1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // turn it on so that the contents of the young list (scan-only /
  78 // to-be-collected) are printed at "strategic" points before / during
  79 // / after the collection --- this is useful for debugging
  80 #define YOUNG_LIST_VERBOSE 0
  81 // CURRENT STATUS
  82 // This file is under construction.  Search for "FIXME".
  83 
  84 // INVARIANTS/NOTES
  85 //
  86 // All allocation activity covered by the G1CollectedHeap interface is
  87 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  88 // and allocate_new_tlab, which are the "entry" points to the
  89 // allocation code from the rest of the JVM.  (Note that this does not
  90 // apply to TLAB allocation, which is not part of this interface: it
  91 // is done by clients of this interface.)
  92 
  93 // Local to this file.
  94 
  95 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure() : _concurrent(true) { }
  99 
 100   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 101     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 102     // This path is executed by the concurrent refine or mutator threads,
 103     // concurrently, and so we do not care if card_ptr contains references
 104     // that point into the collection set.
 105     assert(!oops_into_cset, "should be");
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_processed;
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 125 
 126   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 127     *card_ptr = CardTableModRefBS::dirty_card_val();
 128     _num_processed++;
 129     return true;
 130   }
 131 
 132   size_t num_processed() const { return _num_processed; }
 133 };
 134 
 135 YoungList::YoungList(G1CollectedHeap* g1h) :
 136     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 137     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 138   guarantee(check_list_empty(false), "just making sure...");
 139 }
 140 
 141 void YoungList::push_region(HeapRegion *hr) {
 142   assert(!hr->is_young(), "should not already be young");
 143   assert(hr->get_next_young_region() == NULL, "cause it should!");
 144 
 145   hr->set_next_young_region(_head);
 146   _head = hr;
 147 
 148   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 149   ++_length;
 150 }
 151 
 152 void YoungList::add_survivor_region(HeapRegion* hr) {
 153   assert(hr->is_survivor(), "should be flagged as survivor region");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_survivor_head);
 157   if (_survivor_head == NULL) {
 158     _survivor_tail = hr;
 159   }
 160   _survivor_head = hr;
 161   ++_survivor_length;
 162 }
 163 
 164 void YoungList::empty_list(HeapRegion* list) {
 165   while (list != NULL) {
 166     HeapRegion* next = list->get_next_young_region();
 167     list->set_next_young_region(NULL);
 168     list->uninstall_surv_rate_group();
 169     // This is called before a Full GC and all the non-empty /
 170     // non-humongous regions at the end of the Full GC will end up as
 171     // old anyway.
 172     list->set_old();
 173     list = next;
 174   }
 175 }
 176 
 177 void YoungList::empty_list() {
 178   assert(check_list_well_formed(), "young list should be well formed");
 179 
 180   empty_list(_head);
 181   _head = NULL;
 182   _length = 0;
 183 
 184   empty_list(_survivor_head);
 185   _survivor_head = NULL;
 186   _survivor_tail = NULL;
 187   _survivor_length = 0;
 188 
 189   _last_sampled_rs_lengths = 0;
 190 
 191   assert(check_list_empty(false), "just making sure...");
 192 }
 193 
 194 bool YoungList::check_list_well_formed() {
 195   bool ret = true;
 196 
 197   uint length = 0;
 198   HeapRegion* curr = _head;
 199   HeapRegion* last = NULL;
 200   while (curr != NULL) {
 201     if (!curr->is_young()) {
 202       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 203                              "incorrectly tagged (y: %d, surv: %d)",
 204                              curr->bottom(), curr->end(),
 205                              curr->is_young(), curr->is_survivor());
 206       ret = false;
 207     }
 208     ++length;
 209     last = curr;
 210     curr = curr->get_next_young_region();
 211   }
 212   ret = ret && (length == _length);
 213 
 214   if (!ret) {
 215     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 216     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 217                            length, _length);
 218   }
 219 
 220   return ret;
 221 }
 222 
 223 bool YoungList::check_list_empty(bool check_sample) {
 224   bool ret = true;
 225 
 226   if (_length != 0) {
 227     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 228                   _length);
 229     ret = false;
 230   }
 231   if (check_sample && _last_sampled_rs_lengths != 0) {
 232     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 233     ret = false;
 234   }
 235   if (_head != NULL) {
 236     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 237     ret = false;
 238   }
 239   if (!ret) {
 240     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 241   }
 242 
 243   return ret;
 244 }
 245 
 246 void
 247 YoungList::rs_length_sampling_init() {
 248   _sampled_rs_lengths = 0;
 249   _curr               = _head;
 250 }
 251 
 252 bool
 253 YoungList::rs_length_sampling_more() {
 254   return _curr != NULL;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_next() {
 259   assert( _curr != NULL, "invariant" );
 260   size_t rs_length = _curr->rem_set()->occupied();
 261 
 262   _sampled_rs_lengths += rs_length;
 263 
 264   // The current region may not yet have been added to the
 265   // incremental collection set (it gets added when it is
 266   // retired as the current allocation region).
 267   if (_curr->in_collection_set()) {
 268     // Update the collection set policy information for this region
 269     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 270   }
 271 
 272   _curr = _curr->get_next_young_region();
 273   if (_curr == NULL) {
 274     _last_sampled_rs_lengths = _sampled_rs_lengths;
 275     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 276   }
 277 }
 278 
 279 void
 280 YoungList::reset_auxilary_lists() {
 281   guarantee( is_empty(), "young list should be empty" );
 282   assert(check_list_well_formed(), "young list should be well formed");
 283 
 284   // Add survivor regions to SurvRateGroup.
 285   _g1h->g1_policy()->note_start_adding_survivor_regions();
 286   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 287 
 288   int young_index_in_cset = 0;
 289   for (HeapRegion* curr = _survivor_head;
 290        curr != NULL;
 291        curr = curr->get_next_young_region()) {
 292     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 293 
 294     // The region is a non-empty survivor so let's add it to
 295     // the incremental collection set for the next evacuation
 296     // pause.
 297     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 298     young_index_in_cset += 1;
 299   }
 300   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 301   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 302 
 303   _head   = _survivor_head;
 304   _length = _survivor_length;
 305   if (_survivor_head != NULL) {
 306     assert(_survivor_tail != NULL, "cause it shouldn't be");
 307     assert(_survivor_length > 0, "invariant");
 308     _survivor_tail->set_next_young_region(NULL);
 309   }
 310 
 311   // Don't clear the survivor list handles until the start of
 312   // the next evacuation pause - we need it in order to re-tag
 313   // the survivor regions from this evacuation pause as 'young'
 314   // at the start of the next.
 315 
 316   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 317 
 318   assert(check_list_well_formed(), "young list should be well formed");
 319 }
 320 
 321 void YoungList::print() {
 322   HeapRegion* lists[] = {_head,   _survivor_head};
 323   const char* names[] = {"YOUNG", "SURVIVOR"};
 324 
 325   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 326     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 327     HeapRegion *curr = lists[list];
 328     if (curr == NULL)
 329       gclog_or_tty->print_cr("  empty");
 330     while (curr != NULL) {
 331       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 332                              HR_FORMAT_PARAMS(curr),
 333                              curr->prev_top_at_mark_start(),
 334                              curr->next_top_at_mark_start(),
 335                              curr->age_in_surv_rate_group_cond());
 336       curr = curr->get_next_young_region();
 337     }
 338   }
 339 
 340   gclog_or_tty->cr();
 341 }
 342 
 343 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 344   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 345 }
 346 
 347 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 348   // The from card cache is not the memory that is actually committed. So we cannot
 349   // take advantage of the zero_filled parameter.
 350   reset_from_card_cache(start_idx, num_regions);
 351 }
 352 
 353 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 354 {
 355   // Claim the right to put the region on the dirty cards region list
 356   // by installing a self pointer.
 357   HeapRegion* next = hr->get_next_dirty_cards_region();
 358   if (next == NULL) {
 359     HeapRegion* res = (HeapRegion*)
 360       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 361                           NULL);
 362     if (res == NULL) {
 363       HeapRegion* head;
 364       do {
 365         // Put the region to the dirty cards region list.
 366         head = _dirty_cards_region_list;
 367         next = (HeapRegion*)
 368           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 369         if (next == head) {
 370           assert(hr->get_next_dirty_cards_region() == hr,
 371                  "hr->get_next_dirty_cards_region() != hr");
 372           if (next == NULL) {
 373             // The last region in the list points to itself.
 374             hr->set_next_dirty_cards_region(hr);
 375           } else {
 376             hr->set_next_dirty_cards_region(next);
 377           }
 378         }
 379       } while (next != head);
 380     }
 381   }
 382 }
 383 
 384 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 385 {
 386   HeapRegion* head;
 387   HeapRegion* hr;
 388   do {
 389     head = _dirty_cards_region_list;
 390     if (head == NULL) {
 391       return NULL;
 392     }
 393     HeapRegion* new_head = head->get_next_dirty_cards_region();
 394     if (head == new_head) {
 395       // The last region.
 396       new_head = NULL;
 397     }
 398     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 399                                           head);
 400   } while (hr != head);
 401   assert(hr != NULL, "invariant");
 402   hr->set_next_dirty_cards_region(NULL);
 403   return hr;
 404 }
 405 
 406 // Returns true if the reference points to an object that
 407 // can move in an incremental collection.
 408 bool G1CollectedHeap::is_scavengable(const void* p) {
 409   HeapRegion* hr = heap_region_containing(p);
 410   return !hr->is_humongous();
 411 }
 412 
 413 // Private methods.
 414 
 415 HeapRegion*
 416 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 417   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 418   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 419     if (!_secondary_free_list.is_empty()) {
 420       if (G1ConcRegionFreeingVerbose) {
 421         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 422                                "secondary_free_list has %u entries",
 423                                _secondary_free_list.length());
 424       }
 425       // It looks as if there are free regions available on the
 426       // secondary_free_list. Let's move them to the free_list and try
 427       // again to allocate from it.
 428       append_secondary_free_list();
 429 
 430       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 431              "empty we should have moved at least one entry to the free_list");
 432       HeapRegion* res = _hrm.allocate_free_region(is_old);
 433       if (G1ConcRegionFreeingVerbose) {
 434         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 435                                "allocated "HR_FORMAT" from secondary_free_list",
 436                                HR_FORMAT_PARAMS(res));
 437       }
 438       return res;
 439     }
 440 
 441     // Wait here until we get notified either when (a) there are no
 442     // more free regions coming or (b) some regions have been moved on
 443     // the secondary_free_list.
 444     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 445   }
 446 
 447   if (G1ConcRegionFreeingVerbose) {
 448     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 449                            "could not allocate from secondary_free_list");
 450   }
 451   return NULL;
 452 }
 453 
 454 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 455   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 456          "the only time we use this to allocate a humongous region is "
 457          "when we are allocating a single humongous region");
 458 
 459   HeapRegion* res;
 460   if (G1StressConcRegionFreeing) {
 461     if (!_secondary_free_list.is_empty()) {
 462       if (G1ConcRegionFreeingVerbose) {
 463         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 464                                "forced to look at the secondary_free_list");
 465       }
 466       res = new_region_try_secondary_free_list(is_old);
 467       if (res != NULL) {
 468         return res;
 469       }
 470     }
 471   }
 472 
 473   res = _hrm.allocate_free_region(is_old);
 474 
 475   if (res == NULL) {
 476     if (G1ConcRegionFreeingVerbose) {
 477       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 478                              "res == NULL, trying the secondary_free_list");
 479     }
 480     res = new_region_try_secondary_free_list(is_old);
 481   }
 482   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 483     // Currently, only attempts to allocate GC alloc regions set
 484     // do_expand to true. So, we should only reach here during a
 485     // safepoint. If this assumption changes we might have to
 486     // reconsider the use of _expand_heap_after_alloc_failure.
 487     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 488 
 489     ergo_verbose1(ErgoHeapSizing,
 490                   "attempt heap expansion",
 491                   ergo_format_reason("region allocation request failed")
 492                   ergo_format_byte("allocation request"),
 493                   word_size * HeapWordSize);
 494     if (expand(word_size * HeapWordSize)) {
 495       // Given that expand() succeeded in expanding the heap, and we
 496       // always expand the heap by an amount aligned to the heap
 497       // region size, the free list should in theory not be empty.
 498       // In either case allocate_free_region() will check for NULL.
 499       res = _hrm.allocate_free_region(is_old);
 500     } else {
 501       _expand_heap_after_alloc_failure = false;
 502     }
 503   }
 504   return res;
 505 }
 506 
 507 HeapWord*
 508 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 509                                                            uint num_regions,
 510                                                            size_t word_size,
 511                                                            AllocationContext_t context) {
 512   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 513   assert(is_humongous(word_size), "word_size should be humongous");
 514   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 515 
 516   // Index of last region in the series + 1.
 517   uint last = first + num_regions;
 518 
 519   // We need to initialize the region(s) we just discovered. This is
 520   // a bit tricky given that it can happen concurrently with
 521   // refinement threads refining cards on these regions and
 522   // potentially wanting to refine the BOT as they are scanning
 523   // those cards (this can happen shortly after a cleanup; see CR
 524   // 6991377). So we have to set up the region(s) carefully and in
 525   // a specific order.
 526 
 527   // The word size sum of all the regions we will allocate.
 528   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 529   assert(word_size <= word_size_sum, "sanity");
 530 
 531   // This will be the "starts humongous" region.
 532   HeapRegion* first_hr = region_at(first);
 533   // The header of the new object will be placed at the bottom of
 534   // the first region.
 535   HeapWord* new_obj = first_hr->bottom();
 536   // This will be the new end of the first region in the series that
 537   // should also match the end of the last region in the series.
 538   HeapWord* new_end = new_obj + word_size_sum;
 539   // This will be the new top of the first region that will reflect
 540   // this allocation.
 541   HeapWord* new_top = new_obj + word_size;
 542 
 543   // First, we need to zero the header of the space that we will be
 544   // allocating. When we update top further down, some refinement
 545   // threads might try to scan the region. By zeroing the header we
 546   // ensure that any thread that will try to scan the region will
 547   // come across the zero klass word and bail out.
 548   //
 549   // NOTE: It would not have been correct to have used
 550   // CollectedHeap::fill_with_object() and make the space look like
 551   // an int array. The thread that is doing the allocation will
 552   // later update the object header to a potentially different array
 553   // type and, for a very short period of time, the klass and length
 554   // fields will be inconsistent. This could cause a refinement
 555   // thread to calculate the object size incorrectly.
 556   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 557 
 558   // We will set up the first region as "starts humongous". This
 559   // will also update the BOT covering all the regions to reflect
 560   // that there is a single object that starts at the bottom of the
 561   // first region.
 562   first_hr->set_starts_humongous(new_top, new_end);
 563   first_hr->set_allocation_context(context);
 564   // Then, if there are any, we will set up the "continues
 565   // humongous" regions.
 566   HeapRegion* hr = NULL;
 567   for (uint i = first + 1; i < last; ++i) {
 568     hr = region_at(i);
 569     hr->set_continues_humongous(first_hr);
 570     hr->set_allocation_context(context);
 571   }
 572   // If we have "continues humongous" regions (hr != NULL), then the
 573   // end of the last one should match new_end.
 574   assert(hr == NULL || hr->end() == new_end, "sanity");
 575 
 576   // Up to this point no concurrent thread would have been able to
 577   // do any scanning on any region in this series. All the top
 578   // fields still point to bottom, so the intersection between
 579   // [bottom,top] and [card_start,card_end] will be empty. Before we
 580   // update the top fields, we'll do a storestore to make sure that
 581   // no thread sees the update to top before the zeroing of the
 582   // object header and the BOT initialization.
 583   OrderAccess::storestore();
 584 
 585   // Now that the BOT and the object header have been initialized,
 586   // we can update top of the "starts humongous" region.
 587   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 588          "new_top should be in this region");
 589   first_hr->set_top(new_top);
 590   if (_hr_printer.is_active()) {
 591     HeapWord* bottom = first_hr->bottom();
 592     HeapWord* end = first_hr->orig_end();
 593     if ((first + 1) == last) {
 594       // the series has a single humongous region
 595       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 596     } else {
 597       // the series has more than one humongous regions
 598       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 599     }
 600   }
 601 
 602   // Now, we will update the top fields of the "continues humongous"
 603   // regions. The reason we need to do this is that, otherwise,
 604   // these regions would look empty and this will confuse parts of
 605   // G1. For example, the code that looks for a consecutive number
 606   // of empty regions will consider them empty and try to
 607   // re-allocate them. We can extend is_empty() to also include
 608   // !is_continues_humongous(), but it is easier to just update the top
 609   // fields here. The way we set top for all regions (i.e., top ==
 610   // end for all regions but the last one, top == new_top for the
 611   // last one) is actually used when we will free up the humongous
 612   // region in free_humongous_region().
 613   hr = NULL;
 614   for (uint i = first + 1; i < last; ++i) {
 615     hr = region_at(i);
 616     if ((i + 1) == last) {
 617       // last continues humongous region
 618       assert(hr->bottom() < new_top && new_top <= hr->end(),
 619              "new_top should fall on this region");
 620       hr->set_top(new_top);
 621       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 622     } else {
 623       // not last one
 624       assert(new_top > hr->end(), "new_top should be above this region");
 625       hr->set_top(hr->end());
 626       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 627     }
 628   }
 629   // If we have continues humongous regions (hr != NULL), then the
 630   // end of the last one should match new_end and its top should
 631   // match new_top.
 632   assert(hr == NULL ||
 633          (hr->end() == new_end && hr->top() == new_top), "sanity");
 634   check_bitmaps("Humongous Region Allocation", first_hr);
 635 
 636   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 637   _allocator->increase_used(first_hr->used());
 638   _humongous_set.add(first_hr);
 639 
 640   return new_obj;
 641 }
 642 
 643 // If could fit into free regions w/o expansion, try.
 644 // Otherwise, if can expand, do so.
 645 // Otherwise, if using ex regions might help, try with ex given back.
 646 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 647   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 648 
 649   verify_region_sets_optional();
 650 
 651   uint first = G1_NO_HRM_INDEX;
 652   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 653 
 654   if (obj_regions == 1) {
 655     // Only one region to allocate, try to use a fast path by directly allocating
 656     // from the free lists. Do not try to expand here, we will potentially do that
 657     // later.
 658     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 659     if (hr != NULL) {
 660       first = hr->hrm_index();
 661     }
 662   } else {
 663     // We can't allocate humongous regions spanning more than one region while
 664     // cleanupComplete() is running, since some of the regions we find to be
 665     // empty might not yet be added to the free list. It is not straightforward
 666     // to know in which list they are on so that we can remove them. We only
 667     // need to do this if we need to allocate more than one region to satisfy the
 668     // current humongous allocation request. If we are only allocating one region
 669     // we use the one-region region allocation code (see above), that already
 670     // potentially waits for regions from the secondary free list.
 671     wait_while_free_regions_coming();
 672     append_secondary_free_list_if_not_empty_with_lock();
 673 
 674     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 675     // are lucky enough to find some.
 676     first = _hrm.find_contiguous_only_empty(obj_regions);
 677     if (first != G1_NO_HRM_INDEX) {
 678       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 679     }
 680   }
 681 
 682   if (first == G1_NO_HRM_INDEX) {
 683     // Policy: We could not find enough regions for the humongous object in the
 684     // free list. Look through the heap to find a mix of free and uncommitted regions.
 685     // If so, try expansion.
 686     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 687     if (first != G1_NO_HRM_INDEX) {
 688       // We found something. Make sure these regions are committed, i.e. expand
 689       // the heap. Alternatively we could do a defragmentation GC.
 690       ergo_verbose1(ErgoHeapSizing,
 691                     "attempt heap expansion",
 692                     ergo_format_reason("humongous allocation request failed")
 693                     ergo_format_byte("allocation request"),
 694                     word_size * HeapWordSize);
 695 
 696       _hrm.expand_at(first, obj_regions);
 697       g1_policy()->record_new_heap_size(num_regions());
 698 
 699 #ifdef ASSERT
 700       for (uint i = first; i < first + obj_regions; ++i) {
 701         HeapRegion* hr = region_at(i);
 702         assert(hr->is_free(), "sanity");
 703         assert(hr->is_empty(), "sanity");
 704         assert(is_on_master_free_list(hr), "sanity");
 705       }
 706 #endif
 707       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 708     } else {
 709       // Policy: Potentially trigger a defragmentation GC.
 710     }
 711   }
 712 
 713   HeapWord* result = NULL;
 714   if (first != G1_NO_HRM_INDEX) {
 715     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 716                                                        word_size, context);
 717     assert(result != NULL, "it should always return a valid result");
 718 
 719     // A successful humongous object allocation changes the used space
 720     // information of the old generation so we need to recalculate the
 721     // sizes and update the jstat counters here.
 722     g1mm()->update_sizes();
 723   }
 724 
 725   verify_region_sets_optional();
 726 
 727   return result;
 728 }
 729 
 730 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 733 
 734   uint dummy_gc_count_before;
 735   uint dummy_gclocker_retry_count = 0;
 736   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 737 }
 738 
 739 HeapWord*
 740 G1CollectedHeap::mem_allocate(size_t word_size,
 741                               bool*  gc_overhead_limit_was_exceeded) {
 742   assert_heap_not_locked_and_not_at_safepoint();
 743 
 744   // Loop until the allocation is satisfied, or unsatisfied after GC.
 745   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 746     uint gc_count_before;
 747 
 748     HeapWord* result = NULL;
 749     if (!is_humongous(word_size)) {
 750       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 751     } else {
 752       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 753     }
 754     if (result != NULL) {
 755       return result;
 756     }
 757 
 758     // Create the garbage collection operation...
 759     VM_G1CollectForAllocation op(gc_count_before, word_size);
 760     op.set_allocation_context(AllocationContext::current());
 761 
 762     // ...and get the VM thread to execute it.
 763     VMThread::execute(&op);
 764 
 765     if (op.prologue_succeeded() && op.pause_succeeded()) {
 766       // If the operation was successful we'll return the result even
 767       // if it is NULL. If the allocation attempt failed immediately
 768       // after a Full GC, it's unlikely we'll be able to allocate now.
 769       HeapWord* result = op.result();
 770       if (result != NULL && !is_humongous(word_size)) {
 771         // Allocations that take place on VM operations do not do any
 772         // card dirtying and we have to do it here. We only have to do
 773         // this for non-humongous allocations, though.
 774         dirty_young_block(result, word_size);
 775       }
 776       return result;
 777     } else {
 778       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 779         return NULL;
 780       }
 781       assert(op.result() == NULL,
 782              "the result should be NULL if the VM op did not succeed");
 783     }
 784 
 785     // Give a warning if we seem to be looping forever.
 786     if ((QueuedAllocationWarningCount > 0) &&
 787         (try_count % QueuedAllocationWarningCount == 0)) {
 788       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 789     }
 790   }
 791 
 792   ShouldNotReachHere();
 793   return NULL;
 794 }
 795 
 796 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 797                                                    AllocationContext_t context,
 798                                                    uint* gc_count_before_ret,
 799                                                    uint* gclocker_retry_count_ret) {
 800   // Make sure you read the note in attempt_allocation_humongous().
 801 
 802   assert_heap_not_locked_and_not_at_safepoint();
 803   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 804          "be called for humongous allocation requests");
 805 
 806   // We should only get here after the first-level allocation attempt
 807   // (attempt_allocation()) failed to allocate.
 808 
 809   // We will loop until a) we manage to successfully perform the
 810   // allocation or b) we successfully schedule a collection which
 811   // fails to perform the allocation. b) is the only case when we'll
 812   // return NULL.
 813   HeapWord* result = NULL;
 814   for (int try_count = 1; /* we'll return */; try_count += 1) {
 815     bool should_try_gc;
 816     uint gc_count_before;
 817 
 818     {
 819       MutexLockerEx x(Heap_lock);
 820       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 821                                                                                     false /* bot_updates */);
 822       if (result != NULL) {
 823         return result;
 824       }
 825 
 826       // If we reach here, attempt_allocation_locked() above failed to
 827       // allocate a new region. So the mutator alloc region should be NULL.
 828       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 829 
 830       if (GC_locker::is_active_and_needs_gc()) {
 831         if (g1_policy()->can_expand_young_list()) {
 832           // No need for an ergo verbose message here,
 833           // can_expand_young_list() does this when it returns true.
 834           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 835                                                                                        false /* bot_updates */);
 836           if (result != NULL) {
 837             return result;
 838           }
 839         }
 840         should_try_gc = false;
 841       } else {
 842         // The GCLocker may not be active but the GCLocker initiated
 843         // GC may not yet have been performed (GCLocker::needs_gc()
 844         // returns true). In this case we do not try this GC and
 845         // wait until the GCLocker initiated GC is performed, and
 846         // then retry the allocation.
 847         if (GC_locker::needs_gc()) {
 848           should_try_gc = false;
 849         } else {
 850           // Read the GC count while still holding the Heap_lock.
 851           gc_count_before = total_collections();
 852           should_try_gc = true;
 853         }
 854       }
 855     }
 856 
 857     if (should_try_gc) {
 858       bool succeeded;
 859       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 860                                    GCCause::_g1_inc_collection_pause);
 861       if (result != NULL) {
 862         assert(succeeded, "only way to get back a non-NULL result");
 863         return result;
 864       }
 865 
 866       if (succeeded) {
 867         // If we get here we successfully scheduled a collection which
 868         // failed to allocate. No point in trying to allocate
 869         // further. We'll just return NULL.
 870         MutexLockerEx x(Heap_lock);
 871         *gc_count_before_ret = total_collections();
 872         return NULL;
 873       }
 874     } else {
 875       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 876         MutexLockerEx x(Heap_lock);
 877         *gc_count_before_ret = total_collections();
 878         return NULL;
 879       }
 880       // The GCLocker is either active or the GCLocker initiated
 881       // GC has not yet been performed. Stall until it is and
 882       // then retry the allocation.
 883       GC_locker::stall_until_clear();
 884       (*gclocker_retry_count_ret) += 1;
 885     }
 886 
 887     // We can reach here if we were unsuccessful in scheduling a
 888     // collection (because another thread beat us to it) or if we were
 889     // stalled due to the GC locker. In either can we should retry the
 890     // allocation attempt in case another thread successfully
 891     // performed a collection and reclaimed enough space. We do the
 892     // first attempt (without holding the Heap_lock) here and the
 893     // follow-on attempt will be at the start of the next loop
 894     // iteration (after taking the Heap_lock).
 895     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 896                                                                            false /* bot_updates */);
 897     if (result != NULL) {
 898       return result;
 899     }
 900 
 901     // Give a warning if we seem to be looping forever.
 902     if ((QueuedAllocationWarningCount > 0) &&
 903         (try_count % QueuedAllocationWarningCount == 0)) {
 904       warning("G1CollectedHeap::attempt_allocation_slow() "
 905               "retries %d times", try_count);
 906     }
 907   }
 908 
 909   ShouldNotReachHere();
 910   return NULL;
 911 }
 912 
 913 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 914                                                         uint* gc_count_before_ret,
 915                                                         uint* gclocker_retry_count_ret) {
 916   // The structure of this method has a lot of similarities to
 917   // attempt_allocation_slow(). The reason these two were not merged
 918   // into a single one is that such a method would require several "if
 919   // allocation is not humongous do this, otherwise do that"
 920   // conditional paths which would obscure its flow. In fact, an early
 921   // version of this code did use a unified method which was harder to
 922   // follow and, as a result, it had subtle bugs that were hard to
 923   // track down. So keeping these two methods separate allows each to
 924   // be more readable. It will be good to keep these two in sync as
 925   // much as possible.
 926 
 927   assert_heap_not_locked_and_not_at_safepoint();
 928   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 929          "should only be called for humongous allocations");
 930 
 931   // Humongous objects can exhaust the heap quickly, so we should check if we
 932   // need to start a marking cycle at each humongous object allocation. We do
 933   // the check before we do the actual allocation. The reason for doing it
 934   // before the allocation is that we avoid having to keep track of the newly
 935   // allocated memory while we do a GC.
 936   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 937                                            word_size)) {
 938     collect(GCCause::_g1_humongous_allocation);
 939   }
 940 
 941   // We will loop until a) we manage to successfully perform the
 942   // allocation or b) we successfully schedule a collection which
 943   // fails to perform the allocation. b) is the only case when we'll
 944   // return NULL.
 945   HeapWord* result = NULL;
 946   for (int try_count = 1; /* we'll return */; try_count += 1) {
 947     bool should_try_gc;
 948     uint gc_count_before;
 949 
 950     {
 951       MutexLockerEx x(Heap_lock);
 952 
 953       // Given that humongous objects are not allocated in young
 954       // regions, we'll first try to do the allocation without doing a
 955       // collection hoping that there's enough space in the heap.
 956       result = humongous_obj_allocate(word_size, AllocationContext::current());
 957       if (result != NULL) {
 958         return result;
 959       }
 960 
 961       if (GC_locker::is_active_and_needs_gc()) {
 962         should_try_gc = false;
 963       } else {
 964          // The GCLocker may not be active but the GCLocker initiated
 965         // GC may not yet have been performed (GCLocker::needs_gc()
 966         // returns true). In this case we do not try this GC and
 967         // wait until the GCLocker initiated GC is performed, and
 968         // then retry the allocation.
 969         if (GC_locker::needs_gc()) {
 970           should_try_gc = false;
 971         } else {
 972           // Read the GC count while still holding the Heap_lock.
 973           gc_count_before = total_collections();
 974           should_try_gc = true;
 975         }
 976       }
 977     }
 978 
 979     if (should_try_gc) {
 980       // If we failed to allocate the humongous object, we should try to
 981       // do a collection pause (if we're allowed) in case it reclaims
 982       // enough space for the allocation to succeed after the pause.
 983 
 984       bool succeeded;
 985       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 986                                    GCCause::_g1_humongous_allocation);
 987       if (result != NULL) {
 988         assert(succeeded, "only way to get back a non-NULL result");
 989         return result;
 990       }
 991 
 992       if (succeeded) {
 993         // If we get here we successfully scheduled a collection which
 994         // failed to allocate. No point in trying to allocate
 995         // further. We'll just return NULL.
 996         MutexLockerEx x(Heap_lock);
 997         *gc_count_before_ret = total_collections();
 998         return NULL;
 999       }
1000     } else {
1001       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1002         MutexLockerEx x(Heap_lock);
1003         *gc_count_before_ret = total_collections();
1004         return NULL;
1005       }
1006       // The GCLocker is either active or the GCLocker initiated
1007       // GC has not yet been performed. Stall until it is and
1008       // then retry the allocation.
1009       GC_locker::stall_until_clear();
1010       (*gclocker_retry_count_ret) += 1;
1011     }
1012 
1013     // We can reach here if we were unsuccessful in scheduling a
1014     // collection (because another thread beat us to it) or if we were
1015     // stalled due to the GC locker. In either can we should retry the
1016     // allocation attempt in case another thread successfully
1017     // performed a collection and reclaimed enough space.  Give a
1018     // warning if we seem to be looping forever.
1019 
1020     if ((QueuedAllocationWarningCount > 0) &&
1021         (try_count % QueuedAllocationWarningCount == 0)) {
1022       warning("G1CollectedHeap::attempt_allocation_humongous() "
1023               "retries %d times", try_count);
1024     }
1025   }
1026 
1027   ShouldNotReachHere();
1028   return NULL;
1029 }
1030 
1031 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1032                                                            AllocationContext_t context,
1033                                                            bool expect_null_mutator_alloc_region) {
1034   assert_at_safepoint(true /* should_be_vm_thread */);
1035   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1036                                              !expect_null_mutator_alloc_region,
1037          "the current alloc region was unexpectedly found to be non-NULL");
1038 
1039   if (!is_humongous(word_size)) {
1040     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1041                                                       false /* bot_updates */);
1042   } else {
1043     HeapWord* result = humongous_obj_allocate(word_size, context);
1044     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1045       g1_policy()->set_initiate_conc_mark_if_possible();
1046     }
1047     return result;
1048   }
1049 
1050   ShouldNotReachHere();
1051 }
1052 
1053 class PostMCRemSetClearClosure: public HeapRegionClosure {
1054   G1CollectedHeap* _g1h;
1055   ModRefBarrierSet* _mr_bs;
1056 public:
1057   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1058     _g1h(g1h), _mr_bs(mr_bs) {}
1059 
1060   bool doHeapRegion(HeapRegion* r) {
1061     HeapRegionRemSet* hrrs = r->rem_set();
1062 
1063     if (r->is_continues_humongous()) {
1064       // We'll assert that the strong code root list and RSet is empty
1065       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1066       assert(hrrs->occupied() == 0, "RSet should be empty");
1067       return false;
1068     }
1069 
1070     _g1h->reset_gc_time_stamps(r);
1071     hrrs->clear();
1072     // You might think here that we could clear just the cards
1073     // corresponding to the used region.  But no: if we leave a dirty card
1074     // in a region we might allocate into, then it would prevent that card
1075     // from being enqueued, and cause it to be missed.
1076     // Re: the performance cost: we shouldn't be doing full GC anyway!
1077     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1078 
1079     return false;
1080   }
1081 };
1082 
1083 void G1CollectedHeap::clear_rsets_post_compaction() {
1084   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1085   heap_region_iterate(&rs_clear);
1086 }
1087 
1088 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1089   G1CollectedHeap*   _g1h;
1090   UpdateRSOopClosure _cl;
1091   int                _worker_i;
1092 public:
1093   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1094     _cl(g1->g1_rem_set(), worker_i),
1095     _worker_i(worker_i),
1096     _g1h(g1)
1097   { }
1098 
1099   bool doHeapRegion(HeapRegion* r) {
1100     if (!r->is_continues_humongous()) {
1101       _cl.set_from(r);
1102       r->oop_iterate(&_cl);
1103     }
1104     return false;
1105   }
1106 };
1107 
1108 class ParRebuildRSTask: public AbstractGangTask {
1109   G1CollectedHeap* _g1;
1110   HeapRegionClaimer _hrclaimer;
1111 
1112 public:
1113   ParRebuildRSTask(G1CollectedHeap* g1) :
1114       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1115 
1116   void work(uint worker_id) {
1117     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1118     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1119   }
1120 };
1121 
1122 class PostCompactionPrinterClosure: public HeapRegionClosure {
1123 private:
1124   G1HRPrinter* _hr_printer;
1125 public:
1126   bool doHeapRegion(HeapRegion* hr) {
1127     assert(!hr->is_young(), "not expecting to find young regions");
1128     if (hr->is_free()) {
1129       // We only generate output for non-empty regions.
1130     } else if (hr->is_starts_humongous()) {
1131       if (hr->region_num() == 1) {
1132         // single humongous region
1133         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1134       } else {
1135         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1136       }
1137     } else if (hr->is_continues_humongous()) {
1138       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1139     } else if (hr->is_old()) {
1140       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1141     } else {
1142       ShouldNotReachHere();
1143     }
1144     return false;
1145   }
1146 
1147   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1148     : _hr_printer(hr_printer) { }
1149 };
1150 
1151 void G1CollectedHeap::print_hrm_post_compaction() {
1152   PostCompactionPrinterClosure cl(hr_printer());
1153   heap_region_iterate(&cl);
1154 }
1155 
1156 bool G1CollectedHeap::do_collection(bool explicit_gc,
1157                                     bool clear_all_soft_refs,
1158                                     size_t word_size) {
1159   assert_at_safepoint(true /* should_be_vm_thread */);
1160 
1161   if (GC_locker::check_active_before_gc()) {
1162     return false;
1163   }
1164 
1165   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1166   gc_timer->register_gc_start();
1167 
1168   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1169   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1170 
1171   SvcGCMarker sgcm(SvcGCMarker::FULL);
1172   ResourceMark rm;
1173 
1174   print_heap_before_gc();
1175   trace_heap_before_gc(gc_tracer);
1176 
1177   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1178 
1179   verify_region_sets_optional();
1180 
1181   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1182                            collector_policy()->should_clear_all_soft_refs();
1183 
1184   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1185 
1186   {
1187     IsGCActiveMark x;
1188 
1189     // Timing
1190     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1191     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1192 
1193     {
1194       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1195       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1196       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1197 
1198       g1_policy()->record_full_collection_start();
1199 
1200       // Note: When we have a more flexible GC logging framework that
1201       // allows us to add optional attributes to a GC log record we
1202       // could consider timing and reporting how long we wait in the
1203       // following two methods.
1204       wait_while_free_regions_coming();
1205       // If we start the compaction before the CM threads finish
1206       // scanning the root regions we might trip them over as we'll
1207       // be moving objects / updating references. So let's wait until
1208       // they are done. By telling them to abort, they should complete
1209       // early.
1210       _cm->root_regions()->abort();
1211       _cm->root_regions()->wait_until_scan_finished();
1212       append_secondary_free_list_if_not_empty_with_lock();
1213 
1214       gc_prologue(true);
1215       increment_total_collections(true /* full gc */);
1216       increment_old_marking_cycles_started();
1217 
1218       assert(used() == recalculate_used(), "Should be equal");
1219 
1220       verify_before_gc();
1221 
1222       check_bitmaps("Full GC Start");
1223       pre_full_gc_dump(gc_timer);
1224 
1225       COMPILER2_PRESENT(DerivedPointerTable::clear());
1226 
1227       // Disable discovery and empty the discovered lists
1228       // for the CM ref processor.
1229       ref_processor_cm()->disable_discovery();
1230       ref_processor_cm()->abandon_partial_discovery();
1231       ref_processor_cm()->verify_no_references_recorded();
1232 
1233       // Abandon current iterations of concurrent marking and concurrent
1234       // refinement, if any are in progress. We have to do this before
1235       // wait_until_scan_finished() below.
1236       concurrent_mark()->abort();
1237 
1238       // Make sure we'll choose a new allocation region afterwards.
1239       _allocator->release_mutator_alloc_region();
1240       _allocator->abandon_gc_alloc_regions();
1241       g1_rem_set()->cleanupHRRS();
1242 
1243       // We should call this after we retire any currently active alloc
1244       // regions so that all the ALLOC / RETIRE events are generated
1245       // before the start GC event.
1246       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1247 
1248       // We may have added regions to the current incremental collection
1249       // set between the last GC or pause and now. We need to clear the
1250       // incremental collection set and then start rebuilding it afresh
1251       // after this full GC.
1252       abandon_collection_set(g1_policy()->inc_cset_head());
1253       g1_policy()->clear_incremental_cset();
1254       g1_policy()->stop_incremental_cset_building();
1255 
1256       tear_down_region_sets(false /* free_list_only */);
1257       g1_policy()->set_gcs_are_young(true);
1258 
1259       // See the comments in g1CollectedHeap.hpp and
1260       // G1CollectedHeap::ref_processing_init() about
1261       // how reference processing currently works in G1.
1262 
1263       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1264       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1265 
1266       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1267       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1268 
1269       ref_processor_stw()->enable_discovery();
1270       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1271 
1272       // Do collection work
1273       {
1274         HandleMark hm;  // Discard invalid handles created during gc
1275         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1276       }
1277 
1278       assert(num_free_regions() == 0, "we should not have added any free regions");
1279       rebuild_region_sets(false /* free_list_only */);
1280 
1281       // Enqueue any discovered reference objects that have
1282       // not been removed from the discovered lists.
1283       ref_processor_stw()->enqueue_discovered_references();
1284 
1285       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1286 
1287       MemoryService::track_memory_usage();
1288 
1289       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1290       ref_processor_stw()->verify_no_references_recorded();
1291 
1292       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1293       ClassLoaderDataGraph::purge();
1294       MetaspaceAux::verify_metrics();
1295 
1296       // Note: since we've just done a full GC, concurrent
1297       // marking is no longer active. Therefore we need not
1298       // re-enable reference discovery for the CM ref processor.
1299       // That will be done at the start of the next marking cycle.
1300       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1301       ref_processor_cm()->verify_no_references_recorded();
1302 
1303       reset_gc_time_stamp();
1304       // Since everything potentially moved, we will clear all remembered
1305       // sets, and clear all cards.  Later we will rebuild remembered
1306       // sets. We will also reset the GC time stamps of the regions.
1307       clear_rsets_post_compaction();
1308       check_gc_time_stamps();
1309 
1310       // Resize the heap if necessary.
1311       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1312 
1313       if (_hr_printer.is_active()) {
1314         // We should do this after we potentially resize the heap so
1315         // that all the COMMIT / UNCOMMIT events are generated before
1316         // the end GC event.
1317 
1318         print_hrm_post_compaction();
1319         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1320       }
1321 
1322       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1323       if (hot_card_cache->use_cache()) {
1324         hot_card_cache->reset_card_counts();
1325         hot_card_cache->reset_hot_cache();
1326       }
1327 
1328       // Rebuild remembered sets of all regions.
1329       uint n_workers =
1330         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1331                                                 workers()->active_workers(),
1332                                                 Threads::number_of_non_daemon_threads());
1333       assert(UseDynamicNumberOfGCThreads ||
1334              n_workers == workers()->total_workers(),
1335              "If not dynamic should be using all the  workers");
1336       workers()->set_active_workers(n_workers);
1337       // Set parallel threads in the heap (_n_par_threads) only
1338       // before a parallel phase and always reset it to 0 after
1339       // the phase so that the number of parallel threads does
1340       // no get carried forward to a serial phase where there
1341       // may be code that is "possibly_parallel".
1342       set_par_threads(n_workers);
1343 
1344       ParRebuildRSTask rebuild_rs_task(this);
1345       assert(UseDynamicNumberOfGCThreads ||
1346              workers()->active_workers() == workers()->total_workers(),
1347              "Unless dynamic should use total workers");
1348       // Use the most recent number of  active workers
1349       assert(workers()->active_workers() > 0,
1350              "Active workers not properly set");
1351       set_par_threads(workers()->active_workers());
1352       workers()->run_task(&rebuild_rs_task);
1353       set_par_threads(0);
1354 
1355       // Rebuild the strong code root lists for each region
1356       rebuild_strong_code_roots();
1357 
1358       if (true) { // FIXME
1359         MetaspaceGC::compute_new_size();
1360       }
1361 
1362 #ifdef TRACESPINNING
1363       ParallelTaskTerminator::print_termination_counts();
1364 #endif
1365 
1366       // Discard all rset updates
1367       JavaThread::dirty_card_queue_set().abandon_logs();
1368       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1369 
1370       _young_list->reset_sampled_info();
1371       // At this point there should be no regions in the
1372       // entire heap tagged as young.
1373       assert(check_young_list_empty(true /* check_heap */),
1374              "young list should be empty at this point");
1375 
1376       // Update the number of full collections that have been completed.
1377       increment_old_marking_cycles_completed(false /* concurrent */);
1378 
1379       _hrm.verify_optional();
1380       verify_region_sets_optional();
1381 
1382       verify_after_gc();
1383 
1384       // Clear the previous marking bitmap, if needed for bitmap verification.
1385       // Note we cannot do this when we clear the next marking bitmap in
1386       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1387       // objects marked during a full GC against the previous bitmap.
1388       // But we need to clear it before calling check_bitmaps below since
1389       // the full GC has compacted objects and updated TAMS but not updated
1390       // the prev bitmap.
1391       if (G1VerifyBitmaps) {
1392         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1393       }
1394       check_bitmaps("Full GC End");
1395 
1396       // Start a new incremental collection set for the next pause
1397       assert(g1_policy()->collection_set() == NULL, "must be");
1398       g1_policy()->start_incremental_cset_building();
1399 
1400       clear_cset_fast_test();
1401 
1402       _allocator->init_mutator_alloc_region();
1403 
1404       g1_policy()->record_full_collection_end();
1405 
1406       if (G1Log::fine()) {
1407         g1_policy()->print_heap_transition();
1408       }
1409 
1410       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1411       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1412       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1413       // before any GC notifications are raised.
1414       g1mm()->update_sizes();
1415 
1416       gc_epilogue(true);
1417     }
1418 
1419     if (G1Log::finer()) {
1420       g1_policy()->print_detailed_heap_transition(true /* full */);
1421     }
1422 
1423     print_heap_after_gc();
1424     trace_heap_after_gc(gc_tracer);
1425 
1426     post_full_gc_dump(gc_timer);
1427 
1428     gc_timer->register_gc_end();
1429     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1430   }
1431 
1432   return true;
1433 }
1434 
1435 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1436   // do_collection() will return whether it succeeded in performing
1437   // the GC. Currently, there is no facility on the
1438   // do_full_collection() API to notify the caller than the collection
1439   // did not succeed (e.g., because it was locked out by the GC
1440   // locker). So, right now, we'll ignore the return value.
1441   bool dummy = do_collection(true,                /* explicit_gc */
1442                              clear_all_soft_refs,
1443                              0                    /* word_size */);
1444 }
1445 
1446 // This code is mostly copied from TenuredGeneration.
1447 void
1448 G1CollectedHeap::
1449 resize_if_necessary_after_full_collection(size_t word_size) {
1450   // Include the current allocation, if any, and bytes that will be
1451   // pre-allocated to support collections, as "used".
1452   const size_t used_after_gc = used();
1453   const size_t capacity_after_gc = capacity();
1454   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1455 
1456   // This is enforced in arguments.cpp.
1457   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1458          "otherwise the code below doesn't make sense");
1459 
1460   // We don't have floating point command-line arguments
1461   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1462   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1463   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1464   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1465 
1466   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1467   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1468 
1469   // We have to be careful here as these two calculations can overflow
1470   // 32-bit size_t's.
1471   double used_after_gc_d = (double) used_after_gc;
1472   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1473   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1474 
1475   // Let's make sure that they are both under the max heap size, which
1476   // by default will make them fit into a size_t.
1477   double desired_capacity_upper_bound = (double) max_heap_size;
1478   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1479                                     desired_capacity_upper_bound);
1480   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1481                                     desired_capacity_upper_bound);
1482 
1483   // We can now safely turn them into size_t's.
1484   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1485   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1486 
1487   // This assert only makes sense here, before we adjust them
1488   // with respect to the min and max heap size.
1489   assert(minimum_desired_capacity <= maximum_desired_capacity,
1490          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1491                  "maximum_desired_capacity = "SIZE_FORMAT,
1492                  minimum_desired_capacity, maximum_desired_capacity));
1493 
1494   // Should not be greater than the heap max size. No need to adjust
1495   // it with respect to the heap min size as it's a lower bound (i.e.,
1496   // we'll try to make the capacity larger than it, not smaller).
1497   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1498   // Should not be less than the heap min size. No need to adjust it
1499   // with respect to the heap max size as it's an upper bound (i.e.,
1500   // we'll try to make the capacity smaller than it, not greater).
1501   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1502 
1503   if (capacity_after_gc < minimum_desired_capacity) {
1504     // Don't expand unless it's significant
1505     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1506     ergo_verbose4(ErgoHeapSizing,
1507                   "attempt heap expansion",
1508                   ergo_format_reason("capacity lower than "
1509                                      "min desired capacity after Full GC")
1510                   ergo_format_byte("capacity")
1511                   ergo_format_byte("occupancy")
1512                   ergo_format_byte_perc("min desired capacity"),
1513                   capacity_after_gc, used_after_gc,
1514                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1515     expand(expand_bytes);
1516 
1517     // No expansion, now see if we want to shrink
1518   } else if (capacity_after_gc > maximum_desired_capacity) {
1519     // Capacity too large, compute shrinking size
1520     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1521     ergo_verbose4(ErgoHeapSizing,
1522                   "attempt heap shrinking",
1523                   ergo_format_reason("capacity higher than "
1524                                      "max desired capacity after Full GC")
1525                   ergo_format_byte("capacity")
1526                   ergo_format_byte("occupancy")
1527                   ergo_format_byte_perc("max desired capacity"),
1528                   capacity_after_gc, used_after_gc,
1529                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1530     shrink(shrink_bytes);
1531   }
1532 }
1533 
1534 
1535 HeapWord*
1536 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1537                                            AllocationContext_t context,
1538                                            bool* succeeded) {
1539   assert_at_safepoint(true /* should_be_vm_thread */);
1540 
1541   *succeeded = true;
1542   // Let's attempt the allocation first.
1543   HeapWord* result =
1544     attempt_allocation_at_safepoint(word_size,
1545                                     context,
1546                                     false /* expect_null_mutator_alloc_region */);
1547   if (result != NULL) {
1548     assert(*succeeded, "sanity");
1549     return result;
1550   }
1551 
1552   // In a G1 heap, we're supposed to keep allocation from failing by
1553   // incremental pauses.  Therefore, at least for now, we'll favor
1554   // expansion over collection.  (This might change in the future if we can
1555   // do something smarter than full collection to satisfy a failed alloc.)
1556   result = expand_and_allocate(word_size, context);
1557   if (result != NULL) {
1558     assert(*succeeded, "sanity");
1559     return result;
1560   }
1561 
1562   // Expansion didn't work, we'll try to do a Full GC.
1563   bool gc_succeeded = do_collection(false, /* explicit_gc */
1564                                     false, /* clear_all_soft_refs */
1565                                     word_size);
1566   if (!gc_succeeded) {
1567     *succeeded = false;
1568     return NULL;
1569   }
1570 
1571   // Retry the allocation
1572   result = attempt_allocation_at_safepoint(word_size,
1573                                            context,
1574                                            true /* expect_null_mutator_alloc_region */);
1575   if (result != NULL) {
1576     assert(*succeeded, "sanity");
1577     return result;
1578   }
1579 
1580   // Then, try a Full GC that will collect all soft references.
1581   gc_succeeded = do_collection(false, /* explicit_gc */
1582                                true,  /* clear_all_soft_refs */
1583                                word_size);
1584   if (!gc_succeeded) {
1585     *succeeded = false;
1586     return NULL;
1587   }
1588 
1589   // Retry the allocation once more
1590   result = attempt_allocation_at_safepoint(word_size,
1591                                            context,
1592                                            true /* expect_null_mutator_alloc_region */);
1593   if (result != NULL) {
1594     assert(*succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   assert(!collector_policy()->should_clear_all_soft_refs(),
1599          "Flag should have been handled and cleared prior to this point");
1600 
1601   // What else?  We might try synchronous finalization later.  If the total
1602   // space available is large enough for the allocation, then a more
1603   // complete compaction phase than we've tried so far might be
1604   // appropriate.
1605   assert(*succeeded, "sanity");
1606   return NULL;
1607 }
1608 
1609 // Attempting to expand the heap sufficiently
1610 // to support an allocation of the given "word_size".  If
1611 // successful, perform the allocation and return the address of the
1612 // allocated block, or else "NULL".
1613 
1614 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1615   assert_at_safepoint(true /* should_be_vm_thread */);
1616 
1617   verify_region_sets_optional();
1618 
1619   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1620   ergo_verbose1(ErgoHeapSizing,
1621                 "attempt heap expansion",
1622                 ergo_format_reason("allocation request failed")
1623                 ergo_format_byte("allocation request"),
1624                 word_size * HeapWordSize);
1625   if (expand(expand_bytes)) {
1626     _hrm.verify_optional();
1627     verify_region_sets_optional();
1628     return attempt_allocation_at_safepoint(word_size,
1629                                            context,
1630                                            false /* expect_null_mutator_alloc_region */);
1631   }
1632   return NULL;
1633 }
1634 
1635 bool G1CollectedHeap::expand(size_t expand_bytes) {
1636   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1637   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1638                                        HeapRegion::GrainBytes);
1639   ergo_verbose2(ErgoHeapSizing,
1640                 "expand the heap",
1641                 ergo_format_byte("requested expansion amount")
1642                 ergo_format_byte("attempted expansion amount"),
1643                 expand_bytes, aligned_expand_bytes);
1644 
1645   if (is_maximal_no_gc()) {
1646     ergo_verbose0(ErgoHeapSizing,
1647                       "did not expand the heap",
1648                       ergo_format_reason("heap already fully expanded"));
1649     return false;
1650   }
1651 
1652   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1653   assert(regions_to_expand > 0, "Must expand by at least one region");
1654 
1655   uint expanded_by = _hrm.expand_by(regions_to_expand);
1656 
1657   if (expanded_by > 0) {
1658     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1659     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1660     g1_policy()->record_new_heap_size(num_regions());
1661   } else {
1662     ergo_verbose0(ErgoHeapSizing,
1663                   "did not expand the heap",
1664                   ergo_format_reason("heap expansion operation failed"));
1665     // The expansion of the virtual storage space was unsuccessful.
1666     // Let's see if it was because we ran out of swap.
1667     if (G1ExitOnExpansionFailure &&
1668         _hrm.available() >= regions_to_expand) {
1669       // We had head room...
1670       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1671     }
1672   }
1673   return regions_to_expand > 0;
1674 }
1675 
1676 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1677   size_t aligned_shrink_bytes =
1678     ReservedSpace::page_align_size_down(shrink_bytes);
1679   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1680                                          HeapRegion::GrainBytes);
1681   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1682 
1683   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1684   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1685 
1686   ergo_verbose3(ErgoHeapSizing,
1687                 "shrink the heap",
1688                 ergo_format_byte("requested shrinking amount")
1689                 ergo_format_byte("aligned shrinking amount")
1690                 ergo_format_byte("attempted shrinking amount"),
1691                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1692   if (num_regions_removed > 0) {
1693     g1_policy()->record_new_heap_size(num_regions());
1694   } else {
1695     ergo_verbose0(ErgoHeapSizing,
1696                   "did not shrink the heap",
1697                   ergo_format_reason("heap shrinking operation failed"));
1698   }
1699 }
1700 
1701 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1702   verify_region_sets_optional();
1703 
1704   // We should only reach here at the end of a Full GC which means we
1705   // should not not be holding to any GC alloc regions. The method
1706   // below will make sure of that and do any remaining clean up.
1707   _allocator->abandon_gc_alloc_regions();
1708 
1709   // Instead of tearing down / rebuilding the free lists here, we
1710   // could instead use the remove_all_pending() method on free_list to
1711   // remove only the ones that we need to remove.
1712   tear_down_region_sets(true /* free_list_only */);
1713   shrink_helper(shrink_bytes);
1714   rebuild_region_sets(true /* free_list_only */);
1715 
1716   _hrm.verify_optional();
1717   verify_region_sets_optional();
1718 }
1719 
1720 // Public methods.
1721 
1722 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1723 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1724 #endif // _MSC_VER
1725 
1726 
1727 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1728   CollectedHeap(),
1729   _g1_policy(policy_),
1730   _dirty_card_queue_set(false),
1731   _into_cset_dirty_card_queue_set(false),
1732   _is_alive_closure_cm(this),
1733   _is_alive_closure_stw(this),
1734   _ref_processor_cm(NULL),
1735   _ref_processor_stw(NULL),
1736   _bot_shared(NULL),
1737   _evac_failure_scan_stack(NULL),
1738   _mark_in_progress(false),
1739   _cg1r(NULL),
1740   _g1mm(NULL),
1741   _refine_cte_cl(NULL),
1742   _full_collection(false),
1743   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1744   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1745   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1746   _humongous_reclaim_candidates(),
1747   _has_humongous_reclaim_candidates(false),
1748   _free_regions_coming(false),
1749   _young_list(new YoungList(this)),
1750   _gc_time_stamp(0),
1751   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1752   _old_plab_stats(OldPLABSize, PLABWeight),
1753   _expand_heap_after_alloc_failure(true),
1754   _surviving_young_words(NULL),
1755   _old_marking_cycles_started(0),
1756   _old_marking_cycles_completed(0),
1757   _concurrent_cycle_started(false),
1758   _heap_summary_sent(false),
1759   _in_cset_fast_test(),
1760   _dirty_cards_region_list(NULL),
1761   _worker_cset_start_region(NULL),
1762   _worker_cset_start_region_time_stamp(NULL),
1763   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1764   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1765   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1766   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1767 
1768   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1769                           /* are_GC_task_threads */true,
1770                           /* are_ConcurrentGC_threads */false);
1771   _workers->initialize_workers();
1772 
1773   _allocator = G1Allocator::create_allocator(this);
1774   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1775 
1776   int n_queues = MAX2((int)ParallelGCThreads, 1);
1777   _task_queues = new RefToScanQueueSet(n_queues);
1778 
1779   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1780   assert(n_rem_sets > 0, "Invariant.");
1781 
1782   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1783   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1784   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1785 
1786   for (int i = 0; i < n_queues; i++) {
1787     RefToScanQueue* q = new RefToScanQueue();
1788     q->initialize();
1789     _task_queues->register_queue(i, q);
1790     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1791   }
1792   clear_cset_start_regions();
1793 
1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1801                                                                  size_t size,
1802                                                                  size_t translation_factor) {
1803   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1804   // Allocate a new reserved space, preferring to use large pages.
1805   ReservedSpace rs(size, preferred_page_size);
1806   G1RegionToSpaceMapper* result  =
1807     G1RegionToSpaceMapper::create_mapper(rs,
1808                                          size,
1809                                          rs.alignment(),
1810                                          HeapRegion::GrainBytes,
1811                                          translation_factor,
1812                                          mtGC);
1813   if (TracePageSizes) {
1814     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1815                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1816   }
1817   return result;
1818 }
1819 
1820 jint G1CollectedHeap::initialize() {
1821   CollectedHeap::pre_initialize();
1822   os::enable_vtime();
1823 
1824   G1Log::init();
1825 
1826   // Necessary to satisfy locking discipline assertions.
1827 
1828   MutexLocker x(Heap_lock);
1829 
1830   // We have to initialize the printer before committing the heap, as
1831   // it will be used then.
1832   _hr_printer.set_active(G1PrintHeapRegions);
1833 
1834   // While there are no constraints in the GC code that HeapWordSize
1835   // be any particular value, there are multiple other areas in the
1836   // system which believe this to be true (e.g. oop->object_size in some
1837   // cases incorrectly returns the size in wordSize units rather than
1838   // HeapWordSize).
1839   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1840 
1841   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1842   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1843   size_t heap_alignment = collector_policy()->heap_alignment();
1844 
1845   // Ensure that the sizes are properly aligned.
1846   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1847   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1848   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1849 
1850   _refine_cte_cl = new RefineCardTableEntryClosure();
1851 
1852   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1853 
1854   // Reserve the maximum.
1855 
1856   // When compressed oops are enabled, the preferred heap base
1857   // is calculated by subtracting the requested size from the
1858   // 32Gb boundary and using the result as the base address for
1859   // heap reservation. If the requested size is not aligned to
1860   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1861   // into the ReservedHeapSpace constructor) then the actual
1862   // base of the reserved heap may end up differing from the
1863   // address that was requested (i.e. the preferred heap base).
1864   // If this happens then we could end up using a non-optimal
1865   // compressed oops mode.
1866 
1867   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1868                                                  heap_alignment);
1869 
1870   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1871 
1872   // Create the barrier set for the entire reserved region.
1873   G1SATBCardTableLoggingModRefBS* bs
1874     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1875   bs->initialize();
1876   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1877   set_barrier_set(bs);
1878 
1879   // Also create a G1 rem set.
1880   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1881 
1882   // Carve out the G1 part of the heap.
1883 
1884   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1885   G1RegionToSpaceMapper* heap_storage =
1886     G1RegionToSpaceMapper::create_mapper(g1_rs,
1887                                          g1_rs.size(),
1888                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1889                                          HeapRegion::GrainBytes,
1890                                          1,
1891                                          mtJavaHeap);
1892   heap_storage->set_mapping_changed_listener(&_listener);
1893 
1894   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1895   G1RegionToSpaceMapper* bot_storage =
1896     create_aux_memory_mapper("Block offset table",
1897                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1898                              G1BlockOffsetSharedArray::N_bytes);
1899 
1900   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1901   G1RegionToSpaceMapper* cardtable_storage =
1902     create_aux_memory_mapper("Card table",
1903                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1904                              G1BlockOffsetSharedArray::N_bytes);
1905 
1906   G1RegionToSpaceMapper* card_counts_storage =
1907     create_aux_memory_mapper("Card counts table",
1908                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1909                              G1BlockOffsetSharedArray::N_bytes);
1910 
1911   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1912   G1RegionToSpaceMapper* prev_bitmap_storage =
1913     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1914   G1RegionToSpaceMapper* next_bitmap_storage =
1915     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1916 
1917   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1918   g1_barrier_set()->initialize(cardtable_storage);
1919    // Do later initialization work for concurrent refinement.
1920   _cg1r->init(card_counts_storage);
1921 
1922   // 6843694 - ensure that the maximum region index can fit
1923   // in the remembered set structures.
1924   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1925   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1926 
1927   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1928   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1929   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1930             "too many cards per region");
1931 
1932   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1933 
1934   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1935 
1936   {
1937     HeapWord* start = _hrm.reserved().start();
1938     HeapWord* end = _hrm.reserved().end();
1939     size_t granularity = HeapRegion::GrainBytes;
1940 
1941     _in_cset_fast_test.initialize(start, end, granularity);
1942     _humongous_reclaim_candidates.initialize(start, end, granularity);
1943   }
1944 
1945   // Create the ConcurrentMark data structure and thread.
1946   // (Must do this late, so that "max_regions" is defined.)
1947   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1948   if (_cm == NULL || !_cm->completed_initialization()) {
1949     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1950     return JNI_ENOMEM;
1951   }
1952   _cmThread = _cm->cmThread();
1953 
1954   // Initialize the from_card cache structure of HeapRegionRemSet.
1955   HeapRegionRemSet::init_heap(max_regions());
1956 
1957   // Now expand into the initial heap size.
1958   if (!expand(init_byte_size)) {
1959     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1960     return JNI_ENOMEM;
1961   }
1962 
1963   // Perform any initialization actions delegated to the policy.
1964   g1_policy()->init();
1965 
1966   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1967                                                SATB_Q_FL_lock,
1968                                                G1SATBProcessCompletedThreshold,
1969                                                Shared_SATB_Q_lock);
1970 
1971   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1972                                                 DirtyCardQ_CBL_mon,
1973                                                 DirtyCardQ_FL_lock,
1974                                                 concurrent_g1_refine()->yellow_zone(),
1975                                                 concurrent_g1_refine()->red_zone(),
1976                                                 Shared_DirtyCardQ_lock);
1977 
1978   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1979                                     DirtyCardQ_CBL_mon,
1980                                     DirtyCardQ_FL_lock,
1981                                     -1, // never trigger processing
1982                                     -1, // no limit on length
1983                                     Shared_DirtyCardQ_lock,
1984                                     &JavaThread::dirty_card_queue_set());
1985 
1986   // Initialize the card queue set used to hold cards containing
1987   // references into the collection set.
1988   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1989                                              DirtyCardQ_CBL_mon,
1990                                              DirtyCardQ_FL_lock,
1991                                              -1, // never trigger processing
1992                                              -1, // no limit on length
1993                                              Shared_DirtyCardQ_lock,
1994                                              &JavaThread::dirty_card_queue_set());
1995 
1996   // Here we allocate the dummy HeapRegion that is required by the
1997   // G1AllocRegion class.
1998   HeapRegion* dummy_region = _hrm.get_dummy_region();
1999 
2000   // We'll re-use the same region whether the alloc region will
2001   // require BOT updates or not and, if it doesn't, then a non-young
2002   // region will complain that it cannot support allocations without
2003   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2004   dummy_region->set_eden();
2005   // Make sure it's full.
2006   dummy_region->set_top(dummy_region->end());
2007   G1AllocRegion::setup(this, dummy_region);
2008 
2009   _allocator->init_mutator_alloc_region();
2010 
2011   // Do create of the monitoring and management support so that
2012   // values in the heap have been properly initialized.
2013   _g1mm = new G1MonitoringSupport(this);
2014 
2015   G1StringDedup::initialize();
2016 
2017   return JNI_OK;
2018 }
2019 
2020 void G1CollectedHeap::stop() {
2021   // Stop all concurrent threads. We do this to make sure these threads
2022   // do not continue to execute and access resources (e.g. gclog_or_tty)
2023   // that are destroyed during shutdown.
2024   _cg1r->stop();
2025   _cmThread->stop();
2026   if (G1StringDedup::is_enabled()) {
2027     G1StringDedup::stop();
2028   }
2029 }
2030 
2031 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2032   return HeapRegion::max_region_size();
2033 }
2034 
2035 void G1CollectedHeap::post_initialize() {
2036   CollectedHeap::post_initialize();
2037   ref_processing_init();
2038 }
2039 
2040 void G1CollectedHeap::ref_processing_init() {
2041   // Reference processing in G1 currently works as follows:
2042   //
2043   // * There are two reference processor instances. One is
2044   //   used to record and process discovered references
2045   //   during concurrent marking; the other is used to
2046   //   record and process references during STW pauses
2047   //   (both full and incremental).
2048   // * Both ref processors need to 'span' the entire heap as
2049   //   the regions in the collection set may be dotted around.
2050   //
2051   // * For the concurrent marking ref processor:
2052   //   * Reference discovery is enabled at initial marking.
2053   //   * Reference discovery is disabled and the discovered
2054   //     references processed etc during remarking.
2055   //   * Reference discovery is MT (see below).
2056   //   * Reference discovery requires a barrier (see below).
2057   //   * Reference processing may or may not be MT
2058   //     (depending on the value of ParallelRefProcEnabled
2059   //     and ParallelGCThreads).
2060   //   * A full GC disables reference discovery by the CM
2061   //     ref processor and abandons any entries on it's
2062   //     discovered lists.
2063   //
2064   // * For the STW processor:
2065   //   * Non MT discovery is enabled at the start of a full GC.
2066   //   * Processing and enqueueing during a full GC is non-MT.
2067   //   * During a full GC, references are processed after marking.
2068   //
2069   //   * Discovery (may or may not be MT) is enabled at the start
2070   //     of an incremental evacuation pause.
2071   //   * References are processed near the end of a STW evacuation pause.
2072   //   * For both types of GC:
2073   //     * Discovery is atomic - i.e. not concurrent.
2074   //     * Reference discovery will not need a barrier.
2075 
2076   MemRegion mr = reserved_region();
2077 
2078   // Concurrent Mark ref processor
2079   _ref_processor_cm =
2080     new ReferenceProcessor(mr,    // span
2081                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2082                                 // mt processing
2083                            (int) ParallelGCThreads,
2084                                 // degree of mt processing
2085                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2086                                 // mt discovery
2087                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2088                                 // degree of mt discovery
2089                            false,
2090                                 // Reference discovery is not atomic
2091                            &_is_alive_closure_cm);
2092                                 // is alive closure
2093                                 // (for efficiency/performance)
2094 
2095   // STW ref processor
2096   _ref_processor_stw =
2097     new ReferenceProcessor(mr,    // span
2098                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2099                                 // mt processing
2100                            MAX2((int)ParallelGCThreads, 1),
2101                                 // degree of mt processing
2102                            (ParallelGCThreads > 1),
2103                                 // mt discovery
2104                            MAX2((int)ParallelGCThreads, 1),
2105                                 // degree of mt discovery
2106                            true,
2107                                 // Reference discovery is atomic
2108                            &_is_alive_closure_stw);
2109                                 // is alive closure
2110                                 // (for efficiency/performance)
2111 }
2112 
2113 size_t G1CollectedHeap::capacity() const {
2114   return _hrm.length() * HeapRegion::GrainBytes;
2115 }
2116 
2117 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2118   assert(!hr->is_continues_humongous(), "pre-condition");
2119   hr->reset_gc_time_stamp();
2120   if (hr->is_starts_humongous()) {
2121     uint first_index = hr->hrm_index() + 1;
2122     uint last_index = hr->last_hc_index();
2123     for (uint i = first_index; i < last_index; i += 1) {
2124       HeapRegion* chr = region_at(i);
2125       assert(chr->is_continues_humongous(), "sanity");
2126       chr->reset_gc_time_stamp();
2127     }
2128   }
2129 }
2130 
2131 #ifndef PRODUCT
2132 
2133 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2134 private:
2135   unsigned _gc_time_stamp;
2136   bool _failures;
2137 
2138 public:
2139   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2140     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2141 
2142   virtual bool doHeapRegion(HeapRegion* hr) {
2143     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2144     if (_gc_time_stamp != region_gc_time_stamp) {
2145       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2146                              "expected %d", HR_FORMAT_PARAMS(hr),
2147                              region_gc_time_stamp, _gc_time_stamp);
2148       _failures = true;
2149     }
2150     return false;
2151   }
2152 
2153   bool failures() { return _failures; }
2154 };
2155 
2156 void G1CollectedHeap::check_gc_time_stamps() {
2157   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2158   heap_region_iterate(&cl);
2159   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2160 }
2161 #endif // PRODUCT
2162 
2163 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2164                                                  DirtyCardQueue* into_cset_dcq,
2165                                                  bool concurrent,
2166                                                  uint worker_i) {
2167   // Clean cards in the hot card cache
2168   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2169   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2170 
2171   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2172   size_t n_completed_buffers = 0;
2173   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2174     n_completed_buffers++;
2175   }
2176   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2177   dcqs.clear_n_completed_buffers();
2178   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2179 }
2180 
2181 
2182 // Computes the sum of the storage used by the various regions.
2183 size_t G1CollectedHeap::used() const {
2184   return _allocator->used();
2185 }
2186 
2187 size_t G1CollectedHeap::used_unlocked() const {
2188   return _allocator->used_unlocked();
2189 }
2190 
2191 class SumUsedClosure: public HeapRegionClosure {
2192   size_t _used;
2193 public:
2194   SumUsedClosure() : _used(0) {}
2195   bool doHeapRegion(HeapRegion* r) {
2196     if (!r->is_continues_humongous()) {
2197       _used += r->used();
2198     }
2199     return false;
2200   }
2201   size_t result() { return _used; }
2202 };
2203 
2204 size_t G1CollectedHeap::recalculate_used() const {
2205   double recalculate_used_start = os::elapsedTime();
2206 
2207   SumUsedClosure blk;
2208   heap_region_iterate(&blk);
2209 
2210   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2211   return blk.result();
2212 }
2213 
2214 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2215   switch (cause) {
2216     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2217     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2218     case GCCause::_g1_humongous_allocation: return true;
2219     case GCCause::_update_allocation_context_stats_inc: return true;
2220     case GCCause::_wb_conc_mark:            return true;
2221     default:                                return false;
2222   }
2223 }
2224 
2225 #ifndef PRODUCT
2226 void G1CollectedHeap::allocate_dummy_regions() {
2227   // Let's fill up most of the region
2228   size_t word_size = HeapRegion::GrainWords - 1024;
2229   // And as a result the region we'll allocate will be humongous.
2230   guarantee(is_humongous(word_size), "sanity");
2231 
2232   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2233     // Let's use the existing mechanism for the allocation
2234     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2235                                                  AllocationContext::system());
2236     if (dummy_obj != NULL) {
2237       MemRegion mr(dummy_obj, word_size);
2238       CollectedHeap::fill_with_object(mr);
2239     } else {
2240       // If we can't allocate once, we probably cannot allocate
2241       // again. Let's get out of the loop.
2242       break;
2243     }
2244   }
2245 }
2246 #endif // !PRODUCT
2247 
2248 void G1CollectedHeap::increment_old_marking_cycles_started() {
2249   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2250     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2251     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2252     _old_marking_cycles_started, _old_marking_cycles_completed));
2253 
2254   _old_marking_cycles_started++;
2255 }
2256 
2257 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2258   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2259 
2260   // We assume that if concurrent == true, then the caller is a
2261   // concurrent thread that was joined the Suspendible Thread
2262   // Set. If there's ever a cheap way to check this, we should add an
2263   // assert here.
2264 
2265   // Given that this method is called at the end of a Full GC or of a
2266   // concurrent cycle, and those can be nested (i.e., a Full GC can
2267   // interrupt a concurrent cycle), the number of full collections
2268   // completed should be either one (in the case where there was no
2269   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2270   // behind the number of full collections started.
2271 
2272   // This is the case for the inner caller, i.e. a Full GC.
2273   assert(concurrent ||
2274          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2275          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2276          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2277                  "is inconsistent with _old_marking_cycles_completed = %u",
2278                  _old_marking_cycles_started, _old_marking_cycles_completed));
2279 
2280   // This is the case for the outer caller, i.e. the concurrent cycle.
2281   assert(!concurrent ||
2282          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2283          err_msg("for outer caller (concurrent cycle): "
2284                  "_old_marking_cycles_started = %u "
2285                  "is inconsistent with _old_marking_cycles_completed = %u",
2286                  _old_marking_cycles_started, _old_marking_cycles_completed));
2287 
2288   _old_marking_cycles_completed += 1;
2289 
2290   // We need to clear the "in_progress" flag in the CM thread before
2291   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2292   // is set) so that if a waiter requests another System.gc() it doesn't
2293   // incorrectly see that a marking cycle is still in progress.
2294   if (concurrent) {
2295     _cmThread->clear_in_progress();
2296   }
2297 
2298   // This notify_all() will ensure that a thread that called
2299   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2300   // and it's waiting for a full GC to finish will be woken up. It is
2301   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2302   FullGCCount_lock->notify_all();
2303 }
2304 
2305 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2306   _concurrent_cycle_started = true;
2307   _gc_timer_cm->register_gc_start(start_time);
2308 
2309   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2310   trace_heap_before_gc(_gc_tracer_cm);
2311 }
2312 
2313 void G1CollectedHeap::register_concurrent_cycle_end() {
2314   if (_concurrent_cycle_started) {
2315     if (_cm->has_aborted()) {
2316       _gc_tracer_cm->report_concurrent_mode_failure();
2317     }
2318 
2319     _gc_timer_cm->register_gc_end();
2320     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2321 
2322     // Clear state variables to prepare for the next concurrent cycle.
2323     _concurrent_cycle_started = false;
2324     _heap_summary_sent = false;
2325   }
2326 }
2327 
2328 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2329   if (_concurrent_cycle_started) {
2330     // This function can be called when:
2331     //  the cleanup pause is run
2332     //  the concurrent cycle is aborted before the cleanup pause.
2333     //  the concurrent cycle is aborted after the cleanup pause,
2334     //   but before the concurrent cycle end has been registered.
2335     // Make sure that we only send the heap information once.
2336     if (!_heap_summary_sent) {
2337       trace_heap_after_gc(_gc_tracer_cm);
2338       _heap_summary_sent = true;
2339     }
2340   }
2341 }
2342 
2343 G1YCType G1CollectedHeap::yc_type() {
2344   bool is_young = g1_policy()->gcs_are_young();
2345   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2346   bool is_during_mark = mark_in_progress();
2347 
2348   if (is_initial_mark) {
2349     return InitialMark;
2350   } else if (is_during_mark) {
2351     return DuringMark;
2352   } else if (is_young) {
2353     return Normal;
2354   } else {
2355     return Mixed;
2356   }
2357 }
2358 
2359 void G1CollectedHeap::collect(GCCause::Cause cause) {
2360   assert_heap_not_locked();
2361 
2362   uint gc_count_before;
2363   uint old_marking_count_before;
2364   uint full_gc_count_before;
2365   bool retry_gc;
2366 
2367   do {
2368     retry_gc = false;
2369 
2370     {
2371       MutexLocker ml(Heap_lock);
2372 
2373       // Read the GC count while holding the Heap_lock
2374       gc_count_before = total_collections();
2375       full_gc_count_before = total_full_collections();
2376       old_marking_count_before = _old_marking_cycles_started;
2377     }
2378 
2379     if (should_do_concurrent_full_gc(cause)) {
2380       // Schedule an initial-mark evacuation pause that will start a
2381       // concurrent cycle. We're setting word_size to 0 which means that
2382       // we are not requesting a post-GC allocation.
2383       VM_G1IncCollectionPause op(gc_count_before,
2384                                  0,     /* word_size */
2385                                  true,  /* should_initiate_conc_mark */
2386                                  g1_policy()->max_pause_time_ms(),
2387                                  cause);
2388       op.set_allocation_context(AllocationContext::current());
2389 
2390       VMThread::execute(&op);
2391       if (!op.pause_succeeded()) {
2392         if (old_marking_count_before == _old_marking_cycles_started) {
2393           retry_gc = op.should_retry_gc();
2394         } else {
2395           // A Full GC happened while we were trying to schedule the
2396           // initial-mark GC. No point in starting a new cycle given
2397           // that the whole heap was collected anyway.
2398         }
2399 
2400         if (retry_gc) {
2401           if (GC_locker::is_active_and_needs_gc()) {
2402             GC_locker::stall_until_clear();
2403           }
2404         }
2405       }
2406     } else {
2407       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2408           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2409 
2410         // Schedule a standard evacuation pause. We're setting word_size
2411         // to 0 which means that we are not requesting a post-GC allocation.
2412         VM_G1IncCollectionPause op(gc_count_before,
2413                                    0,     /* word_size */
2414                                    false, /* should_initiate_conc_mark */
2415                                    g1_policy()->max_pause_time_ms(),
2416                                    cause);
2417         VMThread::execute(&op);
2418       } else {
2419         // Schedule a Full GC.
2420         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2421         VMThread::execute(&op);
2422       }
2423     }
2424   } while (retry_gc);
2425 }
2426 
2427 bool G1CollectedHeap::is_in(const void* p) const {
2428   if (_hrm.reserved().contains(p)) {
2429     // Given that we know that p is in the reserved space,
2430     // heap_region_containing_raw() should successfully
2431     // return the containing region.
2432     HeapRegion* hr = heap_region_containing_raw(p);
2433     return hr->is_in(p);
2434   } else {
2435     return false;
2436   }
2437 }
2438 
2439 #ifdef ASSERT
2440 bool G1CollectedHeap::is_in_exact(const void* p) const {
2441   bool contains = reserved_region().contains(p);
2442   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2443   if (contains && available) {
2444     return true;
2445   } else {
2446     return false;
2447   }
2448 }
2449 #endif
2450 
2451 // Iteration functions.
2452 
2453 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2454 
2455 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2456   ExtendedOopClosure* _cl;
2457 public:
2458   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2459   bool doHeapRegion(HeapRegion* r) {
2460     if (!r->is_continues_humongous()) {
2461       r->oop_iterate(_cl);
2462     }
2463     return false;
2464   }
2465 };
2466 
2467 // Iterates an ObjectClosure over all objects within a HeapRegion.
2468 
2469 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2470   ObjectClosure* _cl;
2471 public:
2472   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2473   bool doHeapRegion(HeapRegion* r) {
2474     if (!r->is_continues_humongous()) {
2475       r->object_iterate(_cl);
2476     }
2477     return false;
2478   }
2479 };
2480 
2481 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2482   IterateObjectClosureRegionClosure blk(cl);
2483   heap_region_iterate(&blk);
2484 }
2485 
2486 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2487   _hrm.iterate(cl);
2488 }
2489 
2490 void
2491 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2492                                          uint worker_id,
2493                                          HeapRegionClaimer *hrclaimer,
2494                                          bool concurrent) const {
2495   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2496 }
2497 
2498 // Clear the cached CSet starting regions and (more importantly)
2499 // the time stamps. Called when we reset the GC time stamp.
2500 void G1CollectedHeap::clear_cset_start_regions() {
2501   assert(_worker_cset_start_region != NULL, "sanity");
2502   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2503 
2504   int n_queues = MAX2((int)ParallelGCThreads, 1);
2505   for (int i = 0; i < n_queues; i++) {
2506     _worker_cset_start_region[i] = NULL;
2507     _worker_cset_start_region_time_stamp[i] = 0;
2508   }
2509 }
2510 
2511 // Given the id of a worker, obtain or calculate a suitable
2512 // starting region for iterating over the current collection set.
2513 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2514   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2515 
2516   HeapRegion* result = NULL;
2517   unsigned gc_time_stamp = get_gc_time_stamp();
2518 
2519   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2520     // Cached starting region for current worker was set
2521     // during the current pause - so it's valid.
2522     // Note: the cached starting heap region may be NULL
2523     // (when the collection set is empty).
2524     result = _worker_cset_start_region[worker_i];
2525     assert(result == NULL || result->in_collection_set(), "sanity");
2526     return result;
2527   }
2528 
2529   // The cached entry was not valid so let's calculate
2530   // a suitable starting heap region for this worker.
2531 
2532   // We want the parallel threads to start their collection
2533   // set iteration at different collection set regions to
2534   // avoid contention.
2535   // If we have:
2536   //          n collection set regions
2537   //          p threads
2538   // Then thread t will start at region floor ((t * n) / p)
2539 
2540   result = g1_policy()->collection_set();
2541   uint cs_size = g1_policy()->cset_region_length();
2542   uint active_workers = workers()->active_workers();
2543   assert(UseDynamicNumberOfGCThreads ||
2544            active_workers == workers()->total_workers(),
2545            "Unless dynamic should use total workers");
2546 
2547   uint end_ind   = (cs_size * worker_i) / active_workers;
2548   uint start_ind = 0;
2549 
2550   if (worker_i > 0 &&
2551       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2552     // Previous workers starting region is valid
2553     // so let's iterate from there
2554     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2555     result = _worker_cset_start_region[worker_i - 1];
2556   }
2557 
2558   for (uint i = start_ind; i < end_ind; i++) {
2559     result = result->next_in_collection_set();
2560   }
2561 
2562   // Note: the calculated starting heap region may be NULL
2563   // (when the collection set is empty).
2564   assert(result == NULL || result->in_collection_set(), "sanity");
2565   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2566          "should be updated only once per pause");
2567   _worker_cset_start_region[worker_i] = result;
2568   OrderAccess::storestore();
2569   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2570   return result;
2571 }
2572 
2573 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2574   HeapRegion* r = g1_policy()->collection_set();
2575   while (r != NULL) {
2576     HeapRegion* next = r->next_in_collection_set();
2577     if (cl->doHeapRegion(r)) {
2578       cl->incomplete();
2579       return;
2580     }
2581     r = next;
2582   }
2583 }
2584 
2585 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2586                                                   HeapRegionClosure *cl) {
2587   if (r == NULL) {
2588     // The CSet is empty so there's nothing to do.
2589     return;
2590   }
2591 
2592   assert(r->in_collection_set(),
2593          "Start region must be a member of the collection set.");
2594   HeapRegion* cur = r;
2595   while (cur != NULL) {
2596     HeapRegion* next = cur->next_in_collection_set();
2597     if (cl->doHeapRegion(cur) && false) {
2598       cl->incomplete();
2599       return;
2600     }
2601     cur = next;
2602   }
2603   cur = g1_policy()->collection_set();
2604   while (cur != r) {
2605     HeapRegion* next = cur->next_in_collection_set();
2606     if (cl->doHeapRegion(cur) && false) {
2607       cl->incomplete();
2608       return;
2609     }
2610     cur = next;
2611   }
2612 }
2613 
2614 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2615   HeapRegion* result = _hrm.next_region_in_heap(from);
2616   while (result != NULL && result->is_humongous()) {
2617     result = _hrm.next_region_in_heap(result);
2618   }
2619   return result;
2620 }
2621 
2622 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2623   HeapRegion* hr = heap_region_containing(addr);
2624   return hr->block_start(addr);
2625 }
2626 
2627 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2628   HeapRegion* hr = heap_region_containing(addr);
2629   return hr->block_size(addr);
2630 }
2631 
2632 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2633   HeapRegion* hr = heap_region_containing(addr);
2634   return hr->block_is_obj(addr);
2635 }
2636 
2637 bool G1CollectedHeap::supports_tlab_allocation() const {
2638   return true;
2639 }
2640 
2641 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2642   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2643 }
2644 
2645 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2646   return young_list()->eden_used_bytes();
2647 }
2648 
2649 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2650 // must be smaller than the humongous object limit.
2651 size_t G1CollectedHeap::max_tlab_size() const {
2652   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2653 }
2654 
2655 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2656   // Return the remaining space in the cur alloc region, but not less than
2657   // the min TLAB size.
2658 
2659   // Also, this value can be at most the humongous object threshold,
2660   // since we can't allow tlabs to grow big enough to accommodate
2661   // humongous objects.
2662 
2663   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2664   size_t max_tlab = max_tlab_size() * wordSize;
2665   if (hr == NULL) {
2666     return max_tlab;
2667   } else {
2668     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2669   }
2670 }
2671 
2672 size_t G1CollectedHeap::max_capacity() const {
2673   return _hrm.reserved().byte_size();
2674 }
2675 
2676 jlong G1CollectedHeap::millis_since_last_gc() {
2677   // assert(false, "NYI");
2678   return 0;
2679 }
2680 
2681 void G1CollectedHeap::prepare_for_verify() {
2682   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2683     ensure_parsability(false);
2684   }
2685   g1_rem_set()->prepare_for_verify();
2686 }
2687 
2688 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2689                                               VerifyOption vo) {
2690   switch (vo) {
2691   case VerifyOption_G1UsePrevMarking:
2692     return hr->obj_allocated_since_prev_marking(obj);
2693   case VerifyOption_G1UseNextMarking:
2694     return hr->obj_allocated_since_next_marking(obj);
2695   case VerifyOption_G1UseMarkWord:
2696     return false;
2697   default:
2698     ShouldNotReachHere();
2699   }
2700   return false; // keep some compilers happy
2701 }
2702 
2703 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2704   switch (vo) {
2705   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2706   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2707   case VerifyOption_G1UseMarkWord:    return NULL;
2708   default:                            ShouldNotReachHere();
2709   }
2710   return NULL; // keep some compilers happy
2711 }
2712 
2713 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2714   switch (vo) {
2715   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2716   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2717   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2718   default:                            ShouldNotReachHere();
2719   }
2720   return false; // keep some compilers happy
2721 }
2722 
2723 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2724   switch (vo) {
2725   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2726   case VerifyOption_G1UseNextMarking: return "NTAMS";
2727   case VerifyOption_G1UseMarkWord:    return "NONE";
2728   default:                            ShouldNotReachHere();
2729   }
2730   return NULL; // keep some compilers happy
2731 }
2732 
2733 class VerifyRootsClosure: public OopClosure {
2734 private:
2735   G1CollectedHeap* _g1h;
2736   VerifyOption     _vo;
2737   bool             _failures;
2738 public:
2739   // _vo == UsePrevMarking -> use "prev" marking information,
2740   // _vo == UseNextMarking -> use "next" marking information,
2741   // _vo == UseMarkWord    -> use mark word from object header.
2742   VerifyRootsClosure(VerifyOption vo) :
2743     _g1h(G1CollectedHeap::heap()),
2744     _vo(vo),
2745     _failures(false) { }
2746 
2747   bool failures() { return _failures; }
2748 
2749   template <class T> void do_oop_nv(T* p) {
2750     T heap_oop = oopDesc::load_heap_oop(p);
2751     if (!oopDesc::is_null(heap_oop)) {
2752       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2753       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2754         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2755                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2756         if (_vo == VerifyOption_G1UseMarkWord) {
2757           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2758         }
2759         obj->print_on(gclog_or_tty);
2760         _failures = true;
2761       }
2762     }
2763   }
2764 
2765   void do_oop(oop* p)       { do_oop_nv(p); }
2766   void do_oop(narrowOop* p) { do_oop_nv(p); }
2767 };
2768 
2769 class G1VerifyCodeRootOopClosure: public OopClosure {
2770   G1CollectedHeap* _g1h;
2771   OopClosure* _root_cl;
2772   nmethod* _nm;
2773   VerifyOption _vo;
2774   bool _failures;
2775 
2776   template <class T> void do_oop_work(T* p) {
2777     // First verify that this root is live
2778     _root_cl->do_oop(p);
2779 
2780     if (!G1VerifyHeapRegionCodeRoots) {
2781       // We're not verifying the code roots attached to heap region.
2782       return;
2783     }
2784 
2785     // Don't check the code roots during marking verification in a full GC
2786     if (_vo == VerifyOption_G1UseMarkWord) {
2787       return;
2788     }
2789 
2790     // Now verify that the current nmethod (which contains p) is
2791     // in the code root list of the heap region containing the
2792     // object referenced by p.
2793 
2794     T heap_oop = oopDesc::load_heap_oop(p);
2795     if (!oopDesc::is_null(heap_oop)) {
2796       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2797 
2798       // Now fetch the region containing the object
2799       HeapRegion* hr = _g1h->heap_region_containing(obj);
2800       HeapRegionRemSet* hrrs = hr->rem_set();
2801       // Verify that the strong code root list for this region
2802       // contains the nmethod
2803       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2804         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2805                               "from nmethod "PTR_FORMAT" not in strong "
2806                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2807                               p, _nm, hr->bottom(), hr->end());
2808         _failures = true;
2809       }
2810     }
2811   }
2812 
2813 public:
2814   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2815     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2816 
2817   void do_oop(oop* p) { do_oop_work(p); }
2818   void do_oop(narrowOop* p) { do_oop_work(p); }
2819 
2820   void set_nmethod(nmethod* nm) { _nm = nm; }
2821   bool failures() { return _failures; }
2822 };
2823 
2824 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2825   G1VerifyCodeRootOopClosure* _oop_cl;
2826 
2827 public:
2828   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2829     _oop_cl(oop_cl) {}
2830 
2831   void do_code_blob(CodeBlob* cb) {
2832     nmethod* nm = cb->as_nmethod_or_null();
2833     if (nm != NULL) {
2834       _oop_cl->set_nmethod(nm);
2835       nm->oops_do(_oop_cl);
2836     }
2837   }
2838 };
2839 
2840 class YoungRefCounterClosure : public OopClosure {
2841   G1CollectedHeap* _g1h;
2842   int              _count;
2843  public:
2844   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2845   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2846   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2847 
2848   int count() { return _count; }
2849   void reset_count() { _count = 0; };
2850 };
2851 
2852 class VerifyKlassClosure: public KlassClosure {
2853   YoungRefCounterClosure _young_ref_counter_closure;
2854   OopClosure *_oop_closure;
2855  public:
2856   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2857   void do_klass(Klass* k) {
2858     k->oops_do(_oop_closure);
2859 
2860     _young_ref_counter_closure.reset_count();
2861     k->oops_do(&_young_ref_counter_closure);
2862     if (_young_ref_counter_closure.count() > 0) {
2863       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2864     }
2865   }
2866 };
2867 
2868 class VerifyLivenessOopClosure: public OopClosure {
2869   G1CollectedHeap* _g1h;
2870   VerifyOption _vo;
2871 public:
2872   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2873     _g1h(g1h), _vo(vo)
2874   { }
2875   void do_oop(narrowOop *p) { do_oop_work(p); }
2876   void do_oop(      oop *p) { do_oop_work(p); }
2877 
2878   template <class T> void do_oop_work(T *p) {
2879     oop obj = oopDesc::load_decode_heap_oop(p);
2880     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2881               "Dead object referenced by a not dead object");
2882   }
2883 };
2884 
2885 class VerifyObjsInRegionClosure: public ObjectClosure {
2886 private:
2887   G1CollectedHeap* _g1h;
2888   size_t _live_bytes;
2889   HeapRegion *_hr;
2890   VerifyOption _vo;
2891 public:
2892   // _vo == UsePrevMarking -> use "prev" marking information,
2893   // _vo == UseNextMarking -> use "next" marking information,
2894   // _vo == UseMarkWord    -> use mark word from object header.
2895   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2896     : _live_bytes(0), _hr(hr), _vo(vo) {
2897     _g1h = G1CollectedHeap::heap();
2898   }
2899   void do_object(oop o) {
2900     VerifyLivenessOopClosure isLive(_g1h, _vo);
2901     assert(o != NULL, "Huh?");
2902     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2903       // If the object is alive according to the mark word,
2904       // then verify that the marking information agrees.
2905       // Note we can't verify the contra-positive of the
2906       // above: if the object is dead (according to the mark
2907       // word), it may not be marked, or may have been marked
2908       // but has since became dead, or may have been allocated
2909       // since the last marking.
2910       if (_vo == VerifyOption_G1UseMarkWord) {
2911         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2912       }
2913 
2914       o->oop_iterate_no_header(&isLive);
2915       if (!_hr->obj_allocated_since_prev_marking(o)) {
2916         size_t obj_size = o->size();    // Make sure we don't overflow
2917         _live_bytes += (obj_size * HeapWordSize);
2918       }
2919     }
2920   }
2921   size_t live_bytes() { return _live_bytes; }
2922 };
2923 
2924 class VerifyRegionClosure: public HeapRegionClosure {
2925 private:
2926   bool             _par;
2927   VerifyOption     _vo;
2928   bool             _failures;
2929 public:
2930   // _vo == UsePrevMarking -> use "prev" marking information,
2931   // _vo == UseNextMarking -> use "next" marking information,
2932   // _vo == UseMarkWord    -> use mark word from object header.
2933   VerifyRegionClosure(bool par, VerifyOption vo)
2934     : _par(par),
2935       _vo(vo),
2936       _failures(false) {}
2937 
2938   bool failures() {
2939     return _failures;
2940   }
2941 
2942   bool doHeapRegion(HeapRegion* r) {
2943     if (!r->is_continues_humongous()) {
2944       bool failures = false;
2945       r->verify(_vo, &failures);
2946       if (failures) {
2947         _failures = true;
2948       } else {
2949         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2950         r->object_iterate(&not_dead_yet_cl);
2951         if (_vo != VerifyOption_G1UseNextMarking) {
2952           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2953             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2954                                    "max_live_bytes "SIZE_FORMAT" "
2955                                    "< calculated "SIZE_FORMAT,
2956                                    r->bottom(), r->end(),
2957                                    r->max_live_bytes(),
2958                                  not_dead_yet_cl.live_bytes());
2959             _failures = true;
2960           }
2961         } else {
2962           // When vo == UseNextMarking we cannot currently do a sanity
2963           // check on the live bytes as the calculation has not been
2964           // finalized yet.
2965         }
2966       }
2967     }
2968     return false; // stop the region iteration if we hit a failure
2969   }
2970 };
2971 
2972 // This is the task used for parallel verification of the heap regions
2973 
2974 class G1ParVerifyTask: public AbstractGangTask {
2975 private:
2976   G1CollectedHeap*  _g1h;
2977   VerifyOption      _vo;
2978   bool              _failures;
2979   HeapRegionClaimer _hrclaimer;
2980 
2981 public:
2982   // _vo == UsePrevMarking -> use "prev" marking information,
2983   // _vo == UseNextMarking -> use "next" marking information,
2984   // _vo == UseMarkWord    -> use mark word from object header.
2985   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2986       AbstractGangTask("Parallel verify task"),
2987       _g1h(g1h),
2988       _vo(vo),
2989       _failures(false),
2990       _hrclaimer(g1h->workers()->active_workers()) {}
2991 
2992   bool failures() {
2993     return _failures;
2994   }
2995 
2996   void work(uint worker_id) {
2997     HandleMark hm;
2998     VerifyRegionClosure blk(true, _vo);
2999     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3000     if (blk.failures()) {
3001       _failures = true;
3002     }
3003   }
3004 };
3005 
3006 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3007   if (SafepointSynchronize::is_at_safepoint()) {
3008     assert(Thread::current()->is_VM_thread(),
3009            "Expected to be executed serially by the VM thread at this point");
3010 
3011     if (!silent) { gclog_or_tty->print("Roots "); }
3012     VerifyRootsClosure rootsCl(vo);
3013     VerifyKlassClosure klassCl(this, &rootsCl);
3014     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3015 
3016     // We apply the relevant closures to all the oops in the
3017     // system dictionary, class loader data graph, the string table
3018     // and the nmethods in the code cache.
3019     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3020     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3021 
3022     {
3023       G1RootProcessor root_processor(this);
3024       root_processor.process_all_roots(&rootsCl,
3025                                        &cldCl,
3026                                        &blobsCl);
3027     }
3028 
3029     bool failures = rootsCl.failures() || codeRootsCl.failures();
3030 
3031     if (vo != VerifyOption_G1UseMarkWord) {
3032       // If we're verifying during a full GC then the region sets
3033       // will have been torn down at the start of the GC. Therefore
3034       // verifying the region sets will fail. So we only verify
3035       // the region sets when not in a full GC.
3036       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3037       verify_region_sets();
3038     }
3039 
3040     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3041     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3042 
3043       G1ParVerifyTask task(this, vo);
3044       assert(UseDynamicNumberOfGCThreads ||
3045         workers()->active_workers() == workers()->total_workers(),
3046         "If not dynamic should be using all the workers");
3047       int n_workers = workers()->active_workers();
3048       set_par_threads(n_workers);
3049       workers()->run_task(&task);
3050       set_par_threads(0);
3051       if (task.failures()) {
3052         failures = true;
3053       }
3054 
3055     } else {
3056       VerifyRegionClosure blk(false, vo);
3057       heap_region_iterate(&blk);
3058       if (blk.failures()) {
3059         failures = true;
3060       }
3061     }
3062 
3063     if (G1StringDedup::is_enabled()) {
3064       if (!silent) gclog_or_tty->print("StrDedup ");
3065       G1StringDedup::verify();
3066     }
3067 
3068     if (failures) {
3069       gclog_or_tty->print_cr("Heap:");
3070       // It helps to have the per-region information in the output to
3071       // help us track down what went wrong. This is why we call
3072       // print_extended_on() instead of print_on().
3073       print_extended_on(gclog_or_tty);
3074       gclog_or_tty->cr();
3075       gclog_or_tty->flush();
3076     }
3077     guarantee(!failures, "there should not have been any failures");
3078   } else {
3079     if (!silent) {
3080       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3081       if (G1StringDedup::is_enabled()) {
3082         gclog_or_tty->print(", StrDedup");
3083       }
3084       gclog_or_tty->print(") ");
3085     }
3086   }
3087 }
3088 
3089 void G1CollectedHeap::verify(bool silent) {
3090   verify(silent, VerifyOption_G1UsePrevMarking);
3091 }
3092 
3093 double G1CollectedHeap::verify(bool guard, const char* msg) {
3094   double verify_time_ms = 0.0;
3095 
3096   if (guard && total_collections() >= VerifyGCStartAt) {
3097     double verify_start = os::elapsedTime();
3098     HandleMark hm;  // Discard invalid handles created during verification
3099     prepare_for_verify();
3100     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3101     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3102   }
3103 
3104   return verify_time_ms;
3105 }
3106 
3107 void G1CollectedHeap::verify_before_gc() {
3108   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3109   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3110 }
3111 
3112 void G1CollectedHeap::verify_after_gc() {
3113   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3114   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3115 }
3116 
3117 class PrintRegionClosure: public HeapRegionClosure {
3118   outputStream* _st;
3119 public:
3120   PrintRegionClosure(outputStream* st) : _st(st) {}
3121   bool doHeapRegion(HeapRegion* r) {
3122     r->print_on(_st);
3123     return false;
3124   }
3125 };
3126 
3127 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3128                                        const HeapRegion* hr,
3129                                        const VerifyOption vo) const {
3130   switch (vo) {
3131   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3132   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3133   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3134   default:                            ShouldNotReachHere();
3135   }
3136   return false; // keep some compilers happy
3137 }
3138 
3139 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3140                                        const VerifyOption vo) const {
3141   switch (vo) {
3142   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3143   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3144   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3145   default:                            ShouldNotReachHere();
3146   }
3147   return false; // keep some compilers happy
3148 }
3149 
3150 void G1CollectedHeap::print_on(outputStream* st) const {
3151   st->print(" %-20s", "garbage-first heap");
3152   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3153             capacity()/K, used_unlocked()/K);
3154   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3155             _hrm.reserved().start(),
3156             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3157             _hrm.reserved().end());
3158   st->cr();
3159   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3160   uint young_regions = _young_list->length();
3161   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3162             (size_t) young_regions * HeapRegion::GrainBytes / K);
3163   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3164   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3165             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3166   st->cr();
3167   MetaspaceAux::print_on(st);
3168 }
3169 
3170 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3171   print_on(st);
3172 
3173   // Print the per-region information.
3174   st->cr();
3175   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3176                "HS=humongous(starts), HC=humongous(continues), "
3177                "CS=collection set, F=free, TS=gc time stamp, "
3178                "PTAMS=previous top-at-mark-start, "
3179                "NTAMS=next top-at-mark-start)");
3180   PrintRegionClosure blk(st);
3181   heap_region_iterate(&blk);
3182 }
3183 
3184 void G1CollectedHeap::print_on_error(outputStream* st) const {
3185   this->CollectedHeap::print_on_error(st);
3186 
3187   if (_cm != NULL) {
3188     st->cr();
3189     _cm->print_on_error(st);
3190   }
3191 }
3192 
3193 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3194   workers()->print_worker_threads_on(st);
3195   _cmThread->print_on(st);
3196   st->cr();
3197   _cm->print_worker_threads_on(st);
3198   _cg1r->print_worker_threads_on(st);
3199   if (G1StringDedup::is_enabled()) {
3200     G1StringDedup::print_worker_threads_on(st);
3201   }
3202 }
3203 
3204 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3205   workers()->threads_do(tc);
3206   tc->do_thread(_cmThread);
3207   _cg1r->threads_do(tc);
3208   if (G1StringDedup::is_enabled()) {
3209     G1StringDedup::threads_do(tc);
3210   }
3211 }
3212 
3213 void G1CollectedHeap::print_tracing_info() const {
3214   // We'll overload this to mean "trace GC pause statistics."
3215   if (TraceYoungGenTime || TraceOldGenTime) {
3216     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3217     // to that.
3218     g1_policy()->print_tracing_info();
3219   }
3220   if (G1SummarizeRSetStats) {
3221     g1_rem_set()->print_summary_info();
3222   }
3223   if (G1SummarizeConcMark) {
3224     concurrent_mark()->print_summary_info();
3225   }
3226   g1_policy()->print_yg_surv_rate_info();
3227 }
3228 
3229 #ifndef PRODUCT
3230 // Helpful for debugging RSet issues.
3231 
3232 class PrintRSetsClosure : public HeapRegionClosure {
3233 private:
3234   const char* _msg;
3235   size_t _occupied_sum;
3236 
3237 public:
3238   bool doHeapRegion(HeapRegion* r) {
3239     HeapRegionRemSet* hrrs = r->rem_set();
3240     size_t occupied = hrrs->occupied();
3241     _occupied_sum += occupied;
3242 
3243     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3244                            HR_FORMAT_PARAMS(r));
3245     if (occupied == 0) {
3246       gclog_or_tty->print_cr("  RSet is empty");
3247     } else {
3248       hrrs->print();
3249     }
3250     gclog_or_tty->print_cr("----------");
3251     return false;
3252   }
3253 
3254   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3255     gclog_or_tty->cr();
3256     gclog_or_tty->print_cr("========================================");
3257     gclog_or_tty->print_cr("%s", msg);
3258     gclog_or_tty->cr();
3259   }
3260 
3261   ~PrintRSetsClosure() {
3262     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3263     gclog_or_tty->print_cr("========================================");
3264     gclog_or_tty->cr();
3265   }
3266 };
3267 
3268 void G1CollectedHeap::print_cset_rsets() {
3269   PrintRSetsClosure cl("Printing CSet RSets");
3270   collection_set_iterate(&cl);
3271 }
3272 
3273 void G1CollectedHeap::print_all_rsets() {
3274   PrintRSetsClosure cl("Printing All RSets");;
3275   heap_region_iterate(&cl);
3276 }
3277 #endif // PRODUCT
3278 
3279 G1CollectedHeap* G1CollectedHeap::heap() {
3280   CollectedHeap* heap = Universe::heap();
3281   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3282   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3283   return (G1CollectedHeap*)heap;
3284 }
3285 
3286 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3287   // always_do_update_barrier = false;
3288   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3289   // Fill TLAB's and such
3290   accumulate_statistics_all_tlabs();
3291   ensure_parsability(true);
3292 
3293   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3294       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3295     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3296   }
3297 }
3298 
3299 void G1CollectedHeap::gc_epilogue(bool full) {
3300 
3301   if (G1SummarizeRSetStats &&
3302       (G1SummarizeRSetStatsPeriod > 0) &&
3303       // we are at the end of the GC. Total collections has already been increased.
3304       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3305     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3306   }
3307 
3308   // FIXME: what is this about?
3309   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3310   // is set.
3311   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3312                         "derived pointer present"));
3313   // always_do_update_barrier = true;
3314 
3315   resize_all_tlabs();
3316   allocation_context_stats().update(full);
3317 
3318   // We have just completed a GC. Update the soft reference
3319   // policy with the new heap occupancy
3320   Universe::update_heap_info_at_gc();
3321 }
3322 
3323 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3324                                                uint gc_count_before,
3325                                                bool* succeeded,
3326                                                GCCause::Cause gc_cause) {
3327   assert_heap_not_locked_and_not_at_safepoint();
3328   g1_policy()->record_stop_world_start();
3329   VM_G1IncCollectionPause op(gc_count_before,
3330                              word_size,
3331                              false, /* should_initiate_conc_mark */
3332                              g1_policy()->max_pause_time_ms(),
3333                              gc_cause);
3334 
3335   op.set_allocation_context(AllocationContext::current());
3336   VMThread::execute(&op);
3337 
3338   HeapWord* result = op.result();
3339   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3340   assert(result == NULL || ret_succeeded,
3341          "the result should be NULL if the VM did not succeed");
3342   *succeeded = ret_succeeded;
3343 
3344   assert_heap_not_locked();
3345   return result;
3346 }
3347 
3348 void
3349 G1CollectedHeap::doConcurrentMark() {
3350   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3351   if (!_cmThread->in_progress()) {
3352     _cmThread->set_started();
3353     CGC_lock->notify();
3354   }
3355 }
3356 
3357 size_t G1CollectedHeap::pending_card_num() {
3358   size_t extra_cards = 0;
3359   JavaThread *curr = Threads::first();
3360   while (curr != NULL) {
3361     DirtyCardQueue& dcq = curr->dirty_card_queue();
3362     extra_cards += dcq.size();
3363     curr = curr->next();
3364   }
3365   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3366   size_t buffer_size = dcqs.buffer_size();
3367   size_t buffer_num = dcqs.completed_buffers_num();
3368 
3369   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3370   // in bytes - not the number of 'entries'. We need to convert
3371   // into a number of cards.
3372   return (buffer_size * buffer_num + extra_cards) / oopSize;
3373 }
3374 
3375 size_t G1CollectedHeap::cards_scanned() {
3376   return g1_rem_set()->cardsScanned();
3377 }
3378 
3379 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3380  private:
3381   size_t _total_humongous;
3382   size_t _candidate_humongous;
3383 
3384   DirtyCardQueue _dcq;
3385 
3386   // We don't nominate objects with many remembered set entries, on
3387   // the assumption that such objects are likely still live.
3388   bool is_remset_small(HeapRegion* region) const {
3389     HeapRegionRemSet* const rset = region->rem_set();
3390     return G1EagerReclaimHumongousObjectsWithStaleRefs
3391       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3392       : rset->is_empty();
3393   }
3394 
3395   bool is_typeArray_region(HeapRegion* region) const {
3396     return oop(region->bottom())->is_typeArray();
3397   }
3398 
3399   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3400     assert(region->is_starts_humongous(), "Must start a humongous object");
3401 
3402     // Candidate selection must satisfy the following constraints
3403     // while concurrent marking is in progress:
3404     //
3405     // * In order to maintain SATB invariants, an object must not be
3406     // reclaimed if it was allocated before the start of marking and
3407     // has not had its references scanned.  Such an object must have
3408     // its references (including type metadata) scanned to ensure no
3409     // live objects are missed by the marking process.  Objects
3410     // allocated after the start of concurrent marking don't need to
3411     // be scanned.
3412     //
3413     // * An object must not be reclaimed if it is on the concurrent
3414     // mark stack.  Objects allocated after the start of concurrent
3415     // marking are never pushed on the mark stack.
3416     //
3417     // Nominating only objects allocated after the start of concurrent
3418     // marking is sufficient to meet both constraints.  This may miss
3419     // some objects that satisfy the constraints, but the marking data
3420     // structures don't support efficiently performing the needed
3421     // additional tests or scrubbing of the mark stack.
3422     //
3423     // However, we presently only nominate is_typeArray() objects.
3424     // A humongous object containing references induces remembered
3425     // set entries on other regions.  In order to reclaim such an
3426     // object, those remembered sets would need to be cleaned up.
3427     //
3428     // We also treat is_typeArray() objects specially, allowing them
3429     // to be reclaimed even if allocated before the start of
3430     // concurrent mark.  For this we rely on mark stack insertion to
3431     // exclude is_typeArray() objects, preventing reclaiming an object
3432     // that is in the mark stack.  We also rely on the metadata for
3433     // such objects to be built-in and so ensured to be kept live.
3434     // Frequent allocation and drop of large binary blobs is an
3435     // important use case for eager reclaim, and this special handling
3436     // may reduce needed headroom.
3437 
3438     return is_typeArray_region(region) && is_remset_small(region);
3439   }
3440 
3441  public:
3442   RegisterHumongousWithInCSetFastTestClosure()
3443   : _total_humongous(0),
3444     _candidate_humongous(0),
3445     _dcq(&JavaThread::dirty_card_queue_set()) {
3446   }
3447 
3448   virtual bool doHeapRegion(HeapRegion* r) {
3449     if (!r->is_starts_humongous()) {
3450       return false;
3451     }
3452     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3453 
3454     bool is_candidate = humongous_region_is_candidate(g1h, r);
3455     uint rindex = r->hrm_index();
3456     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3457     if (is_candidate) {
3458       _candidate_humongous++;
3459       g1h->register_humongous_region_with_cset(rindex);
3460       // Is_candidate already filters out humongous object with large remembered sets.
3461       // If we have a humongous object with a few remembered sets, we simply flush these
3462       // remembered set entries into the DCQS. That will result in automatic
3463       // re-evaluation of their remembered set entries during the following evacuation
3464       // phase.
3465       if (!r->rem_set()->is_empty()) {
3466         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3467                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3468         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3469         HeapRegionRemSetIterator hrrs(r->rem_set());
3470         size_t card_index;
3471         while (hrrs.has_next(card_index)) {
3472           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3473           // The remembered set might contain references to already freed
3474           // regions. Filter out such entries to avoid failing card table
3475           // verification.
3476           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3477             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3478               *card_ptr = CardTableModRefBS::dirty_card_val();
3479               _dcq.enqueue(card_ptr);
3480             }
3481           }
3482         }
3483         r->rem_set()->clear_locked();
3484       }
3485       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3486     }
3487     _total_humongous++;
3488 
3489     return false;
3490   }
3491 
3492   size_t total_humongous() const { return _total_humongous; }
3493   size_t candidate_humongous() const { return _candidate_humongous; }
3494 
3495   void flush_rem_set_entries() { _dcq.flush(); }
3496 };
3497 
3498 void G1CollectedHeap::register_humongous_regions_with_cset() {
3499   if (!G1EagerReclaimHumongousObjects) {
3500     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3501     return;
3502   }
3503   double time = os::elapsed_counter();
3504 
3505   // Collect reclaim candidate information and register candidates with cset.
3506   RegisterHumongousWithInCSetFastTestClosure cl;
3507   heap_region_iterate(&cl);
3508 
3509   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3510   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3511                                                                   cl.total_humongous(),
3512                                                                   cl.candidate_humongous());
3513   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3514 
3515   // Finally flush all remembered set entries to re-check into the global DCQS.
3516   cl.flush_rem_set_entries();
3517 }
3518 
3519 void
3520 G1CollectedHeap::setup_surviving_young_words() {
3521   assert(_surviving_young_words == NULL, "pre-condition");
3522   uint array_length = g1_policy()->young_cset_region_length();
3523   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3524   if (_surviving_young_words == NULL) {
3525     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3526                           "Not enough space for young surv words summary.");
3527   }
3528   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3529 #ifdef ASSERT
3530   for (uint i = 0;  i < array_length; ++i) {
3531     assert( _surviving_young_words[i] == 0, "memset above" );
3532   }
3533 #endif // !ASSERT
3534 }
3535 
3536 void
3537 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3538   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3539   uint array_length = g1_policy()->young_cset_region_length();
3540   for (uint i = 0; i < array_length; ++i) {
3541     _surviving_young_words[i] += surv_young_words[i];
3542   }
3543 }
3544 
3545 void
3546 G1CollectedHeap::cleanup_surviving_young_words() {
3547   guarantee( _surviving_young_words != NULL, "pre-condition" );
3548   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3549   _surviving_young_words = NULL;
3550 }
3551 
3552 #ifdef ASSERT
3553 class VerifyCSetClosure: public HeapRegionClosure {
3554 public:
3555   bool doHeapRegion(HeapRegion* hr) {
3556     // Here we check that the CSet region's RSet is ready for parallel
3557     // iteration. The fields that we'll verify are only manipulated
3558     // when the region is part of a CSet and is collected. Afterwards,
3559     // we reset these fields when we clear the region's RSet (when the
3560     // region is freed) so they are ready when the region is
3561     // re-allocated. The only exception to this is if there's an
3562     // evacuation failure and instead of freeing the region we leave
3563     // it in the heap. In that case, we reset these fields during
3564     // evacuation failure handling.
3565     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3566 
3567     // Here's a good place to add any other checks we'd like to
3568     // perform on CSet regions.
3569     return false;
3570   }
3571 };
3572 #endif // ASSERT
3573 
3574 #if TASKQUEUE_STATS
3575 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3576   st->print_raw_cr("GC Task Stats");
3577   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3578   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3579 }
3580 
3581 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3582   print_taskqueue_stats_hdr(st);
3583 
3584   TaskQueueStats totals;
3585   const int n = workers()->total_workers();
3586   for (int i = 0; i < n; ++i) {
3587     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3588     totals += task_queue(i)->stats;
3589   }
3590   st->print_raw("tot "); totals.print(st); st->cr();
3591 
3592   DEBUG_ONLY(totals.verify());
3593 }
3594 
3595 void G1CollectedHeap::reset_taskqueue_stats() {
3596   const int n = workers()->total_workers();
3597   for (int i = 0; i < n; ++i) {
3598     task_queue(i)->stats.reset();
3599   }
3600 }
3601 #endif // TASKQUEUE_STATS
3602 
3603 void G1CollectedHeap::log_gc_header() {
3604   if (!G1Log::fine()) {
3605     return;
3606   }
3607 
3608   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3609 
3610   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3611     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3612     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3613 
3614   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3615 }
3616 
3617 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3618   if (!G1Log::fine()) {
3619     return;
3620   }
3621 
3622   if (G1Log::finer()) {
3623     if (evacuation_failed()) {
3624       gclog_or_tty->print(" (to-space exhausted)");
3625     }
3626     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3627     g1_policy()->phase_times()->note_gc_end();
3628     g1_policy()->phase_times()->print(pause_time_sec);
3629     g1_policy()->print_detailed_heap_transition();
3630   } else {
3631     if (evacuation_failed()) {
3632       gclog_or_tty->print("--");
3633     }
3634     g1_policy()->print_heap_transition();
3635     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3636   }
3637   gclog_or_tty->flush();
3638 }
3639 
3640 bool
3641 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3642   assert_at_safepoint(true /* should_be_vm_thread */);
3643   guarantee(!is_gc_active(), "collection is not reentrant");
3644 
3645   if (GC_locker::check_active_before_gc()) {
3646     return false;
3647   }
3648 
3649   _gc_timer_stw->register_gc_start();
3650 
3651   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3652 
3653   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3654   ResourceMark rm;
3655 
3656   print_heap_before_gc();
3657   trace_heap_before_gc(_gc_tracer_stw);
3658 
3659   verify_region_sets_optional();
3660   verify_dirty_young_regions();
3661 
3662   // This call will decide whether this pause is an initial-mark
3663   // pause. If it is, during_initial_mark_pause() will return true
3664   // for the duration of this pause.
3665   g1_policy()->decide_on_conc_mark_initiation();
3666 
3667   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3668   assert(!g1_policy()->during_initial_mark_pause() ||
3669           g1_policy()->gcs_are_young(), "sanity");
3670 
3671   // We also do not allow mixed GCs during marking.
3672   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3673 
3674   // Record whether this pause is an initial mark. When the current
3675   // thread has completed its logging output and it's safe to signal
3676   // the CM thread, the flag's value in the policy has been reset.
3677   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3678 
3679   // Inner scope for scope based logging, timers, and stats collection
3680   {
3681     EvacuationInfo evacuation_info;
3682 
3683     if (g1_policy()->during_initial_mark_pause()) {
3684       // We are about to start a marking cycle, so we increment the
3685       // full collection counter.
3686       increment_old_marking_cycles_started();
3687       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3688     }
3689 
3690     _gc_tracer_stw->report_yc_type(yc_type());
3691 
3692     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3693 
3694     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3695                                                                   workers()->active_workers(),
3696                                                                   Threads::number_of_non_daemon_threads());
3697     assert(UseDynamicNumberOfGCThreads ||
3698            active_workers == workers()->total_workers(),
3699            "If not dynamic should be using all the  workers");
3700     workers()->set_active_workers(active_workers);
3701 
3702     double pause_start_sec = os::elapsedTime();
3703     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3704     log_gc_header();
3705 
3706     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3707     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3708 
3709     // If the secondary_free_list is not empty, append it to the
3710     // free_list. No need to wait for the cleanup operation to finish;
3711     // the region allocation code will check the secondary_free_list
3712     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3713     // set, skip this step so that the region allocation code has to
3714     // get entries from the secondary_free_list.
3715     if (!G1StressConcRegionFreeing) {
3716       append_secondary_free_list_if_not_empty_with_lock();
3717     }
3718 
3719     assert(check_young_list_well_formed(), "young list should be well formed");
3720 
3721     // Don't dynamically change the number of GC threads this early.  A value of
3722     // 0 is used to indicate serial work.  When parallel work is done,
3723     // it will be set.
3724 
3725     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3726       IsGCActiveMark x;
3727 
3728       gc_prologue(false);
3729       increment_total_collections(false /* full gc */);
3730       increment_gc_time_stamp();
3731 
3732       verify_before_gc();
3733 
3734       check_bitmaps("GC Start");
3735 
3736       COMPILER2_PRESENT(DerivedPointerTable::clear());
3737 
3738       // Please see comment in g1CollectedHeap.hpp and
3739       // G1CollectedHeap::ref_processing_init() to see how
3740       // reference processing currently works in G1.
3741 
3742       // Enable discovery in the STW reference processor
3743       ref_processor_stw()->enable_discovery();
3744 
3745       {
3746         // We want to temporarily turn off discovery by the
3747         // CM ref processor, if necessary, and turn it back on
3748         // on again later if we do. Using a scoped
3749         // NoRefDiscovery object will do this.
3750         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3751 
3752         // Forget the current alloc region (we might even choose it to be part
3753         // of the collection set!).
3754         _allocator->release_mutator_alloc_region();
3755 
3756         // We should call this after we retire the mutator alloc
3757         // region(s) so that all the ALLOC / RETIRE events are generated
3758         // before the start GC event.
3759         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3760 
3761         // This timing is only used by the ergonomics to handle our pause target.
3762         // It is unclear why this should not include the full pause. We will
3763         // investigate this in CR 7178365.
3764         //
3765         // Preserving the old comment here if that helps the investigation:
3766         //
3767         // The elapsed time induced by the start time below deliberately elides
3768         // the possible verification above.
3769         double sample_start_time_sec = os::elapsedTime();
3770 
3771 #if YOUNG_LIST_VERBOSE
3772         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3773         _young_list->print();
3774         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3775 #endif // YOUNG_LIST_VERBOSE
3776 
3777         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3778 
3779         double scan_wait_start = os::elapsedTime();
3780         // We have to wait until the CM threads finish scanning the
3781         // root regions as it's the only way to ensure that all the
3782         // objects on them have been correctly scanned before we start
3783         // moving them during the GC.
3784         bool waited = _cm->root_regions()->wait_until_scan_finished();
3785         double wait_time_ms = 0.0;
3786         if (waited) {
3787           double scan_wait_end = os::elapsedTime();
3788           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3789         }
3790         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3791 
3792 #if YOUNG_LIST_VERBOSE
3793         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3794         _young_list->print();
3795 #endif // YOUNG_LIST_VERBOSE
3796 
3797         if (g1_policy()->during_initial_mark_pause()) {
3798           concurrent_mark()->checkpointRootsInitialPre();
3799         }
3800 
3801 #if YOUNG_LIST_VERBOSE
3802         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3803         _young_list->print();
3804         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3805 #endif // YOUNG_LIST_VERBOSE
3806 
3807         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3808 
3809         register_humongous_regions_with_cset();
3810 
3811         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3812 
3813         _cm->note_start_of_gc();
3814         // We should not verify the per-thread SATB buffers given that
3815         // we have not filtered them yet (we'll do so during the
3816         // GC). We also call this after finalize_cset() to
3817         // ensure that the CSet has been finalized.
3818         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3819                                  true  /* verify_enqueued_buffers */,
3820                                  false /* verify_thread_buffers */,
3821                                  true  /* verify_fingers */);
3822 
3823         if (_hr_printer.is_active()) {
3824           HeapRegion* hr = g1_policy()->collection_set();
3825           while (hr != NULL) {
3826             _hr_printer.cset(hr);
3827             hr = hr->next_in_collection_set();
3828           }
3829         }
3830 
3831 #ifdef ASSERT
3832         VerifyCSetClosure cl;
3833         collection_set_iterate(&cl);
3834 #endif // ASSERT
3835 
3836         setup_surviving_young_words();
3837 
3838         // Initialize the GC alloc regions.
3839         _allocator->init_gc_alloc_regions(evacuation_info);
3840 
3841         // Actually do the work...
3842         evacuate_collection_set(evacuation_info);
3843 
3844         // We do this to mainly verify the per-thread SATB buffers
3845         // (which have been filtered by now) since we didn't verify
3846         // them earlier. No point in re-checking the stacks / enqueued
3847         // buffers given that the CSet has not changed since last time
3848         // we checked.
3849         _cm->verify_no_cset_oops(false /* verify_stacks */,
3850                                  false /* verify_enqueued_buffers */,
3851                                  true  /* verify_thread_buffers */,
3852                                  true  /* verify_fingers */);
3853 
3854         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3855 
3856         eagerly_reclaim_humongous_regions();
3857 
3858         g1_policy()->clear_collection_set();
3859 
3860         cleanup_surviving_young_words();
3861 
3862         // Start a new incremental collection set for the next pause.
3863         g1_policy()->start_incremental_cset_building();
3864 
3865         clear_cset_fast_test();
3866 
3867         _young_list->reset_sampled_info();
3868 
3869         // Don't check the whole heap at this point as the
3870         // GC alloc regions from this pause have been tagged
3871         // as survivors and moved on to the survivor list.
3872         // Survivor regions will fail the !is_young() check.
3873         assert(check_young_list_empty(false /* check_heap */),
3874           "young list should be empty");
3875 
3876 #if YOUNG_LIST_VERBOSE
3877         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3878         _young_list->print();
3879 #endif // YOUNG_LIST_VERBOSE
3880 
3881         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3882                                              _young_list->first_survivor_region(),
3883                                              _young_list->last_survivor_region());
3884 
3885         _young_list->reset_auxilary_lists();
3886 
3887         if (evacuation_failed()) {
3888           _allocator->set_used(recalculate_used());
3889           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3890           for (uint i = 0; i < n_queues; i++) {
3891             if (_evacuation_failed_info_array[i].has_failed()) {
3892               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3893             }
3894           }
3895         } else {
3896           // The "used" of the the collection set have already been subtracted
3897           // when they were freed.  Add in the bytes evacuated.
3898           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3899         }
3900 
3901         if (g1_policy()->during_initial_mark_pause()) {
3902           // We have to do this before we notify the CM threads that
3903           // they can start working to make sure that all the
3904           // appropriate initialization is done on the CM object.
3905           concurrent_mark()->checkpointRootsInitialPost();
3906           set_marking_started();
3907           // Note that we don't actually trigger the CM thread at
3908           // this point. We do that later when we're sure that
3909           // the current thread has completed its logging output.
3910         }
3911 
3912         allocate_dummy_regions();
3913 
3914 #if YOUNG_LIST_VERBOSE
3915         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3916         _young_list->print();
3917         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3918 #endif // YOUNG_LIST_VERBOSE
3919 
3920         _allocator->init_mutator_alloc_region();
3921 
3922         {
3923           size_t expand_bytes = g1_policy()->expansion_amount();
3924           if (expand_bytes > 0) {
3925             size_t bytes_before = capacity();
3926             // No need for an ergo verbose message here,
3927             // expansion_amount() does this when it returns a value > 0.
3928             if (!expand(expand_bytes)) {
3929               // We failed to expand the heap. Cannot do anything about it.
3930             }
3931           }
3932         }
3933 
3934         // We redo the verification but now wrt to the new CSet which
3935         // has just got initialized after the previous CSet was freed.
3936         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3937                                  true  /* verify_enqueued_buffers */,
3938                                  true  /* verify_thread_buffers */,
3939                                  true  /* verify_fingers */);
3940         _cm->note_end_of_gc();
3941 
3942         // This timing is only used by the ergonomics to handle our pause target.
3943         // It is unclear why this should not include the full pause. We will
3944         // investigate this in CR 7178365.
3945         double sample_end_time_sec = os::elapsedTime();
3946         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3947         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3948 
3949         MemoryService::track_memory_usage();
3950 
3951         // In prepare_for_verify() below we'll need to scan the deferred
3952         // update buffers to bring the RSets up-to-date if
3953         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3954         // the update buffers we'll probably need to scan cards on the
3955         // regions we just allocated to (i.e., the GC alloc
3956         // regions). However, during the last GC we called
3957         // set_saved_mark() on all the GC alloc regions, so card
3958         // scanning might skip the [saved_mark_word()...top()] area of
3959         // those regions (i.e., the area we allocated objects into
3960         // during the last GC). But it shouldn't. Given that
3961         // saved_mark_word() is conditional on whether the GC time stamp
3962         // on the region is current or not, by incrementing the GC time
3963         // stamp here we invalidate all the GC time stamps on all the
3964         // regions and saved_mark_word() will simply return top() for
3965         // all the regions. This is a nicer way of ensuring this rather
3966         // than iterating over the regions and fixing them. In fact, the
3967         // GC time stamp increment here also ensures that
3968         // saved_mark_word() will return top() between pauses, i.e.,
3969         // during concurrent refinement. So we don't need the
3970         // is_gc_active() check to decided which top to use when
3971         // scanning cards (see CR 7039627).
3972         increment_gc_time_stamp();
3973 
3974         verify_after_gc();
3975         check_bitmaps("GC End");
3976 
3977         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3978         ref_processor_stw()->verify_no_references_recorded();
3979 
3980         // CM reference discovery will be re-enabled if necessary.
3981       }
3982 
3983       // We should do this after we potentially expand the heap so
3984       // that all the COMMIT events are generated before the end GC
3985       // event, and after we retire the GC alloc regions so that all
3986       // RETIRE events are generated before the end GC event.
3987       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3988 
3989 #ifdef TRACESPINNING
3990       ParallelTaskTerminator::print_termination_counts();
3991 #endif
3992 
3993       gc_epilogue(false);
3994     }
3995 
3996     // Print the remainder of the GC log output.
3997     log_gc_footer(os::elapsedTime() - pause_start_sec);
3998 
3999     // It is not yet to safe to tell the concurrent mark to
4000     // start as we have some optional output below. We don't want the
4001     // output from the concurrent mark thread interfering with this
4002     // logging output either.
4003 
4004     _hrm.verify_optional();
4005     verify_region_sets_optional();
4006 
4007     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4008     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4009 
4010     print_heap_after_gc();
4011     trace_heap_after_gc(_gc_tracer_stw);
4012 
4013     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4014     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4015     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4016     // before any GC notifications are raised.
4017     g1mm()->update_sizes();
4018 
4019     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4020     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4021     _gc_timer_stw->register_gc_end();
4022     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4023   }
4024   // It should now be safe to tell the concurrent mark thread to start
4025   // without its logging output interfering with the logging output
4026   // that came from the pause.
4027 
4028   if (should_start_conc_mark) {
4029     // CAUTION: after the doConcurrentMark() call below,
4030     // the concurrent marking thread(s) could be running
4031     // concurrently with us. Make sure that anything after
4032     // this point does not assume that we are the only GC thread
4033     // running. Note: of course, the actual marking work will
4034     // not start until the safepoint itself is released in
4035     // SuspendibleThreadSet::desynchronize().
4036     doConcurrentMark();
4037   }
4038 
4039   return true;
4040 }
4041 
4042 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4043   _drain_in_progress = false;
4044   set_evac_failure_closure(cl);
4045   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4046 }
4047 
4048 void G1CollectedHeap::finalize_for_evac_failure() {
4049   assert(_evac_failure_scan_stack != NULL &&
4050          _evac_failure_scan_stack->length() == 0,
4051          "Postcondition");
4052   assert(!_drain_in_progress, "Postcondition");
4053   delete _evac_failure_scan_stack;
4054   _evac_failure_scan_stack = NULL;
4055 }
4056 
4057 void G1CollectedHeap::remove_self_forwarding_pointers() {
4058   double remove_self_forwards_start = os::elapsedTime();
4059 
4060   set_par_threads();
4061   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4062   workers()->run_task(&rsfp_task);
4063   set_par_threads(0);
4064 
4065   // Now restore saved marks, if any.
4066   assert(_objs_with_preserved_marks.size() ==
4067             _preserved_marks_of_objs.size(), "Both or none.");
4068   while (!_objs_with_preserved_marks.is_empty()) {
4069     oop obj = _objs_with_preserved_marks.pop();
4070     markOop m = _preserved_marks_of_objs.pop();
4071     obj->set_mark(m);
4072   }
4073   _objs_with_preserved_marks.clear(true);
4074   _preserved_marks_of_objs.clear(true);
4075 
4076   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4077 }
4078 
4079 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4080   _evac_failure_scan_stack->push(obj);
4081 }
4082 
4083 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4084   assert(_evac_failure_scan_stack != NULL, "precondition");
4085 
4086   while (_evac_failure_scan_stack->length() > 0) {
4087      oop obj = _evac_failure_scan_stack->pop();
4088      _evac_failure_closure->set_region(heap_region_containing(obj));
4089      obj->oop_iterate_backwards(_evac_failure_closure);
4090   }
4091 }
4092 
4093 oop
4094 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4095                                                oop old) {
4096   assert(obj_in_cs(old),
4097          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4098                  (HeapWord*) old));
4099   markOop m = old->mark();
4100   oop forward_ptr = old->forward_to_atomic(old);
4101   if (forward_ptr == NULL) {
4102     // Forward-to-self succeeded.
4103     assert(_par_scan_state != NULL, "par scan state");
4104     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4105     uint queue_num = _par_scan_state->queue_num();
4106 
4107     _evacuation_failed = true;
4108     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4109     if (_evac_failure_closure != cl) {
4110       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4111       assert(!_drain_in_progress,
4112              "Should only be true while someone holds the lock.");
4113       // Set the global evac-failure closure to the current thread's.
4114       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4115       set_evac_failure_closure(cl);
4116       // Now do the common part.
4117       handle_evacuation_failure_common(old, m);
4118       // Reset to NULL.
4119       set_evac_failure_closure(NULL);
4120     } else {
4121       // The lock is already held, and this is recursive.
4122       assert(_drain_in_progress, "This should only be the recursive case.");
4123       handle_evacuation_failure_common(old, m);
4124     }
4125     return old;
4126   } else {
4127     // Forward-to-self failed. Either someone else managed to allocate
4128     // space for this object (old != forward_ptr) or they beat us in
4129     // self-forwarding it (old == forward_ptr).
4130     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4131            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4132                    "should not be in the CSet",
4133                    (HeapWord*) old, (HeapWord*) forward_ptr));
4134     return forward_ptr;
4135   }
4136 }
4137 
4138 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4139   preserve_mark_if_necessary(old, m);
4140 
4141   HeapRegion* r = heap_region_containing(old);
4142   if (!r->evacuation_failed()) {
4143     r->set_evacuation_failed(true);
4144     _hr_printer.evac_failure(r);
4145   }
4146 
4147   push_on_evac_failure_scan_stack(old);
4148 
4149   if (!_drain_in_progress) {
4150     // prevent recursion in copy_to_survivor_space()
4151     _drain_in_progress = true;
4152     drain_evac_failure_scan_stack();
4153     _drain_in_progress = false;
4154   }
4155 }
4156 
4157 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4158   assert(evacuation_failed(), "Oversaving!");
4159   // We want to call the "for_promotion_failure" version only in the
4160   // case of a promotion failure.
4161   if (m->must_be_preserved_for_promotion_failure(obj)) {
4162     _objs_with_preserved_marks.push(obj);
4163     _preserved_marks_of_objs.push(m);
4164   }
4165 }
4166 
4167 void G1ParCopyHelper::mark_object(oop obj) {
4168   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4169 
4170   // We know that the object is not moving so it's safe to read its size.
4171   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4172 }
4173 
4174 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4175   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4176   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4177   assert(from_obj != to_obj, "should not be self-forwarded");
4178 
4179   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4180   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4181 
4182   // The object might be in the process of being copied by another
4183   // worker so we cannot trust that its to-space image is
4184   // well-formed. So we have to read its size from its from-space
4185   // image which we know should not be changing.
4186   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4187 }
4188 
4189 template <class T>
4190 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4191   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4192     _scanned_klass->record_modified_oops();
4193   }
4194 }
4195 
4196 template <G1Barrier barrier, G1Mark do_mark_object>
4197 template <class T>
4198 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4199   T heap_oop = oopDesc::load_heap_oop(p);
4200 
4201   if (oopDesc::is_null(heap_oop)) {
4202     return;
4203   }
4204 
4205   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4206 
4207   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4208 
4209   const InCSetState state = _g1->in_cset_state(obj);
4210   if (state.is_in_cset()) {
4211     oop forwardee;
4212     markOop m = obj->mark();
4213     if (m->is_marked()) {
4214       forwardee = (oop) m->decode_pointer();
4215     } else {
4216       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4217     }
4218     assert(forwardee != NULL, "forwardee should not be NULL");
4219     oopDesc::encode_store_heap_oop(p, forwardee);
4220     if (do_mark_object != G1MarkNone && forwardee != obj) {
4221       // If the object is self-forwarded we don't need to explicitly
4222       // mark it, the evacuation failure protocol will do so.
4223       mark_forwarded_object(obj, forwardee);
4224     }
4225 
4226     if (barrier == G1BarrierKlass) {
4227       do_klass_barrier(p, forwardee);
4228     }
4229   } else {
4230     if (state.is_humongous()) {
4231       _g1->set_humongous_is_live(obj);
4232     }
4233     // The object is not in collection set. If we're a root scanning
4234     // closure during an initial mark pause then attempt to mark the object.
4235     if (do_mark_object == G1MarkFromRoot) {
4236       mark_object(obj);
4237     }
4238   }
4239 
4240   if (barrier == G1BarrierEvac) {
4241     _par_scan_state->update_rs(_from, p, _worker_id);
4242   }
4243 }
4244 
4245 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4246 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4247 
4248 class G1ParEvacuateFollowersClosure : public VoidClosure {
4249 protected:
4250   G1CollectedHeap*              _g1h;
4251   G1ParScanThreadState*         _par_scan_state;
4252   RefToScanQueueSet*            _queues;
4253   ParallelTaskTerminator*       _terminator;
4254 
4255   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4256   RefToScanQueueSet*      queues()         { return _queues; }
4257   ParallelTaskTerminator* terminator()     { return _terminator; }
4258 
4259 public:
4260   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4261                                 G1ParScanThreadState* par_scan_state,
4262                                 RefToScanQueueSet* queues,
4263                                 ParallelTaskTerminator* terminator)
4264     : _g1h(g1h), _par_scan_state(par_scan_state),
4265       _queues(queues), _terminator(terminator) {}
4266 
4267   void do_void();
4268 
4269 private:
4270   inline bool offer_termination();
4271 };
4272 
4273 bool G1ParEvacuateFollowersClosure::offer_termination() {
4274   G1ParScanThreadState* const pss = par_scan_state();
4275   pss->start_term_time();
4276   const bool res = terminator()->offer_termination();
4277   pss->end_term_time();
4278   return res;
4279 }
4280 
4281 void G1ParEvacuateFollowersClosure::do_void() {
4282   G1ParScanThreadState* const pss = par_scan_state();
4283   pss->trim_queue();
4284   do {
4285     pss->steal_and_trim_queue(queues());
4286   } while (!offer_termination());
4287 }
4288 
4289 class G1KlassScanClosure : public KlassClosure {
4290  G1ParCopyHelper* _closure;
4291  bool             _process_only_dirty;
4292  int              _count;
4293  public:
4294   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4295       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4296   void do_klass(Klass* klass) {
4297     // If the klass has not been dirtied we know that there's
4298     // no references into  the young gen and we can skip it.
4299    if (!_process_only_dirty || klass->has_modified_oops()) {
4300       // Clean the klass since we're going to scavenge all the metadata.
4301       klass->clear_modified_oops();
4302 
4303       // Tell the closure that this klass is the Klass to scavenge
4304       // and is the one to dirty if oops are left pointing into the young gen.
4305       _closure->set_scanned_klass(klass);
4306 
4307       klass->oops_do(_closure);
4308 
4309       _closure->set_scanned_klass(NULL);
4310     }
4311     _count++;
4312   }
4313 };
4314 
4315 class G1ParTask : public AbstractGangTask {
4316 protected:
4317   G1CollectedHeap*       _g1h;
4318   RefToScanQueueSet      *_queues;
4319   G1RootProcessor*       _root_processor;
4320   ParallelTaskTerminator _terminator;
4321   uint _n_workers;
4322 
4323   Mutex _stats_lock;
4324   Mutex* stats_lock() { return &_stats_lock; }
4325 
4326 public:
4327   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4328     : AbstractGangTask("G1 collection"),
4329       _g1h(g1h),
4330       _queues(task_queues),
4331       _root_processor(root_processor),
4332       _terminator(0, _queues),
4333       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4334   {}
4335 
4336   RefToScanQueueSet* queues() { return _queues; }
4337 
4338   RefToScanQueue *work_queue(int i) {
4339     return queues()->queue(i);
4340   }
4341 
4342   ParallelTaskTerminator* terminator() { return &_terminator; }
4343 
4344   virtual void set_for_termination(int active_workers) {
4345     _root_processor->set_num_workers(active_workers);
4346     terminator()->reset_for_reuse(active_workers);
4347     _n_workers = active_workers;
4348   }
4349 
4350   // Helps out with CLD processing.
4351   //
4352   // During InitialMark we need to:
4353   // 1) Scavenge all CLDs for the young GC.
4354   // 2) Mark all objects directly reachable from strong CLDs.
4355   template <G1Mark do_mark_object>
4356   class G1CLDClosure : public CLDClosure {
4357     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4358     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4359     G1KlassScanClosure                                _klass_in_cld_closure;
4360     bool                                              _claim;
4361 
4362    public:
4363     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4364                  bool only_young, bool claim)
4365         : _oop_closure(oop_closure),
4366           _oop_in_klass_closure(oop_closure->g1(),
4367                                 oop_closure->pss(),
4368                                 oop_closure->rp()),
4369           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4370           _claim(claim) {
4371 
4372     }
4373 
4374     void do_cld(ClassLoaderData* cld) {
4375       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4376     }
4377   };
4378 
4379   void work(uint worker_id) {
4380     if (worker_id >= _n_workers) return;  // no work needed this round
4381 
4382     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4383 
4384     {
4385       ResourceMark rm;
4386       HandleMark   hm;
4387 
4388       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4389 
4390       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4391       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4392 
4393       pss.set_evac_failure_closure(&evac_failure_cl);
4394 
4395       bool only_young = _g1h->g1_policy()->gcs_are_young();
4396 
4397       // Non-IM young GC.
4398       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4399       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4400                                                                                only_young, // Only process dirty klasses.
4401                                                                                false);     // No need to claim CLDs.
4402       // IM young GC.
4403       //    Strong roots closures.
4404       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4405       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4406                                                                                false, // Process all klasses.
4407                                                                                true); // Need to claim CLDs.
4408       //    Weak roots closures.
4409       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4410       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4411                                                                                     false, // Process all klasses.
4412                                                                                     true); // Need to claim CLDs.
4413 
4414       OopClosure* strong_root_cl;
4415       OopClosure* weak_root_cl;
4416       CLDClosure* strong_cld_cl;
4417       CLDClosure* weak_cld_cl;
4418 
4419       bool trace_metadata = false;
4420 
4421       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4422         // We also need to mark copied objects.
4423         strong_root_cl = &scan_mark_root_cl;
4424         strong_cld_cl  = &scan_mark_cld_cl;
4425         if (ClassUnloadingWithConcurrentMark) {
4426           weak_root_cl = &scan_mark_weak_root_cl;
4427           weak_cld_cl  = &scan_mark_weak_cld_cl;
4428           trace_metadata = true;
4429         } else {
4430           weak_root_cl = &scan_mark_root_cl;
4431           weak_cld_cl  = &scan_mark_cld_cl;
4432         }
4433       } else {
4434         strong_root_cl = &scan_only_root_cl;
4435         weak_root_cl   = &scan_only_root_cl;
4436         strong_cld_cl  = &scan_only_cld_cl;
4437         weak_cld_cl    = &scan_only_cld_cl;
4438       }
4439 
4440       pss.start_strong_roots();
4441 
4442       _root_processor->evacuate_roots(strong_root_cl,
4443                                       weak_root_cl,
4444                                       strong_cld_cl,
4445                                       weak_cld_cl,
4446                                       trace_metadata,
4447                                       worker_id);
4448 
4449       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4450       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4451                                             weak_root_cl,
4452                                             worker_id);
4453       pss.end_strong_roots();
4454 
4455       {
4456         double start = os::elapsedTime();
4457         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4458         evac.do_void();
4459         double elapsed_sec = os::elapsedTime() - start;
4460         double term_sec = pss.term_time();
4461         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4462         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4463         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4464       }
4465       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4466       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4467 
4468       if (PrintTerminationStats) {
4469         MutexLocker x(stats_lock());
4470         pss.print_termination_stats(worker_id);
4471       }
4472 
4473       assert(pss.queue_is_empty(), "should be empty");
4474 
4475       // Close the inner scope so that the ResourceMark and HandleMark
4476       // destructors are executed here and are included as part of the
4477       // "GC Worker Time".
4478     }
4479     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4480   }
4481 };
4482 
4483 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4484 private:
4485   BoolObjectClosure* _is_alive;
4486   int _initial_string_table_size;
4487   int _initial_symbol_table_size;
4488 
4489   bool  _process_strings;
4490   int _strings_processed;
4491   int _strings_removed;
4492 
4493   bool  _process_symbols;
4494   int _symbols_processed;
4495   int _symbols_removed;
4496 
4497 public:
4498   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4499     AbstractGangTask("String/Symbol Unlinking"),
4500     _is_alive(is_alive),
4501     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4502     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4503 
4504     _initial_string_table_size = StringTable::the_table()->table_size();
4505     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4506     if (process_strings) {
4507       StringTable::clear_parallel_claimed_index();
4508     }
4509     if (process_symbols) {
4510       SymbolTable::clear_parallel_claimed_index();
4511     }
4512   }
4513 
4514   ~G1StringSymbolTableUnlinkTask() {
4515     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4516               err_msg("claim value %d after unlink less than initial string table size %d",
4517                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4518     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4519               err_msg("claim value %d after unlink less than initial symbol table size %d",
4520                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4521 
4522     if (G1TraceStringSymbolTableScrubbing) {
4523       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4524                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4525                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4526                              strings_processed(), strings_removed(),
4527                              symbols_processed(), symbols_removed());
4528     }
4529   }
4530 
4531   void work(uint worker_id) {
4532     int strings_processed = 0;
4533     int strings_removed = 0;
4534     int symbols_processed = 0;
4535     int symbols_removed = 0;
4536     if (_process_strings) {
4537       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4538       Atomic::add(strings_processed, &_strings_processed);
4539       Atomic::add(strings_removed, &_strings_removed);
4540     }
4541     if (_process_symbols) {
4542       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4543       Atomic::add(symbols_processed, &_symbols_processed);
4544       Atomic::add(symbols_removed, &_symbols_removed);
4545     }
4546   }
4547 
4548   size_t strings_processed() const { return (size_t)_strings_processed; }
4549   size_t strings_removed()   const { return (size_t)_strings_removed; }
4550 
4551   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4552   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4553 };
4554 
4555 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4556 private:
4557   static Monitor* _lock;
4558 
4559   BoolObjectClosure* const _is_alive;
4560   const bool               _unloading_occurred;
4561   const uint               _num_workers;
4562 
4563   // Variables used to claim nmethods.
4564   nmethod* _first_nmethod;
4565   volatile nmethod* _claimed_nmethod;
4566 
4567   // The list of nmethods that need to be processed by the second pass.
4568   volatile nmethod* _postponed_list;
4569   volatile uint     _num_entered_barrier;
4570 
4571  public:
4572   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4573       _is_alive(is_alive),
4574       _unloading_occurred(unloading_occurred),
4575       _num_workers(num_workers),
4576       _first_nmethod(NULL),
4577       _claimed_nmethod(NULL),
4578       _postponed_list(NULL),
4579       _num_entered_barrier(0)
4580   {
4581     nmethod::increase_unloading_clock();
4582     // Get first alive nmethod
4583     NMethodIterator iter = NMethodIterator();
4584     if(iter.next_alive()) {
4585       _first_nmethod = iter.method();
4586     }
4587     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4588   }
4589 
4590   ~G1CodeCacheUnloadingTask() {
4591     CodeCache::verify_clean_inline_caches();
4592 
4593     CodeCache::set_needs_cache_clean(false);
4594     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4595 
4596     CodeCache::verify_icholder_relocations();
4597   }
4598 
4599  private:
4600   void add_to_postponed_list(nmethod* nm) {
4601       nmethod* old;
4602       do {
4603         old = (nmethod*)_postponed_list;
4604         nm->set_unloading_next(old);
4605       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4606   }
4607 
4608   void clean_nmethod(nmethod* nm) {
4609     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4610 
4611     if (postponed) {
4612       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4613       add_to_postponed_list(nm);
4614     }
4615 
4616     // Mark that this thread has been cleaned/unloaded.
4617     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4618     nm->set_unloading_clock(nmethod::global_unloading_clock());
4619   }
4620 
4621   void clean_nmethod_postponed(nmethod* nm) {
4622     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4623   }
4624 
4625   static const int MaxClaimNmethods = 16;
4626 
4627   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4628     nmethod* first;
4629     NMethodIterator last;
4630 
4631     do {
4632       *num_claimed_nmethods = 0;
4633 
4634       first = (nmethod*)_claimed_nmethod;
4635       last = NMethodIterator(first);
4636 
4637       if (first != NULL) {
4638 
4639         for (int i = 0; i < MaxClaimNmethods; i++) {
4640           if (!last.next_alive()) {
4641             break;
4642           }
4643           claimed_nmethods[i] = last.method();
4644           (*num_claimed_nmethods)++;
4645         }
4646       }
4647 
4648     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4649   }
4650 
4651   nmethod* claim_postponed_nmethod() {
4652     nmethod* claim;
4653     nmethod* next;
4654 
4655     do {
4656       claim = (nmethod*)_postponed_list;
4657       if (claim == NULL) {
4658         return NULL;
4659       }
4660 
4661       next = claim->unloading_next();
4662 
4663     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4664 
4665     return claim;
4666   }
4667 
4668  public:
4669   // Mark that we're done with the first pass of nmethod cleaning.
4670   void barrier_mark(uint worker_id) {
4671     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4672     _num_entered_barrier++;
4673     if (_num_entered_barrier == _num_workers) {
4674       ml.notify_all();
4675     }
4676   }
4677 
4678   // See if we have to wait for the other workers to
4679   // finish their first-pass nmethod cleaning work.
4680   void barrier_wait(uint worker_id) {
4681     if (_num_entered_barrier < _num_workers) {
4682       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4683       while (_num_entered_barrier < _num_workers) {
4684           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4685       }
4686     }
4687   }
4688 
4689   // Cleaning and unloading of nmethods. Some work has to be postponed
4690   // to the second pass, when we know which nmethods survive.
4691   void work_first_pass(uint worker_id) {
4692     // The first nmethods is claimed by the first worker.
4693     if (worker_id == 0 && _first_nmethod != NULL) {
4694       clean_nmethod(_first_nmethod);
4695       _first_nmethod = NULL;
4696     }
4697 
4698     int num_claimed_nmethods;
4699     nmethod* claimed_nmethods[MaxClaimNmethods];
4700 
4701     while (true) {
4702       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4703 
4704       if (num_claimed_nmethods == 0) {
4705         break;
4706       }
4707 
4708       for (int i = 0; i < num_claimed_nmethods; i++) {
4709         clean_nmethod(claimed_nmethods[i]);
4710       }
4711     }
4712   }
4713 
4714   void work_second_pass(uint worker_id) {
4715     nmethod* nm;
4716     // Take care of postponed nmethods.
4717     while ((nm = claim_postponed_nmethod()) != NULL) {
4718       clean_nmethod_postponed(nm);
4719     }
4720   }
4721 };
4722 
4723 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4724 
4725 class G1KlassCleaningTask : public StackObj {
4726   BoolObjectClosure*                      _is_alive;
4727   volatile jint                           _clean_klass_tree_claimed;
4728   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4729 
4730  public:
4731   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4732       _is_alive(is_alive),
4733       _clean_klass_tree_claimed(0),
4734       _klass_iterator() {
4735   }
4736 
4737  private:
4738   bool claim_clean_klass_tree_task() {
4739     if (_clean_klass_tree_claimed) {
4740       return false;
4741     }
4742 
4743     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4744   }
4745 
4746   InstanceKlass* claim_next_klass() {
4747     Klass* klass;
4748     do {
4749       klass =_klass_iterator.next_klass();
4750     } while (klass != NULL && !klass->oop_is_instance());
4751 
4752     return (InstanceKlass*)klass;
4753   }
4754 
4755 public:
4756 
4757   void clean_klass(InstanceKlass* ik) {
4758     ik->clean_implementors_list(_is_alive);
4759     ik->clean_method_data(_is_alive);
4760 
4761     // G1 specific cleanup work that has
4762     // been moved here to be done in parallel.
4763     ik->clean_dependent_nmethods();
4764   }
4765 
4766   void work() {
4767     ResourceMark rm;
4768 
4769     // One worker will clean the subklass/sibling klass tree.
4770     if (claim_clean_klass_tree_task()) {
4771       Klass::clean_subklass_tree(_is_alive);
4772     }
4773 
4774     // All workers will help cleaning the classes,
4775     InstanceKlass* klass;
4776     while ((klass = claim_next_klass()) != NULL) {
4777       clean_klass(klass);
4778     }
4779   }
4780 };
4781 
4782 // To minimize the remark pause times, the tasks below are done in parallel.
4783 class G1ParallelCleaningTask : public AbstractGangTask {
4784 private:
4785   G1StringSymbolTableUnlinkTask _string_symbol_task;
4786   G1CodeCacheUnloadingTask      _code_cache_task;
4787   G1KlassCleaningTask           _klass_cleaning_task;
4788 
4789 public:
4790   // The constructor is run in the VMThread.
4791   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4792       AbstractGangTask("Parallel Cleaning"),
4793       _string_symbol_task(is_alive, process_strings, process_symbols),
4794       _code_cache_task(num_workers, is_alive, unloading_occurred),
4795       _klass_cleaning_task(is_alive) {
4796   }
4797 
4798   // The parallel work done by all worker threads.
4799   void work(uint worker_id) {
4800     // Do first pass of code cache cleaning.
4801     _code_cache_task.work_first_pass(worker_id);
4802 
4803     // Let the threads mark that the first pass is done.
4804     _code_cache_task.barrier_mark(worker_id);
4805 
4806     // Clean the Strings and Symbols.
4807     _string_symbol_task.work(worker_id);
4808 
4809     // Wait for all workers to finish the first code cache cleaning pass.
4810     _code_cache_task.barrier_wait(worker_id);
4811 
4812     // Do the second code cache cleaning work, which realize on
4813     // the liveness information gathered during the first pass.
4814     _code_cache_task.work_second_pass(worker_id);
4815 
4816     // Clean all klasses that were not unloaded.
4817     _klass_cleaning_task.work();
4818   }
4819 };
4820 
4821 
4822 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4823                                         bool process_strings,
4824                                         bool process_symbols,
4825                                         bool class_unloading_occurred) {
4826   uint n_workers = workers()->active_workers();
4827 
4828   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4829                                         n_workers, class_unloading_occurred);
4830   set_par_threads(n_workers);
4831   workers()->run_task(&g1_unlink_task);
4832   set_par_threads(0);
4833 }
4834 
4835 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4836                                                      bool process_strings, bool process_symbols) {
4837   {
4838     uint n_workers = workers()->active_workers();
4839     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4840     set_par_threads(n_workers);
4841     workers()->run_task(&g1_unlink_task);
4842     set_par_threads(0);
4843   }
4844 
4845   if (G1StringDedup::is_enabled()) {
4846     G1StringDedup::unlink(is_alive);
4847   }
4848 }
4849 
4850 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4851  private:
4852   DirtyCardQueueSet* _queue;
4853  public:
4854   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4855 
4856   virtual void work(uint worker_id) {
4857     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4858     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4859 
4860     RedirtyLoggedCardTableEntryClosure cl;
4861     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4862 
4863     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4864   }
4865 };
4866 
4867 void G1CollectedHeap::redirty_logged_cards() {
4868   double redirty_logged_cards_start = os::elapsedTime();
4869 
4870   uint n_workers = workers()->active_workers();
4871 
4872   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4873   dirty_card_queue_set().reset_for_par_iteration();
4874   set_par_threads(n_workers);
4875   workers()->run_task(&redirty_task);
4876   set_par_threads(0);
4877 
4878   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4879   dcq.merge_bufferlists(&dirty_card_queue_set());
4880   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4881 
4882   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4883 }
4884 
4885 // Weak Reference Processing support
4886 
4887 // An always "is_alive" closure that is used to preserve referents.
4888 // If the object is non-null then it's alive.  Used in the preservation
4889 // of referent objects that are pointed to by reference objects
4890 // discovered by the CM ref processor.
4891 class G1AlwaysAliveClosure: public BoolObjectClosure {
4892   G1CollectedHeap* _g1;
4893 public:
4894   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4895   bool do_object_b(oop p) {
4896     if (p != NULL) {
4897       return true;
4898     }
4899     return false;
4900   }
4901 };
4902 
4903 bool G1STWIsAliveClosure::do_object_b(oop p) {
4904   // An object is reachable if it is outside the collection set,
4905   // or is inside and copied.
4906   return !_g1->obj_in_cs(p) || p->is_forwarded();
4907 }
4908 
4909 // Non Copying Keep Alive closure
4910 class G1KeepAliveClosure: public OopClosure {
4911   G1CollectedHeap* _g1;
4912 public:
4913   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4914   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4915   void do_oop(oop* p) {
4916     oop obj = *p;
4917     assert(obj != NULL, "the caller should have filtered out NULL values");
4918 
4919     const InCSetState cset_state = _g1->in_cset_state(obj);
4920     if (!cset_state.is_in_cset_or_humongous()) {
4921       return;
4922     }
4923     if (cset_state.is_in_cset()) {
4924       assert( obj->is_forwarded(), "invariant" );
4925       *p = obj->forwardee();
4926     } else {
4927       assert(!obj->is_forwarded(), "invariant" );
4928       assert(cset_state.is_humongous(),
4929              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4930       _g1->set_humongous_is_live(obj);
4931     }
4932   }
4933 };
4934 
4935 // Copying Keep Alive closure - can be called from both
4936 // serial and parallel code as long as different worker
4937 // threads utilize different G1ParScanThreadState instances
4938 // and different queues.
4939 
4940 class G1CopyingKeepAliveClosure: public OopClosure {
4941   G1CollectedHeap*         _g1h;
4942   OopClosure*              _copy_non_heap_obj_cl;
4943   G1ParScanThreadState*    _par_scan_state;
4944 
4945 public:
4946   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4947                             OopClosure* non_heap_obj_cl,
4948                             G1ParScanThreadState* pss):
4949     _g1h(g1h),
4950     _copy_non_heap_obj_cl(non_heap_obj_cl),
4951     _par_scan_state(pss)
4952   {}
4953 
4954   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4955   virtual void do_oop(      oop* p) { do_oop_work(p); }
4956 
4957   template <class T> void do_oop_work(T* p) {
4958     oop obj = oopDesc::load_decode_heap_oop(p);
4959 
4960     if (_g1h->is_in_cset_or_humongous(obj)) {
4961       // If the referent object has been forwarded (either copied
4962       // to a new location or to itself in the event of an
4963       // evacuation failure) then we need to update the reference
4964       // field and, if both reference and referent are in the G1
4965       // heap, update the RSet for the referent.
4966       //
4967       // If the referent has not been forwarded then we have to keep
4968       // it alive by policy. Therefore we have copy the referent.
4969       //
4970       // If the reference field is in the G1 heap then we can push
4971       // on the PSS queue. When the queue is drained (after each
4972       // phase of reference processing) the object and it's followers
4973       // will be copied, the reference field set to point to the
4974       // new location, and the RSet updated. Otherwise we need to
4975       // use the the non-heap or metadata closures directly to copy
4976       // the referent object and update the pointer, while avoiding
4977       // updating the RSet.
4978 
4979       if (_g1h->is_in_g1_reserved(p)) {
4980         _par_scan_state->push_on_queue(p);
4981       } else {
4982         assert(!Metaspace::contains((const void*)p),
4983                err_msg("Unexpectedly found a pointer from metadata: "
4984                               PTR_FORMAT, p));
4985         _copy_non_heap_obj_cl->do_oop(p);
4986       }
4987     }
4988   }
4989 };
4990 
4991 // Serial drain queue closure. Called as the 'complete_gc'
4992 // closure for each discovered list in some of the
4993 // reference processing phases.
4994 
4995 class G1STWDrainQueueClosure: public VoidClosure {
4996 protected:
4997   G1CollectedHeap* _g1h;
4998   G1ParScanThreadState* _par_scan_state;
4999 
5000   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5001 
5002 public:
5003   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5004     _g1h(g1h),
5005     _par_scan_state(pss)
5006   { }
5007 
5008   void do_void() {
5009     G1ParScanThreadState* const pss = par_scan_state();
5010     pss->trim_queue();
5011   }
5012 };
5013 
5014 // Parallel Reference Processing closures
5015 
5016 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5017 // processing during G1 evacuation pauses.
5018 
5019 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5020 private:
5021   G1CollectedHeap*   _g1h;
5022   RefToScanQueueSet* _queues;
5023   FlexibleWorkGang*  _workers;
5024   int                _active_workers;
5025 
5026 public:
5027   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5028                         FlexibleWorkGang* workers,
5029                         RefToScanQueueSet *task_queues,
5030                         int n_workers) :
5031     _g1h(g1h),
5032     _queues(task_queues),
5033     _workers(workers),
5034     _active_workers(n_workers)
5035   {
5036     assert(n_workers > 0, "shouldn't call this otherwise");
5037   }
5038 
5039   // Executes the given task using concurrent marking worker threads.
5040   virtual void execute(ProcessTask& task);
5041   virtual void execute(EnqueueTask& task);
5042 };
5043 
5044 // Gang task for possibly parallel reference processing
5045 
5046 class G1STWRefProcTaskProxy: public AbstractGangTask {
5047   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5048   ProcessTask&     _proc_task;
5049   G1CollectedHeap* _g1h;
5050   RefToScanQueueSet *_task_queues;
5051   ParallelTaskTerminator* _terminator;
5052 
5053 public:
5054   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5055                      G1CollectedHeap* g1h,
5056                      RefToScanQueueSet *task_queues,
5057                      ParallelTaskTerminator* terminator) :
5058     AbstractGangTask("Process reference objects in parallel"),
5059     _proc_task(proc_task),
5060     _g1h(g1h),
5061     _task_queues(task_queues),
5062     _terminator(terminator)
5063   {}
5064 
5065   virtual void work(uint worker_id) {
5066     // The reference processing task executed by a single worker.
5067     ResourceMark rm;
5068     HandleMark   hm;
5069 
5070     G1STWIsAliveClosure is_alive(_g1h);
5071 
5072     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5073     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5074 
5075     pss.set_evac_failure_closure(&evac_failure_cl);
5076 
5077     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5078 
5079     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5080 
5081     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5082 
5083     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5084       // We also need to mark copied objects.
5085       copy_non_heap_cl = &copy_mark_non_heap_cl;
5086     }
5087 
5088     // Keep alive closure.
5089     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5090 
5091     // Complete GC closure
5092     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5093 
5094     // Call the reference processing task's work routine.
5095     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5096 
5097     // Note we cannot assert that the refs array is empty here as not all
5098     // of the processing tasks (specifically phase2 - pp2_work) execute
5099     // the complete_gc closure (which ordinarily would drain the queue) so
5100     // the queue may not be empty.
5101   }
5102 };
5103 
5104 // Driver routine for parallel reference processing.
5105 // Creates an instance of the ref processing gang
5106 // task and has the worker threads execute it.
5107 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5108   assert(_workers != NULL, "Need parallel worker threads.");
5109 
5110   ParallelTaskTerminator terminator(_active_workers, _queues);
5111   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5112 
5113   _g1h->set_par_threads(_active_workers);
5114   _workers->run_task(&proc_task_proxy);
5115   _g1h->set_par_threads(0);
5116 }
5117 
5118 // Gang task for parallel reference enqueueing.
5119 
5120 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5121   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5122   EnqueueTask& _enq_task;
5123 
5124 public:
5125   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5126     AbstractGangTask("Enqueue reference objects in parallel"),
5127     _enq_task(enq_task)
5128   { }
5129 
5130   virtual void work(uint worker_id) {
5131     _enq_task.work(worker_id);
5132   }
5133 };
5134 
5135 // Driver routine for parallel reference enqueueing.
5136 // Creates an instance of the ref enqueueing gang
5137 // task and has the worker threads execute it.
5138 
5139 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5140   assert(_workers != NULL, "Need parallel worker threads.");
5141 
5142   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5143 
5144   _g1h->set_par_threads(_active_workers);
5145   _workers->run_task(&enq_task_proxy);
5146   _g1h->set_par_threads(0);
5147 }
5148 
5149 // End of weak reference support closures
5150 
5151 // Abstract task used to preserve (i.e. copy) any referent objects
5152 // that are in the collection set and are pointed to by reference
5153 // objects discovered by the CM ref processor.
5154 
5155 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5156 protected:
5157   G1CollectedHeap* _g1h;
5158   RefToScanQueueSet      *_queues;
5159   ParallelTaskTerminator _terminator;
5160   uint _n_workers;
5161 
5162 public:
5163   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5164     AbstractGangTask("ParPreserveCMReferents"),
5165     _g1h(g1h),
5166     _queues(task_queues),
5167     _terminator(workers, _queues),
5168     _n_workers(workers)
5169   { }
5170 
5171   void work(uint worker_id) {
5172     ResourceMark rm;
5173     HandleMark   hm;
5174 
5175     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5176     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5177 
5178     pss.set_evac_failure_closure(&evac_failure_cl);
5179 
5180     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5181 
5182     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5183 
5184     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5185 
5186     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5187 
5188     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5189       // We also need to mark copied objects.
5190       copy_non_heap_cl = &copy_mark_non_heap_cl;
5191     }
5192 
5193     // Is alive closure
5194     G1AlwaysAliveClosure always_alive(_g1h);
5195 
5196     // Copying keep alive closure. Applied to referent objects that need
5197     // to be copied.
5198     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5199 
5200     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5201 
5202     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5203     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5204 
5205     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5206     // So this must be true - but assert just in case someone decides to
5207     // change the worker ids.
5208     assert(worker_id < limit, "sanity");
5209     assert(!rp->discovery_is_atomic(), "check this code");
5210 
5211     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5212     for (uint idx = worker_id; idx < limit; idx += stride) {
5213       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5214 
5215       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5216       while (iter.has_next()) {
5217         // Since discovery is not atomic for the CM ref processor, we
5218         // can see some null referent objects.
5219         iter.load_ptrs(DEBUG_ONLY(true));
5220         oop ref = iter.obj();
5221 
5222         // This will filter nulls.
5223         if (iter.is_referent_alive()) {
5224           iter.make_referent_alive();
5225         }
5226         iter.move_to_next();
5227       }
5228     }
5229 
5230     // Drain the queue - which may cause stealing
5231     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5232     drain_queue.do_void();
5233     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5234     assert(pss.queue_is_empty(), "should be");
5235   }
5236 };
5237 
5238 // Weak Reference processing during an evacuation pause (part 1).
5239 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5240   double ref_proc_start = os::elapsedTime();
5241 
5242   ReferenceProcessor* rp = _ref_processor_stw;
5243   assert(rp->discovery_enabled(), "should have been enabled");
5244 
5245   // Any reference objects, in the collection set, that were 'discovered'
5246   // by the CM ref processor should have already been copied (either by
5247   // applying the external root copy closure to the discovered lists, or
5248   // by following an RSet entry).
5249   //
5250   // But some of the referents, that are in the collection set, that these
5251   // reference objects point to may not have been copied: the STW ref
5252   // processor would have seen that the reference object had already
5253   // been 'discovered' and would have skipped discovering the reference,
5254   // but would not have treated the reference object as a regular oop.
5255   // As a result the copy closure would not have been applied to the
5256   // referent object.
5257   //
5258   // We need to explicitly copy these referent objects - the references
5259   // will be processed at the end of remarking.
5260   //
5261   // We also need to do this copying before we process the reference
5262   // objects discovered by the STW ref processor in case one of these
5263   // referents points to another object which is also referenced by an
5264   // object discovered by the STW ref processor.
5265 
5266   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5267 
5268   set_par_threads(no_of_gc_workers);
5269   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5270                                                  no_of_gc_workers,
5271                                                  _task_queues);
5272 
5273   workers()->run_task(&keep_cm_referents);
5274 
5275   set_par_threads(0);
5276 
5277   // Closure to test whether a referent is alive.
5278   G1STWIsAliveClosure is_alive(this);
5279 
5280   // Even when parallel reference processing is enabled, the processing
5281   // of JNI refs is serial and performed serially by the current thread
5282   // rather than by a worker. The following PSS will be used for processing
5283   // JNI refs.
5284 
5285   // Use only a single queue for this PSS.
5286   G1ParScanThreadState            pss(this, 0, NULL);
5287 
5288   // We do not embed a reference processor in the copying/scanning
5289   // closures while we're actually processing the discovered
5290   // reference objects.
5291   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5292 
5293   pss.set_evac_failure_closure(&evac_failure_cl);
5294 
5295   assert(pss.queue_is_empty(), "pre-condition");
5296 
5297   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5298 
5299   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5300 
5301   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5302 
5303   if (g1_policy()->during_initial_mark_pause()) {
5304     // We also need to mark copied objects.
5305     copy_non_heap_cl = &copy_mark_non_heap_cl;
5306   }
5307 
5308   // Keep alive closure.
5309   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5310 
5311   // Serial Complete GC closure
5312   G1STWDrainQueueClosure drain_queue(this, &pss);
5313 
5314   // Setup the soft refs policy...
5315   rp->setup_policy(false);
5316 
5317   ReferenceProcessorStats stats;
5318   if (!rp->processing_is_mt()) {
5319     // Serial reference processing...
5320     stats = rp->process_discovered_references(&is_alive,
5321                                               &keep_alive,
5322                                               &drain_queue,
5323                                               NULL,
5324                                               _gc_timer_stw,
5325                                               _gc_tracer_stw->gc_id());
5326   } else {
5327     // Parallel reference processing
5328     assert(rp->num_q() == no_of_gc_workers, "sanity");
5329     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5330 
5331     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5332     stats = rp->process_discovered_references(&is_alive,
5333                                               &keep_alive,
5334                                               &drain_queue,
5335                                               &par_task_executor,
5336                                               _gc_timer_stw,
5337                                               _gc_tracer_stw->gc_id());
5338   }
5339 
5340   _gc_tracer_stw->report_gc_reference_stats(stats);
5341 
5342   // We have completed copying any necessary live referent objects.
5343   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5344 
5345   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5346   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5347 }
5348 
5349 // Weak Reference processing during an evacuation pause (part 2).
5350 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5351   double ref_enq_start = os::elapsedTime();
5352 
5353   ReferenceProcessor* rp = _ref_processor_stw;
5354   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5355 
5356   // Now enqueue any remaining on the discovered lists on to
5357   // the pending list.
5358   if (!rp->processing_is_mt()) {
5359     // Serial reference processing...
5360     rp->enqueue_discovered_references();
5361   } else {
5362     // Parallel reference enqueueing
5363 
5364     assert(no_of_gc_workers == workers()->active_workers(),
5365            "Need to reset active workers");
5366     assert(rp->num_q() == no_of_gc_workers, "sanity");
5367     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5368 
5369     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5370     rp->enqueue_discovered_references(&par_task_executor);
5371   }
5372 
5373   rp->verify_no_references_recorded();
5374   assert(!rp->discovery_enabled(), "should have been disabled");
5375 
5376   // FIXME
5377   // CM's reference processing also cleans up the string and symbol tables.
5378   // Should we do that here also? We could, but it is a serial operation
5379   // and could significantly increase the pause time.
5380 
5381   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5382   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5383 }
5384 
5385 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5386   _expand_heap_after_alloc_failure = true;
5387   _evacuation_failed = false;
5388 
5389   // Should G1EvacuationFailureALot be in effect for this GC?
5390   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5391 
5392   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5393 
5394   // Disable the hot card cache.
5395   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5396   hot_card_cache->reset_hot_cache_claimed_index();
5397   hot_card_cache->set_use_cache(false);
5398 
5399   const uint n_workers = workers()->active_workers();
5400   assert(UseDynamicNumberOfGCThreads ||
5401          n_workers == workers()->total_workers(),
5402          "If not dynamic should be using all the  workers");
5403   set_par_threads(n_workers);
5404 
5405 
5406   init_for_evac_failure(NULL);
5407 
5408   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5409   double start_par_time_sec = os::elapsedTime();
5410   double end_par_time_sec;
5411 
5412   {
5413     G1RootProcessor root_processor(this);
5414     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5415     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5416     if (g1_policy()->during_initial_mark_pause()) {
5417       ClassLoaderDataGraph::clear_claimed_marks();
5418     }
5419 
5420      // The individual threads will set their evac-failure closures.
5421      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5422      // These tasks use ShareHeap::_process_strong_tasks
5423      assert(UseDynamicNumberOfGCThreads ||
5424             workers()->active_workers() == workers()->total_workers(),
5425             "If not dynamic should be using all the  workers");
5426     workers()->run_task(&g1_par_task);
5427     end_par_time_sec = os::elapsedTime();
5428 
5429     // Closing the inner scope will execute the destructor
5430     // for the G1RootProcessor object. We record the current
5431     // elapsed time before closing the scope so that time
5432     // taken for the destructor is NOT included in the
5433     // reported parallel time.
5434   }
5435 
5436   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5437 
5438   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5439   phase_times->record_par_time(par_time_ms);
5440 
5441   double code_root_fixup_time_ms =
5442         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5443   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5444 
5445   set_par_threads(0);
5446 
5447   // Process any discovered reference objects - we have
5448   // to do this _before_ we retire the GC alloc regions
5449   // as we may have to copy some 'reachable' referent
5450   // objects (and their reachable sub-graphs) that were
5451   // not copied during the pause.
5452   process_discovered_references(n_workers);
5453 
5454   if (G1StringDedup::is_enabled()) {
5455     double fixup_start = os::elapsedTime();
5456 
5457     G1STWIsAliveClosure is_alive(this);
5458     G1KeepAliveClosure keep_alive(this);
5459     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5460 
5461     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5462     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5463   }
5464 
5465   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5466   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5467 
5468   // Reset and re-enable the hot card cache.
5469   // Note the counts for the cards in the regions in the
5470   // collection set are reset when the collection set is freed.
5471   hot_card_cache->reset_hot_cache();
5472   hot_card_cache->set_use_cache(true);
5473 
5474   purge_code_root_memory();
5475 
5476   finalize_for_evac_failure();
5477 
5478   if (evacuation_failed()) {
5479     remove_self_forwarding_pointers();
5480 
5481     // Reset the G1EvacuationFailureALot counters and flags
5482     // Note: the values are reset only when an actual
5483     // evacuation failure occurs.
5484     NOT_PRODUCT(reset_evacuation_should_fail();)
5485   }
5486 
5487   // Enqueue any remaining references remaining on the STW
5488   // reference processor's discovered lists. We need to do
5489   // this after the card table is cleaned (and verified) as
5490   // the act of enqueueing entries on to the pending list
5491   // will log these updates (and dirty their associated
5492   // cards). We need these updates logged to update any
5493   // RSets.
5494   enqueue_discovered_references(n_workers);
5495 
5496   redirty_logged_cards();
5497   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5498 }
5499 
5500 void G1CollectedHeap::free_region(HeapRegion* hr,
5501                                   FreeRegionList* free_list,
5502                                   bool par,
5503                                   bool locked) {
5504   assert(!hr->is_free(), "the region should not be free");
5505   assert(!hr->is_empty(), "the region should not be empty");
5506   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5507   assert(free_list != NULL, "pre-condition");
5508 
5509   if (G1VerifyBitmaps) {
5510     MemRegion mr(hr->bottom(), hr->end());
5511     concurrent_mark()->clearRangePrevBitmap(mr);
5512   }
5513 
5514   // Clear the card counts for this region.
5515   // Note: we only need to do this if the region is not young
5516   // (since we don't refine cards in young regions).
5517   if (!hr->is_young()) {
5518     _cg1r->hot_card_cache()->reset_card_counts(hr);
5519   }
5520   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5521   free_list->add_ordered(hr);
5522 }
5523 
5524 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5525                                      FreeRegionList* free_list,
5526                                      bool par) {
5527   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5528   assert(free_list != NULL, "pre-condition");
5529 
5530   size_t hr_capacity = hr->capacity();
5531   // We need to read this before we make the region non-humongous,
5532   // otherwise the information will be gone.
5533   uint last_index = hr->last_hc_index();
5534   hr->clear_humongous();
5535   free_region(hr, free_list, par);
5536 
5537   uint i = hr->hrm_index() + 1;
5538   while (i < last_index) {
5539     HeapRegion* curr_hr = region_at(i);
5540     assert(curr_hr->is_continues_humongous(), "invariant");
5541     curr_hr->clear_humongous();
5542     free_region(curr_hr, free_list, par);
5543     i += 1;
5544   }
5545 }
5546 
5547 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5548                                        const HeapRegionSetCount& humongous_regions_removed) {
5549   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5550     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5551     _old_set.bulk_remove(old_regions_removed);
5552     _humongous_set.bulk_remove(humongous_regions_removed);
5553   }
5554 
5555 }
5556 
5557 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5558   assert(list != NULL, "list can't be null");
5559   if (!list->is_empty()) {
5560     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5561     _hrm.insert_list_into_free_list(list);
5562   }
5563 }
5564 
5565 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5566   _allocator->decrease_used(bytes);
5567 }
5568 
5569 class G1ParCleanupCTTask : public AbstractGangTask {
5570   G1SATBCardTableModRefBS* _ct_bs;
5571   G1CollectedHeap* _g1h;
5572   HeapRegion* volatile _su_head;
5573 public:
5574   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5575                      G1CollectedHeap* g1h) :
5576     AbstractGangTask("G1 Par Cleanup CT Task"),
5577     _ct_bs(ct_bs), _g1h(g1h) { }
5578 
5579   void work(uint worker_id) {
5580     HeapRegion* r;
5581     while (r = _g1h->pop_dirty_cards_region()) {
5582       clear_cards(r);
5583     }
5584   }
5585 
5586   void clear_cards(HeapRegion* r) {
5587     // Cards of the survivors should have already been dirtied.
5588     if (!r->is_survivor()) {
5589       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5590     }
5591   }
5592 };
5593 
5594 #ifndef PRODUCT
5595 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5596   G1CollectedHeap* _g1h;
5597   G1SATBCardTableModRefBS* _ct_bs;
5598 public:
5599   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5600     : _g1h(g1h), _ct_bs(ct_bs) { }
5601   virtual bool doHeapRegion(HeapRegion* r) {
5602     if (r->is_survivor()) {
5603       _g1h->verify_dirty_region(r);
5604     } else {
5605       _g1h->verify_not_dirty_region(r);
5606     }
5607     return false;
5608   }
5609 };
5610 
5611 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5612   // All of the region should be clean.
5613   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5614   MemRegion mr(hr->bottom(), hr->end());
5615   ct_bs->verify_not_dirty_region(mr);
5616 }
5617 
5618 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5619   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5620   // dirty allocated blocks as they allocate them. The thread that
5621   // retires each region and replaces it with a new one will do a
5622   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5623   // not dirty that area (one less thing to have to do while holding
5624   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5625   // is dirty.
5626   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5627   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5628   if (hr->is_young()) {
5629     ct_bs->verify_g1_young_region(mr);
5630   } else {
5631     ct_bs->verify_dirty_region(mr);
5632   }
5633 }
5634 
5635 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5636   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5637   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5638     verify_dirty_region(hr);
5639   }
5640 }
5641 
5642 void G1CollectedHeap::verify_dirty_young_regions() {
5643   verify_dirty_young_list(_young_list->first_region());
5644 }
5645 
5646 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5647                                                HeapWord* tams, HeapWord* end) {
5648   guarantee(tams <= end,
5649             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5650   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5651   if (result < end) {
5652     gclog_or_tty->cr();
5653     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5654                            bitmap_name, result);
5655     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5656                            bitmap_name, tams, end);
5657     return false;
5658   }
5659   return true;
5660 }
5661 
5662 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5663   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5664   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5665 
5666   HeapWord* bottom = hr->bottom();
5667   HeapWord* ptams  = hr->prev_top_at_mark_start();
5668   HeapWord* ntams  = hr->next_top_at_mark_start();
5669   HeapWord* end    = hr->end();
5670 
5671   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5672 
5673   bool res_n = true;
5674   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5675   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5676   // if we happen to be in that state.
5677   if (mark_in_progress() || !_cmThread->in_progress()) {
5678     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5679   }
5680   if (!res_p || !res_n) {
5681     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5682                            HR_FORMAT_PARAMS(hr));
5683     gclog_or_tty->print_cr("#### Caller: %s", caller);
5684     return false;
5685   }
5686   return true;
5687 }
5688 
5689 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5690   if (!G1VerifyBitmaps) return;
5691 
5692   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5693 }
5694 
5695 class G1VerifyBitmapClosure : public HeapRegionClosure {
5696 private:
5697   const char* _caller;
5698   G1CollectedHeap* _g1h;
5699   bool _failures;
5700 
5701 public:
5702   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5703     _caller(caller), _g1h(g1h), _failures(false) { }
5704 
5705   bool failures() { return _failures; }
5706 
5707   virtual bool doHeapRegion(HeapRegion* hr) {
5708     if (hr->is_continues_humongous()) return false;
5709 
5710     bool result = _g1h->verify_bitmaps(_caller, hr);
5711     if (!result) {
5712       _failures = true;
5713     }
5714     return false;
5715   }
5716 };
5717 
5718 void G1CollectedHeap::check_bitmaps(const char* caller) {
5719   if (!G1VerifyBitmaps) return;
5720 
5721   G1VerifyBitmapClosure cl(caller, this);
5722   heap_region_iterate(&cl);
5723   guarantee(!cl.failures(), "bitmap verification");
5724 }
5725 
5726 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5727  private:
5728   bool _failures;
5729  public:
5730   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5731 
5732   virtual bool doHeapRegion(HeapRegion* hr) {
5733     uint i = hr->hrm_index();
5734     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5735     if (hr->is_humongous()) {
5736       if (hr->in_collection_set()) {
5737         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5738         _failures = true;
5739         return true;
5740       }
5741       if (cset_state.is_in_cset()) {
5742         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5743         _failures = true;
5744         return true;
5745       }
5746       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5747         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5748         _failures = true;
5749         return true;
5750       }
5751     } else {
5752       if (cset_state.is_humongous()) {
5753         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5754         _failures = true;
5755         return true;
5756       }
5757       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5758         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5759                                hr->in_collection_set(), cset_state.value(), i);
5760         _failures = true;
5761         return true;
5762       }
5763       if (cset_state.is_in_cset()) {
5764         if (hr->is_young() != (cset_state.is_young())) {
5765           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5766                                  hr->is_young(), cset_state.value(), i);
5767           _failures = true;
5768           return true;
5769         }
5770         if (hr->is_old() != (cset_state.is_old())) {
5771           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5772                                  hr->is_old(), cset_state.value(), i);
5773           _failures = true;
5774           return true;
5775         }
5776       }
5777     }
5778     return false;
5779   }
5780 
5781   bool failures() const { return _failures; }
5782 };
5783 
5784 bool G1CollectedHeap::check_cset_fast_test() {
5785   G1CheckCSetFastTableClosure cl;
5786   _hrm.iterate(&cl);
5787   return !cl.failures();
5788 }
5789 #endif // PRODUCT
5790 
5791 void G1CollectedHeap::cleanUpCardTable() {
5792   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5793   double start = os::elapsedTime();
5794 
5795   {
5796     // Iterate over the dirty cards region list.
5797     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5798 
5799     set_par_threads();
5800     workers()->run_task(&cleanup_task);
5801     set_par_threads(0);
5802 #ifndef PRODUCT
5803     if (G1VerifyCTCleanup || VerifyAfterGC) {
5804       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5805       heap_region_iterate(&cleanup_verifier);
5806     }
5807 #endif
5808   }
5809 
5810   double elapsed = os::elapsedTime() - start;
5811   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5812 }
5813 
5814 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5815   size_t pre_used = 0;
5816   FreeRegionList local_free_list("Local List for CSet Freeing");
5817 
5818   double young_time_ms     = 0.0;
5819   double non_young_time_ms = 0.0;
5820 
5821   // Since the collection set is a superset of the the young list,
5822   // all we need to do to clear the young list is clear its
5823   // head and length, and unlink any young regions in the code below
5824   _young_list->clear();
5825 
5826   G1CollectorPolicy* policy = g1_policy();
5827 
5828   double start_sec = os::elapsedTime();
5829   bool non_young = true;
5830 
5831   HeapRegion* cur = cs_head;
5832   int age_bound = -1;
5833   size_t rs_lengths = 0;
5834 
5835   while (cur != NULL) {
5836     assert(!is_on_master_free_list(cur), "sanity");
5837     if (non_young) {
5838       if (cur->is_young()) {
5839         double end_sec = os::elapsedTime();
5840         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5841         non_young_time_ms += elapsed_ms;
5842 
5843         start_sec = os::elapsedTime();
5844         non_young = false;
5845       }
5846     } else {
5847       if (!cur->is_young()) {
5848         double end_sec = os::elapsedTime();
5849         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5850         young_time_ms += elapsed_ms;
5851 
5852         start_sec = os::elapsedTime();
5853         non_young = true;
5854       }
5855     }
5856 
5857     rs_lengths += cur->rem_set()->occupied_locked();
5858 
5859     HeapRegion* next = cur->next_in_collection_set();
5860     assert(cur->in_collection_set(), "bad CS");
5861     cur->set_next_in_collection_set(NULL);
5862     clear_in_cset(cur);
5863 
5864     if (cur->is_young()) {
5865       int index = cur->young_index_in_cset();
5866       assert(index != -1, "invariant");
5867       assert((uint) index < policy->young_cset_region_length(), "invariant");
5868       size_t words_survived = _surviving_young_words[index];
5869       cur->record_surv_words_in_group(words_survived);
5870 
5871       // At this point the we have 'popped' cur from the collection set
5872       // (linked via next_in_collection_set()) but it is still in the
5873       // young list (linked via next_young_region()). Clear the
5874       // _next_young_region field.
5875       cur->set_next_young_region(NULL);
5876     } else {
5877       int index = cur->young_index_in_cset();
5878       assert(index == -1, "invariant");
5879     }
5880 
5881     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5882             (!cur->is_young() && cur->young_index_in_cset() == -1),
5883             "invariant" );
5884 
5885     if (!cur->evacuation_failed()) {
5886       MemRegion used_mr = cur->used_region();
5887 
5888       // And the region is empty.
5889       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5890       pre_used += cur->used();
5891       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5892     } else {
5893       cur->uninstall_surv_rate_group();
5894       if (cur->is_young()) {
5895         cur->set_young_index_in_cset(-1);
5896       }
5897       cur->set_evacuation_failed(false);
5898       // The region is now considered to be old.
5899       cur->set_old();
5900       _old_set.add(cur);
5901       evacuation_info.increment_collectionset_used_after(cur->used());
5902     }
5903     cur = next;
5904   }
5905 
5906   evacuation_info.set_regions_freed(local_free_list.length());
5907   policy->record_max_rs_lengths(rs_lengths);
5908   policy->cset_regions_freed();
5909 
5910   double end_sec = os::elapsedTime();
5911   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5912 
5913   if (non_young) {
5914     non_young_time_ms += elapsed_ms;
5915   } else {
5916     young_time_ms += elapsed_ms;
5917   }
5918 
5919   prepend_to_freelist(&local_free_list);
5920   decrement_summary_bytes(pre_used);
5921   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5922   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5923 }
5924 
5925 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5926  private:
5927   FreeRegionList* _free_region_list;
5928   HeapRegionSet* _proxy_set;
5929   HeapRegionSetCount _humongous_regions_removed;
5930   size_t _freed_bytes;
5931  public:
5932 
5933   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5934     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5935   }
5936 
5937   virtual bool doHeapRegion(HeapRegion* r) {
5938     if (!r->is_starts_humongous()) {
5939       return false;
5940     }
5941 
5942     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5943 
5944     oop obj = (oop)r->bottom();
5945     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5946 
5947     // The following checks whether the humongous object is live are sufficient.
5948     // The main additional check (in addition to having a reference from the roots
5949     // or the young gen) is whether the humongous object has a remembered set entry.
5950     //
5951     // A humongous object cannot be live if there is no remembered set for it
5952     // because:
5953     // - there can be no references from within humongous starts regions referencing
5954     // the object because we never allocate other objects into them.
5955     // (I.e. there are no intra-region references that may be missed by the
5956     // remembered set)
5957     // - as soon there is a remembered set entry to the humongous starts region
5958     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5959     // until the end of a concurrent mark.
5960     //
5961     // It is not required to check whether the object has been found dead by marking
5962     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5963     // all objects allocated during that time are considered live.
5964     // SATB marking is even more conservative than the remembered set.
5965     // So if at this point in the collection there is no remembered set entry,
5966     // nobody has a reference to it.
5967     // At the start of collection we flush all refinement logs, and remembered sets
5968     // are completely up-to-date wrt to references to the humongous object.
5969     //
5970     // Other implementation considerations:
5971     // - never consider object arrays at this time because they would pose
5972     // considerable effort for cleaning up the the remembered sets. This is
5973     // required because stale remembered sets might reference locations that
5974     // are currently allocated into.
5975     uint region_idx = r->hrm_index();
5976     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5977         !r->rem_set()->is_empty()) {
5978 
5979       if (G1TraceEagerReclaimHumongousObjects) {
5980         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5981                                region_idx,
5982                                obj->size()*HeapWordSize,
5983                                r->bottom(),
5984                                r->region_num(),
5985                                r->rem_set()->occupied(),
5986                                r->rem_set()->strong_code_roots_list_length(),
5987                                next_bitmap->isMarked(r->bottom()),
5988                                g1h->is_humongous_reclaim_candidate(region_idx),
5989                                obj->is_typeArray()
5990                               );
5991       }
5992 
5993       return false;
5994     }
5995 
5996     guarantee(obj->is_typeArray(),
5997               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
5998                       PTR_FORMAT " is not.",
5999                       r->bottom()));
6000 
6001     if (G1TraceEagerReclaimHumongousObjects) {
6002       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6003                              region_idx,
6004                              obj->size()*HeapWordSize,
6005                              r->bottom(),
6006                              r->region_num(),
6007                              r->rem_set()->occupied(),
6008                              r->rem_set()->strong_code_roots_list_length(),
6009                              next_bitmap->isMarked(r->bottom()),
6010                              g1h->is_humongous_reclaim_candidate(region_idx),
6011                              obj->is_typeArray()
6012                             );
6013     }
6014     // Need to clear mark bit of the humongous object if already set.
6015     if (next_bitmap->isMarked(r->bottom())) {
6016       next_bitmap->clear(r->bottom());
6017     }
6018     _freed_bytes += r->used();
6019     r->set_containing_set(NULL);
6020     _humongous_regions_removed.increment(1u, r->capacity());
6021     g1h->free_humongous_region(r, _free_region_list, false);
6022 
6023     return false;
6024   }
6025 
6026   HeapRegionSetCount& humongous_free_count() {
6027     return _humongous_regions_removed;
6028   }
6029 
6030   size_t bytes_freed() const {
6031     return _freed_bytes;
6032   }
6033 
6034   size_t humongous_reclaimed() const {
6035     return _humongous_regions_removed.length();
6036   }
6037 };
6038 
6039 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6040   assert_at_safepoint(true);
6041 
6042   if (!G1EagerReclaimHumongousObjects ||
6043       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6044     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6045     return;
6046   }
6047 
6048   double start_time = os::elapsedTime();
6049 
6050   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6051 
6052   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6053   heap_region_iterate(&cl);
6054 
6055   HeapRegionSetCount empty_set;
6056   remove_from_old_sets(empty_set, cl.humongous_free_count());
6057 
6058   G1HRPrinter* hrp = hr_printer();
6059   if (hrp->is_active()) {
6060     FreeRegionListIterator iter(&local_cleanup_list);
6061     while (iter.more_available()) {
6062       HeapRegion* hr = iter.get_next();
6063       hrp->cleanup(hr);
6064     }
6065   }
6066 
6067   prepend_to_freelist(&local_cleanup_list);
6068   decrement_summary_bytes(cl.bytes_freed());
6069 
6070   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6071                                                                     cl.humongous_reclaimed());
6072 }
6073 
6074 // This routine is similar to the above but does not record
6075 // any policy statistics or update free lists; we are abandoning
6076 // the current incremental collection set in preparation of a
6077 // full collection. After the full GC we will start to build up
6078 // the incremental collection set again.
6079 // This is only called when we're doing a full collection
6080 // and is immediately followed by the tearing down of the young list.
6081 
6082 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6083   HeapRegion* cur = cs_head;
6084 
6085   while (cur != NULL) {
6086     HeapRegion* next = cur->next_in_collection_set();
6087     assert(cur->in_collection_set(), "bad CS");
6088     cur->set_next_in_collection_set(NULL);
6089     clear_in_cset(cur);
6090     cur->set_young_index_in_cset(-1);
6091     cur = next;
6092   }
6093 }
6094 
6095 void G1CollectedHeap::set_free_regions_coming() {
6096   if (G1ConcRegionFreeingVerbose) {
6097     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6098                            "setting free regions coming");
6099   }
6100 
6101   assert(!free_regions_coming(), "pre-condition");
6102   _free_regions_coming = true;
6103 }
6104 
6105 void G1CollectedHeap::reset_free_regions_coming() {
6106   assert(free_regions_coming(), "pre-condition");
6107 
6108   {
6109     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6110     _free_regions_coming = false;
6111     SecondaryFreeList_lock->notify_all();
6112   }
6113 
6114   if (G1ConcRegionFreeingVerbose) {
6115     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6116                            "reset free regions coming");
6117   }
6118 }
6119 
6120 void G1CollectedHeap::wait_while_free_regions_coming() {
6121   // Most of the time we won't have to wait, so let's do a quick test
6122   // first before we take the lock.
6123   if (!free_regions_coming()) {
6124     return;
6125   }
6126 
6127   if (G1ConcRegionFreeingVerbose) {
6128     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6129                            "waiting for free regions");
6130   }
6131 
6132   {
6133     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6134     while (free_regions_coming()) {
6135       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6136     }
6137   }
6138 
6139   if (G1ConcRegionFreeingVerbose) {
6140     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6141                            "done waiting for free regions");
6142   }
6143 }
6144 
6145 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6146   _young_list->push_region(hr);
6147 }
6148 
6149 class NoYoungRegionsClosure: public HeapRegionClosure {
6150 private:
6151   bool _success;
6152 public:
6153   NoYoungRegionsClosure() : _success(true) { }
6154   bool doHeapRegion(HeapRegion* r) {
6155     if (r->is_young()) {
6156       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6157                              r->bottom(), r->end());
6158       _success = false;
6159     }
6160     return false;
6161   }
6162   bool success() { return _success; }
6163 };
6164 
6165 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6166   bool ret = _young_list->check_list_empty(check_sample);
6167 
6168   if (check_heap) {
6169     NoYoungRegionsClosure closure;
6170     heap_region_iterate(&closure);
6171     ret = ret && closure.success();
6172   }
6173 
6174   return ret;
6175 }
6176 
6177 class TearDownRegionSetsClosure : public HeapRegionClosure {
6178 private:
6179   HeapRegionSet *_old_set;
6180 
6181 public:
6182   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6183 
6184   bool doHeapRegion(HeapRegion* r) {
6185     if (r->is_old()) {
6186       _old_set->remove(r);
6187     } else {
6188       // We ignore free regions, we'll empty the free list afterwards.
6189       // We ignore young regions, we'll empty the young list afterwards.
6190       // We ignore humongous regions, we're not tearing down the
6191       // humongous regions set.
6192       assert(r->is_free() || r->is_young() || r->is_humongous(),
6193              "it cannot be another type");
6194     }
6195     return false;
6196   }
6197 
6198   ~TearDownRegionSetsClosure() {
6199     assert(_old_set->is_empty(), "post-condition");
6200   }
6201 };
6202 
6203 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6204   assert_at_safepoint(true /* should_be_vm_thread */);
6205 
6206   if (!free_list_only) {
6207     TearDownRegionSetsClosure cl(&_old_set);
6208     heap_region_iterate(&cl);
6209 
6210     // Note that emptying the _young_list is postponed and instead done as
6211     // the first step when rebuilding the regions sets again. The reason for
6212     // this is that during a full GC string deduplication needs to know if
6213     // a collected region was young or old when the full GC was initiated.
6214   }
6215   _hrm.remove_all_free_regions();
6216 }
6217 
6218 class RebuildRegionSetsClosure : public HeapRegionClosure {
6219 private:
6220   bool            _free_list_only;
6221   HeapRegionSet*   _old_set;
6222   HeapRegionManager*   _hrm;
6223   size_t          _total_used;
6224 
6225 public:
6226   RebuildRegionSetsClosure(bool free_list_only,
6227                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6228     _free_list_only(free_list_only),
6229     _old_set(old_set), _hrm(hrm), _total_used(0) {
6230     assert(_hrm->num_free_regions() == 0, "pre-condition");
6231     if (!free_list_only) {
6232       assert(_old_set->is_empty(), "pre-condition");
6233     }
6234   }
6235 
6236   bool doHeapRegion(HeapRegion* r) {
6237     if (r->is_continues_humongous()) {
6238       return false;
6239     }
6240 
6241     if (r->is_empty()) {
6242       // Add free regions to the free list
6243       r->set_free();
6244       r->set_allocation_context(AllocationContext::system());
6245       _hrm->insert_into_free_list(r);
6246     } else if (!_free_list_only) {
6247       assert(!r->is_young(), "we should not come across young regions");
6248 
6249       if (r->is_humongous()) {
6250         // We ignore humongous regions, we left the humongous set unchanged
6251       } else {
6252         // Objects that were compacted would have ended up on regions
6253         // that were previously old or free.
6254         assert(r->is_free() || r->is_old(), "invariant");
6255         // We now consider them old, so register as such.
6256         r->set_old();
6257         _old_set->add(r);
6258       }
6259       _total_used += r->used();
6260     }
6261 
6262     return false;
6263   }
6264 
6265   size_t total_used() {
6266     return _total_used;
6267   }
6268 };
6269 
6270 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6271   assert_at_safepoint(true /* should_be_vm_thread */);
6272 
6273   if (!free_list_only) {
6274     _young_list->empty_list();
6275   }
6276 
6277   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6278   heap_region_iterate(&cl);
6279 
6280   if (!free_list_only) {
6281     _allocator->set_used(cl.total_used());
6282   }
6283   assert(_allocator->used_unlocked() == recalculate_used(),
6284          err_msg("inconsistent _allocator->used_unlocked(), "
6285                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6286                  _allocator->used_unlocked(), recalculate_used()));
6287 }
6288 
6289 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6290   _refine_cte_cl->set_concurrent(concurrent);
6291 }
6292 
6293 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6294   HeapRegion* hr = heap_region_containing(p);
6295   return hr->is_in(p);
6296 }
6297 
6298 // Methods for the mutator alloc region
6299 
6300 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6301                                                       bool force) {
6302   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6303   assert(!force || g1_policy()->can_expand_young_list(),
6304          "if force is true we should be able to expand the young list");
6305   bool young_list_full = g1_policy()->is_young_list_full();
6306   if (force || !young_list_full) {
6307     HeapRegion* new_alloc_region = new_region(word_size,
6308                                               false /* is_old */,
6309                                               false /* do_expand */);
6310     if (new_alloc_region != NULL) {
6311       set_region_short_lived_locked(new_alloc_region);
6312       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6313       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6314       return new_alloc_region;
6315     }
6316   }
6317   return NULL;
6318 }
6319 
6320 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6321                                                   size_t allocated_bytes) {
6322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6323   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6324 
6325   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6326   _allocator->increase_used(allocated_bytes);
6327   _hr_printer.retire(alloc_region);
6328   // We update the eden sizes here, when the region is retired,
6329   // instead of when it's allocated, since this is the point that its
6330   // used space has been recored in _summary_bytes_used.
6331   g1mm()->update_eden_size();
6332 }
6333 
6334 void G1CollectedHeap::set_par_threads() {
6335   // Don't change the number of workers.  Use the value previously set
6336   // in the workgroup.
6337   uint n_workers = workers()->active_workers();
6338   assert(UseDynamicNumberOfGCThreads ||
6339            n_workers == workers()->total_workers(),
6340       "Otherwise should be using the total number of workers");
6341   if (n_workers == 0) {
6342     assert(false, "Should have been set in prior evacuation pause.");
6343     n_workers = ParallelGCThreads;
6344     workers()->set_active_workers(n_workers);
6345   }
6346   set_par_threads(n_workers);
6347 }
6348 
6349 // Methods for the GC alloc regions
6350 
6351 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6352                                                  uint count,
6353                                                  InCSetState dest) {
6354   assert(FreeList_lock->owned_by_self(), "pre-condition");
6355 
6356   if (count < g1_policy()->max_regions(dest)) {
6357     const bool is_survivor = (dest.is_young());
6358     HeapRegion* new_alloc_region = new_region(word_size,
6359                                               !is_survivor,
6360                                               true /* do_expand */);
6361     if (new_alloc_region != NULL) {
6362       // We really only need to do this for old regions given that we
6363       // should never scan survivors. But it doesn't hurt to do it
6364       // for survivors too.
6365       new_alloc_region->record_timestamp();
6366       if (is_survivor) {
6367         new_alloc_region->set_survivor();
6368         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6369         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6370       } else {
6371         new_alloc_region->set_old();
6372         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6373         check_bitmaps("Old Region Allocation", new_alloc_region);
6374       }
6375       bool during_im = g1_policy()->during_initial_mark_pause();
6376       new_alloc_region->note_start_of_copying(during_im);
6377       return new_alloc_region;
6378     }
6379   }
6380   return NULL;
6381 }
6382 
6383 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6384                                              size_t allocated_bytes,
6385                                              InCSetState dest) {
6386   bool during_im = g1_policy()->during_initial_mark_pause();
6387   alloc_region->note_end_of_copying(during_im);
6388   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6389   if (dest.is_young()) {
6390     young_list()->add_survivor_region(alloc_region);
6391   } else {
6392     _old_set.add(alloc_region);
6393   }
6394   _hr_printer.retire(alloc_region);
6395 }
6396 
6397 // Heap region set verification
6398 
6399 class VerifyRegionListsClosure : public HeapRegionClosure {
6400 private:
6401   HeapRegionSet*   _old_set;
6402   HeapRegionSet*   _humongous_set;
6403   HeapRegionManager*   _hrm;
6404 
6405 public:
6406   HeapRegionSetCount _old_count;
6407   HeapRegionSetCount _humongous_count;
6408   HeapRegionSetCount _free_count;
6409 
6410   VerifyRegionListsClosure(HeapRegionSet* old_set,
6411                            HeapRegionSet* humongous_set,
6412                            HeapRegionManager* hrm) :
6413     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6414     _old_count(), _humongous_count(), _free_count(){ }
6415 
6416   bool doHeapRegion(HeapRegion* hr) {
6417     if (hr->is_continues_humongous()) {
6418       return false;
6419     }
6420 
6421     if (hr->is_young()) {
6422       // TODO
6423     } else if (hr->is_starts_humongous()) {
6424       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6425       _humongous_count.increment(1u, hr->capacity());
6426     } else if (hr->is_empty()) {
6427       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6428       _free_count.increment(1u, hr->capacity());
6429     } else if (hr->is_old()) {
6430       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6431       _old_count.increment(1u, hr->capacity());
6432     } else {
6433       ShouldNotReachHere();
6434     }
6435     return false;
6436   }
6437 
6438   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6439     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6440     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6441         old_set->total_capacity_bytes(), _old_count.capacity()));
6442 
6443     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6444     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6445         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6446 
6447     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6448     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6449         free_list->total_capacity_bytes(), _free_count.capacity()));
6450   }
6451 };
6452 
6453 void G1CollectedHeap::verify_region_sets() {
6454   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6455 
6456   // First, check the explicit lists.
6457   _hrm.verify();
6458   {
6459     // Given that a concurrent operation might be adding regions to
6460     // the secondary free list we have to take the lock before
6461     // verifying it.
6462     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6463     _secondary_free_list.verify_list();
6464   }
6465 
6466   // If a concurrent region freeing operation is in progress it will
6467   // be difficult to correctly attributed any free regions we come
6468   // across to the correct free list given that they might belong to
6469   // one of several (free_list, secondary_free_list, any local lists,
6470   // etc.). So, if that's the case we will skip the rest of the
6471   // verification operation. Alternatively, waiting for the concurrent
6472   // operation to complete will have a non-trivial effect on the GC's
6473   // operation (no concurrent operation will last longer than the
6474   // interval between two calls to verification) and it might hide
6475   // any issues that we would like to catch during testing.
6476   if (free_regions_coming()) {
6477     return;
6478   }
6479 
6480   // Make sure we append the secondary_free_list on the free_list so
6481   // that all free regions we will come across can be safely
6482   // attributed to the free_list.
6483   append_secondary_free_list_if_not_empty_with_lock();
6484 
6485   // Finally, make sure that the region accounting in the lists is
6486   // consistent with what we see in the heap.
6487 
6488   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6489   heap_region_iterate(&cl);
6490   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6491 }
6492 
6493 // Optimized nmethod scanning
6494 
6495 class RegisterNMethodOopClosure: public OopClosure {
6496   G1CollectedHeap* _g1h;
6497   nmethod* _nm;
6498 
6499   template <class T> void do_oop_work(T* p) {
6500     T heap_oop = oopDesc::load_heap_oop(p);
6501     if (!oopDesc::is_null(heap_oop)) {
6502       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6503       HeapRegion* hr = _g1h->heap_region_containing(obj);
6504       assert(!hr->is_continues_humongous(),
6505              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6506                      " starting at "HR_FORMAT,
6507                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6508 
6509       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6510       hr->add_strong_code_root_locked(_nm);
6511     }
6512   }
6513 
6514 public:
6515   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6516     _g1h(g1h), _nm(nm) {}
6517 
6518   void do_oop(oop* p)       { do_oop_work(p); }
6519   void do_oop(narrowOop* p) { do_oop_work(p); }
6520 };
6521 
6522 class UnregisterNMethodOopClosure: public OopClosure {
6523   G1CollectedHeap* _g1h;
6524   nmethod* _nm;
6525 
6526   template <class T> void do_oop_work(T* p) {
6527     T heap_oop = oopDesc::load_heap_oop(p);
6528     if (!oopDesc::is_null(heap_oop)) {
6529       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6530       HeapRegion* hr = _g1h->heap_region_containing(obj);
6531       assert(!hr->is_continues_humongous(),
6532              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6533                      " starting at "HR_FORMAT,
6534                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6535 
6536       hr->remove_strong_code_root(_nm);
6537     }
6538   }
6539 
6540 public:
6541   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6542     _g1h(g1h), _nm(nm) {}
6543 
6544   void do_oop(oop* p)       { do_oop_work(p); }
6545   void do_oop(narrowOop* p) { do_oop_work(p); }
6546 };
6547 
6548 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6549   CollectedHeap::register_nmethod(nm);
6550 
6551   guarantee(nm != NULL, "sanity");
6552   RegisterNMethodOopClosure reg_cl(this, nm);
6553   nm->oops_do(&reg_cl);
6554 }
6555 
6556 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6557   CollectedHeap::unregister_nmethod(nm);
6558 
6559   guarantee(nm != NULL, "sanity");
6560   UnregisterNMethodOopClosure reg_cl(this, nm);
6561   nm->oops_do(&reg_cl, true);
6562 }
6563 
6564 void G1CollectedHeap::purge_code_root_memory() {
6565   double purge_start = os::elapsedTime();
6566   G1CodeRootSet::purge();
6567   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6568   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6569 }
6570 
6571 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6572   G1CollectedHeap* _g1h;
6573 
6574 public:
6575   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6576     _g1h(g1h) {}
6577 
6578   void do_code_blob(CodeBlob* cb) {
6579     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6580     if (nm == NULL) {
6581       return;
6582     }
6583 
6584     if (ScavengeRootsInCode) {
6585       _g1h->register_nmethod(nm);
6586     }
6587   }
6588 };
6589 
6590 void G1CollectedHeap::rebuild_strong_code_roots() {
6591   RebuildStrongCodeRootClosure blob_cl(this);
6592   CodeCache::blobs_do(&blob_cl);
6593 }