1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "utilities/decoder.hpp"
  62 #include "utilities/defaultStream.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/growableArray.hpp"
  65 #include "utilities/vmError.hpp"
  66 
  67 // put OS-includes here
  68 # include <sys/types.h>
  69 # include <sys/mman.h>
  70 # include <sys/stat.h>
  71 # include <sys/select.h>
  72 # include <pthread.h>
  73 # include <signal.h>
  74 # include <errno.h>
  75 # include <dlfcn.h>
  76 # include <stdio.h>
  77 # include <unistd.h>
  78 # include <sys/resource.h>
  79 # include <pthread.h>
  80 # include <sys/stat.h>
  81 # include <sys/time.h>
  82 # include <sys/times.h>
  83 # include <sys/utsname.h>
  84 # include <sys/socket.h>
  85 # include <sys/wait.h>
  86 # include <pwd.h>
  87 # include <poll.h>
  88 # include <semaphore.h>
  89 # include <fcntl.h>
  90 # include <string.h>
  91 # include <syscall.h>
  92 # include <sys/sysinfo.h>
  93 # include <gnu/libc-version.h>
  94 # include <sys/ipc.h>
  95 # include <sys/shm.h>
  96 # include <link.h>
  97 # include <stdint.h>
  98 # include <inttypes.h>
  99 # include <sys/ioctl.h>
 100 
 101 #define MAX_PATH    (2 * K)
 102 
 103 // for timer info max values which include all bits
 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 105 
 106 #define LARGEPAGES_BIT (1 << 6)
 107 ////////////////////////////////////////////////////////////////////////////////
 108 // global variables
 109 julong os::Linux::_physical_memory = 0;
 110 
 111 address   os::Linux::_initial_thread_stack_bottom = NULL;
 112 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 113 
 114 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 115 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 116 Mutex* os::Linux::_createThread_lock = NULL;
 117 pthread_t os::Linux::_main_thread;
 118 int os::Linux::_page_size = -1;
 119 bool os::Linux::_is_floating_stack = false;
 120 bool os::Linux::_is_NPTL = false;
 121 bool os::Linux::_supports_fast_thread_cpu_time = false;
 122 const char * os::Linux::_glibc_version = NULL;
 123 const char * os::Linux::_libpthread_version = NULL;
 124 
 125 static jlong initial_time_count=0;
 126 
 127 static int clock_tics_per_sec = 100;
 128 
 129 // For diagnostics to print a message once. see run_periodic_checks
 130 static sigset_t check_signal_done;
 131 static bool check_signals = true;;
 132 
 133 static pid_t _initial_pid = 0;
 134 
 135 /* Signal number used to suspend/resume a thread */
 136 
 137 /* do not use any signal number less than SIGSEGV, see 4355769 */
 138 static int SR_signum = SIGUSR2;
 139 sigset_t SR_sigset;
 140 
 141 /* Used to protect dlsym() calls */
 142 static pthread_mutex_t dl_mutex;
 143 
 144 #ifdef JAVASE_EMBEDDED
 145 class MemNotifyThread: public Thread {
 146   friend class VMStructs;
 147  public:
 148   virtual void run();
 149 
 150  private:
 151   static MemNotifyThread* _memnotify_thread;
 152   int _fd;
 153 
 154  public:
 155 
 156   // Constructor
 157   MemNotifyThread(int fd);
 158 
 159   // Tester
 160   bool is_memnotify_thread() const { return true; }
 161 
 162   // Printing
 163   char* name() const { return (char*)"Linux MemNotify Thread"; }
 164 
 165   // Returns the single instance of the MemNotifyThread
 166   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 167 
 168   // Create and start the single instance of MemNotifyThread
 169   static void start();
 170 };
 171 #endif // JAVASE_EMBEDDED
 172 
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 static int SR_finalize();
 177 
 178 julong os::available_memory() {
 179   return Linux::available_memory();
 180 }
 181 
 182 julong os::Linux::available_memory() {
 183   // values in struct sysinfo are "unsigned long"
 184   struct sysinfo si;
 185   sysinfo(&si);
 186 
 187   return (julong)si.freeram * si.mem_unit;
 188 }
 189 
 190 julong os::physical_memory() {
 191   return Linux::physical_memory();
 192 }
 193 
 194 julong os::allocatable_physical_memory(julong size) {
 195 #ifdef _LP64
 196   return size;
 197 #else
 198   julong result = MIN2(size, (julong)3800*M);
 199    if (!is_allocatable(result)) {
 200      // See comments under solaris for alignment considerations
 201      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 202      result =  MIN2(size, reasonable_size);
 203    }
 204    return result;
 205 #endif // _LP64
 206 }
 207 
 208 ////////////////////////////////////////////////////////////////////////////////
 209 // environment support
 210 
 211 bool os::getenv(const char* name, char* buf, int len) {
 212   const char* val = ::getenv(name);
 213   if (val != NULL && strlen(val) < (size_t)len) {
 214     strcpy(buf, val);
 215     return true;
 216   }
 217   if (len > 0) buf[0] = 0;  // return a null string
 218   return false;
 219 }
 220 
 221 
 222 // Return true if user is running as root.
 223 
 224 bool os::have_special_privileges() {
 225   static bool init = false;
 226   static bool privileges = false;
 227   if (!init) {
 228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 229     init = true;
 230   }
 231   return privileges;
 232 }
 233 
 234 
 235 #ifndef SYS_gettid
 236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 237 #ifdef __ia64__
 238 #define SYS_gettid 1105
 239 #elif __i386__
 240 #define SYS_gettid 224
 241 #elif __amd64__
 242 #define SYS_gettid 186
 243 #elif __sparc__
 244 #define SYS_gettid 143
 245 #else
 246 #error define gettid for the arch
 247 #endif
 248 #endif
 249 
 250 // Cpu architecture string
 251 #if   defined(ZERO)
 252 static char cpu_arch[] = ZERO_LIBARCH;
 253 #elif defined(IA64)
 254 static char cpu_arch[] = "ia64";
 255 #elif defined(IA32)
 256 static char cpu_arch[] = "i386";
 257 #elif defined(AMD64)
 258 static char cpu_arch[] = "amd64";
 259 #elif defined(ARM)
 260 static char cpu_arch[] = "arm";
 261 #elif defined(PPC)
 262 static char cpu_arch[] = "ppc";
 263 #elif defined(SPARC)
 264 #  ifdef _LP64
 265 static char cpu_arch[] = "sparcv9";
 266 #  else
 267 static char cpu_arch[] = "sparc";
 268 #  endif
 269 #else
 270 #error Add appropriate cpu_arch setting
 271 #endif
 272 
 273 
 274 // pid_t gettid()
 275 //
 276 // Returns the kernel thread id of the currently running thread. Kernel
 277 // thread id is used to access /proc.
 278 //
 279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 281 //
 282 pid_t os::Linux::gettid() {
 283   int rslt = syscall(SYS_gettid);
 284   if (rslt == -1) {
 285      // old kernel, no NPTL support
 286      return getpid();
 287   } else {
 288      return (pid_t)rslt;
 289   }
 290 }
 291 
 292 // Most versions of linux have a bug where the number of processors are
 293 // determined by looking at the /proc file system.  In a chroot environment,
 294 // the system call returns 1.  This causes the VM to act as if it is
 295 // a single processor and elide locking (see is_MP() call).
 296 static bool unsafe_chroot_detected = false;
 297 static const char *unstable_chroot_error = "/proc file system not found.\n"
 298                      "Java may be unstable running multithreaded in a chroot "
 299                      "environment on Linux when /proc filesystem is not mounted.";
 300 
 301 void os::Linux::initialize_system_info() {
 302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 303   if (processor_count() == 1) {
 304     pid_t pid = os::Linux::gettid();
 305     char fname[32];
 306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 307     FILE *fp = fopen(fname, "r");
 308     if (fp == NULL) {
 309       unsafe_chroot_detected = true;
 310     } else {
 311       fclose(fp);
 312     }
 313   }
 314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 315   assert(processor_count() > 0, "linux error");
 316 }
 317 
 318 void os::init_system_properties_values() {
 319 //  char arch[12];
 320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 321 
 322   // The next steps are taken in the product version:
 323   //
 324   // Obtain the JAVA_HOME value from the location of libjvm.so.
 325   // This library should be located at:
 326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 327   //
 328   // If "/jre/lib/" appears at the right place in the path, then we
 329   // assume libjvm.so is installed in a JDK and we use this path.
 330   //
 331   // Otherwise exit with message: "Could not create the Java virtual machine."
 332   //
 333   // The following extra steps are taken in the debugging version:
 334   //
 335   // If "/jre/lib/" does NOT appear at the right place in the path
 336   // instead of exit check for $JAVA_HOME environment variable.
 337   //
 338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 339   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 340   // it looks like libjvm.so is installed there
 341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 342   //
 343   // Otherwise exit.
 344   //
 345   // Important note: if the location of libjvm.so changes this
 346   // code needs to be changed accordingly.
 347 
 348   // The next few definitions allow the code to be verbatim:
 349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 350 #define getenv(n) ::getenv(n)
 351 
 352 /*
 353  * See ld(1):
 354  *      The linker uses the following search paths to locate required
 355  *      shared libraries:
 356  *        1: ...
 357  *        ...
 358  *        7: The default directories, normally /lib and /usr/lib.
 359  */
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 #define REG_DIR         "/usr/java/packages"
 369 
 370   {
 371     /* sysclasspath, java_home, dll_dir */
 372     {
 373         char *home_path;
 374         char *dll_path;
 375         char *pslash;
 376         char buf[MAXPATHLEN];
 377         os::jvm_path(buf, sizeof(buf));
 378 
 379         // Found the full path to libjvm.so.
 380         // Now cut the path to <java_home>/jre if we can.
 381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 382         pslash = strrchr(buf, '/');
 383         if (pslash != NULL)
 384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 385         dll_path = malloc(strlen(buf) + 1);
 386         if (dll_path == NULL)
 387             return;
 388         strcpy(dll_path, buf);
 389         Arguments::set_dll_dir(dll_path);
 390 
 391         if (pslash != NULL) {
 392             pslash = strrchr(buf, '/');
 393             if (pslash != NULL) {
 394                 *pslash = '\0';       /* get rid of /<arch> */
 395                 pslash = strrchr(buf, '/');
 396                 if (pslash != NULL)
 397                     *pslash = '\0';   /* get rid of /lib */
 398             }
 399         }
 400 
 401         home_path = malloc(strlen(buf) + 1);
 402         if (home_path == NULL)
 403             return;
 404         strcpy(home_path, buf);
 405         Arguments::set_java_home(home_path);
 406 
 407         if (!set_boot_path('/', ':'))
 408             return;
 409     }
 410 
 411     /*
 412      * Where to look for native libraries
 413      *
 414      * Note: Due to a legacy implementation, most of the library path
 415      * is set in the launcher.  This was to accomodate linking restrictions
 416      * on legacy Linux implementations (which are no longer supported).
 417      * Eventually, all the library path setting will be done here.
 418      *
 419      * However, to prevent the proliferation of improperly built native
 420      * libraries, the new path component /usr/java/packages is added here.
 421      * Eventually, all the library path setting will be done here.
 422      */
 423     {
 424         char *ld_library_path;
 425 
 426         /*
 427          * Construct the invariant part of ld_library_path. Note that the
 428          * space for the colon and the trailing null are provided by the
 429          * nulls included by the sizeof operator (so actually we allocate
 430          * a byte more than necessary).
 431          */
 432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 435 
 436         /*
 437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 438          * should always exist (until the legacy problem cited above is
 439          * addressed).
 440          */
 441         char *v = getenv("LD_LIBRARY_PATH");
 442         if (v != NULL) {
 443             char *t = ld_library_path;
 444             /* That's +1 for the colon and +1 for the trailing '\0' */
 445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 446             sprintf(ld_library_path, "%s:%s", v, t);
 447         }
 448         Arguments::set_library_path(ld_library_path);
 449     }
 450 
 451     /*
 452      * Extensions directories.
 453      *
 454      * Note that the space for the colon and the trailing null are provided
 455      * by the nulls included by the sizeof operator (so actually one byte more
 456      * than necessary is allocated).
 457      */
 458     {
 459         char *buf = malloc(strlen(Arguments::get_java_home()) +
 460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 462             Arguments::get_java_home());
 463         Arguments::set_ext_dirs(buf);
 464     }
 465 
 466     /* Endorsed standards default directory. */
 467     {
 468         char * buf;
 469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 471         Arguments::set_endorsed_dirs(buf);
 472     }
 473   }
 474 
 475 #undef malloc
 476 #undef getenv
 477 #undef EXTENSIONS_DIR
 478 #undef ENDORSED_DIR
 479 
 480   // Done
 481   return;
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // breakpoint support
 486 
 487 void os::breakpoint() {
 488   BREAKPOINT;
 489 }
 490 
 491 extern "C" void breakpoint() {
 492   // use debugger to set breakpoint here
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // signal support
 497 
 498 debug_only(static bool signal_sets_initialized = false);
 499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 500 
 501 bool os::Linux::is_sig_ignored(int sig) {
 502       struct sigaction oact;
 503       sigaction(sig, (struct sigaction*)NULL, &oact);
 504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 507            return true;
 508       else
 509            return false;
 510 }
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigemptyset(&allowdebug_blocked_sigs);
 530   sigaddset(&unblocked_sigs, SIGILL);
 531   sigaddset(&unblocked_sigs, SIGSEGV);
 532   sigaddset(&unblocked_sigs, SIGBUS);
 533   sigaddset(&unblocked_sigs, SIGFPE);
 534   sigaddset(&unblocked_sigs, SR_signum);
 535 
 536   if (!ReduceSignalUsage) {
 537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 540    }
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 548    }
 549   }
 550   // Fill in signals that are blocked by all but the VM thread.
 551   sigemptyset(&vm_sigs);
 552   if (!ReduceSignalUsage)
 553     sigaddset(&vm_sigs, BREAK_SIGNAL);
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 // These are signals that are blocked during cond_wait to allow debugger in
 573 sigset_t* os::Linux::allowdebug_blocked_signals() {
 574   assert(signal_sets_initialized, "Not initialized");
 575   return &allowdebug_blocked_sigs;
 576 }
 577 
 578 void os::Linux::hotspot_sigmask(Thread* thread) {
 579 
 580   //Save caller's signal mask before setting VM signal mask
 581   sigset_t caller_sigmask;
 582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 583 
 584   OSThread* osthread = thread->osthread();
 585   osthread->set_caller_sigmask(caller_sigmask);
 586 
 587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 588 
 589   if (!ReduceSignalUsage) {
 590     if (thread->is_VM_thread()) {
 591       // Only the VM thread handles BREAK_SIGNAL ...
 592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 593     } else {
 594       // ... all other threads block BREAK_SIGNAL
 595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 596     }
 597   }
 598 }
 599 
 600 //////////////////////////////////////////////////////////////////////////////
 601 // detecting pthread library
 602 
 603 void os::Linux::libpthread_init() {
 604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 606   // generic name for earlier versions.
 607   // Define macros here so we can build HotSpot on old systems.
 608 # ifndef _CS_GNU_LIBC_VERSION
 609 # define _CS_GNU_LIBC_VERSION 2
 610 # endif
 611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 612 # define _CS_GNU_LIBPTHREAD_VERSION 3
 613 # endif
 614 
 615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 616   if (n > 0) {
 617      char *str = (char *)malloc(n, mtInternal);
 618      confstr(_CS_GNU_LIBC_VERSION, str, n);
 619      os::Linux::set_glibc_version(str);
 620   } else {
 621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 622      static char _gnu_libc_version[32];
 623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 625      os::Linux::set_glibc_version(_gnu_libc_version);
 626   }
 627 
 628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 629   if (n > 0) {
 630      char *str = (char *)malloc(n, mtInternal);
 631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 634      // is the case. LinuxThreads has a hard limit on max number of threads.
 635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 636      // On the other hand, NPTL does not have such a limit, sysconf()
 637      // will return -1 and errno is not changed. Check if it is really NPTL.
 638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 639          strstr(str, "NPTL") &&
 640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 641        free(str);
 642        os::Linux::set_libpthread_version("linuxthreads");
 643      } else {
 644        os::Linux::set_libpthread_version(str);
 645      }
 646   } else {
 647     // glibc before 2.3.2 only has LinuxThreads.
 648     os::Linux::set_libpthread_version("linuxthreads");
 649   }
 650 
 651   if (strstr(libpthread_version(), "NPTL")) {
 652      os::Linux::set_is_NPTL();
 653   } else {
 654      os::Linux::set_is_LinuxThreads();
 655   }
 656 
 657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 660      os::Linux::set_is_floating_stack();
 661   }
 662 }
 663 
 664 /////////////////////////////////////////////////////////////////////////////
 665 // thread stack
 666 
 667 // Force Linux kernel to expand current thread stack. If "bottom" is close
 668 // to the stack guard, caller should block all signals.
 669 //
 670 // MAP_GROWSDOWN:
 671 //   A special mmap() flag that is used to implement thread stacks. It tells
 672 //   kernel that the memory region should extend downwards when needed. This
 673 //   allows early versions of LinuxThreads to only mmap the first few pages
 674 //   when creating a new thread. Linux kernel will automatically expand thread
 675 //   stack as needed (on page faults).
 676 //
 677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 679 //   region, it's hard to tell if the fault is due to a legitimate stack
 680 //   access or because of reading/writing non-exist memory (e.g. buffer
 681 //   overrun). As a rule, if the fault happens below current stack pointer,
 682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 683 //   application (see Linux kernel fault.c).
 684 //
 685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 686 //   stack overflow detection.
 687 //
 688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 689 //   not use this flag. However, the stack of initial thread is not created
 690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 692 //   and then attach the thread to JVM.
 693 //
 694 // To get around the problem and allow stack banging on Linux, we need to
 695 // manually expand thread stack after receiving the SIGSEGV.
 696 //
 697 // There are two ways to expand thread stack to address "bottom", we used
 698 // both of them in JVM before 1.5:
 699 //   1. adjust stack pointer first so that it is below "bottom", and then
 700 //      touch "bottom"
 701 //   2. mmap() the page in question
 702 //
 703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 704 // if current sp is already near the lower end of page 101, and we need to
 705 // call mmap() to map page 100, it is possible that part of the mmap() frame
 706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 707 // That will destroy the mmap() frame and cause VM to crash.
 708 //
 709 // The following code works by adjusting sp first, then accessing the "bottom"
 710 // page to force a page fault. Linux kernel will then automatically expand the
 711 // stack mapping.
 712 //
 713 // _expand_stack_to() assumes its frame size is less than page size, which
 714 // should always be true if the function is not inlined.
 715 
 716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 717 #define NOINLINE
 718 #else
 719 #define NOINLINE __attribute__ ((noinline))
 720 #endif
 721 
 722 static void _expand_stack_to(address bottom) NOINLINE;
 723 
 724 static void _expand_stack_to(address bottom) {
 725   address sp;
 726   size_t size;
 727   volatile char *p;
 728 
 729   // Adjust bottom to point to the largest address within the same page, it
 730   // gives us a one-page buffer if alloca() allocates slightly more memory.
 731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 732   bottom += os::Linux::page_size() - 1;
 733 
 734   // sp might be slightly above current stack pointer; if that's the case, we
 735   // will alloca() a little more space than necessary, which is OK. Don't use
 736   // os::current_stack_pointer(), as its result can be slightly below current
 737   // stack pointer, causing us to not alloca enough to reach "bottom".
 738   sp = (address)&sp;
 739 
 740   if (sp > bottom) {
 741     size = sp - bottom;
 742     p = (volatile char *)alloca(size);
 743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 744     p[0] = '\0';
 745   }
 746 }
 747 
 748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 749   assert(t!=NULL, "just checking");
 750   assert(t->osthread()->expanding_stack(), "expand should be set");
 751   assert(t->stack_base() != NULL, "stack_base was not initialized");
 752 
 753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 754     sigset_t mask_all, old_sigset;
 755     sigfillset(&mask_all);
 756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 757     _expand_stack_to(addr);
 758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 //////////////////////////////////////////////////////////////////////////////
 765 // create new thread
 766 
 767 static address highest_vm_reserved_address();
 768 
 769 // check if it's safe to start a new thread
 770 static bool _thread_safety_check(Thread* thread) {
 771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 774     //   allocated (MAP_FIXED) from high address space. Every thread stack
 775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 776     //   it to other values if they rebuild LinuxThreads).
 777     //
 778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 779     // the memory region has already been mmap'ed. That means if we have too
 780     // many threads and/or very large heap, eventually thread stack will
 781     // collide with heap.
 782     //
 783     // Here we try to prevent heap/stack collision by comparing current
 784     // stack bottom with the highest address that has been mmap'ed by JVM
 785     // plus a safety margin for memory maps created by native code.
 786     //
 787     // This feature can be disabled by setting ThreadSafetyMargin to 0
 788     //
 789     if (ThreadSafetyMargin > 0) {
 790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 791 
 792       // not safe if our stack extends below the safety margin
 793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 794     } else {
 795       return true;
 796     }
 797   } else {
 798     // Floating stack LinuxThreads or NPTL:
 799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 800     //   there's not enough space left, pthread_create() will fail. If we come
 801     //   here, that means enough space has been reserved for stack.
 802     return true;
 803   }
 804 }
 805 
 806 // Thread start routine for all newly created threads
 807 static void *java_start(Thread *thread) {
 808   // Try to randomize the cache line index of hot stack frames.
 809   // This helps when threads of the same stack traces evict each other's
 810   // cache lines. The threads can be either from the same JVM instance, or
 811   // from different JVM instances. The benefit is especially true for
 812   // processors with hyperthreading technology.
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   ThreadLocalStorage::set_thread(thread);
 818 
 819   OSThread* osthread = thread->osthread();
 820   Monitor* sync = osthread->startThread_lock();
 821 
 822   // non floating stack LinuxThreads needs extra check, see above
 823   if (!_thread_safety_check(thread)) {
 824     // notify parent thread
 825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 826     osthread->set_state(ZOMBIE);
 827     sync->notify_all();
 828     return NULL;
 829   }
 830 
 831   // thread_id is kernel thread id (similar to Solaris LWP id)
 832   osthread->set_thread_id(os::Linux::gettid());
 833 
 834   if (UseNUMA) {
 835     int lgrp_id = os::numa_get_group_id();
 836     if (lgrp_id != -1) {
 837       thread->set_lgrp_id(lgrp_id);
 838     }
 839   }
 840   // initialize signal mask for this thread
 841   os::Linux::hotspot_sigmask(thread);
 842 
 843   // initialize floating point control register
 844   os::Linux::init_thread_fpu_state();
 845 
 846   // handshaking with parent thread
 847   {
 848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 849 
 850     // notify parent thread
 851     osthread->set_state(INITIALIZED);
 852     sync->notify_all();
 853 
 854     // wait until os::start_thread()
 855     while (osthread->get_state() == INITIALIZED) {
 856       sync->wait(Mutex::_no_safepoint_check_flag);
 857     }
 858   }
 859 
 860   // call one more level start routine
 861   thread->run();
 862 
 863   return 0;
 864 }
 865 
 866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // stack size
 889   if (os::Linux::supports_variable_stack_size()) {
 890     // calculate stack size if it's not specified by caller
 891     if (stack_size == 0) {
 892       stack_size = os::Linux::default_stack_size(thr_type);
 893 
 894       switch (thr_type) {
 895       case os::java_thread:
 896         // Java threads use ThreadStackSize which default value can be
 897         // changed with the flag -Xss
 898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 899         stack_size = JavaThread::stack_size_at_create();
 900         break;
 901       case os::compiler_thread:
 902         if (CompilerThreadStackSize > 0) {
 903           stack_size = (size_t)(CompilerThreadStackSize * K);
 904           break;
 905         } // else fall through:
 906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 907       case os::vm_thread:
 908       case os::pgc_thread:
 909       case os::cgc_thread:
 910       case os::watcher_thread:
 911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 912         break;
 913       }
 914     }
 915 
 916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 917     pthread_attr_setstacksize(&attr, stack_size);
 918   } else {
 919     // let pthread_create() pick the default value.
 920   }
 921 
 922   // glibc guard page
 923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 924 
 925   ThreadState state;
 926 
 927   {
 928     // Serialize thread creation if we are running with fixed stack LinuxThreads
 929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 930     if (lock) {
 931       os::Linux::createThread_lock()->lock_without_safepoint_check();
 932     }
 933 
 934     pthread_t tid;
 935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 936 
 937     pthread_attr_destroy(&attr);
 938 
 939     if (ret != 0) {
 940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 941         perror("pthread_create()");
 942       }
 943       // Need to clean up stuff we've allocated so far
 944       thread->set_osthread(NULL);
 945       delete osthread;
 946       if (lock) os::Linux::createThread_lock()->unlock();
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 959       }
 960     }
 961 
 962     if (lock) {
 963       os::Linux::createThread_lock()->unlock();
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969       thread->set_osthread(NULL);
 970       delete osthread;
 971       return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991     thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::Linux::is_initial_thread()) {
1021     // If current thread is initial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_yellow_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   return true;
1045 }
1046 
1047 void os::pd_start_thread(Thread* thread) {
1048   OSThread * osthread = thread->osthread();
1049   assert(osthread->get_state() != INITIALIZED, "just checking");
1050   Monitor* sync_with_child = osthread->startThread_lock();
1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052   sync_with_child->notify();
1053 }
1054 
1055 // Free Linux resources related to the OSThread
1056 void os::free_thread(OSThread* osthread) {
1057   assert(osthread != NULL, "osthread not set");
1058 
1059   if (Thread::current()->osthread() == osthread) {
1060     // Restore caller's signal mask
1061     sigset_t sigmask = osthread->caller_sigmask();
1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063    }
1064 
1065   delete osthread;
1066 }
1067 
1068 //////////////////////////////////////////////////////////////////////////////
1069 // thread local storage
1070 
1071 int os::allocate_thread_local_storage() {
1072   pthread_key_t key;
1073   int rslt = pthread_key_create(&key, NULL);
1074   assert(rslt == 0, "cannot allocate thread local storage");
1075   return (int)key;
1076 }
1077 
1078 // Note: This is currently not used by VM, as we don't destroy TLS key
1079 // on VM exit.
1080 void os::free_thread_local_storage(int index) {
1081   int rslt = pthread_key_delete((pthread_key_t)index);
1082   assert(rslt == 0, "invalid index");
1083 }
1084 
1085 void os::thread_local_storage_at_put(int index, void* value) {
1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
1087   assert(rslt == 0, "pthread_setspecific failed");
1088 }
1089 
1090 extern "C" Thread* get_thread() {
1091   return ThreadLocalStorage::thread();
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // initial thread
1096 
1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
1098 bool os::Linux::is_initial_thread(void) {
1099   char dummy;
1100   // If called before init complete, thread stack bottom will be null.
1101   // Can be called if fatal error occurs before initialization.
1102   if (initial_thread_stack_bottom() == NULL) return false;
1103   assert(initial_thread_stack_bottom() != NULL &&
1104          initial_thread_stack_size()   != 0,
1105          "os::init did not locate initial thread's stack region");
1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108        return true;
1109   else return false;
1110 }
1111 
1112 // Find the virtual memory area that contains addr
1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114   FILE *fp = fopen("/proc/self/maps", "r");
1115   if (fp) {
1116     address low, high;
1117     while (!feof(fp)) {
1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119         if (low <= addr && addr < high) {
1120            if (vma_low)  *vma_low  = low;
1121            if (vma_high) *vma_high = high;
1122            fclose (fp);
1123            return true;
1124         }
1125       }
1126       for (;;) {
1127         int ch = fgetc(fp);
1128         if (ch == EOF || ch == (int)'\n') break;
1129       }
1130     }
1131     fclose(fp);
1132   }
1133   return false;
1134 }
1135 
1136 // Locate initial thread stack. This special handling of initial thread stack
1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138 // bogus value for initial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140   // stack size is the easy part, get it from RLIMIT_STACK
1141   size_t stack_size;
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   stack_size -= 2 * page_size();
1150 
1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152   //   7.1, in both cases we will get 2G in return value.
1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156   //   in case other parts in glibc still assumes 2M max stack size.
1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158 #ifndef IA64
1159   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1160 #else
1161   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1163 #endif
1164 
1165   // Try to figure out where the stack base (top) is. This is harder.
1166   //
1167   // When an application is started, glibc saves the initial stack pointer in
1168   // a global variable "__libc_stack_end", which is then used by system
1169   // libraries. __libc_stack_end should be pretty close to stack top. The
1170   // variable is available since the very early days. However, because it is
1171   // a private interface, it could disappear in the future.
1172   //
1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
1175   // stack top. Note that /proc may not exist if VM is running as a chroot
1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177   // /proc/<pid>/stat could change in the future (though unlikely).
1178   //
1179   // We try __libc_stack_end first. If that doesn't work, look for
1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181   // as a hint, which should work well in most cases.
1182 
1183   uintptr_t stack_start;
1184 
1185   // try __libc_stack_end first
1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187   if (p && *p) {
1188     stack_start = *p;
1189   } else {
1190     // see if we can get the start_stack field from /proc/self/stat
1191     FILE *fp;
1192     int pid;
1193     char state;
1194     int ppid;
1195     int pgrp;
1196     int session;
1197     int nr;
1198     int tpgrp;
1199     unsigned long flags;
1200     unsigned long minflt;
1201     unsigned long cminflt;
1202     unsigned long majflt;
1203     unsigned long cmajflt;
1204     unsigned long utime;
1205     unsigned long stime;
1206     long cutime;
1207     long cstime;
1208     long prio;
1209     long nice;
1210     long junk;
1211     long it_real;
1212     uintptr_t start;
1213     uintptr_t vsize;
1214     intptr_t rss;
1215     uintptr_t rsslim;
1216     uintptr_t scodes;
1217     uintptr_t ecode;
1218     int i;
1219 
1220     // Figure what the primordial thread stack base is. Code is inspired
1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222     // followed by command name surrounded by parentheses, state, etc.
1223     char stat[2048];
1224     int statlen;
1225 
1226     fp = fopen("/proc/self/stat", "r");
1227     if (fp) {
1228       statlen = fread(stat, 1, 2047, fp);
1229       stat[statlen] = '\0';
1230       fclose(fp);
1231 
1232       // Skip pid and the command string. Note that we could be dealing with
1233       // weird command names, e.g. user could decide to rename java launcher
1234       // to "java 1.4.2 :)", then the stat file would look like
1235       //                1234 (java 1.4.2 :)) R ... ...
1236       // We don't really need to know the command string, just find the last
1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
1238       char * s = strrchr(stat, ')');
1239 
1240       i = 0;
1241       if (s) {
1242         // Skip blank chars
1243         do s++; while (isspace(*s));
1244 
1245 #define _UFM UINTX_FORMAT
1246 #define _DFM INTX_FORMAT
1247 
1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251              &state,          /* 3  %c  */
1252              &ppid,           /* 4  %d  */
1253              &pgrp,           /* 5  %d  */
1254              &session,        /* 6  %d  */
1255              &nr,             /* 7  %d  */
1256              &tpgrp,          /* 8  %d  */
1257              &flags,          /* 9  %lu  */
1258              &minflt,         /* 10 %lu  */
1259              &cminflt,        /* 11 %lu  */
1260              &majflt,         /* 12 %lu  */
1261              &cmajflt,        /* 13 %lu  */
1262              &utime,          /* 14 %lu  */
1263              &stime,          /* 15 %lu  */
1264              &cutime,         /* 16 %ld  */
1265              &cstime,         /* 17 %ld  */
1266              &prio,           /* 18 %ld  */
1267              &nice,           /* 19 %ld  */
1268              &junk,           /* 20 %ld  */
1269              &it_real,        /* 21 %ld  */
1270              &start,          /* 22 UINTX_FORMAT */
1271              &vsize,          /* 23 UINTX_FORMAT */
1272              &rss,            /* 24 INTX_FORMAT  */
1273              &rsslim,         /* 25 UINTX_FORMAT */
1274              &scodes,         /* 26 UINTX_FORMAT */
1275              &ecode,          /* 27 UINTX_FORMAT */
1276              &stack_start);   /* 28 UINTX_FORMAT */
1277       }
1278 
1279 #undef _UFM
1280 #undef _DFM
1281 
1282       if (i != 28 - 2) {
1283          assert(false, "Bad conversion from /proc/self/stat");
1284          // product mode - assume we are the initial thread, good luck in the
1285          // embedded case.
1286          warning("Can't detect initial thread stack location - bad conversion");
1287          stack_start = (uintptr_t) &rlim;
1288       }
1289     } else {
1290       // For some reason we can't open /proc/self/stat (for example, running on
1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292       // most cases, so don't abort:
1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
1294       stack_start = (uintptr_t) &rlim;
1295     }
1296   }
1297 
1298   // Now we have a pointer (stack_start) very close to the stack top, the
1299   // next thing to do is to figure out the exact location of stack top. We
1300   // can find out the virtual memory area that contains stack_start by
1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302   // and its upper limit is the real stack top. (again, this would fail if
1303   // running inside chroot, because /proc may not exist.)
1304 
1305   uintptr_t stack_top;
1306   address low, high;
1307   if (find_vma((address)stack_start, &low, &high)) {
1308     // success, "high" is the true stack top. (ignore "low", because initial
1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310     stack_top = (uintptr_t)high;
1311   } else {
1312     // failed, likely because /proc/self/maps does not exist
1313     warning("Can't detect initial thread stack location - find_vma failed");
1314     // best effort: stack_start is normally within a few pages below the real
1315     // stack top, use it as stack top, and reduce stack size so we won't put
1316     // guard page outside stack.
1317     stack_top = stack_start;
1318     stack_size -= 16 * page_size();
1319   }
1320 
1321   // stack_top could be partially down the page so align it
1322   stack_top = align_size_up(stack_top, page_size());
1323 
1324   if (max_size && stack_size > max_size) {
1325      _initial_thread_stack_size = max_size;
1326   } else {
1327      _initial_thread_stack_size = stack_size;
1328   }
1329 
1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // time support
1336 
1337 // Time since start-up in seconds to a fine granularity.
1338 // Used by VMSelfDestructTimer and the MemProfiler.
1339 double os::elapsedTime() {
1340 
1341   return (double)(os::elapsed_counter()) * 0.000001;
1342 }
1343 
1344 jlong os::elapsed_counter() {
1345   timeval time;
1346   int status = gettimeofday(&time, NULL);
1347   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1348 }
1349 
1350 jlong os::elapsed_frequency() {
1351   return (1000 * 1000);
1352 }
1353 
1354 // For now, we say that linux does not support vtime.  I have no idea
1355 // whether it can actually be made to (DLD, 9/13/05).
1356 
1357 bool os::supports_vtime() { return false; }
1358 bool os::enable_vtime()   { return false; }
1359 bool os::vtime_enabled()  { return false; }
1360 double os::elapsedVTime() {
1361   // better than nothing, but not much
1362   return elapsedTime();
1363 }
1364 
1365 jlong os::javaTimeMillis() {
1366   timeval time;
1367   int status = gettimeofday(&time, NULL);
1368   assert(status != -1, "linux error");
1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370 }
1371 
1372 #ifndef CLOCK_MONOTONIC
1373 #define CLOCK_MONOTONIC (1)
1374 #endif
1375 
1376 void os::Linux::clock_init() {
1377   // we do dlopen's in this particular order due to bug in linux
1378   // dynamical loader (see 6348968) leading to crash on exit
1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380   if (handle == NULL) {
1381     handle = dlopen("librt.so", RTLD_LAZY);
1382   }
1383 
1384   if (handle) {
1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389     if (clock_getres_func && clock_gettime_func) {
1390       // See if monotonic clock is supported by the kernel. Note that some
1391       // early implementations simply return kernel jiffies (updated every
1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393       // for nano time (though the monotonic property is still nice to have).
1394       // It's fixed in newer kernels, however clock_getres() still returns
1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396       // resolution for now. Hopefully as people move to new kernels, this
1397       // won't be a problem.
1398       struct timespec res;
1399       struct timespec tp;
1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402         // yes, monotonic clock is supported
1403         _clock_gettime = clock_gettime_func;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410 }
1411 
1412 #ifndef SYS_clock_getres
1413 
1414 #if defined(IA32) || defined(AMD64)
1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417 #else
1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419 #define sys_clock_getres(x,y)  -1
1420 #endif
1421 
1422 #else
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #endif
1425 
1426 void os::Linux::fast_thread_clock_init() {
1427   if (!UseLinuxPosixThreadCPUClocks) {
1428     return;
1429   }
1430   clockid_t clockid;
1431   struct timespec tp;
1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434 
1435   // Switch to using fast clocks for thread cpu time if
1436   // the sys_clock_getres() returns 0 error code.
1437   // Note, that some kernels may support the current thread
1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439   // returned by the pthread_getcpuclockid().
1440   // If the fast Posix clocks are supported then the sys_clock_getres()
1441   // must return at least tp.tv_sec == 0 which means a resolution
1442   // better than 1 sec. This is extra check for reliability.
1443 
1444   if(pthread_getcpuclockid_func &&
1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447 
1448     _supports_fast_thread_cpu_time = true;
1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450   }
1451 }
1452 
1453 jlong os::javaTimeNanos() {
1454   if (Linux::supports_monotonic_clock()) {
1455     struct timespec tp;
1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457     assert(status == 0, "gettime error");
1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459     return result;
1460   } else {
1461     timeval time;
1462     int status = gettimeofday(&time, NULL);
1463     assert(status != -1, "linux error");
1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465     return 1000 * usecs;
1466   }
1467 }
1468 
1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470   if (Linux::supports_monotonic_clock()) {
1471     info_ptr->max_value = ALL_64_BITS;
1472 
1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476   } else {
1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // gettimeofday is a real time clock so it skips
1481     info_ptr->may_skip_backward = true;
1482     info_ptr->may_skip_forward = true;
1483   }
1484 
1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486 }
1487 
1488 // Return the real, user, and system times in seconds from an
1489 // arbitrary fixed point in the past.
1490 bool os::getTimesSecs(double* process_real_time,
1491                       double* process_user_time,
1492                       double* process_system_time) {
1493   struct tms ticks;
1494   clock_t real_ticks = times(&ticks);
1495 
1496   if (real_ticks == (clock_t) (-1)) {
1497     return false;
1498   } else {
1499     double ticks_per_second = (double) clock_tics_per_sec;
1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
1503 
1504     return true;
1505   }
1506 }
1507 
1508 
1509 char * os::local_time_string(char *buf, size_t buflen) {
1510   struct tm t;
1511   time_t long_time;
1512   time(&long_time);
1513   localtime_r(&long_time, &t);
1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516                t.tm_hour, t.tm_min, t.tm_sec);
1517   return buf;
1518 }
1519 
1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521   return localtime_r(clock, res);
1522 }
1523 
1524 ////////////////////////////////////////////////////////////////////////////////
1525 // runtime exit support
1526 
1527 // Note: os::shutdown() might be called very early during initialization, or
1528 // called from signal handler. Before adding something to os::shutdown(), make
1529 // sure it is async-safe and can handle partially initialized VM.
1530 void os::shutdown() {
1531 
1532   // allow PerfMemory to attempt cleanup of any persistent resources
1533   perfMemory_exit();
1534 
1535   // needs to remove object in file system
1536   AttachListener::abort();
1537 
1538   // flush buffered output, finish log files
1539   ostream_abort();
1540 
1541   // Check for abort hook
1542   abort_hook_t abort_hook = Arguments::abort_hook();
1543   if (abort_hook != NULL) {
1544     abort_hook();
1545   }
1546 
1547 }
1548 
1549 // Note: os::abort() might be called very early during initialization, or
1550 // called from signal handler. Before adding something to os::abort(), make
1551 // sure it is async-safe and can handle partially initialized VM.
1552 void os::abort(bool dump_core) {
1553   os::shutdown();
1554   if (dump_core) {
1555 #ifndef PRODUCT
1556     fdStream out(defaultStream::output_fd());
1557     out.print_raw("Current thread is ");
1558     char buf[16];
1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560     out.print_raw_cr(buf);
1561     out.print_raw_cr("Dumping core ...");
1562 #endif
1563     ::abort(); // dump core
1564   }
1565 
1566   ::exit(1);
1567 }
1568 
1569 // Die immediately, no exit hook, no abort hook, no cleanup.
1570 void os::die() {
1571   // _exit() on LinuxThreads only kills current thread
1572   ::abort();
1573 }
1574 
1575 // unused on linux for now.
1576 void os::set_error_file(const char *logfile) {}
1577 
1578 
1579 // This method is a copy of JDK's sysGetLastErrorString
1580 // from src/solaris/hpi/src/system_md.c
1581 
1582 size_t os::lasterror(char *buf, size_t len) {
1583 
1584   if (errno == 0)  return 0;
1585 
1586   const char *s = ::strerror(errno);
1587   size_t n = ::strlen(s);
1588   if (n >= len) {
1589     n = len - 1;
1590   }
1591   ::strncpy(buf, s, n);
1592   buf[n] = '\0';
1593   return n;
1594 }
1595 
1596 intx os::current_thread_id() { return (intx)pthread_self(); }
1597 int os::current_process_id() {
1598 
1599   // Under the old linux thread library, linux gives each thread
1600   // its own process id. Because of this each thread will return
1601   // a different pid if this method were to return the result
1602   // of getpid(2). Linux provides no api that returns the pid
1603   // of the launcher thread for the vm. This implementation
1604   // returns a unique pid, the pid of the launcher thread
1605   // that starts the vm 'process'.
1606 
1607   // Under the NPTL, getpid() returns the same pid as the
1608   // launcher thread rather than a unique pid per thread.
1609   // Use gettid() if you want the old pre NPTL behaviour.
1610 
1611   // if you are looking for the result of a call to getpid() that
1612   // returns a unique pid for the calling thread, then look at the
1613   // OSThread::thread_id() method in osThread_linux.hpp file
1614 
1615   return (int)(_initial_pid ? _initial_pid : getpid());
1616 }
1617 
1618 // DLL functions
1619 
1620 const char* os::dll_file_extension() { return ".so"; }
1621 
1622 // This must be hard coded because it's the system's temporary
1623 // directory not the java application's temp directory, ala java.io.tmpdir.
1624 const char* os::get_temp_directory() { return "/tmp"; }
1625 
1626 static bool file_exists(const char* filename) {
1627   struct stat statbuf;
1628   if (filename == NULL || strlen(filename) == 0) {
1629     return false;
1630   }
1631   return os::stat(filename, &statbuf) == 0;
1632 }
1633 
1634 bool os::dll_build_name(char* buffer, size_t buflen,
1635                         const char* pname, const char* fname) {
1636   bool retval = false;
1637   // Copied from libhpi
1638   const size_t pnamelen = pname ? strlen(pname) : 0;
1639 
1640   // Return error on buffer overflow.
1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642     return retval;
1643   }
1644 
1645   if (pnamelen == 0) {
1646     snprintf(buffer, buflen, "lib%s.so", fname);
1647     retval = true;
1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
1649     int n;
1650     char** pelements = split_path(pname, &n);
1651     for (int i = 0 ; i < n ; i++) {
1652       // Really shouldn't be NULL, but check can't hurt
1653       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1654         continue; // skip the empty path values
1655       }
1656       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1657       if (file_exists(buffer)) {
1658         retval = true;
1659         break;
1660       }
1661     }
1662     // release the storage
1663     for (int i = 0 ; i < n ; i++) {
1664       if (pelements[i] != NULL) {
1665         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1666       }
1667     }
1668     if (pelements != NULL) {
1669       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1670     }
1671   } else {
1672     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1673     retval = true;
1674   }
1675   return retval;
1676 }
1677 
1678 const char* os::get_current_directory(char *buf, int buflen) {
1679   return getcwd(buf, buflen);
1680 }
1681 
1682 // check if addr is inside libjvm.so
1683 bool os::address_is_in_vm(address addr) {
1684   static address libjvm_base_addr;
1685   Dl_info dlinfo;
1686 
1687   if (libjvm_base_addr == NULL) {
1688     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1689     libjvm_base_addr = (address)dlinfo.dli_fbase;
1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691   }
1692 
1693   if (dladdr((void *)addr, &dlinfo)) {
1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695   }
1696 
1697   return false;
1698 }
1699 
1700 bool os::dll_address_to_function_name(address addr, char *buf,
1701                                       int buflen, int *offset) {
1702   Dl_info dlinfo;
1703 
1704   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1705     if (buf != NULL) {
1706       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1707         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1708       }
1709     }
1710     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1711     return true;
1712   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1713     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1714         buf, buflen, offset, dlinfo.dli_fname)) {
1715        return true;
1716     }
1717   }
1718 
1719   if (buf != NULL) buf[0] = '\0';
1720   if (offset != NULL) *offset = -1;
1721   return false;
1722 }
1723 
1724 struct _address_to_library_name {
1725   address addr;          // input : memory address
1726   size_t  buflen;        //         size of fname
1727   char*   fname;         // output: library name
1728   address base;          //         library base addr
1729 };
1730 
1731 static int address_to_library_name_callback(struct dl_phdr_info *info,
1732                                             size_t size, void *data) {
1733   int i;
1734   bool found = false;
1735   address libbase = NULL;
1736   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1737 
1738   // iterate through all loadable segments
1739   for (i = 0; i < info->dlpi_phnum; i++) {
1740     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1741     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1742       // base address of a library is the lowest address of its loaded
1743       // segments.
1744       if (libbase == NULL || libbase > segbase) {
1745         libbase = segbase;
1746       }
1747       // see if 'addr' is within current segment
1748       if (segbase <= d->addr &&
1749           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1750         found = true;
1751       }
1752     }
1753   }
1754 
1755   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1756   // so dll_address_to_library_name() can fall through to use dladdr() which
1757   // can figure out executable name from argv[0].
1758   if (found && info->dlpi_name && info->dlpi_name[0]) {
1759     d->base = libbase;
1760     if (d->fname) {
1761       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1762     }
1763     return 1;
1764   }
1765   return 0;
1766 }
1767 
1768 bool os::dll_address_to_library_name(address addr, char* buf,
1769                                      int buflen, int* offset) {
1770   Dl_info dlinfo;
1771   struct _address_to_library_name data;
1772 
1773   // There is a bug in old glibc dladdr() implementation that it could resolve
1774   // to wrong library name if the .so file has a base address != NULL. Here
1775   // we iterate through the program headers of all loaded libraries to find
1776   // out which library 'addr' really belongs to. This workaround can be
1777   // removed once the minimum requirement for glibc is moved to 2.3.x.
1778   data.addr = addr;
1779   data.fname = buf;
1780   data.buflen = buflen;
1781   data.base = NULL;
1782   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1783 
1784   if (rslt) {
1785      // buf already contains library name
1786      if (offset) *offset = addr - data.base;
1787      return true;
1788   } else if (dladdr((void*)addr, &dlinfo)){
1789      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1790      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1791      return true;
1792   } else {
1793      if (buf) buf[0] = '\0';
1794      if (offset) *offset = -1;
1795      return false;
1796   }
1797 }
1798 
1799   // Loads .dll/.so and
1800   // in case of error it checks if .dll/.so was built for the
1801   // same architecture as Hotspot is running on
1802 
1803 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1804 {
1805   void * result= ::dlopen(filename, RTLD_LAZY);
1806   if (result != NULL) {
1807     // Successful loading
1808     return result;
1809   }
1810 
1811   Elf32_Ehdr elf_head;
1812 
1813   // Read system error message into ebuf
1814   // It may or may not be overwritten below
1815   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1816   ebuf[ebuflen-1]='\0';
1817   int diag_msg_max_length=ebuflen-strlen(ebuf);
1818   char* diag_msg_buf=ebuf+strlen(ebuf);
1819 
1820   if (diag_msg_max_length==0) {
1821     // No more space in ebuf for additional diagnostics message
1822     return NULL;
1823   }
1824 
1825 
1826   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1827 
1828   if (file_descriptor < 0) {
1829     // Can't open library, report dlerror() message
1830     return NULL;
1831   }
1832 
1833   bool failed_to_read_elf_head=
1834     (sizeof(elf_head)!=
1835         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1836 
1837   ::close(file_descriptor);
1838   if (failed_to_read_elf_head) {
1839     // file i/o error - report dlerror() msg
1840     return NULL;
1841   }
1842 
1843   typedef struct {
1844     Elf32_Half  code;         // Actual value as defined in elf.h
1845     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1846     char        elf_class;    // 32 or 64 bit
1847     char        endianess;    // MSB or LSB
1848     char*       name;         // String representation
1849   } arch_t;
1850 
1851   #ifndef EM_486
1852   #define EM_486          6               /* Intel 80486 */
1853   #endif
1854 
1855   static const arch_t arch_array[]={
1856     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1859     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1860     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1863     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1864     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1865     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1866     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1867     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1868     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1869     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1870     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1871     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1872   };
1873 
1874   #if  (defined IA32)
1875     static  Elf32_Half running_arch_code=EM_386;
1876   #elif   (defined AMD64)
1877     static  Elf32_Half running_arch_code=EM_X86_64;
1878   #elif  (defined IA64)
1879     static  Elf32_Half running_arch_code=EM_IA_64;
1880   #elif  (defined __sparc) && (defined _LP64)
1881     static  Elf32_Half running_arch_code=EM_SPARCV9;
1882   #elif  (defined __sparc) && (!defined _LP64)
1883     static  Elf32_Half running_arch_code=EM_SPARC;
1884   #elif  (defined __powerpc64__)
1885     static  Elf32_Half running_arch_code=EM_PPC64;
1886   #elif  (defined __powerpc__)
1887     static  Elf32_Half running_arch_code=EM_PPC;
1888   #elif  (defined ARM)
1889     static  Elf32_Half running_arch_code=EM_ARM;
1890   #elif  (defined S390)
1891     static  Elf32_Half running_arch_code=EM_S390;
1892   #elif  (defined ALPHA)
1893     static  Elf32_Half running_arch_code=EM_ALPHA;
1894   #elif  (defined MIPSEL)
1895     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1896   #elif  (defined PARISC)
1897     static  Elf32_Half running_arch_code=EM_PARISC;
1898   #elif  (defined MIPS)
1899     static  Elf32_Half running_arch_code=EM_MIPS;
1900   #elif  (defined M68K)
1901     static  Elf32_Half running_arch_code=EM_68K;
1902   #else
1903     #error Method os::dll_load requires that one of following is defined:\
1904          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1905   #endif
1906 
1907   // Identify compatability class for VM's architecture and library's architecture
1908   // Obtain string descriptions for architectures
1909 
1910   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1911   int running_arch_index=-1;
1912 
1913   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1914     if (running_arch_code == arch_array[i].code) {
1915       running_arch_index    = i;
1916     }
1917     if (lib_arch.code == arch_array[i].code) {
1918       lib_arch.compat_class = arch_array[i].compat_class;
1919       lib_arch.name         = arch_array[i].name;
1920     }
1921   }
1922 
1923   assert(running_arch_index != -1,
1924     "Didn't find running architecture code (running_arch_code) in arch_array");
1925   if (running_arch_index == -1) {
1926     // Even though running architecture detection failed
1927     // we may still continue with reporting dlerror() message
1928     return NULL;
1929   }
1930 
1931   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1932     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1933     return NULL;
1934   }
1935 
1936 #ifndef S390
1937   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1938     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1939     return NULL;
1940   }
1941 #endif // !S390
1942 
1943   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1944     if ( lib_arch.name!=NULL ) {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1947         lib_arch.name, arch_array[running_arch_index].name);
1948     } else {
1949       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1951         lib_arch.code,
1952         arch_array[running_arch_index].name);
1953     }
1954   }
1955 
1956   return NULL;
1957 }
1958 
1959 /*
1960  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1961  * chances are you might want to run the generated bits against glibc-2.0
1962  * libdl.so, so always use locking for any version of glibc.
1963  */
1964 void* os::dll_lookup(void* handle, const char* name) {
1965   pthread_mutex_lock(&dl_mutex);
1966   void* res = dlsym(handle, name);
1967   pthread_mutex_unlock(&dl_mutex);
1968   return res;
1969 }
1970 
1971 
1972 static bool _print_ascii_file(const char* filename, outputStream* st) {
1973   int fd = ::open(filename, O_RDONLY);
1974   if (fd == -1) {
1975      return false;
1976   }
1977 
1978   char buf[32];
1979   int bytes;
1980   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1981     st->print_raw(buf, bytes);
1982   }
1983 
1984   ::close(fd);
1985 
1986   return true;
1987 }
1988 
1989 void os::print_dll_info(outputStream *st) {
1990    st->print_cr("Dynamic libraries:");
1991 
1992    char fname[32];
1993    pid_t pid = os::Linux::gettid();
1994 
1995    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1996 
1997    if (!_print_ascii_file(fname, st)) {
1998      st->print("Can not get library information for pid = %d\n", pid);
1999    }
2000 }
2001 
2002 void os::print_os_info_brief(outputStream* st) {
2003   os::Linux::print_distro_info(st);
2004 
2005   os::Posix::print_uname_info(st);
2006 
2007   os::Linux::print_libversion_info(st);
2008 
2009 }
2010 
2011 void os::print_os_info(outputStream* st) {
2012   st->print("OS:");
2013 
2014   os::Linux::print_distro_info(st);
2015 
2016   os::Posix::print_uname_info(st);
2017 
2018   // Print warning if unsafe chroot environment detected
2019   if (unsafe_chroot_detected) {
2020     st->print("WARNING!! ");
2021     st->print_cr(unstable_chroot_error);
2022   }
2023 
2024   os::Linux::print_libversion_info(st);
2025 
2026   os::Posix::print_rlimit_info(st);
2027 
2028   os::Posix::print_load_average(st);
2029 
2030   os::Linux::print_full_memory_info(st);
2031 }
2032 
2033 // Try to identify popular distros.
2034 // Most Linux distributions have /etc/XXX-release file, which contains
2035 // the OS version string. Some have more than one /etc/XXX-release file
2036 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2037 // so the order is important.
2038 void os::Linux::print_distro_info(outputStream* st) {
2039   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040       !_print_ascii_file("/etc/sun-release", st) &&
2041       !_print_ascii_file("/etc/redhat-release", st) &&
2042       !_print_ascii_file("/etc/SuSE-release", st) &&
2043       !_print_ascii_file("/etc/turbolinux-release", st) &&
2044       !_print_ascii_file("/etc/gentoo-release", st) &&
2045       !_print_ascii_file("/etc/debian_version", st) &&
2046       !_print_ascii_file("/etc/ltib-release", st) &&
2047       !_print_ascii_file("/etc/angstrom-version", st)) {
2048       st->print("Linux");
2049   }
2050   st->cr();
2051 }
2052 
2053 void os::Linux::print_libversion_info(outputStream* st) {
2054   // libc, pthread
2055   st->print("libc:");
2056   st->print(os::Linux::glibc_version()); st->print(" ");
2057   st->print(os::Linux::libpthread_version()); st->print(" ");
2058   if (os::Linux::is_LinuxThreads()) {
2059      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2060   }
2061   st->cr();
2062 }
2063 
2064 void os::Linux::print_full_memory_info(outputStream* st) {
2065    st->print("\n/proc/meminfo:\n");
2066    _print_ascii_file("/proc/meminfo", st);
2067    st->cr();
2068 }
2069 
2070 void os::print_memory_info(outputStream* st) {
2071 
2072   st->print("Memory:");
2073   st->print(" %dk page", os::vm_page_size()>>10);
2074 
2075   // values in struct sysinfo are "unsigned long"
2076   struct sysinfo si;
2077   sysinfo(&si);
2078 
2079   st->print(", physical " UINT64_FORMAT "k",
2080             os::physical_memory() >> 10);
2081   st->print("(" UINT64_FORMAT "k free)",
2082             os::available_memory() >> 10);
2083   st->print(", swap " UINT64_FORMAT "k",
2084             ((jlong)si.totalswap * si.mem_unit) >> 10);
2085   st->print("(" UINT64_FORMAT "k free)",
2086             ((jlong)si.freeswap * si.mem_unit) >> 10);
2087   st->cr();
2088 }
2089 
2090 void os::pd_print_cpu_info(outputStream* st) {
2091   st->print("\n/proc/cpuinfo:\n");
2092   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2093     st->print("  <Not Available>");
2094   }
2095   st->cr();
2096 }
2097 
2098 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2099 // but they're the same for all the linux arch that we support
2100 // and they're the same for solaris but there's no common place to put this.
2101 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2102                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2103                           "ILL_COPROC", "ILL_BADSTK" };
2104 
2105 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2106                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2107                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2108 
2109 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2110 
2111 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2112 
2113 void os::print_siginfo(outputStream* st, void* siginfo) {
2114   st->print("siginfo:");
2115 
2116   const int buflen = 100;
2117   char buf[buflen];
2118   siginfo_t *si = (siginfo_t*)siginfo;
2119   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2120   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2121     st->print("si_errno=%s", buf);
2122   } else {
2123     st->print("si_errno=%d", si->si_errno);
2124   }
2125   const int c = si->si_code;
2126   assert(c > 0, "unexpected si_code");
2127   switch (si->si_signo) {
2128   case SIGILL:
2129     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2130     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2131     break;
2132   case SIGFPE:
2133     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2134     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2135     break;
2136   case SIGSEGV:
2137     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2138     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2139     break;
2140   case SIGBUS:
2141     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2142     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2143     break;
2144   default:
2145     st->print(", si_code=%d", si->si_code);
2146     // no si_addr
2147   }
2148 
2149   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2150       UseSharedSpaces) {
2151     FileMapInfo* mapinfo = FileMapInfo::current_info();
2152     if (mapinfo->is_in_shared_space(si->si_addr)) {
2153       st->print("\n\nError accessing class data sharing archive."   \
2154                 " Mapped file inaccessible during execution, "      \
2155                 " possible disk/network problem.");
2156     }
2157   }
2158   st->cr();
2159 }
2160 
2161 
2162 static void print_signal_handler(outputStream* st, int sig,
2163                                  char* buf, size_t buflen);
2164 
2165 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2166   st->print_cr("Signal Handlers:");
2167   print_signal_handler(st, SIGSEGV, buf, buflen);
2168   print_signal_handler(st, SIGBUS , buf, buflen);
2169   print_signal_handler(st, SIGFPE , buf, buflen);
2170   print_signal_handler(st, SIGPIPE, buf, buflen);
2171   print_signal_handler(st, SIGXFSZ, buf, buflen);
2172   print_signal_handler(st, SIGILL , buf, buflen);
2173   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2174   print_signal_handler(st, SR_signum, buf, buflen);
2175   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2176   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2177   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2178   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2179 }
2180 
2181 static char saved_jvm_path[MAXPATHLEN] = {0};
2182 
2183 // Find the full path to the current module, libjvm.so
2184 void os::jvm_path(char *buf, jint buflen) {
2185   // Error checking.
2186   if (buflen < MAXPATHLEN) {
2187     assert(false, "must use a large-enough buffer");
2188     buf[0] = '\0';
2189     return;
2190   }
2191   // Lazy resolve the path to current module.
2192   if (saved_jvm_path[0] != 0) {
2193     strcpy(buf, saved_jvm_path);
2194     return;
2195   }
2196 
2197   char dli_fname[MAXPATHLEN];
2198   bool ret = dll_address_to_library_name(
2199                 CAST_FROM_FN_PTR(address, os::jvm_path),
2200                 dli_fname, sizeof(dli_fname), NULL);
2201   assert(ret != 0, "cannot locate libjvm");
2202   char *rp = realpath(dli_fname, buf);
2203   if (rp == NULL)
2204     return;
2205 
2206   if (Arguments::created_by_gamma_launcher()) {
2207     // Support for the gamma launcher.  Typical value for buf is
2208     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2209     // the right place in the string, then assume we are installed in a JDK and
2210     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2211     // up the path so it looks like libjvm.so is installed there (append a
2212     // fake suffix hotspot/libjvm.so).
2213     const char *p = buf + strlen(buf) - 1;
2214     for (int count = 0; p > buf && count < 5; ++count) {
2215       for (--p; p > buf && *p != '/'; --p)
2216         /* empty */ ;
2217     }
2218 
2219     if (strncmp(p, "/jre/lib/", 9) != 0) {
2220       // Look for JAVA_HOME in the environment.
2221       char* java_home_var = ::getenv("JAVA_HOME");
2222       if (java_home_var != NULL && java_home_var[0] != 0) {
2223         char* jrelib_p;
2224         int len;
2225 
2226         // Check the current module name "libjvm.so".
2227         p = strrchr(buf, '/');
2228         assert(strstr(p, "/libjvm") == p, "invalid library name");
2229 
2230         rp = realpath(java_home_var, buf);
2231         if (rp == NULL)
2232           return;
2233 
2234         // determine if this is a legacy image or modules image
2235         // modules image doesn't have "jre" subdirectory
2236         len = strlen(buf);
2237         jrelib_p = buf + len;
2238         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2239         if (0 != access(buf, F_OK)) {
2240           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2241         }
2242 
2243         if (0 == access(buf, F_OK)) {
2244           // Use current module name "libjvm.so"
2245           len = strlen(buf);
2246           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2247         } else {
2248           // Go back to path of .so
2249           rp = realpath(dli_fname, buf);
2250           if (rp == NULL)
2251             return;
2252         }
2253       }
2254     }
2255   }
2256 
2257   strcpy(saved_jvm_path, buf);
2258 }
2259 
2260 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2261   // no prefix required, not even "_"
2262 }
2263 
2264 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2265   // no suffix required
2266 }
2267 
2268 ////////////////////////////////////////////////////////////////////////////////
2269 // sun.misc.Signal support
2270 
2271 static volatile jint sigint_count = 0;
2272 
2273 static void
2274 UserHandler(int sig, void *siginfo, void *context) {
2275   // 4511530 - sem_post is serialized and handled by the manager thread. When
2276   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2277   // don't want to flood the manager thread with sem_post requests.
2278   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2279       return;
2280 
2281   // Ctrl-C is pressed during error reporting, likely because the error
2282   // handler fails to abort. Let VM die immediately.
2283   if (sig == SIGINT && is_error_reported()) {
2284      os::die();
2285   }
2286 
2287   os::signal_notify(sig);
2288 }
2289 
2290 void* os::user_handler() {
2291   return CAST_FROM_FN_PTR(void*, UserHandler);
2292 }
2293 
2294 extern "C" {
2295   typedef void (*sa_handler_t)(int);
2296   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2297 }
2298 
2299 void* os::signal(int signal_number, void* handler) {
2300   struct sigaction sigAct, oldSigAct;
2301 
2302   sigfillset(&(sigAct.sa_mask));
2303   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2304   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2305 
2306   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2307     // -1 means registration failed
2308     return (void *)-1;
2309   }
2310 
2311   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2312 }
2313 
2314 void os::signal_raise(int signal_number) {
2315   ::raise(signal_number);
2316 }
2317 
2318 /*
2319  * The following code is moved from os.cpp for making this
2320  * code platform specific, which it is by its very nature.
2321  */
2322 
2323 // Will be modified when max signal is changed to be dynamic
2324 int os::sigexitnum_pd() {
2325   return NSIG;
2326 }
2327 
2328 // a counter for each possible signal value
2329 static volatile jint pending_signals[NSIG+1] = { 0 };
2330 
2331 // Linux(POSIX) specific hand shaking semaphore.
2332 static sem_t sig_sem;
2333 
2334 void os::signal_init_pd() {
2335   // Initialize signal structures
2336   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2337 
2338   // Initialize signal semaphore
2339   ::sem_init(&sig_sem, 0, 0);
2340 }
2341 
2342 void os::signal_notify(int sig) {
2343   Atomic::inc(&pending_signals[sig]);
2344   ::sem_post(&sig_sem);
2345 }
2346 
2347 static int check_pending_signals(bool wait) {
2348   Atomic::store(0, &sigint_count);
2349   for (;;) {
2350     for (int i = 0; i < NSIG + 1; i++) {
2351       jint n = pending_signals[i];
2352       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2353         return i;
2354       }
2355     }
2356     if (!wait) {
2357       return -1;
2358     }
2359     JavaThread *thread = JavaThread::current();
2360     ThreadBlockInVM tbivm(thread);
2361 
2362     bool threadIsSuspended;
2363     do {
2364       thread->set_suspend_equivalent();
2365       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2366       ::sem_wait(&sig_sem);
2367 
2368       // were we externally suspended while we were waiting?
2369       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2370       if (threadIsSuspended) {
2371         //
2372         // The semaphore has been incremented, but while we were waiting
2373         // another thread suspended us. We don't want to continue running
2374         // while suspended because that would surprise the thread that
2375         // suspended us.
2376         //
2377         ::sem_post(&sig_sem);
2378 
2379         thread->java_suspend_self();
2380       }
2381     } while (threadIsSuspended);
2382   }
2383 }
2384 
2385 int os::signal_lookup() {
2386   return check_pending_signals(false);
2387 }
2388 
2389 int os::signal_wait() {
2390   return check_pending_signals(true);
2391 }
2392 
2393 ////////////////////////////////////////////////////////////////////////////////
2394 // Virtual Memory
2395 
2396 int os::vm_page_size() {
2397   // Seems redundant as all get out
2398   assert(os::Linux::page_size() != -1, "must call os::init");
2399   return os::Linux::page_size();
2400 }
2401 
2402 // Solaris allocates memory by pages.
2403 int os::vm_allocation_granularity() {
2404   assert(os::Linux::page_size() != -1, "must call os::init");
2405   return os::Linux::page_size();
2406 }
2407 
2408 // Rationale behind this function:
2409 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2410 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2411 //  samples for JITted code. Here we create private executable mapping over the code cache
2412 //  and then we can use standard (well, almost, as mapping can change) way to provide
2413 //  info for the reporting script by storing timestamp and location of symbol
2414 void linux_wrap_code(char* base, size_t size) {
2415   static volatile jint cnt = 0;
2416 
2417   if (!UseOprofile) {
2418     return;
2419   }
2420 
2421   char buf[PATH_MAX+1];
2422   int num = Atomic::add(1, &cnt);
2423 
2424   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2425            os::get_temp_directory(), os::current_process_id(), num);
2426   unlink(buf);
2427 
2428   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2429 
2430   if (fd != -1) {
2431     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2432     if (rv != (off_t)-1) {
2433       if (::write(fd, "", 1) == 1) {
2434         mmap(base, size,
2435              PROT_READ|PROT_WRITE|PROT_EXEC,
2436              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2437       }
2438     }
2439     ::close(fd);
2440     unlink(buf);
2441   }
2442 }
2443 
2444 // NOTE: Linux kernel does not really reserve the pages for us.
2445 //       All it does is to check if there are enough free pages
2446 //       left at the time of mmap(). This could be a potential
2447 //       problem.
2448 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2449   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2450   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2451                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2452   if (res != (uintptr_t) MAP_FAILED) {
2453     if (UseNUMAInterleaving) {
2454       numa_make_global(addr, size);
2455     }
2456     return true;
2457   }
2458   return false;
2459 }
2460 
2461 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2462 #ifndef MAP_HUGETLB
2463 #define MAP_HUGETLB 0x40000
2464 #endif
2465 
2466 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2467 #ifndef MADV_HUGEPAGE
2468 #define MADV_HUGEPAGE 14
2469 #endif
2470 
2471 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2472                        bool exec) {
2473   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2474     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2475     uintptr_t res =
2476       (uintptr_t) ::mmap(addr, size, prot,
2477                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2478                          -1, 0);
2479     if (res != (uintptr_t) MAP_FAILED) {
2480       if (UseNUMAInterleaving) {
2481         numa_make_global(addr, size);
2482       }
2483       return true;
2484     }
2485     // Fall through and try to use small pages
2486   }
2487 
2488   if (commit_memory(addr, size, exec)) {
2489     realign_memory(addr, size, alignment_hint);
2490     return true;
2491   }
2492   return false;
2493 }
2494 
2495 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2496   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2497     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2498     // be supported or the memory may already be backed by huge pages.
2499     ::madvise(addr, bytes, MADV_HUGEPAGE);
2500   }
2501 }
2502 
2503 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2504   // This method works by doing an mmap over an existing mmaping and effectively discarding
2505   // the existing pages. However it won't work for SHM-based large pages that cannot be
2506   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2507   // small pages on top of the SHM segment. This method always works for small pages, so we
2508   // allow that in any case.
2509   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2510     commit_memory(addr, bytes, alignment_hint, false);
2511   }
2512 }
2513 
2514 void os::numa_make_global(char *addr, size_t bytes) {
2515   Linux::numa_interleave_memory(addr, bytes);
2516 }
2517 
2518 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2519   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2520 }
2521 
2522 bool os::numa_topology_changed()   { return false; }
2523 
2524 size_t os::numa_get_groups_num() {
2525   int max_node = Linux::numa_max_node();
2526   return max_node > 0 ? max_node + 1 : 1;
2527 }
2528 
2529 int os::numa_get_group_id() {
2530   int cpu_id = Linux::sched_getcpu();
2531   if (cpu_id != -1) {
2532     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2533     if (lgrp_id != -1) {
2534       return lgrp_id;
2535     }
2536   }
2537   return 0;
2538 }
2539 
2540 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2541   for (size_t i = 0; i < size; i++) {
2542     ids[i] = i;
2543   }
2544   return size;
2545 }
2546 
2547 bool os::get_page_info(char *start, page_info* info) {
2548   return false;
2549 }
2550 
2551 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2552   return end;
2553 }
2554 
2555 
2556 int os::Linux::sched_getcpu_syscall(void) {
2557   unsigned int cpu;
2558   int retval = -1;
2559 
2560 #if defined(IA32)
2561 # ifndef SYS_getcpu
2562 # define SYS_getcpu 318
2563 # endif
2564   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2565 #elif defined(AMD64)
2566 // Unfortunately we have to bring all these macros here from vsyscall.h
2567 // to be able to compile on old linuxes.
2568 # define __NR_vgetcpu 2
2569 # define VSYSCALL_START (-10UL << 20)
2570 # define VSYSCALL_SIZE 1024
2571 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2572   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2573   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2574   retval = vgetcpu(&cpu, NULL, NULL);
2575 #endif
2576 
2577   return (retval == -1) ? retval : cpu;
2578 }
2579 
2580 // Something to do with the numa-aware allocator needs these symbols
2581 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2582 extern "C" JNIEXPORT void numa_error(char *where) { }
2583 extern "C" JNIEXPORT int fork1() { return fork(); }
2584 
2585 
2586 // If we are running with libnuma version > 2, then we should
2587 // be trying to use symbols with versions 1.1
2588 // If we are running with earlier version, which did not have symbol versions,
2589 // we should use the base version.
2590 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2591   void *f = dlvsym(handle, name, "libnuma_1.1");
2592   if (f == NULL) {
2593     f = dlsym(handle, name);
2594   }
2595   return f;
2596 }
2597 
2598 bool os::Linux::libnuma_init() {
2599   // sched_getcpu() should be in libc.
2600   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2601                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2602 
2603   // If it's not, try a direct syscall.
2604   if (sched_getcpu() == -1)
2605     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2606 
2607   if (sched_getcpu() != -1) { // Does it work?
2608     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2609     if (handle != NULL) {
2610       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2611                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2612       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2613                                        libnuma_dlsym(handle, "numa_max_node")));
2614       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2615                                         libnuma_dlsym(handle, "numa_available")));
2616       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2617                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2618       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2619                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2620 
2621 
2622       if (numa_available() != -1) {
2623         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2624         // Create a cpu -> node mapping
2625         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2626         rebuild_cpu_to_node_map();
2627         return true;
2628       }
2629     }
2630   }
2631   return false;
2632 }
2633 
2634 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2635 // The table is later used in get_node_by_cpu().
2636 void os::Linux::rebuild_cpu_to_node_map() {
2637   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2638                               // in libnuma (possible values are starting from 16,
2639                               // and continuing up with every other power of 2, but less
2640                               // than the maximum number of CPUs supported by kernel), and
2641                               // is a subject to change (in libnuma version 2 the requirements
2642                               // are more reasonable) we'll just hardcode the number they use
2643                               // in the library.
2644   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2645 
2646   size_t cpu_num = os::active_processor_count();
2647   size_t cpu_map_size = NCPUS / BitsPerCLong;
2648   size_t cpu_map_valid_size =
2649     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2650 
2651   cpu_to_node()->clear();
2652   cpu_to_node()->at_grow(cpu_num - 1);
2653   size_t node_num = numa_get_groups_num();
2654 
2655   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2656   for (size_t i = 0; i < node_num; i++) {
2657     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2658       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2659         if (cpu_map[j] != 0) {
2660           for (size_t k = 0; k < BitsPerCLong; k++) {
2661             if (cpu_map[j] & (1UL << k)) {
2662               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2663             }
2664           }
2665         }
2666       }
2667     }
2668   }
2669   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2670 }
2671 
2672 int os::Linux::get_node_by_cpu(int cpu_id) {
2673   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2674     return cpu_to_node()->at(cpu_id);
2675   }
2676   return -1;
2677 }
2678 
2679 GrowableArray<int>* os::Linux::_cpu_to_node;
2680 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2681 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2682 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2683 os::Linux::numa_available_func_t os::Linux::_numa_available;
2684 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2685 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2686 unsigned long* os::Linux::_numa_all_nodes;
2687 
2688 bool os::pd_uncommit_memory(char* addr, size_t size) {
2689   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2690                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2691   return res  != (uintptr_t) MAP_FAILED;
2692 }
2693 
2694 // Linux uses a growable mapping for the stack, and if the mapping for
2695 // the stack guard pages is not removed when we detach a thread the
2696 // stack cannot grow beyond the pages where the stack guard was
2697 // mapped.  If at some point later in the process the stack expands to
2698 // that point, the Linux kernel cannot expand the stack any further
2699 // because the guard pages are in the way, and a segfault occurs.
2700 //
2701 // However, it's essential not to split the stack region by unmapping
2702 // a region (leaving a hole) that's already part of the stack mapping,
2703 // so if the stack mapping has already grown beyond the guard pages at
2704 // the time we create them, we have to truncate the stack mapping.
2705 // So, we need to know the extent of the stack mapping when
2706 // create_stack_guard_pages() is called.
2707 
2708 // Find the bounds of the stack mapping.  Return true for success.
2709 //
2710 // We only need this for stacks that are growable: at the time of
2711 // writing thread stacks don't use growable mappings (i.e. those
2712 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2713 // only applies to the main thread.
2714 
2715 static
2716 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2717 
2718   char buf[128];
2719   int fd, sz;
2720 
2721   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2722     return false;
2723   }
2724 
2725   const char kw[] = "[stack]";
2726   const int kwlen = sizeof(kw)-1;
2727 
2728   // Address part of /proc/self/maps couldn't be more than 128 bytes
2729   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2730      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2731         // Extract addresses
2732         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2733            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2734            if (sp >= *bottom && sp <= *top) {
2735               ::close(fd);
2736               return true;
2737            }
2738         }
2739      }
2740   }
2741 
2742  ::close(fd);
2743   return false;
2744 }
2745 
2746 
2747 // If the (growable) stack mapping already extends beyond the point
2748 // where we're going to put our guard pages, truncate the mapping at
2749 // that point by munmap()ping it.  This ensures that when we later
2750 // munmap() the guard pages we don't leave a hole in the stack
2751 // mapping. This only affects the main/initial thread, but guard
2752 // against future OS changes
2753 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2754   uintptr_t stack_extent, stack_base;
2755   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2756   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2757       assert(os::Linux::is_initial_thread(),
2758            "growable stack in non-initial thread");
2759     if (stack_extent < (uintptr_t)addr)
2760       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2761   }
2762 
2763   return os::commit_memory(addr, size);
2764 }
2765 
2766 // If this is a growable mapping, remove the guard pages entirely by
2767 // munmap()ping them.  If not, just call uncommit_memory(). This only
2768 // affects the main/initial thread, but guard against future OS changes
2769 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2770   uintptr_t stack_extent, stack_base;
2771   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2772   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2773       assert(os::Linux::is_initial_thread(),
2774            "growable stack in non-initial thread");
2775 
2776     return ::munmap(addr, size) == 0;
2777   }
2778 
2779   return os::uncommit_memory(addr, size);
2780 }
2781 
2782 static address _highest_vm_reserved_address = NULL;
2783 
2784 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2785 // at 'requested_addr'. If there are existing memory mappings at the same
2786 // location, however, they will be overwritten. If 'fixed' is false,
2787 // 'requested_addr' is only treated as a hint, the return value may or
2788 // may not start from the requested address. Unlike Linux mmap(), this
2789 // function returns NULL to indicate failure.
2790 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2791   char * addr;
2792   int flags;
2793 
2794   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2795   if (fixed) {
2796     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2797     flags |= MAP_FIXED;
2798   }
2799 
2800   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2801   // to PROT_EXEC if executable when we commit the page.
2802   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2803                        flags, -1, 0);
2804 
2805   if (addr != MAP_FAILED) {
2806     // anon_mmap() should only get called during VM initialization,
2807     // don't need lock (actually we can skip locking even it can be called
2808     // from multiple threads, because _highest_vm_reserved_address is just a
2809     // hint about the upper limit of non-stack memory regions.)
2810     if ((address)addr + bytes > _highest_vm_reserved_address) {
2811       _highest_vm_reserved_address = (address)addr + bytes;
2812     }
2813   }
2814 
2815   return addr == MAP_FAILED ? NULL : addr;
2816 }
2817 
2818 // Don't update _highest_vm_reserved_address, because there might be memory
2819 // regions above addr + size. If so, releasing a memory region only creates
2820 // a hole in the address space, it doesn't help prevent heap-stack collision.
2821 //
2822 static int anon_munmap(char * addr, size_t size) {
2823   return ::munmap(addr, size) == 0;
2824 }
2825 
2826 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2827                          size_t alignment_hint) {
2828   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2829 }
2830 
2831 bool os::pd_release_memory(char* addr, size_t size) {
2832   return anon_munmap(addr, size);
2833 }
2834 
2835 static address highest_vm_reserved_address() {
2836   return _highest_vm_reserved_address;
2837 }
2838 
2839 static bool linux_mprotect(char* addr, size_t size, int prot) {
2840   // Linux wants the mprotect address argument to be page aligned.
2841   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2842 
2843   // According to SUSv3, mprotect() should only be used with mappings
2844   // established by mmap(), and mmap() always maps whole pages. Unaligned
2845   // 'addr' likely indicates problem in the VM (e.g. trying to change
2846   // protection of malloc'ed or statically allocated memory). Check the
2847   // caller if you hit this assert.
2848   assert(addr == bottom, "sanity check");
2849 
2850   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2851   return ::mprotect(bottom, size, prot) == 0;
2852 }
2853 
2854 // Set protections specified
2855 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2856                         bool is_committed) {
2857   unsigned int p = 0;
2858   switch (prot) {
2859   case MEM_PROT_NONE: p = PROT_NONE; break;
2860   case MEM_PROT_READ: p = PROT_READ; break;
2861   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2862   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2863   default:
2864     ShouldNotReachHere();
2865   }
2866   // is_committed is unused.
2867   return linux_mprotect(addr, bytes, p);
2868 }
2869 
2870 bool os::guard_memory(char* addr, size_t size) {
2871   return linux_mprotect(addr, size, PROT_NONE);
2872 }
2873 
2874 bool os::unguard_memory(char* addr, size_t size) {
2875   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2876 }
2877 
2878 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2879   bool result = false;
2880   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2881                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2882                   -1, 0);
2883 
2884   if (p != (void *) -1) {
2885     // We don't know if this really is a huge page or not.
2886     FILE *fp = fopen("/proc/self/maps", "r");
2887     if (fp) {
2888       while (!feof(fp)) {
2889         char chars[257];
2890         long x = 0;
2891         if (fgets(chars, sizeof(chars), fp)) {
2892           if (sscanf(chars, "%lx-%*x", &x) == 1
2893               && x == (long)p) {
2894             if (strstr (chars, "hugepage")) {
2895               result = true;
2896               break;
2897             }
2898           }
2899         }
2900       }
2901       fclose(fp);
2902     }
2903     munmap (p, page_size);
2904     if (result)
2905       return true;
2906   }
2907 
2908   if (warn) {
2909     warning("HugeTLBFS is not supported by the operating system.");
2910   }
2911 
2912   return result;
2913 }
2914 
2915 /*
2916 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2917 *
2918 * From the coredump_filter documentation:
2919 *
2920 * - (bit 0) anonymous private memory
2921 * - (bit 1) anonymous shared memory
2922 * - (bit 2) file-backed private memory
2923 * - (bit 3) file-backed shared memory
2924 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2925 *           effective only if the bit 2 is cleared)
2926 * - (bit 5) hugetlb private memory
2927 * - (bit 6) hugetlb shared memory
2928 */
2929 static void set_coredump_filter(void) {
2930   FILE *f;
2931   long cdm;
2932 
2933   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2934     return;
2935   }
2936 
2937   if (fscanf(f, "%lx", &cdm) != 1) {
2938     fclose(f);
2939     return;
2940   }
2941 
2942   rewind(f);
2943 
2944   if ((cdm & LARGEPAGES_BIT) == 0) {
2945     cdm |= LARGEPAGES_BIT;
2946     fprintf(f, "%#lx", cdm);
2947   }
2948 
2949   fclose(f);
2950 }
2951 
2952 // Large page support
2953 
2954 static size_t _large_page_size = 0;
2955 
2956 void os::large_page_init() {
2957   if (!UseLargePages) {
2958     UseHugeTLBFS = false;
2959     UseSHM = false;
2960     return;
2961   }
2962 
2963   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2964     // If UseLargePages is specified on the command line try both methods,
2965     // if it's default, then try only HugeTLBFS.
2966     if (FLAG_IS_DEFAULT(UseLargePages)) {
2967       UseHugeTLBFS = true;
2968     } else {
2969       UseHugeTLBFS = UseSHM = true;
2970     }
2971   }
2972 
2973   if (LargePageSizeInBytes) {
2974     _large_page_size = LargePageSizeInBytes;
2975   } else {
2976     // large_page_size on Linux is used to round up heap size. x86 uses either
2977     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2978     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2979     // page as large as 256M.
2980     //
2981     // Here we try to figure out page size by parsing /proc/meminfo and looking
2982     // for a line with the following format:
2983     //    Hugepagesize:     2048 kB
2984     //
2985     // If we can't determine the value (e.g. /proc is not mounted, or the text
2986     // format has been changed), we'll use the largest page size supported by
2987     // the processor.
2988 
2989 #ifndef ZERO
2990     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2991                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2992 #endif // ZERO
2993 
2994     FILE *fp = fopen("/proc/meminfo", "r");
2995     if (fp) {
2996       while (!feof(fp)) {
2997         int x = 0;
2998         char buf[16];
2999         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3000           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3001             _large_page_size = x * K;
3002             break;
3003           }
3004         } else {
3005           // skip to next line
3006           for (;;) {
3007             int ch = fgetc(fp);
3008             if (ch == EOF || ch == (int)'\n') break;
3009           }
3010         }
3011       }
3012       fclose(fp);
3013     }
3014   }
3015 
3016   // print a warning if any large page related flag is specified on command line
3017   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3018 
3019   const size_t default_page_size = (size_t)Linux::page_size();
3020   if (_large_page_size > default_page_size) {
3021     _page_sizes[0] = _large_page_size;
3022     _page_sizes[1] = default_page_size;
3023     _page_sizes[2] = 0;
3024   }
3025   UseHugeTLBFS = UseHugeTLBFS &&
3026                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3027 
3028   if (UseHugeTLBFS)
3029     UseSHM = false;
3030 
3031   UseLargePages = UseHugeTLBFS || UseSHM;
3032 
3033   set_coredump_filter();
3034 }
3035 
3036 #ifndef SHM_HUGETLB
3037 #define SHM_HUGETLB 04000
3038 #endif
3039 
3040 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3041   // "exec" is passed in but not used.  Creating the shared image for
3042   // the code cache doesn't have an SHM_X executable permission to check.
3043   assert(UseLargePages && UseSHM, "only for SHM large pages");
3044 
3045   key_t key = IPC_PRIVATE;
3046   char *addr;
3047 
3048   bool warn_on_failure = UseLargePages &&
3049                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3050                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3051                         );
3052   char msg[128];
3053 
3054   // Create a large shared memory region to attach to based on size.
3055   // Currently, size is the total size of the heap
3056   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3057   if (shmid == -1) {
3058      // Possible reasons for shmget failure:
3059      // 1. shmmax is too small for Java heap.
3060      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3061      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3062      // 2. not enough large page memory.
3063      //    > check available large pages: cat /proc/meminfo
3064      //    > increase amount of large pages:
3065      //          echo new_value > /proc/sys/vm/nr_hugepages
3066      //      Note 1: different Linux may use different name for this property,
3067      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3068      //      Note 2: it's possible there's enough physical memory available but
3069      //            they are so fragmented after a long run that they can't
3070      //            coalesce into large pages. Try to reserve large pages when
3071      //            the system is still "fresh".
3072      if (warn_on_failure) {
3073        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3074        warning(msg);
3075      }
3076      return NULL;
3077   }
3078 
3079   // attach to the region
3080   addr = (char*)shmat(shmid, req_addr, 0);
3081   int err = errno;
3082 
3083   // Remove shmid. If shmat() is successful, the actual shared memory segment
3084   // will be deleted when it's detached by shmdt() or when the process
3085   // terminates. If shmat() is not successful this will remove the shared
3086   // segment immediately.
3087   shmctl(shmid, IPC_RMID, NULL);
3088 
3089   if ((intptr_t)addr == -1) {
3090      if (warn_on_failure) {
3091        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3092        warning(msg);
3093      }
3094      return NULL;
3095   }
3096 
3097   if ((addr != NULL) && UseNUMAInterleaving) {
3098     numa_make_global(addr, bytes);
3099   }
3100 
3101   return addr;
3102 }
3103 
3104 bool os::release_memory_special(char* base, size_t bytes) {
3105   // detaching the SHM segment will also delete it, see reserve_memory_special()
3106   int rslt = shmdt(base);
3107   return rslt == 0;
3108 }
3109 
3110 size_t os::large_page_size() {
3111   return _large_page_size;
3112 }
3113 
3114 // HugeTLBFS allows application to commit large page memory on demand;
3115 // with SysV SHM the entire memory region must be allocated as shared
3116 // memory.
3117 bool os::can_commit_large_page_memory() {
3118   return UseHugeTLBFS;
3119 }
3120 
3121 bool os::can_execute_large_page_memory() {
3122   return UseHugeTLBFS;
3123 }
3124 
3125 // Reserve memory at an arbitrary address, only if that area is
3126 // available (and not reserved for something else).
3127 
3128 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3129   const int max_tries = 10;
3130   char* base[max_tries];
3131   size_t size[max_tries];
3132   const size_t gap = 0x000000;
3133 
3134   // Assert only that the size is a multiple of the page size, since
3135   // that's all that mmap requires, and since that's all we really know
3136   // about at this low abstraction level.  If we need higher alignment,
3137   // we can either pass an alignment to this method or verify alignment
3138   // in one of the methods further up the call chain.  See bug 5044738.
3139   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3140 
3141   // Repeatedly allocate blocks until the block is allocated at the
3142   // right spot. Give up after max_tries. Note that reserve_memory() will
3143   // automatically update _highest_vm_reserved_address if the call is
3144   // successful. The variable tracks the highest memory address every reserved
3145   // by JVM. It is used to detect heap-stack collision if running with
3146   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3147   // space than needed, it could confuse the collision detecting code. To
3148   // solve the problem, save current _highest_vm_reserved_address and
3149   // calculate the correct value before return.
3150   address old_highest = _highest_vm_reserved_address;
3151 
3152   // Linux mmap allows caller to pass an address as hint; give it a try first,
3153   // if kernel honors the hint then we can return immediately.
3154   char * addr = anon_mmap(requested_addr, bytes, false);
3155   if (addr == requested_addr) {
3156      return requested_addr;
3157   }
3158 
3159   if (addr != NULL) {
3160      // mmap() is successful but it fails to reserve at the requested address
3161      anon_munmap(addr, bytes);
3162   }
3163 
3164   int i;
3165   for (i = 0; i < max_tries; ++i) {
3166     base[i] = reserve_memory(bytes);
3167 
3168     if (base[i] != NULL) {
3169       // Is this the block we wanted?
3170       if (base[i] == requested_addr) {
3171         size[i] = bytes;
3172         break;
3173       }
3174 
3175       // Does this overlap the block we wanted? Give back the overlapped
3176       // parts and try again.
3177 
3178       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3179       if (top_overlap >= 0 && top_overlap < bytes) {
3180         unmap_memory(base[i], top_overlap);
3181         base[i] += top_overlap;
3182         size[i] = bytes - top_overlap;
3183       } else {
3184         size_t bottom_overlap = base[i] + bytes - requested_addr;
3185         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3186           unmap_memory(requested_addr, bottom_overlap);
3187           size[i] = bytes - bottom_overlap;
3188         } else {
3189           size[i] = bytes;
3190         }
3191       }
3192     }
3193   }
3194 
3195   // Give back the unused reserved pieces.
3196 
3197   for (int j = 0; j < i; ++j) {
3198     if (base[j] != NULL) {
3199       unmap_memory(base[j], size[j]);
3200     }
3201   }
3202 
3203   if (i < max_tries) {
3204     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3205     return requested_addr;
3206   } else {
3207     _highest_vm_reserved_address = old_highest;
3208     return NULL;
3209   }
3210 }
3211 
3212 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3213   return ::read(fd, buf, nBytes);
3214 }
3215 
3216 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3217 // Solaris uses poll(), linux uses park().
3218 // Poll() is likely a better choice, assuming that Thread.interrupt()
3219 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3220 // SIGSEGV, see 4355769.
3221 
3222 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3223   assert(thread == Thread::current(),  "thread consistency check");
3224 
3225   ParkEvent * const slp = thread->_SleepEvent ;
3226   slp->reset() ;
3227   OrderAccess::fence() ;
3228 
3229   if (interruptible) {
3230     jlong prevtime = javaTimeNanos();
3231 
3232     for (;;) {
3233       if (os::is_interrupted(thread, true)) {
3234         return OS_INTRPT;
3235       }
3236 
3237       jlong newtime = javaTimeNanos();
3238 
3239       if (newtime - prevtime < 0) {
3240         // time moving backwards, should only happen if no monotonic clock
3241         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3242         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3243       } else {
3244         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3245       }
3246 
3247       if(millis <= 0) {
3248         return OS_OK;
3249       }
3250 
3251       prevtime = newtime;
3252 
3253       {
3254         assert(thread->is_Java_thread(), "sanity check");
3255         JavaThread *jt = (JavaThread *) thread;
3256         ThreadBlockInVM tbivm(jt);
3257         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3258 
3259         jt->set_suspend_equivalent();
3260         // cleared by handle_special_suspend_equivalent_condition() or
3261         // java_suspend_self() via check_and_wait_while_suspended()
3262 
3263         slp->park(millis);
3264 
3265         // were we externally suspended while we were waiting?
3266         jt->check_and_wait_while_suspended();
3267       }
3268     }
3269   } else {
3270     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3271     jlong prevtime = javaTimeNanos();
3272 
3273     for (;;) {
3274       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3275       // the 1st iteration ...
3276       jlong newtime = javaTimeNanos();
3277 
3278       if (newtime - prevtime < 0) {
3279         // time moving backwards, should only happen if no monotonic clock
3280         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3281         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3282       } else {
3283         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3284       }
3285 
3286       if(millis <= 0) break ;
3287 
3288       prevtime = newtime;
3289       slp->park(millis);
3290     }
3291     return OS_OK ;
3292   }
3293 }
3294 
3295 int os::naked_sleep() {
3296   // %% make the sleep time an integer flag. for now use 1 millisec.
3297   return os::sleep(Thread::current(), 1, false);
3298 }
3299 
3300 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3301 void os::infinite_sleep() {
3302   while (true) {    // sleep forever ...
3303     ::sleep(100);   // ... 100 seconds at a time
3304   }
3305 }
3306 
3307 // Used to convert frequent JVM_Yield() to nops
3308 bool os::dont_yield() {
3309   return DontYieldALot;
3310 }
3311 
3312 void os::yield() {
3313   sched_yield();
3314 }
3315 
3316 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3317 
3318 void os::yield_all(int attempts) {
3319   // Yields to all threads, including threads with lower priorities
3320   // Threads on Linux are all with same priority. The Solaris style
3321   // os::yield_all() with nanosleep(1ms) is not necessary.
3322   sched_yield();
3323 }
3324 
3325 // Called from the tight loops to possibly influence time-sharing heuristics
3326 void os::loop_breaker(int attempts) {
3327   os::yield_all(attempts);
3328 }
3329 
3330 ////////////////////////////////////////////////////////////////////////////////
3331 // thread priority support
3332 
3333 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3334 // only supports dynamic priority, static priority must be zero. For real-time
3335 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3336 // However, for large multi-threaded applications, SCHED_RR is not only slower
3337 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3338 // of 5 runs - Sep 2005).
3339 //
3340 // The following code actually changes the niceness of kernel-thread/LWP. It
3341 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3342 // not the entire user process, and user level threads are 1:1 mapped to kernel
3343 // threads. It has always been the case, but could change in the future. For
3344 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3345 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3346 
3347 int os::java_to_os_priority[CriticalPriority + 1] = {
3348   19,              // 0 Entry should never be used
3349 
3350    4,              // 1 MinPriority
3351    3,              // 2
3352    2,              // 3
3353 
3354    1,              // 4
3355    0,              // 5 NormPriority
3356   -1,              // 6
3357 
3358   -2,              // 7
3359   -3,              // 8
3360   -4,              // 9 NearMaxPriority
3361 
3362   -5,              // 10 MaxPriority
3363 
3364   -5               // 11 CriticalPriority
3365 };
3366 
3367 static int prio_init() {
3368   if (ThreadPriorityPolicy == 1) {
3369     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3370     // if effective uid is not root. Perhaps, a more elegant way of doing
3371     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3372     if (geteuid() != 0) {
3373       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3374         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3375       }
3376       ThreadPriorityPolicy = 0;
3377     }
3378   }
3379   if (UseCriticalJavaThreadPriority) {
3380     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3381   }
3382   return 0;
3383 }
3384 
3385 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3386   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3387 
3388   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3389   return (ret == 0) ? OS_OK : OS_ERR;
3390 }
3391 
3392 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3393   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3394     *priority_ptr = java_to_os_priority[NormPriority];
3395     return OS_OK;
3396   }
3397 
3398   errno = 0;
3399   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3400   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3401 }
3402 
3403 // Hint to the underlying OS that a task switch would not be good.
3404 // Void return because it's a hint and can fail.
3405 void os::hint_no_preempt() {}
3406 
3407 ////////////////////////////////////////////////////////////////////////////////
3408 // suspend/resume support
3409 
3410 //  the low-level signal-based suspend/resume support is a remnant from the
3411 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3412 //  within hotspot. Now there is a single use-case for this:
3413 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3414 //      that runs in the watcher thread.
3415 //  The remaining code is greatly simplified from the more general suspension
3416 //  code that used to be used.
3417 //
3418 //  The protocol is quite simple:
3419 //  - suspend:
3420 //      - sends a signal to the target thread
3421 //      - polls the suspend state of the osthread using a yield loop
3422 //      - target thread signal handler (SR_handler) sets suspend state
3423 //        and blocks in sigsuspend until continued
3424 //  - resume:
3425 //      - sets target osthread state to continue
3426 //      - sends signal to end the sigsuspend loop in the SR_handler
3427 //
3428 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3429 //
3430 
3431 static void resume_clear_context(OSThread *osthread) {
3432   osthread->set_ucontext(NULL);
3433   osthread->set_siginfo(NULL);
3434 
3435   // notify the suspend action is completed, we have now resumed
3436   osthread->sr.clear_suspended();
3437 }
3438 
3439 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3440   osthread->set_ucontext(context);
3441   osthread->set_siginfo(siginfo);
3442 }
3443 
3444 //
3445 // Handler function invoked when a thread's execution is suspended or
3446 // resumed. We have to be careful that only async-safe functions are
3447 // called here (Note: most pthread functions are not async safe and
3448 // should be avoided.)
3449 //
3450 // Note: sigwait() is a more natural fit than sigsuspend() from an
3451 // interface point of view, but sigwait() prevents the signal hander
3452 // from being run. libpthread would get very confused by not having
3453 // its signal handlers run and prevents sigwait()'s use with the
3454 // mutex granting granting signal.
3455 //
3456 // Currently only ever called on the VMThread
3457 //
3458 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3459   // Save and restore errno to avoid confusing native code with EINTR
3460   // after sigsuspend.
3461   int old_errno = errno;
3462 
3463   Thread* thread = Thread::current();
3464   OSThread* osthread = thread->osthread();
3465   assert(thread->is_VM_thread(), "Must be VMThread");
3466   // read current suspend action
3467   int action = osthread->sr.suspend_action();
3468   if (action == SR_SUSPEND) {
3469     suspend_save_context(osthread, siginfo, context);
3470 
3471     // Notify the suspend action is about to be completed. do_suspend()
3472     // waits until SR_SUSPENDED is set and then returns. We will wait
3473     // here for a resume signal and that completes the suspend-other
3474     // action. do_suspend/do_resume is always called as a pair from
3475     // the same thread - so there are no races
3476 
3477     // notify the caller
3478     osthread->sr.set_suspended();
3479 
3480     sigset_t suspend_set;  // signals for sigsuspend()
3481 
3482     // get current set of blocked signals and unblock resume signal
3483     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3484     sigdelset(&suspend_set, SR_signum);
3485 
3486     // wait here until we are resumed
3487     do {
3488       sigsuspend(&suspend_set);
3489       // ignore all returns until we get a resume signal
3490     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3491 
3492     resume_clear_context(osthread);
3493 
3494   } else {
3495     assert(action == SR_CONTINUE, "unexpected sr action");
3496     // nothing special to do - just leave the handler
3497   }
3498 
3499   errno = old_errno;
3500 }
3501 
3502 
3503 static int SR_initialize() {
3504   struct sigaction act;
3505   char *s;
3506   /* Get signal number to use for suspend/resume */
3507   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3508     int sig = ::strtol(s, 0, 10);
3509     if (sig > 0 || sig < _NSIG) {
3510         SR_signum = sig;
3511     }
3512   }
3513 
3514   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3515         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3516 
3517   sigemptyset(&SR_sigset);
3518   sigaddset(&SR_sigset, SR_signum);
3519 
3520   /* Set up signal handler for suspend/resume */
3521   act.sa_flags = SA_RESTART|SA_SIGINFO;
3522   act.sa_handler = (void (*)(int)) SR_handler;
3523 
3524   // SR_signum is blocked by default.
3525   // 4528190 - We also need to block pthread restart signal (32 on all
3526   // supported Linux platforms). Note that LinuxThreads need to block
3527   // this signal for all threads to work properly. So we don't have
3528   // to use hard-coded signal number when setting up the mask.
3529   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3530 
3531   if (sigaction(SR_signum, &act, 0) == -1) {
3532     return -1;
3533   }
3534 
3535   // Save signal flag
3536   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3537   return 0;
3538 }
3539 
3540 static int SR_finalize() {
3541   return 0;
3542 }
3543 
3544 
3545 // returns true on success and false on error - really an error is fatal
3546 // but this seems the normal response to library errors
3547 static bool do_suspend(OSThread* osthread) {
3548   // mark as suspended and send signal
3549   osthread->sr.set_suspend_action(SR_SUSPEND);
3550   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3551   assert_status(status == 0, status, "pthread_kill");
3552 
3553   // check status and wait until notified of suspension
3554   if (status == 0) {
3555     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3556       os::yield_all(i);
3557     }
3558     osthread->sr.set_suspend_action(SR_NONE);
3559     return true;
3560   }
3561   else {
3562     osthread->sr.set_suspend_action(SR_NONE);
3563     return false;
3564   }
3565 }
3566 
3567 static void do_resume(OSThread* osthread) {
3568   assert(osthread->sr.is_suspended(), "thread should be suspended");
3569   osthread->sr.set_suspend_action(SR_CONTINUE);
3570 
3571   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3572   assert_status(status == 0, status, "pthread_kill");
3573   // check status and wait unit notified of resumption
3574   if (status == 0) {
3575     for (int i = 0; osthread->sr.is_suspended(); i++) {
3576       os::yield_all(i);
3577     }
3578   }
3579   osthread->sr.set_suspend_action(SR_NONE);
3580 }
3581 
3582 ////////////////////////////////////////////////////////////////////////////////
3583 // interrupt support
3584 
3585 void os::interrupt(Thread* thread) {
3586   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3587     "possibility of dangling Thread pointer");
3588 
3589   OSThread* osthread = thread->osthread();
3590 
3591   if (!osthread->interrupted()) {
3592     osthread->set_interrupted(true);
3593     // More than one thread can get here with the same value of osthread,
3594     // resulting in multiple notifications.  We do, however, want the store
3595     // to interrupted() to be visible to other threads before we execute unpark().
3596     OrderAccess::fence();
3597     ParkEvent * const slp = thread->_SleepEvent ;
3598     if (slp != NULL) slp->unpark() ;
3599   }
3600 
3601   // For JSR166. Unpark even if interrupt status already was set
3602   if (thread->is_Java_thread())
3603     ((JavaThread*)thread)->parker()->unpark();
3604 
3605   ParkEvent * ev = thread->_ParkEvent ;
3606   if (ev != NULL) ev->unpark() ;
3607 
3608 }
3609 
3610 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3611   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3612     "possibility of dangling Thread pointer");
3613 
3614   OSThread* osthread = thread->osthread();
3615 
3616   bool interrupted = osthread->interrupted();
3617 
3618   if (interrupted && clear_interrupted) {
3619     osthread->set_interrupted(false);
3620     // consider thread->_SleepEvent->reset() ... optional optimization
3621   }
3622 
3623   return interrupted;
3624 }
3625 
3626 ///////////////////////////////////////////////////////////////////////////////////
3627 // signal handling (except suspend/resume)
3628 
3629 // This routine may be used by user applications as a "hook" to catch signals.
3630 // The user-defined signal handler must pass unrecognized signals to this
3631 // routine, and if it returns true (non-zero), then the signal handler must
3632 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3633 // routine will never retun false (zero), but instead will execute a VM panic
3634 // routine kill the process.
3635 //
3636 // If this routine returns false, it is OK to call it again.  This allows
3637 // the user-defined signal handler to perform checks either before or after
3638 // the VM performs its own checks.  Naturally, the user code would be making
3639 // a serious error if it tried to handle an exception (such as a null check
3640 // or breakpoint) that the VM was generating for its own correct operation.
3641 //
3642 // This routine may recognize any of the following kinds of signals:
3643 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3644 // It should be consulted by handlers for any of those signals.
3645 //
3646 // The caller of this routine must pass in the three arguments supplied
3647 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3648 // field of the structure passed to sigaction().  This routine assumes that
3649 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3650 //
3651 // Note that the VM will print warnings if it detects conflicting signal
3652 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3653 //
3654 extern "C" JNIEXPORT int
3655 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3656                         void* ucontext, int abort_if_unrecognized);
3657 
3658 void signalHandler(int sig, siginfo_t* info, void* uc) {
3659   assert(info != NULL && uc != NULL, "it must be old kernel");
3660   JVM_handle_linux_signal(sig, info, uc, true);
3661 }
3662 
3663 
3664 // This boolean allows users to forward their own non-matching signals
3665 // to JVM_handle_linux_signal, harmlessly.
3666 bool os::Linux::signal_handlers_are_installed = false;
3667 
3668 // For signal-chaining
3669 struct sigaction os::Linux::sigact[MAXSIGNUM];
3670 unsigned int os::Linux::sigs = 0;
3671 bool os::Linux::libjsig_is_loaded = false;
3672 typedef struct sigaction *(*get_signal_t)(int);
3673 get_signal_t os::Linux::get_signal_action = NULL;
3674 
3675 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3676   struct sigaction *actp = NULL;
3677 
3678   if (libjsig_is_loaded) {
3679     // Retrieve the old signal handler from libjsig
3680     actp = (*get_signal_action)(sig);
3681   }
3682   if (actp == NULL) {
3683     // Retrieve the preinstalled signal handler from jvm
3684     actp = get_preinstalled_handler(sig);
3685   }
3686 
3687   return actp;
3688 }
3689 
3690 static bool call_chained_handler(struct sigaction *actp, int sig,
3691                                  siginfo_t *siginfo, void *context) {
3692   // Call the old signal handler
3693   if (actp->sa_handler == SIG_DFL) {
3694     // It's more reasonable to let jvm treat it as an unexpected exception
3695     // instead of taking the default action.
3696     return false;
3697   } else if (actp->sa_handler != SIG_IGN) {
3698     if ((actp->sa_flags & SA_NODEFER) == 0) {
3699       // automaticlly block the signal
3700       sigaddset(&(actp->sa_mask), sig);
3701     }
3702 
3703     sa_handler_t hand;
3704     sa_sigaction_t sa;
3705     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3706     // retrieve the chained handler
3707     if (siginfo_flag_set) {
3708       sa = actp->sa_sigaction;
3709     } else {
3710       hand = actp->sa_handler;
3711     }
3712 
3713     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3714       actp->sa_handler = SIG_DFL;
3715     }
3716 
3717     // try to honor the signal mask
3718     sigset_t oset;
3719     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3720 
3721     // call into the chained handler
3722     if (siginfo_flag_set) {
3723       (*sa)(sig, siginfo, context);
3724     } else {
3725       (*hand)(sig);
3726     }
3727 
3728     // restore the signal mask
3729     pthread_sigmask(SIG_SETMASK, &oset, 0);
3730   }
3731   // Tell jvm's signal handler the signal is taken care of.
3732   return true;
3733 }
3734 
3735 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3736   bool chained = false;
3737   // signal-chaining
3738   if (UseSignalChaining) {
3739     struct sigaction *actp = get_chained_signal_action(sig);
3740     if (actp != NULL) {
3741       chained = call_chained_handler(actp, sig, siginfo, context);
3742     }
3743   }
3744   return chained;
3745 }
3746 
3747 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3748   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3749     return &sigact[sig];
3750   }
3751   return NULL;
3752 }
3753 
3754 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3755   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3756   sigact[sig] = oldAct;
3757   sigs |= (unsigned int)1 << sig;
3758 }
3759 
3760 // for diagnostic
3761 int os::Linux::sigflags[MAXSIGNUM];
3762 
3763 int os::Linux::get_our_sigflags(int sig) {
3764   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3765   return sigflags[sig];
3766 }
3767 
3768 void os::Linux::set_our_sigflags(int sig, int flags) {
3769   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3770   sigflags[sig] = flags;
3771 }
3772 
3773 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3774   // Check for overwrite.
3775   struct sigaction oldAct;
3776   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3777 
3778   void* oldhand = oldAct.sa_sigaction
3779                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3780                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3781   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3782       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3783       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3784     if (AllowUserSignalHandlers || !set_installed) {
3785       // Do not overwrite; user takes responsibility to forward to us.
3786       return;
3787     } else if (UseSignalChaining) {
3788       // save the old handler in jvm
3789       save_preinstalled_handler(sig, oldAct);
3790       // libjsig also interposes the sigaction() call below and saves the
3791       // old sigaction on it own.
3792     } else {
3793       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3794                     "%#lx for signal %d.", (long)oldhand, sig));
3795     }
3796   }
3797 
3798   struct sigaction sigAct;
3799   sigfillset(&(sigAct.sa_mask));
3800   sigAct.sa_handler = SIG_DFL;
3801   if (!set_installed) {
3802     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3803   } else {
3804     sigAct.sa_sigaction = signalHandler;
3805     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3806   }
3807   // Save flags, which are set by ours
3808   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3809   sigflags[sig] = sigAct.sa_flags;
3810 
3811   int ret = sigaction(sig, &sigAct, &oldAct);
3812   assert(ret == 0, "check");
3813 
3814   void* oldhand2  = oldAct.sa_sigaction
3815                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3816                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3817   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3818 }
3819 
3820 // install signal handlers for signals that HotSpot needs to
3821 // handle in order to support Java-level exception handling.
3822 
3823 void os::Linux::install_signal_handlers() {
3824   if (!signal_handlers_are_installed) {
3825     signal_handlers_are_installed = true;
3826 
3827     // signal-chaining
3828     typedef void (*signal_setting_t)();
3829     signal_setting_t begin_signal_setting = NULL;
3830     signal_setting_t end_signal_setting = NULL;
3831     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3832                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3833     if (begin_signal_setting != NULL) {
3834       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3835                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3836       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3837                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3838       libjsig_is_loaded = true;
3839       assert(UseSignalChaining, "should enable signal-chaining");
3840     }
3841     if (libjsig_is_loaded) {
3842       // Tell libjsig jvm is setting signal handlers
3843       (*begin_signal_setting)();
3844     }
3845 
3846     set_signal_handler(SIGSEGV, true);
3847     set_signal_handler(SIGPIPE, true);
3848     set_signal_handler(SIGBUS, true);
3849     set_signal_handler(SIGILL, true);
3850     set_signal_handler(SIGFPE, true);
3851     set_signal_handler(SIGXFSZ, true);
3852 
3853     if (libjsig_is_loaded) {
3854       // Tell libjsig jvm finishes setting signal handlers
3855       (*end_signal_setting)();
3856     }
3857 
3858     // We don't activate signal checker if libjsig is in place, we trust ourselves
3859     // and if UserSignalHandler is installed all bets are off.
3860     // Log that signal checking is off only if -verbose:jni is specified.
3861     if (CheckJNICalls) {
3862       if (libjsig_is_loaded) {
3863         if (PrintJNIResolving) {
3864           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3865         }
3866         check_signals = false;
3867       }
3868       if (AllowUserSignalHandlers) {
3869         if (PrintJNIResolving) {
3870           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3871         }
3872         check_signals = false;
3873       }
3874     }
3875   }
3876 }
3877 
3878 // This is the fastest way to get thread cpu time on Linux.
3879 // Returns cpu time (user+sys) for any thread, not only for current.
3880 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3881 // It might work on 2.6.10+ with a special kernel/glibc patch.
3882 // For reference, please, see IEEE Std 1003.1-2004:
3883 //   http://www.unix.org/single_unix_specification
3884 
3885 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3886   struct timespec tp;
3887   int rc = os::Linux::clock_gettime(clockid, &tp);
3888   assert(rc == 0, "clock_gettime is expected to return 0 code");
3889 
3890   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3891 }
3892 
3893 /////
3894 // glibc on Linux platform uses non-documented flag
3895 // to indicate, that some special sort of signal
3896 // trampoline is used.
3897 // We will never set this flag, and we should
3898 // ignore this flag in our diagnostic
3899 #ifdef SIGNIFICANT_SIGNAL_MASK
3900 #undef SIGNIFICANT_SIGNAL_MASK
3901 #endif
3902 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3903 
3904 static const char* get_signal_handler_name(address handler,
3905                                            char* buf, int buflen) {
3906   int offset;
3907   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3908   if (found) {
3909     // skip directory names
3910     const char *p1, *p2;
3911     p1 = buf;
3912     size_t len = strlen(os::file_separator());
3913     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3914     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3915   } else {
3916     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3917   }
3918   return buf;
3919 }
3920 
3921 static void print_signal_handler(outputStream* st, int sig,
3922                                  char* buf, size_t buflen) {
3923   struct sigaction sa;
3924 
3925   sigaction(sig, NULL, &sa);
3926 
3927   // See comment for SIGNIFICANT_SIGNAL_MASK define
3928   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3929 
3930   st->print("%s: ", os::exception_name(sig, buf, buflen));
3931 
3932   address handler = (sa.sa_flags & SA_SIGINFO)
3933     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3934     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3935 
3936   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3937     st->print("SIG_DFL");
3938   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3939     st->print("SIG_IGN");
3940   } else {
3941     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3942   }
3943 
3944   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3945 
3946   address rh = VMError::get_resetted_sighandler(sig);
3947   // May be, handler was resetted by VMError?
3948   if(rh != NULL) {
3949     handler = rh;
3950     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3951   }
3952 
3953   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3954 
3955   // Check: is it our handler?
3956   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3957      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3958     // It is our signal handler
3959     // check for flags, reset system-used one!
3960     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3961       st->print(
3962                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3963                 os::Linux::get_our_sigflags(sig));
3964     }
3965   }
3966   st->cr();
3967 }
3968 
3969 
3970 #define DO_SIGNAL_CHECK(sig) \
3971   if (!sigismember(&check_signal_done, sig)) \
3972     os::Linux::check_signal_handler(sig)
3973 
3974 // This method is a periodic task to check for misbehaving JNI applications
3975 // under CheckJNI, we can add any periodic checks here
3976 
3977 void os::run_periodic_checks() {
3978 
3979   if (check_signals == false) return;
3980 
3981   // SEGV and BUS if overridden could potentially prevent
3982   // generation of hs*.log in the event of a crash, debugging
3983   // such a case can be very challenging, so we absolutely
3984   // check the following for a good measure:
3985   DO_SIGNAL_CHECK(SIGSEGV);
3986   DO_SIGNAL_CHECK(SIGILL);
3987   DO_SIGNAL_CHECK(SIGFPE);
3988   DO_SIGNAL_CHECK(SIGBUS);
3989   DO_SIGNAL_CHECK(SIGPIPE);
3990   DO_SIGNAL_CHECK(SIGXFSZ);
3991 
3992 
3993   // ReduceSignalUsage allows the user to override these handlers
3994   // see comments at the very top and jvm_solaris.h
3995   if (!ReduceSignalUsage) {
3996     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3997     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3998     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3999     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4000   }
4001 
4002   DO_SIGNAL_CHECK(SR_signum);
4003   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4004 }
4005 
4006 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4007 
4008 static os_sigaction_t os_sigaction = NULL;
4009 
4010 void os::Linux::check_signal_handler(int sig) {
4011   char buf[O_BUFLEN];
4012   address jvmHandler = NULL;
4013 
4014 
4015   struct sigaction act;
4016   if (os_sigaction == NULL) {
4017     // only trust the default sigaction, in case it has been interposed
4018     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4019     if (os_sigaction == NULL) return;
4020   }
4021 
4022   os_sigaction(sig, (struct sigaction*)NULL, &act);
4023 
4024 
4025   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4026 
4027   address thisHandler = (act.sa_flags & SA_SIGINFO)
4028     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4029     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4030 
4031 
4032   switch(sig) {
4033   case SIGSEGV:
4034   case SIGBUS:
4035   case SIGFPE:
4036   case SIGPIPE:
4037   case SIGILL:
4038   case SIGXFSZ:
4039     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4040     break;
4041 
4042   case SHUTDOWN1_SIGNAL:
4043   case SHUTDOWN2_SIGNAL:
4044   case SHUTDOWN3_SIGNAL:
4045   case BREAK_SIGNAL:
4046     jvmHandler = (address)user_handler();
4047     break;
4048 
4049   case INTERRUPT_SIGNAL:
4050     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4051     break;
4052 
4053   default:
4054     if (sig == SR_signum) {
4055       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4056     } else {
4057       return;
4058     }
4059     break;
4060   }
4061 
4062   if (thisHandler != jvmHandler) {
4063     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4064     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4065     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4066     // No need to check this sig any longer
4067     sigaddset(&check_signal_done, sig);
4068   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4069     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4070     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4071     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4072     // No need to check this sig any longer
4073     sigaddset(&check_signal_done, sig);
4074   }
4075 
4076   // Dump all the signal
4077   if (sigismember(&check_signal_done, sig)) {
4078     print_signal_handlers(tty, buf, O_BUFLEN);
4079   }
4080 }
4081 
4082 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4083 
4084 extern bool signal_name(int signo, char* buf, size_t len);
4085 
4086 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4087   if (0 < exception_code && exception_code <= SIGRTMAX) {
4088     // signal
4089     if (!signal_name(exception_code, buf, size)) {
4090       jio_snprintf(buf, size, "SIG%d", exception_code);
4091     }
4092     return buf;
4093   } else {
4094     return NULL;
4095   }
4096 }
4097 
4098 // this is called _before_ the most of global arguments have been parsed
4099 void os::init(void) {
4100   char dummy;   /* used to get a guess on initial stack address */
4101 //  first_hrtime = gethrtime();
4102 
4103   // With LinuxThreads the JavaMain thread pid (primordial thread)
4104   // is different than the pid of the java launcher thread.
4105   // So, on Linux, the launcher thread pid is passed to the VM
4106   // via the sun.java.launcher.pid property.
4107   // Use this property instead of getpid() if it was correctly passed.
4108   // See bug 6351349.
4109   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4110 
4111   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4112 
4113   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4114 
4115   init_random(1234567);
4116 
4117   ThreadCritical::initialize();
4118 
4119   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4120   if (Linux::page_size() == -1) {
4121     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4122                   strerror(errno)));
4123   }
4124   init_page_sizes((size_t) Linux::page_size());
4125 
4126   Linux::initialize_system_info();
4127 
4128   // main_thread points to the aboriginal thread
4129   Linux::_main_thread = pthread_self();
4130 
4131   Linux::clock_init();
4132   initial_time_count = os::elapsed_counter();
4133   pthread_mutex_init(&dl_mutex, NULL);
4134 }
4135 
4136 // To install functions for atexit system call
4137 extern "C" {
4138   static void perfMemory_exit_helper() {
4139     perfMemory_exit();
4140   }
4141 }
4142 
4143 // this is called _after_ the global arguments have been parsed
4144 jint os::init_2(void)
4145 {
4146   Linux::fast_thread_clock_init();
4147 
4148   // Allocate a single page and mark it as readable for safepoint polling
4149   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4150   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4151 
4152   os::set_polling_page( polling_page );
4153 
4154 #ifndef PRODUCT
4155   if(Verbose && PrintMiscellaneous)
4156     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4157 #endif
4158 
4159   if (!UseMembar) {
4160     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4161     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4162     os::set_memory_serialize_page( mem_serialize_page );
4163 
4164 #ifndef PRODUCT
4165     if(Verbose && PrintMiscellaneous)
4166       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4167 #endif
4168   }
4169 
4170   os::large_page_init();
4171 
4172   // initialize suspend/resume support - must do this before signal_sets_init()
4173   if (SR_initialize() != 0) {
4174     perror("SR_initialize failed");
4175     return JNI_ERR;
4176   }
4177 
4178   Linux::signal_sets_init();
4179   Linux::install_signal_handlers();
4180 
4181   // Check minimum allowable stack size for thread creation and to initialize
4182   // the java system classes, including StackOverflowError - depends on page
4183   // size.  Add a page for compiler2 recursion in main thread.
4184   // Add in 2*BytesPerWord times page size to account for VM stack during
4185   // class initialization depending on 32 or 64 bit VM.
4186   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4187             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4188                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4189 
4190   size_t threadStackSizeInBytes = ThreadStackSize * K;
4191   if (threadStackSizeInBytes != 0 &&
4192       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4193         tty->print_cr("\nThe stack size specified is too small, "
4194                       "Specify at least %dk",
4195                       os::Linux::min_stack_allowed/ K);
4196         return JNI_ERR;
4197   }
4198 
4199   // Make the stack size a multiple of the page size so that
4200   // the yellow/red zones can be guarded.
4201   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4202         vm_page_size()));
4203 
4204   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4205 
4206   Linux::libpthread_init();
4207   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4208      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4209           Linux::glibc_version(), Linux::libpthread_version(),
4210           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4211   }
4212 
4213   if (UseNUMA) {
4214     if (!Linux::libnuma_init()) {
4215       UseNUMA = false;
4216     } else {
4217       if ((Linux::numa_max_node() < 1)) {
4218         // There's only one node(they start from 0), disable NUMA.
4219         UseNUMA = false;
4220       }
4221     }
4222     // With SHM large pages we cannot uncommit a page, so there's not way
4223     // we can make the adaptive lgrp chunk resizing work. If the user specified
4224     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4225     // disable adaptive resizing.
4226     if (UseNUMA && UseLargePages && UseSHM) {
4227       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4228         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4229           UseLargePages = false;
4230         } else {
4231           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4232           UseAdaptiveSizePolicy = false;
4233           UseAdaptiveNUMAChunkSizing = false;
4234         }
4235       } else {
4236         UseNUMA = false;
4237       }
4238     }
4239     if (!UseNUMA && ForceNUMA) {
4240       UseNUMA = true;
4241     }
4242   }
4243 
4244   if (MaxFDLimit) {
4245     // set the number of file descriptors to max. print out error
4246     // if getrlimit/setrlimit fails but continue regardless.
4247     struct rlimit nbr_files;
4248     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4249     if (status != 0) {
4250       if (PrintMiscellaneous && (Verbose || WizardMode))
4251         perror("os::init_2 getrlimit failed");
4252     } else {
4253       nbr_files.rlim_cur = nbr_files.rlim_max;
4254       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4255       if (status != 0) {
4256         if (PrintMiscellaneous && (Verbose || WizardMode))
4257           perror("os::init_2 setrlimit failed");
4258       }
4259     }
4260   }
4261 
4262   // Initialize lock used to serialize thread creation (see os::create_thread)
4263   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4264 
4265   // at-exit methods are called in the reverse order of their registration.
4266   // atexit functions are called on return from main or as a result of a
4267   // call to exit(3C). There can be only 32 of these functions registered
4268   // and atexit() does not set errno.
4269 
4270   if (PerfAllowAtExitRegistration) {
4271     // only register atexit functions if PerfAllowAtExitRegistration is set.
4272     // atexit functions can be delayed until process exit time, which
4273     // can be problematic for embedded VM situations. Embedded VMs should
4274     // call DestroyJavaVM() to assure that VM resources are released.
4275 
4276     // note: perfMemory_exit_helper atexit function may be removed in
4277     // the future if the appropriate cleanup code can be added to the
4278     // VM_Exit VMOperation's doit method.
4279     if (atexit(perfMemory_exit_helper) != 0) {
4280       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4281     }
4282   }
4283 
4284   // initialize thread priority policy
4285   prio_init();
4286 
4287   return JNI_OK;
4288 }
4289 
4290 // this is called at the end of vm_initialization
4291 void os::init_3(void)
4292 {
4293 #ifdef JAVASE_EMBEDDED
4294   // Start the MemNotifyThread
4295   if (LowMemoryProtection) {
4296     MemNotifyThread::start();
4297   }
4298   return;
4299 #endif
4300 }
4301 
4302 // Mark the polling page as unreadable
4303 void os::make_polling_page_unreadable(void) {
4304   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4305     fatal("Could not disable polling page");
4306 };
4307 
4308 // Mark the polling page as readable
4309 void os::make_polling_page_readable(void) {
4310   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4311     fatal("Could not enable polling page");
4312   }
4313 };
4314 
4315 int os::active_processor_count() {
4316   // Linux doesn't yet have a (official) notion of processor sets,
4317   // so just return the number of online processors.
4318   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4319   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4320   return online_cpus;
4321 }
4322 
4323 void os::set_native_thread_name(const char *name) {
4324   // Not yet implemented.
4325   return;
4326 }
4327 
4328 bool os::distribute_processes(uint length, uint* distribution) {
4329   // Not yet implemented.
4330   return false;
4331 }
4332 
4333 bool os::bind_to_processor(uint processor_id) {
4334   // Not yet implemented.
4335   return false;
4336 }
4337 
4338 ///
4339 
4340 // Suspends the target using the signal mechanism and then grabs the PC before
4341 // resuming the target. Used by the flat-profiler only
4342 ExtendedPC os::get_thread_pc(Thread* thread) {
4343   // Make sure that it is called by the watcher for the VMThread
4344   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4345   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4346 
4347   ExtendedPC epc;
4348 
4349   OSThread* osthread = thread->osthread();
4350   if (do_suspend(osthread)) {
4351     if (osthread->ucontext() != NULL) {
4352       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4353     } else {
4354       // NULL context is unexpected, double-check this is the VMThread
4355       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4356     }
4357     do_resume(osthread);
4358   }
4359   // failure means pthread_kill failed for some reason - arguably this is
4360   // a fatal problem, but such problems are ignored elsewhere
4361 
4362   return epc;
4363 }
4364 
4365 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4366 {
4367    if (is_NPTL()) {
4368       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4369    } else {
4370 #ifndef IA64
4371       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4372       // word back to default 64bit precision if condvar is signaled. Java
4373       // wants 53bit precision.  Save and restore current value.
4374       int fpu = get_fpu_control_word();
4375 #endif // IA64
4376       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4377 #ifndef IA64
4378       set_fpu_control_word(fpu);
4379 #endif // IA64
4380       return status;
4381    }
4382 }
4383 
4384 ////////////////////////////////////////////////////////////////////////////////
4385 // debug support
4386 
4387 static address same_page(address x, address y) {
4388   int page_bits = -os::vm_page_size();
4389   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4390     return x;
4391   else if (x > y)
4392     return (address)(intptr_t(y) | ~page_bits) + 1;
4393   else
4394     return (address)(intptr_t(y) & page_bits);
4395 }
4396 
4397 bool os::find(address addr, outputStream* st) {
4398   Dl_info dlinfo;
4399   memset(&dlinfo, 0, sizeof(dlinfo));
4400   if (dladdr(addr, &dlinfo)) {
4401     st->print(PTR_FORMAT ": ", addr);
4402     if (dlinfo.dli_sname != NULL) {
4403       st->print("%s+%#x", dlinfo.dli_sname,
4404                  addr - (intptr_t)dlinfo.dli_saddr);
4405     } else if (dlinfo.dli_fname) {
4406       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4407     } else {
4408       st->print("<absolute address>");
4409     }
4410     if (dlinfo.dli_fname) {
4411       st->print(" in %s", dlinfo.dli_fname);
4412     }
4413     if (dlinfo.dli_fbase) {
4414       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4415     }
4416     st->cr();
4417 
4418     if (Verbose) {
4419       // decode some bytes around the PC
4420       address begin = same_page(addr-40, addr);
4421       address end   = same_page(addr+40, addr);
4422       address       lowest = (address) dlinfo.dli_sname;
4423       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4424       if (begin < lowest)  begin = lowest;
4425       Dl_info dlinfo2;
4426       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4427           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4428         end = (address) dlinfo2.dli_saddr;
4429       Disassembler::decode(begin, end, st);
4430     }
4431     return true;
4432   }
4433   return false;
4434 }
4435 
4436 ////////////////////////////////////////////////////////////////////////////////
4437 // misc
4438 
4439 // This does not do anything on Linux. This is basically a hook for being
4440 // able to use structured exception handling (thread-local exception filters)
4441 // on, e.g., Win32.
4442 void
4443 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4444                          JavaCallArguments* args, Thread* thread) {
4445   f(value, method, args, thread);
4446 }
4447 
4448 void os::print_statistics() {
4449 }
4450 
4451 int os::message_box(const char* title, const char* message) {
4452   int i;
4453   fdStream err(defaultStream::error_fd());
4454   for (i = 0; i < 78; i++) err.print_raw("=");
4455   err.cr();
4456   err.print_raw_cr(title);
4457   for (i = 0; i < 78; i++) err.print_raw("-");
4458   err.cr();
4459   err.print_raw_cr(message);
4460   for (i = 0; i < 78; i++) err.print_raw("=");
4461   err.cr();
4462 
4463   char buf[16];
4464   // Prevent process from exiting upon "read error" without consuming all CPU
4465   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4466 
4467   return buf[0] == 'y' || buf[0] == 'Y';
4468 }
4469 
4470 int os::stat(const char *path, struct stat *sbuf) {
4471   char pathbuf[MAX_PATH];
4472   if (strlen(path) > MAX_PATH - 1) {
4473     errno = ENAMETOOLONG;
4474     return -1;
4475   }
4476   os::native_path(strcpy(pathbuf, path));
4477   return ::stat(pathbuf, sbuf);
4478 }
4479 
4480 bool os::check_heap(bool force) {
4481   return true;
4482 }
4483 
4484 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4485   return ::vsnprintf(buf, count, format, args);
4486 }
4487 
4488 // Is a (classpath) directory empty?
4489 bool os::dir_is_empty(const char* path) {
4490   DIR *dir = NULL;
4491   struct dirent *ptr;
4492 
4493   dir = opendir(path);
4494   if (dir == NULL) return true;
4495 
4496   /* Scan the directory */
4497   bool result = true;
4498   char buf[sizeof(struct dirent) + MAX_PATH];
4499   while (result && (ptr = ::readdir(dir)) != NULL) {
4500     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4501       result = false;
4502     }
4503   }
4504   closedir(dir);
4505   return result;
4506 }
4507 
4508 // This code originates from JDK's sysOpen and open64_w
4509 // from src/solaris/hpi/src/system_md.c
4510 
4511 #ifndef O_DELETE
4512 #define O_DELETE 0x10000
4513 #endif
4514 
4515 // Open a file. Unlink the file immediately after open returns
4516 // if the specified oflag has the O_DELETE flag set.
4517 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4518 
4519 int os::open(const char *path, int oflag, int mode) {
4520 
4521   if (strlen(path) > MAX_PATH - 1) {
4522     errno = ENAMETOOLONG;
4523     return -1;
4524   }
4525   int fd;
4526   int o_delete = (oflag & O_DELETE);
4527   oflag = oflag & ~O_DELETE;
4528 
4529   fd = ::open64(path, oflag, mode);
4530   if (fd == -1) return -1;
4531 
4532   //If the open succeeded, the file might still be a directory
4533   {
4534     struct stat64 buf64;
4535     int ret = ::fstat64(fd, &buf64);
4536     int st_mode = buf64.st_mode;
4537 
4538     if (ret != -1) {
4539       if ((st_mode & S_IFMT) == S_IFDIR) {
4540         errno = EISDIR;
4541         ::close(fd);
4542         return -1;
4543       }
4544     } else {
4545       ::close(fd);
4546       return -1;
4547     }
4548   }
4549 
4550     /*
4551      * All file descriptors that are opened in the JVM and not
4552      * specifically destined for a subprocess should have the
4553      * close-on-exec flag set.  If we don't set it, then careless 3rd
4554      * party native code might fork and exec without closing all
4555      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4556      * UNIXProcess.c), and this in turn might:
4557      *
4558      * - cause end-of-file to fail to be detected on some file
4559      *   descriptors, resulting in mysterious hangs, or
4560      *
4561      * - might cause an fopen in the subprocess to fail on a system
4562      *   suffering from bug 1085341.
4563      *
4564      * (Yes, the default setting of the close-on-exec flag is a Unix
4565      * design flaw)
4566      *
4567      * See:
4568      * 1085341: 32-bit stdio routines should support file descriptors >255
4569      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4570      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4571      */
4572 #ifdef FD_CLOEXEC
4573     {
4574         int flags = ::fcntl(fd, F_GETFD);
4575         if (flags != -1)
4576             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4577     }
4578 #endif
4579 
4580   if (o_delete != 0) {
4581     ::unlink(path);
4582   }
4583   return fd;
4584 }
4585 
4586 
4587 // create binary file, rewriting existing file if required
4588 int os::create_binary_file(const char* path, bool rewrite_existing) {
4589   int oflags = O_WRONLY | O_CREAT;
4590   if (!rewrite_existing) {
4591     oflags |= O_EXCL;
4592   }
4593   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4594 }
4595 
4596 // return current position of file pointer
4597 jlong os::current_file_offset(int fd) {
4598   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4599 }
4600 
4601 // move file pointer to the specified offset
4602 jlong os::seek_to_file_offset(int fd, jlong offset) {
4603   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4604 }
4605 
4606 // This code originates from JDK's sysAvailable
4607 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4608 
4609 int os::available(int fd, jlong *bytes) {
4610   jlong cur, end;
4611   int mode;
4612   struct stat64 buf64;
4613 
4614   if (::fstat64(fd, &buf64) >= 0) {
4615     mode = buf64.st_mode;
4616     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4617       /*
4618       * XXX: is the following call interruptible? If so, this might
4619       * need to go through the INTERRUPT_IO() wrapper as for other
4620       * blocking, interruptible calls in this file.
4621       */
4622       int n;
4623       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4624         *bytes = n;
4625         return 1;
4626       }
4627     }
4628   }
4629   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4630     return 0;
4631   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4632     return 0;
4633   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4634     return 0;
4635   }
4636   *bytes = end - cur;
4637   return 1;
4638 }
4639 
4640 int os::socket_available(int fd, jint *pbytes) {
4641   // Linux doc says EINTR not returned, unlike Solaris
4642   int ret = ::ioctl(fd, FIONREAD, pbytes);
4643 
4644   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4645   // is expected to return 0 on failure and 1 on success to the jdk.
4646   return (ret < 0) ? 0 : 1;
4647 }
4648 
4649 // Map a block of memory.
4650 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4651                      char *addr, size_t bytes, bool read_only,
4652                      bool allow_exec) {
4653   int prot;
4654   int flags = MAP_PRIVATE;
4655 
4656   if (read_only) {
4657     prot = PROT_READ;
4658   } else {
4659     prot = PROT_READ | PROT_WRITE;
4660   }
4661 
4662   if (allow_exec) {
4663     prot |= PROT_EXEC;
4664   }
4665 
4666   if (addr != NULL) {
4667     flags |= MAP_FIXED;
4668   }
4669 
4670   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4671                                      fd, file_offset);
4672   if (mapped_address == MAP_FAILED) {
4673     return NULL;
4674   }
4675   return mapped_address;
4676 }
4677 
4678 
4679 // Remap a block of memory.
4680 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4681                        char *addr, size_t bytes, bool read_only,
4682                        bool allow_exec) {
4683   // same as map_memory() on this OS
4684   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4685                         allow_exec);
4686 }
4687 
4688 
4689 // Unmap a block of memory.
4690 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4691   return munmap(addr, bytes) == 0;
4692 }
4693 
4694 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4695 
4696 static clockid_t thread_cpu_clockid(Thread* thread) {
4697   pthread_t tid = thread->osthread()->pthread_id();
4698   clockid_t clockid;
4699 
4700   // Get thread clockid
4701   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4702   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4703   return clockid;
4704 }
4705 
4706 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4707 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4708 // of a thread.
4709 //
4710 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4711 // the fast estimate available on the platform.
4712 
4713 jlong os::current_thread_cpu_time() {
4714   if (os::Linux::supports_fast_thread_cpu_time()) {
4715     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4716   } else {
4717     // return user + sys since the cost is the same
4718     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4719   }
4720 }
4721 
4722 jlong os::thread_cpu_time(Thread* thread) {
4723   // consistent with what current_thread_cpu_time() returns
4724   if (os::Linux::supports_fast_thread_cpu_time()) {
4725     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4726   } else {
4727     return slow_thread_cpu_time(thread, true /* user + sys */);
4728   }
4729 }
4730 
4731 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4732   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4733     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4734   } else {
4735     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4736   }
4737 }
4738 
4739 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4740   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4741     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4742   } else {
4743     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4744   }
4745 }
4746 
4747 //
4748 //  -1 on error.
4749 //
4750 
4751 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4752   static bool proc_pid_cpu_avail = true;
4753   static bool proc_task_unchecked = true;
4754   static const char *proc_stat_path = "/proc/%d/stat";
4755   pid_t  tid = thread->osthread()->thread_id();
4756   int i;
4757   char *s;
4758   char stat[2048];
4759   int statlen;
4760   char proc_name[64];
4761   int count;
4762   long sys_time, user_time;
4763   char string[64];
4764   char cdummy;
4765   int idummy;
4766   long ldummy;
4767   FILE *fp;
4768 
4769   // We first try accessing /proc/<pid>/cpu since this is faster to
4770   // process.  If this file is not present (linux kernels 2.5 and above)
4771   // then we open /proc/<pid>/stat.
4772   if ( proc_pid_cpu_avail ) {
4773     sprintf(proc_name, "/proc/%d/cpu", tid);
4774     fp =  fopen(proc_name, "r");
4775     if ( fp != NULL ) {
4776       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4777       fclose(fp);
4778       if ( count != 3 ) return -1;
4779 
4780       if (user_sys_cpu_time) {
4781         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4782       } else {
4783         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4784       }
4785     }
4786     else proc_pid_cpu_avail = false;
4787   }
4788 
4789   // The /proc/<tid>/stat aggregates per-process usage on
4790   // new Linux kernels 2.6+ where NPTL is supported.
4791   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4792   // See bug 6328462.
4793   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4794   // and possibly in some other cases, so we check its availability.
4795   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4796     // This is executed only once
4797     proc_task_unchecked = false;
4798     fp = fopen("/proc/self/task", "r");
4799     if (fp != NULL) {
4800       proc_stat_path = "/proc/self/task/%d/stat";
4801       fclose(fp);
4802     }
4803   }
4804 
4805   sprintf(proc_name, proc_stat_path, tid);
4806   fp = fopen(proc_name, "r");
4807   if ( fp == NULL ) return -1;
4808   statlen = fread(stat, 1, 2047, fp);
4809   stat[statlen] = '\0';
4810   fclose(fp);
4811 
4812   // Skip pid and the command string. Note that we could be dealing with
4813   // weird command names, e.g. user could decide to rename java launcher
4814   // to "java 1.4.2 :)", then the stat file would look like
4815   //                1234 (java 1.4.2 :)) R ... ...
4816   // We don't really need to know the command string, just find the last
4817   // occurrence of ")" and then start parsing from there. See bug 4726580.
4818   s = strrchr(stat, ')');
4819   i = 0;
4820   if (s == NULL ) return -1;
4821 
4822   // Skip blank chars
4823   do s++; while (isspace(*s));
4824 
4825   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4826                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4827                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4828                  &user_time, &sys_time);
4829   if ( count != 13 ) return -1;
4830   if (user_sys_cpu_time) {
4831     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4832   } else {
4833     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4834   }
4835 }
4836 
4837 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4838   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4839   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4840   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4841   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4842 }
4843 
4844 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4845   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4846   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4847   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4848   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4849 }
4850 
4851 bool os::is_thread_cpu_time_supported() {
4852   return true;
4853 }
4854 
4855 // System loadavg support.  Returns -1 if load average cannot be obtained.
4856 // Linux doesn't yet have a (official) notion of processor sets,
4857 // so just return the system wide load average.
4858 int os::loadavg(double loadavg[], int nelem) {
4859   return ::getloadavg(loadavg, nelem);
4860 }
4861 
4862 void os::pause() {
4863   char filename[MAX_PATH];
4864   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4865     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4866   } else {
4867     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4868   }
4869 
4870   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4871   if (fd != -1) {
4872     struct stat buf;
4873     ::close(fd);
4874     while (::stat(filename, &buf) == 0) {
4875       (void)::poll(NULL, 0, 100);
4876     }
4877   } else {
4878     jio_fprintf(stderr,
4879       "Could not open pause file '%s', continuing immediately.\n", filename);
4880   }
4881 }
4882 
4883 
4884 // Refer to the comments in os_solaris.cpp park-unpark.
4885 //
4886 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4887 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4888 // For specifics regarding the bug see GLIBC BUGID 261237 :
4889 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4890 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4891 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4892 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4893 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4894 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4895 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4896 // of libpthread avoids the problem, but isn't practical.
4897 //
4898 // Possible remedies:
4899 //
4900 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4901 //      This is palliative and probabilistic, however.  If the thread is preempted
4902 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4903 //      than the minimum period may have passed, and the abstime may be stale (in the
4904 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4905 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4906 //
4907 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4908 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4909 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4910 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4911 //      thread.
4912 //
4913 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4914 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4915 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4916 //      This also works well.  In fact it avoids kernel-level scalability impediments
4917 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4918 //      timers in a graceful fashion.
4919 //
4920 // 4.   When the abstime value is in the past it appears that control returns
4921 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4922 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4923 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4924 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4925 //      It may be possible to avoid reinitialization by checking the return
4926 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4927 //      condvar we must establish the invariant that cond_signal() is only called
4928 //      within critical sections protected by the adjunct mutex.  This prevents
4929 //      cond_signal() from "seeing" a condvar that's in the midst of being
4930 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4931 //      desirable signal-after-unlock optimization that avoids futile context switching.
4932 //
4933 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4934 //      structure when a condvar is used or initialized.  cond_destroy()  would
4935 //      release the helper structure.  Our reinitialize-after-timedwait fix
4936 //      put excessive stress on malloc/free and locks protecting the c-heap.
4937 //
4938 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4939 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4940 // and only enabling the work-around for vulnerable environments.
4941 
4942 // utility to compute the abstime argument to timedwait:
4943 // millis is the relative timeout time
4944 // abstime will be the absolute timeout time
4945 // TODO: replace compute_abstime() with unpackTime()
4946 
4947 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4948   if (millis < 0)  millis = 0;
4949   struct timeval now;
4950   int status = gettimeofday(&now, NULL);
4951   assert(status == 0, "gettimeofday");
4952   jlong seconds = millis / 1000;
4953   millis %= 1000;
4954   if (seconds > 50000000) { // see man cond_timedwait(3T)
4955     seconds = 50000000;
4956   }
4957   abstime->tv_sec = now.tv_sec  + seconds;
4958   long       usec = now.tv_usec + millis * 1000;
4959   if (usec >= 1000000) {
4960     abstime->tv_sec += 1;
4961     usec -= 1000000;
4962   }
4963   abstime->tv_nsec = usec * 1000;
4964   return abstime;
4965 }
4966 
4967 
4968 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4969 // Conceptually TryPark() should be equivalent to park(0).
4970 
4971 int os::PlatformEvent::TryPark() {
4972   for (;;) {
4973     const int v = _Event ;
4974     guarantee ((v == 0) || (v == 1), "invariant") ;
4975     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4976   }
4977 }
4978 
4979 void os::PlatformEvent::park() {       // AKA "down()"
4980   // Invariant: Only the thread associated with the Event/PlatformEvent
4981   // may call park().
4982   // TODO: assert that _Assoc != NULL or _Assoc == Self
4983   int v ;
4984   for (;;) {
4985       v = _Event ;
4986       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4987   }
4988   guarantee (v >= 0, "invariant") ;
4989   if (v == 0) {
4990      // Do this the hard way by blocking ...
4991      int status = pthread_mutex_lock(_mutex);
4992      assert_status(status == 0, status, "mutex_lock");
4993      guarantee (_nParked == 0, "invariant") ;
4994      ++ _nParked ;
4995      while (_Event < 0) {
4996         status = pthread_cond_wait(_cond, _mutex);
4997         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4998         // Treat this the same as if the wait was interrupted
4999         if (status == ETIME) { status = EINTR; }
5000         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5001      }
5002      -- _nParked ;
5003 
5004     // In theory we could move the ST of 0 into _Event past the unlock(),
5005     // but then we'd need a MEMBAR after the ST.
5006     _Event = 0 ;
5007      status = pthread_mutex_unlock(_mutex);
5008      assert_status(status == 0, status, "mutex_unlock");
5009   }
5010   guarantee (_Event >= 0, "invariant") ;
5011 }
5012 
5013 int os::PlatformEvent::park(jlong millis) {
5014   guarantee (_nParked == 0, "invariant") ;
5015 
5016   int v ;
5017   for (;;) {
5018       v = _Event ;
5019       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5020   }
5021   guarantee (v >= 0, "invariant") ;
5022   if (v != 0) return OS_OK ;
5023 
5024   // We do this the hard way, by blocking the thread.
5025   // Consider enforcing a minimum timeout value.
5026   struct timespec abst;
5027   compute_abstime(&abst, millis);
5028 
5029   int ret = OS_TIMEOUT;
5030   int status = pthread_mutex_lock(_mutex);
5031   assert_status(status == 0, status, "mutex_lock");
5032   guarantee (_nParked == 0, "invariant") ;
5033   ++_nParked ;
5034 
5035   // Object.wait(timo) will return because of
5036   // (a) notification
5037   // (b) timeout
5038   // (c) thread.interrupt
5039   //
5040   // Thread.interrupt and object.notify{All} both call Event::set.
5041   // That is, we treat thread.interrupt as a special case of notification.
5042   // The underlying Solaris implementation, cond_timedwait, admits
5043   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5044   // JVM from making those visible to Java code.  As such, we must
5045   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5046   //
5047   // TODO: properly differentiate simultaneous notify+interrupt.
5048   // In that case, we should propagate the notify to another waiter.
5049 
5050   while (_Event < 0) {
5051     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5052     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5053       pthread_cond_destroy (_cond);
5054       pthread_cond_init (_cond, NULL) ;
5055     }
5056     assert_status(status == 0 || status == EINTR ||
5057                   status == ETIME || status == ETIMEDOUT,
5058                   status, "cond_timedwait");
5059     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5060     if (status == ETIME || status == ETIMEDOUT) break ;
5061     // We consume and ignore EINTR and spurious wakeups.
5062   }
5063   --_nParked ;
5064   if (_Event >= 0) {
5065      ret = OS_OK;
5066   }
5067   _Event = 0 ;
5068   status = pthread_mutex_unlock(_mutex);
5069   assert_status(status == 0, status, "mutex_unlock");
5070   assert (_nParked == 0, "invariant") ;
5071   return ret;
5072 }
5073 
5074 void os::PlatformEvent::unpark() {
5075   int v, AnyWaiters ;
5076   for (;;) {
5077       v = _Event ;
5078       if (v > 0) {
5079          // The LD of _Event could have reordered or be satisfied
5080          // by a read-aside from this processor's write buffer.
5081          // To avoid problems execute a barrier and then
5082          // ratify the value.
5083          OrderAccess::fence() ;
5084          if (_Event == v) return ;
5085          continue ;
5086       }
5087       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5088   }
5089   if (v < 0) {
5090      // Wait for the thread associated with the event to vacate
5091      int status = pthread_mutex_lock(_mutex);
5092      assert_status(status == 0, status, "mutex_lock");
5093      AnyWaiters = _nParked ;
5094      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5095      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5096         AnyWaiters = 0 ;
5097         pthread_cond_signal (_cond);
5098      }
5099      status = pthread_mutex_unlock(_mutex);
5100      assert_status(status == 0, status, "mutex_unlock");
5101      if (AnyWaiters != 0) {
5102         status = pthread_cond_signal(_cond);
5103         assert_status(status == 0, status, "cond_signal");
5104      }
5105   }
5106 
5107   // Note that we signal() _after dropping the lock for "immortal" Events.
5108   // This is safe and avoids a common class of  futile wakeups.  In rare
5109   // circumstances this can cause a thread to return prematurely from
5110   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5111   // simply re-test the condition and re-park itself.
5112 }
5113 
5114 
5115 // JSR166
5116 // -------------------------------------------------------
5117 
5118 /*
5119  * The solaris and linux implementations of park/unpark are fairly
5120  * conservative for now, but can be improved. They currently use a
5121  * mutex/condvar pair, plus a a count.
5122  * Park decrements count if > 0, else does a condvar wait.  Unpark
5123  * sets count to 1 and signals condvar.  Only one thread ever waits
5124  * on the condvar. Contention seen when trying to park implies that someone
5125  * is unparking you, so don't wait. And spurious returns are fine, so there
5126  * is no need to track notifications.
5127  */
5128 
5129 #define MAX_SECS 100000000
5130 /*
5131  * This code is common to linux and solaris and will be moved to a
5132  * common place in dolphin.
5133  *
5134  * The passed in time value is either a relative time in nanoseconds
5135  * or an absolute time in milliseconds. Either way it has to be unpacked
5136  * into suitable seconds and nanoseconds components and stored in the
5137  * given timespec structure.
5138  * Given time is a 64-bit value and the time_t used in the timespec is only
5139  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5140  * overflow if times way in the future are given. Further on Solaris versions
5141  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5142  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5143  * As it will be 28 years before "now + 100000000" will overflow we can
5144  * ignore overflow and just impose a hard-limit on seconds using the value
5145  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5146  * years from "now".
5147  */
5148 
5149 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5150   assert (time > 0, "convertTime");
5151 
5152   struct timeval now;
5153   int status = gettimeofday(&now, NULL);
5154   assert(status == 0, "gettimeofday");
5155 
5156   time_t max_secs = now.tv_sec + MAX_SECS;
5157 
5158   if (isAbsolute) {
5159     jlong secs = time / 1000;
5160     if (secs > max_secs) {
5161       absTime->tv_sec = max_secs;
5162     }
5163     else {
5164       absTime->tv_sec = secs;
5165     }
5166     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5167   }
5168   else {
5169     jlong secs = time / NANOSECS_PER_SEC;
5170     if (secs >= MAX_SECS) {
5171       absTime->tv_sec = max_secs;
5172       absTime->tv_nsec = 0;
5173     }
5174     else {
5175       absTime->tv_sec = now.tv_sec + secs;
5176       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5177       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5178         absTime->tv_nsec -= NANOSECS_PER_SEC;
5179         ++absTime->tv_sec; // note: this must be <= max_secs
5180       }
5181     }
5182   }
5183   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5184   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5185   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5186   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5187 }
5188 
5189 void Parker::park(bool isAbsolute, jlong time) {
5190   // Optional fast-path check:
5191   // Return immediately if a permit is available.
5192   if (_counter > 0) {
5193       _counter = 0 ;
5194       OrderAccess::fence();
5195       return ;
5196   }
5197 
5198   Thread* thread = Thread::current();
5199   assert(thread->is_Java_thread(), "Must be JavaThread");
5200   JavaThread *jt = (JavaThread *)thread;
5201 
5202   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5203   // Check interrupt before trying to wait
5204   if (Thread::is_interrupted(thread, false)) {
5205     return;
5206   }
5207 
5208   // Next, demultiplex/decode time arguments
5209   timespec absTime;
5210   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5211     return;
5212   }
5213   if (time > 0) {
5214     unpackTime(&absTime, isAbsolute, time);
5215   }
5216 
5217 
5218   // Enter safepoint region
5219   // Beware of deadlocks such as 6317397.
5220   // The per-thread Parker:: mutex is a classic leaf-lock.
5221   // In particular a thread must never block on the Threads_lock while
5222   // holding the Parker:: mutex.  If safepoints are pending both the
5223   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5224   ThreadBlockInVM tbivm(jt);
5225 
5226   // Don't wait if cannot get lock since interference arises from
5227   // unblocking.  Also. check interrupt before trying wait
5228   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5229     return;
5230   }
5231 
5232   int status ;
5233   if (_counter > 0)  { // no wait needed
5234     _counter = 0;
5235     status = pthread_mutex_unlock(_mutex);
5236     assert (status == 0, "invariant") ;
5237     OrderAccess::fence();
5238     return;
5239   }
5240 
5241 #ifdef ASSERT
5242   // Don't catch signals while blocked; let the running threads have the signals.
5243   // (This allows a debugger to break into the running thread.)
5244   sigset_t oldsigs;
5245   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5246   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5247 #endif
5248 
5249   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5250   jt->set_suspend_equivalent();
5251   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5252 
5253   if (time == 0) {
5254     status = pthread_cond_wait (_cond, _mutex) ;
5255   } else {
5256     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5257     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5258       pthread_cond_destroy (_cond) ;
5259       pthread_cond_init    (_cond, NULL);
5260     }
5261   }
5262   assert_status(status == 0 || status == EINTR ||
5263                 status == ETIME || status == ETIMEDOUT,
5264                 status, "cond_timedwait");
5265 
5266 #ifdef ASSERT
5267   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5268 #endif
5269 
5270   _counter = 0 ;
5271   status = pthread_mutex_unlock(_mutex) ;
5272   assert_status(status == 0, status, "invariant") ;
5273   // If externally suspended while waiting, re-suspend
5274   if (jt->handle_special_suspend_equivalent_condition()) {
5275     jt->java_suspend_self();
5276   }
5277 
5278   OrderAccess::fence();
5279 }
5280 
5281 void Parker::unpark() {
5282   int s, status ;
5283   status = pthread_mutex_lock(_mutex);
5284   assert (status == 0, "invariant") ;
5285   s = _counter;
5286   _counter = 1;
5287   if (s < 1) {
5288      if (WorkAroundNPTLTimedWaitHang) {
5289         status = pthread_cond_signal (_cond) ;
5290         assert (status == 0, "invariant") ;
5291         status = pthread_mutex_unlock(_mutex);
5292         assert (status == 0, "invariant") ;
5293      } else {
5294         status = pthread_mutex_unlock(_mutex);
5295         assert (status == 0, "invariant") ;
5296         status = pthread_cond_signal (_cond) ;
5297         assert (status == 0, "invariant") ;
5298      }
5299   } else {
5300     pthread_mutex_unlock(_mutex);
5301     assert (status == 0, "invariant") ;
5302   }
5303 }
5304 
5305 
5306 extern char** environ;
5307 
5308 #ifndef __NR_fork
5309 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5310 #endif
5311 
5312 #ifndef __NR_execve
5313 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5314 #endif
5315 
5316 // Run the specified command in a separate process. Return its exit value,
5317 // or -1 on failure (e.g. can't fork a new process).
5318 // Unlike system(), this function can be called from signal handler. It
5319 // doesn't block SIGINT et al.
5320 int os::fork_and_exec(char* cmd) {
5321   const char * argv[4] = {"sh", "-c", cmd, NULL};
5322 
5323   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5324   // pthread_atfork handlers and reset pthread library. All we need is a
5325   // separate process to execve. Make a direct syscall to fork process.
5326   // On IA64 there's no fork syscall, we have to use fork() and hope for
5327   // the best...
5328   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5329               IA64_ONLY(fork();)
5330 
5331   if (pid < 0) {
5332     // fork failed
5333     return -1;
5334 
5335   } else if (pid == 0) {
5336     // child process
5337 
5338     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5339     // first to kill every thread on the thread list. Because this list is
5340     // not reset by fork() (see notes above), execve() will instead kill
5341     // every thread in the parent process. We know this is the only thread
5342     // in the new process, so make a system call directly.
5343     // IA64 should use normal execve() from glibc to match the glibc fork()
5344     // above.
5345     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5346     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5347 
5348     // execve failed
5349     _exit(-1);
5350 
5351   } else  {
5352     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5353     // care about the actual exit code, for now.
5354 
5355     int status;
5356 
5357     // Wait for the child process to exit.  This returns immediately if
5358     // the child has already exited. */
5359     while (waitpid(pid, &status, 0) < 0) {
5360         switch (errno) {
5361         case ECHILD: return 0;
5362         case EINTR: break;
5363         default: return -1;
5364         }
5365     }
5366 
5367     if (WIFEXITED(status)) {
5368        // The child exited normally; get its exit code.
5369        return WEXITSTATUS(status);
5370     } else if (WIFSIGNALED(status)) {
5371        // The child exited because of a signal
5372        // The best value to return is 0x80 + signal number,
5373        // because that is what all Unix shells do, and because
5374        // it allows callers to distinguish between process exit and
5375        // process death by signal.
5376        return 0x80 + WTERMSIG(status);
5377     } else {
5378        // Unknown exit code; pass it through
5379        return status;
5380     }
5381   }
5382 }
5383 
5384 // is_headless_jre()
5385 //
5386 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5387 // in order to report if we are running in a headless jre
5388 //
5389 // Since JDK8 xawt/libmawt.so was moved into the same directory
5390 // as libawt.so, and renamed libawt_xawt.so
5391 //
5392 bool os::is_headless_jre() {
5393     struct stat statbuf;
5394     char buf[MAXPATHLEN];
5395     char libmawtpath[MAXPATHLEN];
5396     const char *xawtstr  = "/xawt/libmawt.so";
5397     const char *new_xawtstr = "/libawt_xawt.so";
5398     char *p;
5399 
5400     // Get path to libjvm.so
5401     os::jvm_path(buf, sizeof(buf));
5402 
5403     // Get rid of libjvm.so
5404     p = strrchr(buf, '/');
5405     if (p == NULL) return false;
5406     else *p = '\0';
5407 
5408     // Get rid of client or server
5409     p = strrchr(buf, '/');
5410     if (p == NULL) return false;
5411     else *p = '\0';
5412 
5413     // check xawt/libmawt.so
5414     strcpy(libmawtpath, buf);
5415     strcat(libmawtpath, xawtstr);
5416     if (::stat(libmawtpath, &statbuf) == 0) return false;
5417 
5418     // check libawt_xawt.so
5419     strcpy(libmawtpath, buf);
5420     strcat(libmawtpath, new_xawtstr);
5421     if (::stat(libmawtpath, &statbuf) == 0) return false;
5422 
5423     return true;
5424 }
5425 
5426 // Get the default path to the core file
5427 // Returns the length of the string
5428 int os::get_core_path(char* buffer, size_t bufferSize) {
5429   const char* p = get_current_directory(buffer, bufferSize);
5430 
5431   if (p == NULL) {
5432     assert(p != NULL, "failed to get current directory");
5433     return 0;
5434   }
5435 
5436   return strlen(buffer);
5437 }
5438 
5439 #ifdef JAVASE_EMBEDDED
5440 //
5441 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5442 //
5443 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5444 
5445 // ctor
5446 //
5447 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5448   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5449   _fd = fd;
5450 
5451   if (os::create_thread(this, os::os_thread)) {
5452     _memnotify_thread = this;
5453     os::set_priority(this, NearMaxPriority);
5454     os::start_thread(this);
5455   }
5456 }
5457 
5458 // Where all the work gets done
5459 //
5460 void MemNotifyThread::run() {
5461   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5462 
5463   // Set up the select arguments
5464   fd_set rfds;
5465   if (_fd != -1) {
5466     FD_ZERO(&rfds);
5467     FD_SET(_fd, &rfds);
5468   }
5469 
5470   // Now wait for the mem_notify device to wake up
5471   while (1) {
5472     // Wait for the mem_notify device to signal us..
5473     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5474     if (rc == -1) {
5475       perror("select!\n");
5476       break;
5477     } else if (rc) {
5478       //ssize_t free_before = os::available_memory();
5479       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5480 
5481       // The kernel is telling us there is not much memory left...
5482       // try to do something about that
5483 
5484       // If we are not already in a GC, try one.
5485       if (!Universe::heap()->is_gc_active()) {
5486         Universe::heap()->collect(GCCause::_allocation_failure);
5487 
5488         //ssize_t free_after = os::available_memory();
5489         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5490         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5491       }
5492       // We might want to do something like the following if we find the GC's are not helping...
5493       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5494     }
5495   }
5496 }
5497 
5498 //
5499 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5500 //
5501 void MemNotifyThread::start() {
5502   int    fd;
5503   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5504   if (fd < 0) {
5505       return;
5506   }
5507 
5508   if (memnotify_thread() == NULL) {
5509     new MemNotifyThread(fd);
5510   }
5511 }
5512 #endif // JAVASE_EMBEDDED