1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "runtime/vm_version.hpp"
  65 #include "semaphore_windows.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 
 104 // for timer info max values which include all bits
 105 #define ALL_64_BITS CONST64(-1)
 106 
 107 // For DLL loading/load error detection
 108 // Values of PE COFF
 109 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 110 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 111 
 112 static HANDLE main_process;
 113 static HANDLE main_thread;
 114 static int    main_thread_id;
 115 
 116 static FILETIME process_creation_time;
 117 static FILETIME process_exit_time;
 118 static FILETIME process_user_time;
 119 static FILETIME process_kernel_time;
 120 
 121 #ifdef _M_AMD64
 122   #define __CPU__ amd64
 123 #else
 124   #define __CPU__ i486
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     WindowsDbgHelp::pre_initialize();
 139     SymbolEngine::pre_initialize();
 140     break;
 141   case DLL_PROCESS_DETACH:
 142     if (ForceTimeHighResolution) {
 143       timeEndPeriod(1L);
 144     }
 145     break;
 146   default:
 147     break;
 148   }
 149   return true;
 150 }
 151 
 152 static inline double fileTimeAsDouble(FILETIME* time) {
 153   const double high  = (double) ((unsigned int) ~0);
 154   const double split = 10000000.0;
 155   double result = (time->dwLowDateTime / split) +
 156                    time->dwHighDateTime * (high/split);
 157   return result;
 158 }
 159 
 160 // Implementation of os
 161 
 162 bool os::unsetenv(const char* name) {
 163   assert(name != NULL, "Null pointer");
 164   return (SetEnvironmentVariable(name, NULL) == TRUE);
 165 }
 166 
 167 // No setuid programs under Windows.
 168 bool os::have_special_privileges() {
 169   return false;
 170 }
 171 
 172 
 173 // This method is  a periodic task to check for misbehaving JNI applications
 174 // under CheckJNI, we can add any periodic checks here.
 175 // For Windows at the moment does nothing
 176 void os::run_periodic_checks() {
 177   return;
 178 }
 179 
 180 // previous UnhandledExceptionFilter, if there is one
 181 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 182 
 183 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 184 
 185 void os::init_system_properties_values() {
 186   // sysclasspath, java_home, dll_dir
 187   {
 188     char *home_path;
 189     char *dll_path;
 190     char *pslash;
 191     char *bin = "\\bin";
 192     char home_dir[MAX_PATH + 1];
 193     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 194 
 195     if (alt_home_dir != NULL)  {
 196       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 197       home_dir[MAX_PATH] = '\0';
 198     } else {
 199       os::jvm_path(home_dir, sizeof(home_dir));
 200       // Found the full path to jvm.dll.
 201       // Now cut the path to <java_home>/jre if we can.
 202       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 203       pslash = strrchr(home_dir, '\\');
 204       if (pslash != NULL) {
 205         *pslash = '\0';                   // get rid of \{client|server}
 206         pslash = strrchr(home_dir, '\\');
 207         if (pslash != NULL) {
 208           *pslash = '\0';                 // get rid of \bin
 209         }
 210       }
 211     }
 212 
 213     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 214     if (home_path == NULL) {
 215       return;
 216     }
 217     strcpy(home_path, home_dir);
 218     Arguments::set_java_home(home_path);
 219     FREE_C_HEAP_ARRAY(char, home_path);
 220 
 221     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 222                                 mtInternal);
 223     if (dll_path == NULL) {
 224       return;
 225     }
 226     strcpy(dll_path, home_dir);
 227     strcat(dll_path, bin);
 228     Arguments::set_dll_dir(dll_path);
 229     FREE_C_HEAP_ARRAY(char, dll_path);
 230 
 231     if (!set_boot_path('\\', ';')) {
 232       return;
 233     }
 234   }
 235 
 236 // library_path
 237 #define EXT_DIR "\\lib\\ext"
 238 #define BIN_DIR "\\bin"
 239 #define PACKAGE_DIR "\\Sun\\Java"
 240   {
 241     // Win32 library search order (See the documentation for LoadLibrary):
 242     //
 243     // 1. The directory from which application is loaded.
 244     // 2. The system wide Java Extensions directory (Java only)
 245     // 3. System directory (GetSystemDirectory)
 246     // 4. Windows directory (GetWindowsDirectory)
 247     // 5. The PATH environment variable
 248     // 6. The current directory
 249 
 250     char *library_path;
 251     char tmp[MAX_PATH];
 252     char *path_str = ::getenv("PATH");
 253 
 254     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 255                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 256 
 257     library_path[0] = '\0';
 258 
 259     GetModuleFileName(NULL, tmp, sizeof(tmp));
 260     *(strrchr(tmp, '\\')) = '\0';
 261     strcat(library_path, tmp);
 262 
 263     GetWindowsDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266     strcat(library_path, PACKAGE_DIR BIN_DIR);
 267 
 268     GetSystemDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     GetWindowsDirectory(tmp, sizeof(tmp));
 273     strcat(library_path, ";");
 274     strcat(library_path, tmp);
 275 
 276     if (path_str) {
 277       strcat(library_path, ";");
 278       strcat(library_path, path_str);
 279     }
 280 
 281     strcat(library_path, ";.");
 282 
 283     Arguments::set_library_path(library_path);
 284     FREE_C_HEAP_ARRAY(char, library_path);
 285   }
 286 
 287   // Default extensions directory
 288   {
 289     char path[MAX_PATH];
 290     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 291     GetWindowsDirectory(path, MAX_PATH);
 292     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 293             path, PACKAGE_DIR, EXT_DIR);
 294     Arguments::set_ext_dirs(buf);
 295   }
 296   #undef EXT_DIR
 297   #undef BIN_DIR
 298   #undef PACKAGE_DIR
 299 
 300 #ifndef _WIN64
 301   // set our UnhandledExceptionFilter and save any previous one
 302   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 303 #endif
 304 
 305   // Done
 306   return;
 307 }
 308 
 309 void os::breakpoint() {
 310   DebugBreak();
 311 }
 312 
 313 // Invoked from the BREAKPOINT Macro
 314 extern "C" void breakpoint() {
 315   os::breakpoint();
 316 }
 317 
 318 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 319 // So far, this method is only used by Native Memory Tracking, which is
 320 // only supported on Windows XP or later.
 321 //
 322 int os::get_native_stack(address* stack, int frames, int toSkip) {
 323   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 324   for (int index = captured; index < frames; index ++) {
 325     stack[index] = NULL;
 326   }
 327   return captured;
 328 }
 329 
 330 
 331 // os::current_stack_base()
 332 //
 333 //   Returns the base of the stack, which is the stack's
 334 //   starting address.  This function must be called
 335 //   while running on the stack of the thread being queried.
 336 
 337 address os::current_stack_base() {
 338   MEMORY_BASIC_INFORMATION minfo;
 339   address stack_bottom;
 340   size_t stack_size;
 341 
 342   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 343   stack_bottom =  (address)minfo.AllocationBase;
 344   stack_size = minfo.RegionSize;
 345 
 346   // Add up the sizes of all the regions with the same
 347   // AllocationBase.
 348   while (1) {
 349     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 350     if (stack_bottom == (address)minfo.AllocationBase) {
 351       stack_size += minfo.RegionSize;
 352     } else {
 353       break;
 354     }
 355   }
 356   return stack_bottom + stack_size;
 357 }
 358 
 359 size_t os::current_stack_size() {
 360   size_t sz;
 361   MEMORY_BASIC_INFORMATION minfo;
 362   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 363   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 364   return sz;
 365 }
 366 
 367 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 368   const struct tm* time_struct_ptr = localtime(clock);
 369   if (time_struct_ptr != NULL) {
 370     *res = *time_struct_ptr;
 371     return res;
 372   }
 373   return NULL;
 374 }
 375 
 376 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 377   const struct tm* time_struct_ptr = gmtime(clock);
 378   if (time_struct_ptr != NULL) {
 379     *res = *time_struct_ptr;
 380     return res;
 381   }
 382   return NULL;
 383 }
 384 
 385 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 386 
 387 // Thread start routine for all newly created threads
 388 static unsigned __stdcall thread_native_entry(Thread* thread) {
 389   // Try to randomize the cache line index of hot stack frames.
 390   // This helps when threads of the same stack traces evict each other's
 391   // cache lines. The threads can be either from the same JVM instance, or
 392   // from different JVM instances. The benefit is especially true for
 393   // processors with hyperthreading technology.
 394   static int counter = 0;
 395   int pid = os::current_process_id();
 396   _alloca(((pid ^ counter++) & 7) * 128);
 397 
 398   thread->initialize_thread_current();
 399 
 400   OSThread* osthr = thread->osthread();
 401   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 402 
 403   if (UseNUMA) {
 404     int lgrp_id = os::numa_get_group_id();
 405     if (lgrp_id != -1) {
 406       thread->set_lgrp_id(lgrp_id);
 407     }
 408   }
 409 
 410   // Diagnostic code to investigate JDK-6573254
 411   int res = 30115;  // non-java thread
 412   if (thread->is_Java_thread()) {
 413     res = 20115;    // java thread
 414   }
 415 
 416   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 417 
 418   // Install a win32 structured exception handler around every thread created
 419   // by VM, so VM can generate error dump when an exception occurred in non-
 420   // Java thread (e.g. VM thread).
 421   __try {
 422     thread->run();
 423   } __except(topLevelExceptionFilter(
 424                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 425     // Nothing to do.
 426   }
 427 
 428   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 429 
 430   // One less thread is executing
 431   // When the VMThread gets here, the main thread may have already exited
 432   // which frees the CodeHeap containing the Atomic::add code
 433   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 434     Atomic::dec(&os::win32::_os_thread_count);
 435   }
 436 
 437   // If a thread has not deleted itself ("delete this") as part of its
 438   // termination sequence, we have to ensure thread-local-storage is
 439   // cleared before we actually terminate. No threads should ever be
 440   // deleted asynchronously with respect to their termination.
 441   if (Thread::current_or_null_safe() != NULL) {
 442     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 443     thread->clear_thread_current();
 444   }
 445 
 446   // Thread must not return from exit_process_or_thread(), but if it does,
 447   // let it proceed to exit normally
 448   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 449 }
 450 
 451 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 452                                   int thread_id) {
 453   // Allocate the OSThread object
 454   OSThread* osthread = new OSThread(NULL, NULL);
 455   if (osthread == NULL) return NULL;
 456 
 457   // Initialize support for Java interrupts
 458   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 459   if (interrupt_event == NULL) {
 460     delete osthread;
 461     return NULL;
 462   }
 463   osthread->set_interrupt_event(interrupt_event);
 464 
 465   // Store info on the Win32 thread into the OSThread
 466   osthread->set_thread_handle(thread_handle);
 467   osthread->set_thread_id(thread_id);
 468 
 469   if (UseNUMA) {
 470     int lgrp_id = os::numa_get_group_id();
 471     if (lgrp_id != -1) {
 472       thread->set_lgrp_id(lgrp_id);
 473     }
 474   }
 475 
 476   // Initial thread state is INITIALIZED, not SUSPENDED
 477   osthread->set_state(INITIALIZED);
 478 
 479   return osthread;
 480 }
 481 
 482 
 483 bool os::create_attached_thread(JavaThread* thread) {
 484 #ifdef ASSERT
 485   thread->verify_not_published();
 486 #endif
 487   HANDLE thread_h;
 488   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 489                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 490     fatal("DuplicateHandle failed\n");
 491   }
 492   OSThread* osthread = create_os_thread(thread, thread_h,
 493                                         (int)current_thread_id());
 494   if (osthread == NULL) {
 495     return false;
 496   }
 497 
 498   // Initial thread state is RUNNABLE
 499   osthread->set_state(RUNNABLE);
 500 
 501   thread->set_osthread(osthread);
 502 
 503   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 504     os::current_thread_id());
 505 
 506   return true;
 507 }
 508 
 509 bool os::create_main_thread(JavaThread* thread) {
 510 #ifdef ASSERT
 511   thread->verify_not_published();
 512 #endif
 513   if (_starting_thread == NULL) {
 514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 515     if (_starting_thread == NULL) {
 516       return false;
 517     }
 518   }
 519 
 520   // The primordial thread is runnable from the start)
 521   _starting_thread->set_state(RUNNABLE);
 522 
 523   thread->set_osthread(_starting_thread);
 524   return true;
 525 }
 526 
 527 // Helper function to trace _beginthreadex attributes,
 528 //  similar to os::Posix::describe_pthread_attr()
 529 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 530                                                size_t stacksize, unsigned initflag) {
 531   stringStream ss(buf, buflen);
 532   if (stacksize == 0) {
 533     ss.print("stacksize: default, ");
 534   } else {
 535     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 536   }
 537   ss.print("flags: ");
 538   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 539   #define ALL(X) \
 540     X(CREATE_SUSPENDED) \
 541     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 542   ALL(PRINT_FLAG)
 543   #undef ALL
 544   #undef PRINT_FLAG
 545   return buf;
 546 }
 547 
 548 // Allocate and initialize a new OSThread
 549 bool os::create_thread(Thread* thread, ThreadType thr_type,
 550                        size_t stack_size) {
 551   unsigned thread_id;
 552 
 553   // Allocate the OSThread object
 554   OSThread* osthread = new OSThread(NULL, NULL);
 555   if (osthread == NULL) {
 556     return false;
 557   }
 558 
 559   // Initialize support for Java interrupts
 560   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 561   if (interrupt_event == NULL) {
 562     delete osthread;
 563     return NULL;
 564   }
 565   osthread->set_interrupt_event(interrupt_event);
 566   osthread->set_interrupted(false);
 567 
 568   thread->set_osthread(osthread);
 569 
 570   if (stack_size == 0) {
 571     switch (thr_type) {
 572     case os::java_thread:
 573       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 574       if (JavaThread::stack_size_at_create() > 0) {
 575         stack_size = JavaThread::stack_size_at_create();
 576       }
 577       break;
 578     case os::compiler_thread:
 579       if (CompilerThreadStackSize > 0) {
 580         stack_size = (size_t)(CompilerThreadStackSize * K);
 581         break;
 582       } // else fall through:
 583         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 584     case os::vm_thread:
 585     case os::pgc_thread:
 586     case os::cgc_thread:
 587     case os::watcher_thread:
 588       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 589       break;
 590     }
 591   }
 592 
 593   // Create the Win32 thread
 594   //
 595   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 596   // does not specify stack size. Instead, it specifies the size of
 597   // initially committed space. The stack size is determined by
 598   // PE header in the executable. If the committed "stack_size" is larger
 599   // than default value in the PE header, the stack is rounded up to the
 600   // nearest multiple of 1MB. For example if the launcher has default
 601   // stack size of 320k, specifying any size less than 320k does not
 602   // affect the actual stack size at all, it only affects the initial
 603   // commitment. On the other hand, specifying 'stack_size' larger than
 604   // default value may cause significant increase in memory usage, because
 605   // not only the stack space will be rounded up to MB, but also the
 606   // entire space is committed upfront.
 607   //
 608   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 609   // for CreateThread() that can treat 'stack_size' as stack size. However we
 610   // are not supposed to call CreateThread() directly according to MSDN
 611   // document because JVM uses C runtime library. The good news is that the
 612   // flag appears to work with _beginthredex() as well.
 613 
 614   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 615   HANDLE thread_handle =
 616     (HANDLE)_beginthreadex(NULL,
 617                            (unsigned)stack_size,
 618                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 619                            thread,
 620                            initflag,
 621                            &thread_id);
 622 
 623   char buf[64];
 624   if (thread_handle != NULL) {
 625     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 626       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 627   } else {
 628     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 629       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 630   }
 631 
 632   if (thread_handle == NULL) {
 633     // Need to clean up stuff we've allocated so far
 634     CloseHandle(osthread->interrupt_event());
 635     thread->set_osthread(NULL);
 636     delete osthread;
 637     return NULL;
 638   }
 639 
 640   Atomic::inc(&os::win32::_os_thread_count);
 641 
 642   // Store info on the Win32 thread into the OSThread
 643   osthread->set_thread_handle(thread_handle);
 644   osthread->set_thread_id(thread_id);
 645 
 646   // Initial thread state is INITIALIZED, not SUSPENDED
 647   osthread->set_state(INITIALIZED);
 648 
 649   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 650   return true;
 651 }
 652 
 653 
 654 // Free Win32 resources related to the OSThread
 655 void os::free_thread(OSThread* osthread) {
 656   assert(osthread != NULL, "osthread not set");
 657 
 658   // We are told to free resources of the argument thread,
 659   // but we can only really operate on the current thread.
 660   assert(Thread::current()->osthread() == osthread,
 661          "os::free_thread but not current thread");
 662 
 663   CloseHandle(osthread->thread_handle());
 664   CloseHandle(osthread->interrupt_event());
 665   delete osthread;
 666 }
 667 
 668 static jlong first_filetime;
 669 static jlong initial_performance_count;
 670 static jlong performance_frequency;
 671 
 672 
 673 jlong as_long(LARGE_INTEGER x) {
 674   jlong result = 0; // initialization to avoid warning
 675   set_high(&result, x.HighPart);
 676   set_low(&result, x.LowPart);
 677   return result;
 678 }
 679 
 680 
 681 jlong os::elapsed_counter() {
 682   LARGE_INTEGER count;
 683   QueryPerformanceCounter(&count);
 684   return as_long(count) - initial_performance_count;
 685 }
 686 
 687 
 688 jlong os::elapsed_frequency() {
 689   return performance_frequency;
 690 }
 691 
 692 
 693 julong os::available_memory() {
 694   return win32::available_memory();
 695 }
 696 
 697 julong os::win32::available_memory() {
 698   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 699   // value if total memory is larger than 4GB
 700   MEMORYSTATUSEX ms;
 701   ms.dwLength = sizeof(ms);
 702   GlobalMemoryStatusEx(&ms);
 703 
 704   return (julong)ms.ullAvailPhys;
 705 }
 706 
 707 julong os::physical_memory() {
 708   return win32::physical_memory();
 709 }
 710 
 711 bool os::has_allocatable_memory_limit(julong* limit) {
 712   MEMORYSTATUSEX ms;
 713   ms.dwLength = sizeof(ms);
 714   GlobalMemoryStatusEx(&ms);
 715 #ifdef _LP64
 716   *limit = (julong)ms.ullAvailVirtual;
 717   return true;
 718 #else
 719   // Limit to 1400m because of the 2gb address space wall
 720   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 721   return true;
 722 #endif
 723 }
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   // If there is no debugger attached skip raising the exception
 752   if (!IsDebuggerPresent()) {
 753     return;
 754   }
 755 
 756   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 757   struct {
 758     DWORD dwType;     // must be 0x1000
 759     LPCSTR szName;    // pointer to name (in user addr space)
 760     DWORD dwThreadID; // thread ID (-1=caller thread)
 761     DWORD dwFlags;    // reserved for future use, must be zero
 762   } info;
 763 
 764   info.dwType = 0x1000;
 765   info.szName = name;
 766   info.dwThreadID = -1;
 767   info.dwFlags = 0;
 768 
 769   __try {
 770     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 771   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 772 }
 773 
 774 bool os::distribute_processes(uint length, uint* distribution) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 bool os::bind_to_processor(uint processor_id) {
 780   // Not yet implemented.
 781   return false;
 782 }
 783 
 784 void os::win32::initialize_performance_counter() {
 785   LARGE_INTEGER count;
 786   QueryPerformanceFrequency(&count);
 787   performance_frequency = as_long(count);
 788   QueryPerformanceCounter(&count);
 789   initial_performance_count = as_long(count);
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal("Error = %d\nWindows error", GetLastError());
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895     LARGE_INTEGER current_count;
 896     QueryPerformanceCounter(&current_count);
 897     double current = as_long(current_count);
 898     double freq = performance_frequency;
 899     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 900     return time;
 901 }
 902 
 903 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 904   jlong freq = performance_frequency;
 905   if (freq < NANOSECS_PER_SEC) {
 906     // the performance counter is 64 bits and we will
 907     // be multiplying it -- so no wrap in 64 bits
 908     info_ptr->max_value = ALL_64_BITS;
 909   } else if (freq > NANOSECS_PER_SEC) {
 910     // use the max value the counter can reach to
 911     // determine the max value which could be returned
 912     julong max_counter = (julong)ALL_64_BITS;
 913     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 914   } else {
 915     // the performance counter is 64 bits and we will
 916     // be using it directly -- so no wrap in 64 bits
 917     info_ptr->max_value = ALL_64_BITS;
 918   }
 919 
 920   // using a counter, so no skipping
 921   info_ptr->may_skip_backward = false;
 922   info_ptr->may_skip_forward = false;
 923 
 924   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 925 }
 926 
 927 char* os::local_time_string(char *buf, size_t buflen) {
 928   SYSTEMTIME st;
 929   GetLocalTime(&st);
 930   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 931                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 932   return buf;
 933 }
 934 
 935 bool os::getTimesSecs(double* process_real_time,
 936                       double* process_user_time,
 937                       double* process_system_time) {
 938   HANDLE h_process = GetCurrentProcess();
 939   FILETIME create_time, exit_time, kernel_time, user_time;
 940   BOOL result = GetProcessTimes(h_process,
 941                                 &create_time,
 942                                 &exit_time,
 943                                 &kernel_time,
 944                                 &user_time);
 945   if (result != 0) {
 946     FILETIME wt;
 947     GetSystemTimeAsFileTime(&wt);
 948     jlong rtc_millis = windows_to_java_time(wt);
 949     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 950     *process_user_time =
 951       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 952     *process_system_time =
 953       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 954     return true;
 955   } else {
 956     return false;
 957   }
 958 }
 959 
 960 void os::shutdown() {
 961   // allow PerfMemory to attempt cleanup of any persistent resources
 962   perfMemory_exit();
 963 
 964   // flush buffered output, finish log files
 965   ostream_abort();
 966 
 967   // Check for abort hook
 968   abort_hook_t abort_hook = Arguments::abort_hook();
 969   if (abort_hook != NULL) {
 970     abort_hook();
 971   }
 972 }
 973 
 974 
 975 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 976                                          PMINIDUMP_EXCEPTION_INFORMATION,
 977                                          PMINIDUMP_USER_STREAM_INFORMATION,
 978                                          PMINIDUMP_CALLBACK_INFORMATION);
 979 
 980 static HANDLE dumpFile = NULL;
 981 
 982 // Check if dump file can be created.
 983 void os::check_dump_limit(char* buffer, size_t buffsz) {
 984   bool status = true;
 985   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 986     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 987     status = false;
 988   }
 989 
 990 #ifndef ASSERT
 991   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
 992     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
 993     status = false;
 994   }
 995 #endif
 996 
 997   if (status) {
 998     const char* cwd = get_current_directory(NULL, 0);
 999     int pid = current_process_id();
1000     if (cwd != NULL) {
1001       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1002     } else {
1003       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1004     }
1005 
1006     if (dumpFile == NULL &&
1007        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1008                  == INVALID_HANDLE_VALUE) {
1009       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1010       status = false;
1011     }
1012   }
1013   VMError::record_coredump_status(buffer, status);
1014 }
1015 
1016 void os::abort(bool dump_core, void* siginfo, const void* context) {
1017   EXCEPTION_POINTERS ep;
1018   MINIDUMP_EXCEPTION_INFORMATION mei;
1019   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1020 
1021   HANDLE hProcess = GetCurrentProcess();
1022   DWORD processId = GetCurrentProcessId();
1023   MINIDUMP_TYPE dumpType;
1024 
1025   shutdown();
1026   if (!dump_core || dumpFile == NULL) {
1027     if (dumpFile != NULL) {
1028       CloseHandle(dumpFile);
1029     }
1030     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1031   }
1032 
1033   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1034     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1035 
1036   if (siginfo != NULL && context != NULL) {
1037     ep.ContextRecord = (PCONTEXT) context;
1038     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1039 
1040     mei.ThreadId = GetCurrentThreadId();
1041     mei.ExceptionPointers = &ep;
1042     pmei = &mei;
1043   } else {
1044     pmei = NULL;
1045   }
1046 
1047   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1048   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1049   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1050       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1051     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1052   }
1053   CloseHandle(dumpFile);
1054   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055 }
1056 
1057 // Die immediately, no exit hook, no abort hook, no cleanup.
1058 void os::die() {
1059   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1060 }
1061 
1062 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1063 //  * dirent_md.c       1.15 00/02/02
1064 //
1065 // The declarations for DIR and struct dirent are in jvm_win32.h.
1066 
1067 // Caller must have already run dirname through JVM_NativePath, which removes
1068 // duplicate slashes and converts all instances of '/' into '\\'.
1069 
1070 DIR * os::opendir(const char *dirname) {
1071   assert(dirname != NULL, "just checking");   // hotspot change
1072   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1073   DWORD fattr;                                // hotspot change
1074   char alt_dirname[4] = { 0, 0, 0, 0 };
1075 
1076   if (dirp == 0) {
1077     errno = ENOMEM;
1078     return 0;
1079   }
1080 
1081   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1082   // as a directory in FindFirstFile().  We detect this case here and
1083   // prepend the current drive name.
1084   //
1085   if (dirname[1] == '\0' && dirname[0] == '\\') {
1086     alt_dirname[0] = _getdrive() + 'A' - 1;
1087     alt_dirname[1] = ':';
1088     alt_dirname[2] = '\\';
1089     alt_dirname[3] = '\0';
1090     dirname = alt_dirname;
1091   }
1092 
1093   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1094   if (dirp->path == 0) {
1095     free(dirp);
1096     errno = ENOMEM;
1097     return 0;
1098   }
1099   strcpy(dirp->path, dirname);
1100 
1101   fattr = GetFileAttributes(dirp->path);
1102   if (fattr == 0xffffffff) {
1103     free(dirp->path);
1104     free(dirp);
1105     errno = ENOENT;
1106     return 0;
1107   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1108     free(dirp->path);
1109     free(dirp);
1110     errno = ENOTDIR;
1111     return 0;
1112   }
1113 
1114   // Append "*.*", or possibly "\\*.*", to path
1115   if (dirp->path[1] == ':' &&
1116       (dirp->path[2] == '\0' ||
1117       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1118     // No '\\' needed for cases like "Z:" or "Z:\"
1119     strcat(dirp->path, "*.*");
1120   } else {
1121     strcat(dirp->path, "\\*.*");
1122   }
1123 
1124   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1125   if (dirp->handle == INVALID_HANDLE_VALUE) {
1126     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1127       free(dirp->path);
1128       free(dirp);
1129       errno = EACCES;
1130       return 0;
1131     }
1132   }
1133   return dirp;
1134 }
1135 
1136 // parameter dbuf unused on Windows
1137 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1138   assert(dirp != NULL, "just checking");      // hotspot change
1139   if (dirp->handle == INVALID_HANDLE_VALUE) {
1140     return 0;
1141   }
1142 
1143   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1144 
1145   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1146     if (GetLastError() == ERROR_INVALID_HANDLE) {
1147       errno = EBADF;
1148       return 0;
1149     }
1150     FindClose(dirp->handle);
1151     dirp->handle = INVALID_HANDLE_VALUE;
1152   }
1153 
1154   return &dirp->dirent;
1155 }
1156 
1157 int os::closedir(DIR *dirp) {
1158   assert(dirp != NULL, "just checking");      // hotspot change
1159   if (dirp->handle != INVALID_HANDLE_VALUE) {
1160     if (!FindClose(dirp->handle)) {
1161       errno = EBADF;
1162       return -1;
1163     }
1164     dirp->handle = INVALID_HANDLE_VALUE;
1165   }
1166   free(dirp->path);
1167   free(dirp);
1168   return 0;
1169 }
1170 
1171 // This must be hard coded because it's the system's temporary
1172 // directory not the java application's temp directory, ala java.io.tmpdir.
1173 const char* os::get_temp_directory() {
1174   static char path_buf[MAX_PATH];
1175   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1176     return path_buf;
1177   } else {
1178     path_buf[0] = '\0';
1179     return path_buf;
1180   }
1181 }
1182 
1183 // Needs to be in os specific directory because windows requires another
1184 // header file <direct.h>
1185 const char* os::get_current_directory(char *buf, size_t buflen) {
1186   int n = static_cast<int>(buflen);
1187   if (buflen > INT_MAX)  n = INT_MAX;
1188   return _getcwd(buf, n);
1189 }
1190 
1191 //-----------------------------------------------------------
1192 // Helper functions for fatal error handler
1193 #ifdef _WIN64
1194 // Helper routine which returns true if address in
1195 // within the NTDLL address space.
1196 //
1197 static bool _addr_in_ntdll(address addr) {
1198   HMODULE hmod;
1199   MODULEINFO minfo;
1200 
1201   hmod = GetModuleHandle("NTDLL.DLL");
1202   if (hmod == NULL) return false;
1203   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1204                                           &minfo, sizeof(MODULEINFO))) {
1205     return false;
1206   }
1207 
1208   if ((addr >= minfo.lpBaseOfDll) &&
1209       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1210     return true;
1211   } else {
1212     return false;
1213   }
1214 }
1215 #endif
1216 
1217 struct _modinfo {
1218   address addr;
1219   char*   full_path;   // point to a char buffer
1220   int     buflen;      // size of the buffer
1221   address base_addr;
1222 };
1223 
1224 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1225                                   address top_address, void * param) {
1226   struct _modinfo *pmod = (struct _modinfo *)param;
1227   if (!pmod) return -1;
1228 
1229   if (base_addr   <= pmod->addr &&
1230       top_address > pmod->addr) {
1231     // if a buffer is provided, copy path name to the buffer
1232     if (pmod->full_path) {
1233       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1234     }
1235     pmod->base_addr = base_addr;
1236     return 1;
1237   }
1238   return 0;
1239 }
1240 
1241 bool os::dll_address_to_library_name(address addr, char* buf,
1242                                      int buflen, int* offset) {
1243   // buf is not optional, but offset is optional
1244   assert(buf != NULL, "sanity check");
1245 
1246 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1247 //       return the full path to the DLL file, sometimes it returns path
1248 //       to the corresponding PDB file (debug info); sometimes it only
1249 //       returns partial path, which makes life painful.
1250 
1251   struct _modinfo mi;
1252   mi.addr      = addr;
1253   mi.full_path = buf;
1254   mi.buflen    = buflen;
1255   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1256     // buf already contains path name
1257     if (offset) *offset = addr - mi.base_addr;
1258     return true;
1259   }
1260 
1261   buf[0] = '\0';
1262   if (offset) *offset = -1;
1263   return false;
1264 }
1265 
1266 bool os::dll_address_to_function_name(address addr, char *buf,
1267                                       int buflen, int *offset,
1268                                       bool demangle) {
1269   // buf is not optional, but offset is optional
1270   assert(buf != NULL, "sanity check");
1271 
1272   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1273     return true;
1274   }
1275   if (offset != NULL)  *offset  = -1;
1276   buf[0] = '\0';
1277   return false;
1278 }
1279 
1280 // save the start and end address of jvm.dll into param[0] and param[1]
1281 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1282                            address top_address, void * param) {
1283   if (!param) return -1;
1284 
1285   if (base_addr   <= (address)_locate_jvm_dll &&
1286       top_address > (address)_locate_jvm_dll) {
1287     ((address*)param)[0] = base_addr;
1288     ((address*)param)[1] = top_address;
1289     return 1;
1290   }
1291   return 0;
1292 }
1293 
1294 address vm_lib_location[2];    // start and end address of jvm.dll
1295 
1296 // check if addr is inside jvm.dll
1297 bool os::address_is_in_vm(address addr) {
1298   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1299     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1300       assert(false, "Can't find jvm module.");
1301       return false;
1302     }
1303   }
1304 
1305   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1306 }
1307 
1308 // print module info; param is outputStream*
1309 static int _print_module(const char* fname, address base_address,
1310                          address top_address, void* param) {
1311   if (!param) return -1;
1312 
1313   outputStream* st = (outputStream*)param;
1314 
1315   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1316   return 0;
1317 }
1318 
1319 // Loads .dll/.so and
1320 // in case of error it checks if .dll/.so was built for the
1321 // same architecture as Hotspot is running on
1322 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1323   void * result = LoadLibrary(name);
1324   if (result != NULL) {
1325     // Recalculate pdb search path if a DLL was loaded successfully.
1326     SymbolEngine::recalc_search_path();
1327     return result;
1328   }
1329 
1330   DWORD errcode = GetLastError();
1331   if (errcode == ERROR_MOD_NOT_FOUND) {
1332     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1333     ebuf[ebuflen - 1] = '\0';
1334     return NULL;
1335   }
1336 
1337   // Parsing dll below
1338   // If we can read dll-info and find that dll was built
1339   // for an architecture other than Hotspot is running in
1340   // - then print to buffer "DLL was built for a different architecture"
1341   // else call os::lasterror to obtain system error message
1342 
1343   // Read system error message into ebuf
1344   // It may or may not be overwritten below (in the for loop and just above)
1345   lasterror(ebuf, (size_t) ebuflen);
1346   ebuf[ebuflen - 1] = '\0';
1347   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1348   if (fd < 0) {
1349     return NULL;
1350   }
1351 
1352   uint32_t signature_offset;
1353   uint16_t lib_arch = 0;
1354   bool failed_to_get_lib_arch =
1355     ( // Go to position 3c in the dll
1356      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1357      ||
1358      // Read location of signature
1359      (sizeof(signature_offset) !=
1360      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1361      ||
1362      // Go to COFF File Header in dll
1363      // that is located after "signature" (4 bytes long)
1364      (os::seek_to_file_offset(fd,
1365      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1366      ||
1367      // Read field that contains code of architecture
1368      // that dll was built for
1369      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1370     );
1371 
1372   ::close(fd);
1373   if (failed_to_get_lib_arch) {
1374     // file i/o error - report os::lasterror(...) msg
1375     return NULL;
1376   }
1377 
1378   typedef struct {
1379     uint16_t arch_code;
1380     char* arch_name;
1381   } arch_t;
1382 
1383   static const arch_t arch_array[] = {
1384     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1385     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1386   };
1387 #if (defined _M_AMD64)
1388   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1389 #elif (defined _M_IX86)
1390   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1391 #else
1392   #error Method os::dll_load requires that one of following \
1393          is defined :_M_AMD64 or _M_IX86
1394 #endif
1395 
1396 
1397   // Obtain a string for printf operation
1398   // lib_arch_str shall contain string what platform this .dll was built for
1399   // running_arch_str shall string contain what platform Hotspot was built for
1400   char *running_arch_str = NULL, *lib_arch_str = NULL;
1401   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1402     if (lib_arch == arch_array[i].arch_code) {
1403       lib_arch_str = arch_array[i].arch_name;
1404     }
1405     if (running_arch == arch_array[i].arch_code) {
1406       running_arch_str = arch_array[i].arch_name;
1407     }
1408   }
1409 
1410   assert(running_arch_str,
1411          "Didn't find running architecture code in arch_array");
1412 
1413   // If the architecture is right
1414   // but some other error took place - report os::lasterror(...) msg
1415   if (lib_arch == running_arch) {
1416     return NULL;
1417   }
1418 
1419   if (lib_arch_str != NULL) {
1420     ::_snprintf(ebuf, ebuflen - 1,
1421                 "Can't load %s-bit .dll on a %s-bit platform",
1422                 lib_arch_str, running_arch_str);
1423   } else {
1424     // don't know what architecture this dll was build for
1425     ::_snprintf(ebuf, ebuflen - 1,
1426                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1427                 lib_arch, running_arch_str);
1428   }
1429 
1430   return NULL;
1431 }
1432 
1433 void os::print_dll_info(outputStream *st) {
1434   st->print_cr("Dynamic libraries:");
1435   get_loaded_modules_info(_print_module, (void *)st);
1436 }
1437 
1438 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1439   HANDLE   hProcess;
1440 
1441 # define MAX_NUM_MODULES 128
1442   HMODULE     modules[MAX_NUM_MODULES];
1443   static char filename[MAX_PATH];
1444   int         result = 0;
1445 
1446   int pid = os::current_process_id();
1447   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1448                          FALSE, pid);
1449   if (hProcess == NULL) return 0;
1450 
1451   DWORD size_needed;
1452   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1453     CloseHandle(hProcess);
1454     return 0;
1455   }
1456 
1457   // number of modules that are currently loaded
1458   int num_modules = size_needed / sizeof(HMODULE);
1459 
1460   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1461     // Get Full pathname:
1462     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1463       filename[0] = '\0';
1464     }
1465 
1466     MODULEINFO modinfo;
1467     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1468       modinfo.lpBaseOfDll = NULL;
1469       modinfo.SizeOfImage = 0;
1470     }
1471 
1472     // Invoke callback function
1473     result = callback(filename, (address)modinfo.lpBaseOfDll,
1474                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1475     if (result) break;
1476   }
1477 
1478   CloseHandle(hProcess);
1479   return result;
1480 }
1481 
1482 bool os::get_host_name(char* buf, size_t buflen) {
1483   DWORD size = (DWORD)buflen;
1484   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1485 }
1486 
1487 void os::get_summary_os_info(char* buf, size_t buflen) {
1488   stringStream sst(buf, buflen);
1489   os::win32::print_windows_version(&sst);
1490   // chop off newline character
1491   char* nl = strchr(buf, '\n');
1492   if (nl != NULL) *nl = '\0';
1493 }
1494 
1495 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1496   int ret = vsnprintf(buf, len, fmt, args);
1497   // Get the correct buffer size if buf is too small
1498   if (ret < 0) {
1499     return _vscprintf(fmt, args);
1500   }
1501   return ret;
1502 }
1503 
1504 static inline time_t get_mtime(const char* filename) {
1505   struct stat st;
1506   int ret = os::stat(filename, &st);
1507   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1508   return st.st_mtime;
1509 }
1510 
1511 int os::compare_file_modified_times(const char* file1, const char* file2) {
1512   time_t t1 = get_mtime(file1);
1513   time_t t2 = get_mtime(file2);
1514   return t1 - t2;
1515 }
1516 
1517 void os::print_os_info_brief(outputStream* st) {
1518   os::print_os_info(st);
1519 }
1520 
1521 void os::print_os_info(outputStream* st) {
1522 #ifdef ASSERT
1523   char buffer[1024];
1524   st->print("HostName: ");
1525   if (get_host_name(buffer, sizeof(buffer))) {
1526     st->print("%s ", buffer);
1527   } else {
1528     st->print("N/A ");
1529   }
1530 #endif
1531   st->print("OS:");
1532   os::win32::print_windows_version(st);
1533 }
1534 
1535 void os::win32::print_windows_version(outputStream* st) {
1536   OSVERSIONINFOEX osvi;
1537   VS_FIXEDFILEINFO *file_info;
1538   TCHAR kernel32_path[MAX_PATH];
1539   UINT len, ret;
1540 
1541   // Use the GetVersionEx information to see if we're on a server or
1542   // workstation edition of Windows. Starting with Windows 8.1 we can't
1543   // trust the OS version information returned by this API.
1544   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1545   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1546   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1547     st->print_cr("Call to GetVersionEx failed");
1548     return;
1549   }
1550   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1551 
1552   // Get the full path to \Windows\System32\kernel32.dll and use that for
1553   // determining what version of Windows we're running on.
1554   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1555   ret = GetSystemDirectory(kernel32_path, len);
1556   if (ret == 0 || ret > len) {
1557     st->print_cr("Call to GetSystemDirectory failed");
1558     return;
1559   }
1560   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1561 
1562   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1563   if (version_size == 0) {
1564     st->print_cr("Call to GetFileVersionInfoSize failed");
1565     return;
1566   }
1567 
1568   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1569   if (version_info == NULL) {
1570     st->print_cr("Failed to allocate version_info");
1571     return;
1572   }
1573 
1574   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1575     os::free(version_info);
1576     st->print_cr("Call to GetFileVersionInfo failed");
1577     return;
1578   }
1579 
1580   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1581     os::free(version_info);
1582     st->print_cr("Call to VerQueryValue failed");
1583     return;
1584   }
1585 
1586   int major_version = HIWORD(file_info->dwProductVersionMS);
1587   int minor_version = LOWORD(file_info->dwProductVersionMS);
1588   int build_number = HIWORD(file_info->dwProductVersionLS);
1589   int build_minor = LOWORD(file_info->dwProductVersionLS);
1590   int os_vers = major_version * 1000 + minor_version;
1591   os::free(version_info);
1592 
1593   st->print(" Windows ");
1594   switch (os_vers) {
1595 
1596   case 6000:
1597     if (is_workstation) {
1598       st->print("Vista");
1599     } else {
1600       st->print("Server 2008");
1601     }
1602     break;
1603 
1604   case 6001:
1605     if (is_workstation) {
1606       st->print("7");
1607     } else {
1608       st->print("Server 2008 R2");
1609     }
1610     break;
1611 
1612   case 6002:
1613     if (is_workstation) {
1614       st->print("8");
1615     } else {
1616       st->print("Server 2012");
1617     }
1618     break;
1619 
1620   case 6003:
1621     if (is_workstation) {
1622       st->print("8.1");
1623     } else {
1624       st->print("Server 2012 R2");
1625     }
1626     break;
1627 
1628   case 10000:
1629     if (is_workstation) {
1630       st->print("10");
1631     } else {
1632       st->print("Server 2016");
1633     }
1634     break;
1635 
1636   default:
1637     // Unrecognized windows, print out its major and minor versions
1638     st->print("%d.%d", major_version, minor_version);
1639     break;
1640   }
1641 
1642   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1643   // find out whether we are running on 64 bit processor or not
1644   SYSTEM_INFO si;
1645   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1646   GetNativeSystemInfo(&si);
1647   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1648     st->print(" , 64 bit");
1649   }
1650 
1651   st->print(" Build %d", build_number);
1652   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1653   st->cr();
1654 }
1655 
1656 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1657   // Nothing to do for now.
1658 }
1659 
1660 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1661   HKEY key;
1662   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1663                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1664   if (status == ERROR_SUCCESS) {
1665     DWORD size = (DWORD)buflen;
1666     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1667     if (status != ERROR_SUCCESS) {
1668         strncpy(buf, "## __CPU__", buflen);
1669     }
1670     RegCloseKey(key);
1671   } else {
1672     // Put generic cpu info to return
1673     strncpy(buf, "## __CPU__", buflen);
1674   }
1675 }
1676 
1677 void os::print_memory_info(outputStream* st) {
1678   st->print("Memory:");
1679   st->print(" %dk page", os::vm_page_size()>>10);
1680 
1681   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1682   // value if total memory is larger than 4GB
1683   MEMORYSTATUSEX ms;
1684   ms.dwLength = sizeof(ms);
1685   GlobalMemoryStatusEx(&ms);
1686 
1687   st->print(", physical %uk", os::physical_memory() >> 10);
1688   st->print("(%uk free)", os::available_memory() >> 10);
1689 
1690   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1691   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1692   st->cr();
1693 }
1694 
1695 void os::print_siginfo(outputStream *st, const void* siginfo) {
1696   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1697   st->print("siginfo:");
1698 
1699   char tmp[64];
1700   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1701     strcpy(tmp, "EXCEPTION_??");
1702   }
1703   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1704 
1705   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1706        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1707        er->NumberParameters >= 2) {
1708     switch (er->ExceptionInformation[0]) {
1709     case 0: st->print(", reading address"); break;
1710     case 1: st->print(", writing address"); break;
1711     case 8: st->print(", data execution prevention violation at address"); break;
1712     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1713                        er->ExceptionInformation[0]);
1714     }
1715     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1716   } else {
1717     int num = er->NumberParameters;
1718     if (num > 0) {
1719       st->print(", ExceptionInformation=");
1720       for (int i = 0; i < num; i++) {
1721         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1722       }
1723     }
1724   }
1725   st->cr();
1726 }
1727 
1728 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1729   // do nothing
1730 }
1731 
1732 static char saved_jvm_path[MAX_PATH] = {0};
1733 
1734 // Find the full path to the current module, jvm.dll
1735 void os::jvm_path(char *buf, jint buflen) {
1736   // Error checking.
1737   if (buflen < MAX_PATH) {
1738     assert(false, "must use a large-enough buffer");
1739     buf[0] = '\0';
1740     return;
1741   }
1742   // Lazy resolve the path to current module.
1743   if (saved_jvm_path[0] != 0) {
1744     strcpy(buf, saved_jvm_path);
1745     return;
1746   }
1747 
1748   buf[0] = '\0';
1749   if (Arguments::sun_java_launcher_is_altjvm()) {
1750     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1751     // for a JAVA_HOME environment variable and fix up the path so it
1752     // looks like jvm.dll is installed there (append a fake suffix
1753     // hotspot/jvm.dll).
1754     char* java_home_var = ::getenv("JAVA_HOME");
1755     if (java_home_var != NULL && java_home_var[0] != 0 &&
1756         strlen(java_home_var) < (size_t)buflen) {
1757       strncpy(buf, java_home_var, buflen);
1758 
1759       // determine if this is a legacy image or modules image
1760       // modules image doesn't have "jre" subdirectory
1761       size_t len = strlen(buf);
1762       char* jrebin_p = buf + len;
1763       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1764       if (0 != _access(buf, 0)) {
1765         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1766       }
1767       len = strlen(buf);
1768       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1769     }
1770   }
1771 
1772   if (buf[0] == '\0') {
1773     GetModuleFileName(vm_lib_handle, buf, buflen);
1774   }
1775   strncpy(saved_jvm_path, buf, MAX_PATH);
1776   saved_jvm_path[MAX_PATH - 1] = '\0';
1777 }
1778 
1779 
1780 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1781 #ifndef _WIN64
1782   st->print("_");
1783 #endif
1784 }
1785 
1786 
1787 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1788 #ifndef _WIN64
1789   st->print("@%d", args_size  * sizeof(int));
1790 #endif
1791 }
1792 
1793 // This method is a copy of JDK's sysGetLastErrorString
1794 // from src/windows/hpi/src/system_md.c
1795 
1796 size_t os::lasterror(char* buf, size_t len) {
1797   DWORD errval;
1798 
1799   if ((errval = GetLastError()) != 0) {
1800     // DOS error
1801     size_t n = (size_t)FormatMessage(
1802                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1803                                      NULL,
1804                                      errval,
1805                                      0,
1806                                      buf,
1807                                      (DWORD)len,
1808                                      NULL);
1809     if (n > 3) {
1810       // Drop final '.', CR, LF
1811       if (buf[n - 1] == '\n') n--;
1812       if (buf[n - 1] == '\r') n--;
1813       if (buf[n - 1] == '.') n--;
1814       buf[n] = '\0';
1815     }
1816     return n;
1817   }
1818 
1819   if (errno != 0) {
1820     // C runtime error that has no corresponding DOS error code
1821     const char* s = os::strerror(errno);
1822     size_t n = strlen(s);
1823     if (n >= len) n = len - 1;
1824     strncpy(buf, s, n);
1825     buf[n] = '\0';
1826     return n;
1827   }
1828 
1829   return 0;
1830 }
1831 
1832 int os::get_last_error() {
1833   DWORD error = GetLastError();
1834   if (error == 0) {
1835     error = errno;
1836   }
1837   return (int)error;
1838 }
1839 
1840 WindowsSemaphore::WindowsSemaphore(uint value) {
1841   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1842 
1843   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1844 }
1845 
1846 WindowsSemaphore::~WindowsSemaphore() {
1847   ::CloseHandle(_semaphore);
1848 }
1849 
1850 void WindowsSemaphore::signal(uint count) {
1851   if (count > 0) {
1852     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1853 
1854     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1855   }
1856 }
1857 
1858 void WindowsSemaphore::wait() {
1859   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1860   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1861   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1862 }
1863 
1864 bool WindowsSemaphore::trywait() {
1865   DWORD ret = ::WaitForSingleObject(_semaphore, 0);
1866   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1867   return ret == WAIT_OBJECT_0;
1868 }
1869 
1870 // sun.misc.Signal
1871 // NOTE that this is a workaround for an apparent kernel bug where if
1872 // a signal handler for SIGBREAK is installed then that signal handler
1873 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1874 // See bug 4416763.
1875 static void (*sigbreakHandler)(int) = NULL;
1876 
1877 static void UserHandler(int sig, void *siginfo, void *context) {
1878   os::signal_notify(sig);
1879   // We need to reinstate the signal handler each time...
1880   os::signal(sig, (void*)UserHandler);
1881 }
1882 
1883 void* os::user_handler() {
1884   return (void*) UserHandler;
1885 }
1886 
1887 void* os::signal(int signal_number, void* handler) {
1888   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1889     void (*oldHandler)(int) = sigbreakHandler;
1890     sigbreakHandler = (void (*)(int)) handler;
1891     return (void*) oldHandler;
1892   } else {
1893     return (void*)::signal(signal_number, (void (*)(int))handler);
1894   }
1895 }
1896 
1897 void os::signal_raise(int signal_number) {
1898   raise(signal_number);
1899 }
1900 
1901 // The Win32 C runtime library maps all console control events other than ^C
1902 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1903 // logoff, and shutdown events.  We therefore install our own console handler
1904 // that raises SIGTERM for the latter cases.
1905 //
1906 static BOOL WINAPI consoleHandler(DWORD event) {
1907   switch (event) {
1908   case CTRL_C_EVENT:
1909     if (VMError::is_error_reported()) {
1910       // Ctrl-C is pressed during error reporting, likely because the error
1911       // handler fails to abort. Let VM die immediately.
1912       os::die();
1913     }
1914 
1915     os::signal_raise(SIGINT);
1916     return TRUE;
1917     break;
1918   case CTRL_BREAK_EVENT:
1919     if (sigbreakHandler != NULL) {
1920       (*sigbreakHandler)(SIGBREAK);
1921     }
1922     return TRUE;
1923     break;
1924   case CTRL_LOGOFF_EVENT: {
1925     // Don't terminate JVM if it is running in a non-interactive session,
1926     // such as a service process.
1927     USEROBJECTFLAGS flags;
1928     HANDLE handle = GetProcessWindowStation();
1929     if (handle != NULL &&
1930         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1931         sizeof(USEROBJECTFLAGS), NULL)) {
1932       // If it is a non-interactive session, let next handler to deal
1933       // with it.
1934       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1935         return FALSE;
1936       }
1937     }
1938   }
1939   case CTRL_CLOSE_EVENT:
1940   case CTRL_SHUTDOWN_EVENT:
1941     os::signal_raise(SIGTERM);
1942     return TRUE;
1943     break;
1944   default:
1945     break;
1946   }
1947   return FALSE;
1948 }
1949 
1950 // The following code is moved from os.cpp for making this
1951 // code platform specific, which it is by its very nature.
1952 
1953 // Return maximum OS signal used + 1 for internal use only
1954 // Used as exit signal for signal_thread
1955 int os::sigexitnum_pd() {
1956   return NSIG;
1957 }
1958 
1959 // a counter for each possible signal value, including signal_thread exit signal
1960 static volatile jint pending_signals[NSIG+1] = { 0 };
1961 static HANDLE sig_sem = NULL;
1962 
1963 void os::signal_init_pd() {
1964   // Initialize signal structures
1965   memset((void*)pending_signals, 0, sizeof(pending_signals));
1966 
1967   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1968 
1969   // Programs embedding the VM do not want it to attempt to receive
1970   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1971   // shutdown hooks mechanism introduced in 1.3.  For example, when
1972   // the VM is run as part of a Windows NT service (i.e., a servlet
1973   // engine in a web server), the correct behavior is for any console
1974   // control handler to return FALSE, not TRUE, because the OS's
1975   // "final" handler for such events allows the process to continue if
1976   // it is a service (while terminating it if it is not a service).
1977   // To make this behavior uniform and the mechanism simpler, we
1978   // completely disable the VM's usage of these console events if -Xrs
1979   // (=ReduceSignalUsage) is specified.  This means, for example, that
1980   // the CTRL-BREAK thread dump mechanism is also disabled in this
1981   // case.  See bugs 4323062, 4345157, and related bugs.
1982 
1983   if (!ReduceSignalUsage) {
1984     // Add a CTRL-C handler
1985     SetConsoleCtrlHandler(consoleHandler, TRUE);
1986   }
1987 }
1988 
1989 void os::signal_notify(int signal_number) {
1990   BOOL ret;
1991   if (sig_sem != NULL) {
1992     Atomic::inc(&pending_signals[signal_number]);
1993     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1994     assert(ret != 0, "ReleaseSemaphore() failed");
1995   }
1996 }
1997 
1998 static int check_pending_signals(bool wait_for_signal) {
1999   DWORD ret;
2000   while (true) {
2001     for (int i = 0; i < NSIG + 1; i++) {
2002       jint n = pending_signals[i];
2003       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2004         return i;
2005       }
2006     }
2007     if (!wait_for_signal) {
2008       return -1;
2009     }
2010 
2011     JavaThread *thread = JavaThread::current();
2012 
2013     ThreadBlockInVM tbivm(thread);
2014 
2015     bool threadIsSuspended;
2016     do {
2017       thread->set_suspend_equivalent();
2018       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2019       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2020       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2021 
2022       // were we externally suspended while we were waiting?
2023       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2024       if (threadIsSuspended) {
2025         // The semaphore has been incremented, but while we were waiting
2026         // another thread suspended us. We don't want to continue running
2027         // while suspended because that would surprise the thread that
2028         // suspended us.
2029         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2030         assert(ret != 0, "ReleaseSemaphore() failed");
2031 
2032         thread->java_suspend_self();
2033       }
2034     } while (threadIsSuspended);
2035   }
2036 }
2037 
2038 int os::signal_lookup() {
2039   return check_pending_signals(false);
2040 }
2041 
2042 int os::signal_wait() {
2043   return check_pending_signals(true);
2044 }
2045 
2046 // Implicit OS exception handling
2047 
2048 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2049                       address handler) {
2050   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2051   // Save pc in thread
2052 #ifdef _M_AMD64
2053   // Do not blow up if no thread info available.
2054   if (thread) {
2055     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2056   }
2057   // Set pc to handler
2058   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2059 #else
2060   // Do not blow up if no thread info available.
2061   if (thread) {
2062     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2063   }
2064   // Set pc to handler
2065   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2066 #endif
2067 
2068   // Continue the execution
2069   return EXCEPTION_CONTINUE_EXECUTION;
2070 }
2071 
2072 
2073 // Used for PostMortemDump
2074 extern "C" void safepoints();
2075 extern "C" void find(int x);
2076 extern "C" void events();
2077 
2078 // According to Windows API documentation, an illegal instruction sequence should generate
2079 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2080 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2081 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2082 
2083 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2084 
2085 // From "Execution Protection in the Windows Operating System" draft 0.35
2086 // Once a system header becomes available, the "real" define should be
2087 // included or copied here.
2088 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2089 
2090 // Windows Vista/2008 heap corruption check
2091 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2092 
2093 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2094 // C++ compiler contain this error code. Because this is a compiler-generated
2095 // error, the code is not listed in the Win32 API header files.
2096 // The code is actually a cryptic mnemonic device, with the initial "E"
2097 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2098 // ASCII values of "msc".
2099 
2100 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2101 
2102 #define def_excpt(val) { #val, (val) }
2103 
2104 static const struct { char* name; uint number; } exceptlabels[] = {
2105     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2106     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2107     def_excpt(EXCEPTION_BREAKPOINT),
2108     def_excpt(EXCEPTION_SINGLE_STEP),
2109     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2110     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2111     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2112     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2113     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2114     def_excpt(EXCEPTION_FLT_OVERFLOW),
2115     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2116     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2117     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2118     def_excpt(EXCEPTION_INT_OVERFLOW),
2119     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2120     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2121     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2122     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2123     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2124     def_excpt(EXCEPTION_STACK_OVERFLOW),
2125     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2126     def_excpt(EXCEPTION_GUARD_PAGE),
2127     def_excpt(EXCEPTION_INVALID_HANDLE),
2128     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2129     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2130 };
2131 
2132 #undef def_excpt
2133 
2134 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2135   uint code = static_cast<uint>(exception_code);
2136   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2137     if (exceptlabels[i].number == code) {
2138       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2139       return buf;
2140     }
2141   }
2142 
2143   return NULL;
2144 }
2145 
2146 //-----------------------------------------------------------------------------
2147 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2148   // handle exception caused by idiv; should only happen for -MinInt/-1
2149   // (division by zero is handled explicitly)
2150 #ifdef  _M_AMD64
2151   PCONTEXT ctx = exceptionInfo->ContextRecord;
2152   address pc = (address)ctx->Rip;
2153   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2154   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2155   if (pc[0] == 0xF7) {
2156     // set correct result values and continue after idiv instruction
2157     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2158   } else {
2159     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2160   }
2161   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2162   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2163   // idiv opcode (0xF7).
2164   ctx->Rdx = (DWORD)0;             // remainder
2165   // Continue the execution
2166 #else
2167   PCONTEXT ctx = exceptionInfo->ContextRecord;
2168   address pc = (address)ctx->Eip;
2169   assert(pc[0] == 0xF7, "not an idiv opcode");
2170   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2171   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2172   // set correct result values and continue after idiv instruction
2173   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2174   ctx->Eax = (DWORD)min_jint;      // result
2175   ctx->Edx = (DWORD)0;             // remainder
2176   // Continue the execution
2177 #endif
2178   return EXCEPTION_CONTINUE_EXECUTION;
2179 }
2180 
2181 //-----------------------------------------------------------------------------
2182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2183   PCONTEXT ctx = exceptionInfo->ContextRecord;
2184 #ifndef  _WIN64
2185   // handle exception caused by native method modifying control word
2186   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2187 
2188   switch (exception_code) {
2189   case EXCEPTION_FLT_DENORMAL_OPERAND:
2190   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2191   case EXCEPTION_FLT_INEXACT_RESULT:
2192   case EXCEPTION_FLT_INVALID_OPERATION:
2193   case EXCEPTION_FLT_OVERFLOW:
2194   case EXCEPTION_FLT_STACK_CHECK:
2195   case EXCEPTION_FLT_UNDERFLOW:
2196     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2197     if (fp_control_word != ctx->FloatSave.ControlWord) {
2198       // Restore FPCW and mask out FLT exceptions
2199       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2200       // Mask out pending FLT exceptions
2201       ctx->FloatSave.StatusWord &=  0xffffff00;
2202       return EXCEPTION_CONTINUE_EXECUTION;
2203     }
2204   }
2205 
2206   if (prev_uef_handler != NULL) {
2207     // We didn't handle this exception so pass it to the previous
2208     // UnhandledExceptionFilter.
2209     return (prev_uef_handler)(exceptionInfo);
2210   }
2211 #else // !_WIN64
2212   // On Windows, the mxcsr control bits are non-volatile across calls
2213   // See also CR 6192333
2214   //
2215   jint MxCsr = INITIAL_MXCSR;
2216   // we can't use StubRoutines::addr_mxcsr_std()
2217   // because in Win64 mxcsr is not saved there
2218   if (MxCsr != ctx->MxCsr) {
2219     ctx->MxCsr = MxCsr;
2220     return EXCEPTION_CONTINUE_EXECUTION;
2221   }
2222 #endif // !_WIN64
2223 
2224   return EXCEPTION_CONTINUE_SEARCH;
2225 }
2226 
2227 static inline void report_error(Thread* t, DWORD exception_code,
2228                                 address addr, void* siginfo, void* context) {
2229   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2230 
2231   // If UseOsErrorReporting, this will return here and save the error file
2232   // somewhere where we can find it in the minidump.
2233 }
2234 
2235 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2236         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2237   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2238   address addr = (address) exceptionRecord->ExceptionInformation[1];
2239   if (Interpreter::contains(pc)) {
2240     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2241     if (!fr->is_first_java_frame()) {
2242       // get_frame_at_stack_banging_point() is only called when we
2243       // have well defined stacks so java_sender() calls do not need
2244       // to assert safe_for_sender() first.
2245       *fr = fr->java_sender();
2246     }
2247   } else {
2248     // more complex code with compiled code
2249     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2250     CodeBlob* cb = CodeCache::find_blob(pc);
2251     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2252       // Not sure where the pc points to, fallback to default
2253       // stack overflow handling
2254       return false;
2255     } else {
2256       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2257       // in compiled code, the stack banging is performed just after the return pc
2258       // has been pushed on the stack
2259       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2260       if (!fr->is_java_frame()) {
2261         // See java_sender() comment above.
2262         *fr = fr->java_sender();
2263       }
2264     }
2265   }
2266   assert(fr->is_java_frame(), "Safety check");
2267   return true;
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2272   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2273   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2274 #ifdef _M_AMD64
2275   address pc = (address) exceptionInfo->ContextRecord->Rip;
2276 #else
2277   address pc = (address) exceptionInfo->ContextRecord->Eip;
2278 #endif
2279   Thread* t = Thread::current_or_null_safe();
2280 
2281   // Handle SafeFetch32 and SafeFetchN exceptions.
2282   if (StubRoutines::is_safefetch_fault(pc)) {
2283     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2284   }
2285 
2286 #ifndef _WIN64
2287   // Execution protection violation - win32 running on AMD64 only
2288   // Handled first to avoid misdiagnosis as a "normal" access violation;
2289   // This is safe to do because we have a new/unique ExceptionInformation
2290   // code for this condition.
2291   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2292     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2293     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2294     address addr = (address) exceptionRecord->ExceptionInformation[1];
2295 
2296     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2297       int page_size = os::vm_page_size();
2298 
2299       // Make sure the pc and the faulting address are sane.
2300       //
2301       // If an instruction spans a page boundary, and the page containing
2302       // the beginning of the instruction is executable but the following
2303       // page is not, the pc and the faulting address might be slightly
2304       // different - we still want to unguard the 2nd page in this case.
2305       //
2306       // 15 bytes seems to be a (very) safe value for max instruction size.
2307       bool pc_is_near_addr =
2308         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2309       bool instr_spans_page_boundary =
2310         (align_down((intptr_t) pc ^ (intptr_t) addr,
2311                          (intptr_t) page_size) > 0);
2312 
2313       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2314         static volatile address last_addr =
2315           (address) os::non_memory_address_word();
2316 
2317         // In conservative mode, don't unguard unless the address is in the VM
2318         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2319             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2320 
2321           // Set memory to RWX and retry
2322           address page_start = align_down(addr, page_size);
2323           bool res = os::protect_memory((char*) page_start, page_size,
2324                                         os::MEM_PROT_RWX);
2325 
2326           log_debug(os)("Execution protection violation "
2327                         "at " INTPTR_FORMAT
2328                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2329                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2330 
2331           // Set last_addr so if we fault again at the same address, we don't
2332           // end up in an endless loop.
2333           //
2334           // There are two potential complications here.  Two threads trapping
2335           // at the same address at the same time could cause one of the
2336           // threads to think it already unguarded, and abort the VM.  Likely
2337           // very rare.
2338           //
2339           // The other race involves two threads alternately trapping at
2340           // different addresses and failing to unguard the page, resulting in
2341           // an endless loop.  This condition is probably even more unlikely
2342           // than the first.
2343           //
2344           // Although both cases could be avoided by using locks or thread
2345           // local last_addr, these solutions are unnecessary complication:
2346           // this handler is a best-effort safety net, not a complete solution.
2347           // It is disabled by default and should only be used as a workaround
2348           // in case we missed any no-execute-unsafe VM code.
2349 
2350           last_addr = addr;
2351 
2352           return EXCEPTION_CONTINUE_EXECUTION;
2353         }
2354       }
2355 
2356       // Last unguard failed or not unguarding
2357       tty->print_raw_cr("Execution protection violation");
2358       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2359                    exceptionInfo->ContextRecord);
2360       return EXCEPTION_CONTINUE_SEARCH;
2361     }
2362   }
2363 #endif // _WIN64
2364 
2365   // Check to see if we caught the safepoint code in the
2366   // process of write protecting the memory serialization page.
2367   // It write enables the page immediately after protecting it
2368   // so just return.
2369   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2370     if (t != NULL && t->is_Java_thread()) {
2371       JavaThread* thread = (JavaThread*) t;
2372       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2373       address addr = (address) exceptionRecord->ExceptionInformation[1];
2374       if (os::is_memory_serialize_page(thread, addr)) {
2375         // Block current thread until the memory serialize page permission restored.
2376         os::block_on_serialize_page_trap();
2377         return EXCEPTION_CONTINUE_EXECUTION;
2378       }
2379     }
2380   }
2381 
2382   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2383       VM_Version::is_cpuinfo_segv_addr(pc)) {
2384     // Verify that OS save/restore AVX registers.
2385     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2386   }
2387 
2388   if (t != NULL && t->is_Java_thread()) {
2389     JavaThread* thread = (JavaThread*) t;
2390     bool in_java = thread->thread_state() == _thread_in_Java;
2391 
2392     // Handle potential stack overflows up front.
2393     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2394       if (thread->stack_guards_enabled()) {
2395         if (in_java) {
2396           frame fr;
2397           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2398           address addr = (address) exceptionRecord->ExceptionInformation[1];
2399           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2400             assert(fr.is_java_frame(), "Must be a Java frame");
2401             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2402           }
2403         }
2404         // Yellow zone violation.  The o/s has unprotected the first yellow
2405         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2406         // update the enabled status, even if the zone contains only one page.
2407         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2408         thread->disable_stack_yellow_reserved_zone();
2409         // If not in java code, return and hope for the best.
2410         return in_java
2411             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2412             :  EXCEPTION_CONTINUE_EXECUTION;
2413       } else {
2414         // Fatal red zone violation.
2415         thread->disable_stack_red_zone();
2416         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2417         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2418                       exceptionInfo->ContextRecord);
2419         return EXCEPTION_CONTINUE_SEARCH;
2420       }
2421     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2422       // Either stack overflow or null pointer exception.
2423       if (in_java) {
2424         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2425         address addr = (address) exceptionRecord->ExceptionInformation[1];
2426         address stack_end = thread->stack_end();
2427         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2428           // Stack overflow.
2429           assert(!os::uses_stack_guard_pages(),
2430                  "should be caught by red zone code above.");
2431           return Handle_Exception(exceptionInfo,
2432                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2433         }
2434         // Check for safepoint polling and implicit null
2435         // We only expect null pointers in the stubs (vtable)
2436         // the rest are checked explicitly now.
2437         CodeBlob* cb = CodeCache::find_blob(pc);
2438         if (cb != NULL) {
2439           if (os::is_poll_address(addr)) {
2440             address stub = SharedRuntime::get_poll_stub(pc);
2441             return Handle_Exception(exceptionInfo, stub);
2442           }
2443         }
2444         {
2445 #ifdef _WIN64
2446           // If it's a legal stack address map the entire region in
2447           //
2448           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2449           address addr = (address) exceptionRecord->ExceptionInformation[1];
2450           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2451             addr = (address)((uintptr_t)addr &
2452                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2453             os::commit_memory((char *)addr, thread->stack_base() - addr,
2454                               !ExecMem);
2455             return EXCEPTION_CONTINUE_EXECUTION;
2456           } else
2457 #endif
2458           {
2459             // Null pointer exception.
2460             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2461               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2462               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2463             }
2464             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2465                          exceptionInfo->ContextRecord);
2466             return EXCEPTION_CONTINUE_SEARCH;
2467           }
2468         }
2469       }
2470 
2471 #ifdef _WIN64
2472       // Special care for fast JNI field accessors.
2473       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2474       // in and the heap gets shrunk before the field access.
2475       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2476         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2477         if (addr != (address)-1) {
2478           return Handle_Exception(exceptionInfo, addr);
2479         }
2480       }
2481 #endif
2482 
2483       // Stack overflow or null pointer exception in native code.
2484       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2485                    exceptionInfo->ContextRecord);
2486       return EXCEPTION_CONTINUE_SEARCH;
2487     } // /EXCEPTION_ACCESS_VIOLATION
2488     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2489 
2490     if (in_java) {
2491       switch (exception_code) {
2492       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2493         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2494 
2495       case EXCEPTION_INT_OVERFLOW:
2496         return Handle_IDiv_Exception(exceptionInfo);
2497 
2498       } // switch
2499     }
2500     if (((thread->thread_state() == _thread_in_Java) ||
2501          (thread->thread_state() == _thread_in_native)) &&
2502          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2503       LONG result=Handle_FLT_Exception(exceptionInfo);
2504       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2505     }
2506   }
2507 
2508   if (exception_code != EXCEPTION_BREAKPOINT) {
2509     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2510                  exceptionInfo->ContextRecord);
2511   }
2512   return EXCEPTION_CONTINUE_SEARCH;
2513 }
2514 
2515 #ifndef _WIN64
2516 // Special care for fast JNI accessors.
2517 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2518 // the heap gets shrunk before the field access.
2519 // Need to install our own structured exception handler since native code may
2520 // install its own.
2521 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2522   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2523   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2524     address pc = (address) exceptionInfo->ContextRecord->Eip;
2525     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2526     if (addr != (address)-1) {
2527       return Handle_Exception(exceptionInfo, addr);
2528     }
2529   }
2530   return EXCEPTION_CONTINUE_SEARCH;
2531 }
2532 
2533 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2534   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2535                                                      jobject obj,           \
2536                                                      jfieldID fieldID) {    \
2537     __try {                                                                 \
2538       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2539                                                                  obj,       \
2540                                                                  fieldID);  \
2541     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2542                                               _exception_info())) {         \
2543     }                                                                       \
2544     return 0;                                                               \
2545   }
2546 
2547 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2548 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2549 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2550 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2551 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2552 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2553 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2554 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2555 
2556 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2557   switch (type) {
2558   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2559   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2560   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2561   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2562   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2563   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2564   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2565   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2566   default:        ShouldNotReachHere();
2567   }
2568   return (address)-1;
2569 }
2570 #endif
2571 
2572 // Virtual Memory
2573 
2574 int os::vm_page_size() { return os::win32::vm_page_size(); }
2575 int os::vm_allocation_granularity() {
2576   return os::win32::vm_allocation_granularity();
2577 }
2578 
2579 // Windows large page support is available on Windows 2003. In order to use
2580 // large page memory, the administrator must first assign additional privilege
2581 // to the user:
2582 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2583 //   + select Local Policies -> User Rights Assignment
2584 //   + double click "Lock pages in memory", add users and/or groups
2585 //   + reboot
2586 // Note the above steps are needed for administrator as well, as administrators
2587 // by default do not have the privilege to lock pages in memory.
2588 //
2589 // Note about Windows 2003: although the API supports committing large page
2590 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2591 // scenario, I found through experiment it only uses large page if the entire
2592 // memory region is reserved and committed in a single VirtualAlloc() call.
2593 // This makes Windows large page support more or less like Solaris ISM, in
2594 // that the entire heap must be committed upfront. This probably will change
2595 // in the future, if so the code below needs to be revisited.
2596 
2597 #ifndef MEM_LARGE_PAGES
2598   #define MEM_LARGE_PAGES 0x20000000
2599 #endif
2600 
2601 static HANDLE    _hProcess;
2602 static HANDLE    _hToken;
2603 
2604 // Container for NUMA node list info
2605 class NUMANodeListHolder {
2606  private:
2607   int *_numa_used_node_list;  // allocated below
2608   int _numa_used_node_count;
2609 
2610   void free_node_list() {
2611     if (_numa_used_node_list != NULL) {
2612       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2613     }
2614   }
2615 
2616  public:
2617   NUMANodeListHolder() {
2618     _numa_used_node_count = 0;
2619     _numa_used_node_list = NULL;
2620     // do rest of initialization in build routine (after function pointers are set up)
2621   }
2622 
2623   ~NUMANodeListHolder() {
2624     free_node_list();
2625   }
2626 
2627   bool build() {
2628     DWORD_PTR proc_aff_mask;
2629     DWORD_PTR sys_aff_mask;
2630     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2631     ULONG highest_node_number;
2632     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2633     free_node_list();
2634     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2635     for (unsigned int i = 0; i <= highest_node_number; i++) {
2636       ULONGLONG proc_mask_numa_node;
2637       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2638       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2639         _numa_used_node_list[_numa_used_node_count++] = i;
2640       }
2641     }
2642     return (_numa_used_node_count > 1);
2643   }
2644 
2645   int get_count() { return _numa_used_node_count; }
2646   int get_node_list_entry(int n) {
2647     // for indexes out of range, returns -1
2648     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2649   }
2650 
2651 } numa_node_list_holder;
2652 
2653 
2654 
2655 static size_t _large_page_size = 0;
2656 
2657 static bool request_lock_memory_privilege() {
2658   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2659                           os::current_process_id());
2660 
2661   LUID luid;
2662   if (_hProcess != NULL &&
2663       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2664       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2665 
2666     TOKEN_PRIVILEGES tp;
2667     tp.PrivilegeCount = 1;
2668     tp.Privileges[0].Luid = luid;
2669     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2670 
2671     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2672     // privilege. Check GetLastError() too. See MSDN document.
2673     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2674         (GetLastError() == ERROR_SUCCESS)) {
2675       return true;
2676     }
2677   }
2678 
2679   return false;
2680 }
2681 
2682 static void cleanup_after_large_page_init() {
2683   if (_hProcess) CloseHandle(_hProcess);
2684   _hProcess = NULL;
2685   if (_hToken) CloseHandle(_hToken);
2686   _hToken = NULL;
2687 }
2688 
2689 static bool numa_interleaving_init() {
2690   bool success = false;
2691   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2692 
2693   // print a warning if UseNUMAInterleaving flag is specified on command line
2694   bool warn_on_failure = use_numa_interleaving_specified;
2695 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2696 
2697   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2698   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2699   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2700 
2701   if (numa_node_list_holder.build()) {
2702     if (log_is_enabled(Debug, os, cpu)) {
2703       Log(os, cpu) log;
2704       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2705       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2706         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2707       }
2708     }
2709     success = true;
2710   } else {
2711     WARN("Process does not cover multiple NUMA nodes.");
2712   }
2713   if (!success) {
2714     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2715   }
2716   return success;
2717 #undef WARN
2718 }
2719 
2720 // this routine is used whenever we need to reserve a contiguous VA range
2721 // but we need to make separate VirtualAlloc calls for each piece of the range
2722 // Reasons for doing this:
2723 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2724 //  * UseNUMAInterleaving requires a separate node for each piece
2725 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2726                                          DWORD prot,
2727                                          bool should_inject_error = false) {
2728   char * p_buf;
2729   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2730   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2731   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2732 
2733   // first reserve enough address space in advance since we want to be
2734   // able to break a single contiguous virtual address range into multiple
2735   // large page commits but WS2003 does not allow reserving large page space
2736   // so we just use 4K pages for reserve, this gives us a legal contiguous
2737   // address space. then we will deallocate that reservation, and re alloc
2738   // using large pages
2739   const size_t size_of_reserve = bytes + chunk_size;
2740   if (bytes > size_of_reserve) {
2741     // Overflowed.
2742     return NULL;
2743   }
2744   p_buf = (char *) VirtualAlloc(addr,
2745                                 size_of_reserve,  // size of Reserve
2746                                 MEM_RESERVE,
2747                                 PAGE_READWRITE);
2748   // If reservation failed, return NULL
2749   if (p_buf == NULL) return NULL;
2750   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2751   os::release_memory(p_buf, bytes + chunk_size);
2752 
2753   // we still need to round up to a page boundary (in case we are using large pages)
2754   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2755   // instead we handle this in the bytes_to_rq computation below
2756   p_buf = align_up(p_buf, page_size);
2757 
2758   // now go through and allocate one chunk at a time until all bytes are
2759   // allocated
2760   size_t  bytes_remaining = bytes;
2761   // An overflow of align_up() would have been caught above
2762   // in the calculation of size_of_reserve.
2763   char * next_alloc_addr = p_buf;
2764   HANDLE hProc = GetCurrentProcess();
2765 
2766 #ifdef ASSERT
2767   // Variable for the failure injection
2768   int ran_num = os::random();
2769   size_t fail_after = ran_num % bytes;
2770 #endif
2771 
2772   int count=0;
2773   while (bytes_remaining) {
2774     // select bytes_to_rq to get to the next chunk_size boundary
2775 
2776     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2777     // Note allocate and commit
2778     char * p_new;
2779 
2780 #ifdef ASSERT
2781     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2782 #else
2783     const bool inject_error_now = false;
2784 #endif
2785 
2786     if (inject_error_now) {
2787       p_new = NULL;
2788     } else {
2789       if (!UseNUMAInterleaving) {
2790         p_new = (char *) VirtualAlloc(next_alloc_addr,
2791                                       bytes_to_rq,
2792                                       flags,
2793                                       prot);
2794       } else {
2795         // get the next node to use from the used_node_list
2796         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2797         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2798         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2799       }
2800     }
2801 
2802     if (p_new == NULL) {
2803       // Free any allocated pages
2804       if (next_alloc_addr > p_buf) {
2805         // Some memory was committed so release it.
2806         size_t bytes_to_release = bytes - bytes_remaining;
2807         // NMT has yet to record any individual blocks, so it
2808         // need to create a dummy 'reserve' record to match
2809         // the release.
2810         MemTracker::record_virtual_memory_reserve((address)p_buf,
2811                                                   bytes_to_release, CALLER_PC);
2812         os::release_memory(p_buf, bytes_to_release);
2813       }
2814 #ifdef ASSERT
2815       if (should_inject_error) {
2816         log_develop_debug(pagesize)("Reserving pages individually failed.");
2817       }
2818 #endif
2819       return NULL;
2820     }
2821 
2822     bytes_remaining -= bytes_to_rq;
2823     next_alloc_addr += bytes_to_rq;
2824     count++;
2825   }
2826   // Although the memory is allocated individually, it is returned as one.
2827   // NMT records it as one block.
2828   if ((flags & MEM_COMMIT) != 0) {
2829     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2830   } else {
2831     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2832   }
2833 
2834   // made it this far, success
2835   return p_buf;
2836 }
2837 
2838 
2839 
2840 void os::large_page_init() {
2841   if (!UseLargePages) return;
2842 
2843   // print a warning if any large page related flag is specified on command line
2844   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2845                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2846   bool success = false;
2847 
2848 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2849   if (request_lock_memory_privilege()) {
2850     size_t s = GetLargePageMinimum();
2851     if (s) {
2852 #if defined(IA32) || defined(AMD64)
2853       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2854         WARN("JVM cannot use large pages bigger than 4mb.");
2855       } else {
2856 #endif
2857         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2858           _large_page_size = LargePageSizeInBytes;
2859         } else {
2860           _large_page_size = s;
2861         }
2862         success = true;
2863 #if defined(IA32) || defined(AMD64)
2864       }
2865 #endif
2866     } else {
2867       WARN("Large page is not supported by the processor.");
2868     }
2869   } else {
2870     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2871   }
2872 #undef WARN
2873 
2874   const size_t default_page_size = (size_t) vm_page_size();
2875   if (success && _large_page_size > default_page_size) {
2876     _page_sizes[0] = _large_page_size;
2877     _page_sizes[1] = default_page_size;
2878     _page_sizes[2] = 0;
2879   }
2880 
2881   cleanup_after_large_page_init();
2882   UseLargePages = success;
2883 }
2884 
2885 // On win32, one cannot release just a part of reserved memory, it's an
2886 // all or nothing deal.  When we split a reservation, we must break the
2887 // reservation into two reservations.
2888 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2889                                   bool realloc) {
2890   if (size > 0) {
2891     release_memory(base, size);
2892     if (realloc) {
2893       reserve_memory(split, base);
2894     }
2895     if (size != split) {
2896       reserve_memory(size - split, base + split);
2897     }
2898   }
2899 }
2900 
2901 // Multiple threads can race in this code but it's not possible to unmap small sections of
2902 // virtual space to get requested alignment, like posix-like os's.
2903 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
2904 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
2905   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
2906          "Alignment must be a multiple of allocation granularity (page size)");
2907   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
2908 
2909   size_t extra_size = size + alignment;
2910   assert(extra_size >= size, "overflow, size is too large to allow alignment");
2911 
2912   char* aligned_base = NULL;
2913 
2914   do {
2915     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
2916     if (extra_base == NULL) {
2917       return NULL;
2918     }
2919     // Do manual alignment
2920     aligned_base = align_up(extra_base, alignment);
2921 
2922     os::release_memory(extra_base, extra_size);
2923 
2924     aligned_base = os::reserve_memory(size, aligned_base);
2925 
2926   } while (aligned_base == NULL);
2927 
2928   return aligned_base;
2929 }
2930 
2931 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2932   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2933          "reserve alignment");
2934   assert(bytes % os::vm_page_size() == 0, "reserve page size");
2935   char* res;
2936   // note that if UseLargePages is on, all the areas that require interleaving
2937   // will go thru reserve_memory_special rather than thru here.
2938   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2939   if (!use_individual) {
2940     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2941   } else {
2942     elapsedTimer reserveTimer;
2943     if (Verbose && PrintMiscellaneous) reserveTimer.start();
2944     // in numa interleaving, we have to allocate pages individually
2945     // (well really chunks of NUMAInterleaveGranularity size)
2946     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2947     if (res == NULL) {
2948       warning("NUMA page allocation failed");
2949     }
2950     if (Verbose && PrintMiscellaneous) {
2951       reserveTimer.stop();
2952       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
2953                     reserveTimer.milliseconds(), reserveTimer.ticks());
2954     }
2955   }
2956   assert(res == NULL || addr == NULL || addr == res,
2957          "Unexpected address from reserve.");
2958 
2959   return res;
2960 }
2961 
2962 // Reserve memory at an arbitrary address, only if that area is
2963 // available (and not reserved for something else).
2964 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2965   // Windows os::reserve_memory() fails of the requested address range is
2966   // not avilable.
2967   return reserve_memory(bytes, requested_addr);
2968 }
2969 
2970 size_t os::large_page_size() {
2971   return _large_page_size;
2972 }
2973 
2974 bool os::can_commit_large_page_memory() {
2975   // Windows only uses large page memory when the entire region is reserved
2976   // and committed in a single VirtualAlloc() call. This may change in the
2977   // future, but with Windows 2003 it's not possible to commit on demand.
2978   return false;
2979 }
2980 
2981 bool os::can_execute_large_page_memory() {
2982   return true;
2983 }
2984 
2985 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
2986                                  bool exec) {
2987   assert(UseLargePages, "only for large pages");
2988 
2989   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
2990     return NULL; // Fallback to small pages.
2991   }
2992 
2993   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2994   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2995 
2996   // with large pages, there are two cases where we need to use Individual Allocation
2997   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
2998   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
2999   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3000     log_debug(pagesize)("Reserving large pages individually.");
3001 
3002     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3003     if (p_buf == NULL) {
3004       // give an appropriate warning message
3005       if (UseNUMAInterleaving) {
3006         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3007       }
3008       if (UseLargePagesIndividualAllocation) {
3009         warning("Individually allocated large pages failed, "
3010                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3011       }
3012       return NULL;
3013     }
3014 
3015     return p_buf;
3016 
3017   } else {
3018     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3019 
3020     // normal policy just allocate it all at once
3021     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3022     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3023     if (res != NULL) {
3024       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3025     }
3026 
3027     return res;
3028   }
3029 }
3030 
3031 bool os::release_memory_special(char* base, size_t bytes) {
3032   assert(base != NULL, "Sanity check");
3033   return release_memory(base, bytes);
3034 }
3035 
3036 void os::print_statistics() {
3037 }
3038 
3039 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3040   int err = os::get_last_error();
3041   char buf[256];
3042   size_t buf_len = os::lasterror(buf, sizeof(buf));
3043   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3044           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3045           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3046 }
3047 
3048 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3049   if (bytes == 0) {
3050     // Don't bother the OS with noops.
3051     return true;
3052   }
3053   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3054   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3055   // Don't attempt to print anything if the OS call fails. We're
3056   // probably low on resources, so the print itself may cause crashes.
3057 
3058   // unless we have NUMAInterleaving enabled, the range of a commit
3059   // is always within a reserve covered by a single VirtualAlloc
3060   // in that case we can just do a single commit for the requested size
3061   if (!UseNUMAInterleaving) {
3062     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3063       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3064       return false;
3065     }
3066     if (exec) {
3067       DWORD oldprot;
3068       // Windows doc says to use VirtualProtect to get execute permissions
3069       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3070         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3071         return false;
3072       }
3073     }
3074     return true;
3075   } else {
3076 
3077     // when NUMAInterleaving is enabled, the commit might cover a range that
3078     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3079     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3080     // returns represents the number of bytes that can be committed in one step.
3081     size_t bytes_remaining = bytes;
3082     char * next_alloc_addr = addr;
3083     while (bytes_remaining > 0) {
3084       MEMORY_BASIC_INFORMATION alloc_info;
3085       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3086       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3087       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3088                        PAGE_READWRITE) == NULL) {
3089         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3090                                             exec);)
3091         return false;
3092       }
3093       if (exec) {
3094         DWORD oldprot;
3095         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3096                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3097           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3098                                               exec);)
3099           return false;
3100         }
3101       }
3102       bytes_remaining -= bytes_to_rq;
3103       next_alloc_addr += bytes_to_rq;
3104     }
3105   }
3106   // if we made it this far, return true
3107   return true;
3108 }
3109 
3110 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3111                           bool exec) {
3112   // alignment_hint is ignored on this OS
3113   return pd_commit_memory(addr, size, exec);
3114 }
3115 
3116 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3117                                   const char* mesg) {
3118   assert(mesg != NULL, "mesg must be specified");
3119   if (!pd_commit_memory(addr, size, exec)) {
3120     warn_fail_commit_memory(addr, size, exec);
3121     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3122   }
3123 }
3124 
3125 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3126                                   size_t alignment_hint, bool exec,
3127                                   const char* mesg) {
3128   // alignment_hint is ignored on this OS
3129   pd_commit_memory_or_exit(addr, size, exec, mesg);
3130 }
3131 
3132 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3133   if (bytes == 0) {
3134     // Don't bother the OS with noops.
3135     return true;
3136   }
3137   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3138   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3139   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3140 }
3141 
3142 bool os::pd_release_memory(char* addr, size_t bytes) {
3143   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3144 }
3145 
3146 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3147   return os::commit_memory(addr, size, !ExecMem);
3148 }
3149 
3150 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3151   return os::uncommit_memory(addr, size);
3152 }
3153 
3154 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3155   uint count = 0;
3156   bool ret = false;
3157   size_t bytes_remaining = bytes;
3158   char * next_protect_addr = addr;
3159 
3160   // Use VirtualQuery() to get the chunk size.
3161   while (bytes_remaining) {
3162     MEMORY_BASIC_INFORMATION alloc_info;
3163     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3164       return false;
3165     }
3166 
3167     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3168     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3169     // but we don't distinguish here as both cases are protected by same API.
3170     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3171     warning("Failed protecting pages individually for chunk #%u", count);
3172     if (!ret) {
3173       return false;
3174     }
3175 
3176     bytes_remaining -= bytes_to_protect;
3177     next_protect_addr += bytes_to_protect;
3178     count++;
3179   }
3180   return ret;
3181 }
3182 
3183 // Set protections specified
3184 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3185                         bool is_committed) {
3186   unsigned int p = 0;
3187   switch (prot) {
3188   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3189   case MEM_PROT_READ: p = PAGE_READONLY; break;
3190   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3191   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3192   default:
3193     ShouldNotReachHere();
3194   }
3195 
3196   DWORD old_status;
3197 
3198   // Strange enough, but on Win32 one can change protection only for committed
3199   // memory, not a big deal anyway, as bytes less or equal than 64K
3200   if (!is_committed) {
3201     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3202                           "cannot commit protection page");
3203   }
3204   // One cannot use os::guard_memory() here, as on Win32 guard page
3205   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3206   //
3207   // Pages in the region become guard pages. Any attempt to access a guard page
3208   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3209   // the guard page status. Guard pages thus act as a one-time access alarm.
3210   bool ret;
3211   if (UseNUMAInterleaving) {
3212     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3213     // so we must protect the chunks individually.
3214     ret = protect_pages_individually(addr, bytes, p, &old_status);
3215   } else {
3216     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3217   }
3218 #ifdef ASSERT
3219   if (!ret) {
3220     int err = os::get_last_error();
3221     char buf[256];
3222     size_t buf_len = os::lasterror(buf, sizeof(buf));
3223     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3224           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3225           buf_len != 0 ? buf : "<no_error_string>", err);
3226   }
3227 #endif
3228   return ret;
3229 }
3230 
3231 bool os::guard_memory(char* addr, size_t bytes) {
3232   DWORD old_status;
3233   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3234 }
3235 
3236 bool os::unguard_memory(char* addr, size_t bytes) {
3237   DWORD old_status;
3238   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3239 }
3240 
3241 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3242 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3243 void os::numa_make_global(char *addr, size_t bytes)    { }
3244 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3245 bool os::numa_topology_changed()                       { return false; }
3246 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3247 int os::numa_get_group_id()                            { return 0; }
3248 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3249   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3250     // Provide an answer for UMA systems
3251     ids[0] = 0;
3252     return 1;
3253   } else {
3254     // check for size bigger than actual groups_num
3255     size = MIN2(size, numa_get_groups_num());
3256     for (int i = 0; i < (int)size; i++) {
3257       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3258     }
3259     return size;
3260   }
3261 }
3262 
3263 bool os::get_page_info(char *start, page_info* info) {
3264   return false;
3265 }
3266 
3267 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3268                      page_info* page_found) {
3269   return end;
3270 }
3271 
3272 char* os::non_memory_address_word() {
3273   // Must never look like an address returned by reserve_memory,
3274   // even in its subfields (as defined by the CPU immediate fields,
3275   // if the CPU splits constants across multiple instructions).
3276   return (char*)-1;
3277 }
3278 
3279 #define MAX_ERROR_COUNT 100
3280 #define SYS_THREAD_ERROR 0xffffffffUL
3281 
3282 void os::pd_start_thread(Thread* thread) {
3283   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3284   // Returns previous suspend state:
3285   // 0:  Thread was not suspended
3286   // 1:  Thread is running now
3287   // >1: Thread is still suspended.
3288   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3289 }
3290 
3291 class HighResolutionInterval : public CHeapObj<mtThread> {
3292   // The default timer resolution seems to be 10 milliseconds.
3293   // (Where is this written down?)
3294   // If someone wants to sleep for only a fraction of the default,
3295   // then we set the timer resolution down to 1 millisecond for
3296   // the duration of their interval.
3297   // We carefully set the resolution back, since otherwise we
3298   // seem to incur an overhead (3%?) that we don't need.
3299   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3300   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3301   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3302   // timeBeginPeriod() if the relative error exceeded some threshold.
3303   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3304   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3305   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3306   // resolution timers running.
3307  private:
3308   jlong resolution;
3309  public:
3310   HighResolutionInterval(jlong ms) {
3311     resolution = ms % 10L;
3312     if (resolution != 0) {
3313       MMRESULT result = timeBeginPeriod(1L);
3314     }
3315   }
3316   ~HighResolutionInterval() {
3317     if (resolution != 0) {
3318       MMRESULT result = timeEndPeriod(1L);
3319     }
3320     resolution = 0L;
3321   }
3322 };
3323 
3324 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3325   jlong limit = (jlong) MAXDWORD;
3326 
3327   while (ms > limit) {
3328     int res;
3329     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3330       return res;
3331     }
3332     ms -= limit;
3333   }
3334 
3335   assert(thread == Thread::current(), "thread consistency check");
3336   OSThread* osthread = thread->osthread();
3337   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3338   int result;
3339   if (interruptable) {
3340     assert(thread->is_Java_thread(), "must be java thread");
3341     JavaThread *jt = (JavaThread *) thread;
3342     ThreadBlockInVM tbivm(jt);
3343 
3344     jt->set_suspend_equivalent();
3345     // cleared by handle_special_suspend_equivalent_condition() or
3346     // java_suspend_self() via check_and_wait_while_suspended()
3347 
3348     HANDLE events[1];
3349     events[0] = osthread->interrupt_event();
3350     HighResolutionInterval *phri=NULL;
3351     if (!ForceTimeHighResolution) {
3352       phri = new HighResolutionInterval(ms);
3353     }
3354     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3355       result = OS_TIMEOUT;
3356     } else {
3357       ResetEvent(osthread->interrupt_event());
3358       osthread->set_interrupted(false);
3359       result = OS_INTRPT;
3360     }
3361     delete phri; //if it is NULL, harmless
3362 
3363     // were we externally suspended while we were waiting?
3364     jt->check_and_wait_while_suspended();
3365   } else {
3366     assert(!thread->is_Java_thread(), "must not be java thread");
3367     Sleep((long) ms);
3368     result = OS_TIMEOUT;
3369   }
3370   return result;
3371 }
3372 
3373 // Short sleep, direct OS call.
3374 //
3375 // ms = 0, means allow others (if any) to run.
3376 //
3377 void os::naked_short_sleep(jlong ms) {
3378   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3379   Sleep(ms);
3380 }
3381 
3382 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3383 void os::infinite_sleep() {
3384   while (true) {    // sleep forever ...
3385     Sleep(100000);  // ... 100 seconds at a time
3386   }
3387 }
3388 
3389 typedef BOOL (WINAPI * STTSignature)(void);
3390 
3391 void os::naked_yield() {
3392   // Consider passing back the return value from SwitchToThread().
3393   SwitchToThread();
3394 }
3395 
3396 // Win32 only gives you access to seven real priorities at a time,
3397 // so we compress Java's ten down to seven.  It would be better
3398 // if we dynamically adjusted relative priorities.
3399 
3400 int os::java_to_os_priority[CriticalPriority + 1] = {
3401   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3402   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3403   THREAD_PRIORITY_LOWEST,                       // 2
3404   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3405   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3406   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3407   THREAD_PRIORITY_NORMAL,                       // 6
3408   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3409   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3410   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3411   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3412   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3413 };
3414 
3415 int prio_policy1[CriticalPriority + 1] = {
3416   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3417   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3418   THREAD_PRIORITY_LOWEST,                       // 2
3419   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3420   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3421   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3422   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3423   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3424   THREAD_PRIORITY_HIGHEST,                      // 8
3425   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3426   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3427   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3428 };
3429 
3430 static int prio_init() {
3431   // If ThreadPriorityPolicy is 1, switch tables
3432   if (ThreadPriorityPolicy == 1) {
3433     int i;
3434     for (i = 0; i < CriticalPriority + 1; i++) {
3435       os::java_to_os_priority[i] = prio_policy1[i];
3436     }
3437   }
3438   if (UseCriticalJavaThreadPriority) {
3439     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3440   }
3441   return 0;
3442 }
3443 
3444 OSReturn os::set_native_priority(Thread* thread, int priority) {
3445   if (!UseThreadPriorities) return OS_OK;
3446   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3447   return ret ? OS_OK : OS_ERR;
3448 }
3449 
3450 OSReturn os::get_native_priority(const Thread* const thread,
3451                                  int* priority_ptr) {
3452   if (!UseThreadPriorities) {
3453     *priority_ptr = java_to_os_priority[NormPriority];
3454     return OS_OK;
3455   }
3456   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3457   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3458     assert(false, "GetThreadPriority failed");
3459     return OS_ERR;
3460   }
3461   *priority_ptr = os_prio;
3462   return OS_OK;
3463 }
3464 
3465 
3466 // Hint to the underlying OS that a task switch would not be good.
3467 // Void return because it's a hint and can fail.
3468 void os::hint_no_preempt() {}
3469 
3470 void os::interrupt(Thread* thread) {
3471   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3472 
3473   OSThread* osthread = thread->osthread();
3474   osthread->set_interrupted(true);
3475   // More than one thread can get here with the same value of osthread,
3476   // resulting in multiple notifications.  We do, however, want the store
3477   // to interrupted() to be visible to other threads before we post
3478   // the interrupt event.
3479   OrderAccess::release();
3480   SetEvent(osthread->interrupt_event());
3481   // For JSR166:  unpark after setting status
3482   if (thread->is_Java_thread()) {
3483     ((JavaThread*)thread)->parker()->unpark();
3484   }
3485 
3486   ParkEvent * ev = thread->_ParkEvent;
3487   if (ev != NULL) ev->unpark();
3488 }
3489 
3490 
3491 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3492   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3493 
3494   OSThread* osthread = thread->osthread();
3495   // There is no synchronization between the setting of the interrupt
3496   // and it being cleared here. It is critical - see 6535709 - that
3497   // we only clear the interrupt state, and reset the interrupt event,
3498   // if we are going to report that we were indeed interrupted - else
3499   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3500   // depending on the timing. By checking thread interrupt event to see
3501   // if the thread gets real interrupt thus prevent spurious wakeup.
3502   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3503   if (interrupted && clear_interrupted) {
3504     osthread->set_interrupted(false);
3505     ResetEvent(osthread->interrupt_event());
3506   } // Otherwise leave the interrupted state alone
3507 
3508   return interrupted;
3509 }
3510 
3511 // GetCurrentThreadId() returns DWORD
3512 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3513 
3514 static int _initial_pid = 0;
3515 
3516 int os::current_process_id() {
3517   return (_initial_pid ? _initial_pid : _getpid());
3518 }
3519 
3520 int    os::win32::_vm_page_size              = 0;
3521 int    os::win32::_vm_allocation_granularity = 0;
3522 int    os::win32::_processor_type            = 0;
3523 // Processor level is not available on non-NT systems, use vm_version instead
3524 int    os::win32::_processor_level           = 0;
3525 julong os::win32::_physical_memory           = 0;
3526 size_t os::win32::_default_stack_size        = 0;
3527 
3528 intx          os::win32::_os_thread_limit    = 0;
3529 volatile intx os::win32::_os_thread_count    = 0;
3530 
3531 bool   os::win32::_is_windows_server         = false;
3532 
3533 // 6573254
3534 // Currently, the bug is observed across all the supported Windows releases,
3535 // including the latest one (as of this writing - Windows Server 2012 R2)
3536 bool   os::win32::_has_exit_bug              = true;
3537 
3538 void os::win32::initialize_system_info() {
3539   SYSTEM_INFO si;
3540   GetSystemInfo(&si);
3541   _vm_page_size    = si.dwPageSize;
3542   _vm_allocation_granularity = si.dwAllocationGranularity;
3543   _processor_type  = si.dwProcessorType;
3544   _processor_level = si.wProcessorLevel;
3545   set_processor_count(si.dwNumberOfProcessors);
3546 
3547   MEMORYSTATUSEX ms;
3548   ms.dwLength = sizeof(ms);
3549 
3550   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3551   // dwMemoryLoad (% of memory in use)
3552   GlobalMemoryStatusEx(&ms);
3553   _physical_memory = ms.ullTotalPhys;
3554 
3555   if (FLAG_IS_DEFAULT(MaxRAM)) {
3556     // Adjust MaxRAM according to the maximum virtual address space available.
3557     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3558   }
3559 
3560   OSVERSIONINFOEX oi;
3561   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3562   GetVersionEx((OSVERSIONINFO*)&oi);
3563   switch (oi.dwPlatformId) {
3564   case VER_PLATFORM_WIN32_NT:
3565     {
3566       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3567       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3568           oi.wProductType == VER_NT_SERVER) {
3569         _is_windows_server = true;
3570       }
3571     }
3572     break;
3573   default: fatal("Unknown platform");
3574   }
3575 
3576   _default_stack_size = os::current_stack_size();
3577   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3578   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3579          "stack size not a multiple of page size");
3580 
3581   initialize_performance_counter();
3582 }
3583 
3584 
3585 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3586                                       int ebuflen) {
3587   char path[MAX_PATH];
3588   DWORD size;
3589   DWORD pathLen = (DWORD)sizeof(path);
3590   HINSTANCE result = NULL;
3591 
3592   // only allow library name without path component
3593   assert(strchr(name, '\\') == NULL, "path not allowed");
3594   assert(strchr(name, ':') == NULL, "path not allowed");
3595   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3596     jio_snprintf(ebuf, ebuflen,
3597                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3598     return NULL;
3599   }
3600 
3601   // search system directory
3602   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3603     if (size >= pathLen) {
3604       return NULL; // truncated
3605     }
3606     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3607       return NULL; // truncated
3608     }
3609     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3610       return result;
3611     }
3612   }
3613 
3614   // try Windows directory
3615   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3616     if (size >= pathLen) {
3617       return NULL; // truncated
3618     }
3619     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3620       return NULL; // truncated
3621     }
3622     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3623       return result;
3624     }
3625   }
3626 
3627   jio_snprintf(ebuf, ebuflen,
3628                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3629   return NULL;
3630 }
3631 
3632 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3633 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3634 
3635 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3636   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3637   return TRUE;
3638 }
3639 
3640 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3641   // Basic approach:
3642   //  - Each exiting thread registers its intent to exit and then does so.
3643   //  - A thread trying to terminate the process must wait for all
3644   //    threads currently exiting to complete their exit.
3645 
3646   if (os::win32::has_exit_bug()) {
3647     // The array holds handles of the threads that have started exiting by calling
3648     // _endthreadex().
3649     // Should be large enough to avoid blocking the exiting thread due to lack of
3650     // a free slot.
3651     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3652     static int handle_count = 0;
3653 
3654     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3655     static CRITICAL_SECTION crit_sect;
3656     static volatile DWORD process_exiting = 0;
3657     int i, j;
3658     DWORD res;
3659     HANDLE hproc, hthr;
3660 
3661     // We only attempt to register threads until a process exiting
3662     // thread manages to set the process_exiting flag. Any threads
3663     // that come through here after the process_exiting flag is set
3664     // are unregistered and will be caught in the SuspendThread()
3665     // infinite loop below.
3666     bool registered = false;
3667 
3668     // The first thread that reached this point, initializes the critical section.
3669     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3670       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3671     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3672       if (what != EPT_THREAD) {
3673         // Atomically set process_exiting before the critical section
3674         // to increase the visibility between racing threads.
3675         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3676       }
3677       EnterCriticalSection(&crit_sect);
3678 
3679       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3680         // Remove from the array those handles of the threads that have completed exiting.
3681         for (i = 0, j = 0; i < handle_count; ++i) {
3682           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3683           if (res == WAIT_TIMEOUT) {
3684             handles[j++] = handles[i];
3685           } else {
3686             if (res == WAIT_FAILED) {
3687               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3688                       GetLastError(), __FILE__, __LINE__);
3689             }
3690             // Don't keep the handle, if we failed waiting for it.
3691             CloseHandle(handles[i]);
3692           }
3693         }
3694 
3695         // If there's no free slot in the array of the kept handles, we'll have to
3696         // wait until at least one thread completes exiting.
3697         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3698           // Raise the priority of the oldest exiting thread to increase its chances
3699           // to complete sooner.
3700           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3701           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3702           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3703             i = (res - WAIT_OBJECT_0);
3704             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3705             for (; i < handle_count; ++i) {
3706               handles[i] = handles[i + 1];
3707             }
3708           } else {
3709             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3710                     (res == WAIT_FAILED ? "failed" : "timed out"),
3711                     GetLastError(), __FILE__, __LINE__);
3712             // Don't keep handles, if we failed waiting for them.
3713             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3714               CloseHandle(handles[i]);
3715             }
3716             handle_count = 0;
3717           }
3718         }
3719 
3720         // Store a duplicate of the current thread handle in the array of handles.
3721         hproc = GetCurrentProcess();
3722         hthr = GetCurrentThread();
3723         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3724                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3725           warning("DuplicateHandle failed (%u) in %s: %d\n",
3726                   GetLastError(), __FILE__, __LINE__);
3727 
3728           // We can't register this thread (no more handles) so this thread
3729           // may be racing with a thread that is calling exit(). If the thread
3730           // that is calling exit() has managed to set the process_exiting
3731           // flag, then this thread will be caught in the SuspendThread()
3732           // infinite loop below which closes that race. A small timing
3733           // window remains before the process_exiting flag is set, but it
3734           // is only exposed when we are out of handles.
3735         } else {
3736           ++handle_count;
3737           registered = true;
3738 
3739           // The current exiting thread has stored its handle in the array, and now
3740           // should leave the critical section before calling _endthreadex().
3741         }
3742 
3743       } else if (what != EPT_THREAD && handle_count > 0) {
3744         jlong start_time, finish_time, timeout_left;
3745         // Before ending the process, make sure all the threads that had called
3746         // _endthreadex() completed.
3747 
3748         // Set the priority level of the current thread to the same value as
3749         // the priority level of exiting threads.
3750         // This is to ensure it will be given a fair chance to execute if
3751         // the timeout expires.
3752         hthr = GetCurrentThread();
3753         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3754         start_time = os::javaTimeNanos();
3755         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3756         for (i = 0; ; ) {
3757           int portion_count = handle_count - i;
3758           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3759             portion_count = MAXIMUM_WAIT_OBJECTS;
3760           }
3761           for (j = 0; j < portion_count; ++j) {
3762             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3763           }
3764           timeout_left = (finish_time - start_time) / 1000000L;
3765           if (timeout_left < 0) {
3766             timeout_left = 0;
3767           }
3768           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3769           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3770             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3771                     (res == WAIT_FAILED ? "failed" : "timed out"),
3772                     GetLastError(), __FILE__, __LINE__);
3773             // Reset portion_count so we close the remaining
3774             // handles due to this error.
3775             portion_count = handle_count - i;
3776           }
3777           for (j = 0; j < portion_count; ++j) {
3778             CloseHandle(handles[i + j]);
3779           }
3780           if ((i += portion_count) >= handle_count) {
3781             break;
3782           }
3783           start_time = os::javaTimeNanos();
3784         }
3785         handle_count = 0;
3786       }
3787 
3788       LeaveCriticalSection(&crit_sect);
3789     }
3790 
3791     if (!registered &&
3792         OrderAccess::load_acquire(&process_exiting) != 0 &&
3793         process_exiting != GetCurrentThreadId()) {
3794       // Some other thread is about to call exit(), so we don't let
3795       // the current unregistered thread proceed to exit() or _endthreadex()
3796       while (true) {
3797         SuspendThread(GetCurrentThread());
3798         // Avoid busy-wait loop, if SuspendThread() failed.
3799         Sleep(EXIT_TIMEOUT);
3800       }
3801     }
3802   }
3803 
3804   // We are here if either
3805   // - there's no 'race at exit' bug on this OS release;
3806   // - initialization of the critical section failed (unlikely);
3807   // - the current thread has registered itself and left the critical section;
3808   // - the process-exiting thread has raised the flag and left the critical section.
3809   if (what == EPT_THREAD) {
3810     _endthreadex((unsigned)exit_code);
3811   } else if (what == EPT_PROCESS) {
3812     ::exit(exit_code);
3813   } else {
3814     _exit(exit_code);
3815   }
3816 
3817   // Should not reach here
3818   return exit_code;
3819 }
3820 
3821 #undef EXIT_TIMEOUT
3822 
3823 void os::win32::setmode_streams() {
3824   _setmode(_fileno(stdin), _O_BINARY);
3825   _setmode(_fileno(stdout), _O_BINARY);
3826   _setmode(_fileno(stderr), _O_BINARY);
3827 }
3828 
3829 
3830 bool os::is_debugger_attached() {
3831   return IsDebuggerPresent() ? true : false;
3832 }
3833 
3834 
3835 void os::wait_for_keypress_at_exit(void) {
3836   if (PauseAtExit) {
3837     fprintf(stderr, "Press any key to continue...\n");
3838     fgetc(stdin);
3839   }
3840 }
3841 
3842 
3843 bool os::message_box(const char* title, const char* message) {
3844   int result = MessageBox(NULL, message, title,
3845                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3846   return result == IDYES;
3847 }
3848 
3849 #ifndef PRODUCT
3850 #ifndef _WIN64
3851 // Helpers to check whether NX protection is enabled
3852 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3853   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3854       pex->ExceptionRecord->NumberParameters > 0 &&
3855       pex->ExceptionRecord->ExceptionInformation[0] ==
3856       EXCEPTION_INFO_EXEC_VIOLATION) {
3857     return EXCEPTION_EXECUTE_HANDLER;
3858   }
3859   return EXCEPTION_CONTINUE_SEARCH;
3860 }
3861 
3862 void nx_check_protection() {
3863   // If NX is enabled we'll get an exception calling into code on the stack
3864   char code[] = { (char)0xC3 }; // ret
3865   void *code_ptr = (void *)code;
3866   __try {
3867     __asm call code_ptr
3868   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3869     tty->print_raw_cr("NX protection detected.");
3870   }
3871 }
3872 #endif // _WIN64
3873 #endif // PRODUCT
3874 
3875 // This is called _before_ the global arguments have been parsed
3876 void os::init(void) {
3877   _initial_pid = _getpid();
3878 
3879   init_random(1234567);
3880 
3881   win32::initialize_system_info();
3882   win32::setmode_streams();
3883   init_page_sizes((size_t) win32::vm_page_size());
3884 
3885   // This may be overridden later when argument processing is done.
3886   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
3887 
3888   // Initialize main_process and main_thread
3889   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3890   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3891                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3892     fatal("DuplicateHandle failed\n");
3893   }
3894   main_thread_id = (int) GetCurrentThreadId();
3895 
3896   // initialize fast thread access - only used for 32-bit
3897   win32::initialize_thread_ptr_offset();
3898 }
3899 
3900 // To install functions for atexit processing
3901 extern "C" {
3902   static void perfMemory_exit_helper() {
3903     perfMemory_exit();
3904   }
3905 }
3906 
3907 static jint initSock();
3908 
3909 // this is called _after_ the global arguments have been parsed
3910 jint os::init_2(void) {
3911   // Allocate a single page and mark it as readable for safepoint polling
3912   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3913   guarantee(polling_page != NULL, "Reserve Failed for polling page");
3914 
3915   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3916   guarantee(return_page != NULL, "Commit Failed for polling page");
3917 
3918   os::set_polling_page(polling_page);
3919   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3920 
3921   if (!UseMembar) {
3922     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3923     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3924 
3925     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3926     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
3927 
3928     os::set_memory_serialize_page(mem_serialize_page);
3929     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3930   }
3931 
3932   // Setup Windows Exceptions
3933 
3934   // for debugging float code generation bugs
3935   if (ForceFloatExceptions) {
3936 #ifndef  _WIN64
3937     static long fp_control_word = 0;
3938     __asm { fstcw fp_control_word }
3939     // see Intel PPro Manual, Vol. 2, p 7-16
3940     const long precision = 0x20;
3941     const long underflow = 0x10;
3942     const long overflow  = 0x08;
3943     const long zero_div  = 0x04;
3944     const long denorm    = 0x02;
3945     const long invalid   = 0x01;
3946     fp_control_word |= invalid;
3947     __asm { fldcw fp_control_word }
3948 #endif
3949   }
3950 
3951   // If stack_commit_size is 0, windows will reserve the default size,
3952   // but only commit a small portion of it.
3953   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
3954   size_t default_reserve_size = os::win32::default_stack_size();
3955   size_t actual_reserve_size = stack_commit_size;
3956   if (stack_commit_size < default_reserve_size) {
3957     // If stack_commit_size == 0, we want this too
3958     actual_reserve_size = default_reserve_size;
3959   }
3960 
3961   // Check minimum allowable stack size for thread creation and to initialize
3962   // the java system classes, including StackOverflowError - depends on page
3963   // size.  Add two 4K pages for compiler2 recursion in main thread.
3964   // Add in 4*BytesPerWord 4K pages to account for VM stack during
3965   // class initialization depending on 32 or 64 bit VM.
3966   size_t min_stack_allowed =
3967             (size_t)(JavaThread::stack_guard_zone_size() +
3968                      JavaThread::stack_shadow_zone_size() +
3969                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
3970 
3971   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
3972 
3973   if (actual_reserve_size < min_stack_allowed) {
3974     tty->print_cr("\nThe Java thread stack size specified is too small. "
3975                   "Specify at least %dk",
3976                   min_stack_allowed / K);
3977     return JNI_ERR;
3978   }
3979 
3980   JavaThread::set_stack_size_at_create(stack_commit_size);
3981 
3982   // Calculate theoretical max. size of Threads to guard gainst artifical
3983   // out-of-memory situations, where all available address-space has been
3984   // reserved by thread stacks.
3985   assert(actual_reserve_size != 0, "Must have a stack");
3986 
3987   // Calculate the thread limit when we should start doing Virtual Memory
3988   // banging. Currently when the threads will have used all but 200Mb of space.
3989   //
3990   // TODO: consider performing a similar calculation for commit size instead
3991   // as reserve size, since on a 64-bit platform we'll run into that more
3992   // often than running out of virtual memory space.  We can use the
3993   // lower value of the two calculations as the os_thread_limit.
3994   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3995   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3996 
3997   // at exit methods are called in the reverse order of their registration.
3998   // there is no limit to the number of functions registered. atexit does
3999   // not set errno.
4000 
4001   if (PerfAllowAtExitRegistration) {
4002     // only register atexit functions if PerfAllowAtExitRegistration is set.
4003     // atexit functions can be delayed until process exit time, which
4004     // can be problematic for embedded VM situations. Embedded VMs should
4005     // call DestroyJavaVM() to assure that VM resources are released.
4006 
4007     // note: perfMemory_exit_helper atexit function may be removed in
4008     // the future if the appropriate cleanup code can be added to the
4009     // VM_Exit VMOperation's doit method.
4010     if (atexit(perfMemory_exit_helper) != 0) {
4011       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4012     }
4013   }
4014 
4015 #ifndef _WIN64
4016   // Print something if NX is enabled (win32 on AMD64)
4017   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4018 #endif
4019 
4020   // initialize thread priority policy
4021   prio_init();
4022 
4023   if (UseNUMA && !ForceNUMA) {
4024     UseNUMA = false; // We don't fully support this yet
4025   }
4026 
4027   if (UseNUMAInterleaving) {
4028     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4029     bool success = numa_interleaving_init();
4030     if (!success) UseNUMAInterleaving = false;
4031   }
4032 
4033   if (initSock() != JNI_OK) {
4034     return JNI_ERR;
4035   }
4036 
4037   SymbolEngine::recalc_search_path();
4038 
4039   return JNI_OK;
4040 }
4041 
4042 // Mark the polling page as unreadable
4043 void os::make_polling_page_unreadable(void) {
4044   DWORD old_status;
4045   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4046                       PAGE_NOACCESS, &old_status)) {
4047     fatal("Could not disable polling page");
4048   }
4049 }
4050 
4051 // Mark the polling page as readable
4052 void os::make_polling_page_readable(void) {
4053   DWORD old_status;
4054   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4055                       PAGE_READONLY, &old_status)) {
4056     fatal("Could not enable polling page");
4057   }
4058 }
4059 
4060 
4061 int os::stat(const char *path, struct stat *sbuf) {
4062   char pathbuf[MAX_PATH];
4063   if (strlen(path) > MAX_PATH - 1) {
4064     errno = ENAMETOOLONG;
4065     return -1;
4066   }
4067   os::native_path(strcpy(pathbuf, path));
4068   int ret = ::stat(pathbuf, sbuf);
4069   if (sbuf != NULL && UseUTCFileTimestamp) {
4070     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4071     // the system timezone and so can return different values for the
4072     // same file if/when daylight savings time changes.  This adjustment
4073     // makes sure the same timestamp is returned regardless of the TZ.
4074     //
4075     // See:
4076     // http://msdn.microsoft.com/library/
4077     //   default.asp?url=/library/en-us/sysinfo/base/
4078     //   time_zone_information_str.asp
4079     // and
4080     // http://msdn.microsoft.com/library/default.asp?url=
4081     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4082     //
4083     // NOTE: there is a insidious bug here:  If the timezone is changed
4084     // after the call to stat() but before 'GetTimeZoneInformation()', then
4085     // the adjustment we do here will be wrong and we'll return the wrong
4086     // value (which will likely end up creating an invalid class data
4087     // archive).  Absent a better API for this, or some time zone locking
4088     // mechanism, we'll have to live with this risk.
4089     TIME_ZONE_INFORMATION tz;
4090     DWORD tzid = GetTimeZoneInformation(&tz);
4091     int daylightBias =
4092       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4093     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4094   }
4095   return ret;
4096 }
4097 
4098 
4099 #define FT2INT64(ft) \
4100   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4101 
4102 
4103 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4104 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4105 // of a thread.
4106 //
4107 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4108 // the fast estimate available on the platform.
4109 
4110 // current_thread_cpu_time() is not optimized for Windows yet
4111 jlong os::current_thread_cpu_time() {
4112   // return user + sys since the cost is the same
4113   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4114 }
4115 
4116 jlong os::thread_cpu_time(Thread* thread) {
4117   // consistent with what current_thread_cpu_time() returns.
4118   return os::thread_cpu_time(thread, true /* user+sys */);
4119 }
4120 
4121 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4122   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4123 }
4124 
4125 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4126   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4127   // If this function changes, os::is_thread_cpu_time_supported() should too
4128   FILETIME CreationTime;
4129   FILETIME ExitTime;
4130   FILETIME KernelTime;
4131   FILETIME UserTime;
4132 
4133   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4134                       &ExitTime, &KernelTime, &UserTime) == 0) {
4135     return -1;
4136   } else if (user_sys_cpu_time) {
4137     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4138   } else {
4139     return FT2INT64(UserTime) * 100;
4140   }
4141 }
4142 
4143 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4144   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4145   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4146   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4147   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4148 }
4149 
4150 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4151   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4152   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4153   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4154   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4155 }
4156 
4157 bool os::is_thread_cpu_time_supported() {
4158   // see os::thread_cpu_time
4159   FILETIME CreationTime;
4160   FILETIME ExitTime;
4161   FILETIME KernelTime;
4162   FILETIME UserTime;
4163 
4164   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4165                       &KernelTime, &UserTime) == 0) {
4166     return false;
4167   } else {
4168     return true;
4169   }
4170 }
4171 
4172 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4173 // It does have primitives (PDH API) to get CPU usage and run queue length.
4174 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4175 // If we wanted to implement loadavg on Windows, we have a few options:
4176 //
4177 // a) Query CPU usage and run queue length and "fake" an answer by
4178 //    returning the CPU usage if it's under 100%, and the run queue
4179 //    length otherwise.  It turns out that querying is pretty slow
4180 //    on Windows, on the order of 200 microseconds on a fast machine.
4181 //    Note that on the Windows the CPU usage value is the % usage
4182 //    since the last time the API was called (and the first call
4183 //    returns 100%), so we'd have to deal with that as well.
4184 //
4185 // b) Sample the "fake" answer using a sampling thread and store
4186 //    the answer in a global variable.  The call to loadavg would
4187 //    just return the value of the global, avoiding the slow query.
4188 //
4189 // c) Sample a better answer using exponential decay to smooth the
4190 //    value.  This is basically the algorithm used by UNIX kernels.
4191 //
4192 // Note that sampling thread starvation could affect both (b) and (c).
4193 int os::loadavg(double loadavg[], int nelem) {
4194   return -1;
4195 }
4196 
4197 
4198 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4199 bool os::dont_yield() {
4200   return DontYieldALot;
4201 }
4202 
4203 // This method is a slightly reworked copy of JDK's sysOpen
4204 // from src/windows/hpi/src/sys_api_md.c
4205 
4206 int os::open(const char *path, int oflag, int mode) {
4207   char pathbuf[MAX_PATH];
4208 
4209   if (strlen(path) > MAX_PATH - 1) {
4210     errno = ENAMETOOLONG;
4211     return -1;
4212   }
4213   os::native_path(strcpy(pathbuf, path));
4214   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4215 }
4216 
4217 FILE* os::open(int fd, const char* mode) {
4218   return ::_fdopen(fd, mode);
4219 }
4220 
4221 // Is a (classpath) directory empty?
4222 bool os::dir_is_empty(const char* path) {
4223   WIN32_FIND_DATA fd;
4224   HANDLE f = FindFirstFile(path, &fd);
4225   if (f == INVALID_HANDLE_VALUE) {
4226     return true;
4227   }
4228   FindClose(f);
4229   return false;
4230 }
4231 
4232 // create binary file, rewriting existing file if required
4233 int os::create_binary_file(const char* path, bool rewrite_existing) {
4234   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4235   if (!rewrite_existing) {
4236     oflags |= _O_EXCL;
4237   }
4238   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4239 }
4240 
4241 // return current position of file pointer
4242 jlong os::current_file_offset(int fd) {
4243   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4244 }
4245 
4246 // move file pointer to the specified offset
4247 jlong os::seek_to_file_offset(int fd, jlong offset) {
4248   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4249 }
4250 
4251 
4252 jlong os::lseek(int fd, jlong offset, int whence) {
4253   return (jlong) ::_lseeki64(fd, offset, whence);
4254 }
4255 
4256 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4257   OVERLAPPED ov;
4258   DWORD nread;
4259   BOOL result;
4260 
4261   ZeroMemory(&ov, sizeof(ov));
4262   ov.Offset = (DWORD)offset;
4263   ov.OffsetHigh = (DWORD)(offset >> 32);
4264 
4265   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4266 
4267   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4268 
4269   return result ? nread : 0;
4270 }
4271 
4272 
4273 // This method is a slightly reworked copy of JDK's sysNativePath
4274 // from src/windows/hpi/src/path_md.c
4275 
4276 // Convert a pathname to native format.  On win32, this involves forcing all
4277 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4278 // sometimes rejects '/') and removing redundant separators.  The input path is
4279 // assumed to have been converted into the character encoding used by the local
4280 // system.  Because this might be a double-byte encoding, care is taken to
4281 // treat double-byte lead characters correctly.
4282 //
4283 // This procedure modifies the given path in place, as the result is never
4284 // longer than the original.  There is no error return; this operation always
4285 // succeeds.
4286 char * os::native_path(char *path) {
4287   char *src = path, *dst = path, *end = path;
4288   char *colon = NULL;  // If a drive specifier is found, this will
4289                        // point to the colon following the drive letter
4290 
4291   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4292   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4293           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4294 
4295   // Check for leading separators
4296 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4297   while (isfilesep(*src)) {
4298     src++;
4299   }
4300 
4301   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4302     // Remove leading separators if followed by drive specifier.  This
4303     // hack is necessary to support file URLs containing drive
4304     // specifiers (e.g., "file://c:/path").  As a side effect,
4305     // "/c:/path" can be used as an alternative to "c:/path".
4306     *dst++ = *src++;
4307     colon = dst;
4308     *dst++ = ':';
4309     src++;
4310   } else {
4311     src = path;
4312     if (isfilesep(src[0]) && isfilesep(src[1])) {
4313       // UNC pathname: Retain first separator; leave src pointed at
4314       // second separator so that further separators will be collapsed
4315       // into the second separator.  The result will be a pathname
4316       // beginning with "\\\\" followed (most likely) by a host name.
4317       src = dst = path + 1;
4318       path[0] = '\\';     // Force first separator to '\\'
4319     }
4320   }
4321 
4322   end = dst;
4323 
4324   // Remove redundant separators from remainder of path, forcing all
4325   // separators to be '\\' rather than '/'. Also, single byte space
4326   // characters are removed from the end of the path because those
4327   // are not legal ending characters on this operating system.
4328   //
4329   while (*src != '\0') {
4330     if (isfilesep(*src)) {
4331       *dst++ = '\\'; src++;
4332       while (isfilesep(*src)) src++;
4333       if (*src == '\0') {
4334         // Check for trailing separator
4335         end = dst;
4336         if (colon == dst - 2) break;  // "z:\\"
4337         if (dst == path + 1) break;   // "\\"
4338         if (dst == path + 2 && isfilesep(path[0])) {
4339           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4340           // beginning of a UNC pathname.  Even though it is not, by
4341           // itself, a valid UNC pathname, we leave it as is in order
4342           // to be consistent with the path canonicalizer as well
4343           // as the win32 APIs, which treat this case as an invalid
4344           // UNC pathname rather than as an alias for the root
4345           // directory of the current drive.
4346           break;
4347         }
4348         end = --dst;  // Path does not denote a root directory, so
4349                       // remove trailing separator
4350         break;
4351       }
4352       end = dst;
4353     } else {
4354       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4355         *dst++ = *src++;
4356         if (*src) *dst++ = *src++;
4357         end = dst;
4358       } else {  // Copy a single-byte character
4359         char c = *src++;
4360         *dst++ = c;
4361         // Space is not a legal ending character
4362         if (c != ' ') end = dst;
4363       }
4364     }
4365   }
4366 
4367   *end = '\0';
4368 
4369   // For "z:", add "." to work around a bug in the C runtime library
4370   if (colon == dst - 1) {
4371     path[2] = '.';
4372     path[3] = '\0';
4373   }
4374 
4375   return path;
4376 }
4377 
4378 // This code is a copy of JDK's sysSetLength
4379 // from src/windows/hpi/src/sys_api_md.c
4380 
4381 int os::ftruncate(int fd, jlong length) {
4382   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4383   long high = (long)(length >> 32);
4384   DWORD ret;
4385 
4386   if (h == (HANDLE)(-1)) {
4387     return -1;
4388   }
4389 
4390   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4391   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4392     return -1;
4393   }
4394 
4395   if (::SetEndOfFile(h) == FALSE) {
4396     return -1;
4397   }
4398 
4399   return 0;
4400 }
4401 
4402 int os::get_fileno(FILE* fp) {
4403   return _fileno(fp);
4404 }
4405 
4406 // This code is a copy of JDK's sysSync
4407 // from src/windows/hpi/src/sys_api_md.c
4408 // except for the legacy workaround for a bug in Win 98
4409 
4410 int os::fsync(int fd) {
4411   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4412 
4413   if ((!::FlushFileBuffers(handle)) &&
4414       (GetLastError() != ERROR_ACCESS_DENIED)) {
4415     // from winerror.h
4416     return -1;
4417   }
4418   return 0;
4419 }
4420 
4421 static int nonSeekAvailable(int, long *);
4422 static int stdinAvailable(int, long *);
4423 
4424 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4425 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4426 
4427 // This code is a copy of JDK's sysAvailable
4428 // from src/windows/hpi/src/sys_api_md.c
4429 
4430 int os::available(int fd, jlong *bytes) {
4431   jlong cur, end;
4432   struct _stati64 stbuf64;
4433 
4434   if (::_fstati64(fd, &stbuf64) >= 0) {
4435     int mode = stbuf64.st_mode;
4436     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4437       int ret;
4438       long lpbytes;
4439       if (fd == 0) {
4440         ret = stdinAvailable(fd, &lpbytes);
4441       } else {
4442         ret = nonSeekAvailable(fd, &lpbytes);
4443       }
4444       (*bytes) = (jlong)(lpbytes);
4445       return ret;
4446     }
4447     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4448       return FALSE;
4449     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4450       return FALSE;
4451     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4452       return FALSE;
4453     }
4454     *bytes = end - cur;
4455     return TRUE;
4456   } else {
4457     return FALSE;
4458   }
4459 }
4460 
4461 void os::flockfile(FILE* fp) {
4462   _lock_file(fp);
4463 }
4464 
4465 void os::funlockfile(FILE* fp) {
4466   _unlock_file(fp);
4467 }
4468 
4469 // This code is a copy of JDK's nonSeekAvailable
4470 // from src/windows/hpi/src/sys_api_md.c
4471 
4472 static int nonSeekAvailable(int fd, long *pbytes) {
4473   // This is used for available on non-seekable devices
4474   // (like both named and anonymous pipes, such as pipes
4475   //  connected to an exec'd process).
4476   // Standard Input is a special case.
4477   HANDLE han;
4478 
4479   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4480     return FALSE;
4481   }
4482 
4483   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4484     // PeekNamedPipe fails when at EOF.  In that case we
4485     // simply make *pbytes = 0 which is consistent with the
4486     // behavior we get on Solaris when an fd is at EOF.
4487     // The only alternative is to raise an Exception,
4488     // which isn't really warranted.
4489     //
4490     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4491       return FALSE;
4492     }
4493     *pbytes = 0;
4494   }
4495   return TRUE;
4496 }
4497 
4498 #define MAX_INPUT_EVENTS 2000
4499 
4500 // This code is a copy of JDK's stdinAvailable
4501 // from src/windows/hpi/src/sys_api_md.c
4502 
4503 static int stdinAvailable(int fd, long *pbytes) {
4504   HANDLE han;
4505   DWORD numEventsRead = 0;  // Number of events read from buffer
4506   DWORD numEvents = 0;      // Number of events in buffer
4507   DWORD i = 0;              // Loop index
4508   DWORD curLength = 0;      // Position marker
4509   DWORD actualLength = 0;   // Number of bytes readable
4510   BOOL error = FALSE;       // Error holder
4511   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4512 
4513   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4514     return FALSE;
4515   }
4516 
4517   // Construct an array of input records in the console buffer
4518   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4519   if (error == 0) {
4520     return nonSeekAvailable(fd, pbytes);
4521   }
4522 
4523   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4524   if (numEvents > MAX_INPUT_EVENTS) {
4525     numEvents = MAX_INPUT_EVENTS;
4526   }
4527 
4528   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4529   if (lpBuffer == NULL) {
4530     return FALSE;
4531   }
4532 
4533   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4534   if (error == 0) {
4535     os::free(lpBuffer);
4536     return FALSE;
4537   }
4538 
4539   // Examine input records for the number of bytes available
4540   for (i=0; i<numEvents; i++) {
4541     if (lpBuffer[i].EventType == KEY_EVENT) {
4542 
4543       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4544                                       &(lpBuffer[i].Event);
4545       if (keyRecord->bKeyDown == TRUE) {
4546         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4547         curLength++;
4548         if (*keyPressed == '\r') {
4549           actualLength = curLength;
4550         }
4551       }
4552     }
4553   }
4554 
4555   if (lpBuffer != NULL) {
4556     os::free(lpBuffer);
4557   }
4558 
4559   *pbytes = (long) actualLength;
4560   return TRUE;
4561 }
4562 
4563 // Map a block of memory.
4564 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4565                         char *addr, size_t bytes, bool read_only,
4566                         bool allow_exec) {
4567   HANDLE hFile;
4568   char* base;
4569 
4570   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4571                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4572   if (hFile == NULL) {
4573     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4574     return NULL;
4575   }
4576 
4577   if (allow_exec) {
4578     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4579     // unless it comes from a PE image (which the shared archive is not.)
4580     // Even VirtualProtect refuses to give execute access to mapped memory
4581     // that was not previously executable.
4582     //
4583     // Instead, stick the executable region in anonymous memory.  Yuck.
4584     // Penalty is that ~4 pages will not be shareable - in the future
4585     // we might consider DLLizing the shared archive with a proper PE
4586     // header so that mapping executable + sharing is possible.
4587 
4588     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4589                                 PAGE_READWRITE);
4590     if (base == NULL) {
4591       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4592       CloseHandle(hFile);
4593       return NULL;
4594     }
4595 
4596     DWORD bytes_read;
4597     OVERLAPPED overlapped;
4598     overlapped.Offset = (DWORD)file_offset;
4599     overlapped.OffsetHigh = 0;
4600     overlapped.hEvent = NULL;
4601     // ReadFile guarantees that if the return value is true, the requested
4602     // number of bytes were read before returning.
4603     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4604     if (!res) {
4605       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4606       release_memory(base, bytes);
4607       CloseHandle(hFile);
4608       return NULL;
4609     }
4610   } else {
4611     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4612                                     NULL /* file_name */);
4613     if (hMap == NULL) {
4614       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4615       CloseHandle(hFile);
4616       return NULL;
4617     }
4618 
4619     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4620     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4621                                   (DWORD)bytes, addr);
4622     if (base == NULL) {
4623       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4624       CloseHandle(hMap);
4625       CloseHandle(hFile);
4626       return NULL;
4627     }
4628 
4629     if (CloseHandle(hMap) == 0) {
4630       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4631       CloseHandle(hFile);
4632       return base;
4633     }
4634   }
4635 
4636   if (allow_exec) {
4637     DWORD old_protect;
4638     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4639     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4640 
4641     if (!res) {
4642       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4643       // Don't consider this a hard error, on IA32 even if the
4644       // VirtualProtect fails, we should still be able to execute
4645       CloseHandle(hFile);
4646       return base;
4647     }
4648   }
4649 
4650   if (CloseHandle(hFile) == 0) {
4651     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4652     return base;
4653   }
4654 
4655   return base;
4656 }
4657 
4658 
4659 // Remap a block of memory.
4660 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4661                           char *addr, size_t bytes, bool read_only,
4662                           bool allow_exec) {
4663   // This OS does not allow existing memory maps to be remapped so we
4664   // have to unmap the memory before we remap it.
4665   if (!os::unmap_memory(addr, bytes)) {
4666     return NULL;
4667   }
4668 
4669   // There is a very small theoretical window between the unmap_memory()
4670   // call above and the map_memory() call below where a thread in native
4671   // code may be able to access an address that is no longer mapped.
4672 
4673   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4674                         read_only, allow_exec);
4675 }
4676 
4677 
4678 // Unmap a block of memory.
4679 // Returns true=success, otherwise false.
4680 
4681 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4682   MEMORY_BASIC_INFORMATION mem_info;
4683   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4684     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4685     return false;
4686   }
4687 
4688   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4689   // Instead, executable region was allocated using VirtualAlloc(). See
4690   // pd_map_memory() above.
4691   //
4692   // The following flags should match the 'exec_access' flages used for
4693   // VirtualProtect() in pd_map_memory().
4694   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4695       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4696     return pd_release_memory(addr, bytes);
4697   }
4698 
4699   BOOL result = UnmapViewOfFile(addr);
4700   if (result == 0) {
4701     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4702     return false;
4703   }
4704   return true;
4705 }
4706 
4707 void os::pause() {
4708   char filename[MAX_PATH];
4709   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4710     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4711   } else {
4712     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4713   }
4714 
4715   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4716   if (fd != -1) {
4717     struct stat buf;
4718     ::close(fd);
4719     while (::stat(filename, &buf) == 0) {
4720       Sleep(100);
4721     }
4722   } else {
4723     jio_fprintf(stderr,
4724                 "Could not open pause file '%s', continuing immediately.\n", filename);
4725   }
4726 }
4727 
4728 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
4729 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
4730 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
4731 
4732 os::ThreadCrashProtection::ThreadCrashProtection() {
4733 }
4734 
4735 // See the caveats for this class in os_windows.hpp
4736 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4737 // into this method and returns false. If no OS EXCEPTION was raised, returns
4738 // true.
4739 // The callback is supposed to provide the method that should be protected.
4740 //
4741 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4742 
4743   Thread::muxAcquire(&_crash_mux, "CrashProtection");
4744 
4745   _protected_thread = Thread::current_or_null();
4746   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
4747 
4748   bool success = true;
4749   __try {
4750     _crash_protection = this;
4751     cb.call();
4752   } __except(EXCEPTION_EXECUTE_HANDLER) {
4753     // only for protection, nothing to do
4754     success = false;
4755   }
4756   _crash_protection = NULL;
4757   _protected_thread = NULL;
4758   Thread::muxRelease(&_crash_mux);
4759   return success;
4760 }
4761 
4762 // An Event wraps a win32 "CreateEvent" kernel handle.
4763 //
4764 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4765 //
4766 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4767 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4768 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4769 //     In addition, an unpark() operation might fetch the handle field, but the
4770 //     event could recycle between the fetch and the SetEvent() operation.
4771 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4772 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4773 //     on an stale but recycled handle would be harmless, but in practice this might
4774 //     confuse other non-Sun code, so it's not a viable approach.
4775 //
4776 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4777 //     with the Event.  The event handle is never closed.  This could be construed
4778 //     as handle leakage, but only up to the maximum # of threads that have been extant
4779 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4780 //     permit a process to have hundreds of thousands of open handles.
4781 //
4782 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4783 //     and release unused handles.
4784 //
4785 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4786 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4787 //
4788 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4789 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4790 //
4791 // We use (2).
4792 //
4793 // TODO-FIXME:
4794 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4795 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4796 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4797 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4798 //     into a single win32 CreateEvent() handle.
4799 //
4800 // Assumption:
4801 //    Only one parker can exist on an event, which is why we allocate
4802 //    them per-thread. Multiple unparkers can coexist.
4803 //
4804 // _Event transitions in park()
4805 //   -1 => -1 : illegal
4806 //    1 =>  0 : pass - return immediately
4807 //    0 => -1 : block; then set _Event to 0 before returning
4808 //
4809 // _Event transitions in unpark()
4810 //    0 => 1 : just return
4811 //    1 => 1 : just return
4812 //   -1 => either 0 or 1; must signal target thread
4813 //         That is, we can safely transition _Event from -1 to either
4814 //         0 or 1.
4815 //
4816 // _Event serves as a restricted-range semaphore.
4817 //   -1 : thread is blocked, i.e. there is a waiter
4818 //    0 : neutral: thread is running or ready,
4819 //        could have been signaled after a wait started
4820 //    1 : signaled - thread is running or ready
4821 //
4822 // Another possible encoding of _Event would be with
4823 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4824 //
4825 
4826 int os::PlatformEvent::park(jlong Millis) {
4827   // Transitions for _Event:
4828   //   -1 => -1 : illegal
4829   //    1 =>  0 : pass - return immediately
4830   //    0 => -1 : block; then set _Event to 0 before returning
4831 
4832   guarantee(_ParkHandle != NULL , "Invariant");
4833   guarantee(Millis > 0          , "Invariant");
4834 
4835   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4836   // the initial park() operation.
4837   // Consider: use atomic decrement instead of CAS-loop
4838 
4839   int v;
4840   for (;;) {
4841     v = _Event;
4842     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4843   }
4844   guarantee((v == 0) || (v == 1), "invariant");
4845   if (v != 0) return OS_OK;
4846 
4847   // Do this the hard way by blocking ...
4848   // TODO: consider a brief spin here, gated on the success of recent
4849   // spin attempts by this thread.
4850   //
4851   // We decompose long timeouts into series of shorter timed waits.
4852   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4853   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4854   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4855   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4856   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4857   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4858   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4859   // for the already waited time.  This policy does not admit any new outcomes.
4860   // In the future, however, we might want to track the accumulated wait time and
4861   // adjust Millis accordingly if we encounter a spurious wakeup.
4862 
4863   const int MAXTIMEOUT = 0x10000000;
4864   DWORD rv = WAIT_TIMEOUT;
4865   while (_Event < 0 && Millis > 0) {
4866     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4867     if (Millis > MAXTIMEOUT) {
4868       prd = MAXTIMEOUT;
4869     }
4870     rv = ::WaitForSingleObject(_ParkHandle, prd);
4871     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4872     if (rv == WAIT_TIMEOUT) {
4873       Millis -= prd;
4874     }
4875   }
4876   v = _Event;
4877   _Event = 0;
4878   // see comment at end of os::PlatformEvent::park() below:
4879   OrderAccess::fence();
4880   // If we encounter a nearly simultanous timeout expiry and unpark()
4881   // we return OS_OK indicating we awoke via unpark().
4882   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4883   return (v >= 0) ? OS_OK : OS_TIMEOUT;
4884 }
4885 
4886 void os::PlatformEvent::park() {
4887   // Transitions for _Event:
4888   //   -1 => -1 : illegal
4889   //    1 =>  0 : pass - return immediately
4890   //    0 => -1 : block; then set _Event to 0 before returning
4891 
4892   guarantee(_ParkHandle != NULL, "Invariant");
4893   // Invariant: Only the thread associated with the Event/PlatformEvent
4894   // may call park().
4895   // Consider: use atomic decrement instead of CAS-loop
4896   int v;
4897   for (;;) {
4898     v = _Event;
4899     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4900   }
4901   guarantee((v == 0) || (v == 1), "invariant");
4902   if (v != 0) return;
4903 
4904   // Do this the hard way by blocking ...
4905   // TODO: consider a brief spin here, gated on the success of recent
4906   // spin attempts by this thread.
4907   while (_Event < 0) {
4908     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
4909     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
4910   }
4911 
4912   // Usually we'll find _Event == 0 at this point, but as
4913   // an optional optimization we clear it, just in case can
4914   // multiple unpark() operations drove _Event up to 1.
4915   _Event = 0;
4916   OrderAccess::fence();
4917   guarantee(_Event >= 0, "invariant");
4918 }
4919 
4920 void os::PlatformEvent::unpark() {
4921   guarantee(_ParkHandle != NULL, "Invariant");
4922 
4923   // Transitions for _Event:
4924   //    0 => 1 : just return
4925   //    1 => 1 : just return
4926   //   -1 => either 0 or 1; must signal target thread
4927   //         That is, we can safely transition _Event from -1 to either
4928   //         0 or 1.
4929   // See also: "Semaphores in Plan 9" by Mullender & Cox
4930   //
4931   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4932   // that it will take two back-to-back park() calls for the owning
4933   // thread to block. This has the benefit of forcing a spurious return
4934   // from the first park() call after an unpark() call which will help
4935   // shake out uses of park() and unpark() without condition variables.
4936 
4937   if (Atomic::xchg(1, &_Event) >= 0) return;
4938 
4939   ::SetEvent(_ParkHandle);
4940 }
4941 
4942 
4943 // JSR166
4944 // -------------------------------------------------------
4945 
4946 // The Windows implementation of Park is very straightforward: Basic
4947 // operations on Win32 Events turn out to have the right semantics to
4948 // use them directly. We opportunistically resuse the event inherited
4949 // from Monitor.
4950 
4951 void Parker::park(bool isAbsolute, jlong time) {
4952   guarantee(_ParkEvent != NULL, "invariant");
4953   // First, demultiplex/decode time arguments
4954   if (time < 0) { // don't wait
4955     return;
4956   } else if (time == 0 && !isAbsolute) {
4957     time = INFINITE;
4958   } else if (isAbsolute) {
4959     time -= os::javaTimeMillis(); // convert to relative time
4960     if (time <= 0) {  // already elapsed
4961       return;
4962     }
4963   } else { // relative
4964     time /= 1000000;  // Must coarsen from nanos to millis
4965     if (time == 0) {  // Wait for the minimal time unit if zero
4966       time = 1;
4967     }
4968   }
4969 
4970   JavaThread* thread = JavaThread::current();
4971 
4972   // Don't wait if interrupted or already triggered
4973   if (Thread::is_interrupted(thread, false) ||
4974       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4975     ResetEvent(_ParkEvent);
4976     return;
4977   } else {
4978     ThreadBlockInVM tbivm(thread);
4979     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4980     thread->set_suspend_equivalent();
4981 
4982     WaitForSingleObject(_ParkEvent, time);
4983     ResetEvent(_ParkEvent);
4984 
4985     // If externally suspended while waiting, re-suspend
4986     if (thread->handle_special_suspend_equivalent_condition()) {
4987       thread->java_suspend_self();
4988     }
4989   }
4990 }
4991 
4992 void Parker::unpark() {
4993   guarantee(_ParkEvent != NULL, "invariant");
4994   SetEvent(_ParkEvent);
4995 }
4996 
4997 // Run the specified command in a separate process. Return its exit value,
4998 // or -1 on failure (e.g. can't create a new process).
4999 int os::fork_and_exec(char* cmd) {
5000   STARTUPINFO si;
5001   PROCESS_INFORMATION pi;
5002   DWORD exit_code;
5003 
5004   char * cmd_string;
5005   char * cmd_prefix = "cmd /C ";
5006   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5007   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5008   if (cmd_string == NULL) {
5009     return -1;
5010   }
5011   cmd_string[0] = '\0';
5012   strcat(cmd_string, cmd_prefix);
5013   strcat(cmd_string, cmd);
5014 
5015   // now replace all '\n' with '&'
5016   char * substring = cmd_string;
5017   while ((substring = strchr(substring, '\n')) != NULL) {
5018     substring[0] = '&';
5019     substring++;
5020   }
5021   memset(&si, 0, sizeof(si));
5022   si.cb = sizeof(si);
5023   memset(&pi, 0, sizeof(pi));
5024   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5025                             cmd_string,    // command line
5026                             NULL,   // process security attribute
5027                             NULL,   // thread security attribute
5028                             TRUE,   // inherits system handles
5029                             0,      // no creation flags
5030                             NULL,   // use parent's environment block
5031                             NULL,   // use parent's starting directory
5032                             &si,    // (in) startup information
5033                             &pi);   // (out) process information
5034 
5035   if (rslt) {
5036     // Wait until child process exits.
5037     WaitForSingleObject(pi.hProcess, INFINITE);
5038 
5039     GetExitCodeProcess(pi.hProcess, &exit_code);
5040 
5041     // Close process and thread handles.
5042     CloseHandle(pi.hProcess);
5043     CloseHandle(pi.hThread);
5044   } else {
5045     exit_code = -1;
5046   }
5047 
5048   FREE_C_HEAP_ARRAY(char, cmd_string);
5049   return (int)exit_code;
5050 }
5051 
5052 bool os::find(address addr, outputStream* st) {
5053   int offset = -1;
5054   bool result = false;
5055   char buf[256];
5056   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5057     st->print(PTR_FORMAT " ", addr);
5058     if (strlen(buf) < sizeof(buf) - 1) {
5059       char* p = strrchr(buf, '\\');
5060       if (p) {
5061         st->print("%s", p + 1);
5062       } else {
5063         st->print("%s", buf);
5064       }
5065     } else {
5066         // The library name is probably truncated. Let's omit the library name.
5067         // See also JDK-8147512.
5068     }
5069     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5070       st->print("::%s + 0x%x", buf, offset);
5071     }
5072     st->cr();
5073     result = true;
5074   }
5075   return result;
5076 }
5077 
5078 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5079   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5080 
5081   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5082     JavaThread* thread = JavaThread::current();
5083     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5084     address addr = (address) exceptionRecord->ExceptionInformation[1];
5085 
5086     if (os::is_memory_serialize_page(thread, addr)) {
5087       return EXCEPTION_CONTINUE_EXECUTION;
5088     }
5089   }
5090 
5091   return EXCEPTION_CONTINUE_SEARCH;
5092 }
5093 
5094 // We don't build a headless jre for Windows
5095 bool os::is_headless_jre() { return false; }
5096 
5097 static jint initSock() {
5098   WSADATA wsadata;
5099 
5100   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5101     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5102                 ::GetLastError());
5103     return JNI_ERR;
5104   }
5105   return JNI_OK;
5106 }
5107 
5108 struct hostent* os::get_host_by_name(char* name) {
5109   return (struct hostent*)gethostbyname(name);
5110 }
5111 
5112 int os::socket_close(int fd) {
5113   return ::closesocket(fd);
5114 }
5115 
5116 int os::socket(int domain, int type, int protocol) {
5117   return ::socket(domain, type, protocol);
5118 }
5119 
5120 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5121   return ::connect(fd, him, len);
5122 }
5123 
5124 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5125   return ::recv(fd, buf, (int)nBytes, flags);
5126 }
5127 
5128 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5129   return ::send(fd, buf, (int)nBytes, flags);
5130 }
5131 
5132 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5133   return ::send(fd, buf, (int)nBytes, flags);
5134 }
5135 
5136 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5137 #if defined(IA32)
5138   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5139 #elif defined (AMD64)
5140   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5141 #endif
5142 
5143 // returns true if thread could be suspended,
5144 // false otherwise
5145 static bool do_suspend(HANDLE* h) {
5146   if (h != NULL) {
5147     if (SuspendThread(*h) != ~0) {
5148       return true;
5149     }
5150   }
5151   return false;
5152 }
5153 
5154 // resume the thread
5155 // calling resume on an active thread is a no-op
5156 static void do_resume(HANDLE* h) {
5157   if (h != NULL) {
5158     ResumeThread(*h);
5159   }
5160 }
5161 
5162 // retrieve a suspend/resume context capable handle
5163 // from the tid. Caller validates handle return value.
5164 void get_thread_handle_for_extended_context(HANDLE* h,
5165                                             OSThread::thread_id_t tid) {
5166   if (h != NULL) {
5167     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5168   }
5169 }
5170 
5171 // Thread sampling implementation
5172 //
5173 void os::SuspendedThreadTask::internal_do_task() {
5174   CONTEXT    ctxt;
5175   HANDLE     h = NULL;
5176 
5177   // get context capable handle for thread
5178   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5179 
5180   // sanity
5181   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5182     return;
5183   }
5184 
5185   // suspend the thread
5186   if (do_suspend(&h)) {
5187     ctxt.ContextFlags = sampling_context_flags;
5188     // get thread context
5189     GetThreadContext(h, &ctxt);
5190     SuspendedThreadTaskContext context(_thread, &ctxt);
5191     // pass context to Thread Sampling impl
5192     do_task(context);
5193     // resume thread
5194     do_resume(&h);
5195   }
5196 
5197   // close handle
5198   CloseHandle(h);
5199 }
5200 
5201 bool os::start_debugging(char *buf, int buflen) {
5202   int len = (int)strlen(buf);
5203   char *p = &buf[len];
5204 
5205   jio_snprintf(p, buflen-len,
5206              "\n\n"
5207              "Do you want to debug the problem?\n\n"
5208              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5209              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5210              "Otherwise, select 'No' to abort...",
5211              os::current_process_id(), os::current_thread_id());
5212 
5213   bool yes = os::message_box("Unexpected Error", buf);
5214 
5215   if (yes) {
5216     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5217     // exception. If VM is running inside a debugger, the debugger will
5218     // catch the exception. Otherwise, the breakpoint exception will reach
5219     // the default windows exception handler, which can spawn a debugger and
5220     // automatically attach to the dying VM.
5221     os::breakpoint();
5222     yes = false;
5223   }
5224   return yes;
5225 }
5226 
5227 void* os::get_default_process_handle() {
5228   return (void*)GetModuleHandle(NULL);
5229 }
5230 
5231 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5232 // which is used to find statically linked in agents.
5233 // Additionally for windows, takes into account __stdcall names.
5234 // Parameters:
5235 //            sym_name: Symbol in library we are looking for
5236 //            lib_name: Name of library to look in, NULL for shared libs.
5237 //            is_absolute_path == true if lib_name is absolute path to agent
5238 //                                     such as "C:/a/b/L.dll"
5239 //            == false if only the base name of the library is passed in
5240 //               such as "L"
5241 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5242                                     bool is_absolute_path) {
5243   char *agent_entry_name;
5244   size_t len;
5245   size_t name_len;
5246   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5247   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5248   const char *start;
5249 
5250   if (lib_name != NULL) {
5251     len = name_len = strlen(lib_name);
5252     if (is_absolute_path) {
5253       // Need to strip path, prefix and suffix
5254       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5255         lib_name = ++start;
5256       } else {
5257         // Need to check for drive prefix
5258         if ((start = strchr(lib_name, ':')) != NULL) {
5259           lib_name = ++start;
5260         }
5261       }
5262       if (len <= (prefix_len + suffix_len)) {
5263         return NULL;
5264       }
5265       lib_name += prefix_len;
5266       name_len = strlen(lib_name) - suffix_len;
5267     }
5268   }
5269   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5270   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5271   if (agent_entry_name == NULL) {
5272     return NULL;
5273   }
5274   if (lib_name != NULL) {
5275     const char *p = strrchr(sym_name, '@');
5276     if (p != NULL && p != sym_name) {
5277       // sym_name == _Agent_OnLoad@XX
5278       strncpy(agent_entry_name, sym_name, (p - sym_name));
5279       agent_entry_name[(p-sym_name)] = '\0';
5280       // agent_entry_name == _Agent_OnLoad
5281       strcat(agent_entry_name, "_");
5282       strncat(agent_entry_name, lib_name, name_len);
5283       strcat(agent_entry_name, p);
5284       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5285     } else {
5286       strcpy(agent_entry_name, sym_name);
5287       strcat(agent_entry_name, "_");
5288       strncat(agent_entry_name, lib_name, name_len);
5289     }
5290   } else {
5291     strcpy(agent_entry_name, sym_name);
5292   }
5293   return agent_entry_name;
5294 }
5295 
5296 #ifndef PRODUCT
5297 
5298 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5299 // contiguous memory block at a particular address.
5300 // The test first tries to find a good approximate address to allocate at by using the same
5301 // method to allocate some memory at any address. The test then tries to allocate memory in
5302 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5303 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5304 // the previously allocated memory is available for allocation. The only actual failure
5305 // that is reported is when the test tries to allocate at a particular location but gets a
5306 // different valid one. A NULL return value at this point is not considered an error but may
5307 // be legitimate.
5308 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5309 void TestReserveMemorySpecial_test() {
5310   if (!UseLargePages) {
5311     if (VerboseInternalVMTests) {
5312       tty->print("Skipping test because large pages are disabled");
5313     }
5314     return;
5315   }
5316   // save current value of globals
5317   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5318   bool old_use_numa_interleaving = UseNUMAInterleaving;
5319 
5320   // set globals to make sure we hit the correct code path
5321   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5322 
5323   // do an allocation at an address selected by the OS to get a good one.
5324   const size_t large_allocation_size = os::large_page_size() * 4;
5325   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5326   if (result == NULL) {
5327     if (VerboseInternalVMTests) {
5328       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5329                           large_allocation_size);
5330     }
5331   } else {
5332     os::release_memory_special(result, large_allocation_size);
5333 
5334     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5335     // we managed to get it once.
5336     const size_t expected_allocation_size = os::large_page_size();
5337     char* expected_location = result + os::large_page_size();
5338     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5339     if (actual_location == NULL) {
5340       if (VerboseInternalVMTests) {
5341         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5342                             expected_location, large_allocation_size);
5343       }
5344     } else {
5345       // release memory
5346       os::release_memory_special(actual_location, expected_allocation_size);
5347       // only now check, after releasing any memory to avoid any leaks.
5348       assert(actual_location == expected_location,
5349              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5350              expected_location, expected_allocation_size, actual_location);
5351     }
5352   }
5353 
5354   // restore globals
5355   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5356   UseNUMAInterleaving = old_use_numa_interleaving;
5357 }
5358 #endif // PRODUCT
5359 
5360 /*
5361   All the defined signal names for Windows.
5362 
5363   NOTE that not all of these names are accepted by FindSignal!
5364 
5365   For various reasons some of these may be rejected at runtime.
5366 
5367   Here are the names currently accepted by a user of sun.misc.Signal with
5368   1.4.1 (ignoring potential interaction with use of chaining, etc):
5369 
5370      (LIST TBD)
5371 
5372 */
5373 int os::get_signal_number(const char* name) {
5374   static const struct {
5375     char* name;
5376     int   number;
5377   } siglabels [] =
5378     // derived from version 6.0 VC98/include/signal.h
5379   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5380   "FPE",        SIGFPE,         // floating point exception
5381   "SEGV",       SIGSEGV,        // segment violation
5382   "INT",        SIGINT,         // interrupt
5383   "TERM",       SIGTERM,        // software term signal from kill
5384   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5385   "ILL",        SIGILL};        // illegal instruction
5386   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5387     if (strcmp(name, siglabels[i].name) == 0) {
5388       return siglabels[i].number;
5389     }
5390   }
5391   return -1;
5392 }
5393 
5394 // Fast current thread access
5395 
5396 int os::win32::_thread_ptr_offset = 0;
5397 
5398 static void call_wrapper_dummy() {}
5399 
5400 // We need to call the os_exception_wrapper once so that it sets
5401 // up the offset from FS of the thread pointer.
5402 void os::win32::initialize_thread_ptr_offset() {
5403   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5404                            NULL, NULL, NULL, NULL);
5405 }