1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "interpreter/bytecode.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/fieldStreams.hpp"
  43 #include "oops/verifyOopClosure.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.hpp"
  53 #include "runtime/threadSMR.hpp"
  54 #include "runtime/vframe.hpp"
  55 #include "runtime/vframeArray.hpp"
  56 #include "runtime/vframe_hp.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 
  60 #if INCLUDE_JVMCI
  61 #include "jvmci/jvmciRuntime.hpp"
  62 #include "jvmci/jvmciJavaClasses.hpp"
  63 #endif
  64 
  65 
  66 bool DeoptimizationMarker::_is_active = false;
  67 
  68 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  69                                          int  caller_adjustment,
  70                                          int  caller_actual_parameters,
  71                                          int  number_of_frames,
  72                                          intptr_t* frame_sizes,
  73                                          address* frame_pcs,
  74                                          BasicType return_type,
  75                                          int exec_mode) {
  76   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  77   _caller_adjustment         = caller_adjustment;
  78   _caller_actual_parameters  = caller_actual_parameters;
  79   _number_of_frames          = number_of_frames;
  80   _frame_sizes               = frame_sizes;
  81   _frame_pcs                 = frame_pcs;
  82   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  83   _return_type               = return_type;
  84   _initial_info              = 0;
  85   // PD (x86 only)
  86   _counter_temp              = 0;
  87   _unpack_kind               = exec_mode;
  88   _sender_sp_temp            = 0;
  89 
  90   _total_frame_sizes         = size_of_frames();
  91   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  92 }
  93 
  94 
  95 Deoptimization::UnrollBlock::~UnrollBlock() {
  96   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  98   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  99 }
 100 
 101 
 102 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 103   assert(register_number < RegisterMap::reg_count, "checking register number");
 104   return &_register_block[register_number * 2];
 105 }
 106 
 107 
 108 
 109 int Deoptimization::UnrollBlock::size_of_frames() const {
 110   // Acount first for the adjustment of the initial frame
 111   int result = _caller_adjustment;
 112   for (int index = 0; index < number_of_frames(); index++) {
 113     result += frame_sizes()[index];
 114   }
 115   return result;
 116 }
 117 
 118 
 119 void Deoptimization::UnrollBlock::print() {
 120   ttyLocker ttyl;
 121   tty->print_cr("UnrollBlock");
 122   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 123   tty->print(   "  frame_sizes: ");
 124   for (int index = 0; index < number_of_frames(); index++) {
 125     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 126   }
 127   tty->cr();
 128 }
 129 
 130 
 131 // In order to make fetch_unroll_info work properly with escape
 132 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 133 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 134 // of previously eliminated objects occurs in realloc_objects, which is
 135 // called from the method fetch_unroll_info_helper below.
 136 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 137   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 138   // but makes the entry a little slower. There is however a little dance we have to
 139   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 140 
 141   // fetch_unroll_info() is called at the beginning of the deoptimization
 142   // handler. Note this fact before we start generating temporary frames
 143   // that can confuse an asynchronous stack walker. This counter is
 144   // decremented at the end of unpack_frames().
 145   if (TraceDeoptimization) {
 146     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 147   }
 148   thread->inc_in_deopt_handler();
 149 
 150   return fetch_unroll_info_helper(thread, exec_mode);
 151 JRT_END
 152 
 153 
 154 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 155 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 156 
 157   // Note: there is a safepoint safety issue here. No matter whether we enter
 158   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 159   // the vframeArray is created.
 160   //
 161 
 162   // Allocate our special deoptimization ResourceMark
 163   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 164   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 165   thread->set_deopt_mark(dmark);
 166 
 167   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 168   RegisterMap map(thread, true);
 169   RegisterMap dummy_map(thread, false);
 170   // Now get the deoptee with a valid map
 171   frame deoptee = stub_frame.sender(&map);
 172   // Set the deoptee nmethod
 173   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 174   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 175   thread->set_deopt_compiled_method(cm);
 176 
 177   if (VerifyStack) {
 178     thread->validate_frame_layout();
 179   }
 180 
 181   // Create a growable array of VFrames where each VFrame represents an inlined
 182   // Java frame.  This storage is allocated with the usual system arena.
 183   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 184   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 185   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 186   while (!vf->is_top()) {
 187     assert(vf->is_compiled_frame(), "Wrong frame type");
 188     chunk->push(compiledVFrame::cast(vf));
 189     vf = vf->sender();
 190   }
 191   assert(vf->is_compiled_frame(), "Wrong frame type");
 192   chunk->push(compiledVFrame::cast(vf));
 193 
 194   bool realloc_failures = false;
 195 
 196 #if COMPILER2_OR_JVMCI
 197   // Reallocate the non-escaping objects and restore their fields. Then
 198   // relock objects if synchronization on them was eliminated.
 199 #ifndef INCLUDE_JVMCI
 200   if (DoEscapeAnalysis || EliminateNestedLocks) {
 201     if (EliminateAllocations) {
 202 #endif // INCLUDE_JVMCI
 203       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 204       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 205 
 206       // The flag return_oop() indicates call sites which return oop
 207       // in compiled code. Such sites include java method calls,
 208       // runtime calls (for example, used to allocate new objects/arrays
 209       // on slow code path) and any other calls generated in compiled code.
 210       // It is not guaranteed that we can get such information here only
 211       // by analyzing bytecode in deoptimized frames. This is why this flag
 212       // is set during method compilation (see Compile::Process_OopMap_Node()).
 213       // If the previous frame was popped or if we are dispatching an exception,
 214       // we don't have an oop result.
 215       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 216       Handle return_value;
 217       if (save_oop_result) {
 218         // Reallocation may trigger GC. If deoptimization happened on return from
 219         // call which returns oop we need to save it since it is not in oopmap.
 220         oop result = deoptee.saved_oop_result(&map);
 221         assert(oopDesc::is_oop_or_null(result), "must be oop");
 222         return_value = Handle(thread, result);
 223         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 224         if (TraceDeoptimization) {
 225           ttyLocker ttyl;
 226           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 227         }
 228       }
 229       if (objects != NULL) {
 230         JRT_BLOCK
 231           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 232         JRT_END
 233         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 234         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 235 #ifndef PRODUCT
 236         if (TraceDeoptimization) {
 237           ttyLocker ttyl;
 238           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 239           print_objects(objects, realloc_failures);
 240         }
 241 #endif
 242       }
 243       if (save_oop_result) {
 244         // Restore result.
 245         deoptee.set_saved_oop_result(&map, return_value());
 246       }
 247 #ifndef INCLUDE_JVMCI
 248     }
 249     if (EliminateLocks) {
 250 #endif // INCLUDE_JVMCI
 251 #ifndef PRODUCT
 252       bool first = true;
 253 #endif
 254       for (int i = 0; i < chunk->length(); i++) {
 255         compiledVFrame* cvf = chunk->at(i);
 256         assert (cvf->scope() != NULL,"expect only compiled java frames");
 257         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 258         if (monitors->is_nonempty()) {
 259           relock_objects(monitors, thread, realloc_failures);
 260 #ifndef PRODUCT
 261           if (PrintDeoptimizationDetails) {
 262             ttyLocker ttyl;
 263             for (int j = 0; j < monitors->length(); j++) {
 264               MonitorInfo* mi = monitors->at(j);
 265               if (mi->eliminated()) {
 266                 if (first) {
 267                   first = false;
 268                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 269                 }
 270                 if (mi->owner_is_scalar_replaced()) {
 271                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 272                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 273                 } else {
 274                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 275                 }
 276               }
 277             }
 278           }
 279 #endif // !PRODUCT
 280         }
 281       }
 282 #ifndef INCLUDE_JVMCI
 283     }
 284   }
 285 #endif // INCLUDE_JVMCI
 286 #endif // COMPILER2_OR_JVMCI
 287 
 288   ScopeDesc* trap_scope = chunk->at(0)->scope();
 289   Handle exceptionObject;
 290   if (trap_scope->rethrow_exception()) {
 291     if (PrintDeoptimizationDetails) {
 292       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 293     }
 294     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 295     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 296     ScopeValue* topOfStack = expressions->top();
 297     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 298     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 299   }
 300 
 301   // Ensure that no safepoint is taken after pointers have been stored
 302   // in fields of rematerialized objects.  If a safepoint occurs from here on
 303   // out the java state residing in the vframeArray will be missed.
 304   NoSafepointVerifier no_safepoint;
 305 
 306   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 307 #if COMPILER2_OR_JVMCI
 308   if (realloc_failures) {
 309     pop_frames_failed_reallocs(thread, array);
 310   }
 311 #endif
 312 
 313   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 314   thread->set_vframe_array_head(array);
 315 
 316   // Now that the vframeArray has been created if we have any deferred local writes
 317   // added by jvmti then we can free up that structure as the data is now in the
 318   // vframeArray
 319 
 320   if (thread->deferred_locals() != NULL) {
 321     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 322     int i = 0;
 323     do {
 324       // Because of inlining we could have multiple vframes for a single frame
 325       // and several of the vframes could have deferred writes. Find them all.
 326       if (list->at(i)->id() == array->original().id()) {
 327         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 328         list->remove_at(i);
 329         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 330         delete dlv;
 331       } else {
 332         i++;
 333       }
 334     } while ( i < list->length() );
 335     if (list->length() == 0) {
 336       thread->set_deferred_locals(NULL);
 337       // free the list and elements back to C heap.
 338       delete list;
 339     }
 340 
 341   }
 342 
 343   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 344   CodeBlob* cb = stub_frame.cb();
 345   // Verify we have the right vframeArray
 346   assert(cb->frame_size() >= 0, "Unexpected frame size");
 347   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 348 
 349   // If the deopt call site is a MethodHandle invoke call site we have
 350   // to adjust the unpack_sp.
 351   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 352   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 353     unpack_sp = deoptee.unextended_sp();
 354 
 355 #ifdef ASSERT
 356   assert(cb->is_deoptimization_stub() ||
 357          cb->is_uncommon_trap_stub() ||
 358          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 359          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 360          "unexpected code blob: %s", cb->name());
 361 #endif
 362 
 363   // This is a guarantee instead of an assert because if vframe doesn't match
 364   // we will unpack the wrong deoptimized frame and wind up in strange places
 365   // where it will be very difficult to figure out what went wrong. Better
 366   // to die an early death here than some very obscure death later when the
 367   // trail is cold.
 368   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 369   // in that it will fail to detect a problem when there is one. This needs
 370   // more work in tiger timeframe.
 371   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 372 
 373   int number_of_frames = array->frames();
 374 
 375   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 376   // virtual activation, which is the reverse of the elements in the vframes array.
 377   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 378   // +1 because we always have an interpreter return address for the final slot.
 379   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 380   int popframe_extra_args = 0;
 381   // Create an interpreter return address for the stub to use as its return
 382   // address so the skeletal frames are perfectly walkable
 383   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 384 
 385   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 386   // activation be put back on the expression stack of the caller for reexecution
 387   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 388     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 389   }
 390 
 391   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 392   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 393   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 394   //
 395   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 396   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 397 
 398   // It's possible that the number of parameters at the call site is
 399   // different than number of arguments in the callee when method
 400   // handles are used.  If the caller is interpreted get the real
 401   // value so that the proper amount of space can be added to it's
 402   // frame.
 403   bool caller_was_method_handle = false;
 404   if (deopt_sender.is_interpreted_frame()) {
 405     methodHandle method = deopt_sender.interpreter_frame_method();
 406     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 407     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 408       // Method handle invokes may involve fairly arbitrary chains of
 409       // calls so it's impossible to know how much actual space the
 410       // caller has for locals.
 411       caller_was_method_handle = true;
 412     }
 413   }
 414 
 415   //
 416   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 417   // frame_sizes/frame_pcs[1] next oldest frame (int)
 418   // frame_sizes/frame_pcs[n] youngest frame (int)
 419   //
 420   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 421   // owns the space for the return address to it's caller).  Confusing ain't it.
 422   //
 423   // The vframe array can address vframes with indices running from
 424   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 425   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 426   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 427   // so things look a little strange in this loop.
 428   //
 429   int callee_parameters = 0;
 430   int callee_locals = 0;
 431   for (int index = 0; index < array->frames(); index++ ) {
 432     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 433     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 434     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 435     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 436                                                                                                     callee_locals,
 437                                                                                                     index == 0,
 438                                                                                                     popframe_extra_args);
 439     // This pc doesn't have to be perfect just good enough to identify the frame
 440     // as interpreted so the skeleton frame will be walkable
 441     // The correct pc will be set when the skeleton frame is completely filled out
 442     // The final pc we store in the loop is wrong and will be overwritten below
 443     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 444 
 445     callee_parameters = array->element(index)->method()->size_of_parameters();
 446     callee_locals = array->element(index)->method()->max_locals();
 447     popframe_extra_args = 0;
 448   }
 449 
 450   // Compute whether the root vframe returns a float or double value.
 451   BasicType return_type;
 452   {
 453     methodHandle method(thread, array->element(0)->method());
 454     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 455     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 456   }
 457 
 458   // Compute information for handling adapters and adjusting the frame size of the caller.
 459   int caller_adjustment = 0;
 460 
 461   // Compute the amount the oldest interpreter frame will have to adjust
 462   // its caller's stack by. If the caller is a compiled frame then
 463   // we pretend that the callee has no parameters so that the
 464   // extension counts for the full amount of locals and not just
 465   // locals-parms. This is because without a c2i adapter the parm
 466   // area as created by the compiled frame will not be usable by
 467   // the interpreter. (Depending on the calling convention there
 468   // may not even be enough space).
 469 
 470   // QQQ I'd rather see this pushed down into last_frame_adjust
 471   // and have it take the sender (aka caller).
 472 
 473   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 474     caller_adjustment = last_frame_adjust(0, callee_locals);
 475   } else if (callee_locals > callee_parameters) {
 476     // The caller frame may need extending to accommodate
 477     // non-parameter locals of the first unpacked interpreted frame.
 478     // Compute that adjustment.
 479     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 480   }
 481 
 482   // If the sender is deoptimized the we must retrieve the address of the handler
 483   // since the frame will "magically" show the original pc before the deopt
 484   // and we'd undo the deopt.
 485 
 486   frame_pcs[0] = deopt_sender.raw_pc();
 487 
 488   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 489 
 490 #ifdef INCLUDE_JVMCI
 491   if (exceptionObject() != NULL) {
 492     thread->set_exception_oop(exceptionObject());
 493     exec_mode = Unpack_exception;
 494   }
 495 #endif
 496 
 497   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 498     assert(thread->has_pending_exception(), "should have thrown OOME");
 499     thread->set_exception_oop(thread->pending_exception());
 500     thread->clear_pending_exception();
 501     exec_mode = Unpack_exception;
 502   }
 503 
 504 #if INCLUDE_JVMCI
 505   if (thread->frames_to_pop_failed_realloc() > 0) {
 506     thread->set_pending_monitorenter(false);
 507   }
 508 #endif
 509 
 510   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 511                                       caller_adjustment * BytesPerWord,
 512                                       caller_was_method_handle ? 0 : callee_parameters,
 513                                       number_of_frames,
 514                                       frame_sizes,
 515                                       frame_pcs,
 516                                       return_type,
 517                                       exec_mode);
 518   // On some platforms, we need a way to pass some platform dependent
 519   // information to the unpacking code so the skeletal frames come out
 520   // correct (initial fp value, unextended sp, ...)
 521   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 522 
 523   if (array->frames() > 1) {
 524     if (VerifyStack && TraceDeoptimization) {
 525       ttyLocker ttyl;
 526       tty->print_cr("Deoptimizing method containing inlining");
 527     }
 528   }
 529 
 530   array->set_unroll_block(info);
 531   return info;
 532 }
 533 
 534 // Called to cleanup deoptimization data structures in normal case
 535 // after unpacking to stack and when stack overflow error occurs
 536 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 537                                         vframeArray *array) {
 538 
 539   // Get array if coming from exception
 540   if (array == NULL) {
 541     array = thread->vframe_array_head();
 542   }
 543   thread->set_vframe_array_head(NULL);
 544 
 545   // Free the previous UnrollBlock
 546   vframeArray* old_array = thread->vframe_array_last();
 547   thread->set_vframe_array_last(array);
 548 
 549   if (old_array != NULL) {
 550     UnrollBlock* old_info = old_array->unroll_block();
 551     old_array->set_unroll_block(NULL);
 552     delete old_info;
 553     delete old_array;
 554   }
 555 
 556   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 557   // inside the vframeArray (StackValueCollections)
 558 
 559   delete thread->deopt_mark();
 560   thread->set_deopt_mark(NULL);
 561   thread->set_deopt_compiled_method(NULL);
 562 
 563 
 564   if (JvmtiExport::can_pop_frame()) {
 565 #ifndef CC_INTERP
 566     // Regardless of whether we entered this routine with the pending
 567     // popframe condition bit set, we should always clear it now
 568     thread->clear_popframe_condition();
 569 #else
 570     // C++ interpreter will clear has_pending_popframe when it enters
 571     // with method_resume. For deopt_resume2 we clear it now.
 572     if (thread->popframe_forcing_deopt_reexecution())
 573         thread->clear_popframe_condition();
 574 #endif /* CC_INTERP */
 575   }
 576 
 577   // unpack_frames() is called at the end of the deoptimization handler
 578   // and (in C2) at the end of the uncommon trap handler. Note this fact
 579   // so that an asynchronous stack walker can work again. This counter is
 580   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 581   // the beginning of uncommon_trap().
 582   thread->dec_in_deopt_handler();
 583 }
 584 
 585 // Moved from cpu directories because none of the cpus has callee save values.
 586 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 587 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 588 
 589   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 590   // the days we had adapter frames. When we deoptimize a situation where a
 591   // compiled caller calls a compiled caller will have registers it expects
 592   // to survive the call to the callee. If we deoptimize the callee the only
 593   // way we can restore these registers is to have the oldest interpreter
 594   // frame that we create restore these values. That is what this routine
 595   // will accomplish.
 596 
 597   // At the moment we have modified c2 to not have any callee save registers
 598   // so this problem does not exist and this routine is just a place holder.
 599 
 600   assert(f->is_interpreted_frame(), "must be interpreted");
 601 }
 602 
 603 // Return BasicType of value being returned
 604 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 605 
 606   // We are already active int he special DeoptResourceMark any ResourceObj's we
 607   // allocate will be freed at the end of the routine.
 608 
 609   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 610   // but makes the entry a little slower. There is however a little dance we have to
 611   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 612   ResetNoHandleMark rnhm; // No-op in release/product versions
 613   HandleMark hm;
 614 
 615   frame stub_frame = thread->last_frame();
 616 
 617   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 618   // must point to the vframeArray for the unpack frame.
 619   vframeArray* array = thread->vframe_array_head();
 620 
 621 #ifndef PRODUCT
 622   if (TraceDeoptimization) {
 623     ttyLocker ttyl;
 624     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 625                   p2i(thread), p2i(array), exec_mode);
 626   }
 627 #endif
 628   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 629               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 630 
 631   UnrollBlock* info = array->unroll_block();
 632 
 633   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 634   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 635 
 636   BasicType bt = info->return_type();
 637 
 638   // If we have an exception pending, claim that the return type is an oop
 639   // so the deopt_blob does not overwrite the exception_oop.
 640 
 641   if (exec_mode == Unpack_exception)
 642     bt = T_OBJECT;
 643 
 644   // Cleanup thread deopt data
 645   cleanup_deopt_info(thread, array);
 646 
 647 #ifndef PRODUCT
 648   if (VerifyStack) {
 649     ResourceMark res_mark;
 650 
 651     thread->validate_frame_layout();
 652 
 653     // Verify that the just-unpacked frames match the interpreter's
 654     // notions of expression stack and locals
 655     vframeArray* cur_array = thread->vframe_array_last();
 656     RegisterMap rm(thread, false);
 657     rm.set_include_argument_oops(false);
 658     bool is_top_frame = true;
 659     int callee_size_of_parameters = 0;
 660     int callee_max_locals = 0;
 661     for (int i = 0; i < cur_array->frames(); i++) {
 662       vframeArrayElement* el = cur_array->element(i);
 663       frame* iframe = el->iframe();
 664       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 665 
 666       // Get the oop map for this bci
 667       InterpreterOopMap mask;
 668       int cur_invoke_parameter_size = 0;
 669       bool try_next_mask = false;
 670       int next_mask_expression_stack_size = -1;
 671       int top_frame_expression_stack_adjustment = 0;
 672       methodHandle mh(thread, iframe->interpreter_frame_method());
 673       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 674       BytecodeStream str(mh);
 675       str.set_start(iframe->interpreter_frame_bci());
 676       int max_bci = mh->code_size();
 677       // Get to the next bytecode if possible
 678       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 679       // Check to see if we can grab the number of outgoing arguments
 680       // at an uncommon trap for an invoke (where the compiler
 681       // generates debug info before the invoke has executed)
 682       Bytecodes::Code cur_code = str.next();
 683       if (cur_code == Bytecodes::_invokevirtual   ||
 684           cur_code == Bytecodes::_invokespecial   ||
 685           cur_code == Bytecodes::_invokestatic    ||
 686           cur_code == Bytecodes::_invokeinterface ||
 687           cur_code == Bytecodes::_invokedynamic) {
 688         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 689         Symbol* signature = invoke.signature();
 690         ArgumentSizeComputer asc(signature);
 691         cur_invoke_parameter_size = asc.size();
 692         if (invoke.has_receiver()) {
 693           // Add in receiver
 694           ++cur_invoke_parameter_size;
 695         }
 696         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 697           callee_size_of_parameters++;
 698         }
 699       }
 700       if (str.bci() < max_bci) {
 701         Bytecodes::Code bc = str.next();
 702         if (bc >= 0) {
 703           // The interpreter oop map generator reports results before
 704           // the current bytecode has executed except in the case of
 705           // calls. It seems to be hard to tell whether the compiler
 706           // has emitted debug information matching the "state before"
 707           // a given bytecode or the state after, so we try both
 708           switch (cur_code) {
 709             case Bytecodes::_invokevirtual:
 710             case Bytecodes::_invokespecial:
 711             case Bytecodes::_invokestatic:
 712             case Bytecodes::_invokeinterface:
 713             case Bytecodes::_invokedynamic:
 714             case Bytecodes::_athrow:
 715               break;
 716             default: {
 717               InterpreterOopMap next_mask;
 718               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 719               next_mask_expression_stack_size = next_mask.expression_stack_size();
 720               // Need to subtract off the size of the result type of
 721               // the bytecode because this is not described in the
 722               // debug info but returned to the interpreter in the TOS
 723               // caching register
 724               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 725               if (bytecode_result_type != T_ILLEGAL) {
 726                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 727               }
 728               assert(top_frame_expression_stack_adjustment >= 0, "");
 729               try_next_mask = true;
 730               break;
 731             }
 732           }
 733         }
 734       }
 735 
 736       // Verify stack depth and oops in frame
 737       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 738       if (!(
 739             /* SPARC */
 740             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 741             /* x86 */
 742             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 743             (try_next_mask &&
 744              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 745                                                                     top_frame_expression_stack_adjustment))) ||
 746             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 747             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 748              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 749             )) {
 750         ttyLocker ttyl;
 751 
 752         // Print out some information that will help us debug the problem
 753         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 754         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 755         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 756                       iframe->interpreter_frame_expression_stack_size());
 757         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 758         tty->print_cr("  try_next_mask = %d", try_next_mask);
 759         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 760         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 761         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 762         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 763         tty->print_cr("  exec_mode = %d", exec_mode);
 764         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 765         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 766         tty->print_cr("  Interpreted frames:");
 767         for (int k = 0; k < cur_array->frames(); k++) {
 768           vframeArrayElement* el = cur_array->element(k);
 769           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 770         }
 771         cur_array->print_on_2(tty);
 772         guarantee(false, "wrong number of expression stack elements during deopt");
 773       }
 774       VerifyOopClosure verify;
 775       iframe->oops_interpreted_do(&verify, &rm, false);
 776       callee_size_of_parameters = mh->size_of_parameters();
 777       callee_max_locals = mh->max_locals();
 778       is_top_frame = false;
 779     }
 780   }
 781 #endif /* !PRODUCT */
 782 
 783 
 784   return bt;
 785 JRT_END
 786 
 787 
 788 int Deoptimization::deoptimize_dependents() {
 789   Threads::deoptimized_wrt_marked_nmethods();
 790   return 0;
 791 }
 792 
 793 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 794   = Deoptimization::Action_reinterpret;
 795 
 796 #if COMPILER2_OR_JVMCI
 797 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 798   Handle pending_exception(THREAD, thread->pending_exception());
 799   const char* exception_file = thread->exception_file();
 800   int exception_line = thread->exception_line();
 801   thread->clear_pending_exception();
 802 
 803   bool failures = false;
 804 
 805   for (int i = 0; i < objects->length(); i++) {
 806     assert(objects->at(i)->is_object(), "invalid debug information");
 807     ObjectValue* sv = (ObjectValue*) objects->at(i);
 808 
 809     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 810     oop obj = NULL;
 811 
 812     if (k->is_instance_klass()) {
 813       InstanceKlass* ik = InstanceKlass::cast(k);
 814       obj = ik->allocate_instance(THREAD);
 815     } else if (k->is_typeArray_klass()) {
 816       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 817       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 818       int len = sv->field_size() / type2size[ak->element_type()];
 819       obj = ak->allocate(len, THREAD);
 820     } else if (k->is_objArray_klass()) {
 821       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 822       obj = ak->allocate(sv->field_size(), THREAD);
 823     }
 824 
 825     if (obj == NULL) {
 826       failures = true;
 827     }
 828 
 829     assert(sv->value().is_null(), "redundant reallocation");
 830     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 831     CLEAR_PENDING_EXCEPTION;
 832     sv->set_value(obj);
 833   }
 834 
 835   if (failures) {
 836     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 837   } else if (pending_exception.not_null()) {
 838     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 839   }
 840 
 841   return failures;
 842 }
 843 
 844 // restore elements of an eliminated type array
 845 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 846   int index = 0;
 847   intptr_t val;
 848 
 849   for (int i = 0; i < sv->field_size(); i++) {
 850     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 851     switch(type) {
 852     case T_LONG: case T_DOUBLE: {
 853       assert(value->type() == T_INT, "Agreement.");
 854       StackValue* low =
 855         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 856 #ifdef _LP64
 857       jlong res = (jlong)low->get_int();
 858 #else
 859 #ifdef SPARC
 860       // For SPARC we have to swap high and low words.
 861       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 862 #else
 863       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 864 #endif //SPARC
 865 #endif
 866       obj->long_at_put(index, res);
 867       break;
 868     }
 869 
 870     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 871     case T_INT: case T_FLOAT: { // 4 bytes.
 872       assert(value->type() == T_INT, "Agreement.");
 873       bool big_value = false;
 874       if (i + 1 < sv->field_size() && type == T_INT) {
 875         if (sv->field_at(i)->is_location()) {
 876           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 877           if (type == Location::dbl || type == Location::lng) {
 878             big_value = true;
 879           }
 880         } else if (sv->field_at(i)->is_constant_int()) {
 881           ScopeValue* next_scope_field = sv->field_at(i + 1);
 882           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 883             big_value = true;
 884           }
 885         }
 886       }
 887 
 888       if (big_value) {
 889         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 890   #ifdef _LP64
 891         jlong res = (jlong)low->get_int();
 892   #else
 893   #ifdef SPARC
 894         // For SPARC we have to swap high and low words.
 895         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 896   #else
 897         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 898   #endif //SPARC
 899   #endif
 900         obj->int_at_put(index, (jint)*((jint*)&res));
 901         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 902       } else {
 903         val = value->get_int();
 904         obj->int_at_put(index, (jint)*((jint*)&val));
 905       }
 906       break;
 907     }
 908 
 909     case T_SHORT:
 910       assert(value->type() == T_INT, "Agreement.");
 911       val = value->get_int();
 912       obj->short_at_put(index, (jshort)*((jint*)&val));
 913       break;
 914 
 915     case T_CHAR:
 916       assert(value->type() == T_INT, "Agreement.");
 917       val = value->get_int();
 918       obj->char_at_put(index, (jchar)*((jint*)&val));
 919       break;
 920 
 921     case T_BYTE:
 922       assert(value->type() == T_INT, "Agreement.");
 923       val = value->get_int();
 924       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 925       break;
 926 
 927     case T_BOOLEAN:
 928       assert(value->type() == T_INT, "Agreement.");
 929       val = value->get_int();
 930       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 931       break;
 932 
 933       default:
 934         ShouldNotReachHere();
 935     }
 936     index++;
 937   }
 938 }
 939 
 940 
 941 // restore fields of an eliminated object array
 942 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 943   for (int i = 0; i < sv->field_size(); i++) {
 944     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 945     assert(value->type() == T_OBJECT, "object element expected");
 946     obj->obj_at_put(i, value->get_obj()());
 947   }
 948 }
 949 
 950 class ReassignedField {
 951 public:
 952   int _offset;
 953   BasicType _type;
 954 public:
 955   ReassignedField() {
 956     _offset = 0;
 957     _type = T_ILLEGAL;
 958   }
 959 };
 960 
 961 int compare(ReassignedField* left, ReassignedField* right) {
 962   return left->_offset - right->_offset;
 963 }
 964 
 965 // Restore fields of an eliminated instance object using the same field order
 966 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 967 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 968   if (klass->superklass() != NULL) {
 969     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 970   }
 971 
 972   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 973   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 974     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 975       ReassignedField field;
 976       field._offset = fs.offset();
 977       field._type = FieldType::basic_type(fs.signature());
 978       fields->append(field);
 979     }
 980   }
 981   fields->sort(compare);
 982   for (int i = 0; i < fields->length(); i++) {
 983     intptr_t val;
 984     ScopeValue* scope_field = sv->field_at(svIndex);
 985     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 986     int offset = fields->at(i)._offset;
 987     BasicType type = fields->at(i)._type;
 988     switch (type) {
 989       case T_OBJECT: case T_ARRAY:
 990         assert(value->type() == T_OBJECT, "Agreement.");
 991         obj->obj_field_put(offset, value->get_obj()());
 992         break;
 993 
 994       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 995       case T_INT: case T_FLOAT: { // 4 bytes.
 996         assert(value->type() == T_INT, "Agreement.");
 997         bool big_value = false;
 998         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 999           if (scope_field->is_location()) {
1000             Location::Type type = ((LocationValue*) scope_field)->location().type();
1001             if (type == Location::dbl || type == Location::lng) {
1002               big_value = true;
1003             }
1004           }
1005           if (scope_field->is_constant_int()) {
1006             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1007             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1008               big_value = true;
1009             }
1010           }
1011         }
1012 
1013         if (big_value) {
1014           i++;
1015           assert(i < fields->length(), "second T_INT field needed");
1016           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1017         } else {
1018           val = value->get_int();
1019           obj->int_field_put(offset, (jint)*((jint*)&val));
1020           break;
1021         }
1022       }
1023         /* no break */
1024 
1025       case T_LONG: case T_DOUBLE: {
1026         assert(value->type() == T_INT, "Agreement.");
1027         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1028 #ifdef _LP64
1029         jlong res = (jlong)low->get_int();
1030 #else
1031 #ifdef SPARC
1032         // For SPARC we have to swap high and low words.
1033         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1034 #else
1035         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1036 #endif //SPARC
1037 #endif
1038         obj->long_field_put(offset, res);
1039         break;
1040       }
1041 
1042       case T_SHORT:
1043         assert(value->type() == T_INT, "Agreement.");
1044         val = value->get_int();
1045         obj->short_field_put(offset, (jshort)*((jint*)&val));
1046         break;
1047 
1048       case T_CHAR:
1049         assert(value->type() == T_INT, "Agreement.");
1050         val = value->get_int();
1051         obj->char_field_put(offset, (jchar)*((jint*)&val));
1052         break;
1053 
1054       case T_BYTE:
1055         assert(value->type() == T_INT, "Agreement.");
1056         val = value->get_int();
1057         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1058         break;
1059 
1060       case T_BOOLEAN:
1061         assert(value->type() == T_INT, "Agreement.");
1062         val = value->get_int();
1063         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1064         break;
1065 
1066       default:
1067         ShouldNotReachHere();
1068     }
1069     svIndex++;
1070   }
1071   return svIndex;
1072 }
1073 
1074 // restore fields of all eliminated objects and arrays
1075 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1076   for (int i = 0; i < objects->length(); i++) {
1077     ObjectValue* sv = (ObjectValue*) objects->at(i);
1078     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1079     Handle obj = sv->value();
1080     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1081     if (PrintDeoptimizationDetails) {
1082       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1083     }
1084     if (obj.is_null()) {
1085       continue;
1086     }
1087 
1088     if (k->is_instance_klass()) {
1089       InstanceKlass* ik = InstanceKlass::cast(k);
1090       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1091     } else if (k->is_typeArray_klass()) {
1092       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1093       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1094     } else if (k->is_objArray_klass()) {
1095       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1096     }
1097   }
1098 }
1099 
1100 
1101 // relock objects for which synchronization was eliminated
1102 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1103   for (int i = 0; i < monitors->length(); i++) {
1104     MonitorInfo* mon_info = monitors->at(i);
1105     if (mon_info->eliminated()) {
1106       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1107       if (!mon_info->owner_is_scalar_replaced()) {
1108         Handle obj(thread, mon_info->owner());
1109         markOop mark = obj->mark();
1110         if (UseBiasedLocking && mark->has_bias_pattern()) {
1111           // New allocated objects may have the mark set to anonymously biased.
1112           // Also the deoptimized method may called methods with synchronization
1113           // where the thread-local object is bias locked to the current thread.
1114           assert(mark->is_biased_anonymously() ||
1115                  mark->biased_locker() == thread, "should be locked to current thread");
1116           // Reset mark word to unbiased prototype.
1117           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1118           obj->set_mark(unbiased_prototype);
1119         }
1120         BasicLock* lock = mon_info->lock();
1121         ObjectSynchronizer::slow_enter(obj, lock, thread);
1122         assert(mon_info->owner()->is_locked(), "object must be locked now");
1123       }
1124     }
1125   }
1126 }
1127 
1128 
1129 #ifndef PRODUCT
1130 // print information about reallocated objects
1131 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1132   fieldDescriptor fd;
1133 
1134   for (int i = 0; i < objects->length(); i++) {
1135     ObjectValue* sv = (ObjectValue*) objects->at(i);
1136     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1137     Handle obj = sv->value();
1138 
1139     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1140     k->print_value();
1141     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1142     if (obj.is_null()) {
1143       tty->print(" allocation failed");
1144     } else {
1145       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1146     }
1147     tty->cr();
1148 
1149     if (Verbose && !obj.is_null()) {
1150       k->oop_print_on(obj(), tty);
1151     }
1152   }
1153 }
1154 #endif
1155 #endif // COMPILER2_OR_JVMCI
1156 
1157 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1158   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1159 
1160 #ifndef PRODUCT
1161   if (PrintDeoptimizationDetails) {
1162     ttyLocker ttyl;
1163     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1164     fr.print_on(tty);
1165     tty->print_cr("     Virtual frames (innermost first):");
1166     for (int index = 0; index < chunk->length(); index++) {
1167       compiledVFrame* vf = chunk->at(index);
1168       tty->print("       %2d - ", index);
1169       vf->print_value();
1170       int bci = chunk->at(index)->raw_bci();
1171       const char* code_name;
1172       if (bci == SynchronizationEntryBCI) {
1173         code_name = "sync entry";
1174       } else {
1175         Bytecodes::Code code = vf->method()->code_at(bci);
1176         code_name = Bytecodes::name(code);
1177       }
1178       tty->print(" - %s", code_name);
1179       tty->print_cr(" @ bci %d ", bci);
1180       if (Verbose) {
1181         vf->print();
1182         tty->cr();
1183       }
1184     }
1185   }
1186 #endif
1187 
1188   // Register map for next frame (used for stack crawl).  We capture
1189   // the state of the deopt'ing frame's caller.  Thus if we need to
1190   // stuff a C2I adapter we can properly fill in the callee-save
1191   // register locations.
1192   frame caller = fr.sender(reg_map);
1193   int frame_size = caller.sp() - fr.sp();
1194 
1195   frame sender = caller;
1196 
1197   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1198   // the vframeArray containing the unpacking information is allocated in the C heap.
1199   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1200   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1201 
1202   // Compare the vframeArray to the collected vframes
1203   assert(array->structural_compare(thread, chunk), "just checking");
1204 
1205 #ifndef PRODUCT
1206   if (PrintDeoptimizationDetails) {
1207     ttyLocker ttyl;
1208     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1209   }
1210 #endif // PRODUCT
1211 
1212   return array;
1213 }
1214 
1215 #if COMPILER2_OR_JVMCI
1216 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1217   // Reallocation of some scalar replaced objects failed. Record
1218   // that we need to pop all the interpreter frames for the
1219   // deoptimized compiled frame.
1220   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1221   thread->set_frames_to_pop_failed_realloc(array->frames());
1222   // Unlock all monitors here otherwise the interpreter will see a
1223   // mix of locked and unlocked monitors (because of failed
1224   // reallocations of synchronized objects) and be confused.
1225   for (int i = 0; i < array->frames(); i++) {
1226     MonitorChunk* monitors = array->element(i)->monitors();
1227     if (monitors != NULL) {
1228       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1229         BasicObjectLock* src = monitors->at(j);
1230         if (src->obj() != NULL) {
1231           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1232         }
1233       }
1234       array->element(i)->free_monitors(thread);
1235 #ifdef ASSERT
1236       array->element(i)->set_removed_monitors();
1237 #endif
1238     }
1239   }
1240 }
1241 #endif
1242 
1243 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1244   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1245   Thread* thread = Thread::current();
1246   for (int i = 0; i < monitors->length(); i++) {
1247     MonitorInfo* mon_info = monitors->at(i);
1248     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1249       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1250     }
1251   }
1252 }
1253 
1254 
1255 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1256   if (!UseBiasedLocking) {
1257     return;
1258   }
1259 
1260   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1261 
1262   // Unfortunately we don't have a RegisterMap available in most of
1263   // the places we want to call this routine so we need to walk the
1264   // stack again to update the register map.
1265   if (map == NULL || !map->update_map()) {
1266     StackFrameStream sfs(thread, true);
1267     bool found = false;
1268     while (!found && !sfs.is_done()) {
1269       frame* cur = sfs.current();
1270       sfs.next();
1271       found = cur->id() == fr.id();
1272     }
1273     assert(found, "frame to be deoptimized not found on target thread's stack");
1274     map = sfs.register_map();
1275   }
1276 
1277   vframe* vf = vframe::new_vframe(&fr, map, thread);
1278   compiledVFrame* cvf = compiledVFrame::cast(vf);
1279   // Revoke monitors' biases in all scopes
1280   while (!cvf->is_top()) {
1281     collect_monitors(cvf, objects_to_revoke);
1282     cvf = compiledVFrame::cast(cvf->sender());
1283   }
1284   collect_monitors(cvf, objects_to_revoke);
1285 
1286   if (SafepointSynchronize::is_at_safepoint()) {
1287     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1288   } else {
1289     BiasedLocking::revoke(objects_to_revoke);
1290   }
1291 }
1292 
1293 
1294 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1295   if (!UseBiasedLocking) {
1296     return;
1297   }
1298 
1299   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1300   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1301   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1302     if (jt->has_last_Java_frame()) {
1303       StackFrameStream sfs(jt, true);
1304       while (!sfs.is_done()) {
1305         frame* cur = sfs.current();
1306         if (cb->contains(cur->pc())) {
1307           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1308           compiledVFrame* cvf = compiledVFrame::cast(vf);
1309           // Revoke monitors' biases in all scopes
1310           while (!cvf->is_top()) {
1311             collect_monitors(cvf, objects_to_revoke);
1312             cvf = compiledVFrame::cast(cvf->sender());
1313           }
1314           collect_monitors(cvf, objects_to_revoke);
1315         }
1316         sfs.next();
1317       }
1318     }
1319   }
1320   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1321 }
1322 
1323 
1324 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1325   assert(fr.can_be_deoptimized(), "checking frame type");
1326 
1327   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1328 
1329   if (LogCompilation && xtty != NULL) {
1330     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1331     assert(cm != NULL, "only compiled methods can deopt");
1332 
1333     ttyLocker ttyl;
1334     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1335     cm->log_identity(xtty);
1336     xtty->end_head();
1337     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1338       xtty->begin_elem("jvms bci='%d'", sd->bci());
1339       xtty->method(sd->method());
1340       xtty->end_elem();
1341       if (sd->is_top())  break;
1342     }
1343     xtty->tail("deoptimized");
1344   }
1345 
1346   // Patch the compiled method so that when execution returns to it we will
1347   // deopt the execution state and return to the interpreter.
1348   fr.deoptimize(thread);
1349 }
1350 
1351 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1352   deoptimize(thread, fr, map, Reason_constraint);
1353 }
1354 
1355 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1356   // Deoptimize only if the frame comes from compile code.
1357   // Do not deoptimize the frame which is already patched
1358   // during the execution of the loops below.
1359   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1360     return;
1361   }
1362   ResourceMark rm;
1363   DeoptimizationMarker dm;
1364   if (UseBiasedLocking) {
1365     revoke_biases_of_monitors(thread, fr, map);
1366   }
1367   deoptimize_single_frame(thread, fr, reason);
1368 
1369 }
1370 
1371 #if INCLUDE_JVMCI
1372 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1373   // there is no exception handler for this pc => deoptimize
1374   cm->make_not_entrant();
1375 
1376   // Use Deoptimization::deoptimize for all of its side-effects:
1377   // revoking biases of monitors, gathering traps statistics, logging...
1378   // it also patches the return pc but we do not care about that
1379   // since we return a continuation to the deopt_blob below.
1380   JavaThread* thread = JavaThread::current();
1381   RegisterMap reg_map(thread, UseBiasedLocking);
1382   frame runtime_frame = thread->last_frame();
1383   frame caller_frame = runtime_frame.sender(&reg_map);
1384   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1385   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1386 
1387   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1388   if (trap_mdo != NULL) {
1389     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1390   }
1391 
1392   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1393 }
1394 #endif
1395 
1396 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1397   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1398          "can only deoptimize other thread at a safepoint");
1399   // Compute frame and register map based on thread and sp.
1400   RegisterMap reg_map(thread, UseBiasedLocking);
1401   frame fr = thread->last_frame();
1402   while (fr.id() != id) {
1403     fr = fr.sender(&reg_map);
1404   }
1405   deoptimize(thread, fr, &reg_map, reason);
1406 }
1407 
1408 
1409 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1410   if (thread == Thread::current()) {
1411     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1412   } else {
1413     VM_DeoptimizeFrame deopt(thread, id, reason);
1414     VMThread::execute(&deopt);
1415   }
1416 }
1417 
1418 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1419   deoptimize_frame(thread, id, Reason_constraint);
1420 }
1421 
1422 // JVMTI PopFrame support
1423 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1424 {
1425   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1426 }
1427 JRT_END
1428 
1429 MethodData*
1430 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1431                                 bool create_if_missing) {
1432   Thread* THREAD = thread;
1433   MethodData* mdo = m()->method_data();
1434   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1435     // Build an MDO.  Ignore errors like OutOfMemory;
1436     // that simply means we won't have an MDO to update.
1437     Method::build_interpreter_method_data(m, THREAD);
1438     if (HAS_PENDING_EXCEPTION) {
1439       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1440       CLEAR_PENDING_EXCEPTION;
1441     }
1442     mdo = m()->method_data();
1443   }
1444   return mdo;
1445 }
1446 
1447 #if COMPILER2_OR_JVMCI
1448 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1449   // in case of an unresolved klass entry, load the class.
1450   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1451     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1452     return;
1453   }
1454 
1455   if (!constant_pool->tag_at(index).is_symbol()) return;
1456 
1457   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1458   Symbol*  symbol  = constant_pool->symbol_at(index);
1459 
1460   // class name?
1461   if (symbol->byte_at(0) != '(') {
1462     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1463     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1464     return;
1465   }
1466 
1467   // then it must be a signature!
1468   ResourceMark rm(THREAD);
1469   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1470     if (ss.is_object()) {
1471       Symbol* class_name = ss.as_symbol(CHECK);
1472       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1473       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1474     }
1475   }
1476 }
1477 
1478 
1479 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1480   EXCEPTION_MARK;
1481   load_class_by_index(constant_pool, index, THREAD);
1482   if (HAS_PENDING_EXCEPTION) {
1483     // Exception happened during classloading. We ignore the exception here, since it
1484     // is going to be rethrown since the current activation is going to be deoptimized and
1485     // the interpreter will re-execute the bytecode.
1486     CLEAR_PENDING_EXCEPTION;
1487     // Class loading called java code which may have caused a stack
1488     // overflow. If the exception was thrown right before the return
1489     // to the runtime the stack is no longer guarded. Reguard the
1490     // stack otherwise if we return to the uncommon trap blob and the
1491     // stack bang causes a stack overflow we crash.
1492     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1493     JavaThread* thread = (JavaThread*)THREAD;
1494     bool guard_pages_enabled = thread->stack_guards_enabled();
1495     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1496     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1497   }
1498 }
1499 
1500 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1501   HandleMark hm;
1502 
1503   // uncommon_trap() is called at the beginning of the uncommon trap
1504   // handler. Note this fact before we start generating temporary frames
1505   // that can confuse an asynchronous stack walker. This counter is
1506   // decremented at the end of unpack_frames().
1507   thread->inc_in_deopt_handler();
1508 
1509   // We need to update the map if we have biased locking.
1510 #if INCLUDE_JVMCI
1511   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1512   RegisterMap reg_map(thread, true);
1513 #else
1514   RegisterMap reg_map(thread, UseBiasedLocking);
1515 #endif
1516   frame stub_frame = thread->last_frame();
1517   frame fr = stub_frame.sender(&reg_map);
1518   // Make sure the calling nmethod is not getting deoptimized and removed
1519   // before we are done with it.
1520   nmethodLocker nl(fr.pc());
1521 
1522   // Log a message
1523   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1524               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1525 
1526   {
1527     ResourceMark rm;
1528 
1529     // Revoke biases of any monitors in the frame to ensure we can migrate them
1530     revoke_biases_of_monitors(thread, fr, &reg_map);
1531 
1532     DeoptReason reason = trap_request_reason(trap_request);
1533     DeoptAction action = trap_request_action(trap_request);
1534 #if INCLUDE_JVMCI
1535     int debug_id = trap_request_debug_id(trap_request);
1536 #endif
1537     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1538 
1539     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1540     compiledVFrame* cvf = compiledVFrame::cast(vf);
1541 
1542     CompiledMethod* nm = cvf->code();
1543 
1544     ScopeDesc*      trap_scope  = cvf->scope();
1545 
1546     if (TraceDeoptimization) {
1547       ttyLocker ttyl;
1548       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1549 #if INCLUDE_JVMCI
1550           , debug_id
1551 #endif
1552           );
1553     }
1554 
1555     methodHandle    trap_method = trap_scope->method();
1556     int             trap_bci    = trap_scope->bci();
1557 #if INCLUDE_JVMCI
1558     oop speculation = thread->pending_failed_speculation();
1559     if (nm->is_compiled_by_jvmci()) {
1560       if (speculation != NULL) {
1561         oop speculation_log = nm->as_nmethod()->speculation_log();
1562         if (speculation_log != NULL) {
1563           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1564             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1565               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1566             }
1567           }
1568           if (TraceDeoptimization) {
1569             tty->print_cr("Saving speculation to speculation log");
1570           }
1571           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1572         } else {
1573           if (TraceDeoptimization) {
1574             tty->print_cr("Speculation present but no speculation log");
1575           }
1576         }
1577         thread->set_pending_failed_speculation(NULL);
1578       } else {
1579         if (TraceDeoptimization) {
1580           tty->print_cr("No speculation");
1581         }
1582       }
1583     } else {
1584       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1585     }
1586 
1587     if (trap_bci == SynchronizationEntryBCI) {
1588       trap_bci = 0;
1589       thread->set_pending_monitorenter(true);
1590     }
1591 
1592     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1593       thread->set_pending_transfer_to_interpreter(true);
1594     }
1595 #endif
1596 
1597     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1598     // Record this event in the histogram.
1599     gather_statistics(reason, action, trap_bc);
1600 
1601     // Ensure that we can record deopt. history:
1602     // Need MDO to record RTM code generation state.
1603     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1604 
1605     methodHandle profiled_method;
1606 #if INCLUDE_JVMCI
1607     if (nm->is_compiled_by_jvmci()) {
1608       profiled_method = nm->method();
1609     } else {
1610       profiled_method = trap_method;
1611     }
1612 #else
1613     profiled_method = trap_method;
1614 #endif
1615 
1616     MethodData* trap_mdo =
1617       get_method_data(thread, profiled_method, create_if_missing);
1618 
1619     // Log a message
1620     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1621                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1622                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1623 
1624     // Print a bunch of diagnostics, if requested.
1625     if (TraceDeoptimization || LogCompilation) {
1626       ResourceMark rm;
1627       ttyLocker ttyl;
1628       char buf[100];
1629       if (xtty != NULL) {
1630         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1631                          os::current_thread_id(),
1632                          format_trap_request(buf, sizeof(buf), trap_request));
1633         nm->log_identity(xtty);
1634       }
1635       Symbol* class_name = NULL;
1636       bool unresolved = false;
1637       if (unloaded_class_index >= 0) {
1638         constantPoolHandle constants (THREAD, trap_method->constants());
1639         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1640           class_name = constants->klass_name_at(unloaded_class_index);
1641           unresolved = true;
1642           if (xtty != NULL)
1643             xtty->print(" unresolved='1'");
1644         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1645           class_name = constants->symbol_at(unloaded_class_index);
1646         }
1647         if (xtty != NULL)
1648           xtty->name(class_name);
1649       }
1650       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1651         // Dump the relevant MDO state.
1652         // This is the deopt count for the current reason, any previous
1653         // reasons or recompiles seen at this point.
1654         int dcnt = trap_mdo->trap_count(reason);
1655         if (dcnt != 0)
1656           xtty->print(" count='%d'", dcnt);
1657         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1658         int dos = (pdata == NULL)? 0: pdata->trap_state();
1659         if (dos != 0) {
1660           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1661           if (trap_state_is_recompiled(dos)) {
1662             int recnt2 = trap_mdo->overflow_recompile_count();
1663             if (recnt2 != 0)
1664               xtty->print(" recompiles2='%d'", recnt2);
1665           }
1666         }
1667       }
1668       if (xtty != NULL) {
1669         xtty->stamp();
1670         xtty->end_head();
1671       }
1672       if (TraceDeoptimization) {  // make noise on the tty
1673         tty->print("Uncommon trap occurred in");
1674         nm->method()->print_short_name(tty);
1675         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1676 #if INCLUDE_JVMCI
1677         if (nm->is_nmethod()) {
1678           char* installed_code_name = nm->as_nmethod()->jvmci_installed_code_name(buf, sizeof(buf));
1679           if (installed_code_name != NULL) {
1680             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1681           }
1682         }
1683 #endif
1684         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1685                    p2i(fr.pc()),
1686                    os::current_thread_id(),
1687                    trap_reason_name(reason),
1688                    trap_action_name(action),
1689                    unloaded_class_index
1690 #if INCLUDE_JVMCI
1691                    , debug_id
1692 #endif
1693                    );
1694         if (class_name != NULL) {
1695           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1696           class_name->print_symbol_on(tty);
1697         }
1698         tty->cr();
1699       }
1700       if (xtty != NULL) {
1701         // Log the precise location of the trap.
1702         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1703           xtty->begin_elem("jvms bci='%d'", sd->bci());
1704           xtty->method(sd->method());
1705           xtty->end_elem();
1706           if (sd->is_top())  break;
1707         }
1708         xtty->tail("uncommon_trap");
1709       }
1710     }
1711     // (End diagnostic printout.)
1712 
1713     // Load class if necessary
1714     if (unloaded_class_index >= 0) {
1715       constantPoolHandle constants(THREAD, trap_method->constants());
1716       load_class_by_index(constants, unloaded_class_index);
1717     }
1718 
1719     // Flush the nmethod if necessary and desirable.
1720     //
1721     // We need to avoid situations where we are re-flushing the nmethod
1722     // because of a hot deoptimization site.  Repeated flushes at the same
1723     // point need to be detected by the compiler and avoided.  If the compiler
1724     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1725     // module must take measures to avoid an infinite cycle of recompilation
1726     // and deoptimization.  There are several such measures:
1727     //
1728     //   1. If a recompilation is ordered a second time at some site X
1729     //   and for the same reason R, the action is adjusted to 'reinterpret',
1730     //   to give the interpreter time to exercise the method more thoroughly.
1731     //   If this happens, the method's overflow_recompile_count is incremented.
1732     //
1733     //   2. If the compiler fails to reduce the deoptimization rate, then
1734     //   the method's overflow_recompile_count will begin to exceed the set
1735     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1736     //   is adjusted to 'make_not_compilable', and the method is abandoned
1737     //   to the interpreter.  This is a performance hit for hot methods,
1738     //   but is better than a disastrous infinite cycle of recompilations.
1739     //   (Actually, only the method containing the site X is abandoned.)
1740     //
1741     //   3. In parallel with the previous measures, if the total number of
1742     //   recompilations of a method exceeds the much larger set limit
1743     //   PerMethodRecompilationCutoff, the method is abandoned.
1744     //   This should only happen if the method is very large and has
1745     //   many "lukewarm" deoptimizations.  The code which enforces this
1746     //   limit is elsewhere (class nmethod, class Method).
1747     //
1748     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1749     // to recompile at each bytecode independently of the per-BCI cutoff.
1750     //
1751     // The decision to update code is up to the compiler, and is encoded
1752     // in the Action_xxx code.  If the compiler requests Action_none
1753     // no trap state is changed, no compiled code is changed, and the
1754     // computation suffers along in the interpreter.
1755     //
1756     // The other action codes specify various tactics for decompilation
1757     // and recompilation.  Action_maybe_recompile is the loosest, and
1758     // allows the compiled code to stay around until enough traps are seen,
1759     // and until the compiler gets around to recompiling the trapping method.
1760     //
1761     // The other actions cause immediate removal of the present code.
1762 
1763     // Traps caused by injected profile shouldn't pollute trap counts.
1764     bool injected_profile_trap = trap_method->has_injected_profile() &&
1765                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1766 
1767     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1768     bool make_not_entrant = false;
1769     bool make_not_compilable = false;
1770     bool reprofile = false;
1771     switch (action) {
1772     case Action_none:
1773       // Keep the old code.
1774       update_trap_state = false;
1775       break;
1776     case Action_maybe_recompile:
1777       // Do not need to invalidate the present code, but we can
1778       // initiate another
1779       // Start compiler without (necessarily) invalidating the nmethod.
1780       // The system will tolerate the old code, but new code should be
1781       // generated when possible.
1782       break;
1783     case Action_reinterpret:
1784       // Go back into the interpreter for a while, and then consider
1785       // recompiling form scratch.
1786       make_not_entrant = true;
1787       // Reset invocation counter for outer most method.
1788       // This will allow the interpreter to exercise the bytecodes
1789       // for a while before recompiling.
1790       // By contrast, Action_make_not_entrant is immediate.
1791       //
1792       // Note that the compiler will track null_check, null_assert,
1793       // range_check, and class_check events and log them as if they
1794       // had been traps taken from compiled code.  This will update
1795       // the MDO trap history so that the next compilation will
1796       // properly detect hot trap sites.
1797       reprofile = true;
1798       break;
1799     case Action_make_not_entrant:
1800       // Request immediate recompilation, and get rid of the old code.
1801       // Make them not entrant, so next time they are called they get
1802       // recompiled.  Unloaded classes are loaded now so recompile before next
1803       // time they are called.  Same for uninitialized.  The interpreter will
1804       // link the missing class, if any.
1805       make_not_entrant = true;
1806       break;
1807     case Action_make_not_compilable:
1808       // Give up on compiling this method at all.
1809       make_not_entrant = true;
1810       make_not_compilable = true;
1811       break;
1812     default:
1813       ShouldNotReachHere();
1814     }
1815 
1816     // Setting +ProfileTraps fixes the following, on all platforms:
1817     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1818     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1819     // recompile relies on a MethodData* to record heroic opt failures.
1820 
1821     // Whether the interpreter is producing MDO data or not, we also need
1822     // to use the MDO to detect hot deoptimization points and control
1823     // aggressive optimization.
1824     bool inc_recompile_count = false;
1825     ProfileData* pdata = NULL;
1826     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1827       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1828       uint this_trap_count = 0;
1829       bool maybe_prior_trap = false;
1830       bool maybe_prior_recompile = false;
1831       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1832 #if INCLUDE_JVMCI
1833                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1834 #endif
1835                                    nm->method(),
1836                                    //outputs:
1837                                    this_trap_count,
1838                                    maybe_prior_trap,
1839                                    maybe_prior_recompile);
1840       // Because the interpreter also counts null, div0, range, and class
1841       // checks, these traps from compiled code are double-counted.
1842       // This is harmless; it just means that the PerXTrapLimit values
1843       // are in effect a little smaller than they look.
1844 
1845       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1846       if (per_bc_reason != Reason_none) {
1847         // Now take action based on the partially known per-BCI history.
1848         if (maybe_prior_trap
1849             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1850           // If there are too many traps at this BCI, force a recompile.
1851           // This will allow the compiler to see the limit overflow, and
1852           // take corrective action, if possible.  The compiler generally
1853           // does not use the exact PerBytecodeTrapLimit value, but instead
1854           // changes its tactics if it sees any traps at all.  This provides
1855           // a little hysteresis, delaying a recompile until a trap happens
1856           // several times.
1857           //
1858           // Actually, since there is only one bit of counter per BCI,
1859           // the possible per-BCI counts are {0,1,(per-method count)}.
1860           // This produces accurate results if in fact there is only
1861           // one hot trap site, but begins to get fuzzy if there are
1862           // many sites.  For example, if there are ten sites each
1863           // trapping two or more times, they each get the blame for
1864           // all of their traps.
1865           make_not_entrant = true;
1866         }
1867 
1868         // Detect repeated recompilation at the same BCI, and enforce a limit.
1869         if (make_not_entrant && maybe_prior_recompile) {
1870           // More than one recompile at this point.
1871           inc_recompile_count = maybe_prior_trap;
1872         }
1873       } else {
1874         // For reasons which are not recorded per-bytecode, we simply
1875         // force recompiles unconditionally.
1876         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1877         make_not_entrant = true;
1878       }
1879 
1880       // Go back to the compiler if there are too many traps in this method.
1881       if (this_trap_count >= per_method_trap_limit(reason)) {
1882         // If there are too many traps in this method, force a recompile.
1883         // This will allow the compiler to see the limit overflow, and
1884         // take corrective action, if possible.
1885         // (This condition is an unlikely backstop only, because the
1886         // PerBytecodeTrapLimit is more likely to take effect first,
1887         // if it is applicable.)
1888         make_not_entrant = true;
1889       }
1890 
1891       // Here's more hysteresis:  If there has been a recompile at
1892       // this trap point already, run the method in the interpreter
1893       // for a while to exercise it more thoroughly.
1894       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1895         reprofile = true;
1896       }
1897     }
1898 
1899     // Take requested actions on the method:
1900 
1901     // Recompile
1902     if (make_not_entrant) {
1903       if (!nm->make_not_entrant()) {
1904         return; // the call did not change nmethod's state
1905       }
1906 
1907       if (pdata != NULL) {
1908         // Record the recompilation event, if any.
1909         int tstate0 = pdata->trap_state();
1910         int tstate1 = trap_state_set_recompiled(tstate0, true);
1911         if (tstate1 != tstate0)
1912           pdata->set_trap_state(tstate1);
1913       }
1914 
1915 #if INCLUDE_RTM_OPT
1916       // Restart collecting RTM locking abort statistic if the method
1917       // is recompiled for a reason other than RTM state change.
1918       // Assume that in new recompiled code the statistic could be different,
1919       // for example, due to different inlining.
1920       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1921           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1922         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1923       }
1924 #endif
1925       // For code aging we count traps separately here, using make_not_entrant()
1926       // as a guard against simultaneous deopts in multiple threads.
1927       if (reason == Reason_tenured && trap_mdo != NULL) {
1928         trap_mdo->inc_tenure_traps();
1929       }
1930     }
1931 
1932     if (inc_recompile_count) {
1933       trap_mdo->inc_overflow_recompile_count();
1934       if ((uint)trap_mdo->overflow_recompile_count() >
1935           (uint)PerBytecodeRecompilationCutoff) {
1936         // Give up on the method containing the bad BCI.
1937         if (trap_method() == nm->method()) {
1938           make_not_compilable = true;
1939         } else {
1940           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1941           // But give grace to the enclosing nm->method().
1942         }
1943       }
1944     }
1945 
1946     // Reprofile
1947     if (reprofile) {
1948       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1949     }
1950 
1951     // Give up compiling
1952     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1953       assert(make_not_entrant, "consistent");
1954       nm->method()->set_not_compilable(CompLevel_full_optimization);
1955     }
1956 
1957   } // Free marked resources
1958 
1959 }
1960 JRT_END
1961 
1962 ProfileData*
1963 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1964                                          int trap_bci,
1965                                          Deoptimization::DeoptReason reason,
1966                                          bool update_total_trap_count,
1967 #if INCLUDE_JVMCI
1968                                          bool is_osr,
1969 #endif
1970                                          Method* compiled_method,
1971                                          //outputs:
1972                                          uint& ret_this_trap_count,
1973                                          bool& ret_maybe_prior_trap,
1974                                          bool& ret_maybe_prior_recompile) {
1975   bool maybe_prior_trap = false;
1976   bool maybe_prior_recompile = false;
1977   uint this_trap_count = 0;
1978   if (update_total_trap_count) {
1979     uint idx = reason;
1980 #if INCLUDE_JVMCI
1981     if (is_osr) {
1982       idx += Reason_LIMIT;
1983     }
1984 #endif
1985     uint prior_trap_count = trap_mdo->trap_count(idx);
1986     this_trap_count  = trap_mdo->inc_trap_count(idx);
1987 
1988     // If the runtime cannot find a place to store trap history,
1989     // it is estimated based on the general condition of the method.
1990     // If the method has ever been recompiled, or has ever incurred
1991     // a trap with the present reason , then this BCI is assumed
1992     // (pessimistically) to be the culprit.
1993     maybe_prior_trap      = (prior_trap_count != 0);
1994     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1995   }
1996   ProfileData* pdata = NULL;
1997 
1998 
1999   // For reasons which are recorded per bytecode, we check per-BCI data.
2000   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2001   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2002   if (per_bc_reason != Reason_none) {
2003     // Find the profile data for this BCI.  If there isn't one,
2004     // try to allocate one from the MDO's set of spares.
2005     // This will let us detect a repeated trap at this point.
2006     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2007 
2008     if (pdata != NULL) {
2009       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2010         if (LogCompilation && xtty != NULL) {
2011           ttyLocker ttyl;
2012           // no more room for speculative traps in this MDO
2013           xtty->elem("speculative_traps_oom");
2014         }
2015       }
2016       // Query the trap state of this profile datum.
2017       int tstate0 = pdata->trap_state();
2018       if (!trap_state_has_reason(tstate0, per_bc_reason))
2019         maybe_prior_trap = false;
2020       if (!trap_state_is_recompiled(tstate0))
2021         maybe_prior_recompile = false;
2022 
2023       // Update the trap state of this profile datum.
2024       int tstate1 = tstate0;
2025       // Record the reason.
2026       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2027       // Store the updated state on the MDO, for next time.
2028       if (tstate1 != tstate0)
2029         pdata->set_trap_state(tstate1);
2030     } else {
2031       if (LogCompilation && xtty != NULL) {
2032         ttyLocker ttyl;
2033         // Missing MDP?  Leave a small complaint in the log.
2034         xtty->elem("missing_mdp bci='%d'", trap_bci);
2035       }
2036     }
2037   }
2038 
2039   // Return results:
2040   ret_this_trap_count = this_trap_count;
2041   ret_maybe_prior_trap = maybe_prior_trap;
2042   ret_maybe_prior_recompile = maybe_prior_recompile;
2043   return pdata;
2044 }
2045 
2046 void
2047 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2048   ResourceMark rm;
2049   // Ignored outputs:
2050   uint ignore_this_trap_count;
2051   bool ignore_maybe_prior_trap;
2052   bool ignore_maybe_prior_recompile;
2053   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2054   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2055   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2056   query_update_method_data(trap_mdo, trap_bci,
2057                            (DeoptReason)reason,
2058                            update_total_counts,
2059 #if INCLUDE_JVMCI
2060                            false,
2061 #endif
2062                            NULL,
2063                            ignore_this_trap_count,
2064                            ignore_maybe_prior_trap,
2065                            ignore_maybe_prior_recompile);
2066 }
2067 
2068 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2069   if (TraceDeoptimization) {
2070     tty->print("Uncommon trap ");
2071   }
2072   // Still in Java no safepoints
2073   {
2074     // This enters VM and may safepoint
2075     uncommon_trap_inner(thread, trap_request);
2076   }
2077   return fetch_unroll_info_helper(thread, exec_mode);
2078 }
2079 
2080 // Local derived constants.
2081 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2082 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2083 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2084 
2085 //---------------------------trap_state_reason---------------------------------
2086 Deoptimization::DeoptReason
2087 Deoptimization::trap_state_reason(int trap_state) {
2088   // This assert provides the link between the width of DataLayout::trap_bits
2089   // and the encoding of "recorded" reasons.  It ensures there are enough
2090   // bits to store all needed reasons in the per-BCI MDO profile.
2091   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2092   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2093   trap_state -= recompile_bit;
2094   if (trap_state == DS_REASON_MASK) {
2095     return Reason_many;
2096   } else {
2097     assert((int)Reason_none == 0, "state=0 => Reason_none");
2098     return (DeoptReason)trap_state;
2099   }
2100 }
2101 //-------------------------trap_state_has_reason-------------------------------
2102 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2103   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2104   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2105   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2106   trap_state -= recompile_bit;
2107   if (trap_state == DS_REASON_MASK) {
2108     return -1;  // true, unspecifically (bottom of state lattice)
2109   } else if (trap_state == reason) {
2110     return 1;   // true, definitely
2111   } else if (trap_state == 0) {
2112     return 0;   // false, definitely (top of state lattice)
2113   } else {
2114     return 0;   // false, definitely
2115   }
2116 }
2117 //-------------------------trap_state_add_reason-------------------------------
2118 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2119   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2120   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2121   trap_state -= recompile_bit;
2122   if (trap_state == DS_REASON_MASK) {
2123     return trap_state + recompile_bit;     // already at state lattice bottom
2124   } else if (trap_state == reason) {
2125     return trap_state + recompile_bit;     // the condition is already true
2126   } else if (trap_state == 0) {
2127     return reason + recompile_bit;          // no condition has yet been true
2128   } else {
2129     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2130   }
2131 }
2132 //-----------------------trap_state_is_recompiled------------------------------
2133 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2134   return (trap_state & DS_RECOMPILE_BIT) != 0;
2135 }
2136 //-----------------------trap_state_set_recompiled-----------------------------
2137 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2138   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2139   else    return trap_state & ~DS_RECOMPILE_BIT;
2140 }
2141 //---------------------------format_trap_state---------------------------------
2142 // This is used for debugging and diagnostics, including LogFile output.
2143 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2144                                               int trap_state) {
2145   assert(buflen > 0, "sanity");
2146   DeoptReason reason      = trap_state_reason(trap_state);
2147   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2148   // Re-encode the state from its decoded components.
2149   int decoded_state = 0;
2150   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2151     decoded_state = trap_state_add_reason(decoded_state, reason);
2152   if (recomp_flag)
2153     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2154   // If the state re-encodes properly, format it symbolically.
2155   // Because this routine is used for debugging and diagnostics,
2156   // be robust even if the state is a strange value.
2157   size_t len;
2158   if (decoded_state != trap_state) {
2159     // Random buggy state that doesn't decode??
2160     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2161   } else {
2162     len = jio_snprintf(buf, buflen, "%s%s",
2163                        trap_reason_name(reason),
2164                        recomp_flag ? " recompiled" : "");
2165   }
2166   return buf;
2167 }
2168 
2169 
2170 //--------------------------------statics--------------------------------------
2171 const char* Deoptimization::_trap_reason_name[] = {
2172   // Note:  Keep this in sync. with enum DeoptReason.
2173   "none",
2174   "null_check",
2175   "null_assert" JVMCI_ONLY("_or_unreached0"),
2176   "range_check",
2177   "class_check",
2178   "array_check",
2179   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2180   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2181   "unloaded",
2182   "uninitialized",
2183   "unreached",
2184   "unhandled",
2185   "constraint",
2186   "div0_check",
2187   "age",
2188   "predicate",
2189   "loop_limit_check",
2190   "speculate_class_check",
2191   "speculate_null_check",
2192   "speculate_null_assert",
2193   "rtm_state_change",
2194   "unstable_if",
2195   "unstable_fused_if",
2196 #if INCLUDE_JVMCI
2197   "aliasing",
2198   "transfer_to_interpreter",
2199   "not_compiled_exception_handler",
2200   "unresolved",
2201   "jsr_mismatch",
2202 #endif
2203   "tenured"
2204 };
2205 const char* Deoptimization::_trap_action_name[] = {
2206   // Note:  Keep this in sync. with enum DeoptAction.
2207   "none",
2208   "maybe_recompile",
2209   "reinterpret",
2210   "make_not_entrant",
2211   "make_not_compilable"
2212 };
2213 
2214 const char* Deoptimization::trap_reason_name(int reason) {
2215   // Check that every reason has a name
2216   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2217 
2218   if (reason == Reason_many)  return "many";
2219   if ((uint)reason < Reason_LIMIT)
2220     return _trap_reason_name[reason];
2221   static char buf[20];
2222   sprintf(buf, "reason%d", reason);
2223   return buf;
2224 }
2225 const char* Deoptimization::trap_action_name(int action) {
2226   // Check that every action has a name
2227   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2228 
2229   if ((uint)action < Action_LIMIT)
2230     return _trap_action_name[action];
2231   static char buf[20];
2232   sprintf(buf, "action%d", action);
2233   return buf;
2234 }
2235 
2236 // This is used for debugging and diagnostics, including LogFile output.
2237 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2238                                                 int trap_request) {
2239   jint unloaded_class_index = trap_request_index(trap_request);
2240   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2241   const char* action = trap_action_name(trap_request_action(trap_request));
2242 #if INCLUDE_JVMCI
2243   int debug_id = trap_request_debug_id(trap_request);
2244 #endif
2245   size_t len;
2246   if (unloaded_class_index < 0) {
2247     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2248                        reason, action
2249 #if INCLUDE_JVMCI
2250                        ,debug_id
2251 #endif
2252                        );
2253   } else {
2254     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2255                        reason, action, unloaded_class_index
2256 #if INCLUDE_JVMCI
2257                        ,debug_id
2258 #endif
2259                        );
2260   }
2261   return buf;
2262 }
2263 
2264 juint Deoptimization::_deoptimization_hist
2265         [Deoptimization::Reason_LIMIT]
2266     [1 + Deoptimization::Action_LIMIT]
2267         [Deoptimization::BC_CASE_LIMIT]
2268   = {0};
2269 
2270 enum {
2271   LSB_BITS = 8,
2272   LSB_MASK = right_n_bits(LSB_BITS)
2273 };
2274 
2275 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2276                                        Bytecodes::Code bc) {
2277   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2278   assert(action >= 0 && action < Action_LIMIT, "oob");
2279   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2280   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2281   juint* cases = _deoptimization_hist[reason][1+action];
2282   juint* bc_counter_addr = NULL;
2283   juint  bc_counter      = 0;
2284   // Look for an unused counter, or an exact match to this BC.
2285   if (bc != Bytecodes::_illegal) {
2286     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2287       juint* counter_addr = &cases[bc_case];
2288       juint  counter = *counter_addr;
2289       if ((counter == 0 && bc_counter_addr == NULL)
2290           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2291         // this counter is either free or is already devoted to this BC
2292         bc_counter_addr = counter_addr;
2293         bc_counter = counter | bc;
2294       }
2295     }
2296   }
2297   if (bc_counter_addr == NULL) {
2298     // Overflow, or no given bytecode.
2299     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2300     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2301   }
2302   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2303 }
2304 
2305 jint Deoptimization::total_deoptimization_count() {
2306   return _deoptimization_hist[Reason_none][0][0];
2307 }
2308 
2309 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2310   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2311   return _deoptimization_hist[reason][0][0];
2312 }
2313 
2314 void Deoptimization::print_statistics() {
2315   juint total = total_deoptimization_count();
2316   juint account = total;
2317   if (total != 0) {
2318     ttyLocker ttyl;
2319     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2320     tty->print_cr("Deoptimization traps recorded:");
2321     #define PRINT_STAT_LINE(name, r) \
2322       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2323     PRINT_STAT_LINE("total", total);
2324     // For each non-zero entry in the histogram, print the reason,
2325     // the action, and (if specifically known) the type of bytecode.
2326     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2327       for (int action = 0; action < Action_LIMIT; action++) {
2328         juint* cases = _deoptimization_hist[reason][1+action];
2329         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2330           juint counter = cases[bc_case];
2331           if (counter != 0) {
2332             char name[1*K];
2333             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2334             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2335               bc = Bytecodes::_illegal;
2336             sprintf(name, "%s/%s/%s",
2337                     trap_reason_name(reason),
2338                     trap_action_name(action),
2339                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2340             juint r = counter >> LSB_BITS;
2341             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2342             account -= r;
2343           }
2344         }
2345       }
2346     }
2347     if (account != 0) {
2348       PRINT_STAT_LINE("unaccounted", account);
2349     }
2350     #undef PRINT_STAT_LINE
2351     if (xtty != NULL)  xtty->tail("statistics");
2352   }
2353 }
2354 #else // COMPILER2_OR_JVMCI
2355 
2356 
2357 // Stubs for C1 only system.
2358 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2359   return false;
2360 }
2361 
2362 const char* Deoptimization::trap_reason_name(int reason) {
2363   return "unknown";
2364 }
2365 
2366 void Deoptimization::print_statistics() {
2367   // no output
2368 }
2369 
2370 void
2371 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2372   // no udpate
2373 }
2374 
2375 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2376   return 0;
2377 }
2378 
2379 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2380                                        Bytecodes::Code bc) {
2381   // no update
2382 }
2383 
2384 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2385                                               int trap_state) {
2386   jio_snprintf(buf, buflen, "#%d", trap_state);
2387   return buf;
2388 }
2389 
2390 #endif // COMPILER2_OR_JVMCI