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4605     st->print("SIG_DFL");
4606   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4607     st->print("SIG_IGN");
4608   } else {
4609     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4610   }
4611 
4612   st->print(", sa_mask[0]=");
4613   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4614 
4615   address rh = VMError::get_resetted_sighandler(sig);
4616   // May be, handler was resetted by VMError?
4617   if (rh != NULL) {
4618     handler = rh;
4619     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4620   }
4621 
4622   st->print(", sa_flags=");
4623   os::Posix::print_sa_flags(st, sa.sa_flags);
4624 
4625   // Check: is it our handler?
4626   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4627       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4628     // It is our signal handler
4629     // check for flags, reset system-used one!
4630     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4631       st->print(
4632                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4633                 os::Linux::get_our_sigflags(sig));
4634     }
4635   }
4636   st->cr();
4637 }
4638 
4639 
4640 #define DO_SIGNAL_CHECK(sig)                      \
4641   do {                                            \
4642     if (!sigismember(&check_signal_done, sig)) {  \
4643       os::Linux::check_signal_handler(sig);       \
4644     }                                             \
4645   } while (0)
4646 
4647 // This method is a periodic task to check for misbehaving JNI applications
4648 // under CheckJNI, we can add any periodic checks here
4649 
4650 void os::run_periodic_checks() {
4651   if (check_signals == false) return;
4652 
4653   // SEGV and BUS if overridden could potentially prevent
4654   // generation of hs*.log in the event of a crash, debugging
4655   // such a case can be very challenging, so we absolutely
4656   // check the following for a good measure:
4657   DO_SIGNAL_CHECK(SIGSEGV);
4658   DO_SIGNAL_CHECK(SIGILL);
4659   DO_SIGNAL_CHECK(SIGFPE);
4660   DO_SIGNAL_CHECK(SIGBUS);
4661   DO_SIGNAL_CHECK(SIGPIPE);
4662   DO_SIGNAL_CHECK(SIGXFSZ);
4663 #if defined(PPC64)
4664   DO_SIGNAL_CHECK(SIGTRAP);
4665 #endif
4666 
4667   // ReduceSignalUsage allows the user to override these handlers
4668   // see comments at the very top and jvm_solaris.h
4669   if (!ReduceSignalUsage) {
4670     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4671     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4672     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4673     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4674   }
4675 
4676   DO_SIGNAL_CHECK(SR_signum);
4677 }
4678 
4679 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4680 
4681 static os_sigaction_t os_sigaction = NULL;
4682 
4683 void os::Linux::check_signal_handler(int sig) {
4684   char buf[O_BUFLEN];
4685   address jvmHandler = NULL;
4686 
4687 
4688   struct sigaction act;
4689   if (os_sigaction == NULL) {
4690     // only trust the default sigaction, in case it has been interposed
4691     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4692     if (os_sigaction == NULL) return;
4693   }
4694 
4695   os_sigaction(sig, (struct sigaction*)NULL, &act);
4696 
4697 
4698   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4699 
4700   address thisHandler = (act.sa_flags & SA_SIGINFO)
4701     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4702     : CAST_FROM_FN_PTR(address, act.sa_handler);
4703 
4704 
4705   switch (sig) {
4706   case SIGSEGV:
4707   case SIGBUS:
4708   case SIGFPE:
4709   case SIGPIPE:
4710   case SIGILL:
4711   case SIGXFSZ:
4712     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4713     break;
4714 
4715   case SHUTDOWN1_SIGNAL:
4716   case SHUTDOWN2_SIGNAL:
4717   case SHUTDOWN3_SIGNAL:
4718   case BREAK_SIGNAL:
4719     jvmHandler = (address)user_handler();
4720     break;
4721 
4722   default:
4723     if (sig == SR_signum) {
4724       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4725     } else {
4726       return;
4727     }
4728     break;
4729   }
4730 
4731   if (thisHandler != jvmHandler) {
4732     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4733     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4734     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4735     // No need to check this sig any longer
4736     sigaddset(&check_signal_done, sig);
4737     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4738     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4739       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4740                     exception_name(sig, buf, O_BUFLEN));
4741     }
4742   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4743     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4744     tty->print("expected:");
4745     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4746     tty->cr();
4747     tty->print("  found:");
4748     os::Posix::print_sa_flags(tty, act.sa_flags);
4749     tty->cr();
4750     // No need to check this sig any longer
4751     sigaddset(&check_signal_done, sig);
4752   }
4753 
4754   // Dump all the signal
4755   if (sigismember(&check_signal_done, sig)) {
4756     print_signal_handlers(tty, buf, O_BUFLEN);
4757   }
4758 }
4759 
4760 extern void report_error(char* file_name, int line_no, char* title,
4761                          char* format, ...);
4762 
4763 // this is called _before_ the most of global arguments have been parsed
4764 void os::init(void) {
4765   char dummy;   // used to get a guess on initial stack address
4766 //  first_hrtime = gethrtime();
4767 
4768   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4769 
4770   init_random(1234567);
4771 
4772   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4773   if (Linux::page_size() == -1) {
4774     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4775           os::strerror(errno));
4776   }
4777   init_page_sizes((size_t) Linux::page_size());
4778 
4779   Linux::initialize_system_info();
4780 
4781   Linux::initialize_os_info();
4782 
4783   // main_thread points to the aboriginal thread
4784   Linux::_main_thread = pthread_self();
4785 
4786   Linux::clock_init();
4787   initial_time_count = javaTimeNanos();
4788 
4789   // retrieve entry point for pthread_setname_np
4790   Linux::_pthread_setname_np =
4791     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4792 
4793   os::Posix::init();
4794 }
4795 
4796 // To install functions for atexit system call
4797 extern "C" {
4798   static void perfMemory_exit_helper() {
4799     perfMemory_exit();
4800   }
4801 }
4802 
4803 // this is called _after_ the global arguments have been parsed
4804 jint os::init_2(void) {
4805 
4806   os::Posix::init_2();
4807 
4808   Linux::fast_thread_clock_init();
4809 
4810   // Allocate a single page and mark it as readable for safepoint polling
4811   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4812   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4813 
4814   os::set_polling_page(polling_page);
4815   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4816 
4817   if (!UseMembar) {
4818     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4819     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4820     os::set_memory_serialize_page(mem_serialize_page);
4821     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4822   }
4823 
4824   // initialize suspend/resume support - must do this before signal_sets_init()
4825   if (SR_initialize() != 0) {
4826     perror("SR_initialize failed");
4827     return JNI_ERR;
4828   }
4829 
4830   Linux::signal_sets_init();
4831   Linux::install_signal_handlers();
4832 
4833   // Check and sets minimum stack sizes against command line options
4834   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4835     return JNI_ERR;
4836   }
4837   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4838 
4839 #if defined(IA32)
4840   workaround_expand_exec_shield_cs_limit();
4841 #endif
4842 
4843   Linux::libpthread_init();
4844   Linux::sched_getcpu_init();
4845   log_info(os)("HotSpot is running with %s, %s",
4846                Linux::glibc_version(), Linux::libpthread_version());
4847 
4848   if (UseNUMA) {
4849     if (!Linux::libnuma_init()) {
4850       UseNUMA = false;
4851     } else {
4852       if ((Linux::numa_max_node() < 1)) {
4853         // There's only one node(they start from 0), disable NUMA.
4854         UseNUMA = false;
4855       }
4856     }
4857     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4858     // we can make the adaptive lgrp chunk resizing work. If the user specified
4859     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4860     // disable adaptive resizing.
4861     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4862       if (FLAG_IS_DEFAULT(UseNUMA)) {
4863         UseNUMA = false;
4864       } else {
4865         if (FLAG_IS_DEFAULT(UseLargePages) &&
4866             FLAG_IS_DEFAULT(UseSHM) &&
4867             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4868           UseLargePages = false;
4869         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4870           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4871           UseAdaptiveSizePolicy = false;
4872           UseAdaptiveNUMAChunkSizing = false;
4873         }
4874       }
4875     }
4876     if (!UseNUMA && ForceNUMA) {
4877       UseNUMA = true;
4878     }
4879   }
4880 
4881   if (MaxFDLimit) {
4882     // set the number of file descriptors to max. print out error
4883     // if getrlimit/setrlimit fails but continue regardless.
4884     struct rlimit nbr_files;
4885     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4886     if (status != 0) {
4887       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4888     } else {
4889       nbr_files.rlim_cur = nbr_files.rlim_max;
4890       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4891       if (status != 0) {
4892         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4893       }
4894     }
4895   }
4896 
4897   // Initialize lock used to serialize thread creation (see os::create_thread)
4898   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4899 
4900   // at-exit methods are called in the reverse order of their registration.
4901   // atexit functions are called on return from main or as a result of a
4902   // call to exit(3C). There can be only 32 of these functions registered
4903   // and atexit() does not set errno.
4904 
4905   if (PerfAllowAtExitRegistration) {
4906     // only register atexit functions if PerfAllowAtExitRegistration is set.
4907     // atexit functions can be delayed until process exit time, which
4908     // can be problematic for embedded VM situations. Embedded VMs should
4909     // call DestroyJavaVM() to assure that VM resources are released.
4910 
4911     // note: perfMemory_exit_helper atexit function may be removed in
4912     // the future if the appropriate cleanup code can be added to the
4913     // VM_Exit VMOperation's doit method.
4914     if (atexit(perfMemory_exit_helper) != 0) {
4915       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4916     }
4917   }
4918 
4919   // initialize thread priority policy
4920   prio_init();
4921 
4922   return JNI_OK;
4923 }
4924 
4925 // Mark the polling page as unreadable
4926 void os::make_polling_page_unreadable(void) {
4927   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4928     fatal("Could not disable polling page");
4929   }
4930 }
4931 
4932 // Mark the polling page as readable
4933 void os::make_polling_page_readable(void) {
4934   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4935     fatal("Could not enable polling page");
4936   }
4937 }
4938 
4939 // older glibc versions don't have this macro (which expands to
4940 // an optimized bit-counting function) so we have to roll our own
4941 #ifndef CPU_COUNT
4942 
4943 static int _cpu_count(const cpu_set_t* cpus) {
4944   int count = 0;
4945   // only look up to the number of configured processors
4946   for (int i = 0; i < os::processor_count(); i++) {
4947     if (CPU_ISSET(i, cpus)) {
4948       count++;
4949     }
4950   }
4951   return count;
4952 }
4953 
4954 #define CPU_COUNT(cpus) _cpu_count(cpus)
4955 
4956 #endif // CPU_COUNT
4957 
4958 // Get the current number of available processors for this process.
4959 // This value can change at any time during a process's lifetime.
4960 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4961 // If it appears there may be more than 1024 processors then we do a
4962 // dynamic check - see 6515172 for details.
4963 // If anything goes wrong we fallback to returning the number of online
4964 // processors - which can be greater than the number available to the process.
4965 int os::active_processor_count() {
4966   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4967   cpu_set_t* cpus_p = &cpus;
4968   int cpus_size = sizeof(cpu_set_t);
4969 
4970   int configured_cpus = processor_count();  // upper bound on available cpus
4971   int cpu_count = 0;
4972 
4973 // old build platforms may not support dynamic cpu sets
4974 #ifdef CPU_ALLOC
4975 
4976   // To enable easy testing of the dynamic path on different platforms we
4977   // introduce a diagnostic flag: UseCpuAllocPath
4978   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4979     // kernel may use a mask bigger than cpu_set_t
4980     log_trace(os)("active_processor_count: using dynamic path %s"
4981                   "- configured processors: %d",
4982                   UseCpuAllocPath ? "(forced) " : "",
4983                   configured_cpus);
4984     cpus_p = CPU_ALLOC(configured_cpus);
4985     if (cpus_p != NULL) {
4986       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4987       // zero it just to be safe
4988       CPU_ZERO_S(cpus_size, cpus_p);
4989     }
4990     else {
4991        // failed to allocate so fallback to online cpus
4992        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4993        log_trace(os)("active_processor_count: "
4994                      "CPU_ALLOC failed (%s) - using "
4995                      "online processor count: %d",
4996                      os::strerror(errno), online_cpus);
4997        return online_cpus;
4998     }
4999   }
5000   else {
5001     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5002                   configured_cpus);
5003   }
5004 #else // CPU_ALLOC
5005 // these stubs won't be executed
5006 #define CPU_COUNT_S(size, cpus) -1
5007 #define CPU_FREE(cpus)
5008 
5009   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5010                 configured_cpus);
5011 #endif // CPU_ALLOC
5012 
5013   // pid 0 means the current thread - which we have to assume represents the process
5014   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5015     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5016       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5017     }
5018     else {
5019       cpu_count = CPU_COUNT(cpus_p);
5020     }
5021     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5022   }
5023   else {
5024     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5025     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5026             "which may exceed available processors", os::strerror(errno), cpu_count);
5027   }
5028 
5029   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5030     CPU_FREE(cpus_p);
5031   }
5032 
5033   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5034   return cpu_count;
5035 }
5036 
5037 void os::set_native_thread_name(const char *name) {
5038   if (Linux::_pthread_setname_np) {
5039     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5040     snprintf(buf, sizeof(buf), "%s", name);
5041     buf[sizeof(buf) - 1] = '\0';
5042     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5043     // ERANGE should not happen; all other errors should just be ignored.
5044     assert(rc != ERANGE, "pthread_setname_np failed");
5045   }
5046 }
5047 
5048 bool os::distribute_processes(uint length, uint* distribution) {
5049   // Not yet implemented.
5050   return false;
5051 }
5052 
5053 bool os::bind_to_processor(uint processor_id) {
5054   // Not yet implemented.
5055   return false;
5056 }
5057 
5058 ///
5059 
5060 void os::SuspendedThreadTask::internal_do_task() {
5061   if (do_suspend(_thread->osthread())) {
5062     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5063     do_task(context);
5064     do_resume(_thread->osthread());
5065   }
5066 }
5067 
5068 ////////////////////////////////////////////////////////////////////////////////
5069 // debug support
5070 
5071 bool os::find(address addr, outputStream* st) {
5072   Dl_info dlinfo;
5073   memset(&dlinfo, 0, sizeof(dlinfo));
5074   if (dladdr(addr, &dlinfo) != 0) {
5075     st->print(PTR_FORMAT ": ", p2i(addr));
5076     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5077       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5078                 p2i(addr) - p2i(dlinfo.dli_saddr));
5079     } else if (dlinfo.dli_fbase != NULL) {
5080       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5081     } else {
5082       st->print("<absolute address>");
5083     }
5084     if (dlinfo.dli_fname != NULL) {
5085       st->print(" in %s", dlinfo.dli_fname);
5086     }
5087     if (dlinfo.dli_fbase != NULL) {
5088       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5089     }
5090     st->cr();
5091 
5092     if (Verbose) {
5093       // decode some bytes around the PC
5094       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5095       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5096       address       lowest = (address) dlinfo.dli_sname;
5097       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5098       if (begin < lowest)  begin = lowest;
5099       Dl_info dlinfo2;
5100       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5101           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5102         end = (address) dlinfo2.dli_saddr;
5103       }
5104       Disassembler::decode(begin, end, st);
5105     }
5106     return true;
5107   }
5108   return false;
5109 }
5110 
5111 ////////////////////////////////////////////////////////////////////////////////
5112 // misc
5113 
5114 // This does not do anything on Linux. This is basically a hook for being
5115 // able to use structured exception handling (thread-local exception filters)
5116 // on, e.g., Win32.
5117 void
5118 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5119                          JavaCallArguments* args, Thread* thread) {
5120   f(value, method, args, thread);
5121 }
5122 
5123 void os::print_statistics() {
5124 }
5125 
5126 bool os::message_box(const char* title, const char* message) {
5127   int i;
5128   fdStream err(defaultStream::error_fd());
5129   for (i = 0; i < 78; i++) err.print_raw("=");
5130   err.cr();
5131   err.print_raw_cr(title);
5132   for (i = 0; i < 78; i++) err.print_raw("-");
5133   err.cr();
5134   err.print_raw_cr(message);
5135   for (i = 0; i < 78; i++) err.print_raw("=");
5136   err.cr();
5137 
5138   char buf[16];
5139   // Prevent process from exiting upon "read error" without consuming all CPU
5140   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5141 
5142   return buf[0] == 'y' || buf[0] == 'Y';
5143 }
5144 
5145 int os::stat(const char *path, struct stat *sbuf) {
5146   char pathbuf[MAX_PATH];
5147   if (strlen(path) > MAX_PATH - 1) {
5148     errno = ENAMETOOLONG;
5149     return -1;
5150   }
5151   os::native_path(strcpy(pathbuf, path));
5152   return ::stat(pathbuf, sbuf);
5153 }
5154 
5155 // Is a (classpath) directory empty?
5156 bool os::dir_is_empty(const char* path) {
5157   DIR *dir = NULL;
5158   struct dirent *ptr;
5159 
5160   dir = opendir(path);
5161   if (dir == NULL) return true;
5162 
5163   // Scan the directory
5164   bool result = true;
5165   char buf[sizeof(struct dirent) + MAX_PATH];
5166   while (result && (ptr = ::readdir(dir)) != NULL) {
5167     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5168       result = false;
5169     }
5170   }
5171   closedir(dir);
5172   return result;
5173 }
5174 
5175 // This code originates from JDK's sysOpen and open64_w
5176 // from src/solaris/hpi/src/system_md.c
5177 
5178 int os::open(const char *path, int oflag, int mode) {
5179   if (strlen(path) > MAX_PATH - 1) {
5180     errno = ENAMETOOLONG;
5181     return -1;
5182   }
5183 
5184   // All file descriptors that are opened in the Java process and not
5185   // specifically destined for a subprocess should have the close-on-exec
5186   // flag set.  If we don't set it, then careless 3rd party native code
5187   // might fork and exec without closing all appropriate file descriptors
5188   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5189   // turn might:
5190   //
5191   // - cause end-of-file to fail to be detected on some file
5192   //   descriptors, resulting in mysterious hangs, or
5193   //
5194   // - might cause an fopen in the subprocess to fail on a system
5195   //   suffering from bug 1085341.
5196   //
5197   // (Yes, the default setting of the close-on-exec flag is a Unix
5198   // design flaw)
5199   //
5200   // See:
5201   // 1085341: 32-bit stdio routines should support file descriptors >255
5202   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5203   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5204   //
5205   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5206   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5207   // because it saves a system call and removes a small window where the flag
5208   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5209   // and we fall back to using FD_CLOEXEC (see below).
5210 #ifdef O_CLOEXEC
5211   oflag |= O_CLOEXEC;
5212 #endif
5213 
5214   int fd = ::open64(path, oflag, mode);
5215   if (fd == -1) return -1;
5216 
5217   //If the open succeeded, the file might still be a directory
5218   {
5219     struct stat64 buf64;
5220     int ret = ::fstat64(fd, &buf64);
5221     int st_mode = buf64.st_mode;
5222 
5223     if (ret != -1) {
5224       if ((st_mode & S_IFMT) == S_IFDIR) {
5225         errno = EISDIR;
5226         ::close(fd);
5227         return -1;
5228       }
5229     } else {
5230       ::close(fd);
5231       return -1;
5232     }
5233   }
5234 
5235 #ifdef FD_CLOEXEC
5236   // Validate that the use of the O_CLOEXEC flag on open above worked.
5237   // With recent kernels, we will perform this check exactly once.
5238   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5239   if (!O_CLOEXEC_is_known_to_work) {
5240     int flags = ::fcntl(fd, F_GETFD);
5241     if (flags != -1) {
5242       if ((flags & FD_CLOEXEC) != 0)
5243         O_CLOEXEC_is_known_to_work = 1;
5244       else
5245         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5246     }
5247   }
5248 #endif
5249 
5250   return fd;
5251 }
5252 
5253 
5254 // create binary file, rewriting existing file if required
5255 int os::create_binary_file(const char* path, bool rewrite_existing) {
5256   int oflags = O_WRONLY | O_CREAT;
5257   if (!rewrite_existing) {
5258     oflags |= O_EXCL;
5259   }
5260   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5261 }
5262 
5263 // return current position of file pointer
5264 jlong os::current_file_offset(int fd) {
5265   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5266 }
5267 
5268 // move file pointer to the specified offset
5269 jlong os::seek_to_file_offset(int fd, jlong offset) {
5270   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5271 }
5272 
5273 // This code originates from JDK's sysAvailable
5274 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5275 
5276 int os::available(int fd, jlong *bytes) {
5277   jlong cur, end;
5278   int mode;
5279   struct stat64 buf64;
5280 
5281   if (::fstat64(fd, &buf64) >= 0) {
5282     mode = buf64.st_mode;
5283     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5284       int n;
5285       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5286         *bytes = n;
5287         return 1;
5288       }
5289     }
5290   }
5291   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5292     return 0;
5293   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5294     return 0;
5295   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5296     return 0;
5297   }
5298   *bytes = end - cur;
5299   return 1;
5300 }
5301 
5302 // Map a block of memory.
5303 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5304                         char *addr, size_t bytes, bool read_only,
5305                         bool allow_exec) {
5306   int prot;
5307   int flags = MAP_PRIVATE;
5308 
5309   if (read_only) {
5310     prot = PROT_READ;
5311   } else {
5312     prot = PROT_READ | PROT_WRITE;
5313   }
5314 
5315   if (allow_exec) {
5316     prot |= PROT_EXEC;
5317   }
5318 
5319   if (addr != NULL) {
5320     flags |= MAP_FIXED;
5321   }
5322 
5323   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5324                                      fd, file_offset);
5325   if (mapped_address == MAP_FAILED) {
5326     return NULL;
5327   }
5328   return mapped_address;
5329 }
5330 
5331 
5332 // Remap a block of memory.
5333 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5334                           char *addr, size_t bytes, bool read_only,
5335                           bool allow_exec) {
5336   // same as map_memory() on this OS
5337   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5338                         allow_exec);
5339 }
5340 
5341 
5342 // Unmap a block of memory.
5343 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5344   return munmap(addr, bytes) == 0;
5345 }
5346 
5347 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5348 
5349 static clockid_t thread_cpu_clockid(Thread* thread) {
5350   pthread_t tid = thread->osthread()->pthread_id();
5351   clockid_t clockid;
5352 
5353   // Get thread clockid
5354   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5355   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5356   return clockid;
5357 }
5358 
5359 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5360 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5361 // of a thread.
5362 //
5363 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5364 // the fast estimate available on the platform.
5365 
5366 jlong os::current_thread_cpu_time() {
5367   if (os::Linux::supports_fast_thread_cpu_time()) {
5368     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5369   } else {
5370     // return user + sys since the cost is the same
5371     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5372   }
5373 }
5374 
5375 jlong os::thread_cpu_time(Thread* thread) {
5376   // consistent with what current_thread_cpu_time() returns
5377   if (os::Linux::supports_fast_thread_cpu_time()) {
5378     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5379   } else {
5380     return slow_thread_cpu_time(thread, true /* user + sys */);
5381   }
5382 }
5383 
5384 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5385   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5386     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5387   } else {
5388     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5389   }
5390 }
5391 
5392 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5393   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5394     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5395   } else {
5396     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5397   }
5398 }
5399 
5400 //  -1 on error.
5401 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5402   pid_t  tid = thread->osthread()->thread_id();
5403   char *s;
5404   char stat[2048];
5405   int statlen;
5406   char proc_name[64];
5407   int count;
5408   long sys_time, user_time;
5409   char cdummy;
5410   int idummy;
5411   long ldummy;
5412   FILE *fp;
5413 
5414   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5415   fp = fopen(proc_name, "r");
5416   if (fp == NULL) return -1;
5417   statlen = fread(stat, 1, 2047, fp);
5418   stat[statlen] = '\0';
5419   fclose(fp);
5420 
5421   // Skip pid and the command string. Note that we could be dealing with
5422   // weird command names, e.g. user could decide to rename java launcher
5423   // to "java 1.4.2 :)", then the stat file would look like
5424   //                1234 (java 1.4.2 :)) R ... ...
5425   // We don't really need to know the command string, just find the last
5426   // occurrence of ")" and then start parsing from there. See bug 4726580.
5427   s = strrchr(stat, ')');
5428   if (s == NULL) return -1;
5429 
5430   // Skip blank chars
5431   do { s++; } while (s && isspace(*s));
5432 
5433   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5434                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5435                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5436                  &user_time, &sys_time);
5437   if (count != 13) return -1;
5438   if (user_sys_cpu_time) {
5439     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5440   } else {
5441     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5442   }
5443 }
5444 
5445 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5446   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5447   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5448   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5449   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5450 }
5451 
5452 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5453   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5454   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5455   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5456   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5457 }
5458 
5459 bool os::is_thread_cpu_time_supported() {
5460   return true;
5461 }
5462 
5463 // System loadavg support.  Returns -1 if load average cannot be obtained.
5464 // Linux doesn't yet have a (official) notion of processor sets,
5465 // so just return the system wide load average.
5466 int os::loadavg(double loadavg[], int nelem) {
5467   return ::getloadavg(loadavg, nelem);
5468 }
5469 
5470 void os::pause() {
5471   char filename[MAX_PATH];
5472   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5473     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5474   } else {
5475     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5476   }
5477 
5478   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5479   if (fd != -1) {
5480     struct stat buf;
5481     ::close(fd);
5482     while (::stat(filename, &buf) == 0) {
5483       (void)::poll(NULL, 0, 100);
5484     }
5485   } else {
5486     jio_fprintf(stderr,
5487                 "Could not open pause file '%s', continuing immediately.\n", filename);
5488   }
5489 }
5490 
5491 extern char** environ;
5492 
5493 // Run the specified command in a separate process. Return its exit value,
5494 // or -1 on failure (e.g. can't fork a new process).
5495 // Unlike system(), this function can be called from signal handler. It
5496 // doesn't block SIGINT et al.
5497 int os::fork_and_exec(char* cmd) {
5498   const char * argv[4] = {"sh", "-c", cmd, NULL};
5499 
5500   pid_t pid = fork();
5501 
5502   if (pid < 0) {
5503     // fork failed
5504     return -1;
5505 
5506   } else if (pid == 0) {
5507     // child process
5508 
5509     execve("/bin/sh", (char* const*)argv, environ);
5510 
5511     // execve failed
5512     _exit(-1);
5513 
5514   } else  {
5515     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5516     // care about the actual exit code, for now.
5517 
5518     int status;
5519 
5520     // Wait for the child process to exit.  This returns immediately if
5521     // the child has already exited. */
5522     while (waitpid(pid, &status, 0) < 0) {
5523       switch (errno) {
5524       case ECHILD: return 0;
5525       case EINTR: break;
5526       default: return -1;
5527       }
5528     }
5529 
5530     if (WIFEXITED(status)) {
5531       // The child exited normally; get its exit code.
5532       return WEXITSTATUS(status);
5533     } else if (WIFSIGNALED(status)) {
5534       // The child exited because of a signal
5535       // The best value to return is 0x80 + signal number,
5536       // because that is what all Unix shells do, and because
5537       // it allows callers to distinguish between process exit and
5538       // process death by signal.
5539       return 0x80 + WTERMSIG(status);
5540     } else {
5541       // Unknown exit code; pass it through
5542       return status;
5543     }
5544   }
5545 }
5546 
5547 // is_headless_jre()
5548 //
5549 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5550 // in order to report if we are running in a headless jre
5551 //
5552 // Since JDK8 xawt/libmawt.so was moved into the same directory
5553 // as libawt.so, and renamed libawt_xawt.so
5554 //
5555 bool os::is_headless_jre() {
5556   struct stat statbuf;
5557   char buf[MAXPATHLEN];
5558   char libmawtpath[MAXPATHLEN];
5559   const char *xawtstr  = "/xawt/libmawt.so";
5560   const char *new_xawtstr = "/libawt_xawt.so";
5561   char *p;
5562 
5563   // Get path to libjvm.so
5564   os::jvm_path(buf, sizeof(buf));
5565 
5566   // Get rid of libjvm.so
5567   p = strrchr(buf, '/');
5568   if (p == NULL) {
5569     return false;
5570   } else {
5571     *p = '\0';
5572   }
5573 
5574   // Get rid of client or server
5575   p = strrchr(buf, '/');
5576   if (p == NULL) {
5577     return false;
5578   } else {
5579     *p = '\0';
5580   }
5581 
5582   // check xawt/libmawt.so
5583   strcpy(libmawtpath, buf);
5584   strcat(libmawtpath, xawtstr);
5585   if (::stat(libmawtpath, &statbuf) == 0) return false;
5586 
5587   // check libawt_xawt.so
5588   strcpy(libmawtpath, buf);
5589   strcat(libmawtpath, new_xawtstr);
5590   if (::stat(libmawtpath, &statbuf) == 0) return false;
5591 
5592   return true;
5593 }
5594 
5595 // Get the default path to the core file
5596 // Returns the length of the string
5597 int os::get_core_path(char* buffer, size_t bufferSize) {
5598   /*
5599    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5600    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5601    */
5602   const int core_pattern_len = 129;
5603   char core_pattern[core_pattern_len] = {0};
5604 
5605   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5606   if (core_pattern_file == -1) {
5607     return -1;
5608   }
5609 
5610   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5611   ::close(core_pattern_file);
5612   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5613     return -1;
5614   }
5615   if (core_pattern[ret-1] == '\n') {
5616     core_pattern[ret-1] = '\0';
5617   } else {
5618     core_pattern[ret] = '\0';
5619   }
5620 
5621   char *pid_pos = strstr(core_pattern, "%p");
5622   int written;
5623 
5624   if (core_pattern[0] == '/') {
5625     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5626   } else {
5627     char cwd[PATH_MAX];
5628 
5629     const char* p = get_current_directory(cwd, PATH_MAX);
5630     if (p == NULL) {
5631       return -1;
5632     }
5633 
5634     if (core_pattern[0] == '|') {
5635       written = jio_snprintf(buffer, bufferSize,
5636                              "\"%s\" (or dumping to %s/core.%d)",
5637                              &core_pattern[1], p, current_process_id());
5638     } else {
5639       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5640     }
5641   }
5642 
5643   if (written < 0) {
5644     return -1;
5645   }
5646 
5647   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5648     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5649 
5650     if (core_uses_pid_file != -1) {
5651       char core_uses_pid = 0;
5652       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5653       ::close(core_uses_pid_file);
5654 
5655       if (core_uses_pid == '1') {
5656         jio_snprintf(buffer + written, bufferSize - written,
5657                                           ".%d", current_process_id());
5658       }
5659     }
5660   }
5661 
5662   return strlen(buffer);
5663 }
5664 
5665 bool os::start_debugging(char *buf, int buflen) {
5666   int len = (int)strlen(buf);
5667   char *p = &buf[len];
5668 
5669   jio_snprintf(p, buflen-len,
5670                "\n\n"
5671                "Do you want to debug the problem?\n\n"
5672                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5673                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5674                "Otherwise, press RETURN to abort...",
5675                os::current_process_id(), os::current_process_id(),
5676                os::current_thread_id(), os::current_thread_id());
5677 
5678   bool yes = os::message_box("Unexpected Error", buf);
5679 
5680   if (yes) {
5681     // yes, user asked VM to launch debugger
5682     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5683                  os::current_process_id(), os::current_process_id());
5684 
5685     os::fork_and_exec(buf);
5686     yes = false;
5687   }
5688   return yes;
5689 }
5690 
5691 
5692 // Java/Compiler thread:
5693 //
5694 //   Low memory addresses
5695 // P0 +------------------------+
5696 //    |                        |\  Java thread created by VM does not have glibc
5697 //    |    glibc guard page    | - guard page, attached Java thread usually has
5698 //    |                        |/  1 glibc guard page.
5699 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5700 //    |                        |\
5701 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5702 //    |                        |/
5703 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5704 //    |                        |\
5705 //    |      Normal Stack      | -
5706 //    |                        |/
5707 // P2 +------------------------+ Thread::stack_base()
5708 //
5709 // Non-Java thread:
5710 //
5711 //   Low memory addresses
5712 // P0 +------------------------+
5713 //    |                        |\
5714 //    |  glibc guard page      | - usually 1 page
5715 //    |                        |/
5716 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5717 //    |                        |\
5718 //    |      Normal Stack      | -
5719 //    |                        |/
5720 // P2 +------------------------+ Thread::stack_base()
5721 //
5722 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5723 //    returned from pthread_attr_getstack().
5724 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5725 //    of the stack size given in pthread_attr. We work around this for
5726 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5727 //
5728 #ifndef ZERO
5729 static void current_stack_region(address * bottom, size_t * size) {
5730   if (os::Linux::is_initial_thread()) {
5731     // initial thread needs special handling because pthread_getattr_np()
5732     // may return bogus value.
5733     *bottom = os::Linux::initial_thread_stack_bottom();
5734     *size   = os::Linux::initial_thread_stack_size();
5735   } else {
5736     pthread_attr_t attr;
5737 
5738     int rslt = pthread_getattr_np(pthread_self(), &attr);
5739 
5740     // JVM needs to know exact stack location, abort if it fails
5741     if (rslt != 0) {
5742       if (rslt == ENOMEM) {
5743         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5744       } else {
5745         fatal("pthread_getattr_np failed with error = %d", rslt);
5746       }
5747     }
5748 
5749     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5750       fatal("Cannot locate current stack attributes!");
5751     }
5752 
5753     // Work around NPTL stack guard error.
5754     size_t guard_size = 0;
5755     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5756     if (rslt != 0) {
5757       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5758     }
5759     *bottom += guard_size;
5760     *size   -= guard_size;
5761 
5762     pthread_attr_destroy(&attr);
5763 
5764   }
5765   assert(os::current_stack_pointer() >= *bottom &&
5766          os::current_stack_pointer() < *bottom + *size, "just checking");
5767 }
5768 
5769 address os::current_stack_base() {
5770   address bottom;
5771   size_t size;
5772   current_stack_region(&bottom, &size);
5773   return (bottom + size);
5774 }
5775 
5776 size_t os::current_stack_size() {
5777   // This stack size includes the usable stack and HotSpot guard pages
5778   // (for the threads that have Hotspot guard pages).
5779   address bottom;
5780   size_t size;
5781   current_stack_region(&bottom, &size);
5782   return size;
5783 }
5784 #endif
5785 
5786 static inline struct timespec get_mtime(const char* filename) {
5787   struct stat st;
5788   int ret = os::stat(filename, &st);
5789   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5790   return st.st_mtim;
5791 }
5792 
5793 int os::compare_file_modified_times(const char* file1, const char* file2) {
5794   struct timespec filetime1 = get_mtime(file1);
5795   struct timespec filetime2 = get_mtime(file2);
5796   int diff = filetime1.tv_sec - filetime2.tv_sec;
5797   if (diff == 0) {
5798     return filetime1.tv_nsec - filetime2.tv_nsec;
5799   }
5800   return diff;
5801 }
5802 
5803 /////////////// Unit tests ///////////////
5804 
5805 #ifndef PRODUCT
5806 
5807 #define test_log(...)              \
5808   do {                             \
5809     if (VerboseInternalVMTests) {  \
5810       tty->print_cr(__VA_ARGS__);  \
5811       tty->flush();                \
5812     }                              \
5813   } while (false)
5814 
5815 class TestReserveMemorySpecial : AllStatic {
5816  public:
5817   static void small_page_write(void* addr, size_t size) {
5818     size_t page_size = os::vm_page_size();
5819 
5820     char* end = (char*)addr + size;
5821     for (char* p = (char*)addr; p < end; p += page_size) {
5822       *p = 1;
5823     }
5824   }
5825 
5826   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5827     if (!UseHugeTLBFS) {
5828       return;
5829     }
5830 
5831     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5832 
5833     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5834 
5835     if (addr != NULL) {
5836       small_page_write(addr, size);
5837 
5838       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5839     }
5840   }
5841 
5842   static void test_reserve_memory_special_huge_tlbfs_only() {
5843     if (!UseHugeTLBFS) {
5844       return;
5845     }
5846 
5847     size_t lp = os::large_page_size();
5848 
5849     for (size_t size = lp; size <= lp * 10; size += lp) {
5850       test_reserve_memory_special_huge_tlbfs_only(size);
5851     }
5852   }
5853 
5854   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5855     size_t lp = os::large_page_size();
5856     size_t ag = os::vm_allocation_granularity();
5857 
5858     // sizes to test
5859     const size_t sizes[] = {
5860       lp, lp + ag, lp + lp / 2, lp * 2,
5861       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5862       lp * 10, lp * 10 + lp / 2
5863     };
5864     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5865 
5866     // For each size/alignment combination, we test three scenarios:
5867     // 1) with req_addr == NULL
5868     // 2) with a non-null req_addr at which we expect to successfully allocate
5869     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5870     //    expect the allocation to either fail or to ignore req_addr
5871 
5872     // Pre-allocate two areas; they shall be as large as the largest allocation
5873     //  and aligned to the largest alignment we will be testing.
5874     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5875     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5876       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5877       -1, 0);
5878     assert(mapping1 != MAP_FAILED, "should work");
5879 
5880     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5881       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5882       -1, 0);
5883     assert(mapping2 != MAP_FAILED, "should work");
5884 
5885     // Unmap the first mapping, but leave the second mapping intact: the first
5886     // mapping will serve as a value for a "good" req_addr (case 2). The second
5887     // mapping, still intact, as "bad" req_addr (case 3).
5888     ::munmap(mapping1, mapping_size);
5889 
5890     // Case 1
5891     test_log("%s, req_addr NULL:", __FUNCTION__);
5892     test_log("size            align           result");
5893 
5894     for (int i = 0; i < num_sizes; i++) {
5895       const size_t size = sizes[i];
5896       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5897         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5898         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5899                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5900         if (p != NULL) {
5901           assert(is_aligned(p, alignment), "must be");
5902           small_page_write(p, size);
5903           os::Linux::release_memory_special_huge_tlbfs(p, size);
5904         }
5905       }
5906     }
5907 
5908     // Case 2
5909     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5910     test_log("size            align           req_addr         result");
5911 
5912     for (int i = 0; i < num_sizes; i++) {
5913       const size_t size = sizes[i];
5914       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5915         char* const req_addr = align_up(mapping1, alignment);
5916         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5917         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5918                  size, alignment, p2i(req_addr), p2i(p),
5919                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5920         if (p != NULL) {
5921           assert(p == req_addr, "must be");
5922           small_page_write(p, size);
5923           os::Linux::release_memory_special_huge_tlbfs(p, size);
5924         }
5925       }
5926     }
5927 
5928     // Case 3
5929     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5930     test_log("size            align           req_addr         result");
5931 
5932     for (int i = 0; i < num_sizes; i++) {
5933       const size_t size = sizes[i];
5934       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5935         char* const req_addr = align_up(mapping2, alignment);
5936         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5937         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5938                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5939         // as the area around req_addr contains already existing mappings, the API should always
5940         // return NULL (as per contract, it cannot return another address)
5941         assert(p == NULL, "must be");
5942       }
5943     }
5944 
5945     ::munmap(mapping2, mapping_size);
5946 
5947   }
5948 
5949   static void test_reserve_memory_special_huge_tlbfs() {
5950     if (!UseHugeTLBFS) {
5951       return;
5952     }
5953 
5954     test_reserve_memory_special_huge_tlbfs_only();
5955     test_reserve_memory_special_huge_tlbfs_mixed();
5956   }
5957 
5958   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5959     if (!UseSHM) {
5960       return;
5961     }
5962 
5963     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5964 
5965     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5966 
5967     if (addr != NULL) {
5968       assert(is_aligned(addr, alignment), "Check");
5969       assert(is_aligned(addr, os::large_page_size()), "Check");
5970 
5971       small_page_write(addr, size);
5972 
5973       os::Linux::release_memory_special_shm(addr, size);
5974     }
5975   }
5976 
5977   static void test_reserve_memory_special_shm() {
5978     size_t lp = os::large_page_size();
5979     size_t ag = os::vm_allocation_granularity();
5980 
5981     for (size_t size = ag; size < lp * 3; size += ag) {
5982       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5983         test_reserve_memory_special_shm(size, alignment);
5984       }
5985     }
5986   }
5987 
5988   static void test() {
5989     test_reserve_memory_special_huge_tlbfs();
5990     test_reserve_memory_special_shm();
5991   }
5992 };
5993 
5994 void TestReserveMemorySpecial_test() {
5995   TestReserveMemorySpecial::test();
5996 }
5997 
5998 #endif