1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.hpp"
  53 #include "runtime/threadSMR.hpp"
  54 #include "runtime/vframe.hpp"
  55 #include "runtime/vframeArray.hpp"
  56 #include "runtime/vframe_hp.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 
  60 #if INCLUDE_JVMCI
  61 #include "jvmci/jvmciRuntime.hpp"
  62 #include "jvmci/jvmciJavaClasses.hpp"
  63 #endif
  64 
  65 
  66 bool DeoptimizationMarker::_is_active = false;
  67 
  68 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  69                                          int  caller_adjustment,
  70                                          int  caller_actual_parameters,
  71                                          int  number_of_frames,
  72                                          intptr_t* frame_sizes,
  73                                          address* frame_pcs,
  74                                          BasicType return_type,
  75                                          int exec_mode) {
  76   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  77   _caller_adjustment         = caller_adjustment;
  78   _caller_actual_parameters  = caller_actual_parameters;
  79   _number_of_frames          = number_of_frames;
  80   _frame_sizes               = frame_sizes;
  81   _frame_pcs                 = frame_pcs;
  82   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  83   _return_type               = return_type;
  84   _initial_info              = 0;
  85   // PD (x86 only)
  86   _counter_temp              = 0;
  87   _unpack_kind               = exec_mode;
  88   _sender_sp_temp            = 0;
  89 
  90   _total_frame_sizes         = size_of_frames();
  91   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  92 }
  93 
  94 
  95 Deoptimization::UnrollBlock::~UnrollBlock() {
  96   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  98   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  99 }
 100 
 101 
 102 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 103   assert(register_number < RegisterMap::reg_count, "checking register number");
 104   return &_register_block[register_number * 2];
 105 }
 106 
 107 
 108 
 109 int Deoptimization::UnrollBlock::size_of_frames() const {
 110   // Acount first for the adjustment of the initial frame
 111   int result = _caller_adjustment;
 112   for (int index = 0; index < number_of_frames(); index++) {
 113     result += frame_sizes()[index];
 114   }
 115   return result;
 116 }
 117 
 118 
 119 void Deoptimization::UnrollBlock::print() {
 120   ttyLocker ttyl;
 121   tty->print_cr("UnrollBlock");
 122   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 123   tty->print(   "  frame_sizes: ");
 124   for (int index = 0; index < number_of_frames(); index++) {
 125     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 126   }
 127   tty->cr();
 128 }
 129 
 130 
 131 // In order to make fetch_unroll_info work properly with escape
 132 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 133 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 134 // of previously eliminated objects occurs in realloc_objects, which is
 135 // called from the method fetch_unroll_info_helper below.
 136 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 137   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 138   // but makes the entry a little slower. There is however a little dance we have to
 139   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 140 
 141   // fetch_unroll_info() is called at the beginning of the deoptimization
 142   // handler. Note this fact before we start generating temporary frames
 143   // that can confuse an asynchronous stack walker. This counter is
 144   // decremented at the end of unpack_frames().
 145   if (TraceDeoptimization) {
 146     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 147   }
 148   thread->inc_in_deopt_handler();
 149 
 150   return fetch_unroll_info_helper(thread, exec_mode);
 151 JRT_END
 152 
 153 
 154 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 155 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 156 
 157   // Note: there is a safepoint safety issue here. No matter whether we enter
 158   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 159   // the vframeArray is created.
 160   //
 161 
 162   // Allocate our special deoptimization ResourceMark
 163   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 164   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 165   thread->set_deopt_mark(dmark);
 166 
 167   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 168   RegisterMap map(thread, true);
 169   RegisterMap dummy_map(thread, false);
 170   // Now get the deoptee with a valid map
 171   frame deoptee = stub_frame.sender(&map);
 172   // Set the deoptee nmethod
 173   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 174   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 175   thread->set_deopt_compiled_method(cm);
 176 
 177   if (VerifyStack) {
 178     thread->validate_frame_layout();
 179   }
 180 
 181   // Create a growable array of VFrames where each VFrame represents an inlined
 182   // Java frame.  This storage is allocated with the usual system arena.
 183   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 184   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 185   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 186   while (!vf->is_top()) {
 187     assert(vf->is_compiled_frame(), "Wrong frame type");
 188     chunk->push(compiledVFrame::cast(vf));
 189     vf = vf->sender();
 190   }
 191   assert(vf->is_compiled_frame(), "Wrong frame type");
 192   chunk->push(compiledVFrame::cast(vf));
 193 
 194   bool realloc_failures = false;
 195 
 196 #if defined(COMPILER2) || INCLUDE_JVMCI
 197   // Reallocate the non-escaping objects and restore their fields. Then
 198   // relock objects if synchronization on them was eliminated.
 199 #ifndef INCLUDE_JVMCI
 200   if (DoEscapeAnalysis || EliminateNestedLocks) {
 201     if (EliminateAllocations) {
 202 #endif // INCLUDE_JVMCI
 203       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 204       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 205 
 206       // The flag return_oop() indicates call sites which return oop
 207       // in compiled code. Such sites include java method calls,
 208       // runtime calls (for example, used to allocate new objects/arrays
 209       // on slow code path) and any other calls generated in compiled code.
 210       // It is not guaranteed that we can get such information here only
 211       // by analyzing bytecode in deoptimized frames. This is why this flag
 212       // is set during method compilation (see Compile::Process_OopMap_Node()).
 213       // If the previous frame was popped or if we are dispatching an exception,
 214       // we don't have an oop result.
 215       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 216       Handle return_value;
 217       if (save_oop_result) {
 218         // Reallocation may trigger GC. If deoptimization happened on return from
 219         // call which returns oop we need to save it since it is not in oopmap.
 220         oop result = deoptee.saved_oop_result(&map);
 221         assert(oopDesc::is_oop_or_null(result), "must be oop");
 222         return_value = Handle(thread, result);
 223         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 224         if (TraceDeoptimization) {
 225           ttyLocker ttyl;
 226           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 227         }
 228       }
 229       if (objects != NULL) {
 230         JRT_BLOCK
 231           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 232         JRT_END
 233         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 234         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 235 #ifndef PRODUCT
 236         if (TraceDeoptimization) {
 237           ttyLocker ttyl;
 238           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 239           print_objects(objects, realloc_failures);
 240         }
 241 #endif
 242       }
 243       if (save_oop_result) {
 244         // Restore result.
 245         deoptee.set_saved_oop_result(&map, return_value());
 246       }
 247 #ifndef INCLUDE_JVMCI
 248     }
 249     if (EliminateLocks) {
 250 #endif // INCLUDE_JVMCI
 251 #ifndef PRODUCT
 252       bool first = true;
 253 #endif
 254       for (int i = 0; i < chunk->length(); i++) {
 255         compiledVFrame* cvf = chunk->at(i);
 256         assert (cvf->scope() != NULL,"expect only compiled java frames");
 257         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 258         if (monitors->is_nonempty()) {
 259           relock_objects(monitors, thread, realloc_failures);
 260 #ifndef PRODUCT
 261           if (PrintDeoptimizationDetails) {
 262             ttyLocker ttyl;
 263             for (int j = 0; j < monitors->length(); j++) {
 264               MonitorInfo* mi = monitors->at(j);
 265               if (mi->eliminated()) {
 266                 if (first) {
 267                   first = false;
 268                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 269                 }
 270                 if (mi->owner_is_scalar_replaced()) {
 271                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 272                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 273                 } else {
 274                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 275                 }
 276               }
 277             }
 278           }
 279 #endif // !PRODUCT
 280         }
 281       }
 282 #ifndef INCLUDE_JVMCI
 283     }
 284   }
 285 #endif // INCLUDE_JVMCI
 286 #endif // COMPILER2 || INCLUDE_JVMCI
 287 
 288   ScopeDesc* trap_scope = chunk->at(0)->scope();
 289   Handle exceptionObject;
 290   if (trap_scope->rethrow_exception()) {
 291     if (PrintDeoptimizationDetails) {
 292       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 293     }
 294     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 295     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 296     ScopeValue* topOfStack = expressions->top();
 297     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 298     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 299   }
 300 
 301   // Ensure that no safepoint is taken after pointers have been stored
 302   // in fields of rematerialized objects.  If a safepoint occurs from here on
 303   // out the java state residing in the vframeArray will be missed.
 304   NoSafepointVerifier no_safepoint;
 305 
 306   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 307 #if defined(COMPILER2) || INCLUDE_JVMCI
 308   if (realloc_failures) {
 309     pop_frames_failed_reallocs(thread, array);
 310   }
 311 #endif
 312 
 313   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 314   thread->set_vframe_array_head(array);
 315 
 316   // Now that the vframeArray has been created if we have any deferred local writes
 317   // added by jvmti then we can free up that structure as the data is now in the
 318   // vframeArray
 319 
 320   if (thread->deferred_locals() != NULL) {
 321     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 322     int i = 0;
 323     do {
 324       // Because of inlining we could have multiple vframes for a single frame
 325       // and several of the vframes could have deferred writes. Find them all.
 326       if (list->at(i)->id() == array->original().id()) {
 327         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 328         list->remove_at(i);
 329         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 330         delete dlv;
 331       } else {
 332         i++;
 333       }
 334     } while ( i < list->length() );
 335     if (list->length() == 0) {
 336       thread->set_deferred_locals(NULL);
 337       // free the list and elements back to C heap.
 338       delete list;
 339     }
 340 
 341   }
 342 
 343 #ifndef SHARK
 344   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 345   CodeBlob* cb = stub_frame.cb();
 346   // Verify we have the right vframeArray
 347   assert(cb->frame_size() >= 0, "Unexpected frame size");
 348   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 349 
 350   // If the deopt call site is a MethodHandle invoke call site we have
 351   // to adjust the unpack_sp.
 352   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 353   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 354     unpack_sp = deoptee.unextended_sp();
 355 
 356 #ifdef ASSERT
 357   assert(cb->is_deoptimization_stub() ||
 358          cb->is_uncommon_trap_stub() ||
 359          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 360          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 361          "unexpected code blob: %s", cb->name());
 362 #endif
 363 #else
 364   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 365 #endif // !SHARK
 366 
 367   // This is a guarantee instead of an assert because if vframe doesn't match
 368   // we will unpack the wrong deoptimized frame and wind up in strange places
 369   // where it will be very difficult to figure out what went wrong. Better
 370   // to die an early death here than some very obscure death later when the
 371   // trail is cold.
 372   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 373   // in that it will fail to detect a problem when there is one. This needs
 374   // more work in tiger timeframe.
 375   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 376 
 377   int number_of_frames = array->frames();
 378 
 379   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 380   // virtual activation, which is the reverse of the elements in the vframes array.
 381   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 382   // +1 because we always have an interpreter return address for the final slot.
 383   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 384   int popframe_extra_args = 0;
 385   // Create an interpreter return address for the stub to use as its return
 386   // address so the skeletal frames are perfectly walkable
 387   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 388 
 389   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 390   // activation be put back on the expression stack of the caller for reexecution
 391   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 392     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 393   }
 394 
 395   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 396   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 397   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 398   //
 399   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 400   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 401 
 402   // It's possible that the number of parameters at the call site is
 403   // different than number of arguments in the callee when method
 404   // handles are used.  If the caller is interpreted get the real
 405   // value so that the proper amount of space can be added to it's
 406   // frame.
 407   bool caller_was_method_handle = false;
 408   if (deopt_sender.is_interpreted_frame()) {
 409     methodHandle method = deopt_sender.interpreter_frame_method();
 410     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 411     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 412       // Method handle invokes may involve fairly arbitrary chains of
 413       // calls so it's impossible to know how much actual space the
 414       // caller has for locals.
 415       caller_was_method_handle = true;
 416     }
 417   }
 418 
 419   //
 420   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 421   // frame_sizes/frame_pcs[1] next oldest frame (int)
 422   // frame_sizes/frame_pcs[n] youngest frame (int)
 423   //
 424   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 425   // owns the space for the return address to it's caller).  Confusing ain't it.
 426   //
 427   // The vframe array can address vframes with indices running from
 428   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 429   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 430   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 431   // so things look a little strange in this loop.
 432   //
 433   int callee_parameters = 0;
 434   int callee_locals = 0;
 435   for (int index = 0; index < array->frames(); index++ ) {
 436     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 437     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 438     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 439     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 440                                                                                                     callee_locals,
 441                                                                                                     index == 0,
 442                                                                                                     popframe_extra_args);
 443     // This pc doesn't have to be perfect just good enough to identify the frame
 444     // as interpreted so the skeleton frame will be walkable
 445     // The correct pc will be set when the skeleton frame is completely filled out
 446     // The final pc we store in the loop is wrong and will be overwritten below
 447     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 448 
 449     callee_parameters = array->element(index)->method()->size_of_parameters();
 450     callee_locals = array->element(index)->method()->max_locals();
 451     popframe_extra_args = 0;
 452   }
 453 
 454   // Compute whether the root vframe returns a float or double value.
 455   BasicType return_type;
 456   {
 457     methodHandle method(thread, array->element(0)->method());
 458     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 459     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 460   }
 461 
 462   // Compute information for handling adapters and adjusting the frame size of the caller.
 463   int caller_adjustment = 0;
 464 
 465   // Compute the amount the oldest interpreter frame will have to adjust
 466   // its caller's stack by. If the caller is a compiled frame then
 467   // we pretend that the callee has no parameters so that the
 468   // extension counts for the full amount of locals and not just
 469   // locals-parms. This is because without a c2i adapter the parm
 470   // area as created by the compiled frame will not be usable by
 471   // the interpreter. (Depending on the calling convention there
 472   // may not even be enough space).
 473 
 474   // QQQ I'd rather see this pushed down into last_frame_adjust
 475   // and have it take the sender (aka caller).
 476 
 477   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 478     caller_adjustment = last_frame_adjust(0, callee_locals);
 479   } else if (callee_locals > callee_parameters) {
 480     // The caller frame may need extending to accommodate
 481     // non-parameter locals of the first unpacked interpreted frame.
 482     // Compute that adjustment.
 483     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 484   }
 485 
 486   // If the sender is deoptimized the we must retrieve the address of the handler
 487   // since the frame will "magically" show the original pc before the deopt
 488   // and we'd undo the deopt.
 489 
 490   frame_pcs[0] = deopt_sender.raw_pc();
 491 
 492 #ifndef SHARK
 493   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 494 #endif // SHARK
 495 
 496 #ifdef INCLUDE_JVMCI
 497   if (exceptionObject() != NULL) {
 498     thread->set_exception_oop(exceptionObject());
 499     exec_mode = Unpack_exception;
 500   }
 501 #endif
 502 
 503   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 504     assert(thread->has_pending_exception(), "should have thrown OOME");
 505     thread->set_exception_oop(thread->pending_exception());
 506     thread->clear_pending_exception();
 507     exec_mode = Unpack_exception;
 508   }
 509 
 510 #if INCLUDE_JVMCI
 511   if (thread->frames_to_pop_failed_realloc() > 0) {
 512     thread->set_pending_monitorenter(false);
 513   }
 514 #endif
 515 
 516   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 517                                       caller_adjustment * BytesPerWord,
 518                                       caller_was_method_handle ? 0 : callee_parameters,
 519                                       number_of_frames,
 520                                       frame_sizes,
 521                                       frame_pcs,
 522                                       return_type,
 523                                       exec_mode);
 524   // On some platforms, we need a way to pass some platform dependent
 525   // information to the unpacking code so the skeletal frames come out
 526   // correct (initial fp value, unextended sp, ...)
 527   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 528 
 529   if (array->frames() > 1) {
 530     if (VerifyStack && TraceDeoptimization) {
 531       ttyLocker ttyl;
 532       tty->print_cr("Deoptimizing method containing inlining");
 533     }
 534   }
 535 
 536   array->set_unroll_block(info);
 537   return info;
 538 }
 539 
 540 // Called to cleanup deoptimization data structures in normal case
 541 // after unpacking to stack and when stack overflow error occurs
 542 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 543                                         vframeArray *array) {
 544 
 545   // Get array if coming from exception
 546   if (array == NULL) {
 547     array = thread->vframe_array_head();
 548   }
 549   thread->set_vframe_array_head(NULL);
 550 
 551   // Free the previous UnrollBlock
 552   vframeArray* old_array = thread->vframe_array_last();
 553   thread->set_vframe_array_last(array);
 554 
 555   if (old_array != NULL) {
 556     UnrollBlock* old_info = old_array->unroll_block();
 557     old_array->set_unroll_block(NULL);
 558     delete old_info;
 559     delete old_array;
 560   }
 561 
 562   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 563   // inside the vframeArray (StackValueCollections)
 564 
 565   delete thread->deopt_mark();
 566   thread->set_deopt_mark(NULL);
 567   thread->set_deopt_compiled_method(NULL);
 568 
 569 
 570   if (JvmtiExport::can_pop_frame()) {
 571 #ifndef CC_INTERP
 572     // Regardless of whether we entered this routine with the pending
 573     // popframe condition bit set, we should always clear it now
 574     thread->clear_popframe_condition();
 575 #else
 576     // C++ interpreter will clear has_pending_popframe when it enters
 577     // with method_resume. For deopt_resume2 we clear it now.
 578     if (thread->popframe_forcing_deopt_reexecution())
 579         thread->clear_popframe_condition();
 580 #endif /* CC_INTERP */
 581   }
 582 
 583   // unpack_frames() is called at the end of the deoptimization handler
 584   // and (in C2) at the end of the uncommon trap handler. Note this fact
 585   // so that an asynchronous stack walker can work again. This counter is
 586   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 587   // the beginning of uncommon_trap().
 588   thread->dec_in_deopt_handler();
 589 }
 590 
 591 // Moved from cpu directories because none of the cpus has callee save values.
 592 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 593 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 594 
 595   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 596   // the days we had adapter frames. When we deoptimize a situation where a
 597   // compiled caller calls a compiled caller will have registers it expects
 598   // to survive the call to the callee. If we deoptimize the callee the only
 599   // way we can restore these registers is to have the oldest interpreter
 600   // frame that we create restore these values. That is what this routine
 601   // will accomplish.
 602 
 603   // At the moment we have modified c2 to not have any callee save registers
 604   // so this problem does not exist and this routine is just a place holder.
 605 
 606   assert(f->is_interpreted_frame(), "must be interpreted");
 607 }
 608 
 609 // Return BasicType of value being returned
 610 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 611 
 612   // We are already active int he special DeoptResourceMark any ResourceObj's we
 613   // allocate will be freed at the end of the routine.
 614 
 615   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 616   // but makes the entry a little slower. There is however a little dance we have to
 617   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 618   ResetNoHandleMark rnhm; // No-op in release/product versions
 619   HandleMark hm;
 620 
 621   frame stub_frame = thread->last_frame();
 622 
 623   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 624   // must point to the vframeArray for the unpack frame.
 625   vframeArray* array = thread->vframe_array_head();
 626 
 627 #ifndef PRODUCT
 628   if (TraceDeoptimization) {
 629     ttyLocker ttyl;
 630     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 631                   p2i(thread), p2i(array), exec_mode);
 632   }
 633 #endif
 634   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 635               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 636 
 637   UnrollBlock* info = array->unroll_block();
 638 
 639   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 640   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 641 
 642   BasicType bt = info->return_type();
 643 
 644   // If we have an exception pending, claim that the return type is an oop
 645   // so the deopt_blob does not overwrite the exception_oop.
 646 
 647   if (exec_mode == Unpack_exception)
 648     bt = T_OBJECT;
 649 
 650   // Cleanup thread deopt data
 651   cleanup_deopt_info(thread, array);
 652 
 653 #ifndef PRODUCT
 654   if (VerifyStack) {
 655     ResourceMark res_mark;
 656 
 657     thread->validate_frame_layout();
 658 
 659     // Verify that the just-unpacked frames match the interpreter's
 660     // notions of expression stack and locals
 661     vframeArray* cur_array = thread->vframe_array_last();
 662     RegisterMap rm(thread, false);
 663     rm.set_include_argument_oops(false);
 664     bool is_top_frame = true;
 665     int callee_size_of_parameters = 0;
 666     int callee_max_locals = 0;
 667     for (int i = 0; i < cur_array->frames(); i++) {
 668       vframeArrayElement* el = cur_array->element(i);
 669       frame* iframe = el->iframe();
 670       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 671 
 672       // Get the oop map for this bci
 673       InterpreterOopMap mask;
 674       int cur_invoke_parameter_size = 0;
 675       bool try_next_mask = false;
 676       int next_mask_expression_stack_size = -1;
 677       int top_frame_expression_stack_adjustment = 0;
 678       methodHandle mh(thread, iframe->interpreter_frame_method());
 679       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 680       BytecodeStream str(mh);
 681       str.set_start(iframe->interpreter_frame_bci());
 682       int max_bci = mh->code_size();
 683       // Get to the next bytecode if possible
 684       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 685       // Check to see if we can grab the number of outgoing arguments
 686       // at an uncommon trap for an invoke (where the compiler
 687       // generates debug info before the invoke has executed)
 688       Bytecodes::Code cur_code = str.next();
 689       if (cur_code == Bytecodes::_invokevirtual   ||
 690           cur_code == Bytecodes::_invokespecial   ||
 691           cur_code == Bytecodes::_invokestatic    ||
 692           cur_code == Bytecodes::_invokeinterface ||
 693           cur_code == Bytecodes::_invokedynamic) {
 694         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 695         Symbol* signature = invoke.signature();
 696         ArgumentSizeComputer asc(signature);
 697         cur_invoke_parameter_size = asc.size();
 698         if (invoke.has_receiver()) {
 699           // Add in receiver
 700           ++cur_invoke_parameter_size;
 701         }
 702         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 703           callee_size_of_parameters++;
 704         }
 705       }
 706       if (str.bci() < max_bci) {
 707         Bytecodes::Code bc = str.next();
 708         if (bc >= 0) {
 709           // The interpreter oop map generator reports results before
 710           // the current bytecode has executed except in the case of
 711           // calls. It seems to be hard to tell whether the compiler
 712           // has emitted debug information matching the "state before"
 713           // a given bytecode or the state after, so we try both
 714           switch (cur_code) {
 715             case Bytecodes::_invokevirtual:
 716             case Bytecodes::_invokespecial:
 717             case Bytecodes::_invokestatic:
 718             case Bytecodes::_invokeinterface:
 719             case Bytecodes::_invokedynamic:
 720             case Bytecodes::_athrow:
 721               break;
 722             default: {
 723               InterpreterOopMap next_mask;
 724               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 725               next_mask_expression_stack_size = next_mask.expression_stack_size();
 726               // Need to subtract off the size of the result type of
 727               // the bytecode because this is not described in the
 728               // debug info but returned to the interpreter in the TOS
 729               // caching register
 730               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 731               if (bytecode_result_type != T_ILLEGAL) {
 732                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 733               }
 734               assert(top_frame_expression_stack_adjustment >= 0, "");
 735               try_next_mask = true;
 736               break;
 737             }
 738           }
 739         }
 740       }
 741 
 742       // Verify stack depth and oops in frame
 743       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 744       if (!(
 745             /* SPARC */
 746             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 747             /* x86 */
 748             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 749             (try_next_mask &&
 750              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 751                                                                     top_frame_expression_stack_adjustment))) ||
 752             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 753             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 754              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 755             )) {
 756         ttyLocker ttyl;
 757 
 758         // Print out some information that will help us debug the problem
 759         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 760         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 761         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 762                       iframe->interpreter_frame_expression_stack_size());
 763         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 764         tty->print_cr("  try_next_mask = %d", try_next_mask);
 765         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 766         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 767         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 768         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 769         tty->print_cr("  exec_mode = %d", exec_mode);
 770         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 771         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 772         tty->print_cr("  Interpreted frames:");
 773         for (int k = 0; k < cur_array->frames(); k++) {
 774           vframeArrayElement* el = cur_array->element(k);
 775           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 776         }
 777         cur_array->print_on_2(tty);
 778         guarantee(false, "wrong number of expression stack elements during deopt");
 779       }
 780       VerifyOopClosure verify;
 781       iframe->oops_interpreted_do(&verify, &rm, false);
 782       callee_size_of_parameters = mh->size_of_parameters();
 783       callee_max_locals = mh->max_locals();
 784       is_top_frame = false;
 785     }
 786   }
 787 #endif /* !PRODUCT */
 788 
 789 
 790   return bt;
 791 JRT_END
 792 
 793 
 794 int Deoptimization::deoptimize_dependents() {
 795   Threads::deoptimized_wrt_marked_nmethods();
 796   return 0;
 797 }
 798 
 799 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 800   = Deoptimization::Action_reinterpret;
 801 
 802 #if defined(COMPILER2) || INCLUDE_JVMCI
 803 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 804   Handle pending_exception(THREAD, thread->pending_exception());
 805   const char* exception_file = thread->exception_file();
 806   int exception_line = thread->exception_line();
 807   thread->clear_pending_exception();
 808 
 809   bool failures = false;
 810 
 811   for (int i = 0; i < objects->length(); i++) {
 812     assert(objects->at(i)->is_object(), "invalid debug information");
 813     ObjectValue* sv = (ObjectValue*) objects->at(i);
 814 
 815     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 816     oop obj = NULL;
 817 
 818     if (k->is_instance_klass()) {
 819       InstanceKlass* ik = InstanceKlass::cast(k);
 820       obj = ik->allocate_instance(THREAD);
 821     } else if (k->is_typeArray_klass()) {
 822       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 823       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 824       int len = sv->field_size() / type2size[ak->element_type()];
 825       obj = ak->allocate(len, THREAD);
 826     } else if (k->is_objArray_klass()) {
 827       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 828       obj = ak->allocate(sv->field_size(), THREAD);
 829     }
 830 
 831     if (obj == NULL) {
 832       failures = true;
 833     }
 834 
 835     assert(sv->value().is_null(), "redundant reallocation");
 836     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 837     CLEAR_PENDING_EXCEPTION;
 838     sv->set_value(obj);
 839   }
 840 
 841   if (failures) {
 842     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 843   } else if (pending_exception.not_null()) {
 844     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 845   }
 846 
 847   return failures;
 848 }
 849 
 850 // restore elements of an eliminated type array
 851 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 852   int index = 0;
 853   intptr_t val;
 854 
 855   for (int i = 0; i < sv->field_size(); i++) {
 856     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 857     switch(type) {
 858     case T_LONG: case T_DOUBLE: {
 859       assert(value->type() == T_INT, "Agreement.");
 860       StackValue* low =
 861         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 862 #ifdef _LP64
 863       jlong res = (jlong)low->get_int();
 864 #else
 865 #ifdef SPARC
 866       // For SPARC we have to swap high and low words.
 867       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 868 #else
 869       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 870 #endif //SPARC
 871 #endif
 872       obj->long_at_put(index, res);
 873       break;
 874     }
 875 
 876     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 877     case T_INT: case T_FLOAT: { // 4 bytes.
 878       assert(value->type() == T_INT, "Agreement.");
 879       bool big_value = false;
 880       if (i + 1 < sv->field_size() && type == T_INT) {
 881         if (sv->field_at(i)->is_location()) {
 882           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 883           if (type == Location::dbl || type == Location::lng) {
 884             big_value = true;
 885           }
 886         } else if (sv->field_at(i)->is_constant_int()) {
 887           ScopeValue* next_scope_field = sv->field_at(i + 1);
 888           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 889             big_value = true;
 890           }
 891         }
 892       }
 893 
 894       if (big_value) {
 895         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 896   #ifdef _LP64
 897         jlong res = (jlong)low->get_int();
 898   #else
 899   #ifdef SPARC
 900         // For SPARC we have to swap high and low words.
 901         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 902   #else
 903         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 904   #endif //SPARC
 905   #endif
 906         obj->int_at_put(index, (jint)*((jint*)&res));
 907         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 908       } else {
 909         val = value->get_int();
 910         obj->int_at_put(index, (jint)*((jint*)&val));
 911       }
 912       break;
 913     }
 914 
 915     case T_SHORT:
 916       assert(value->type() == T_INT, "Agreement.");
 917       val = value->get_int();
 918       obj->short_at_put(index, (jshort)*((jint*)&val));
 919       break;
 920 
 921     case T_CHAR:
 922       assert(value->type() == T_INT, "Agreement.");
 923       val = value->get_int();
 924       obj->char_at_put(index, (jchar)*((jint*)&val));
 925       break;
 926 
 927     case T_BYTE:
 928       assert(value->type() == T_INT, "Agreement.");
 929       val = value->get_int();
 930       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 931       break;
 932 
 933     case T_BOOLEAN:
 934       assert(value->type() == T_INT, "Agreement.");
 935       val = value->get_int();
 936       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 937       break;
 938 
 939       default:
 940         ShouldNotReachHere();
 941     }
 942     index++;
 943   }
 944 }
 945 
 946 
 947 // restore fields of an eliminated object array
 948 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 949   for (int i = 0; i < sv->field_size(); i++) {
 950     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 951     assert(value->type() == T_OBJECT, "object element expected");
 952     obj->obj_at_put(i, value->get_obj()());
 953   }
 954 }
 955 
 956 class ReassignedField {
 957 public:
 958   int _offset;
 959   BasicType _type;
 960 public:
 961   ReassignedField() {
 962     _offset = 0;
 963     _type = T_ILLEGAL;
 964   }
 965 };
 966 
 967 int compare(ReassignedField* left, ReassignedField* right) {
 968   return left->_offset - right->_offset;
 969 }
 970 
 971 // Restore fields of an eliminated instance object using the same field order
 972 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 973 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 974   if (klass->superklass() != NULL) {
 975     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 976   }
 977 
 978   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 979   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 980     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 981       ReassignedField field;
 982       field._offset = fs.offset();
 983       field._type = FieldType::basic_type(fs.signature());
 984       fields->append(field);
 985     }
 986   }
 987   fields->sort(compare);
 988   for (int i = 0; i < fields->length(); i++) {
 989     intptr_t val;
 990     ScopeValue* scope_field = sv->field_at(svIndex);
 991     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 992     int offset = fields->at(i)._offset;
 993     BasicType type = fields->at(i)._type;
 994     switch (type) {
 995       case T_OBJECT: case T_ARRAY:
 996         assert(value->type() == T_OBJECT, "Agreement.");
 997         obj->obj_field_put(offset, value->get_obj()());
 998         break;
 999 
1000       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1001       case T_INT: case T_FLOAT: { // 4 bytes.
1002         assert(value->type() == T_INT, "Agreement.");
1003         bool big_value = false;
1004         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1005           if (scope_field->is_location()) {
1006             Location::Type type = ((LocationValue*) scope_field)->location().type();
1007             if (type == Location::dbl || type == Location::lng) {
1008               big_value = true;
1009             }
1010           }
1011           if (scope_field->is_constant_int()) {
1012             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1013             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1014               big_value = true;
1015             }
1016           }
1017         }
1018 
1019         if (big_value) {
1020           i++;
1021           assert(i < fields->length(), "second T_INT field needed");
1022           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1023         } else {
1024           val = value->get_int();
1025           obj->int_field_put(offset, (jint)*((jint*)&val));
1026           break;
1027         }
1028       }
1029         /* no break */
1030 
1031       case T_LONG: case T_DOUBLE: {
1032         assert(value->type() == T_INT, "Agreement.");
1033         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1034 #ifdef _LP64
1035         jlong res = (jlong)low->get_int();
1036 #else
1037 #ifdef SPARC
1038         // For SPARC we have to swap high and low words.
1039         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1040 #else
1041         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1042 #endif //SPARC
1043 #endif
1044         obj->long_field_put(offset, res);
1045         break;
1046       }
1047 
1048       case T_SHORT:
1049         assert(value->type() == T_INT, "Agreement.");
1050         val = value->get_int();
1051         obj->short_field_put(offset, (jshort)*((jint*)&val));
1052         break;
1053 
1054       case T_CHAR:
1055         assert(value->type() == T_INT, "Agreement.");
1056         val = value->get_int();
1057         obj->char_field_put(offset, (jchar)*((jint*)&val));
1058         break;
1059 
1060       case T_BYTE:
1061         assert(value->type() == T_INT, "Agreement.");
1062         val = value->get_int();
1063         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1064         break;
1065 
1066       case T_BOOLEAN:
1067         assert(value->type() == T_INT, "Agreement.");
1068         val = value->get_int();
1069         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1070         break;
1071 
1072       default:
1073         ShouldNotReachHere();
1074     }
1075     svIndex++;
1076   }
1077   return svIndex;
1078 }
1079 
1080 // restore fields of all eliminated objects and arrays
1081 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1082   for (int i = 0; i < objects->length(); i++) {
1083     ObjectValue* sv = (ObjectValue*) objects->at(i);
1084     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1085     Handle obj = sv->value();
1086     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1087     if (PrintDeoptimizationDetails) {
1088       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1089     }
1090     if (obj.is_null()) {
1091       continue;
1092     }
1093 
1094     if (k->is_instance_klass()) {
1095       InstanceKlass* ik = InstanceKlass::cast(k);
1096       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1097     } else if (k->is_typeArray_klass()) {
1098       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1099       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1100     } else if (k->is_objArray_klass()) {
1101       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1102     }
1103   }
1104 }
1105 
1106 
1107 // relock objects for which synchronization was eliminated
1108 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1109   for (int i = 0; i < monitors->length(); i++) {
1110     MonitorInfo* mon_info = monitors->at(i);
1111     if (mon_info->eliminated()) {
1112       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1113       if (!mon_info->owner_is_scalar_replaced()) {
1114         Handle obj(thread, mon_info->owner());
1115         markOop mark = obj->mark();
1116         if (UseBiasedLocking && mark->has_bias_pattern()) {
1117           // New allocated objects may have the mark set to anonymously biased.
1118           // Also the deoptimized method may called methods with synchronization
1119           // where the thread-local object is bias locked to the current thread.
1120           assert(mark->is_biased_anonymously() ||
1121                  mark->biased_locker() == thread, "should be locked to current thread");
1122           // Reset mark word to unbiased prototype.
1123           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1124           obj->set_mark(unbiased_prototype);
1125         }
1126         BasicLock* lock = mon_info->lock();
1127         ObjectSynchronizer::slow_enter(obj, lock, thread);
1128         assert(mon_info->owner()->is_locked(), "object must be locked now");
1129       }
1130     }
1131   }
1132 }
1133 
1134 
1135 #ifndef PRODUCT
1136 // print information about reallocated objects
1137 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1138   fieldDescriptor fd;
1139 
1140   for (int i = 0; i < objects->length(); i++) {
1141     ObjectValue* sv = (ObjectValue*) objects->at(i);
1142     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1143     Handle obj = sv->value();
1144 
1145     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1146     k->print_value();
1147     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1148     if (obj.is_null()) {
1149       tty->print(" allocation failed");
1150     } else {
1151       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1152     }
1153     tty->cr();
1154 
1155     if (Verbose && !obj.is_null()) {
1156       k->oop_print_on(obj(), tty);
1157     }
1158   }
1159 }
1160 #endif
1161 #endif // COMPILER2 || INCLUDE_JVMCI
1162 
1163 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1164   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1165 
1166 #ifndef PRODUCT
1167   if (PrintDeoptimizationDetails) {
1168     ttyLocker ttyl;
1169     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1170     fr.print_on(tty);
1171     tty->print_cr("     Virtual frames (innermost first):");
1172     for (int index = 0; index < chunk->length(); index++) {
1173       compiledVFrame* vf = chunk->at(index);
1174       tty->print("       %2d - ", index);
1175       vf->print_value();
1176       int bci = chunk->at(index)->raw_bci();
1177       const char* code_name;
1178       if (bci == SynchronizationEntryBCI) {
1179         code_name = "sync entry";
1180       } else {
1181         Bytecodes::Code code = vf->method()->code_at(bci);
1182         code_name = Bytecodes::name(code);
1183       }
1184       tty->print(" - %s", code_name);
1185       tty->print_cr(" @ bci %d ", bci);
1186       if (Verbose) {
1187         vf->print();
1188         tty->cr();
1189       }
1190     }
1191   }
1192 #endif
1193 
1194   // Register map for next frame (used for stack crawl).  We capture
1195   // the state of the deopt'ing frame's caller.  Thus if we need to
1196   // stuff a C2I adapter we can properly fill in the callee-save
1197   // register locations.
1198   frame caller = fr.sender(reg_map);
1199   int frame_size = caller.sp() - fr.sp();
1200 
1201   frame sender = caller;
1202 
1203   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1204   // the vframeArray containing the unpacking information is allocated in the C heap.
1205   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1206   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1207 
1208   // Compare the vframeArray to the collected vframes
1209   assert(array->structural_compare(thread, chunk), "just checking");
1210 
1211 #ifndef PRODUCT
1212   if (PrintDeoptimizationDetails) {
1213     ttyLocker ttyl;
1214     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1215   }
1216 #endif // PRODUCT
1217 
1218   return array;
1219 }
1220 
1221 #if defined(COMPILER2) || INCLUDE_JVMCI
1222 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1223   // Reallocation of some scalar replaced objects failed. Record
1224   // that we need to pop all the interpreter frames for the
1225   // deoptimized compiled frame.
1226   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1227   thread->set_frames_to_pop_failed_realloc(array->frames());
1228   // Unlock all monitors here otherwise the interpreter will see a
1229   // mix of locked and unlocked monitors (because of failed
1230   // reallocations of synchronized objects) and be confused.
1231   for (int i = 0; i < array->frames(); i++) {
1232     MonitorChunk* monitors = array->element(i)->monitors();
1233     if (monitors != NULL) {
1234       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1235         BasicObjectLock* src = monitors->at(j);
1236         if (src->obj() != NULL) {
1237           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1238         }
1239       }
1240       array->element(i)->free_monitors(thread);
1241 #ifdef ASSERT
1242       array->element(i)->set_removed_monitors();
1243 #endif
1244     }
1245   }
1246 }
1247 #endif
1248 
1249 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1250   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1251   Thread* thread = Thread::current();
1252   for (int i = 0; i < monitors->length(); i++) {
1253     MonitorInfo* mon_info = monitors->at(i);
1254     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1255       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1256     }
1257   }
1258 }
1259 
1260 
1261 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1262   if (!UseBiasedLocking) {
1263     return;
1264   }
1265 
1266   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1267 
1268   // Unfortunately we don't have a RegisterMap available in most of
1269   // the places we want to call this routine so we need to walk the
1270   // stack again to update the register map.
1271   if (map == NULL || !map->update_map()) {
1272     StackFrameStream sfs(thread, true);
1273     bool found = false;
1274     while (!found && !sfs.is_done()) {
1275       frame* cur = sfs.current();
1276       sfs.next();
1277       found = cur->id() == fr.id();
1278     }
1279     assert(found, "frame to be deoptimized not found on target thread's stack");
1280     map = sfs.register_map();
1281   }
1282 
1283   vframe* vf = vframe::new_vframe(&fr, map, thread);
1284   compiledVFrame* cvf = compiledVFrame::cast(vf);
1285   // Revoke monitors' biases in all scopes
1286   while (!cvf->is_top()) {
1287     collect_monitors(cvf, objects_to_revoke);
1288     cvf = compiledVFrame::cast(cvf->sender());
1289   }
1290   collect_monitors(cvf, objects_to_revoke);
1291 
1292   if (SafepointSynchronize::is_at_safepoint()) {
1293     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1294   } else {
1295     BiasedLocking::revoke(objects_to_revoke);
1296   }
1297 }
1298 
1299 
1300 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1301   if (!UseBiasedLocking) {
1302     return;
1303   }
1304 
1305   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1306   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1307   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1308     if (jt->has_last_Java_frame()) {
1309       StackFrameStream sfs(jt, true);
1310       while (!sfs.is_done()) {
1311         frame* cur = sfs.current();
1312         if (cb->contains(cur->pc())) {
1313           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1314           compiledVFrame* cvf = compiledVFrame::cast(vf);
1315           // Revoke monitors' biases in all scopes
1316           while (!cvf->is_top()) {
1317             collect_monitors(cvf, objects_to_revoke);
1318             cvf = compiledVFrame::cast(cvf->sender());
1319           }
1320           collect_monitors(cvf, objects_to_revoke);
1321         }
1322         sfs.next();
1323       }
1324     }
1325   }
1326   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1327 }
1328 
1329 
1330 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1331   assert(fr.can_be_deoptimized(), "checking frame type");
1332 
1333   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1334 
1335   if (LogCompilation && xtty != NULL) {
1336     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1337     assert(cm != NULL, "only compiled methods can deopt");
1338 
1339     ttyLocker ttyl;
1340     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1341     cm->log_identity(xtty);
1342     xtty->end_head();
1343     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1344       xtty->begin_elem("jvms bci='%d'", sd->bci());
1345       xtty->method(sd->method());
1346       xtty->end_elem();
1347       if (sd->is_top())  break;
1348     }
1349     xtty->tail("deoptimized");
1350   }
1351 
1352   // Patch the compiled method so that when execution returns to it we will
1353   // deopt the execution state and return to the interpreter.
1354   fr.deoptimize(thread);
1355 }
1356 
1357 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1358   deoptimize(thread, fr, map, Reason_constraint);
1359 }
1360 
1361 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1362   // Deoptimize only if the frame comes from compile code.
1363   // Do not deoptimize the frame which is already patched
1364   // during the execution of the loops below.
1365   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1366     return;
1367   }
1368   ResourceMark rm;
1369   DeoptimizationMarker dm;
1370   if (UseBiasedLocking) {
1371     revoke_biases_of_monitors(thread, fr, map);
1372   }
1373   deoptimize_single_frame(thread, fr, reason);
1374 
1375 }
1376 
1377 #if INCLUDE_JVMCI
1378 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1379   // there is no exception handler for this pc => deoptimize
1380   cm->make_not_entrant();
1381 
1382   // Use Deoptimization::deoptimize for all of its side-effects:
1383   // revoking biases of monitors, gathering traps statistics, logging...
1384   // it also patches the return pc but we do not care about that
1385   // since we return a continuation to the deopt_blob below.
1386   JavaThread* thread = JavaThread::current();
1387   RegisterMap reg_map(thread, UseBiasedLocking);
1388   frame runtime_frame = thread->last_frame();
1389   frame caller_frame = runtime_frame.sender(&reg_map);
1390   assert(caller_frame.cb()->as_nmethod_or_null() == cm, "expect top frame nmethod");
1391   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1392 
1393   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1394   if (trap_mdo != NULL) {
1395     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1396   }
1397 
1398   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1399 }
1400 #endif
1401 
1402 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1403   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1404          "can only deoptimize other thread at a safepoint");
1405   // Compute frame and register map based on thread and sp.
1406   RegisterMap reg_map(thread, UseBiasedLocking);
1407   frame fr = thread->last_frame();
1408   while (fr.id() != id) {
1409     fr = fr.sender(&reg_map);
1410   }
1411   deoptimize(thread, fr, &reg_map, reason);
1412 }
1413 
1414 
1415 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1416   if (thread == Thread::current()) {
1417     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1418   } else {
1419     VM_DeoptimizeFrame deopt(thread, id, reason);
1420     VMThread::execute(&deopt);
1421   }
1422 }
1423 
1424 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1425   deoptimize_frame(thread, id, Reason_constraint);
1426 }
1427 
1428 // JVMTI PopFrame support
1429 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1430 {
1431   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1432 }
1433 JRT_END
1434 
1435 MethodData*
1436 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1437                                 bool create_if_missing) {
1438   Thread* THREAD = thread;
1439   MethodData* mdo = m()->method_data();
1440   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1441     // Build an MDO.  Ignore errors like OutOfMemory;
1442     // that simply means we won't have an MDO to update.
1443     Method::build_interpreter_method_data(m, THREAD);
1444     if (HAS_PENDING_EXCEPTION) {
1445       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1446       CLEAR_PENDING_EXCEPTION;
1447     }
1448     mdo = m()->method_data();
1449   }
1450   return mdo;
1451 }
1452 
1453 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1454 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1455   // in case of an unresolved klass entry, load the class.
1456   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1457     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1458     return;
1459   }
1460 
1461   if (!constant_pool->tag_at(index).is_symbol()) return;
1462 
1463   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1464   Symbol*  symbol  = constant_pool->symbol_at(index);
1465 
1466   // class name?
1467   if (symbol->byte_at(0) != '(') {
1468     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1469     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1470     return;
1471   }
1472 
1473   // then it must be a signature!
1474   ResourceMark rm(THREAD);
1475   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1476     if (ss.is_object()) {
1477       Symbol* class_name = ss.as_symbol(CHECK);
1478       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1479       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1480     }
1481   }
1482 }
1483 
1484 
1485 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1486   EXCEPTION_MARK;
1487   load_class_by_index(constant_pool, index, THREAD);
1488   if (HAS_PENDING_EXCEPTION) {
1489     // Exception happened during classloading. We ignore the exception here, since it
1490     // is going to be rethrown since the current activation is going to be deoptimized and
1491     // the interpreter will re-execute the bytecode.
1492     CLEAR_PENDING_EXCEPTION;
1493     // Class loading called java code which may have caused a stack
1494     // overflow. If the exception was thrown right before the return
1495     // to the runtime the stack is no longer guarded. Reguard the
1496     // stack otherwise if we return to the uncommon trap blob and the
1497     // stack bang causes a stack overflow we crash.
1498     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1499     JavaThread* thread = (JavaThread*)THREAD;
1500     bool guard_pages_enabled = thread->stack_guards_enabled();
1501     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1502     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1503   }
1504 }
1505 
1506 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1507   HandleMark hm;
1508 
1509   // uncommon_trap() is called at the beginning of the uncommon trap
1510   // handler. Note this fact before we start generating temporary frames
1511   // that can confuse an asynchronous stack walker. This counter is
1512   // decremented at the end of unpack_frames().
1513   thread->inc_in_deopt_handler();
1514 
1515   // We need to update the map if we have biased locking.
1516 #if INCLUDE_JVMCI
1517   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1518   RegisterMap reg_map(thread, true);
1519 #else
1520   RegisterMap reg_map(thread, UseBiasedLocking);
1521 #endif
1522   frame stub_frame = thread->last_frame();
1523   frame fr = stub_frame.sender(&reg_map);
1524   // Make sure the calling nmethod is not getting deoptimized and removed
1525   // before we are done with it.
1526   nmethodLocker nl(fr.pc());
1527 
1528   // Log a message
1529   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1530               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1531 
1532   {
1533     ResourceMark rm;
1534 
1535     // Revoke biases of any monitors in the frame to ensure we can migrate them
1536     revoke_biases_of_monitors(thread, fr, &reg_map);
1537 
1538     DeoptReason reason = trap_request_reason(trap_request);
1539     DeoptAction action = trap_request_action(trap_request);
1540 #if INCLUDE_JVMCI
1541     int debug_id = trap_request_debug_id(trap_request);
1542 #endif
1543     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1544 
1545     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1546     compiledVFrame* cvf = compiledVFrame::cast(vf);
1547 
1548     CompiledMethod* nm = cvf->code();
1549 
1550     ScopeDesc*      trap_scope  = cvf->scope();
1551 
1552     if (TraceDeoptimization) {
1553       ttyLocker ttyl;
1554       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1555 #if INCLUDE_JVMCI
1556           , debug_id
1557 #endif
1558           );
1559     }
1560 
1561     methodHandle    trap_method = trap_scope->method();
1562     int             trap_bci    = trap_scope->bci();
1563 #if INCLUDE_JVMCI
1564     oop speculation = thread->pending_failed_speculation();
1565     if (nm->is_compiled_by_jvmci()) {
1566       if (speculation != NULL) {
1567         oop speculation_log = nm->as_nmethod()->speculation_log();
1568         if (speculation_log != NULL) {
1569           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1570             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1571               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1572             }
1573           }
1574           if (TraceDeoptimization) {
1575             tty->print_cr("Saving speculation to speculation log");
1576           }
1577           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1578         } else {
1579           if (TraceDeoptimization) {
1580             tty->print_cr("Speculation present but no speculation log");
1581           }
1582         }
1583         thread->set_pending_failed_speculation(NULL);
1584       } else {
1585         if (TraceDeoptimization) {
1586           tty->print_cr("No speculation");
1587         }
1588       }
1589     } else {
1590       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1591     }
1592 
1593     if (trap_bci == SynchronizationEntryBCI) {
1594       trap_bci = 0;
1595       thread->set_pending_monitorenter(true);
1596     }
1597 
1598     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1599       thread->set_pending_transfer_to_interpreter(true);
1600     }
1601 #endif
1602 
1603     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1604     // Record this event in the histogram.
1605     gather_statistics(reason, action, trap_bc);
1606 
1607     // Ensure that we can record deopt. history:
1608     // Need MDO to record RTM code generation state.
1609     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1610 
1611     methodHandle profiled_method;
1612 #if INCLUDE_JVMCI
1613     if (nm->is_compiled_by_jvmci()) {
1614       profiled_method = nm->method();
1615     } else {
1616       profiled_method = trap_method;
1617     }
1618 #else
1619     profiled_method = trap_method;
1620 #endif
1621 
1622     MethodData* trap_mdo =
1623       get_method_data(thread, profiled_method, create_if_missing);
1624 
1625     // Log a message
1626     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1627                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1628                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1629 
1630     // Print a bunch of diagnostics, if requested.
1631     if (TraceDeoptimization || LogCompilation) {
1632       ResourceMark rm;
1633       ttyLocker ttyl;
1634       char buf[100];
1635       if (xtty != NULL) {
1636         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1637                          os::current_thread_id(),
1638                          format_trap_request(buf, sizeof(buf), trap_request));
1639         nm->log_identity(xtty);
1640       }
1641       Symbol* class_name = NULL;
1642       bool unresolved = false;
1643       if (unloaded_class_index >= 0) {
1644         constantPoolHandle constants (THREAD, trap_method->constants());
1645         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1646           class_name = constants->klass_name_at(unloaded_class_index);
1647           unresolved = true;
1648           if (xtty != NULL)
1649             xtty->print(" unresolved='1'");
1650         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1651           class_name = constants->symbol_at(unloaded_class_index);
1652         }
1653         if (xtty != NULL)
1654           xtty->name(class_name);
1655       }
1656       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1657         // Dump the relevant MDO state.
1658         // This is the deopt count for the current reason, any previous
1659         // reasons or recompiles seen at this point.
1660         int dcnt = trap_mdo->trap_count(reason);
1661         if (dcnt != 0)
1662           xtty->print(" count='%d'", dcnt);
1663         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1664         int dos = (pdata == NULL)? 0: pdata->trap_state();
1665         if (dos != 0) {
1666           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1667           if (trap_state_is_recompiled(dos)) {
1668             int recnt2 = trap_mdo->overflow_recompile_count();
1669             if (recnt2 != 0)
1670               xtty->print(" recompiles2='%d'", recnt2);
1671           }
1672         }
1673       }
1674       if (xtty != NULL) {
1675         xtty->stamp();
1676         xtty->end_head();
1677       }
1678       if (TraceDeoptimization) {  // make noise on the tty
1679         tty->print("Uncommon trap occurred in");
1680         nm->method()->print_short_name(tty);
1681         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1682 #if INCLUDE_JVMCI
1683         if (nm->is_nmethod()) {
1684           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1685           if (installedCode != NULL) {
1686             oop installedCodeName = NULL;
1687             if (installedCode->is_a(InstalledCode::klass())) {
1688               installedCodeName = InstalledCode::name(installedCode);
1689             }
1690             if (installedCodeName != NULL) {
1691               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1692             } else {
1693               tty->print(" (JVMCI: installed code has no name) ");
1694             }
1695           } else if (nm->is_compiled_by_jvmci()) {
1696             tty->print(" (JVMCI: no installed code) ");
1697           }
1698         }
1699 #endif
1700         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1701                    p2i(fr.pc()),
1702                    os::current_thread_id(),
1703                    trap_reason_name(reason),
1704                    trap_action_name(action),
1705                    unloaded_class_index
1706 #if INCLUDE_JVMCI
1707                    , debug_id
1708 #endif
1709                    );
1710         if (class_name != NULL) {
1711           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1712           class_name->print_symbol_on(tty);
1713         }
1714         tty->cr();
1715       }
1716       if (xtty != NULL) {
1717         // Log the precise location of the trap.
1718         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1719           xtty->begin_elem("jvms bci='%d'", sd->bci());
1720           xtty->method(sd->method());
1721           xtty->end_elem();
1722           if (sd->is_top())  break;
1723         }
1724         xtty->tail("uncommon_trap");
1725       }
1726     }
1727     // (End diagnostic printout.)
1728 
1729     // Load class if necessary
1730     if (unloaded_class_index >= 0) {
1731       constantPoolHandle constants(THREAD, trap_method->constants());
1732       load_class_by_index(constants, unloaded_class_index);
1733     }
1734 
1735     // Flush the nmethod if necessary and desirable.
1736     //
1737     // We need to avoid situations where we are re-flushing the nmethod
1738     // because of a hot deoptimization site.  Repeated flushes at the same
1739     // point need to be detected by the compiler and avoided.  If the compiler
1740     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1741     // module must take measures to avoid an infinite cycle of recompilation
1742     // and deoptimization.  There are several such measures:
1743     //
1744     //   1. If a recompilation is ordered a second time at some site X
1745     //   and for the same reason R, the action is adjusted to 'reinterpret',
1746     //   to give the interpreter time to exercise the method more thoroughly.
1747     //   If this happens, the method's overflow_recompile_count is incremented.
1748     //
1749     //   2. If the compiler fails to reduce the deoptimization rate, then
1750     //   the method's overflow_recompile_count will begin to exceed the set
1751     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1752     //   is adjusted to 'make_not_compilable', and the method is abandoned
1753     //   to the interpreter.  This is a performance hit for hot methods,
1754     //   but is better than a disastrous infinite cycle of recompilations.
1755     //   (Actually, only the method containing the site X is abandoned.)
1756     //
1757     //   3. In parallel with the previous measures, if the total number of
1758     //   recompilations of a method exceeds the much larger set limit
1759     //   PerMethodRecompilationCutoff, the method is abandoned.
1760     //   This should only happen if the method is very large and has
1761     //   many "lukewarm" deoptimizations.  The code which enforces this
1762     //   limit is elsewhere (class nmethod, class Method).
1763     //
1764     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1765     // to recompile at each bytecode independently of the per-BCI cutoff.
1766     //
1767     // The decision to update code is up to the compiler, and is encoded
1768     // in the Action_xxx code.  If the compiler requests Action_none
1769     // no trap state is changed, no compiled code is changed, and the
1770     // computation suffers along in the interpreter.
1771     //
1772     // The other action codes specify various tactics for decompilation
1773     // and recompilation.  Action_maybe_recompile is the loosest, and
1774     // allows the compiled code to stay around until enough traps are seen,
1775     // and until the compiler gets around to recompiling the trapping method.
1776     //
1777     // The other actions cause immediate removal of the present code.
1778 
1779     // Traps caused by injected profile shouldn't pollute trap counts.
1780     bool injected_profile_trap = trap_method->has_injected_profile() &&
1781                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1782 
1783     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1784     bool make_not_entrant = false;
1785     bool make_not_compilable = false;
1786     bool reprofile = false;
1787     switch (action) {
1788     case Action_none:
1789       // Keep the old code.
1790       update_trap_state = false;
1791       break;
1792     case Action_maybe_recompile:
1793       // Do not need to invalidate the present code, but we can
1794       // initiate another
1795       // Start compiler without (necessarily) invalidating the nmethod.
1796       // The system will tolerate the old code, but new code should be
1797       // generated when possible.
1798       break;
1799     case Action_reinterpret:
1800       // Go back into the interpreter for a while, and then consider
1801       // recompiling form scratch.
1802       make_not_entrant = true;
1803       // Reset invocation counter for outer most method.
1804       // This will allow the interpreter to exercise the bytecodes
1805       // for a while before recompiling.
1806       // By contrast, Action_make_not_entrant is immediate.
1807       //
1808       // Note that the compiler will track null_check, null_assert,
1809       // range_check, and class_check events and log them as if they
1810       // had been traps taken from compiled code.  This will update
1811       // the MDO trap history so that the next compilation will
1812       // properly detect hot trap sites.
1813       reprofile = true;
1814       break;
1815     case Action_make_not_entrant:
1816       // Request immediate recompilation, and get rid of the old code.
1817       // Make them not entrant, so next time they are called they get
1818       // recompiled.  Unloaded classes are loaded now so recompile before next
1819       // time they are called.  Same for uninitialized.  The interpreter will
1820       // link the missing class, if any.
1821       make_not_entrant = true;
1822       break;
1823     case Action_make_not_compilable:
1824       // Give up on compiling this method at all.
1825       make_not_entrant = true;
1826       make_not_compilable = true;
1827       break;
1828     default:
1829       ShouldNotReachHere();
1830     }
1831 
1832     // Setting +ProfileTraps fixes the following, on all platforms:
1833     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1834     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1835     // recompile relies on a MethodData* to record heroic opt failures.
1836 
1837     // Whether the interpreter is producing MDO data or not, we also need
1838     // to use the MDO to detect hot deoptimization points and control
1839     // aggressive optimization.
1840     bool inc_recompile_count = false;
1841     ProfileData* pdata = NULL;
1842     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1843       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1844       uint this_trap_count = 0;
1845       bool maybe_prior_trap = false;
1846       bool maybe_prior_recompile = false;
1847       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1848 #if INCLUDE_JVMCI
1849                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1850 #endif
1851                                    nm->method(),
1852                                    //outputs:
1853                                    this_trap_count,
1854                                    maybe_prior_trap,
1855                                    maybe_prior_recompile);
1856       // Because the interpreter also counts null, div0, range, and class
1857       // checks, these traps from compiled code are double-counted.
1858       // This is harmless; it just means that the PerXTrapLimit values
1859       // are in effect a little smaller than they look.
1860 
1861       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1862       if (per_bc_reason != Reason_none) {
1863         // Now take action based on the partially known per-BCI history.
1864         if (maybe_prior_trap
1865             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1866           // If there are too many traps at this BCI, force a recompile.
1867           // This will allow the compiler to see the limit overflow, and
1868           // take corrective action, if possible.  The compiler generally
1869           // does not use the exact PerBytecodeTrapLimit value, but instead
1870           // changes its tactics if it sees any traps at all.  This provides
1871           // a little hysteresis, delaying a recompile until a trap happens
1872           // several times.
1873           //
1874           // Actually, since there is only one bit of counter per BCI,
1875           // the possible per-BCI counts are {0,1,(per-method count)}.
1876           // This produces accurate results if in fact there is only
1877           // one hot trap site, but begins to get fuzzy if there are
1878           // many sites.  For example, if there are ten sites each
1879           // trapping two or more times, they each get the blame for
1880           // all of their traps.
1881           make_not_entrant = true;
1882         }
1883 
1884         // Detect repeated recompilation at the same BCI, and enforce a limit.
1885         if (make_not_entrant && maybe_prior_recompile) {
1886           // More than one recompile at this point.
1887           inc_recompile_count = maybe_prior_trap;
1888         }
1889       } else {
1890         // For reasons which are not recorded per-bytecode, we simply
1891         // force recompiles unconditionally.
1892         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1893         make_not_entrant = true;
1894       }
1895 
1896       // Go back to the compiler if there are too many traps in this method.
1897       if (this_trap_count >= per_method_trap_limit(reason)) {
1898         // If there are too many traps in this method, force a recompile.
1899         // This will allow the compiler to see the limit overflow, and
1900         // take corrective action, if possible.
1901         // (This condition is an unlikely backstop only, because the
1902         // PerBytecodeTrapLimit is more likely to take effect first,
1903         // if it is applicable.)
1904         make_not_entrant = true;
1905       }
1906 
1907       // Here's more hysteresis:  If there has been a recompile at
1908       // this trap point already, run the method in the interpreter
1909       // for a while to exercise it more thoroughly.
1910       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1911         reprofile = true;
1912       }
1913     }
1914 
1915     // Take requested actions on the method:
1916 
1917     // Recompile
1918     if (make_not_entrant) {
1919       if (!nm->make_not_entrant()) {
1920         return; // the call did not change nmethod's state
1921       }
1922 
1923       if (pdata != NULL) {
1924         // Record the recompilation event, if any.
1925         int tstate0 = pdata->trap_state();
1926         int tstate1 = trap_state_set_recompiled(tstate0, true);
1927         if (tstate1 != tstate0)
1928           pdata->set_trap_state(tstate1);
1929       }
1930 
1931 #if INCLUDE_RTM_OPT
1932       // Restart collecting RTM locking abort statistic if the method
1933       // is recompiled for a reason other than RTM state change.
1934       // Assume that in new recompiled code the statistic could be different,
1935       // for example, due to different inlining.
1936       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1937           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1938         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1939       }
1940 #endif
1941       // For code aging we count traps separately here, using make_not_entrant()
1942       // as a guard against simultaneous deopts in multiple threads.
1943       if (reason == Reason_tenured && trap_mdo != NULL) {
1944         trap_mdo->inc_tenure_traps();
1945       }
1946     }
1947 
1948     if (inc_recompile_count) {
1949       trap_mdo->inc_overflow_recompile_count();
1950       if ((uint)trap_mdo->overflow_recompile_count() >
1951           (uint)PerBytecodeRecompilationCutoff) {
1952         // Give up on the method containing the bad BCI.
1953         if (trap_method() == nm->method()) {
1954           make_not_compilable = true;
1955         } else {
1956           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1957           // But give grace to the enclosing nm->method().
1958         }
1959       }
1960     }
1961 
1962     // Reprofile
1963     if (reprofile) {
1964       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1965     }
1966 
1967     // Give up compiling
1968     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1969       assert(make_not_entrant, "consistent");
1970       nm->method()->set_not_compilable(CompLevel_full_optimization);
1971     }
1972 
1973   } // Free marked resources
1974 
1975 }
1976 JRT_END
1977 
1978 ProfileData*
1979 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1980                                          int trap_bci,
1981                                          Deoptimization::DeoptReason reason,
1982                                          bool update_total_trap_count,
1983 #if INCLUDE_JVMCI
1984                                          bool is_osr,
1985 #endif
1986                                          Method* compiled_method,
1987                                          //outputs:
1988                                          uint& ret_this_trap_count,
1989                                          bool& ret_maybe_prior_trap,
1990                                          bool& ret_maybe_prior_recompile) {
1991   bool maybe_prior_trap = false;
1992   bool maybe_prior_recompile = false;
1993   uint this_trap_count = 0;
1994   if (update_total_trap_count) {
1995     uint idx = reason;
1996 #if INCLUDE_JVMCI
1997     if (is_osr) {
1998       idx += Reason_LIMIT;
1999     }
2000 #endif
2001     uint prior_trap_count = trap_mdo->trap_count(idx);
2002     this_trap_count  = trap_mdo->inc_trap_count(idx);
2003 
2004     // If the runtime cannot find a place to store trap history,
2005     // it is estimated based on the general condition of the method.
2006     // If the method has ever been recompiled, or has ever incurred
2007     // a trap with the present reason , then this BCI is assumed
2008     // (pessimistically) to be the culprit.
2009     maybe_prior_trap      = (prior_trap_count != 0);
2010     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2011   }
2012   ProfileData* pdata = NULL;
2013 
2014 
2015   // For reasons which are recorded per bytecode, we check per-BCI data.
2016   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2017   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2018   if (per_bc_reason != Reason_none) {
2019     // Find the profile data for this BCI.  If there isn't one,
2020     // try to allocate one from the MDO's set of spares.
2021     // This will let us detect a repeated trap at this point.
2022     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2023 
2024     if (pdata != NULL) {
2025       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2026         if (LogCompilation && xtty != NULL) {
2027           ttyLocker ttyl;
2028           // no more room for speculative traps in this MDO
2029           xtty->elem("speculative_traps_oom");
2030         }
2031       }
2032       // Query the trap state of this profile datum.
2033       int tstate0 = pdata->trap_state();
2034       if (!trap_state_has_reason(tstate0, per_bc_reason))
2035         maybe_prior_trap = false;
2036       if (!trap_state_is_recompiled(tstate0))
2037         maybe_prior_recompile = false;
2038 
2039       // Update the trap state of this profile datum.
2040       int tstate1 = tstate0;
2041       // Record the reason.
2042       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2043       // Store the updated state on the MDO, for next time.
2044       if (tstate1 != tstate0)
2045         pdata->set_trap_state(tstate1);
2046     } else {
2047       if (LogCompilation && xtty != NULL) {
2048         ttyLocker ttyl;
2049         // Missing MDP?  Leave a small complaint in the log.
2050         xtty->elem("missing_mdp bci='%d'", trap_bci);
2051       }
2052     }
2053   }
2054 
2055   // Return results:
2056   ret_this_trap_count = this_trap_count;
2057   ret_maybe_prior_trap = maybe_prior_trap;
2058   ret_maybe_prior_recompile = maybe_prior_recompile;
2059   return pdata;
2060 }
2061 
2062 void
2063 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2064   ResourceMark rm;
2065   // Ignored outputs:
2066   uint ignore_this_trap_count;
2067   bool ignore_maybe_prior_trap;
2068   bool ignore_maybe_prior_recompile;
2069   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2070   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2071   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2072   query_update_method_data(trap_mdo, trap_bci,
2073                            (DeoptReason)reason,
2074                            update_total_counts,
2075 #if INCLUDE_JVMCI
2076                            false,
2077 #endif
2078                            NULL,
2079                            ignore_this_trap_count,
2080                            ignore_maybe_prior_trap,
2081                            ignore_maybe_prior_recompile);
2082 }
2083 
2084 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2085   if (TraceDeoptimization) {
2086     tty->print("Uncommon trap ");
2087   }
2088   // Still in Java no safepoints
2089   {
2090     // This enters VM and may safepoint
2091     uncommon_trap_inner(thread, trap_request);
2092   }
2093   return fetch_unroll_info_helper(thread, exec_mode);
2094 }
2095 
2096 // Local derived constants.
2097 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2098 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2099 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2100 
2101 //---------------------------trap_state_reason---------------------------------
2102 Deoptimization::DeoptReason
2103 Deoptimization::trap_state_reason(int trap_state) {
2104   // This assert provides the link between the width of DataLayout::trap_bits
2105   // and the encoding of "recorded" reasons.  It ensures there are enough
2106   // bits to store all needed reasons in the per-BCI MDO profile.
2107   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2108   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2109   trap_state -= recompile_bit;
2110   if (trap_state == DS_REASON_MASK) {
2111     return Reason_many;
2112   } else {
2113     assert((int)Reason_none == 0, "state=0 => Reason_none");
2114     return (DeoptReason)trap_state;
2115   }
2116 }
2117 //-------------------------trap_state_has_reason-------------------------------
2118 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2119   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2120   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2121   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2122   trap_state -= recompile_bit;
2123   if (trap_state == DS_REASON_MASK) {
2124     return -1;  // true, unspecifically (bottom of state lattice)
2125   } else if (trap_state == reason) {
2126     return 1;   // true, definitely
2127   } else if (trap_state == 0) {
2128     return 0;   // false, definitely (top of state lattice)
2129   } else {
2130     return 0;   // false, definitely
2131   }
2132 }
2133 //-------------------------trap_state_add_reason-------------------------------
2134 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2135   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2136   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2137   trap_state -= recompile_bit;
2138   if (trap_state == DS_REASON_MASK) {
2139     return trap_state + recompile_bit;     // already at state lattice bottom
2140   } else if (trap_state == reason) {
2141     return trap_state + recompile_bit;     // the condition is already true
2142   } else if (trap_state == 0) {
2143     return reason + recompile_bit;          // no condition has yet been true
2144   } else {
2145     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2146   }
2147 }
2148 //-----------------------trap_state_is_recompiled------------------------------
2149 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2150   return (trap_state & DS_RECOMPILE_BIT) != 0;
2151 }
2152 //-----------------------trap_state_set_recompiled-----------------------------
2153 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2154   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2155   else    return trap_state & ~DS_RECOMPILE_BIT;
2156 }
2157 //---------------------------format_trap_state---------------------------------
2158 // This is used for debugging and diagnostics, including LogFile output.
2159 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2160                                               int trap_state) {
2161   assert(buflen > 0, "sanity");
2162   DeoptReason reason      = trap_state_reason(trap_state);
2163   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2164   // Re-encode the state from its decoded components.
2165   int decoded_state = 0;
2166   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2167     decoded_state = trap_state_add_reason(decoded_state, reason);
2168   if (recomp_flag)
2169     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2170   // If the state re-encodes properly, format it symbolically.
2171   // Because this routine is used for debugging and diagnostics,
2172   // be robust even if the state is a strange value.
2173   size_t len;
2174   if (decoded_state != trap_state) {
2175     // Random buggy state that doesn't decode??
2176     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2177   } else {
2178     len = jio_snprintf(buf, buflen, "%s%s",
2179                        trap_reason_name(reason),
2180                        recomp_flag ? " recompiled" : "");
2181   }
2182   return buf;
2183 }
2184 
2185 
2186 //--------------------------------statics--------------------------------------
2187 const char* Deoptimization::_trap_reason_name[] = {
2188   // Note:  Keep this in sync. with enum DeoptReason.
2189   "none",
2190   "null_check",
2191   "null_assert" JVMCI_ONLY("_or_unreached0"),
2192   "range_check",
2193   "class_check",
2194   "array_check",
2195   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2196   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2197   "unloaded",
2198   "uninitialized",
2199   "unreached",
2200   "unhandled",
2201   "constraint",
2202   "div0_check",
2203   "age",
2204   "predicate",
2205   "loop_limit_check",
2206   "speculate_class_check",
2207   "speculate_null_check",
2208   "speculate_null_assert",
2209   "rtm_state_change",
2210   "unstable_if",
2211   "unstable_fused_if",
2212 #if INCLUDE_JVMCI
2213   "aliasing",
2214   "transfer_to_interpreter",
2215   "not_compiled_exception_handler",
2216   "unresolved",
2217   "jsr_mismatch",
2218 #endif
2219   "tenured"
2220 };
2221 const char* Deoptimization::_trap_action_name[] = {
2222   // Note:  Keep this in sync. with enum DeoptAction.
2223   "none",
2224   "maybe_recompile",
2225   "reinterpret",
2226   "make_not_entrant",
2227   "make_not_compilable"
2228 };
2229 
2230 const char* Deoptimization::trap_reason_name(int reason) {
2231   // Check that every reason has a name
2232   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2233 
2234   if (reason == Reason_many)  return "many";
2235   if ((uint)reason < Reason_LIMIT)
2236     return _trap_reason_name[reason];
2237   static char buf[20];
2238   sprintf(buf, "reason%d", reason);
2239   return buf;
2240 }
2241 const char* Deoptimization::trap_action_name(int action) {
2242   // Check that every action has a name
2243   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2244 
2245   if ((uint)action < Action_LIMIT)
2246     return _trap_action_name[action];
2247   static char buf[20];
2248   sprintf(buf, "action%d", action);
2249   return buf;
2250 }
2251 
2252 // This is used for debugging and diagnostics, including LogFile output.
2253 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2254                                                 int trap_request) {
2255   jint unloaded_class_index = trap_request_index(trap_request);
2256   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2257   const char* action = trap_action_name(trap_request_action(trap_request));
2258 #if INCLUDE_JVMCI
2259   int debug_id = trap_request_debug_id(trap_request);
2260 #endif
2261   size_t len;
2262   if (unloaded_class_index < 0) {
2263     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2264                        reason, action
2265 #if INCLUDE_JVMCI
2266                        ,debug_id
2267 #endif
2268                        );
2269   } else {
2270     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2271                        reason, action, unloaded_class_index
2272 #if INCLUDE_JVMCI
2273                        ,debug_id
2274 #endif
2275                        );
2276   }
2277   return buf;
2278 }
2279 
2280 juint Deoptimization::_deoptimization_hist
2281         [Deoptimization::Reason_LIMIT]
2282     [1 + Deoptimization::Action_LIMIT]
2283         [Deoptimization::BC_CASE_LIMIT]
2284   = {0};
2285 
2286 enum {
2287   LSB_BITS = 8,
2288   LSB_MASK = right_n_bits(LSB_BITS)
2289 };
2290 
2291 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2292                                        Bytecodes::Code bc) {
2293   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2294   assert(action >= 0 && action < Action_LIMIT, "oob");
2295   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2296   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2297   juint* cases = _deoptimization_hist[reason][1+action];
2298   juint* bc_counter_addr = NULL;
2299   juint  bc_counter      = 0;
2300   // Look for an unused counter, or an exact match to this BC.
2301   if (bc != Bytecodes::_illegal) {
2302     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2303       juint* counter_addr = &cases[bc_case];
2304       juint  counter = *counter_addr;
2305       if ((counter == 0 && bc_counter_addr == NULL)
2306           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2307         // this counter is either free or is already devoted to this BC
2308         bc_counter_addr = counter_addr;
2309         bc_counter = counter | bc;
2310       }
2311     }
2312   }
2313   if (bc_counter_addr == NULL) {
2314     // Overflow, or no given bytecode.
2315     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2316     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2317   }
2318   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2319 }
2320 
2321 jint Deoptimization::total_deoptimization_count() {
2322   return _deoptimization_hist[Reason_none][0][0];
2323 }
2324 
2325 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2326   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2327   return _deoptimization_hist[reason][0][0];
2328 }
2329 
2330 void Deoptimization::print_statistics() {
2331   juint total = total_deoptimization_count();
2332   juint account = total;
2333   if (total != 0) {
2334     ttyLocker ttyl;
2335     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2336     tty->print_cr("Deoptimization traps recorded:");
2337     #define PRINT_STAT_LINE(name, r) \
2338       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2339     PRINT_STAT_LINE("total", total);
2340     // For each non-zero entry in the histogram, print the reason,
2341     // the action, and (if specifically known) the type of bytecode.
2342     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2343       for (int action = 0; action < Action_LIMIT; action++) {
2344         juint* cases = _deoptimization_hist[reason][1+action];
2345         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2346           juint counter = cases[bc_case];
2347           if (counter != 0) {
2348             char name[1*K];
2349             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2350             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2351               bc = Bytecodes::_illegal;
2352             sprintf(name, "%s/%s/%s",
2353                     trap_reason_name(reason),
2354                     trap_action_name(action),
2355                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2356             juint r = counter >> LSB_BITS;
2357             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2358             account -= r;
2359           }
2360         }
2361       }
2362     }
2363     if (account != 0) {
2364       PRINT_STAT_LINE("unaccounted", account);
2365     }
2366     #undef PRINT_STAT_LINE
2367     if (xtty != NULL)  xtty->tail("statistics");
2368   }
2369 }
2370 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2371 
2372 
2373 // Stubs for C1 only system.
2374 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2375   return false;
2376 }
2377 
2378 const char* Deoptimization::trap_reason_name(int reason) {
2379   return "unknown";
2380 }
2381 
2382 void Deoptimization::print_statistics() {
2383   // no output
2384 }
2385 
2386 void
2387 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2388   // no udpate
2389 }
2390 
2391 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2392   return 0;
2393 }
2394 
2395 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2396                                        Bytecodes::Code bc) {
2397   // no update
2398 }
2399 
2400 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2401                                               int trap_state) {
2402   jio_snprintf(buf, buflen, "#%d", trap_state);
2403   return buf;
2404 }
2405 
2406 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI