1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #elif _M_AMD64
 118   #define __CPU__ amd64
 119 #else
 120   #define __CPU__ i486
 121 #endif
 122 
 123 // save DLL module handle, used by GetModuleFileName
 124 
 125 HINSTANCE vm_lib_handle;
 126 
 127 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 128   switch (reason) {
 129   case DLL_PROCESS_ATTACH:
 130     vm_lib_handle = hinst;
 131     if (ForceTimeHighResolution) {
 132       timeBeginPeriod(1L);
 133     }
 134     break;
 135   case DLL_PROCESS_DETACH:
 136     if (ForceTimeHighResolution) {
 137       timeEndPeriod(1L);
 138     }
 139     break;
 140   default:
 141     break;
 142   }
 143   return true;
 144 }
 145 
 146 static inline double fileTimeAsDouble(FILETIME* time) {
 147   const double high  = (double) ((unsigned int) ~0);
 148   const double split = 10000000.0;
 149   double result = (time->dwLowDateTime / split) +
 150                    time->dwHighDateTime * (high/split);
 151   return result;
 152 }
 153 
 154 // Implementation of os
 155 
 156 bool os::getenv(const char* name, char* buffer, int len) {
 157   int result = GetEnvironmentVariable(name, buffer, len);
 158   return result > 0 && result < len;
 159 }
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH];
 192 
 193     if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 194       os::jvm_path(home_dir, sizeof(home_dir));
 195       // Found the full path to jvm.dll.
 196       // Now cut the path to <java_home>/jre if we can.
 197       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 198       pslash = strrchr(home_dir, '\\');
 199       if (pslash != NULL) {
 200         *pslash = '\0';                   // get rid of \{client|server}
 201         pslash = strrchr(home_dir, '\\');
 202         if (pslash != NULL) {
 203           *pslash = '\0';                 // get rid of \bin
 204         }
 205       }
 206     }
 207 
 208     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 209     if (home_path == NULL) {
 210       return;
 211     }
 212     strcpy(home_path, home_dir);
 213     Arguments::set_java_home(home_path);
 214     FREE_C_HEAP_ARRAY(char, home_path);
 215 
 216     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 217                                 mtInternal);
 218     if (dll_path == NULL) {
 219       return;
 220     }
 221     strcpy(dll_path, home_dir);
 222     strcat(dll_path, bin);
 223     Arguments::set_dll_dir(dll_path);
 224     FREE_C_HEAP_ARRAY(char, dll_path);
 225 
 226     if (!set_boot_path('\\', ';')) {
 227       return;
 228     }
 229   }
 230 
 231 // library_path
 232 #define EXT_DIR "\\lib\\ext"
 233 #define BIN_DIR "\\bin"
 234 #define PACKAGE_DIR "\\Sun\\Java"
 235   {
 236     // Win32 library search order (See the documentation for LoadLibrary):
 237     //
 238     // 1. The directory from which application is loaded.
 239     // 2. The system wide Java Extensions directory (Java only)
 240     // 3. System directory (GetSystemDirectory)
 241     // 4. Windows directory (GetWindowsDirectory)
 242     // 5. The PATH environment variable
 243     // 6. The current directory
 244 
 245     char *library_path;
 246     char tmp[MAX_PATH];
 247     char *path_str = ::getenv("PATH");
 248 
 249     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 250                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 251 
 252     library_path[0] = '\0';
 253 
 254     GetModuleFileName(NULL, tmp, sizeof(tmp));
 255     *(strrchr(tmp, '\\')) = '\0';
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261     strcat(library_path, PACKAGE_DIR BIN_DIR);
 262 
 263     GetSystemDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266 
 267     GetWindowsDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     if (path_str) {
 272       strcat(library_path, ";");
 273       strcat(library_path, path_str);
 274     }
 275 
 276     strcat(library_path, ";.");
 277 
 278     Arguments::set_library_path(library_path);
 279     FREE_C_HEAP_ARRAY(char, library_path);
 280   }
 281 
 282   // Default extensions directory
 283   {
 284     char path[MAX_PATH];
 285     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 286     GetWindowsDirectory(path, MAX_PATH);
 287     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 288             path, PACKAGE_DIR, EXT_DIR);
 289     Arguments::set_ext_dirs(buf);
 290   }
 291   #undef EXT_DIR
 292   #undef BIN_DIR
 293   #undef PACKAGE_DIR
 294 
 295 #ifndef _WIN64
 296   // set our UnhandledExceptionFilter and save any previous one
 297   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 298 #endif
 299 
 300   // Done
 301   return;
 302 }
 303 
 304 void os::breakpoint() {
 305   DebugBreak();
 306 }
 307 
 308 // Invoked from the BREAKPOINT Macro
 309 extern "C" void breakpoint() {
 310   os::breakpoint();
 311 }
 312 
 313 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 314 // So far, this method is only used by Native Memory Tracking, which is
 315 // only supported on Windows XP or later.
 316 //
 317 int os::get_native_stack(address* stack, int frames, int toSkip) {
 318 #ifdef _NMT_NOINLINE_
 319   toSkip++;
 320 #endif
 321   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 322                                                        (PVOID*)stack, NULL);
 323   for (int index = captured; index < frames; index ++) {
 324     stack[index] = NULL;
 325   }
 326   return captured;
 327 }
 328 
 329 
 330 // os::current_stack_base()
 331 //
 332 //   Returns the base of the stack, which is the stack's
 333 //   starting address.  This function must be called
 334 //   while running on the stack of the thread being queried.
 335 
 336 address os::current_stack_base() {
 337   MEMORY_BASIC_INFORMATION minfo;
 338   address stack_bottom;
 339   size_t stack_size;
 340 
 341   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 342   stack_bottom =  (address)minfo.AllocationBase;
 343   stack_size = minfo.RegionSize;
 344 
 345   // Add up the sizes of all the regions with the same
 346   // AllocationBase.
 347   while (1) {
 348     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 349     if (stack_bottom == (address)minfo.AllocationBase) {
 350       stack_size += minfo.RegionSize;
 351     } else {
 352       break;
 353     }
 354   }
 355 
 356 #ifdef _M_IA64
 357   // IA64 has memory and register stacks
 358   //
 359   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 360   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 361   // growing downwards, 2MB summed up)
 362   //
 363   // ...
 364   // ------- top of stack (high address) -----
 365   // |
 366   // |      1MB
 367   // |      Backing Store (Register Stack)
 368   // |
 369   // |         / \
 370   // |          |
 371   // |          |
 372   // |          |
 373   // ------------------------ stack base -----
 374   // |      1MB
 375   // |      Memory Stack
 376   // |
 377   // |          |
 378   // |          |
 379   // |          |
 380   // |         \ /
 381   // |
 382   // ----- bottom of stack (low address) -----
 383   // ...
 384 
 385   stack_size = stack_size / 2;
 386 #endif
 387   return stack_bottom + stack_size;
 388 }
 389 
 390 size_t os::current_stack_size() {
 391   size_t sz;
 392   MEMORY_BASIC_INFORMATION minfo;
 393   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 394   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 395   return sz;
 396 }
 397 
 398 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 399   const struct tm* time_struct_ptr = localtime(clock);
 400   if (time_struct_ptr != NULL) {
 401     *res = *time_struct_ptr;
 402     return res;
 403   }
 404   return NULL;
 405 }
 406 
 407 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 408 
 409 // Thread start routine for all new Java threads
 410 static unsigned __stdcall java_start(Thread* thread) {
 411   // Try to randomize the cache line index of hot stack frames.
 412   // This helps when threads of the same stack traces evict each other's
 413   // cache lines. The threads can be either from the same JVM instance, or
 414   // from different JVM instances. The benefit is especially true for
 415   // processors with hyperthreading technology.
 416   static int counter = 0;
 417   int pid = os::current_process_id();
 418   _alloca(((pid ^ counter++) & 7) * 128);
 419 
 420   OSThread* osthr = thread->osthread();
 421   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 422 
 423   if (UseNUMA) {
 424     int lgrp_id = os::numa_get_group_id();
 425     if (lgrp_id != -1) {
 426       thread->set_lgrp_id(lgrp_id);
 427     }
 428   }
 429 
 430   // Diagnostic code to investigate JDK-6573254
 431   int res = 50115;  // non-java thread
 432   if (thread->is_Java_thread()) {
 433     res = 40115;    // java thread
 434   }
 435 
 436   // Install a win32 structured exception handler around every thread created
 437   // by VM, so VM can generate error dump when an exception occurred in non-
 438   // Java thread (e.g. VM thread).
 439   __try {
 440     thread->run();
 441   } __except(topLevelExceptionFilter(
 442                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 443     // Nothing to do.
 444   }
 445 
 446   // One less thread is executing
 447   // When the VMThread gets here, the main thread may have already exited
 448   // which frees the CodeHeap containing the Atomic::add code
 449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 451   }
 452 
 453   // Thread must not return from exit_process_or_thread(), but if it does,
 454   // let it proceed to exit normally
 455   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 456 }
 457 
 458 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 459                                   int thread_id) {
 460   // Allocate the OSThread object
 461   OSThread* osthread = new OSThread(NULL, NULL);
 462   if (osthread == NULL) return NULL;
 463 
 464   // Initialize support for Java interrupts
 465   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 466   if (interrupt_event == NULL) {
 467     delete osthread;
 468     return NULL;
 469   }
 470   osthread->set_interrupt_event(interrupt_event);
 471 
 472   // Store info on the Win32 thread into the OSThread
 473   osthread->set_thread_handle(thread_handle);
 474   osthread->set_thread_id(thread_id);
 475 
 476   if (UseNUMA) {
 477     int lgrp_id = os::numa_get_group_id();
 478     if (lgrp_id != -1) {
 479       thread->set_lgrp_id(lgrp_id);
 480     }
 481   }
 482 
 483   // Initial thread state is INITIALIZED, not SUSPENDED
 484   osthread->set_state(INITIALIZED);
 485 
 486   return osthread;
 487 }
 488 
 489 
 490 bool os::create_attached_thread(JavaThread* thread) {
 491 #ifdef ASSERT
 492   thread->verify_not_published();
 493 #endif
 494   HANDLE thread_h;
 495   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 496                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 497     fatal("DuplicateHandle failed\n");
 498   }
 499   OSThread* osthread = create_os_thread(thread, thread_h,
 500                                         (int)current_thread_id());
 501   if (osthread == NULL) {
 502     return false;
 503   }
 504 
 505   // Initial thread state is RUNNABLE
 506   osthread->set_state(RUNNABLE);
 507 
 508   thread->set_osthread(osthread);
 509   return true;
 510 }
 511 
 512 bool os::create_main_thread(JavaThread* thread) {
 513 #ifdef ASSERT
 514   thread->verify_not_published();
 515 #endif
 516   if (_starting_thread == NULL) {
 517     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 518     if (_starting_thread == NULL) {
 519       return false;
 520     }
 521   }
 522 
 523   // The primordial thread is runnable from the start)
 524   _starting_thread->set_state(RUNNABLE);
 525 
 526   thread->set_osthread(_starting_thread);
 527   return true;
 528 }
 529 
 530 // Allocate and initialize a new OSThread
 531 bool os::create_thread(Thread* thread, ThreadType thr_type,
 532                        size_t stack_size) {
 533   unsigned thread_id;
 534 
 535   // Allocate the OSThread object
 536   OSThread* osthread = new OSThread(NULL, NULL);
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initialize support for Java interrupts
 542   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 543   if (interrupt_event == NULL) {
 544     delete osthread;
 545     return NULL;
 546   }
 547   osthread->set_interrupt_event(interrupt_event);
 548   osthread->set_interrupted(false);
 549 
 550   thread->set_osthread(osthread);
 551 
 552   if (stack_size == 0) {
 553     switch (thr_type) {
 554     case os::java_thread:
 555       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 556       if (JavaThread::stack_size_at_create() > 0) {
 557         stack_size = JavaThread::stack_size_at_create();
 558       }
 559       break;
 560     case os::compiler_thread:
 561       if (CompilerThreadStackSize > 0) {
 562         stack_size = (size_t)(CompilerThreadStackSize * K);
 563         break;
 564       } // else fall through:
 565         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 566     case os::vm_thread:
 567     case os::pgc_thread:
 568     case os::cgc_thread:
 569     case os::watcher_thread:
 570       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 571       break;
 572     }
 573   }
 574 
 575   // Create the Win32 thread
 576   //
 577   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 578   // does not specify stack size. Instead, it specifies the size of
 579   // initially committed space. The stack size is determined by
 580   // PE header in the executable. If the committed "stack_size" is larger
 581   // than default value in the PE header, the stack is rounded up to the
 582   // nearest multiple of 1MB. For example if the launcher has default
 583   // stack size of 320k, specifying any size less than 320k does not
 584   // affect the actual stack size at all, it only affects the initial
 585   // commitment. On the other hand, specifying 'stack_size' larger than
 586   // default value may cause significant increase in memory usage, because
 587   // not only the stack space will be rounded up to MB, but also the
 588   // entire space is committed upfront.
 589   //
 590   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 591   // for CreateThread() that can treat 'stack_size' as stack size. However we
 592   // are not supposed to call CreateThread() directly according to MSDN
 593   // document because JVM uses C runtime library. The good news is that the
 594   // flag appears to work with _beginthredex() as well.
 595 
 596 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 597   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 598 #endif
 599 
 600   HANDLE thread_handle =
 601     (HANDLE)_beginthreadex(NULL,
 602                            (unsigned)stack_size,
 603                            (unsigned (__stdcall *)(void*)) java_start,
 604                            thread,
 605                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 606                            &thread_id);
 607   if (thread_handle == NULL) {
 608     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 609     // without the flag.
 610     thread_handle =
 611       (HANDLE)_beginthreadex(NULL,
 612                              (unsigned)stack_size,
 613                              (unsigned (__stdcall *)(void*)) java_start,
 614                              thread,
 615                              CREATE_SUSPENDED,
 616                              &thread_id);
 617   }
 618   if (thread_handle == NULL) {
 619     // Need to clean up stuff we've allocated so far
 620     CloseHandle(osthread->interrupt_event());
 621     thread->set_osthread(NULL);
 622     delete osthread;
 623     return NULL;
 624   }
 625 
 626   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 627 
 628   // Store info on the Win32 thread into the OSThread
 629   osthread->set_thread_handle(thread_handle);
 630   osthread->set_thread_id(thread_id);
 631 
 632   // Initial thread state is INITIALIZED, not SUSPENDED
 633   osthread->set_state(INITIALIZED);
 634 
 635   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 636   return true;
 637 }
 638 
 639 
 640 // Free Win32 resources related to the OSThread
 641 void os::free_thread(OSThread* osthread) {
 642   assert(osthread != NULL, "osthread not set");
 643   CloseHandle(osthread->thread_handle());
 644   CloseHandle(osthread->interrupt_event());
 645   delete osthread;
 646 }
 647 
 648 static jlong first_filetime;
 649 static jlong initial_performance_count;
 650 static jlong performance_frequency;
 651 
 652 
 653 jlong as_long(LARGE_INTEGER x) {
 654   jlong result = 0; // initialization to avoid warning
 655   set_high(&result, x.HighPart);
 656   set_low(&result, x.LowPart);
 657   return result;
 658 }
 659 
 660 
 661 jlong os::elapsed_counter() {
 662   LARGE_INTEGER count;
 663   if (win32::_has_performance_count) {
 664     QueryPerformanceCounter(&count);
 665     return as_long(count) - initial_performance_count;
 666   } else {
 667     FILETIME wt;
 668     GetSystemTimeAsFileTime(&wt);
 669     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 670   }
 671 }
 672 
 673 
 674 jlong os::elapsed_frequency() {
 675   if (win32::_has_performance_count) {
 676     return performance_frequency;
 677   } else {
 678     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 679     return 10000000;
 680   }
 681 }
 682 
 683 
 684 julong os::available_memory() {
 685   return win32::available_memory();
 686 }
 687 
 688 julong os::win32::available_memory() {
 689   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 690   // value if total memory is larger than 4GB
 691   MEMORYSTATUSEX ms;
 692   ms.dwLength = sizeof(ms);
 693   GlobalMemoryStatusEx(&ms);
 694 
 695   return (julong)ms.ullAvailPhys;
 696 }
 697 
 698 julong os::physical_memory() {
 699   return win32::physical_memory();
 700 }
 701 
 702 bool os::has_allocatable_memory_limit(julong* limit) {
 703   MEMORYSTATUSEX ms;
 704   ms.dwLength = sizeof(ms);
 705   GlobalMemoryStatusEx(&ms);
 706 #ifdef _LP64
 707   *limit = (julong)ms.ullAvailVirtual;
 708   return true;
 709 #else
 710   // Limit to 1400m because of the 2gb address space wall
 711   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 712   return true;
 713 #endif
 714 }
 715 
 716 // VC6 lacks DWORD_PTR
 717 #if _MSC_VER < 1300
 718 typedef UINT_PTR DWORD_PTR;
 719 #endif
 720 
 721 int os::active_processor_count() {
 722   DWORD_PTR lpProcessAffinityMask = 0;
 723   DWORD_PTR lpSystemAffinityMask = 0;
 724   int proc_count = processor_count();
 725   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 726       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 727     // Nof active processors is number of bits in process affinity mask
 728     int bitcount = 0;
 729     while (lpProcessAffinityMask != 0) {
 730       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 731       bitcount++;
 732     }
 733     return bitcount;
 734   } else {
 735     return proc_count;
 736   }
 737 }
 738 
 739 void os::set_native_thread_name(const char *name) {
 740 
 741   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 742   //
 743   // Note that unfortunately this only works if the process
 744   // is already attached to a debugger; debugger must observe
 745   // the exception below to show the correct name.
 746 
 747   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 748   struct {
 749     DWORD dwType;     // must be 0x1000
 750     LPCSTR szName;    // pointer to name (in user addr space)
 751     DWORD dwThreadID; // thread ID (-1=caller thread)
 752     DWORD dwFlags;    // reserved for future use, must be zero
 753   } info;
 754 
 755   info.dwType = 0x1000;
 756   info.szName = name;
 757   info.dwThreadID = -1;
 758   info.dwFlags = 0;
 759 
 760   __try {
 761     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 762   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 763 }
 764 
 765 bool os::distribute_processes(uint length, uint* distribution) {
 766   // Not yet implemented.
 767   return false;
 768 }
 769 
 770 bool os::bind_to_processor(uint processor_id) {
 771   // Not yet implemented.
 772   return false;
 773 }
 774 
 775 void os::win32::initialize_performance_counter() {
 776   LARGE_INTEGER count;
 777   if (QueryPerformanceFrequency(&count)) {
 778     win32::_has_performance_count = 1;
 779     performance_frequency = as_long(count);
 780     QueryPerformanceCounter(&count);
 781     initial_performance_count = as_long(count);
 782   } else {
 783     win32::_has_performance_count = 0;
 784     FILETIME wt;
 785     GetSystemTimeAsFileTime(&wt);
 786     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 787   }
 788 }
 789 
 790 
 791 double os::elapsedTime() {
 792   return (double) elapsed_counter() / (double) elapsed_frequency();
 793 }
 794 
 795 
 796 // Windows format:
 797 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 798 // Java format:
 799 //   Java standards require the number of milliseconds since 1/1/1970
 800 
 801 // Constant offset - calculated using offset()
 802 static jlong  _offset   = 116444736000000000;
 803 // Fake time counter for reproducible results when debugging
 804 static jlong  fake_time = 0;
 805 
 806 #ifdef ASSERT
 807 // Just to be safe, recalculate the offset in debug mode
 808 static jlong _calculated_offset = 0;
 809 static int   _has_calculated_offset = 0;
 810 
 811 jlong offset() {
 812   if (_has_calculated_offset) return _calculated_offset;
 813   SYSTEMTIME java_origin;
 814   java_origin.wYear          = 1970;
 815   java_origin.wMonth         = 1;
 816   java_origin.wDayOfWeek     = 0; // ignored
 817   java_origin.wDay           = 1;
 818   java_origin.wHour          = 0;
 819   java_origin.wMinute        = 0;
 820   java_origin.wSecond        = 0;
 821   java_origin.wMilliseconds  = 0;
 822   FILETIME jot;
 823   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 824     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 825   }
 826   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 827   _has_calculated_offset = 1;
 828   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 829   return _calculated_offset;
 830 }
 831 #else
 832 jlong offset() {
 833   return _offset;
 834 }
 835 #endif
 836 
 837 jlong windows_to_java_time(FILETIME wt) {
 838   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 839   return (a - offset()) / 10000;
 840 }
 841 





 842 FILETIME java_to_windows_time(jlong l) {
 843   jlong a = (l * 10000) + offset();
 844   FILETIME result;
 845   result.dwHighDateTime = high(a);
 846   result.dwLowDateTime  = low(a);
 847   return result;
 848 }
 849 
 850 bool os::supports_vtime() { return true; }
 851 bool os::enable_vtime() { return false; }
 852 bool os::vtime_enabled() { return false; }
 853 
 854 double os::elapsedVTime() {
 855   FILETIME created;
 856   FILETIME exited;
 857   FILETIME kernel;
 858   FILETIME user;
 859   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 860     // the resolution of windows_to_java_time() should be sufficient (ms)
 861     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 862   } else {
 863     return elapsedTime();
 864   }
 865 }
 866 
 867 jlong os::javaTimeMillis() {
 868   if (UseFakeTimers) {
 869     return fake_time++;
 870   } else {
 871     FILETIME wt;
 872     GetSystemTimeAsFileTime(&wt);
 873     return windows_to_java_time(wt);
 874   }
 875 }
 876 









 877 jlong os::javaTimeNanos() {
 878   if (!win32::_has_performance_count) {
 879     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 880   } else {
 881     LARGE_INTEGER current_count;
 882     QueryPerformanceCounter(&current_count);
 883     double current = as_long(current_count);
 884     double freq = performance_frequency;
 885     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 886     return time;
 887   }
 888 }
 889 
 890 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 891   if (!win32::_has_performance_count) {
 892     // javaTimeMillis() doesn't have much percision,
 893     // but it is not going to wrap -- so all 64 bits
 894     info_ptr->max_value = ALL_64_BITS;
 895 
 896     // this is a wall clock timer, so may skip
 897     info_ptr->may_skip_backward = true;
 898     info_ptr->may_skip_forward = true;
 899   } else {
 900     jlong freq = performance_frequency;
 901     if (freq < NANOSECS_PER_SEC) {
 902       // the performance counter is 64 bits and we will
 903       // be multiplying it -- so no wrap in 64 bits
 904       info_ptr->max_value = ALL_64_BITS;
 905     } else if (freq > NANOSECS_PER_SEC) {
 906       // use the max value the counter can reach to
 907       // determine the max value which could be returned
 908       julong max_counter = (julong)ALL_64_BITS;
 909       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 910     } else {
 911       // the performance counter is 64 bits and we will
 912       // be using it directly -- so no wrap in 64 bits
 913       info_ptr->max_value = ALL_64_BITS;
 914     }
 915 
 916     // using a counter, so no skipping
 917     info_ptr->may_skip_backward = false;
 918     info_ptr->may_skip_forward = false;
 919   }
 920   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 921 }
 922 
 923 char* os::local_time_string(char *buf, size_t buflen) {
 924   SYSTEMTIME st;
 925   GetLocalTime(&st);
 926   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 927                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 928   return buf;
 929 }
 930 
 931 bool os::getTimesSecs(double* process_real_time,
 932                       double* process_user_time,
 933                       double* process_system_time) {
 934   HANDLE h_process = GetCurrentProcess();
 935   FILETIME create_time, exit_time, kernel_time, user_time;
 936   BOOL result = GetProcessTimes(h_process,
 937                                 &create_time,
 938                                 &exit_time,
 939                                 &kernel_time,
 940                                 &user_time);
 941   if (result != 0) {
 942     FILETIME wt;
 943     GetSystemTimeAsFileTime(&wt);
 944     jlong rtc_millis = windows_to_java_time(wt);
 945     jlong user_millis = windows_to_java_time(user_time);
 946     jlong system_millis = windows_to_java_time(kernel_time);
 947     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 948     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 949     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 950     return true;
 951   } else {
 952     return false;
 953   }
 954 }
 955 
 956 void os::shutdown() {
 957   // allow PerfMemory to attempt cleanup of any persistent resources
 958   perfMemory_exit();
 959 
 960   // flush buffered output, finish log files
 961   ostream_abort();
 962 
 963   // Check for abort hook
 964   abort_hook_t abort_hook = Arguments::abort_hook();
 965   if (abort_hook != NULL) {
 966     abort_hook();
 967   }
 968 }
 969 
 970 
 971 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 972                                          PMINIDUMP_EXCEPTION_INFORMATION,
 973                                          PMINIDUMP_USER_STREAM_INFORMATION,
 974                                          PMINIDUMP_CALLBACK_INFORMATION);
 975 
 976 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 977   HINSTANCE dbghelp;
 978   EXCEPTION_POINTERS ep;
 979   MINIDUMP_EXCEPTION_INFORMATION mei;
 980   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 981 
 982   HANDLE hProcess = GetCurrentProcess();
 983   DWORD processId = GetCurrentProcessId();
 984   HANDLE dumpFile;
 985   MINIDUMP_TYPE dumpType;
 986   static const char* cwd;
 987 
 988 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 989 #ifndef ASSERT
 990   // If running on a client version of Windows and user has not explicitly enabled dumping
 991   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 992     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 993     return;
 994     // If running on a server version of Windows and user has explictly disabled dumping
 995   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 996     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 997     return;
 998   }
 999 #else
1000   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1001     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1002     return;
1003   }
1004 #endif
1005 
1006   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1007 
1008   if (dbghelp == NULL) {
1009     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1010     return;
1011   }
1012 
1013   _MiniDumpWriteDump =
1014       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1015                                     PMINIDUMP_EXCEPTION_INFORMATION,
1016                                     PMINIDUMP_USER_STREAM_INFORMATION,
1017                                     PMINIDUMP_CALLBACK_INFORMATION),
1018                                     GetProcAddress(dbghelp,
1019                                     "MiniDumpWriteDump"));
1020 
1021   if (_MiniDumpWriteDump == NULL) {
1022     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1023     return;
1024   }
1025 
1026   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1027 
1028 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1029 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1030 #if API_VERSION_NUMBER >= 11
1031   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1032                              MiniDumpWithUnloadedModules);
1033 #endif
1034 
1035   cwd = get_current_directory(NULL, 0);
1036   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1037   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1038 
1039   if (dumpFile == INVALID_HANDLE_VALUE) {
1040     VMError::report_coredump_status("Failed to create file for dumping", false);
1041     return;
1042   }
1043   if (exceptionRecord != NULL && contextRecord != NULL) {
1044     ep.ContextRecord = (PCONTEXT) contextRecord;
1045     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1046 
1047     mei.ThreadId = GetCurrentThreadId();
1048     mei.ExceptionPointers = &ep;
1049     pmei = &mei;
1050   } else {
1051     pmei = NULL;
1052   }
1053 
1054 
1055   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1056   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1057   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1058       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1059     DWORD error = GetLastError();
1060     LPTSTR msgbuf = NULL;
1061 
1062     if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1063                       FORMAT_MESSAGE_FROM_SYSTEM |
1064                       FORMAT_MESSAGE_IGNORE_INSERTS,
1065                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1066 
1067       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1068       LocalFree(msgbuf);
1069     } else {
1070       // Call to FormatMessage failed, just include the result from GetLastError
1071       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1072     }
1073     VMError::report_coredump_status(buffer, false);
1074   } else {
1075     VMError::report_coredump_status(buffer, true);
1076   }
1077 
1078   CloseHandle(dumpFile);
1079 }
1080 
1081 
1082 void os::abort(bool dump_core) {
1083   os::shutdown();
1084   // no core dump on Windows
1085   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1086 }
1087 
1088 // Die immediately, no exit hook, no abort hook, no cleanup.
1089 void os::die() {
1090   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1091 }
1092 
1093 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1094 //  * dirent_md.c       1.15 00/02/02
1095 //
1096 // The declarations for DIR and struct dirent are in jvm_win32.h.
1097 
1098 // Caller must have already run dirname through JVM_NativePath, which removes
1099 // duplicate slashes and converts all instances of '/' into '\\'.
1100 
1101 DIR * os::opendir(const char *dirname) {
1102   assert(dirname != NULL, "just checking");   // hotspot change
1103   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1104   DWORD fattr;                                // hotspot change
1105   char alt_dirname[4] = { 0, 0, 0, 0 };
1106 
1107   if (dirp == 0) {
1108     errno = ENOMEM;
1109     return 0;
1110   }
1111 
1112   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1113   // as a directory in FindFirstFile().  We detect this case here and
1114   // prepend the current drive name.
1115   //
1116   if (dirname[1] == '\0' && dirname[0] == '\\') {
1117     alt_dirname[0] = _getdrive() + 'A' - 1;
1118     alt_dirname[1] = ':';
1119     alt_dirname[2] = '\\';
1120     alt_dirname[3] = '\0';
1121     dirname = alt_dirname;
1122   }
1123 
1124   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1125   if (dirp->path == 0) {
1126     free(dirp);
1127     errno = ENOMEM;
1128     return 0;
1129   }
1130   strcpy(dirp->path, dirname);
1131 
1132   fattr = GetFileAttributes(dirp->path);
1133   if (fattr == 0xffffffff) {
1134     free(dirp->path);
1135     free(dirp);
1136     errno = ENOENT;
1137     return 0;
1138   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1139     free(dirp->path);
1140     free(dirp);
1141     errno = ENOTDIR;
1142     return 0;
1143   }
1144 
1145   // Append "*.*", or possibly "\\*.*", to path
1146   if (dirp->path[1] == ':' &&
1147       (dirp->path[2] == '\0' ||
1148       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1149     // No '\\' needed for cases like "Z:" or "Z:\"
1150     strcat(dirp->path, "*.*");
1151   } else {
1152     strcat(dirp->path, "\\*.*");
1153   }
1154 
1155   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1156   if (dirp->handle == INVALID_HANDLE_VALUE) {
1157     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1158       free(dirp->path);
1159       free(dirp);
1160       errno = EACCES;
1161       return 0;
1162     }
1163   }
1164   return dirp;
1165 }
1166 
1167 // parameter dbuf unused on Windows
1168 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1169   assert(dirp != NULL, "just checking");      // hotspot change
1170   if (dirp->handle == INVALID_HANDLE_VALUE) {
1171     return 0;
1172   }
1173 
1174   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1175 
1176   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1177     if (GetLastError() == ERROR_INVALID_HANDLE) {
1178       errno = EBADF;
1179       return 0;
1180     }
1181     FindClose(dirp->handle);
1182     dirp->handle = INVALID_HANDLE_VALUE;
1183   }
1184 
1185   return &dirp->dirent;
1186 }
1187 
1188 int os::closedir(DIR *dirp) {
1189   assert(dirp != NULL, "just checking");      // hotspot change
1190   if (dirp->handle != INVALID_HANDLE_VALUE) {
1191     if (!FindClose(dirp->handle)) {
1192       errno = EBADF;
1193       return -1;
1194     }
1195     dirp->handle = INVALID_HANDLE_VALUE;
1196   }
1197   free(dirp->path);
1198   free(dirp);
1199   return 0;
1200 }
1201 
1202 // This must be hard coded because it's the system's temporary
1203 // directory not the java application's temp directory, ala java.io.tmpdir.
1204 const char* os::get_temp_directory() {
1205   static char path_buf[MAX_PATH];
1206   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1207     return path_buf;
1208   } else {
1209     path_buf[0] = '\0';
1210     return path_buf;
1211   }
1212 }
1213 
1214 static bool file_exists(const char* filename) {
1215   if (filename == NULL || strlen(filename) == 0) {
1216     return false;
1217   }
1218   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1219 }
1220 
1221 bool os::dll_build_name(char *buffer, size_t buflen,
1222                         const char* pname, const char* fname) {
1223   bool retval = false;
1224   const size_t pnamelen = pname ? strlen(pname) : 0;
1225   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1226 
1227   // Return error on buffer overflow.
1228   if (pnamelen + strlen(fname) + 10 > buflen) {
1229     return retval;
1230   }
1231 
1232   if (pnamelen == 0) {
1233     jio_snprintf(buffer, buflen, "%s.dll", fname);
1234     retval = true;
1235   } else if (c == ':' || c == '\\') {
1236     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1237     retval = true;
1238   } else if (strchr(pname, *os::path_separator()) != NULL) {
1239     int n;
1240     char** pelements = split_path(pname, &n);
1241     if (pelements == NULL) {
1242       return false;
1243     }
1244     for (int i = 0; i < n; i++) {
1245       char* path = pelements[i];
1246       // Really shouldn't be NULL, but check can't hurt
1247       size_t plen = (path == NULL) ? 0 : strlen(path);
1248       if (plen == 0) {
1249         continue; // skip the empty path values
1250       }
1251       const char lastchar = path[plen - 1];
1252       if (lastchar == ':' || lastchar == '\\') {
1253         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1254       } else {
1255         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1256       }
1257       if (file_exists(buffer)) {
1258         retval = true;
1259         break;
1260       }
1261     }
1262     // release the storage
1263     for (int i = 0; i < n; i++) {
1264       if (pelements[i] != NULL) {
1265         FREE_C_HEAP_ARRAY(char, pelements[i]);
1266       }
1267     }
1268     if (pelements != NULL) {
1269       FREE_C_HEAP_ARRAY(char*, pelements);
1270     }
1271   } else {
1272     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1273     retval = true;
1274   }
1275   return retval;
1276 }
1277 
1278 // Needs to be in os specific directory because windows requires another
1279 // header file <direct.h>
1280 const char* os::get_current_directory(char *buf, size_t buflen) {
1281   int n = static_cast<int>(buflen);
1282   if (buflen > INT_MAX)  n = INT_MAX;
1283   return _getcwd(buf, n);
1284 }
1285 
1286 //-----------------------------------------------------------
1287 // Helper functions for fatal error handler
1288 #ifdef _WIN64
1289 // Helper routine which returns true if address in
1290 // within the NTDLL address space.
1291 //
1292 static bool _addr_in_ntdll(address addr) {
1293   HMODULE hmod;
1294   MODULEINFO minfo;
1295 
1296   hmod = GetModuleHandle("NTDLL.DLL");
1297   if (hmod == NULL) return false;
1298   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1299                                           &minfo, sizeof(MODULEINFO))) {
1300     return false;
1301   }
1302 
1303   if ((addr >= minfo.lpBaseOfDll) &&
1304       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1305     return true;
1306   } else {
1307     return false;
1308   }
1309 }
1310 #endif
1311 
1312 struct _modinfo {
1313   address addr;
1314   char*   full_path;   // point to a char buffer
1315   int     buflen;      // size of the buffer
1316   address base_addr;
1317 };
1318 
1319 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1320                                   address top_address, void * param) {
1321   struct _modinfo *pmod = (struct _modinfo *)param;
1322   if (!pmod) return -1;
1323 
1324   if (base_addr   <= pmod->addr &&
1325       top_address > pmod->addr) {
1326     // if a buffer is provided, copy path name to the buffer
1327     if (pmod->full_path) {
1328       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1329     }
1330     pmod->base_addr = base_addr;
1331     return 1;
1332   }
1333   return 0;
1334 }
1335 
1336 bool os::dll_address_to_library_name(address addr, char* buf,
1337                                      int buflen, int* offset) {
1338   // buf is not optional, but offset is optional
1339   assert(buf != NULL, "sanity check");
1340 
1341 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1342 //       return the full path to the DLL file, sometimes it returns path
1343 //       to the corresponding PDB file (debug info); sometimes it only
1344 //       returns partial path, which makes life painful.
1345 
1346   struct _modinfo mi;
1347   mi.addr      = addr;
1348   mi.full_path = buf;
1349   mi.buflen    = buflen;
1350   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1351     // buf already contains path name
1352     if (offset) *offset = addr - mi.base_addr;
1353     return true;
1354   }
1355 
1356   buf[0] = '\0';
1357   if (offset) *offset = -1;
1358   return false;
1359 }
1360 
1361 bool os::dll_address_to_function_name(address addr, char *buf,
1362                                       int buflen, int *offset) {
1363   // buf is not optional, but offset is optional
1364   assert(buf != NULL, "sanity check");
1365 
1366   if (Decoder::decode(addr, buf, buflen, offset)) {
1367     return true;
1368   }
1369   if (offset != NULL)  *offset  = -1;
1370   buf[0] = '\0';
1371   return false;
1372 }
1373 
1374 // save the start and end address of jvm.dll into param[0] and param[1]
1375 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1376                            address top_address, void * param) {
1377   if (!param) return -1;
1378 
1379   if (base_addr   <= (address)_locate_jvm_dll &&
1380       top_address > (address)_locate_jvm_dll) {
1381     ((address*)param)[0] = base_addr;
1382     ((address*)param)[1] = top_address;
1383     return 1;
1384   }
1385   return 0;
1386 }
1387 
1388 address vm_lib_location[2];    // start and end address of jvm.dll
1389 
1390 // check if addr is inside jvm.dll
1391 bool os::address_is_in_vm(address addr) {
1392   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1393     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1394       assert(false, "Can't find jvm module.");
1395       return false;
1396     }
1397   }
1398 
1399   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1400 }
1401 
1402 // print module info; param is outputStream*
1403 static int _print_module(const char* fname, address base_address,
1404                          address top_address, void* param) {
1405   if (!param) return -1;
1406 
1407   outputStream* st = (outputStream*)param;
1408 
1409   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1410   return 0;
1411 }
1412 
1413 // Loads .dll/.so and
1414 // in case of error it checks if .dll/.so was built for the
1415 // same architecture as Hotspot is running on
1416 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1417   void * result = LoadLibrary(name);
1418   if (result != NULL) {
1419     return result;
1420   }
1421 
1422   DWORD errcode = GetLastError();
1423   if (errcode == ERROR_MOD_NOT_FOUND) {
1424     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1425     ebuf[ebuflen - 1] = '\0';
1426     return NULL;
1427   }
1428 
1429   // Parsing dll below
1430   // If we can read dll-info and find that dll was built
1431   // for an architecture other than Hotspot is running in
1432   // - then print to buffer "DLL was built for a different architecture"
1433   // else call os::lasterror to obtain system error message
1434 
1435   // Read system error message into ebuf
1436   // It may or may not be overwritten below (in the for loop and just above)
1437   lasterror(ebuf, (size_t) ebuflen);
1438   ebuf[ebuflen - 1] = '\0';
1439   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1440   if (fd < 0) {
1441     return NULL;
1442   }
1443 
1444   uint32_t signature_offset;
1445   uint16_t lib_arch = 0;
1446   bool failed_to_get_lib_arch =
1447     ( // Go to position 3c in the dll
1448      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1449      ||
1450      // Read location of signature
1451      (sizeof(signature_offset) !=
1452      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1453      ||
1454      // Go to COFF File Header in dll
1455      // that is located after "signature" (4 bytes long)
1456      (os::seek_to_file_offset(fd,
1457      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1458      ||
1459      // Read field that contains code of architecture
1460      // that dll was built for
1461      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1462     );
1463 
1464   ::close(fd);
1465   if (failed_to_get_lib_arch) {
1466     // file i/o error - report os::lasterror(...) msg
1467     return NULL;
1468   }
1469 
1470   typedef struct {
1471     uint16_t arch_code;
1472     char* arch_name;
1473   } arch_t;
1474 
1475   static const arch_t arch_array[] = {
1476     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1477     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1478     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1479   };
1480 #if   (defined _M_IA64)
1481   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1482 #elif (defined _M_AMD64)
1483   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1484 #elif (defined _M_IX86)
1485   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1486 #else
1487   #error Method os::dll_load requires that one of following \
1488          is defined :_M_IA64,_M_AMD64 or _M_IX86
1489 #endif
1490 
1491 
1492   // Obtain a string for printf operation
1493   // lib_arch_str shall contain string what platform this .dll was built for
1494   // running_arch_str shall string contain what platform Hotspot was built for
1495   char *running_arch_str = NULL, *lib_arch_str = NULL;
1496   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1497     if (lib_arch == arch_array[i].arch_code) {
1498       lib_arch_str = arch_array[i].arch_name;
1499     }
1500     if (running_arch == arch_array[i].arch_code) {
1501       running_arch_str = arch_array[i].arch_name;
1502     }
1503   }
1504 
1505   assert(running_arch_str,
1506          "Didn't find running architecture code in arch_array");
1507 
1508   // If the architecture is right
1509   // but some other error took place - report os::lasterror(...) msg
1510   if (lib_arch == running_arch) {
1511     return NULL;
1512   }
1513 
1514   if (lib_arch_str != NULL) {
1515     ::_snprintf(ebuf, ebuflen - 1,
1516                 "Can't load %s-bit .dll on a %s-bit platform",
1517                 lib_arch_str, running_arch_str);
1518   } else {
1519     // don't know what architecture this dll was build for
1520     ::_snprintf(ebuf, ebuflen - 1,
1521                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1522                 lib_arch, running_arch_str);
1523   }
1524 
1525   return NULL;
1526 }
1527 
1528 void os::print_dll_info(outputStream *st) {
1529   st->print_cr("Dynamic libraries:");
1530   get_loaded_modules_info(_print_module, (void *)st);
1531 }
1532 
1533 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1534   HANDLE   hProcess;
1535 
1536 # define MAX_NUM_MODULES 128
1537   HMODULE     modules[MAX_NUM_MODULES];
1538   static char filename[MAX_PATH];
1539   int         result = 0;
1540 
1541   if (!os::PSApiDll::PSApiAvailable()) {
1542     return 0;
1543   }
1544 
1545   int pid = os::current_process_id();
1546   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1547                          FALSE, pid);
1548   if (hProcess == NULL) return 0;
1549 
1550   DWORD size_needed;
1551   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1552                                         sizeof(modules), &size_needed)) {
1553     CloseHandle(hProcess);
1554     return 0;
1555   }
1556 
1557   // number of modules that are currently loaded
1558   int num_modules = size_needed / sizeof(HMODULE);
1559 
1560   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1561     // Get Full pathname:
1562     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1563                                            filename, sizeof(filename))) {
1564       filename[0] = '\0';
1565     }
1566 
1567     MODULEINFO modinfo;
1568     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1569                                             &modinfo, sizeof(modinfo))) {
1570       modinfo.lpBaseOfDll = NULL;
1571       modinfo.SizeOfImage = 0;
1572     }
1573 
1574     // Invoke callback function
1575     result = callback(filename, (address)modinfo.lpBaseOfDll,
1576                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1577     if (result) break;
1578   }
1579 
1580   CloseHandle(hProcess);
1581   return result;
1582 }
1583 
1584 void os::print_os_info_brief(outputStream* st) {
1585   os::print_os_info(st);
1586 }
1587 
1588 void os::print_os_info(outputStream* st) {
1589 #ifdef ASSERT
1590   char buffer[1024];
1591   DWORD size = sizeof(buffer);
1592   st->print(" HostName: ");
1593   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1594     st->print("%s", buffer);
1595   } else {
1596     st->print("N/A");
1597   }
1598 #endif
1599   st->print(" OS:");
1600   os::win32::print_windows_version(st);
1601 }
1602 
1603 void os::win32::print_windows_version(outputStream* st) {
1604   OSVERSIONINFOEX osvi;
1605   VS_FIXEDFILEINFO *file_info;
1606   TCHAR kernel32_path[MAX_PATH];
1607   UINT len, ret;
1608 
1609   // Use the GetVersionEx information to see if we're on a server or
1610   // workstation edition of Windows. Starting with Windows 8.1 we can't
1611   // trust the OS version information returned by this API.
1612   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1613   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1614   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1615     st->print_cr("Call to GetVersionEx failed");
1616     return;
1617   }
1618   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1619 
1620   // Get the full path to \Windows\System32\kernel32.dll and use that for
1621   // determining what version of Windows we're running on.
1622   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1623   ret = GetSystemDirectory(kernel32_path, len);
1624   if (ret == 0 || ret > len) {
1625     st->print_cr("Call to GetSystemDirectory failed");
1626     return;
1627   }
1628   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1629 
1630   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1631   if (version_size == 0) {
1632     st->print_cr("Call to GetFileVersionInfoSize failed");
1633     return;
1634   }
1635 
1636   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1637   if (version_info == NULL) {
1638     st->print_cr("Failed to allocate version_info");
1639     return;
1640   }
1641 
1642   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1643     os::free(version_info);
1644     st->print_cr("Call to GetFileVersionInfo failed");
1645     return;
1646   }
1647 
1648   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1649     os::free(version_info);
1650     st->print_cr("Call to VerQueryValue failed");
1651     return;
1652   }
1653 
1654   int major_version = HIWORD(file_info->dwProductVersionMS);
1655   int minor_version = LOWORD(file_info->dwProductVersionMS);
1656   int build_number = HIWORD(file_info->dwProductVersionLS);
1657   int build_minor = LOWORD(file_info->dwProductVersionLS);
1658   int os_vers = major_version * 1000 + minor_version;
1659   os::free(version_info);
1660 
1661   st->print(" Windows ");
1662   switch (os_vers) {
1663 
1664   case 6000:
1665     if (is_workstation) {
1666       st->print("Vista");
1667     } else {
1668       st->print("Server 2008");
1669     }
1670     break;
1671 
1672   case 6001:
1673     if (is_workstation) {
1674       st->print("7");
1675     } else {
1676       st->print("Server 2008 R2");
1677     }
1678     break;
1679 
1680   case 6002:
1681     if (is_workstation) {
1682       st->print("8");
1683     } else {
1684       st->print("Server 2012");
1685     }
1686     break;
1687 
1688   case 6003:
1689     if (is_workstation) {
1690       st->print("8.1");
1691     } else {
1692       st->print("Server 2012 R2");
1693     }
1694     break;
1695 
1696   case 6004:
1697     if (is_workstation) {
1698       st->print("10");
1699     } else {
1700       // The server version name of Windows 10 is not known at this time
1701       st->print("%d.%d", major_version, minor_version);
1702     }
1703     break;
1704 
1705   default:
1706     // Unrecognized windows, print out its major and minor versions
1707     st->print("%d.%d", major_version, minor_version);
1708     break;
1709   }
1710 
1711   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1712   // find out whether we are running on 64 bit processor or not
1713   SYSTEM_INFO si;
1714   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1715   os::Kernel32Dll::GetNativeSystemInfo(&si);
1716   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1717     st->print(" , 64 bit");
1718   }
1719 
1720   st->print(" Build %d", build_number);
1721   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1722   st->cr();
1723 }
1724 
1725 void os::pd_print_cpu_info(outputStream* st) {
1726   // Nothing to do for now.
1727 }
1728 
1729 void os::print_memory_info(outputStream* st) {
1730   st->print("Memory:");
1731   st->print(" %dk page", os::vm_page_size()>>10);
1732 
1733   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1734   // value if total memory is larger than 4GB
1735   MEMORYSTATUSEX ms;
1736   ms.dwLength = sizeof(ms);
1737   GlobalMemoryStatusEx(&ms);
1738 
1739   st->print(", physical %uk", os::physical_memory() >> 10);
1740   st->print("(%uk free)", os::available_memory() >> 10);
1741 
1742   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1743   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1744   st->cr();
1745 }
1746 
1747 void os::print_siginfo(outputStream *st, void *siginfo) {
1748   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1749   st->print("siginfo:");
1750   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1751 
1752   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1753       er->NumberParameters >= 2) {
1754     switch (er->ExceptionInformation[0]) {
1755     case 0: st->print(", reading address"); break;
1756     case 1: st->print(", writing address"); break;
1757     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1758                        er->ExceptionInformation[0]);
1759     }
1760     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1761   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1762              er->NumberParameters >= 2 && UseSharedSpaces) {
1763     FileMapInfo* mapinfo = FileMapInfo::current_info();
1764     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1765       st->print("\n\nError accessing class data sharing archive."       \
1766                 " Mapped file inaccessible during execution, "          \
1767                 " possible disk/network problem.");
1768     }
1769   } else {
1770     int num = er->NumberParameters;
1771     if (num > 0) {
1772       st->print(", ExceptionInformation=");
1773       for (int i = 0; i < num; i++) {
1774         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1775       }
1776     }
1777   }
1778   st->cr();
1779 }
1780 
1781 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1782   // do nothing
1783 }
1784 
1785 static char saved_jvm_path[MAX_PATH] = {0};
1786 
1787 // Find the full path to the current module, jvm.dll
1788 void os::jvm_path(char *buf, jint buflen) {
1789   // Error checking.
1790   if (buflen < MAX_PATH) {
1791     assert(false, "must use a large-enough buffer");
1792     buf[0] = '\0';
1793     return;
1794   }
1795   // Lazy resolve the path to current module.
1796   if (saved_jvm_path[0] != 0) {
1797     strcpy(buf, saved_jvm_path);
1798     return;
1799   }
1800 
1801   buf[0] = '\0';
1802   if (Arguments::sun_java_launcher_is_altjvm()) {
1803     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1804     // for a JAVA_HOME environment variable and fix up the path so it
1805     // looks like jvm.dll is installed there (append a fake suffix
1806     // hotspot/jvm.dll).
1807     char* java_home_var = ::getenv("JAVA_HOME");
1808     if (java_home_var != NULL && java_home_var[0] != 0 &&
1809         strlen(java_home_var) < (size_t)buflen) {
1810       strncpy(buf, java_home_var, buflen);
1811 
1812       // determine if this is a legacy image or modules image
1813       // modules image doesn't have "jre" subdirectory
1814       size_t len = strlen(buf);
1815       char* jrebin_p = buf + len;
1816       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1817       if (0 != _access(buf, 0)) {
1818         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1819       }
1820       len = strlen(buf);
1821       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1822     }
1823   }
1824 
1825   if (buf[0] == '\0') {
1826     GetModuleFileName(vm_lib_handle, buf, buflen);
1827   }
1828   strncpy(saved_jvm_path, buf, MAX_PATH);
1829   saved_jvm_path[MAX_PATH - 1] = '\0';
1830 }
1831 
1832 
1833 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1834 #ifndef _WIN64
1835   st->print("_");
1836 #endif
1837 }
1838 
1839 
1840 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1841 #ifndef _WIN64
1842   st->print("@%d", args_size  * sizeof(int));
1843 #endif
1844 }
1845 
1846 // This method is a copy of JDK's sysGetLastErrorString
1847 // from src/windows/hpi/src/system_md.c
1848 
1849 size_t os::lasterror(char* buf, size_t len) {
1850   DWORD errval;
1851 
1852   if ((errval = GetLastError()) != 0) {
1853     // DOS error
1854     size_t n = (size_t)FormatMessage(
1855                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1856                                      NULL,
1857                                      errval,
1858                                      0,
1859                                      buf,
1860                                      (DWORD)len,
1861                                      NULL);
1862     if (n > 3) {
1863       // Drop final '.', CR, LF
1864       if (buf[n - 1] == '\n') n--;
1865       if (buf[n - 1] == '\r') n--;
1866       if (buf[n - 1] == '.') n--;
1867       buf[n] = '\0';
1868     }
1869     return n;
1870   }
1871 
1872   if (errno != 0) {
1873     // C runtime error that has no corresponding DOS error code
1874     const char* s = strerror(errno);
1875     size_t n = strlen(s);
1876     if (n >= len) n = len - 1;
1877     strncpy(buf, s, n);
1878     buf[n] = '\0';
1879     return n;
1880   }
1881 
1882   return 0;
1883 }
1884 
1885 int os::get_last_error() {
1886   DWORD error = GetLastError();
1887   if (error == 0) {
1888     error = errno;
1889   }
1890   return (int)error;
1891 }
1892 
1893 // sun.misc.Signal
1894 // NOTE that this is a workaround for an apparent kernel bug where if
1895 // a signal handler for SIGBREAK is installed then that signal handler
1896 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1897 // See bug 4416763.
1898 static void (*sigbreakHandler)(int) = NULL;
1899 
1900 static void UserHandler(int sig, void *siginfo, void *context) {
1901   os::signal_notify(sig);
1902   // We need to reinstate the signal handler each time...
1903   os::signal(sig, (void*)UserHandler);
1904 }
1905 
1906 void* os::user_handler() {
1907   return (void*) UserHandler;
1908 }
1909 
1910 void* os::signal(int signal_number, void* handler) {
1911   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1912     void (*oldHandler)(int) = sigbreakHandler;
1913     sigbreakHandler = (void (*)(int)) handler;
1914     return (void*) oldHandler;
1915   } else {
1916     return (void*)::signal(signal_number, (void (*)(int))handler);
1917   }
1918 }
1919 
1920 void os::signal_raise(int signal_number) {
1921   raise(signal_number);
1922 }
1923 
1924 // The Win32 C runtime library maps all console control events other than ^C
1925 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1926 // logoff, and shutdown events.  We therefore install our own console handler
1927 // that raises SIGTERM for the latter cases.
1928 //
1929 static BOOL WINAPI consoleHandler(DWORD event) {
1930   switch (event) {
1931   case CTRL_C_EVENT:
1932     if (is_error_reported()) {
1933       // Ctrl-C is pressed during error reporting, likely because the error
1934       // handler fails to abort. Let VM die immediately.
1935       os::die();
1936     }
1937 
1938     os::signal_raise(SIGINT);
1939     return TRUE;
1940     break;
1941   case CTRL_BREAK_EVENT:
1942     if (sigbreakHandler != NULL) {
1943       (*sigbreakHandler)(SIGBREAK);
1944     }
1945     return TRUE;
1946     break;
1947   case CTRL_LOGOFF_EVENT: {
1948     // Don't terminate JVM if it is running in a non-interactive session,
1949     // such as a service process.
1950     USEROBJECTFLAGS flags;
1951     HANDLE handle = GetProcessWindowStation();
1952     if (handle != NULL &&
1953         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1954         sizeof(USEROBJECTFLAGS), NULL)) {
1955       // If it is a non-interactive session, let next handler to deal
1956       // with it.
1957       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1958         return FALSE;
1959       }
1960     }
1961   }
1962   case CTRL_CLOSE_EVENT:
1963   case CTRL_SHUTDOWN_EVENT:
1964     os::signal_raise(SIGTERM);
1965     return TRUE;
1966     break;
1967   default:
1968     break;
1969   }
1970   return FALSE;
1971 }
1972 
1973 // The following code is moved from os.cpp for making this
1974 // code platform specific, which it is by its very nature.
1975 
1976 // Return maximum OS signal used + 1 for internal use only
1977 // Used as exit signal for signal_thread
1978 int os::sigexitnum_pd() {
1979   return NSIG;
1980 }
1981 
1982 // a counter for each possible signal value, including signal_thread exit signal
1983 static volatile jint pending_signals[NSIG+1] = { 0 };
1984 static HANDLE sig_sem = NULL;
1985 
1986 void os::signal_init_pd() {
1987   // Initialize signal structures
1988   memset((void*)pending_signals, 0, sizeof(pending_signals));
1989 
1990   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1991 
1992   // Programs embedding the VM do not want it to attempt to receive
1993   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1994   // shutdown hooks mechanism introduced in 1.3.  For example, when
1995   // the VM is run as part of a Windows NT service (i.e., a servlet
1996   // engine in a web server), the correct behavior is for any console
1997   // control handler to return FALSE, not TRUE, because the OS's
1998   // "final" handler for such events allows the process to continue if
1999   // it is a service (while terminating it if it is not a service).
2000   // To make this behavior uniform and the mechanism simpler, we
2001   // completely disable the VM's usage of these console events if -Xrs
2002   // (=ReduceSignalUsage) is specified.  This means, for example, that
2003   // the CTRL-BREAK thread dump mechanism is also disabled in this
2004   // case.  See bugs 4323062, 4345157, and related bugs.
2005 
2006   if (!ReduceSignalUsage) {
2007     // Add a CTRL-C handler
2008     SetConsoleCtrlHandler(consoleHandler, TRUE);
2009   }
2010 }
2011 
2012 void os::signal_notify(int signal_number) {
2013   BOOL ret;
2014   if (sig_sem != NULL) {
2015     Atomic::inc(&pending_signals[signal_number]);
2016     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2017     assert(ret != 0, "ReleaseSemaphore() failed");
2018   }
2019 }
2020 
2021 static int check_pending_signals(bool wait_for_signal) {
2022   DWORD ret;
2023   while (true) {
2024     for (int i = 0; i < NSIG + 1; i++) {
2025       jint n = pending_signals[i];
2026       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2027         return i;
2028       }
2029     }
2030     if (!wait_for_signal) {
2031       return -1;
2032     }
2033 
2034     JavaThread *thread = JavaThread::current();
2035 
2036     ThreadBlockInVM tbivm(thread);
2037 
2038     bool threadIsSuspended;
2039     do {
2040       thread->set_suspend_equivalent();
2041       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2042       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2043       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2044 
2045       // were we externally suspended while we were waiting?
2046       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2047       if (threadIsSuspended) {
2048         // The semaphore has been incremented, but while we were waiting
2049         // another thread suspended us. We don't want to continue running
2050         // while suspended because that would surprise the thread that
2051         // suspended us.
2052         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053         assert(ret != 0, "ReleaseSemaphore() failed");
2054 
2055         thread->java_suspend_self();
2056       }
2057     } while (threadIsSuspended);
2058   }
2059 }
2060 
2061 int os::signal_lookup() {
2062   return check_pending_signals(false);
2063 }
2064 
2065 int os::signal_wait() {
2066   return check_pending_signals(true);
2067 }
2068 
2069 // Implicit OS exception handling
2070 
2071 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2072                       address handler) {
2073   JavaThread* thread = JavaThread::current();
2074   // Save pc in thread
2075 #ifdef _M_IA64
2076   // Do not blow up if no thread info available.
2077   if (thread) {
2078     // Saving PRECISE pc (with slot information) in thread.
2079     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2080     // Convert precise PC into "Unix" format
2081     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2082     thread->set_saved_exception_pc((address)precise_pc);
2083   }
2084   // Set pc to handler
2085   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2086   // Clear out psr.ri (= Restart Instruction) in order to continue
2087   // at the beginning of the target bundle.
2088   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2089   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2090 #elif _M_AMD64
2091   // Do not blow up if no thread info available.
2092   if (thread) {
2093     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2094   }
2095   // Set pc to handler
2096   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2097 #else
2098   // Do not blow up if no thread info available.
2099   if (thread) {
2100     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2101   }
2102   // Set pc to handler
2103   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2104 #endif
2105 
2106   // Continue the execution
2107   return EXCEPTION_CONTINUE_EXECUTION;
2108 }
2109 
2110 
2111 // Used for PostMortemDump
2112 extern "C" void safepoints();
2113 extern "C" void find(int x);
2114 extern "C" void events();
2115 
2116 // According to Windows API documentation, an illegal instruction sequence should generate
2117 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2118 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2119 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2120 
2121 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2122 
2123 // From "Execution Protection in the Windows Operating System" draft 0.35
2124 // Once a system header becomes available, the "real" define should be
2125 // included or copied here.
2126 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2127 
2128 // Handle NAT Bit consumption on IA64.
2129 #ifdef _M_IA64
2130   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2131 #endif
2132 
2133 // Windows Vista/2008 heap corruption check
2134 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2135 
2136 #define def_excpt(val) #val, val
2137 
2138 struct siglabel {
2139   char *name;
2140   int   number;
2141 };
2142 
2143 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2144 // C++ compiler contain this error code. Because this is a compiler-generated
2145 // error, the code is not listed in the Win32 API header files.
2146 // The code is actually a cryptic mnemonic device, with the initial "E"
2147 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2148 // ASCII values of "msc".
2149 
2150 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2151 
2152 
2153 struct siglabel exceptlabels[] = {
2154     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2155     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2156     def_excpt(EXCEPTION_BREAKPOINT),
2157     def_excpt(EXCEPTION_SINGLE_STEP),
2158     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2159     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2160     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2161     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2162     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2163     def_excpt(EXCEPTION_FLT_OVERFLOW),
2164     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2165     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2166     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2167     def_excpt(EXCEPTION_INT_OVERFLOW),
2168     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2169     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2170     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2171     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2172     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2173     def_excpt(EXCEPTION_STACK_OVERFLOW),
2174     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2175     def_excpt(EXCEPTION_GUARD_PAGE),
2176     def_excpt(EXCEPTION_INVALID_HANDLE),
2177     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2178     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2179 #ifdef _M_IA64
2180     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2181 #endif
2182     NULL, 0
2183 };
2184 
2185 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2186   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2187     if (exceptlabels[i].number == exception_code) {
2188       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2189       return buf;
2190     }
2191   }
2192 
2193   return NULL;
2194 }
2195 
2196 //-----------------------------------------------------------------------------
2197 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2198   // handle exception caused by idiv; should only happen for -MinInt/-1
2199   // (division by zero is handled explicitly)
2200 #ifdef _M_IA64
2201   assert(0, "Fix Handle_IDiv_Exception");
2202 #elif _M_AMD64
2203   PCONTEXT ctx = exceptionInfo->ContextRecord;
2204   address pc = (address)ctx->Rip;
2205   assert(pc[0] == 0xF7, "not an idiv opcode");
2206   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2207   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2208   // set correct result values and continue after idiv instruction
2209   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2210   ctx->Rax = (DWORD)min_jint;      // result
2211   ctx->Rdx = (DWORD)0;             // remainder
2212   // Continue the execution
2213 #else
2214   PCONTEXT ctx = exceptionInfo->ContextRecord;
2215   address pc = (address)ctx->Eip;
2216   assert(pc[0] == 0xF7, "not an idiv opcode");
2217   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2218   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2219   // set correct result values and continue after idiv instruction
2220   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2221   ctx->Eax = (DWORD)min_jint;      // result
2222   ctx->Edx = (DWORD)0;             // remainder
2223   // Continue the execution
2224 #endif
2225   return EXCEPTION_CONTINUE_EXECUTION;
2226 }
2227 
2228 //-----------------------------------------------------------------------------
2229 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2230   PCONTEXT ctx = exceptionInfo->ContextRecord;
2231 #ifndef  _WIN64
2232   // handle exception caused by native method modifying control word
2233   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2234 
2235   switch (exception_code) {
2236   case EXCEPTION_FLT_DENORMAL_OPERAND:
2237   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2238   case EXCEPTION_FLT_INEXACT_RESULT:
2239   case EXCEPTION_FLT_INVALID_OPERATION:
2240   case EXCEPTION_FLT_OVERFLOW:
2241   case EXCEPTION_FLT_STACK_CHECK:
2242   case EXCEPTION_FLT_UNDERFLOW:
2243     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2244     if (fp_control_word != ctx->FloatSave.ControlWord) {
2245       // Restore FPCW and mask out FLT exceptions
2246       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2247       // Mask out pending FLT exceptions
2248       ctx->FloatSave.StatusWord &=  0xffffff00;
2249       return EXCEPTION_CONTINUE_EXECUTION;
2250     }
2251   }
2252 
2253   if (prev_uef_handler != NULL) {
2254     // We didn't handle this exception so pass it to the previous
2255     // UnhandledExceptionFilter.
2256     return (prev_uef_handler)(exceptionInfo);
2257   }
2258 #else // !_WIN64
2259   // On Windows, the mxcsr control bits are non-volatile across calls
2260   // See also CR 6192333
2261   //
2262   jint MxCsr = INITIAL_MXCSR;
2263   // we can't use StubRoutines::addr_mxcsr_std()
2264   // because in Win64 mxcsr is not saved there
2265   if (MxCsr != ctx->MxCsr) {
2266     ctx->MxCsr = MxCsr;
2267     return EXCEPTION_CONTINUE_EXECUTION;
2268   }
2269 #endif // !_WIN64
2270 
2271   return EXCEPTION_CONTINUE_SEARCH;
2272 }
2273 
2274 static inline void report_error(Thread* t, DWORD exception_code,
2275                                 address addr, void* siginfo, void* context) {
2276   VMError err(t, exception_code, addr, siginfo, context);
2277   err.report_and_die();
2278 
2279   // If UseOsErrorReporting, this will return here and save the error file
2280   // somewhere where we can find it in the minidump.
2281 }
2282 
2283 //-----------------------------------------------------------------------------
2284 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2285   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2286   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2287 #ifdef _M_IA64
2288   // On Itanium, we need the "precise pc", which has the slot number coded
2289   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2290   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2291   // Convert the pc to "Unix format", which has the slot number coded
2292   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2293   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2294   // information is saved in the Unix format.
2295   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2296 #elif _M_AMD64
2297   address pc = (address) exceptionInfo->ContextRecord->Rip;
2298 #else
2299   address pc = (address) exceptionInfo->ContextRecord->Eip;
2300 #endif
2301   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2302 
2303   // Handle SafeFetch32 and SafeFetchN exceptions.
2304   if (StubRoutines::is_safefetch_fault(pc)) {
2305     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2306   }
2307 
2308 #ifndef _WIN64
2309   // Execution protection violation - win32 running on AMD64 only
2310   // Handled first to avoid misdiagnosis as a "normal" access violation;
2311   // This is safe to do because we have a new/unique ExceptionInformation
2312   // code for this condition.
2313   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2314     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2315     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2316     address addr = (address) exceptionRecord->ExceptionInformation[1];
2317 
2318     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2319       int page_size = os::vm_page_size();
2320 
2321       // Make sure the pc and the faulting address are sane.
2322       //
2323       // If an instruction spans a page boundary, and the page containing
2324       // the beginning of the instruction is executable but the following
2325       // page is not, the pc and the faulting address might be slightly
2326       // different - we still want to unguard the 2nd page in this case.
2327       //
2328       // 15 bytes seems to be a (very) safe value for max instruction size.
2329       bool pc_is_near_addr =
2330         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2331       bool instr_spans_page_boundary =
2332         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2333                          (intptr_t) page_size) > 0);
2334 
2335       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2336         static volatile address last_addr =
2337           (address) os::non_memory_address_word();
2338 
2339         // In conservative mode, don't unguard unless the address is in the VM
2340         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2341             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2342 
2343           // Set memory to RWX and retry
2344           address page_start =
2345             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2346           bool res = os::protect_memory((char*) page_start, page_size,
2347                                         os::MEM_PROT_RWX);
2348 
2349           if (PrintMiscellaneous && Verbose) {
2350             char buf[256];
2351             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2352                          "at " INTPTR_FORMAT
2353                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2354                          page_start, (res ? "success" : strerror(errno)));
2355             tty->print_raw_cr(buf);
2356           }
2357 
2358           // Set last_addr so if we fault again at the same address, we don't
2359           // end up in an endless loop.
2360           //
2361           // There are two potential complications here.  Two threads trapping
2362           // at the same address at the same time could cause one of the
2363           // threads to think it already unguarded, and abort the VM.  Likely
2364           // very rare.
2365           //
2366           // The other race involves two threads alternately trapping at
2367           // different addresses and failing to unguard the page, resulting in
2368           // an endless loop.  This condition is probably even more unlikely
2369           // than the first.
2370           //
2371           // Although both cases could be avoided by using locks or thread
2372           // local last_addr, these solutions are unnecessary complication:
2373           // this handler is a best-effort safety net, not a complete solution.
2374           // It is disabled by default and should only be used as a workaround
2375           // in case we missed any no-execute-unsafe VM code.
2376 
2377           last_addr = addr;
2378 
2379           return EXCEPTION_CONTINUE_EXECUTION;
2380         }
2381       }
2382 
2383       // Last unguard failed or not unguarding
2384       tty->print_raw_cr("Execution protection violation");
2385       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2386                    exceptionInfo->ContextRecord);
2387       return EXCEPTION_CONTINUE_SEARCH;
2388     }
2389   }
2390 #endif // _WIN64
2391 
2392   // Check to see if we caught the safepoint code in the
2393   // process of write protecting the memory serialization page.
2394   // It write enables the page immediately after protecting it
2395   // so just return.
2396   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2397     JavaThread* thread = (JavaThread*) t;
2398     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2399     address addr = (address) exceptionRecord->ExceptionInformation[1];
2400     if (os::is_memory_serialize_page(thread, addr)) {
2401       // Block current thread until the memory serialize page permission restored.
2402       os::block_on_serialize_page_trap();
2403       return EXCEPTION_CONTINUE_EXECUTION;
2404     }
2405   }
2406 
2407   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2408       VM_Version::is_cpuinfo_segv_addr(pc)) {
2409     // Verify that OS save/restore AVX registers.
2410     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2411   }
2412 
2413   if (t != NULL && t->is_Java_thread()) {
2414     JavaThread* thread = (JavaThread*) t;
2415     bool in_java = thread->thread_state() == _thread_in_Java;
2416 
2417     // Handle potential stack overflows up front.
2418     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2419       if (os::uses_stack_guard_pages()) {
2420 #ifdef _M_IA64
2421         // Use guard page for register stack.
2422         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2423         address addr = (address) exceptionRecord->ExceptionInformation[1];
2424         // Check for a register stack overflow on Itanium
2425         if (thread->addr_inside_register_stack_red_zone(addr)) {
2426           // Fatal red zone violation happens if the Java program
2427           // catches a StackOverflow error and does so much processing
2428           // that it runs beyond the unprotected yellow guard zone. As
2429           // a result, we are out of here.
2430           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2431         } else if(thread->addr_inside_register_stack(addr)) {
2432           // Disable the yellow zone which sets the state that
2433           // we've got a stack overflow problem.
2434           if (thread->stack_yellow_zone_enabled()) {
2435             thread->disable_stack_yellow_zone();
2436           }
2437           // Give us some room to process the exception.
2438           thread->disable_register_stack_guard();
2439           // Tracing with +Verbose.
2440           if (Verbose) {
2441             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2442             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2443             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2444             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2445                           thread->register_stack_base(),
2446                           thread->register_stack_base() + thread->stack_size());
2447           }
2448 
2449           // Reguard the permanent register stack red zone just to be sure.
2450           // We saw Windows silently disabling this without telling us.
2451           thread->enable_register_stack_red_zone();
2452 
2453           return Handle_Exception(exceptionInfo,
2454                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2455         }
2456 #endif
2457         if (thread->stack_yellow_zone_enabled()) {
2458           // Yellow zone violation.  The o/s has unprotected the first yellow
2459           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2460           // update the enabled status, even if the zone contains only one page.
2461           thread->disable_stack_yellow_zone();
2462           // If not in java code, return and hope for the best.
2463           return in_java
2464               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2465               :  EXCEPTION_CONTINUE_EXECUTION;
2466         } else {
2467           // Fatal red zone violation.
2468           thread->disable_stack_red_zone();
2469           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2470           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2471                        exceptionInfo->ContextRecord);
2472           return EXCEPTION_CONTINUE_SEARCH;
2473         }
2474       } else if (in_java) {
2475         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2476         // a one-time-only guard page, which it has released to us.  The next
2477         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2478         return Handle_Exception(exceptionInfo,
2479                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2480       } else {
2481         // Can only return and hope for the best.  Further stack growth will
2482         // result in an ACCESS_VIOLATION.
2483         return EXCEPTION_CONTINUE_EXECUTION;
2484       }
2485     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2486       // Either stack overflow or null pointer exception.
2487       if (in_java) {
2488         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2489         address addr = (address) exceptionRecord->ExceptionInformation[1];
2490         address stack_end = thread->stack_base() - thread->stack_size();
2491         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2492           // Stack overflow.
2493           assert(!os::uses_stack_guard_pages(),
2494                  "should be caught by red zone code above.");
2495           return Handle_Exception(exceptionInfo,
2496                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2497         }
2498         // Check for safepoint polling and implicit null
2499         // We only expect null pointers in the stubs (vtable)
2500         // the rest are checked explicitly now.
2501         CodeBlob* cb = CodeCache::find_blob(pc);
2502         if (cb != NULL) {
2503           if (os::is_poll_address(addr)) {
2504             address stub = SharedRuntime::get_poll_stub(pc);
2505             return Handle_Exception(exceptionInfo, stub);
2506           }
2507         }
2508         {
2509 #ifdef _WIN64
2510           // If it's a legal stack address map the entire region in
2511           //
2512           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2513           address addr = (address) exceptionRecord->ExceptionInformation[1];
2514           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2515             addr = (address)((uintptr_t)addr &
2516                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2517             os::commit_memory((char *)addr, thread->stack_base() - addr,
2518                               !ExecMem);
2519             return EXCEPTION_CONTINUE_EXECUTION;
2520           } else
2521 #endif
2522           {
2523             // Null pointer exception.
2524 #ifdef _M_IA64
2525             // Process implicit null checks in compiled code. Note: Implicit null checks
2526             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2527             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2528               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2529               // Handle implicit null check in UEP method entry
2530               if (cb && (cb->is_frame_complete_at(pc) ||
2531                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2532                 if (Verbose) {
2533                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2534                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2535                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2536                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2537                                 *(bundle_start + 1), *bundle_start);
2538                 }
2539                 return Handle_Exception(exceptionInfo,
2540                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2541               }
2542             }
2543 
2544             // Implicit null checks were processed above.  Hence, we should not reach
2545             // here in the usual case => die!
2546             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2547             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2548                          exceptionInfo->ContextRecord);
2549             return EXCEPTION_CONTINUE_SEARCH;
2550 
2551 #else // !IA64
2552 
2553             // Windows 98 reports faulting addresses incorrectly
2554             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2555                 !os::win32::is_nt()) {
2556               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2557               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2558             }
2559             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2560                          exceptionInfo->ContextRecord);
2561             return EXCEPTION_CONTINUE_SEARCH;
2562 #endif
2563           }
2564         }
2565       }
2566 
2567 #ifdef _WIN64
2568       // Special care for fast JNI field accessors.
2569       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2570       // in and the heap gets shrunk before the field access.
2571       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2572         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2573         if (addr != (address)-1) {
2574           return Handle_Exception(exceptionInfo, addr);
2575         }
2576       }
2577 #endif
2578 
2579       // Stack overflow or null pointer exception in native code.
2580       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2581                    exceptionInfo->ContextRecord);
2582       return EXCEPTION_CONTINUE_SEARCH;
2583     } // /EXCEPTION_ACCESS_VIOLATION
2584     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2585 #if defined _M_IA64
2586     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2587               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2588       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2589 
2590       // Compiled method patched to be non entrant? Following conditions must apply:
2591       // 1. must be first instruction in bundle
2592       // 2. must be a break instruction with appropriate code
2593       if ((((uint64_t) pc & 0x0F) == 0) &&
2594           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2595         return Handle_Exception(exceptionInfo,
2596                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2597       }
2598     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2599 #endif
2600 
2601 
2602     if (in_java) {
2603       switch (exception_code) {
2604       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2605         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2606 
2607       case EXCEPTION_INT_OVERFLOW:
2608         return Handle_IDiv_Exception(exceptionInfo);
2609 
2610       } // switch
2611     }
2612     if (((thread->thread_state() == _thread_in_Java) ||
2613          (thread->thread_state() == _thread_in_native)) &&
2614          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2615       LONG result=Handle_FLT_Exception(exceptionInfo);
2616       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2617     }
2618   }
2619 
2620   if (exception_code != EXCEPTION_BREAKPOINT) {
2621     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2622                  exceptionInfo->ContextRecord);
2623   }
2624   return EXCEPTION_CONTINUE_SEARCH;
2625 }
2626 
2627 #ifndef _WIN64
2628 // Special care for fast JNI accessors.
2629 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2630 // the heap gets shrunk before the field access.
2631 // Need to install our own structured exception handler since native code may
2632 // install its own.
2633 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2634   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2635   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2636     address pc = (address) exceptionInfo->ContextRecord->Eip;
2637     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2638     if (addr != (address)-1) {
2639       return Handle_Exception(exceptionInfo, addr);
2640     }
2641   }
2642   return EXCEPTION_CONTINUE_SEARCH;
2643 }
2644 
2645 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2646   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2647                                                      jobject obj,           \
2648                                                      jfieldID fieldID) {    \
2649     __try {                                                                 \
2650       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2651                                                                  obj,       \
2652                                                                  fieldID);  \
2653     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2654                                               _exception_info())) {         \
2655     }                                                                       \
2656     return 0;                                                               \
2657   }
2658 
2659 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2660 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2661 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2662 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2663 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2664 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2665 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2666 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2667 
2668 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2669   switch (type) {
2670   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2671   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2672   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2673   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2674   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2675   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2676   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2677   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2678   default:        ShouldNotReachHere();
2679   }
2680   return (address)-1;
2681 }
2682 #endif
2683 
2684 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2685   // Install a win32 structured exception handler around the test
2686   // function call so the VM can generate an error dump if needed.
2687   __try {
2688     (*funcPtr)();
2689   } __except(topLevelExceptionFilter(
2690                                      (_EXCEPTION_POINTERS*)_exception_info())) {
2691     // Nothing to do.
2692   }
2693 }
2694 
2695 // Virtual Memory
2696 
2697 int os::vm_page_size() { return os::win32::vm_page_size(); }
2698 int os::vm_allocation_granularity() {
2699   return os::win32::vm_allocation_granularity();
2700 }
2701 
2702 // Windows large page support is available on Windows 2003. In order to use
2703 // large page memory, the administrator must first assign additional privilege
2704 // to the user:
2705 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2706 //   + select Local Policies -> User Rights Assignment
2707 //   + double click "Lock pages in memory", add users and/or groups
2708 //   + reboot
2709 // Note the above steps are needed for administrator as well, as administrators
2710 // by default do not have the privilege to lock pages in memory.
2711 //
2712 // Note about Windows 2003: although the API supports committing large page
2713 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2714 // scenario, I found through experiment it only uses large page if the entire
2715 // memory region is reserved and committed in a single VirtualAlloc() call.
2716 // This makes Windows large page support more or less like Solaris ISM, in
2717 // that the entire heap must be committed upfront. This probably will change
2718 // in the future, if so the code below needs to be revisited.
2719 
2720 #ifndef MEM_LARGE_PAGES
2721   #define MEM_LARGE_PAGES 0x20000000
2722 #endif
2723 
2724 static HANDLE    _hProcess;
2725 static HANDLE    _hToken;
2726 
2727 // Container for NUMA node list info
2728 class NUMANodeListHolder {
2729  private:
2730   int *_numa_used_node_list;  // allocated below
2731   int _numa_used_node_count;
2732 
2733   void free_node_list() {
2734     if (_numa_used_node_list != NULL) {
2735       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2736     }
2737   }
2738 
2739  public:
2740   NUMANodeListHolder() {
2741     _numa_used_node_count = 0;
2742     _numa_used_node_list = NULL;
2743     // do rest of initialization in build routine (after function pointers are set up)
2744   }
2745 
2746   ~NUMANodeListHolder() {
2747     free_node_list();
2748   }
2749 
2750   bool build() {
2751     DWORD_PTR proc_aff_mask;
2752     DWORD_PTR sys_aff_mask;
2753     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2754     ULONG highest_node_number;
2755     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2756     free_node_list();
2757     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2758     for (unsigned int i = 0; i <= highest_node_number; i++) {
2759       ULONGLONG proc_mask_numa_node;
2760       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2761       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2762         _numa_used_node_list[_numa_used_node_count++] = i;
2763       }
2764     }
2765     return (_numa_used_node_count > 1);
2766   }
2767 
2768   int get_count() { return _numa_used_node_count; }
2769   int get_node_list_entry(int n) {
2770     // for indexes out of range, returns -1
2771     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2772   }
2773 
2774 } numa_node_list_holder;
2775 
2776 
2777 
2778 static size_t _large_page_size = 0;
2779 
2780 static bool resolve_functions_for_large_page_init() {
2781   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2782     os::Advapi32Dll::AdvapiAvailable();
2783 }
2784 
2785 static bool request_lock_memory_privilege() {
2786   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2787                           os::current_process_id());
2788 
2789   LUID luid;
2790   if (_hProcess != NULL &&
2791       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2792       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2793 
2794     TOKEN_PRIVILEGES tp;
2795     tp.PrivilegeCount = 1;
2796     tp.Privileges[0].Luid = luid;
2797     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2798 
2799     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2800     // privilege. Check GetLastError() too. See MSDN document.
2801     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2802         (GetLastError() == ERROR_SUCCESS)) {
2803       return true;
2804     }
2805   }
2806 
2807   return false;
2808 }
2809 
2810 static void cleanup_after_large_page_init() {
2811   if (_hProcess) CloseHandle(_hProcess);
2812   _hProcess = NULL;
2813   if (_hToken) CloseHandle(_hToken);
2814   _hToken = NULL;
2815 }
2816 
2817 static bool numa_interleaving_init() {
2818   bool success = false;
2819   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2820 
2821   // print a warning if UseNUMAInterleaving flag is specified on command line
2822   bool warn_on_failure = use_numa_interleaving_specified;
2823 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2824 
2825   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2826   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2827   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2828 
2829   if (os::Kernel32Dll::NumaCallsAvailable()) {
2830     if (numa_node_list_holder.build()) {
2831       if (PrintMiscellaneous && Verbose) {
2832         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2833         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2834           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2835         }
2836         tty->print("\n");
2837       }
2838       success = true;
2839     } else {
2840       WARN("Process does not cover multiple NUMA nodes.");
2841     }
2842   } else {
2843     WARN("NUMA Interleaving is not supported by the operating system.");
2844   }
2845   if (!success) {
2846     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2847   }
2848   return success;
2849 #undef WARN
2850 }
2851 
2852 // this routine is used whenever we need to reserve a contiguous VA range
2853 // but we need to make separate VirtualAlloc calls for each piece of the range
2854 // Reasons for doing this:
2855 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2856 //  * UseNUMAInterleaving requires a separate node for each piece
2857 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2858                                          DWORD prot,
2859                                          bool should_inject_error = false) {
2860   char * p_buf;
2861   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2862   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2863   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2864 
2865   // first reserve enough address space in advance since we want to be
2866   // able to break a single contiguous virtual address range into multiple
2867   // large page commits but WS2003 does not allow reserving large page space
2868   // so we just use 4K pages for reserve, this gives us a legal contiguous
2869   // address space. then we will deallocate that reservation, and re alloc
2870   // using large pages
2871   const size_t size_of_reserve = bytes + chunk_size;
2872   if (bytes > size_of_reserve) {
2873     // Overflowed.
2874     return NULL;
2875   }
2876   p_buf = (char *) VirtualAlloc(addr,
2877                                 size_of_reserve,  // size of Reserve
2878                                 MEM_RESERVE,
2879                                 PAGE_READWRITE);
2880   // If reservation failed, return NULL
2881   if (p_buf == NULL) return NULL;
2882   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2883   os::release_memory(p_buf, bytes + chunk_size);
2884 
2885   // we still need to round up to a page boundary (in case we are using large pages)
2886   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2887   // instead we handle this in the bytes_to_rq computation below
2888   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2889 
2890   // now go through and allocate one chunk at a time until all bytes are
2891   // allocated
2892   size_t  bytes_remaining = bytes;
2893   // An overflow of align_size_up() would have been caught above
2894   // in the calculation of size_of_reserve.
2895   char * next_alloc_addr = p_buf;
2896   HANDLE hProc = GetCurrentProcess();
2897 
2898 #ifdef ASSERT
2899   // Variable for the failure injection
2900   long ran_num = os::random();
2901   size_t fail_after = ran_num % bytes;
2902 #endif
2903 
2904   int count=0;
2905   while (bytes_remaining) {
2906     // select bytes_to_rq to get to the next chunk_size boundary
2907 
2908     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2909     // Note allocate and commit
2910     char * p_new;
2911 
2912 #ifdef ASSERT
2913     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2914 #else
2915     const bool inject_error_now = false;
2916 #endif
2917 
2918     if (inject_error_now) {
2919       p_new = NULL;
2920     } else {
2921       if (!UseNUMAInterleaving) {
2922         p_new = (char *) VirtualAlloc(next_alloc_addr,
2923                                       bytes_to_rq,
2924                                       flags,
2925                                       prot);
2926       } else {
2927         // get the next node to use from the used_node_list
2928         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2929         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2930         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2931                                                             next_alloc_addr,
2932                                                             bytes_to_rq,
2933                                                             flags,
2934                                                             prot,
2935                                                             node);
2936       }
2937     }
2938 
2939     if (p_new == NULL) {
2940       // Free any allocated pages
2941       if (next_alloc_addr > p_buf) {
2942         // Some memory was committed so release it.
2943         size_t bytes_to_release = bytes - bytes_remaining;
2944         // NMT has yet to record any individual blocks, so it
2945         // need to create a dummy 'reserve' record to match
2946         // the release.
2947         MemTracker::record_virtual_memory_reserve((address)p_buf,
2948                                                   bytes_to_release, CALLER_PC);
2949         os::release_memory(p_buf, bytes_to_release);
2950       }
2951 #ifdef ASSERT
2952       if (should_inject_error) {
2953         if (TracePageSizes && Verbose) {
2954           tty->print_cr("Reserving pages individually failed.");
2955         }
2956       }
2957 #endif
2958       return NULL;
2959     }
2960 
2961     bytes_remaining -= bytes_to_rq;
2962     next_alloc_addr += bytes_to_rq;
2963     count++;
2964   }
2965   // Although the memory is allocated individually, it is returned as one.
2966   // NMT records it as one block.
2967   if ((flags & MEM_COMMIT) != 0) {
2968     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2969   } else {
2970     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2971   }
2972 
2973   // made it this far, success
2974   return p_buf;
2975 }
2976 
2977 
2978 
2979 void os::large_page_init() {
2980   if (!UseLargePages) return;
2981 
2982   // print a warning if any large page related flag is specified on command line
2983   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2984                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2985   bool success = false;
2986 
2987 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2988   if (resolve_functions_for_large_page_init()) {
2989     if (request_lock_memory_privilege()) {
2990       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2991       if (s) {
2992 #if defined(IA32) || defined(AMD64)
2993         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2994           WARN("JVM cannot use large pages bigger than 4mb.");
2995         } else {
2996 #endif
2997           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2998             _large_page_size = LargePageSizeInBytes;
2999           } else {
3000             _large_page_size = s;
3001           }
3002           success = true;
3003 #if defined(IA32) || defined(AMD64)
3004         }
3005 #endif
3006       } else {
3007         WARN("Large page is not supported by the processor.");
3008       }
3009     } else {
3010       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3011     }
3012   } else {
3013     WARN("Large page is not supported by the operating system.");
3014   }
3015 #undef WARN
3016 
3017   const size_t default_page_size = (size_t) vm_page_size();
3018   if (success && _large_page_size > default_page_size) {
3019     _page_sizes[0] = _large_page_size;
3020     _page_sizes[1] = default_page_size;
3021     _page_sizes[2] = 0;
3022   }
3023 
3024   cleanup_after_large_page_init();
3025   UseLargePages = success;
3026 }
3027 
3028 // On win32, one cannot release just a part of reserved memory, it's an
3029 // all or nothing deal.  When we split a reservation, we must break the
3030 // reservation into two reservations.
3031 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3032                                   bool realloc) {
3033   if (size > 0) {
3034     release_memory(base, size);
3035     if (realloc) {
3036       reserve_memory(split, base);
3037     }
3038     if (size != split) {
3039       reserve_memory(size - split, base + split);
3040     }
3041   }
3042 }
3043 
3044 // Multiple threads can race in this code but it's not possible to unmap small sections of
3045 // virtual space to get requested alignment, like posix-like os's.
3046 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3047 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3048   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3049          "Alignment must be a multiple of allocation granularity (page size)");
3050   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3051 
3052   size_t extra_size = size + alignment;
3053   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3054 
3055   char* aligned_base = NULL;
3056 
3057   do {
3058     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3059     if (extra_base == NULL) {
3060       return NULL;
3061     }
3062     // Do manual alignment
3063     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3064 
3065     os::release_memory(extra_base, extra_size);
3066 
3067     aligned_base = os::reserve_memory(size, aligned_base);
3068 
3069   } while (aligned_base == NULL);
3070 
3071   return aligned_base;
3072 }
3073 
3074 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3075   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3076          "reserve alignment");
3077   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3078   char* res;
3079   // note that if UseLargePages is on, all the areas that require interleaving
3080   // will go thru reserve_memory_special rather than thru here.
3081   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3082   if (!use_individual) {
3083     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3084   } else {
3085     elapsedTimer reserveTimer;
3086     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3087     // in numa interleaving, we have to allocate pages individually
3088     // (well really chunks of NUMAInterleaveGranularity size)
3089     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3090     if (res == NULL) {
3091       warning("NUMA page allocation failed");
3092     }
3093     if (Verbose && PrintMiscellaneous) {
3094       reserveTimer.stop();
3095       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3096                     reserveTimer.milliseconds(), reserveTimer.ticks());
3097     }
3098   }
3099   assert(res == NULL || addr == NULL || addr == res,
3100          "Unexpected address from reserve.");
3101 
3102   return res;
3103 }
3104 
3105 // Reserve memory at an arbitrary address, only if that area is
3106 // available (and not reserved for something else).
3107 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3108   // Windows os::reserve_memory() fails of the requested address range is
3109   // not avilable.
3110   return reserve_memory(bytes, requested_addr);
3111 }
3112 
3113 size_t os::large_page_size() {
3114   return _large_page_size;
3115 }
3116 
3117 bool os::can_commit_large_page_memory() {
3118   // Windows only uses large page memory when the entire region is reserved
3119   // and committed in a single VirtualAlloc() call. This may change in the
3120   // future, but with Windows 2003 it's not possible to commit on demand.
3121   return false;
3122 }
3123 
3124 bool os::can_execute_large_page_memory() {
3125   return true;
3126 }
3127 
3128 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3129                                  bool exec) {
3130   assert(UseLargePages, "only for large pages");
3131 
3132   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3133     return NULL; // Fallback to small pages.
3134   }
3135 
3136   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3137   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3138 
3139   // with large pages, there are two cases where we need to use Individual Allocation
3140   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3141   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3142   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3143     if (TracePageSizes && Verbose) {
3144       tty->print_cr("Reserving large pages individually.");
3145     }
3146     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3147     if (p_buf == NULL) {
3148       // give an appropriate warning message
3149       if (UseNUMAInterleaving) {
3150         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3151       }
3152       if (UseLargePagesIndividualAllocation) {
3153         warning("Individually allocated large pages failed, "
3154                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3155       }
3156       return NULL;
3157     }
3158 
3159     return p_buf;
3160 
3161   } else {
3162     if (TracePageSizes && Verbose) {
3163       tty->print_cr("Reserving large pages in a single large chunk.");
3164     }
3165     // normal policy just allocate it all at once
3166     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3167     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3168     if (res != NULL) {
3169       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3170     }
3171 
3172     return res;
3173   }
3174 }
3175 
3176 bool os::release_memory_special(char* base, size_t bytes) {
3177   assert(base != NULL, "Sanity check");
3178   return release_memory(base, bytes);
3179 }
3180 
3181 void os::print_statistics() {
3182 }
3183 
3184 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3185   int err = os::get_last_error();
3186   char buf[256];
3187   size_t buf_len = os::lasterror(buf, sizeof(buf));
3188   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3189           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3190           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3191 }
3192 
3193 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3194   if (bytes == 0) {
3195     // Don't bother the OS with noops.
3196     return true;
3197   }
3198   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3199   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3200   // Don't attempt to print anything if the OS call fails. We're
3201   // probably low on resources, so the print itself may cause crashes.
3202 
3203   // unless we have NUMAInterleaving enabled, the range of a commit
3204   // is always within a reserve covered by a single VirtualAlloc
3205   // in that case we can just do a single commit for the requested size
3206   if (!UseNUMAInterleaving) {
3207     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3208       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3209       return false;
3210     }
3211     if (exec) {
3212       DWORD oldprot;
3213       // Windows doc says to use VirtualProtect to get execute permissions
3214       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3215         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3216         return false;
3217       }
3218     }
3219     return true;
3220   } else {
3221 
3222     // when NUMAInterleaving is enabled, the commit might cover a range that
3223     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3224     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3225     // returns represents the number of bytes that can be committed in one step.
3226     size_t bytes_remaining = bytes;
3227     char * next_alloc_addr = addr;
3228     while (bytes_remaining > 0) {
3229       MEMORY_BASIC_INFORMATION alloc_info;
3230       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3231       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3232       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3233                        PAGE_READWRITE) == NULL) {
3234         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3235                                             exec);)
3236         return false;
3237       }
3238       if (exec) {
3239         DWORD oldprot;
3240         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3241                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3242           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3243                                               exec);)
3244           return false;
3245         }
3246       }
3247       bytes_remaining -= bytes_to_rq;
3248       next_alloc_addr += bytes_to_rq;
3249     }
3250   }
3251   // if we made it this far, return true
3252   return true;
3253 }
3254 
3255 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3256                           bool exec) {
3257   // alignment_hint is ignored on this OS
3258   return pd_commit_memory(addr, size, exec);
3259 }
3260 
3261 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3262                                   const char* mesg) {
3263   assert(mesg != NULL, "mesg must be specified");
3264   if (!pd_commit_memory(addr, size, exec)) {
3265     warn_fail_commit_memory(addr, size, exec);
3266     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3267   }
3268 }
3269 
3270 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3271                                   size_t alignment_hint, bool exec,
3272                                   const char* mesg) {
3273   // alignment_hint is ignored on this OS
3274   pd_commit_memory_or_exit(addr, size, exec, mesg);
3275 }
3276 
3277 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3278   if (bytes == 0) {
3279     // Don't bother the OS with noops.
3280     return true;
3281   }
3282   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3283   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3284   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3285 }
3286 
3287 bool os::pd_release_memory(char* addr, size_t bytes) {
3288   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3289 }
3290 
3291 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3292   return os::commit_memory(addr, size, !ExecMem);
3293 }
3294 
3295 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3296   return os::uncommit_memory(addr, size);
3297 }
3298 
3299 // Set protections specified
3300 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3301                         bool is_committed) {
3302   unsigned int p = 0;
3303   switch (prot) {
3304   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3305   case MEM_PROT_READ: p = PAGE_READONLY; break;
3306   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3307   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3308   default:
3309     ShouldNotReachHere();
3310   }
3311 
3312   DWORD old_status;
3313 
3314   // Strange enough, but on Win32 one can change protection only for committed
3315   // memory, not a big deal anyway, as bytes less or equal than 64K
3316   if (!is_committed) {
3317     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3318                           "cannot commit protection page");
3319   }
3320   // One cannot use os::guard_memory() here, as on Win32 guard page
3321   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3322   //
3323   // Pages in the region become guard pages. Any attempt to access a guard page
3324   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3325   // the guard page status. Guard pages thus act as a one-time access alarm.
3326   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3327 }
3328 
3329 bool os::guard_memory(char* addr, size_t bytes) {
3330   DWORD old_status;
3331   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3332 }
3333 
3334 bool os::unguard_memory(char* addr, size_t bytes) {
3335   DWORD old_status;
3336   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3337 }
3338 
3339 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3340 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3341 void os::numa_make_global(char *addr, size_t bytes)    { }
3342 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3343 bool os::numa_topology_changed()                       { return false; }
3344 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3345 int os::numa_get_group_id()                            { return 0; }
3346 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3347   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3348     // Provide an answer for UMA systems
3349     ids[0] = 0;
3350     return 1;
3351   } else {
3352     // check for size bigger than actual groups_num
3353     size = MIN2(size, numa_get_groups_num());
3354     for (int i = 0; i < (int)size; i++) {
3355       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3356     }
3357     return size;
3358   }
3359 }
3360 
3361 bool os::get_page_info(char *start, page_info* info) {
3362   return false;
3363 }
3364 
3365 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3366                      page_info* page_found) {
3367   return end;
3368 }
3369 
3370 char* os::non_memory_address_word() {
3371   // Must never look like an address returned by reserve_memory,
3372   // even in its subfields (as defined by the CPU immediate fields,
3373   // if the CPU splits constants across multiple instructions).
3374   return (char*)-1;
3375 }
3376 
3377 #define MAX_ERROR_COUNT 100
3378 #define SYS_THREAD_ERROR 0xffffffffUL
3379 
3380 void os::pd_start_thread(Thread* thread) {
3381   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3382   // Returns previous suspend state:
3383   // 0:  Thread was not suspended
3384   // 1:  Thread is running now
3385   // >1: Thread is still suspended.
3386   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3387 }
3388 
3389 class HighResolutionInterval : public CHeapObj<mtThread> {
3390   // The default timer resolution seems to be 10 milliseconds.
3391   // (Where is this written down?)
3392   // If someone wants to sleep for only a fraction of the default,
3393   // then we set the timer resolution down to 1 millisecond for
3394   // the duration of their interval.
3395   // We carefully set the resolution back, since otherwise we
3396   // seem to incur an overhead (3%?) that we don't need.
3397   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3398   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3399   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3400   // timeBeginPeriod() if the relative error exceeded some threshold.
3401   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3402   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3403   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3404   // resolution timers running.
3405  private:
3406   jlong resolution;
3407  public:
3408   HighResolutionInterval(jlong ms) {
3409     resolution = ms % 10L;
3410     if (resolution != 0) {
3411       MMRESULT result = timeBeginPeriod(1L);
3412     }
3413   }
3414   ~HighResolutionInterval() {
3415     if (resolution != 0) {
3416       MMRESULT result = timeEndPeriod(1L);
3417     }
3418     resolution = 0L;
3419   }
3420 };
3421 
3422 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3423   jlong limit = (jlong) MAXDWORD;
3424 
3425   while (ms > limit) {
3426     int res;
3427     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3428       return res;
3429     }
3430     ms -= limit;
3431   }
3432 
3433   assert(thread == Thread::current(), "thread consistency check");
3434   OSThread* osthread = thread->osthread();
3435   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3436   int result;
3437   if (interruptable) {
3438     assert(thread->is_Java_thread(), "must be java thread");
3439     JavaThread *jt = (JavaThread *) thread;
3440     ThreadBlockInVM tbivm(jt);
3441 
3442     jt->set_suspend_equivalent();
3443     // cleared by handle_special_suspend_equivalent_condition() or
3444     // java_suspend_self() via check_and_wait_while_suspended()
3445 
3446     HANDLE events[1];
3447     events[0] = osthread->interrupt_event();
3448     HighResolutionInterval *phri=NULL;
3449     if (!ForceTimeHighResolution) {
3450       phri = new HighResolutionInterval(ms);
3451     }
3452     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3453       result = OS_TIMEOUT;
3454     } else {
3455       ResetEvent(osthread->interrupt_event());
3456       osthread->set_interrupted(false);
3457       result = OS_INTRPT;
3458     }
3459     delete phri; //if it is NULL, harmless
3460 
3461     // were we externally suspended while we were waiting?
3462     jt->check_and_wait_while_suspended();
3463   } else {
3464     assert(!thread->is_Java_thread(), "must not be java thread");
3465     Sleep((long) ms);
3466     result = OS_TIMEOUT;
3467   }
3468   return result;
3469 }
3470 
3471 // Short sleep, direct OS call.
3472 //
3473 // ms = 0, means allow others (if any) to run.
3474 //
3475 void os::naked_short_sleep(jlong ms) {
3476   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3477   Sleep(ms);
3478 }
3479 
3480 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3481 void os::infinite_sleep() {
3482   while (true) {    // sleep forever ...
3483     Sleep(100000);  // ... 100 seconds at a time
3484   }
3485 }
3486 
3487 typedef BOOL (WINAPI * STTSignature)(void);
3488 
3489 void os::naked_yield() {
3490   // Use either SwitchToThread() or Sleep(0)
3491   // Consider passing back the return value from SwitchToThread().
3492   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3493     SwitchToThread();
3494   } else {
3495     Sleep(0);
3496   }
3497 }
3498 
3499 // Win32 only gives you access to seven real priorities at a time,
3500 // so we compress Java's ten down to seven.  It would be better
3501 // if we dynamically adjusted relative priorities.
3502 
3503 int os::java_to_os_priority[CriticalPriority + 1] = {
3504   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3505   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3506   THREAD_PRIORITY_LOWEST,                       // 2
3507   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3508   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3509   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3510   THREAD_PRIORITY_NORMAL,                       // 6
3511   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3512   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3513   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3514   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3515   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3516 };
3517 
3518 int prio_policy1[CriticalPriority + 1] = {
3519   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3520   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3521   THREAD_PRIORITY_LOWEST,                       // 2
3522   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3523   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3524   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3525   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3526   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3527   THREAD_PRIORITY_HIGHEST,                      // 8
3528   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3529   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3530   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3531 };
3532 
3533 static int prio_init() {
3534   // If ThreadPriorityPolicy is 1, switch tables
3535   if (ThreadPriorityPolicy == 1) {
3536     int i;
3537     for (i = 0; i < CriticalPriority + 1; i++) {
3538       os::java_to_os_priority[i] = prio_policy1[i];
3539     }
3540   }
3541   if (UseCriticalJavaThreadPriority) {
3542     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3543   }
3544   return 0;
3545 }
3546 
3547 OSReturn os::set_native_priority(Thread* thread, int priority) {
3548   if (!UseThreadPriorities) return OS_OK;
3549   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3550   return ret ? OS_OK : OS_ERR;
3551 }
3552 
3553 OSReturn os::get_native_priority(const Thread* const thread,
3554                                  int* priority_ptr) {
3555   if (!UseThreadPriorities) {
3556     *priority_ptr = java_to_os_priority[NormPriority];
3557     return OS_OK;
3558   }
3559   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3560   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3561     assert(false, "GetThreadPriority failed");
3562     return OS_ERR;
3563   }
3564   *priority_ptr = os_prio;
3565   return OS_OK;
3566 }
3567 
3568 
3569 // Hint to the underlying OS that a task switch would not be good.
3570 // Void return because it's a hint and can fail.
3571 void os::hint_no_preempt() {}
3572 
3573 void os::interrupt(Thread* thread) {
3574   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3575          Threads_lock->owned_by_self(),
3576          "possibility of dangling Thread pointer");
3577 
3578   OSThread* osthread = thread->osthread();
3579   osthread->set_interrupted(true);
3580   // More than one thread can get here with the same value of osthread,
3581   // resulting in multiple notifications.  We do, however, want the store
3582   // to interrupted() to be visible to other threads before we post
3583   // the interrupt event.
3584   OrderAccess::release();
3585   SetEvent(osthread->interrupt_event());
3586   // For JSR166:  unpark after setting status
3587   if (thread->is_Java_thread()) {
3588     ((JavaThread*)thread)->parker()->unpark();
3589   }
3590 
3591   ParkEvent * ev = thread->_ParkEvent;
3592   if (ev != NULL) ev->unpark();
3593 }
3594 
3595 
3596 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3597   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3598          "possibility of dangling Thread pointer");
3599 
3600   OSThread* osthread = thread->osthread();
3601   // There is no synchronization between the setting of the interrupt
3602   // and it being cleared here. It is critical - see 6535709 - that
3603   // we only clear the interrupt state, and reset the interrupt event,
3604   // if we are going to report that we were indeed interrupted - else
3605   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3606   // depending on the timing. By checking thread interrupt event to see
3607   // if the thread gets real interrupt thus prevent spurious wakeup.
3608   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3609   if (interrupted && clear_interrupted) {
3610     osthread->set_interrupted(false);
3611     ResetEvent(osthread->interrupt_event());
3612   } // Otherwise leave the interrupted state alone
3613 
3614   return interrupted;
3615 }
3616 
3617 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3618 ExtendedPC os::get_thread_pc(Thread* thread) {
3619   CONTEXT context;
3620   context.ContextFlags = CONTEXT_CONTROL;
3621   HANDLE handle = thread->osthread()->thread_handle();
3622 #ifdef _M_IA64
3623   assert(0, "Fix get_thread_pc");
3624   return ExtendedPC(NULL);
3625 #else
3626   if (GetThreadContext(handle, &context)) {
3627 #ifdef _M_AMD64
3628     return ExtendedPC((address) context.Rip);
3629 #else
3630     return ExtendedPC((address) context.Eip);
3631 #endif
3632   } else {
3633     return ExtendedPC(NULL);
3634   }
3635 #endif
3636 }
3637 
3638 // GetCurrentThreadId() returns DWORD
3639 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3640 
3641 static int _initial_pid = 0;
3642 
3643 int os::current_process_id() {
3644   return (_initial_pid ? _initial_pid : _getpid());
3645 }
3646 
3647 int    os::win32::_vm_page_size              = 0;
3648 int    os::win32::_vm_allocation_granularity = 0;
3649 int    os::win32::_processor_type            = 0;
3650 // Processor level is not available on non-NT systems, use vm_version instead
3651 int    os::win32::_processor_level           = 0;
3652 julong os::win32::_physical_memory           = 0;
3653 size_t os::win32::_default_stack_size        = 0;
3654 
3655 intx          os::win32::_os_thread_limit    = 0;
3656 volatile intx os::win32::_os_thread_count    = 0;
3657 
3658 bool   os::win32::_is_nt                     = false;
3659 bool   os::win32::_is_windows_2003           = false;
3660 bool   os::win32::_is_windows_server         = false;
3661 
3662 // 6573254
3663 // Currently, the bug is observed across all the supported Windows releases,
3664 // including the latest one (as of this writing - Windows Server 2012 R2)
3665 bool   os::win32::_has_exit_bug              = true;
3666 bool   os::win32::_has_performance_count     = 0;
3667 
3668 void os::win32::initialize_system_info() {
3669   SYSTEM_INFO si;
3670   GetSystemInfo(&si);
3671   _vm_page_size    = si.dwPageSize;
3672   _vm_allocation_granularity = si.dwAllocationGranularity;
3673   _processor_type  = si.dwProcessorType;
3674   _processor_level = si.wProcessorLevel;
3675   set_processor_count(si.dwNumberOfProcessors);
3676 
3677   MEMORYSTATUSEX ms;
3678   ms.dwLength = sizeof(ms);
3679 
3680   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3681   // dwMemoryLoad (% of memory in use)
3682   GlobalMemoryStatusEx(&ms);
3683   _physical_memory = ms.ullTotalPhys;
3684 
3685   OSVERSIONINFOEX oi;
3686   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3687   GetVersionEx((OSVERSIONINFO*)&oi);
3688   switch (oi.dwPlatformId) {
3689   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3690   case VER_PLATFORM_WIN32_NT:
3691     _is_nt = true;
3692     {
3693       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3694       if (os_vers == 5002) {
3695         _is_windows_2003 = true;
3696       }
3697       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3698           oi.wProductType == VER_NT_SERVER) {
3699         _is_windows_server = true;
3700       }
3701     }
3702     break;
3703   default: fatal("Unknown platform");
3704   }
3705 
3706   _default_stack_size = os::current_stack_size();
3707   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3708   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3709          "stack size not a multiple of page size");
3710 
3711   initialize_performance_counter();
3712 
3713   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3714   // known to deadlock the system, if the VM issues to thread operations with
3715   // a too high frequency, e.g., such as changing the priorities.
3716   // The 6000 seems to work well - no deadlocks has been notices on the test
3717   // programs that we have seen experience this problem.
3718   if (!os::win32::is_nt()) {
3719     StarvationMonitorInterval = 6000;
3720   }
3721 }
3722 
3723 
3724 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3725                                       int ebuflen) {
3726   char path[MAX_PATH];
3727   DWORD size;
3728   DWORD pathLen = (DWORD)sizeof(path);
3729   HINSTANCE result = NULL;
3730 
3731   // only allow library name without path component
3732   assert(strchr(name, '\\') == NULL, "path not allowed");
3733   assert(strchr(name, ':') == NULL, "path not allowed");
3734   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3735     jio_snprintf(ebuf, ebuflen,
3736                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3737     return NULL;
3738   }
3739 
3740   // search system directory
3741   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3742     if (size >= pathLen) {
3743       return NULL; // truncated
3744     }
3745     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3746       return NULL; // truncated
3747     }
3748     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3749       return result;
3750     }
3751   }
3752 
3753   // try Windows directory
3754   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3755     if (size >= pathLen) {
3756       return NULL; // truncated
3757     }
3758     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3759       return NULL; // truncated
3760     }
3761     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3762       return result;
3763     }
3764   }
3765 
3766   jio_snprintf(ebuf, ebuflen,
3767                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3768   return NULL;
3769 }
3770 
3771 #define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3772 
3773 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3774   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3775   return TRUE;
3776 }
3777 
3778 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3779   // Basic approach:
3780   //  - Each exiting thread registers its intent to exit and then does so.
3781   //  - A thread trying to terminate the process must wait for all
3782   //    threads currently exiting to complete their exit.
3783 
3784   if (os::win32::has_exit_bug()) {
3785     // The array holds handles of the threads that have started exiting by calling
3786     // _endthreadex().
3787     // Should be large enough to avoid blocking the exiting thread due to lack of
3788     // a free slot.
3789     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3790     static int handle_count = 0;
3791 
3792     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3793     static CRITICAL_SECTION crit_sect;
3794     int i, j;
3795     DWORD res;
3796     HANDLE hproc, hthr;
3797 
3798     // The first thread that reached this point, initializes the critical section.
3799     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3800       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3801     } else {
3802       EnterCriticalSection(&crit_sect);
3803 
3804       if (what == EPT_THREAD) {
3805         // Remove from the array those handles of the threads that have completed exiting.
3806         for (i = 0, j = 0; i < handle_count; ++i) {
3807           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3808           if (res == WAIT_TIMEOUT) {
3809             handles[j++] = handles[i];
3810           } else {
3811             if (res == WAIT_FAILED) {
3812               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3813                       GetLastError(), __FILE__, __LINE__);
3814             }
3815             // Don't keep the handle, if we failed waiting for it.
3816             CloseHandle(handles[i]);
3817           }
3818         }
3819 
3820         // If there's no free slot in the array of the kept handles, we'll have to
3821         // wait until at least one thread completes exiting.
3822         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3823           // Raise the priority of the oldest exiting thread to increase its chances
3824           // to complete sooner.
3825           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3826           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3827           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3828             i = (res - WAIT_OBJECT_0);
3829             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3830             for (; i < handle_count; ++i) {
3831               handles[i] = handles[i + 1];
3832             }
3833           } else {
3834             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3835                     (res == WAIT_FAILED ? "failed" : "timed out"),
3836                     GetLastError(), __FILE__, __LINE__);
3837             // Don't keep handles, if we failed waiting for them.
3838             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3839               CloseHandle(handles[i]);
3840             }
3841             handle_count = 0;
3842           }
3843         }
3844 
3845         // Store a duplicate of the current thread handle in the array of handles.
3846         hproc = GetCurrentProcess();
3847         hthr = GetCurrentThread();
3848         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3849                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3850           warning("DuplicateHandle failed (%u) in %s: %d\n",
3851                   GetLastError(), __FILE__, __LINE__);
3852         } else {
3853           ++handle_count;
3854         }
3855 
3856         // The current exiting thread has stored its handle in the array, and now
3857         // should leave the critical section before calling _endthreadex().
3858 
3859       } else { // what != EPT_THREAD
3860         if (handle_count > 0) {
3861           // Before ending the process, make sure all the threads that had called
3862           // _endthreadex() completed.
3863 
3864           // Set the priority level of the current thread to the same value as
3865           // the priority level of exiting threads.
3866           // This is to ensure it will be given a fair chance to execute if
3867           // the timeout expires.
3868           hthr = GetCurrentThread();
3869           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3870           for (i = 0; i < handle_count; ++i) {
3871             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3872           }
3873           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3874           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3875             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3876                     (res == WAIT_FAILED ? "failed" : "timed out"),
3877                     GetLastError(), __FILE__, __LINE__);
3878           }
3879           for (i = 0; i < handle_count; ++i) {
3880             CloseHandle(handles[i]);
3881           }
3882           handle_count = 0;
3883         }
3884 
3885         // End the process, not leaving critical section.
3886         // This makes sure no other thread executes exit-related code at the same
3887         // time, thus a race is avoided.
3888         if (what == EPT_PROCESS) {
3889           ::exit(exit_code);
3890         } else {
3891           _exit(exit_code);
3892         }
3893       }
3894 
3895       LeaveCriticalSection(&crit_sect);
3896     }
3897   }
3898 
3899   // We are here if either
3900   // - there's no 'race at exit' bug on this OS release;
3901   // - initialization of the critical section failed (unlikely);
3902   // - the current thread has stored its handle and left the critical section.
3903   if (what == EPT_THREAD) {
3904     _endthreadex((unsigned)exit_code);
3905   } else if (what == EPT_PROCESS) {
3906     ::exit(exit_code);
3907   } else {
3908     _exit(exit_code);
3909   }
3910 
3911   // Should not reach here
3912   return exit_code;
3913 }
3914 
3915 #undef EXIT_TIMEOUT
3916 
3917 void os::win32::setmode_streams() {
3918   _setmode(_fileno(stdin), _O_BINARY);
3919   _setmode(_fileno(stdout), _O_BINARY);
3920   _setmode(_fileno(stderr), _O_BINARY);
3921 }
3922 
3923 
3924 bool os::is_debugger_attached() {
3925   return IsDebuggerPresent() ? true : false;
3926 }
3927 
3928 
3929 void os::wait_for_keypress_at_exit(void) {
3930   if (PauseAtExit) {
3931     fprintf(stderr, "Press any key to continue...\n");
3932     fgetc(stdin);
3933   }
3934 }
3935 
3936 
3937 int os::message_box(const char* title, const char* message) {
3938   int result = MessageBox(NULL, message, title,
3939                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3940   return result == IDYES;
3941 }
3942 
3943 int os::allocate_thread_local_storage() {
3944   return TlsAlloc();
3945 }
3946 
3947 
3948 void os::free_thread_local_storage(int index) {
3949   TlsFree(index);
3950 }
3951 
3952 
3953 void os::thread_local_storage_at_put(int index, void* value) {
3954   TlsSetValue(index, value);
3955   assert(thread_local_storage_at(index) == value, "Just checking");
3956 }
3957 
3958 
3959 void* os::thread_local_storage_at(int index) {
3960   return TlsGetValue(index);
3961 }
3962 
3963 
3964 #ifndef PRODUCT
3965 #ifndef _WIN64
3966 // Helpers to check whether NX protection is enabled
3967 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3968   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3969       pex->ExceptionRecord->NumberParameters > 0 &&
3970       pex->ExceptionRecord->ExceptionInformation[0] ==
3971       EXCEPTION_INFO_EXEC_VIOLATION) {
3972     return EXCEPTION_EXECUTE_HANDLER;
3973   }
3974   return EXCEPTION_CONTINUE_SEARCH;
3975 }
3976 
3977 void nx_check_protection() {
3978   // If NX is enabled we'll get an exception calling into code on the stack
3979   char code[] = { (char)0xC3 }; // ret
3980   void *code_ptr = (void *)code;
3981   __try {
3982     __asm call code_ptr
3983   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3984     tty->print_raw_cr("NX protection detected.");
3985   }
3986 }
3987 #endif // _WIN64
3988 #endif // PRODUCT
3989 
3990 // this is called _before_ the global arguments have been parsed
3991 void os::init(void) {
3992   _initial_pid = _getpid();
3993 
3994   init_random(1234567);
3995 
3996   win32::initialize_system_info();
3997   win32::setmode_streams();
3998   init_page_sizes((size_t) win32::vm_page_size());
3999 
4000   // This may be overridden later when argument processing is done.
4001   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4002                 os::win32::is_windows_2003());
4003 
4004   // Initialize main_process and main_thread
4005   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4006   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4007                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4008     fatal("DuplicateHandle failed\n");
4009   }
4010   main_thread_id = (int) GetCurrentThreadId();
4011 }
4012 
4013 // To install functions for atexit processing
4014 extern "C" {
4015   static void perfMemory_exit_helper() {
4016     perfMemory_exit();
4017   }
4018 }
4019 
4020 static jint initSock();
4021 
4022 // this is called _after_ the global arguments have been parsed
4023 jint os::init_2(void) {
4024   // Allocate a single page and mark it as readable for safepoint polling
4025   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4026   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4027 
4028   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4029   guarantee(return_page != NULL, "Commit Failed for polling page");
4030 
4031   os::set_polling_page(polling_page);
4032 
4033 #ifndef PRODUCT
4034   if (Verbose && PrintMiscellaneous) {
4035     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4036                (intptr_t)polling_page);
4037   }
4038 #endif
4039 
4040   if (!UseMembar) {
4041     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4042     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4043 
4044     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4045     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4046 
4047     os::set_memory_serialize_page(mem_serialize_page);
4048 
4049 #ifndef PRODUCT
4050     if (Verbose && PrintMiscellaneous) {
4051       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4052                  (intptr_t)mem_serialize_page);
4053     }
4054 #endif
4055   }
4056 
4057   // Setup Windows Exceptions
4058 
4059   // for debugging float code generation bugs
4060   if (ForceFloatExceptions) {
4061 #ifndef  _WIN64
4062     static long fp_control_word = 0;
4063     __asm { fstcw fp_control_word }
4064     // see Intel PPro Manual, Vol. 2, p 7-16
4065     const long precision = 0x20;
4066     const long underflow = 0x10;
4067     const long overflow  = 0x08;
4068     const long zero_div  = 0x04;
4069     const long denorm    = 0x02;
4070     const long invalid   = 0x01;
4071     fp_control_word |= invalid;
4072     __asm { fldcw fp_control_word }
4073 #endif
4074   }
4075 
4076   // If stack_commit_size is 0, windows will reserve the default size,
4077   // but only commit a small portion of it.
4078   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4079   size_t default_reserve_size = os::win32::default_stack_size();
4080   size_t actual_reserve_size = stack_commit_size;
4081   if (stack_commit_size < default_reserve_size) {
4082     // If stack_commit_size == 0, we want this too
4083     actual_reserve_size = default_reserve_size;
4084   }
4085 
4086   // Check minimum allowable stack size for thread creation and to initialize
4087   // the java system classes, including StackOverflowError - depends on page
4088   // size.  Add a page for compiler2 recursion in main thread.
4089   // Add in 2*BytesPerWord times page size to account for VM stack during
4090   // class initialization depending on 32 or 64 bit VM.
4091   size_t min_stack_allowed =
4092             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4093                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4094   if (actual_reserve_size < min_stack_allowed) {
4095     tty->print_cr("\nThe stack size specified is too small, "
4096                   "Specify at least %dk",
4097                   min_stack_allowed / K);
4098     return JNI_ERR;
4099   }
4100 
4101   JavaThread::set_stack_size_at_create(stack_commit_size);
4102 
4103   // Calculate theoretical max. size of Threads to guard gainst artifical
4104   // out-of-memory situations, where all available address-space has been
4105   // reserved by thread stacks.
4106   assert(actual_reserve_size != 0, "Must have a stack");
4107 
4108   // Calculate the thread limit when we should start doing Virtual Memory
4109   // banging. Currently when the threads will have used all but 200Mb of space.
4110   //
4111   // TODO: consider performing a similar calculation for commit size instead
4112   // as reserve size, since on a 64-bit platform we'll run into that more
4113   // often than running out of virtual memory space.  We can use the
4114   // lower value of the two calculations as the os_thread_limit.
4115   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4116   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4117 
4118   // at exit methods are called in the reverse order of their registration.
4119   // there is no limit to the number of functions registered. atexit does
4120   // not set errno.
4121 
4122   if (PerfAllowAtExitRegistration) {
4123     // only register atexit functions if PerfAllowAtExitRegistration is set.
4124     // atexit functions can be delayed until process exit time, which
4125     // can be problematic for embedded VM situations. Embedded VMs should
4126     // call DestroyJavaVM() to assure that VM resources are released.
4127 
4128     // note: perfMemory_exit_helper atexit function may be removed in
4129     // the future if the appropriate cleanup code can be added to the
4130     // VM_Exit VMOperation's doit method.
4131     if (atexit(perfMemory_exit_helper) != 0) {
4132       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4133     }
4134   }
4135 
4136 #ifndef _WIN64
4137   // Print something if NX is enabled (win32 on AMD64)
4138   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4139 #endif
4140 
4141   // initialize thread priority policy
4142   prio_init();
4143 
4144   if (UseNUMA && !ForceNUMA) {
4145     UseNUMA = false; // We don't fully support this yet
4146   }
4147 
4148   if (UseNUMAInterleaving) {
4149     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4150     bool success = numa_interleaving_init();
4151     if (!success) UseNUMAInterleaving = false;
4152   }
4153 
4154   if (initSock() != JNI_OK) {
4155     return JNI_ERR;
4156   }
4157 
4158   return JNI_OK;
4159 }
4160 
4161 // Mark the polling page as unreadable
4162 void os::make_polling_page_unreadable(void) {
4163   DWORD old_status;
4164   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4165                       PAGE_NOACCESS, &old_status)) {
4166     fatal("Could not disable polling page");
4167   }
4168 }
4169 
4170 // Mark the polling page as readable
4171 void os::make_polling_page_readable(void) {
4172   DWORD old_status;
4173   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4174                       PAGE_READONLY, &old_status)) {
4175     fatal("Could not enable polling page");
4176   }
4177 }
4178 
4179 
4180 int os::stat(const char *path, struct stat *sbuf) {
4181   char pathbuf[MAX_PATH];
4182   if (strlen(path) > MAX_PATH - 1) {
4183     errno = ENAMETOOLONG;
4184     return -1;
4185   }
4186   os::native_path(strcpy(pathbuf, path));
4187   int ret = ::stat(pathbuf, sbuf);
4188   if (sbuf != NULL && UseUTCFileTimestamp) {
4189     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4190     // the system timezone and so can return different values for the
4191     // same file if/when daylight savings time changes.  This adjustment
4192     // makes sure the same timestamp is returned regardless of the TZ.
4193     //
4194     // See:
4195     // http://msdn.microsoft.com/library/
4196     //   default.asp?url=/library/en-us/sysinfo/base/
4197     //   time_zone_information_str.asp
4198     // and
4199     // http://msdn.microsoft.com/library/default.asp?url=
4200     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4201     //
4202     // NOTE: there is a insidious bug here:  If the timezone is changed
4203     // after the call to stat() but before 'GetTimeZoneInformation()', then
4204     // the adjustment we do here will be wrong and we'll return the wrong
4205     // value (which will likely end up creating an invalid class data
4206     // archive).  Absent a better API for this, or some time zone locking
4207     // mechanism, we'll have to live with this risk.
4208     TIME_ZONE_INFORMATION tz;
4209     DWORD tzid = GetTimeZoneInformation(&tz);
4210     int daylightBias =
4211       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4212     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4213   }
4214   return ret;
4215 }
4216 
4217 
4218 #define FT2INT64(ft) \
4219   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4220 
4221 
4222 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4223 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4224 // of a thread.
4225 //
4226 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4227 // the fast estimate available on the platform.
4228 
4229 // current_thread_cpu_time() is not optimized for Windows yet
4230 jlong os::current_thread_cpu_time() {
4231   // return user + sys since the cost is the same
4232   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4233 }
4234 
4235 jlong os::thread_cpu_time(Thread* thread) {
4236   // consistent with what current_thread_cpu_time() returns.
4237   return os::thread_cpu_time(thread, true /* user+sys */);
4238 }
4239 
4240 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4241   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4242 }
4243 
4244 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4245   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4246   // If this function changes, os::is_thread_cpu_time_supported() should too
4247   if (os::win32::is_nt()) {
4248     FILETIME CreationTime;
4249     FILETIME ExitTime;
4250     FILETIME KernelTime;
4251     FILETIME UserTime;
4252 
4253     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4254                        &ExitTime, &KernelTime, &UserTime) == 0) {
4255       return -1;
4256     } else if (user_sys_cpu_time) {
4257       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4258     } else {
4259       return FT2INT64(UserTime) * 100;
4260     }
4261   } else {
4262     return (jlong) timeGetTime() * 1000000;
4263   }
4264 }
4265 
4266 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4267   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4268   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4269   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4270   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4271 }
4272 
4273 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4274   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4275   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4276   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4277   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4278 }
4279 
4280 bool os::is_thread_cpu_time_supported() {
4281   // see os::thread_cpu_time
4282   if (os::win32::is_nt()) {
4283     FILETIME CreationTime;
4284     FILETIME ExitTime;
4285     FILETIME KernelTime;
4286     FILETIME UserTime;
4287 
4288     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4289                        &KernelTime, &UserTime) == 0) {
4290       return false;
4291     } else {
4292       return true;
4293     }
4294   } else {
4295     return false;
4296   }
4297 }
4298 
4299 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4300 // It does have primitives (PDH API) to get CPU usage and run queue length.
4301 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4302 // If we wanted to implement loadavg on Windows, we have a few options:
4303 //
4304 // a) Query CPU usage and run queue length and "fake" an answer by
4305 //    returning the CPU usage if it's under 100%, and the run queue
4306 //    length otherwise.  It turns out that querying is pretty slow
4307 //    on Windows, on the order of 200 microseconds on a fast machine.
4308 //    Note that on the Windows the CPU usage value is the % usage
4309 //    since the last time the API was called (and the first call
4310 //    returns 100%), so we'd have to deal with that as well.
4311 //
4312 // b) Sample the "fake" answer using a sampling thread and store
4313 //    the answer in a global variable.  The call to loadavg would
4314 //    just return the value of the global, avoiding the slow query.
4315 //
4316 // c) Sample a better answer using exponential decay to smooth the
4317 //    value.  This is basically the algorithm used by UNIX kernels.
4318 //
4319 // Note that sampling thread starvation could affect both (b) and (c).
4320 int os::loadavg(double loadavg[], int nelem) {
4321   return -1;
4322 }
4323 
4324 
4325 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4326 bool os::dont_yield() {
4327   return DontYieldALot;
4328 }
4329 
4330 // This method is a slightly reworked copy of JDK's sysOpen
4331 // from src/windows/hpi/src/sys_api_md.c
4332 
4333 int os::open(const char *path, int oflag, int mode) {
4334   char pathbuf[MAX_PATH];
4335 
4336   if (strlen(path) > MAX_PATH - 1) {
4337     errno = ENAMETOOLONG;
4338     return -1;
4339   }
4340   os::native_path(strcpy(pathbuf, path));
4341   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4342 }
4343 
4344 FILE* os::open(int fd, const char* mode) {
4345   return ::_fdopen(fd, mode);
4346 }
4347 
4348 // Is a (classpath) directory empty?
4349 bool os::dir_is_empty(const char* path) {
4350   WIN32_FIND_DATA fd;
4351   HANDLE f = FindFirstFile(path, &fd);
4352   if (f == INVALID_HANDLE_VALUE) {
4353     return true;
4354   }
4355   FindClose(f);
4356   return false;
4357 }
4358 
4359 // create binary file, rewriting existing file if required
4360 int os::create_binary_file(const char* path, bool rewrite_existing) {
4361   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4362   if (!rewrite_existing) {
4363     oflags |= _O_EXCL;
4364   }
4365   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4366 }
4367 
4368 // return current position of file pointer
4369 jlong os::current_file_offset(int fd) {
4370   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4371 }
4372 
4373 // move file pointer to the specified offset
4374 jlong os::seek_to_file_offset(int fd, jlong offset) {
4375   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4376 }
4377 
4378 
4379 jlong os::lseek(int fd, jlong offset, int whence) {
4380   return (jlong) ::_lseeki64(fd, offset, whence);
4381 }
4382 
4383 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4384   OVERLAPPED ov;
4385   DWORD nread;
4386   BOOL result;
4387 
4388   ZeroMemory(&ov, sizeof(ov));
4389   ov.Offset = (DWORD)offset;
4390   ov.OffsetHigh = (DWORD)(offset >> 32);
4391 
4392   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4393 
4394   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4395 
4396   return result ? nread : 0;
4397 }
4398 
4399 
4400 // This method is a slightly reworked copy of JDK's sysNativePath
4401 // from src/windows/hpi/src/path_md.c
4402 
4403 // Convert a pathname to native format.  On win32, this involves forcing all
4404 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4405 // sometimes rejects '/') and removing redundant separators.  The input path is
4406 // assumed to have been converted into the character encoding used by the local
4407 // system.  Because this might be a double-byte encoding, care is taken to
4408 // treat double-byte lead characters correctly.
4409 //
4410 // This procedure modifies the given path in place, as the result is never
4411 // longer than the original.  There is no error return; this operation always
4412 // succeeds.
4413 char * os::native_path(char *path) {
4414   char *src = path, *dst = path, *end = path;
4415   char *colon = NULL;  // If a drive specifier is found, this will
4416                        // point to the colon following the drive letter
4417 
4418   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4419   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4420           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4421 
4422   // Check for leading separators
4423 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4424   while (isfilesep(*src)) {
4425     src++;
4426   }
4427 
4428   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4429     // Remove leading separators if followed by drive specifier.  This
4430     // hack is necessary to support file URLs containing drive
4431     // specifiers (e.g., "file://c:/path").  As a side effect,
4432     // "/c:/path" can be used as an alternative to "c:/path".
4433     *dst++ = *src++;
4434     colon = dst;
4435     *dst++ = ':';
4436     src++;
4437   } else {
4438     src = path;
4439     if (isfilesep(src[0]) && isfilesep(src[1])) {
4440       // UNC pathname: Retain first separator; leave src pointed at
4441       // second separator so that further separators will be collapsed
4442       // into the second separator.  The result will be a pathname
4443       // beginning with "\\\\" followed (most likely) by a host name.
4444       src = dst = path + 1;
4445       path[0] = '\\';     // Force first separator to '\\'
4446     }
4447   }
4448 
4449   end = dst;
4450 
4451   // Remove redundant separators from remainder of path, forcing all
4452   // separators to be '\\' rather than '/'. Also, single byte space
4453   // characters are removed from the end of the path because those
4454   // are not legal ending characters on this operating system.
4455   //
4456   while (*src != '\0') {
4457     if (isfilesep(*src)) {
4458       *dst++ = '\\'; src++;
4459       while (isfilesep(*src)) src++;
4460       if (*src == '\0') {
4461         // Check for trailing separator
4462         end = dst;
4463         if (colon == dst - 2) break;  // "z:\\"
4464         if (dst == path + 1) break;   // "\\"
4465         if (dst == path + 2 && isfilesep(path[0])) {
4466           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4467           // beginning of a UNC pathname.  Even though it is not, by
4468           // itself, a valid UNC pathname, we leave it as is in order
4469           // to be consistent with the path canonicalizer as well
4470           // as the win32 APIs, which treat this case as an invalid
4471           // UNC pathname rather than as an alias for the root
4472           // directory of the current drive.
4473           break;
4474         }
4475         end = --dst;  // Path does not denote a root directory, so
4476                       // remove trailing separator
4477         break;
4478       }
4479       end = dst;
4480     } else {
4481       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4482         *dst++ = *src++;
4483         if (*src) *dst++ = *src++;
4484         end = dst;
4485       } else {  // Copy a single-byte character
4486         char c = *src++;
4487         *dst++ = c;
4488         // Space is not a legal ending character
4489         if (c != ' ') end = dst;
4490       }
4491     }
4492   }
4493 
4494   *end = '\0';
4495 
4496   // For "z:", add "." to work around a bug in the C runtime library
4497   if (colon == dst - 1) {
4498     path[2] = '.';
4499     path[3] = '\0';
4500   }
4501 
4502   return path;
4503 }
4504 
4505 // This code is a copy of JDK's sysSetLength
4506 // from src/windows/hpi/src/sys_api_md.c
4507 
4508 int os::ftruncate(int fd, jlong length) {
4509   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4510   long high = (long)(length >> 32);
4511   DWORD ret;
4512 
4513   if (h == (HANDLE)(-1)) {
4514     return -1;
4515   }
4516 
4517   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4518   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4519     return -1;
4520   }
4521 
4522   if (::SetEndOfFile(h) == FALSE) {
4523     return -1;
4524   }
4525 
4526   return 0;
4527 }
4528 
4529 
4530 // This code is a copy of JDK's sysSync
4531 // from src/windows/hpi/src/sys_api_md.c
4532 // except for the legacy workaround for a bug in Win 98
4533 
4534 int os::fsync(int fd) {
4535   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4536 
4537   if ((!::FlushFileBuffers(handle)) &&
4538       (GetLastError() != ERROR_ACCESS_DENIED)) {
4539     // from winerror.h
4540     return -1;
4541   }
4542   return 0;
4543 }
4544 
4545 static int nonSeekAvailable(int, long *);
4546 static int stdinAvailable(int, long *);
4547 
4548 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4549 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4550 
4551 // This code is a copy of JDK's sysAvailable
4552 // from src/windows/hpi/src/sys_api_md.c
4553 
4554 int os::available(int fd, jlong *bytes) {
4555   jlong cur, end;
4556   struct _stati64 stbuf64;
4557 
4558   if (::_fstati64(fd, &stbuf64) >= 0) {
4559     int mode = stbuf64.st_mode;
4560     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4561       int ret;
4562       long lpbytes;
4563       if (fd == 0) {
4564         ret = stdinAvailable(fd, &lpbytes);
4565       } else {
4566         ret = nonSeekAvailable(fd, &lpbytes);
4567       }
4568       (*bytes) = (jlong)(lpbytes);
4569       return ret;
4570     }
4571     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4572       return FALSE;
4573     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4574       return FALSE;
4575     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4576       return FALSE;
4577     }
4578     *bytes = end - cur;
4579     return TRUE;
4580   } else {
4581     return FALSE;
4582   }
4583 }
4584 
4585 // This code is a copy of JDK's nonSeekAvailable
4586 // from src/windows/hpi/src/sys_api_md.c
4587 
4588 static int nonSeekAvailable(int fd, long *pbytes) {
4589   // This is used for available on non-seekable devices
4590   // (like both named and anonymous pipes, such as pipes
4591   //  connected to an exec'd process).
4592   // Standard Input is a special case.
4593   HANDLE han;
4594 
4595   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4596     return FALSE;
4597   }
4598 
4599   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4600     // PeekNamedPipe fails when at EOF.  In that case we
4601     // simply make *pbytes = 0 which is consistent with the
4602     // behavior we get on Solaris when an fd is at EOF.
4603     // The only alternative is to raise an Exception,
4604     // which isn't really warranted.
4605     //
4606     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4607       return FALSE;
4608     }
4609     *pbytes = 0;
4610   }
4611   return TRUE;
4612 }
4613 
4614 #define MAX_INPUT_EVENTS 2000
4615 
4616 // This code is a copy of JDK's stdinAvailable
4617 // from src/windows/hpi/src/sys_api_md.c
4618 
4619 static int stdinAvailable(int fd, long *pbytes) {
4620   HANDLE han;
4621   DWORD numEventsRead = 0;  // Number of events read from buffer
4622   DWORD numEvents = 0;      // Number of events in buffer
4623   DWORD i = 0;              // Loop index
4624   DWORD curLength = 0;      // Position marker
4625   DWORD actualLength = 0;   // Number of bytes readable
4626   BOOL error = FALSE;       // Error holder
4627   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4628 
4629   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4630     return FALSE;
4631   }
4632 
4633   // Construct an array of input records in the console buffer
4634   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4635   if (error == 0) {
4636     return nonSeekAvailable(fd, pbytes);
4637   }
4638 
4639   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4640   if (numEvents > MAX_INPUT_EVENTS) {
4641     numEvents = MAX_INPUT_EVENTS;
4642   }
4643 
4644   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4645   if (lpBuffer == NULL) {
4646     return FALSE;
4647   }
4648 
4649   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4650   if (error == 0) {
4651     os::free(lpBuffer);
4652     return FALSE;
4653   }
4654 
4655   // Examine input records for the number of bytes available
4656   for (i=0; i<numEvents; i++) {
4657     if (lpBuffer[i].EventType == KEY_EVENT) {
4658 
4659       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4660                                       &(lpBuffer[i].Event);
4661       if (keyRecord->bKeyDown == TRUE) {
4662         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4663         curLength++;
4664         if (*keyPressed == '\r') {
4665           actualLength = curLength;
4666         }
4667       }
4668     }
4669   }
4670 
4671   if (lpBuffer != NULL) {
4672     os::free(lpBuffer);
4673   }
4674 
4675   *pbytes = (long) actualLength;
4676   return TRUE;
4677 }
4678 
4679 // Map a block of memory.
4680 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4681                         char *addr, size_t bytes, bool read_only,
4682                         bool allow_exec) {
4683   HANDLE hFile;
4684   char* base;
4685 
4686   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4687                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4688   if (hFile == NULL) {
4689     if (PrintMiscellaneous && Verbose) {
4690       DWORD err = GetLastError();
4691       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4692     }
4693     return NULL;
4694   }
4695 
4696   if (allow_exec) {
4697     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4698     // unless it comes from a PE image (which the shared archive is not.)
4699     // Even VirtualProtect refuses to give execute access to mapped memory
4700     // that was not previously executable.
4701     //
4702     // Instead, stick the executable region in anonymous memory.  Yuck.
4703     // Penalty is that ~4 pages will not be shareable - in the future
4704     // we might consider DLLizing the shared archive with a proper PE
4705     // header so that mapping executable + sharing is possible.
4706 
4707     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4708                                 PAGE_READWRITE);
4709     if (base == NULL) {
4710       if (PrintMiscellaneous && Verbose) {
4711         DWORD err = GetLastError();
4712         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4713       }
4714       CloseHandle(hFile);
4715       return NULL;
4716     }
4717 
4718     DWORD bytes_read;
4719     OVERLAPPED overlapped;
4720     overlapped.Offset = (DWORD)file_offset;
4721     overlapped.OffsetHigh = 0;
4722     overlapped.hEvent = NULL;
4723     // ReadFile guarantees that if the return value is true, the requested
4724     // number of bytes were read before returning.
4725     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4726     if (!res) {
4727       if (PrintMiscellaneous && Verbose) {
4728         DWORD err = GetLastError();
4729         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4730       }
4731       release_memory(base, bytes);
4732       CloseHandle(hFile);
4733       return NULL;
4734     }
4735   } else {
4736     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4737                                     NULL /* file_name */);
4738     if (hMap == NULL) {
4739       if (PrintMiscellaneous && Verbose) {
4740         DWORD err = GetLastError();
4741         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4742       }
4743       CloseHandle(hFile);
4744       return NULL;
4745     }
4746 
4747     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4748     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4749                                   (DWORD)bytes, addr);
4750     if (base == NULL) {
4751       if (PrintMiscellaneous && Verbose) {
4752         DWORD err = GetLastError();
4753         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4754       }
4755       CloseHandle(hMap);
4756       CloseHandle(hFile);
4757       return NULL;
4758     }
4759 
4760     if (CloseHandle(hMap) == 0) {
4761       if (PrintMiscellaneous && Verbose) {
4762         DWORD err = GetLastError();
4763         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4764       }
4765       CloseHandle(hFile);
4766       return base;
4767     }
4768   }
4769 
4770   if (allow_exec) {
4771     DWORD old_protect;
4772     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4773     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4774 
4775     if (!res) {
4776       if (PrintMiscellaneous && Verbose) {
4777         DWORD err = GetLastError();
4778         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4779       }
4780       // Don't consider this a hard error, on IA32 even if the
4781       // VirtualProtect fails, we should still be able to execute
4782       CloseHandle(hFile);
4783       return base;
4784     }
4785   }
4786 
4787   if (CloseHandle(hFile) == 0) {
4788     if (PrintMiscellaneous && Verbose) {
4789       DWORD err = GetLastError();
4790       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4791     }
4792     return base;
4793   }
4794 
4795   return base;
4796 }
4797 
4798 
4799 // Remap a block of memory.
4800 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4801                           char *addr, size_t bytes, bool read_only,
4802                           bool allow_exec) {
4803   // This OS does not allow existing memory maps to be remapped so we
4804   // have to unmap the memory before we remap it.
4805   if (!os::unmap_memory(addr, bytes)) {
4806     return NULL;
4807   }
4808 
4809   // There is a very small theoretical window between the unmap_memory()
4810   // call above and the map_memory() call below where a thread in native
4811   // code may be able to access an address that is no longer mapped.
4812 
4813   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4814                         read_only, allow_exec);
4815 }
4816 
4817 
4818 // Unmap a block of memory.
4819 // Returns true=success, otherwise false.
4820 
4821 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4822   BOOL result = UnmapViewOfFile(addr);
4823   if (result == 0) {
4824     if (PrintMiscellaneous && Verbose) {
4825       DWORD err = GetLastError();
4826       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4827     }
4828     return false;
4829   }
4830   return true;
4831 }
4832 
4833 void os::pause() {
4834   char filename[MAX_PATH];
4835   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4836     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4837   } else {
4838     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4839   }
4840 
4841   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4842   if (fd != -1) {
4843     struct stat buf;
4844     ::close(fd);
4845     while (::stat(filename, &buf) == 0) {
4846       Sleep(100);
4847     }
4848   } else {
4849     jio_fprintf(stderr,
4850                 "Could not open pause file '%s', continuing immediately.\n", filename);
4851   }
4852 }
4853 
4854 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4855   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4856 }
4857 
4858 // See the caveats for this class in os_windows.hpp
4859 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4860 // into this method and returns false. If no OS EXCEPTION was raised, returns
4861 // true.
4862 // The callback is supposed to provide the method that should be protected.
4863 //
4864 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4865   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4866   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4867          "crash_protection already set?");
4868 
4869   bool success = true;
4870   __try {
4871     WatcherThread::watcher_thread()->set_crash_protection(this);
4872     cb.call();
4873   } __except(EXCEPTION_EXECUTE_HANDLER) {
4874     // only for protection, nothing to do
4875     success = false;
4876   }
4877   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4878   return success;
4879 }
4880 
4881 // An Event wraps a win32 "CreateEvent" kernel handle.
4882 //
4883 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4884 //
4885 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4886 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4887 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4888 //     In addition, an unpark() operation might fetch the handle field, but the
4889 //     event could recycle between the fetch and the SetEvent() operation.
4890 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4891 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4892 //     on an stale but recycled handle would be harmless, but in practice this might
4893 //     confuse other non-Sun code, so it's not a viable approach.
4894 //
4895 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4896 //     with the Event.  The event handle is never closed.  This could be construed
4897 //     as handle leakage, but only up to the maximum # of threads that have been extant
4898 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4899 //     permit a process to have hundreds of thousands of open handles.
4900 //
4901 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4902 //     and release unused handles.
4903 //
4904 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4905 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4906 //
4907 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4908 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4909 //
4910 // We use (2).
4911 //
4912 // TODO-FIXME:
4913 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4914 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4915 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4916 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4917 //     into a single win32 CreateEvent() handle.
4918 //
4919 // Assumption:
4920 //    Only one parker can exist on an event, which is why we allocate
4921 //    them per-thread. Multiple unparkers can coexist.
4922 //
4923 // _Event transitions in park()
4924 //   -1 => -1 : illegal
4925 //    1 =>  0 : pass - return immediately
4926 //    0 => -1 : block; then set _Event to 0 before returning
4927 //
4928 // _Event transitions in unpark()
4929 //    0 => 1 : just return
4930 //    1 => 1 : just return
4931 //   -1 => either 0 or 1; must signal target thread
4932 //         That is, we can safely transition _Event from -1 to either
4933 //         0 or 1.
4934 //
4935 // _Event serves as a restricted-range semaphore.
4936 //   -1 : thread is blocked, i.e. there is a waiter
4937 //    0 : neutral: thread is running or ready,
4938 //        could have been signaled after a wait started
4939 //    1 : signaled - thread is running or ready
4940 //
4941 // Another possible encoding of _Event would be with
4942 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4943 //
4944 
4945 int os::PlatformEvent::park(jlong Millis) {
4946   // Transitions for _Event:
4947   //   -1 => -1 : illegal
4948   //    1 =>  0 : pass - return immediately
4949   //    0 => -1 : block; then set _Event to 0 before returning
4950 
4951   guarantee(_ParkHandle != NULL , "Invariant");
4952   guarantee(Millis > 0          , "Invariant");
4953 
4954   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4955   // the initial park() operation.
4956   // Consider: use atomic decrement instead of CAS-loop
4957 
4958   int v;
4959   for (;;) {
4960     v = _Event;
4961     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4962   }
4963   guarantee((v == 0) || (v == 1), "invariant");
4964   if (v != 0) return OS_OK;
4965 
4966   // Do this the hard way by blocking ...
4967   // TODO: consider a brief spin here, gated on the success of recent
4968   // spin attempts by this thread.
4969   //
4970   // We decompose long timeouts into series of shorter timed waits.
4971   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4972   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4973   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4974   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4975   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4976   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4977   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4978   // for the already waited time.  This policy does not admit any new outcomes.
4979   // In the future, however, we might want to track the accumulated wait time and
4980   // adjust Millis accordingly if we encounter a spurious wakeup.
4981 
4982   const int MAXTIMEOUT = 0x10000000;
4983   DWORD rv = WAIT_TIMEOUT;
4984   while (_Event < 0 && Millis > 0) {
4985     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4986     if (Millis > MAXTIMEOUT) {
4987       prd = MAXTIMEOUT;
4988     }
4989     rv = ::WaitForSingleObject(_ParkHandle, prd);
4990     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4991     if (rv == WAIT_TIMEOUT) {
4992       Millis -= prd;
4993     }
4994   }
4995   v = _Event;
4996   _Event = 0;
4997   // see comment at end of os::PlatformEvent::park() below:
4998   OrderAccess::fence();
4999   // If we encounter a nearly simultanous timeout expiry and unpark()
5000   // we return OS_OK indicating we awoke via unpark().
5001   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5002   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5003 }
5004 
5005 void os::PlatformEvent::park() {
5006   // Transitions for _Event:
5007   //   -1 => -1 : illegal
5008   //    1 =>  0 : pass - return immediately
5009   //    0 => -1 : block; then set _Event to 0 before returning
5010 
5011   guarantee(_ParkHandle != NULL, "Invariant");
5012   // Invariant: Only the thread associated with the Event/PlatformEvent
5013   // may call park().
5014   // Consider: use atomic decrement instead of CAS-loop
5015   int v;
5016   for (;;) {
5017     v = _Event;
5018     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5019   }
5020   guarantee((v == 0) || (v == 1), "invariant");
5021   if (v != 0) return;
5022 
5023   // Do this the hard way by blocking ...
5024   // TODO: consider a brief spin here, gated on the success of recent
5025   // spin attempts by this thread.
5026   while (_Event < 0) {
5027     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5028     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5029   }
5030 
5031   // Usually we'll find _Event == 0 at this point, but as
5032   // an optional optimization we clear it, just in case can
5033   // multiple unpark() operations drove _Event up to 1.
5034   _Event = 0;
5035   OrderAccess::fence();
5036   guarantee(_Event >= 0, "invariant");
5037 }
5038 
5039 void os::PlatformEvent::unpark() {
5040   guarantee(_ParkHandle != NULL, "Invariant");
5041 
5042   // Transitions for _Event:
5043   //    0 => 1 : just return
5044   //    1 => 1 : just return
5045   //   -1 => either 0 or 1; must signal target thread
5046   //         That is, we can safely transition _Event from -1 to either
5047   //         0 or 1.
5048   // See also: "Semaphores in Plan 9" by Mullender & Cox
5049   //
5050   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5051   // that it will take two back-to-back park() calls for the owning
5052   // thread to block. This has the benefit of forcing a spurious return
5053   // from the first park() call after an unpark() call which will help
5054   // shake out uses of park() and unpark() without condition variables.
5055 
5056   if (Atomic::xchg(1, &_Event) >= 0) return;
5057 
5058   ::SetEvent(_ParkHandle);
5059 }
5060 
5061 
5062 // JSR166
5063 // -------------------------------------------------------
5064 
5065 // The Windows implementation of Park is very straightforward: Basic
5066 // operations on Win32 Events turn out to have the right semantics to
5067 // use them directly. We opportunistically resuse the event inherited
5068 // from Monitor.
5069 
5070 void Parker::park(bool isAbsolute, jlong time) {
5071   guarantee(_ParkEvent != NULL, "invariant");
5072   // First, demultiplex/decode time arguments
5073   if (time < 0) { // don't wait
5074     return;
5075   } else if (time == 0 && !isAbsolute) {
5076     time = INFINITE;
5077   } else if (isAbsolute) {
5078     time -= os::javaTimeMillis(); // convert to relative time
5079     if (time <= 0) {  // already elapsed
5080       return;
5081     }
5082   } else { // relative
5083     time /= 1000000;  // Must coarsen from nanos to millis
5084     if (time == 0) {  // Wait for the minimal time unit if zero
5085       time = 1;
5086     }
5087   }
5088 
5089   JavaThread* thread = (JavaThread*)(Thread::current());
5090   assert(thread->is_Java_thread(), "Must be JavaThread");
5091   JavaThread *jt = (JavaThread *)thread;
5092 
5093   // Don't wait if interrupted or already triggered
5094   if (Thread::is_interrupted(thread, false) ||
5095       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5096     ResetEvent(_ParkEvent);
5097     return;
5098   } else {
5099     ThreadBlockInVM tbivm(jt);
5100     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5101     jt->set_suspend_equivalent();
5102 
5103     WaitForSingleObject(_ParkEvent, time);
5104     ResetEvent(_ParkEvent);
5105 
5106     // If externally suspended while waiting, re-suspend
5107     if (jt->handle_special_suspend_equivalent_condition()) {
5108       jt->java_suspend_self();
5109     }
5110   }
5111 }
5112 
5113 void Parker::unpark() {
5114   guarantee(_ParkEvent != NULL, "invariant");
5115   SetEvent(_ParkEvent);
5116 }
5117 
5118 // Run the specified command in a separate process. Return its exit value,
5119 // or -1 on failure (e.g. can't create a new process).
5120 int os::fork_and_exec(char* cmd) {
5121   STARTUPINFO si;
5122   PROCESS_INFORMATION pi;
5123 
5124   memset(&si, 0, sizeof(si));
5125   si.cb = sizeof(si);
5126   memset(&pi, 0, sizeof(pi));
5127   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5128                             cmd,    // command line
5129                             NULL,   // process security attribute
5130                             NULL,   // thread security attribute
5131                             TRUE,   // inherits system handles
5132                             0,      // no creation flags
5133                             NULL,   // use parent's environment block
5134                             NULL,   // use parent's starting directory
5135                             &si,    // (in) startup information
5136                             &pi);   // (out) process information
5137 
5138   if (rslt) {
5139     // Wait until child process exits.
5140     WaitForSingleObject(pi.hProcess, INFINITE);
5141 
5142     DWORD exit_code;
5143     GetExitCodeProcess(pi.hProcess, &exit_code);
5144 
5145     // Close process and thread handles.
5146     CloseHandle(pi.hProcess);
5147     CloseHandle(pi.hThread);
5148 
5149     return (int)exit_code;
5150   } else {
5151     return -1;
5152   }
5153 }
5154 
5155 //--------------------------------------------------------------------------------------------------
5156 // Non-product code
5157 
5158 static int mallocDebugIntervalCounter = 0;
5159 static int mallocDebugCounter = 0;
5160 bool os::check_heap(bool force) {
5161   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5162   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5163     // Note: HeapValidate executes two hardware breakpoints when it finds something
5164     // wrong; at these points, eax contains the address of the offending block (I think).
5165     // To get to the exlicit error message(s) below, just continue twice.
5166     HANDLE heap = GetProcessHeap();
5167 
5168     // If we fail to lock the heap, then gflags.exe has been used
5169     // or some other special heap flag has been set that prevents
5170     // locking. We don't try to walk a heap we can't lock.
5171     if (HeapLock(heap) != 0) {
5172       PROCESS_HEAP_ENTRY phe;
5173       phe.lpData = NULL;
5174       while (HeapWalk(heap, &phe) != 0) {
5175         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5176             !HeapValidate(heap, 0, phe.lpData)) {
5177           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5178           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5179           fatal("corrupted C heap");
5180         }
5181       }
5182       DWORD err = GetLastError();
5183       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5184         fatal(err_msg("heap walk aborted with error %d", err));
5185       }
5186       HeapUnlock(heap);
5187     }
5188     mallocDebugIntervalCounter = 0;
5189   }
5190   return true;
5191 }
5192 
5193 
5194 bool os::find(address addr, outputStream* st) {
5195   // Nothing yet
5196   return false;
5197 }
5198 
5199 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5200   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5201 
5202   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5203     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5204     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5205     address addr = (address) exceptionRecord->ExceptionInformation[1];
5206 
5207     if (os::is_memory_serialize_page(thread, addr)) {
5208       return EXCEPTION_CONTINUE_EXECUTION;
5209     }
5210   }
5211 
5212   return EXCEPTION_CONTINUE_SEARCH;
5213 }
5214 
5215 // We don't build a headless jre for Windows
5216 bool os::is_headless_jre() { return false; }
5217 
5218 static jint initSock() {
5219   WSADATA wsadata;
5220 
5221   if (!os::WinSock2Dll::WinSock2Available()) {
5222     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5223                 ::GetLastError());
5224     return JNI_ERR;
5225   }
5226 
5227   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5228     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5229                 ::GetLastError());
5230     return JNI_ERR;
5231   }
5232   return JNI_OK;
5233 }
5234 
5235 struct hostent* os::get_host_by_name(char* name) {
5236   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5237 }
5238 
5239 int os::socket_close(int fd) {
5240   return ::closesocket(fd);
5241 }
5242 
5243 int os::socket(int domain, int type, int protocol) {
5244   return ::socket(domain, type, protocol);
5245 }
5246 
5247 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5248   return ::connect(fd, him, len);
5249 }
5250 
5251 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5252   return ::recv(fd, buf, (int)nBytes, flags);
5253 }
5254 
5255 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5256   return ::send(fd, buf, (int)nBytes, flags);
5257 }
5258 
5259 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5260   return ::send(fd, buf, (int)nBytes, flags);
5261 }
5262 
5263 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5264 #if defined(IA32)
5265   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5266 #elif defined (AMD64)
5267   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5268 #endif
5269 
5270 // returns true if thread could be suspended,
5271 // false otherwise
5272 static bool do_suspend(HANDLE* h) {
5273   if (h != NULL) {
5274     if (SuspendThread(*h) != ~0) {
5275       return true;
5276     }
5277   }
5278   return false;
5279 }
5280 
5281 // resume the thread
5282 // calling resume on an active thread is a no-op
5283 static void do_resume(HANDLE* h) {
5284   if (h != NULL) {
5285     ResumeThread(*h);
5286   }
5287 }
5288 
5289 // retrieve a suspend/resume context capable handle
5290 // from the tid. Caller validates handle return value.
5291 void get_thread_handle_for_extended_context(HANDLE* h,
5292                                             OSThread::thread_id_t tid) {
5293   if (h != NULL) {
5294     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5295   }
5296 }
5297 
5298 // Thread sampling implementation
5299 //
5300 void os::SuspendedThreadTask::internal_do_task() {
5301   CONTEXT    ctxt;
5302   HANDLE     h = NULL;
5303 
5304   // get context capable handle for thread
5305   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5306 
5307   // sanity
5308   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5309     return;
5310   }
5311 
5312   // suspend the thread
5313   if (do_suspend(&h)) {
5314     ctxt.ContextFlags = sampling_context_flags;
5315     // get thread context
5316     GetThreadContext(h, &ctxt);
5317     SuspendedThreadTaskContext context(_thread, &ctxt);
5318     // pass context to Thread Sampling impl
5319     do_task(context);
5320     // resume thread
5321     do_resume(&h);
5322   }
5323 
5324   // close handle
5325   CloseHandle(h);
5326 }
5327 
5328 
5329 // Kernel32 API
5330 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5331 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5332 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5333 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5334 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5335 
5336 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5337 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5338 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5339 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5340 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5341 
5342 
5343 BOOL                        os::Kernel32Dll::initialized = FALSE;
5344 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5345   assert(initialized && _GetLargePageMinimum != NULL,
5346          "GetLargePageMinimumAvailable() not yet called");
5347   return _GetLargePageMinimum();
5348 }
5349 
5350 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5351   if (!initialized) {
5352     initialize();
5353   }
5354   return _GetLargePageMinimum != NULL;
5355 }
5356 
5357 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5358   if (!initialized) {
5359     initialize();
5360   }
5361   return _VirtualAllocExNuma != NULL;
5362 }
5363 
5364 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5365                                            SIZE_T bytes, DWORD flags,
5366                                            DWORD prot, DWORD node) {
5367   assert(initialized && _VirtualAllocExNuma != NULL,
5368          "NUMACallsAvailable() not yet called");
5369 
5370   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5371 }
5372 
5373 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5374   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5375          "NUMACallsAvailable() not yet called");
5376 
5377   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5378 }
5379 
5380 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5381                                                PULONGLONG proc_mask) {
5382   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5383          "NUMACallsAvailable() not yet called");
5384 
5385   return _GetNumaNodeProcessorMask(node, proc_mask);
5386 }
5387 
5388 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5389                                                  ULONG FrameToCapture,
5390                                                  PVOID* BackTrace,
5391                                                  PULONG BackTraceHash) {
5392   if (!initialized) {
5393     initialize();
5394   }
5395 
5396   if (_RtlCaptureStackBackTrace != NULL) {
5397     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5398                                      BackTrace, BackTraceHash);
5399   } else {
5400     return 0;
5401   }
5402 }
5403 
5404 void os::Kernel32Dll::initializeCommon() {
5405   if (!initialized) {
5406     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5407     assert(handle != NULL, "Just check");
5408     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5409     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5410     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5411     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5412     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5413     initialized = TRUE;
5414   }
5415 }
5416 
5417 
5418 
5419 #ifndef JDK6_OR_EARLIER
5420 
5421 void os::Kernel32Dll::initialize() {
5422   initializeCommon();
5423 }
5424 
5425 
5426 // Kernel32 API
5427 inline BOOL os::Kernel32Dll::SwitchToThread() {
5428   return ::SwitchToThread();
5429 }
5430 
5431 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5432   return true;
5433 }
5434 
5435 // Help tools
5436 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5437   return true;
5438 }
5439 
5440 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5441                                                         DWORD th32ProcessId) {
5442   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5443 }
5444 
5445 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5446                                            LPMODULEENTRY32 lpme) {
5447   return ::Module32First(hSnapshot, lpme);
5448 }
5449 
5450 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5451                                           LPMODULEENTRY32 lpme) {
5452   return ::Module32Next(hSnapshot, lpme);
5453 }
5454 
5455 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5456   ::GetNativeSystemInfo(lpSystemInfo);
5457 }
5458 
5459 // PSAPI API
5460 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5461                                              HMODULE *lpModule, DWORD cb,
5462                                              LPDWORD lpcbNeeded) {
5463   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5464 }
5465 
5466 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5467                                                HMODULE hModule,
5468                                                LPTSTR lpFilename,
5469                                                DWORD nSize) {
5470   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5471 }
5472 
5473 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5474                                                HMODULE hModule,
5475                                                LPMODULEINFO lpmodinfo,
5476                                                DWORD cb) {
5477   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5478 }
5479 
5480 inline BOOL os::PSApiDll::PSApiAvailable() {
5481   return true;
5482 }
5483 
5484 
5485 // WinSock2 API
5486 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5487                                         LPWSADATA lpWSAData) {
5488   return ::WSAStartup(wVersionRequested, lpWSAData);
5489 }
5490 
5491 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5492   return ::gethostbyname(name);
5493 }
5494 
5495 inline BOOL os::WinSock2Dll::WinSock2Available() {
5496   return true;
5497 }
5498 
5499 // Advapi API
5500 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5501                                                    BOOL DisableAllPrivileges,
5502                                                    PTOKEN_PRIVILEGES NewState,
5503                                                    DWORD BufferLength,
5504                                                    PTOKEN_PRIVILEGES PreviousState,
5505                                                    PDWORD ReturnLength) {
5506   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5507                                  BufferLength, PreviousState, ReturnLength);
5508 }
5509 
5510 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5511                                               DWORD DesiredAccess,
5512                                               PHANDLE TokenHandle) {
5513   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5514 }
5515 
5516 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5517                                                   LPCTSTR lpName,
5518                                                   PLUID lpLuid) {
5519   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5520 }
5521 
5522 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5523   return true;
5524 }
5525 
5526 void* os::get_default_process_handle() {
5527   return (void*)GetModuleHandle(NULL);
5528 }
5529 
5530 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5531 // which is used to find statically linked in agents.
5532 // Additionally for windows, takes into account __stdcall names.
5533 // Parameters:
5534 //            sym_name: Symbol in library we are looking for
5535 //            lib_name: Name of library to look in, NULL for shared libs.
5536 //            is_absolute_path == true if lib_name is absolute path to agent
5537 //                                     such as "C:/a/b/L.dll"
5538 //            == false if only the base name of the library is passed in
5539 //               such as "L"
5540 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5541                                     bool is_absolute_path) {
5542   char *agent_entry_name;
5543   size_t len;
5544   size_t name_len;
5545   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5546   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5547   const char *start;
5548 
5549   if (lib_name != NULL) {
5550     len = name_len = strlen(lib_name);
5551     if (is_absolute_path) {
5552       // Need to strip path, prefix and suffix
5553       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5554         lib_name = ++start;
5555       } else {
5556         // Need to check for drive prefix
5557         if ((start = strchr(lib_name, ':')) != NULL) {
5558           lib_name = ++start;
5559         }
5560       }
5561       if (len <= (prefix_len + suffix_len)) {
5562         return NULL;
5563       }
5564       lib_name += prefix_len;
5565       name_len = strlen(lib_name) - suffix_len;
5566     }
5567   }
5568   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5569   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5570   if (agent_entry_name == NULL) {
5571     return NULL;
5572   }
5573   if (lib_name != NULL) {
5574     const char *p = strrchr(sym_name, '@');
5575     if (p != NULL && p != sym_name) {
5576       // sym_name == _Agent_OnLoad@XX
5577       strncpy(agent_entry_name, sym_name, (p - sym_name));
5578       agent_entry_name[(p-sym_name)] = '\0';
5579       // agent_entry_name == _Agent_OnLoad
5580       strcat(agent_entry_name, "_");
5581       strncat(agent_entry_name, lib_name, name_len);
5582       strcat(agent_entry_name, p);
5583       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5584     } else {
5585       strcpy(agent_entry_name, sym_name);
5586       strcat(agent_entry_name, "_");
5587       strncat(agent_entry_name, lib_name, name_len);
5588     }
5589   } else {
5590     strcpy(agent_entry_name, sym_name);
5591   }
5592   return agent_entry_name;
5593 }
5594 
5595 #else
5596 // Kernel32 API
5597 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5598 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5599 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5600 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5601 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5602 
5603 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5604 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5605 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5606 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5607 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5608 
5609 void os::Kernel32Dll::initialize() {
5610   if (!initialized) {
5611     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5612     assert(handle != NULL, "Just check");
5613 
5614     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5615     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5616       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5617     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5618     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5619     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5620     initializeCommon();  // resolve the functions that always need resolving
5621 
5622     initialized = TRUE;
5623   }
5624 }
5625 
5626 BOOL os::Kernel32Dll::SwitchToThread() {
5627   assert(initialized && _SwitchToThread != NULL,
5628          "SwitchToThreadAvailable() not yet called");
5629   return _SwitchToThread();
5630 }
5631 
5632 
5633 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5634   if (!initialized) {
5635     initialize();
5636   }
5637   return _SwitchToThread != NULL;
5638 }
5639 
5640 // Help tools
5641 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5642   if (!initialized) {
5643     initialize();
5644   }
5645   return _CreateToolhelp32Snapshot != NULL &&
5646          _Module32First != NULL &&
5647          _Module32Next != NULL;
5648 }
5649 
5650 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5651                                                  DWORD th32ProcessId) {
5652   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5653          "HelpToolsAvailable() not yet called");
5654 
5655   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5656 }
5657 
5658 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5659   assert(initialized && _Module32First != NULL,
5660          "HelpToolsAvailable() not yet called");
5661 
5662   return _Module32First(hSnapshot, lpme);
5663 }
5664 
5665 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5666                                           LPMODULEENTRY32 lpme) {
5667   assert(initialized && _Module32Next != NULL,
5668          "HelpToolsAvailable() not yet called");
5669 
5670   return _Module32Next(hSnapshot, lpme);
5671 }
5672 
5673 
5674 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5675   if (!initialized) {
5676     initialize();
5677   }
5678   return _GetNativeSystemInfo != NULL;
5679 }
5680 
5681 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5682   assert(initialized && _GetNativeSystemInfo != NULL,
5683          "GetNativeSystemInfoAvailable() not yet called");
5684 
5685   _GetNativeSystemInfo(lpSystemInfo);
5686 }
5687 
5688 // PSAPI API
5689 
5690 
5691 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5692 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5693 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5694 
5695 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5696 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5697 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5698 BOOL                    os::PSApiDll::initialized = FALSE;
5699 
5700 void os::PSApiDll::initialize() {
5701   if (!initialized) {
5702     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5703     if (handle != NULL) {
5704       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5705                                                                     "EnumProcessModules");
5706       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5707                                                                       "GetModuleFileNameExA");
5708       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5709                                                                         "GetModuleInformation");
5710     }
5711     initialized = TRUE;
5712   }
5713 }
5714 
5715 
5716 
5717 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5718                                       DWORD cb, LPDWORD lpcbNeeded) {
5719   assert(initialized && _EnumProcessModules != NULL,
5720          "PSApiAvailable() not yet called");
5721   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5722 }
5723 
5724 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5725                                         LPTSTR lpFilename, DWORD nSize) {
5726   assert(initialized && _GetModuleFileNameEx != NULL,
5727          "PSApiAvailable() not yet called");
5728   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5729 }
5730 
5731 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5732                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5733   assert(initialized && _GetModuleInformation != NULL,
5734          "PSApiAvailable() not yet called");
5735   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5736 }
5737 
5738 BOOL os::PSApiDll::PSApiAvailable() {
5739   if (!initialized) {
5740     initialize();
5741   }
5742   return _EnumProcessModules != NULL &&
5743     _GetModuleFileNameEx != NULL &&
5744     _GetModuleInformation != NULL;
5745 }
5746 
5747 
5748 // WinSock2 API
5749 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5750 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5751 
5752 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5753 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5754 BOOL             os::WinSock2Dll::initialized = FALSE;
5755 
5756 void os::WinSock2Dll::initialize() {
5757   if (!initialized) {
5758     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5759     if (handle != NULL) {
5760       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5761       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5762     }
5763     initialized = TRUE;
5764   }
5765 }
5766 
5767 
5768 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5769   assert(initialized && _WSAStartup != NULL,
5770          "WinSock2Available() not yet called");
5771   return _WSAStartup(wVersionRequested, lpWSAData);
5772 }
5773 
5774 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5775   assert(initialized && _gethostbyname != NULL,
5776          "WinSock2Available() not yet called");
5777   return _gethostbyname(name);
5778 }
5779 
5780 BOOL os::WinSock2Dll::WinSock2Available() {
5781   if (!initialized) {
5782     initialize();
5783   }
5784   return _WSAStartup != NULL &&
5785     _gethostbyname != NULL;
5786 }
5787 
5788 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5789 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5790 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5791 
5792 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5793 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5794 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5795 BOOL                     os::Advapi32Dll::initialized = FALSE;
5796 
5797 void os::Advapi32Dll::initialize() {
5798   if (!initialized) {
5799     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5800     if (handle != NULL) {
5801       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5802                                                                           "AdjustTokenPrivileges");
5803       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5804                                                                 "OpenProcessToken");
5805       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5806                                                                         "LookupPrivilegeValueA");
5807     }
5808     initialized = TRUE;
5809   }
5810 }
5811 
5812 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5813                                             BOOL DisableAllPrivileges,
5814                                             PTOKEN_PRIVILEGES NewState,
5815                                             DWORD BufferLength,
5816                                             PTOKEN_PRIVILEGES PreviousState,
5817                                             PDWORD ReturnLength) {
5818   assert(initialized && _AdjustTokenPrivileges != NULL,
5819          "AdvapiAvailable() not yet called");
5820   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5821                                 BufferLength, PreviousState, ReturnLength);
5822 }
5823 
5824 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5825                                        DWORD DesiredAccess,
5826                                        PHANDLE TokenHandle) {
5827   assert(initialized && _OpenProcessToken != NULL,
5828          "AdvapiAvailable() not yet called");
5829   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5830 }
5831 
5832 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5833                                            LPCTSTR lpName, PLUID lpLuid) {
5834   assert(initialized && _LookupPrivilegeValue != NULL,
5835          "AdvapiAvailable() not yet called");
5836   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5837 }
5838 
5839 BOOL os::Advapi32Dll::AdvapiAvailable() {
5840   if (!initialized) {
5841     initialize();
5842   }
5843   return _AdjustTokenPrivileges != NULL &&
5844     _OpenProcessToken != NULL &&
5845     _LookupPrivilegeValue != NULL;
5846 }
5847 
5848 #endif
5849 
5850 #ifndef PRODUCT
5851 
5852 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5853 // contiguous memory block at a particular address.
5854 // The test first tries to find a good approximate address to allocate at by using the same
5855 // method to allocate some memory at any address. The test then tries to allocate memory in
5856 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5857 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5858 // the previously allocated memory is available for allocation. The only actual failure
5859 // that is reported is when the test tries to allocate at a particular location but gets a
5860 // different valid one. A NULL return value at this point is not considered an error but may
5861 // be legitimate.
5862 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5863 void TestReserveMemorySpecial_test() {
5864   if (!UseLargePages) {
5865     if (VerboseInternalVMTests) {
5866       gclog_or_tty->print("Skipping test because large pages are disabled");
5867     }
5868     return;
5869   }
5870   // save current value of globals
5871   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5872   bool old_use_numa_interleaving = UseNUMAInterleaving;
5873 
5874   // set globals to make sure we hit the correct code path
5875   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5876 
5877   // do an allocation at an address selected by the OS to get a good one.
5878   const size_t large_allocation_size = os::large_page_size() * 4;
5879   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5880   if (result == NULL) {
5881     if (VerboseInternalVMTests) {
5882       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5883                           large_allocation_size);
5884     }
5885   } else {
5886     os::release_memory_special(result, large_allocation_size);
5887 
5888     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5889     // we managed to get it once.
5890     const size_t expected_allocation_size = os::large_page_size();
5891     char* expected_location = result + os::large_page_size();
5892     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5893     if (actual_location == NULL) {
5894       if (VerboseInternalVMTests) {
5895         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5896                             expected_location, large_allocation_size);
5897       }
5898     } else {
5899       // release memory
5900       os::release_memory_special(actual_location, expected_allocation_size);
5901       // only now check, after releasing any memory to avoid any leaks.
5902       assert(actual_location == expected_location,
5903              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5904              expected_location, expected_allocation_size, actual_location));
5905     }
5906   }
5907 
5908   // restore globals
5909   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5910   UseNUMAInterleaving = old_use_numa_interleaving;
5911 }
5912 #endif // PRODUCT
5913 
--- EOF ---