1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/traceEventTypes.hpp"
  80 #include "utilities/defaultStream.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/preserveException.hpp"
  84 #ifdef TARGET_OS_FAMILY_linux
  85 # include "os_linux.inline.hpp"
  86 # include "thread_linux.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_solaris
  89 # include "os_solaris.inline.hpp"
  90 # include "thread_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 # include "thread_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 # include "thread_bsd.inline.hpp"
  99 #endif
 100 #ifndef SERIALGC
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117 #ifndef USDT2
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 123   intptr_t, intptr_t, bool);
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 132       name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else /* USDT2 */
 139 
 140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 142 
 143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 144   {                                                                        \
 145     ResourceMark rm(this);                                                 \
 146     int len = 0;                                                           \
 147     const char* name = (javathread)->get_thread_name();                    \
 148     len = strlen(name);                                                    \
 149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 150       (char *) name, len,                                                           \
 151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 154   }
 155 
 156 #endif /* USDT2 */
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160 #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : os::malloc(aligned_size, flags, CURRENT_PC);
 181     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (TraceBiasedLocking) {
 186       if (aligned_addr != real_malloc_addr)
 187         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                       real_malloc_addr, aligned_addr);
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : os::malloc(size, flags, CURRENT_PC);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 201     FreeHeap(real_malloc_addr, mtThread);
 202   } else {
 203     FreeHeap(p, mtThread);
 204   }
 205 }
 206 
 207 
 208 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 209 // JavaThread
 210 
 211 
 212 Thread::Thread() {
 213   // stack and get_thread
 214   set_stack_base(NULL);
 215   set_stack_size(0);
 216   set_self_raw_id(0);
 217   set_lgrp_id(-1);
 218 
 219   // allocated data structures
 220   set_osthread(NULL);
 221   set_resource_area(new (mtThread)ResourceArea());
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 224   set_active_handles(NULL);
 225   set_free_handle_block(NULL);
 226   set_last_handle_mark(NULL);
 227 
 228   // This initial value ==> never claimed.
 229   _oops_do_parity = 0;
 230 
 231   // the handle mark links itself to last_handle_mark
 232   new HandleMark(this);
 233 
 234   // plain initialization
 235   debug_only(_owned_locks = NULL;)
 236   debug_only(_allow_allocation_count = 0;)
 237   NOT_PRODUCT(_allow_safepoint_count = 0;)
 238   NOT_PRODUCT(_skip_gcalot = false;)
 239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 240   _jvmti_env_iteration_count = 0;
 241   set_allocated_bytes(0);
 242   set_trace_buffer(NULL);
 243   _vm_operation_started_count = 0;
 244   _vm_operation_completed_count = 0;
 245   _current_pending_monitor = NULL;
 246   _current_pending_monitor_is_from_java = true;
 247   _current_waiting_monitor = NULL;
 248   _num_nested_signal = 0;
 249   omFreeList = NULL ;
 250   omFreeCount = 0 ;
 251   omFreeProvision = 32 ;
 252   omInUseList = NULL ;
 253   omInUseCount = 0 ;
 254 
 255 #ifdef ASSERT
 256   _visited_for_critical_count = false;
 257 #endif
 258 
 259   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 260   _suspend_flags = 0;
 261 
 262   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 263   _hashStateX = os::random() ;
 264   _hashStateY = 842502087 ;
 265   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 266   _hashStateW = 273326509 ;
 267 
 268   _OnTrap   = 0 ;
 269   _schedctl = NULL ;
 270   _Stalled  = 0 ;
 271   _TypeTag  = 0x2BAD ;
 272 
 273   // Many of the following fields are effectively final - immutable
 274   // Note that nascent threads can't use the Native Monitor-Mutex
 275   // construct until the _MutexEvent is initialized ...
 276   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 277   // we might instead use a stack of ParkEvents that we could provision on-demand.
 278   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 279   // and ::Release()
 280   _ParkEvent   = ParkEvent::Allocate (this) ;
 281   _SleepEvent  = ParkEvent::Allocate (this) ;
 282   _MutexEvent  = ParkEvent::Allocate (this) ;
 283   _MuxEvent    = ParkEvent::Allocate (this) ;
 284 
 285 #ifdef CHECK_UNHANDLED_OOPS
 286   if (CheckUnhandledOops) {
 287     _unhandled_oops = new UnhandledOops(this);
 288   }
 289 #endif // CHECK_UNHANDLED_OOPS
 290 #ifdef ASSERT
 291   if (UseBiasedLocking) {
 292     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 293     assert(this == _real_malloc_address ||
 294            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 295            "bug in forced alignment of thread objects");
 296   }
 297 #endif /* ASSERT */
 298 }
 299 
 300 void Thread::initialize_thread_local_storage() {
 301   // Note: Make sure this method only calls
 302   // non-blocking operations. Otherwise, it might not work
 303   // with the thread-startup/safepoint interaction.
 304 
 305   // During Java thread startup, safepoint code should allow this
 306   // method to complete because it may need to allocate memory to
 307   // store information for the new thread.
 308 
 309   // initialize structure dependent on thread local storage
 310   ThreadLocalStorage::set_thread(this);
 311 
 312   // set up any platform-specific state.
 313   os::initialize_thread();
 314 }
 315 
 316 void Thread::record_stack_base_and_size() {
 317   set_stack_base(os::current_stack_base());
 318   set_stack_size(os::current_stack_size());
 319 
 320   // record thread's native stack, stack grows downward
 321   address low_stack_addr = stack_base() - stack_size();
 322   MemTracker::record_thread_stack(low_stack_addr, stack_size(), this,
 323              CURRENT_PC);
 324 }
 325 
 326 
 327 Thread::~Thread() {
 328   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 329   ObjectSynchronizer::omFlush (this) ;
 330 
 331   // stack_base can be NULL if the thread is never started or exited before
 332   // record_stack_base_and_size called. Although, we would like to ensure
 333   // that all started threads do call record_stack_base_and_size(), there is
 334   // not proper way to enforce that.
 335   if (_stack_base != NULL) {
 336     address low_stack_addr = stack_base() - stack_size();
 337     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 338   }
 339 
 340   // deallocate data structures
 341   delete resource_area();
 342   // since the handle marks are using the handle area, we have to deallocated the root
 343   // handle mark before deallocating the thread's handle area,
 344   assert(last_handle_mark() != NULL, "check we have an element");
 345   delete last_handle_mark();
 346   assert(last_handle_mark() == NULL, "check we have reached the end");
 347 
 348   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 349   // We NULL out the fields for good hygiene.
 350   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 351   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 352   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 353   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 354 
 355   delete handle_area();
 356   delete metadata_handles();
 357 
 358   // osthread() can be NULL, if creation of thread failed.
 359   if (osthread() != NULL) os::free_thread(osthread());
 360 
 361   delete _SR_lock;
 362 
 363   // clear thread local storage if the Thread is deleting itself
 364   if (this == Thread::current()) {
 365     ThreadLocalStorage::set_thread(NULL);
 366   } else {
 367     // In the case where we're not the current thread, invalidate all the
 368     // caches in case some code tries to get the current thread or the
 369     // thread that was destroyed, and gets stale information.
 370     ThreadLocalStorage::invalidate_all();
 371   }
 372   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 373 }
 374 
 375 // NOTE: dummy function for assertion purpose.
 376 void Thread::run() {
 377   ShouldNotReachHere();
 378 }
 379 
 380 #ifdef ASSERT
 381 // Private method to check for dangling thread pointer
 382 void check_for_dangling_thread_pointer(Thread *thread) {
 383  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 384          "possibility of dangling Thread pointer");
 385 }
 386 #endif
 387 
 388 
 389 #ifndef PRODUCT
 390 // Tracing method for basic thread operations
 391 void Thread::trace(const char* msg, const Thread* const thread) {
 392   if (!TraceThreadEvents) return;
 393   ResourceMark rm;
 394   ThreadCritical tc;
 395   const char *name = "non-Java thread";
 396   int prio = -1;
 397   if (thread->is_Java_thread()
 398       && !thread->is_Compiler_thread()) {
 399     // The Threads_lock must be held to get information about
 400     // this thread but may not be in some situations when
 401     // tracing  thread events.
 402     bool release_Threads_lock = false;
 403     if (!Threads_lock->owned_by_self()) {
 404       Threads_lock->lock();
 405       release_Threads_lock = true;
 406     }
 407     JavaThread* jt = (JavaThread *)thread;
 408     name = (char *)jt->get_thread_name();
 409     oop thread_oop = jt->threadObj();
 410     if (thread_oop != NULL) {
 411       prio = java_lang_Thread::priority(thread_oop);
 412     }
 413     if (release_Threads_lock) {
 414       Threads_lock->unlock();
 415     }
 416   }
 417   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 418 }
 419 #endif
 420 
 421 
 422 ThreadPriority Thread::get_priority(const Thread* const thread) {
 423   trace("get priority", thread);
 424   ThreadPriority priority;
 425   // Can return an error!
 426   (void)os::get_priority(thread, priority);
 427   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 428   return priority;
 429 }
 430 
 431 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 432   trace("set priority", thread);
 433   debug_only(check_for_dangling_thread_pointer(thread);)
 434   // Can return an error!
 435   (void)os::set_priority(thread, priority);
 436 }
 437 
 438 
 439 void Thread::start(Thread* thread) {
 440   trace("start", thread);
 441   // Start is different from resume in that its safety is guaranteed by context or
 442   // being called from a Java method synchronized on the Thread object.
 443   if (!DisableStartThread) {
 444     if (thread->is_Java_thread()) {
 445       // Initialize the thread state to RUNNABLE before starting this thread.
 446       // Can not set it after the thread started because we do not know the
 447       // exact thread state at that time. It could be in MONITOR_WAIT or
 448       // in SLEEPING or some other state.
 449       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 450                                           java_lang_Thread::RUNNABLE);
 451     }
 452     os::start_thread(thread);
 453   }
 454 }
 455 
 456 // Enqueue a VM_Operation to do the job for us - sometime later
 457 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 458   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 459   VMThread::execute(vm_stop);
 460 }
 461 
 462 
 463 //
 464 // Check if an external suspend request has completed (or has been
 465 // cancelled). Returns true if the thread is externally suspended and
 466 // false otherwise.
 467 //
 468 // The bits parameter returns information about the code path through
 469 // the routine. Useful for debugging:
 470 //
 471 // set in is_ext_suspend_completed():
 472 // 0x00000001 - routine was entered
 473 // 0x00000010 - routine return false at end
 474 // 0x00000100 - thread exited (return false)
 475 // 0x00000200 - suspend request cancelled (return false)
 476 // 0x00000400 - thread suspended (return true)
 477 // 0x00001000 - thread is in a suspend equivalent state (return true)
 478 // 0x00002000 - thread is native and walkable (return true)
 479 // 0x00004000 - thread is native_trans and walkable (needed retry)
 480 //
 481 // set in wait_for_ext_suspend_completion():
 482 // 0x00010000 - routine was entered
 483 // 0x00020000 - suspend request cancelled before loop (return false)
 484 // 0x00040000 - thread suspended before loop (return true)
 485 // 0x00080000 - suspend request cancelled in loop (return false)
 486 // 0x00100000 - thread suspended in loop (return true)
 487 // 0x00200000 - suspend not completed during retry loop (return false)
 488 //
 489 
 490 // Helper class for tracing suspend wait debug bits.
 491 //
 492 // 0x00000100 indicates that the target thread exited before it could
 493 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 494 // 0x00080000 each indicate a cancelled suspend request so they don't
 495 // count as wait failures either.
 496 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 497 
 498 class TraceSuspendDebugBits : public StackObj {
 499  private:
 500   JavaThread * jt;
 501   bool         is_wait;
 502   bool         called_by_wait;  // meaningful when !is_wait
 503   uint32_t *   bits;
 504 
 505  public:
 506   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 507                         uint32_t *_bits) {
 508     jt             = _jt;
 509     is_wait        = _is_wait;
 510     called_by_wait = _called_by_wait;
 511     bits           = _bits;
 512   }
 513 
 514   ~TraceSuspendDebugBits() {
 515     if (!is_wait) {
 516 #if 1
 517       // By default, don't trace bits for is_ext_suspend_completed() calls.
 518       // That trace is very chatty.
 519       return;
 520 #else
 521       if (!called_by_wait) {
 522         // If tracing for is_ext_suspend_completed() is enabled, then only
 523         // trace calls to it from wait_for_ext_suspend_completion()
 524         return;
 525       }
 526 #endif
 527     }
 528 
 529     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 530       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 531         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 532         ResourceMark rm;
 533 
 534         tty->print_cr(
 535             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 536             jt->get_thread_name(), *bits);
 537 
 538         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 539       }
 540     }
 541   }
 542 };
 543 #undef DEBUG_FALSE_BITS
 544 
 545 
 546 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 547   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 548 
 549   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 550   bool do_trans_retry;           // flag to force the retry
 551 
 552   *bits |= 0x00000001;
 553 
 554   do {
 555     do_trans_retry = false;
 556 
 557     if (is_exiting()) {
 558       // Thread is in the process of exiting. This is always checked
 559       // first to reduce the risk of dereferencing a freed JavaThread.
 560       *bits |= 0x00000100;
 561       return false;
 562     }
 563 
 564     if (!is_external_suspend()) {
 565       // Suspend request is cancelled. This is always checked before
 566       // is_ext_suspended() to reduce the risk of a rogue resume
 567       // confusing the thread that made the suspend request.
 568       *bits |= 0x00000200;
 569       return false;
 570     }
 571 
 572     if (is_ext_suspended()) {
 573       // thread is suspended
 574       *bits |= 0x00000400;
 575       return true;
 576     }
 577 
 578     // Now that we no longer do hard suspends of threads running
 579     // native code, the target thread can be changing thread state
 580     // while we are in this routine:
 581     //
 582     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 583     //
 584     // We save a copy of the thread state as observed at this moment
 585     // and make our decision about suspend completeness based on the
 586     // copy. This closes the race where the thread state is seen as
 587     // _thread_in_native_trans in the if-thread_blocked check, but is
 588     // seen as _thread_blocked in if-thread_in_native_trans check.
 589     JavaThreadState save_state = thread_state();
 590 
 591     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 592       // If the thread's state is _thread_blocked and this blocking
 593       // condition is known to be equivalent to a suspend, then we can
 594       // consider the thread to be externally suspended. This means that
 595       // the code that sets _thread_blocked has been modified to do
 596       // self-suspension if the blocking condition releases. We also
 597       // used to check for CONDVAR_WAIT here, but that is now covered by
 598       // the _thread_blocked with self-suspension check.
 599       //
 600       // Return true since we wouldn't be here unless there was still an
 601       // external suspend request.
 602       *bits |= 0x00001000;
 603       return true;
 604     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 605       // Threads running native code will self-suspend on native==>VM/Java
 606       // transitions. If its stack is walkable (should always be the case
 607       // unless this function is called before the actual java_suspend()
 608       // call), then the wait is done.
 609       *bits |= 0x00002000;
 610       return true;
 611     } else if (!called_by_wait && !did_trans_retry &&
 612                save_state == _thread_in_native_trans &&
 613                frame_anchor()->walkable()) {
 614       // The thread is transitioning from thread_in_native to another
 615       // thread state. check_safepoint_and_suspend_for_native_trans()
 616       // will force the thread to self-suspend. If it hasn't gotten
 617       // there yet we may have caught the thread in-between the native
 618       // code check above and the self-suspend. Lucky us. If we were
 619       // called by wait_for_ext_suspend_completion(), then it
 620       // will be doing the retries so we don't have to.
 621       //
 622       // Since we use the saved thread state in the if-statement above,
 623       // there is a chance that the thread has already transitioned to
 624       // _thread_blocked by the time we get here. In that case, we will
 625       // make a single unnecessary pass through the logic below. This
 626       // doesn't hurt anything since we still do the trans retry.
 627 
 628       *bits |= 0x00004000;
 629 
 630       // Once the thread leaves thread_in_native_trans for another
 631       // thread state, we break out of this retry loop. We shouldn't
 632       // need this flag to prevent us from getting back here, but
 633       // sometimes paranoia is good.
 634       did_trans_retry = true;
 635 
 636       // We wait for the thread to transition to a more usable state.
 637       for (int i = 1; i <= SuspendRetryCount; i++) {
 638         // We used to do an "os::yield_all(i)" call here with the intention
 639         // that yielding would increase on each retry. However, the parameter
 640         // is ignored on Linux which means the yield didn't scale up. Waiting
 641         // on the SR_lock below provides a much more predictable scale up for
 642         // the delay. It also provides a simple/direct point to check for any
 643         // safepoint requests from the VMThread
 644 
 645         // temporarily drops SR_lock while doing wait with safepoint check
 646         // (if we're a JavaThread - the WatcherThread can also call this)
 647         // and increase delay with each retry
 648         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 649 
 650         // check the actual thread state instead of what we saved above
 651         if (thread_state() != _thread_in_native_trans) {
 652           // the thread has transitioned to another thread state so
 653           // try all the checks (except this one) one more time.
 654           do_trans_retry = true;
 655           break;
 656         }
 657       } // end retry loop
 658 
 659 
 660     }
 661   } while (do_trans_retry);
 662 
 663   *bits |= 0x00000010;
 664   return false;
 665 }
 666 
 667 //
 668 // Wait for an external suspend request to complete (or be cancelled).
 669 // Returns true if the thread is externally suspended and false otherwise.
 670 //
 671 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 672        uint32_t *bits) {
 673   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 674                              false /* !called_by_wait */, bits);
 675 
 676   // local flag copies to minimize SR_lock hold time
 677   bool is_suspended;
 678   bool pending;
 679   uint32_t reset_bits;
 680 
 681   // set a marker so is_ext_suspend_completed() knows we are the caller
 682   *bits |= 0x00010000;
 683 
 684   // We use reset_bits to reinitialize the bits value at the top of
 685   // each retry loop. This allows the caller to make use of any
 686   // unused bits for their own marking purposes.
 687   reset_bits = *bits;
 688 
 689   {
 690     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 691     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                             delay, bits);
 693     pending = is_external_suspend();
 694   }
 695   // must release SR_lock to allow suspension to complete
 696 
 697   if (!pending) {
 698     // A cancelled suspend request is the only false return from
 699     // is_ext_suspend_completed() that keeps us from entering the
 700     // retry loop.
 701     *bits |= 0x00020000;
 702     return false;
 703   }
 704 
 705   if (is_suspended) {
 706     *bits |= 0x00040000;
 707     return true;
 708   }
 709 
 710   for (int i = 1; i <= retries; i++) {
 711     *bits = reset_bits;  // reinit to only track last retry
 712 
 713     // We used to do an "os::yield_all(i)" call here with the intention
 714     // that yielding would increase on each retry. However, the parameter
 715     // is ignored on Linux which means the yield didn't scale up. Waiting
 716     // on the SR_lock below provides a much more predictable scale up for
 717     // the delay. It also provides a simple/direct point to check for any
 718     // safepoint requests from the VMThread
 719 
 720     {
 721       MutexLocker ml(SR_lock());
 722       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 723       // can also call this)  and increase delay with each retry
 724       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 725 
 726       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 727                                               delay, bits);
 728 
 729       // It is possible for the external suspend request to be cancelled
 730       // (by a resume) before the actual suspend operation is completed.
 731       // Refresh our local copy to see if we still need to wait.
 732       pending = is_external_suspend();
 733     }
 734 
 735     if (!pending) {
 736       // A cancelled suspend request is the only false return from
 737       // is_ext_suspend_completed() that keeps us from staying in the
 738       // retry loop.
 739       *bits |= 0x00080000;
 740       return false;
 741     }
 742 
 743     if (is_suspended) {
 744       *bits |= 0x00100000;
 745       return true;
 746     }
 747   } // end retry loop
 748 
 749   // thread did not suspend after all our retries
 750   *bits |= 0x00200000;
 751   return false;
 752 }
 753 
 754 #ifndef PRODUCT
 755 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 756 
 757   // This should not need to be atomic as the only way for simultaneous
 758   // updates is via interrupts. Even then this should be rare or non-existant
 759   // and we don't care that much anyway.
 760 
 761   int index = _jmp_ring_index;
 762   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 763   _jmp_ring[index]._target = (intptr_t) target;
 764   _jmp_ring[index]._instruction = (intptr_t) instr;
 765   _jmp_ring[index]._file = file;
 766   _jmp_ring[index]._line = line;
 767 }
 768 #endif /* PRODUCT */
 769 
 770 // Called by flat profiler
 771 // Callers have already called wait_for_ext_suspend_completion
 772 // The assertion for that is currently too complex to put here:
 773 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 774   bool gotframe = false;
 775   // self suspension saves needed state.
 776   if (has_last_Java_frame() && _anchor.walkable()) {
 777      *_fr = pd_last_frame();
 778      gotframe = true;
 779   }
 780   return gotframe;
 781 }
 782 
 783 void Thread::interrupt(Thread* thread) {
 784   trace("interrupt", thread);
 785   debug_only(check_for_dangling_thread_pointer(thread);)
 786   os::interrupt(thread);
 787 }
 788 
 789 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 790   trace("is_interrupted", thread);
 791   debug_only(check_for_dangling_thread_pointer(thread);)
 792   // Note:  If clear_interrupted==false, this simply fetches and
 793   // returns the value of the field osthread()->interrupted().
 794   return os::is_interrupted(thread, clear_interrupted);
 795 }
 796 
 797 
 798 // GC Support
 799 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 800   jint thread_parity = _oops_do_parity;
 801   if (thread_parity != strong_roots_parity) {
 802     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 803     if (res == thread_parity) {
 804       return true;
 805     } else {
 806       guarantee(res == strong_roots_parity, "Or else what?");
 807       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 808          "Should only fail when parallel.");
 809       return false;
 810     }
 811   }
 812   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 813          "Should only fail when parallel.");
 814   return false;
 815 }
 816 
 817 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 818   active_handles()->oops_do(f);
 819   // Do oop for ThreadShadow
 820   f->do_oop((oop*)&_pending_exception);
 821   handle_area()->oops_do(f);
 822 }
 823 
 824 void Thread::nmethods_do(CodeBlobClosure* cf) {
 825   // no nmethods in a generic thread...
 826 }
 827 
 828 void Thread::metadata_do(void f(Metadata*)) {
 829   if (metadata_handles() != NULL) {
 830     for (int i = 0; i< metadata_handles()->length(); i++) {
 831       f(metadata_handles()->at(i));
 832     }
 833   }
 834 }
 835 
 836 void Thread::print_on(outputStream* st) const {
 837   // get_priority assumes osthread initialized
 838   if (osthread() != NULL) {
 839     int os_prio;
 840     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 841       st->print("os_prio=%d ", os_prio);
 842     }
 843     st->print("tid=" INTPTR_FORMAT " ", this);
 844     osthread()->print_on(st);
 845   }
 846   debug_only(if (WizardMode) print_owned_locks_on(st);)
 847 }
 848 
 849 // Thread::print_on_error() is called by fatal error handler. Don't use
 850 // any lock or allocate memory.
 851 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 852   if      (is_VM_thread())                  st->print("VMThread");
 853   else if (is_Compiler_thread())            st->print("CompilerThread");
 854   else if (is_Java_thread())                st->print("JavaThread");
 855   else if (is_GC_task_thread())             st->print("GCTaskThread");
 856   else if (is_Watcher_thread())             st->print("WatcherThread");
 857   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 858   else st->print("Thread");
 859 
 860   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 861             _stack_base - _stack_size, _stack_base);
 862 
 863   if (osthread()) {
 864     st->print(" [id=%d]", osthread()->thread_id());
 865   }
 866 }
 867 
 868 #ifdef ASSERT
 869 void Thread::print_owned_locks_on(outputStream* st) const {
 870   Monitor *cur = _owned_locks;
 871   if (cur == NULL) {
 872     st->print(" (no locks) ");
 873   } else {
 874     st->print_cr(" Locks owned:");
 875     while(cur) {
 876       cur->print_on(st);
 877       cur = cur->next();
 878     }
 879   }
 880 }
 881 
 882 static int ref_use_count  = 0;
 883 
 884 bool Thread::owns_locks_but_compiled_lock() const {
 885   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 886     if (cur != Compile_lock) return true;
 887   }
 888   return false;
 889 }
 890 
 891 
 892 #endif
 893 
 894 #ifndef PRODUCT
 895 
 896 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 897 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 898 // no threads which allow_vm_block's are held
 899 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 900     // Check if current thread is allowed to block at a safepoint
 901     if (!(_allow_safepoint_count == 0))
 902       fatal("Possible safepoint reached by thread that does not allow it");
 903     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 904       fatal("LEAF method calling lock?");
 905     }
 906 
 907 #ifdef ASSERT
 908     if (potential_vm_operation && is_Java_thread()
 909         && !Universe::is_bootstrapping()) {
 910       // Make sure we do not hold any locks that the VM thread also uses.
 911       // This could potentially lead to deadlocks
 912       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 913         // Threads_lock is special, since the safepoint synchronization will not start before this is
 914         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 915         // since it is used to transfer control between JavaThreads and the VMThread
 916         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 917         if ( (cur->allow_vm_block() &&
 918               cur != Threads_lock &&
 919               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 920               cur != VMOperationRequest_lock &&
 921               cur != VMOperationQueue_lock) ||
 922               cur->rank() == Mutex::special) {
 923           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 924         }
 925       }
 926     }
 927 
 928     if (GCALotAtAllSafepoints) {
 929       // We could enter a safepoint here and thus have a gc
 930       InterfaceSupport::check_gc_alot();
 931     }
 932 #endif
 933 }
 934 #endif
 935 
 936 bool Thread::is_in_stack(address adr) const {
 937   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 938   address end = os::current_stack_pointer();
 939   // Allow non Java threads to call this without stack_base
 940   if (_stack_base == NULL) return true;
 941   if (stack_base() >= adr && adr >= end) return true;
 942 
 943   return false;
 944 }
 945 
 946 
 947 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 948 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 949 // used for compilation in the future. If that change is made, the need for these methods
 950 // should be revisited, and they should be removed if possible.
 951 
 952 bool Thread::is_lock_owned(address adr) const {
 953   return on_local_stack(adr);
 954 }
 955 
 956 bool Thread::set_as_starting_thread() {
 957  // NOTE: this must be called inside the main thread.
 958   return os::create_main_thread((JavaThread*)this);
 959 }
 960 
 961 static void initialize_class(Symbol* class_name, TRAPS) {
 962   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 963   InstanceKlass::cast(klass)->initialize(CHECK);
 964 }
 965 
 966 
 967 // Creates the initial ThreadGroup
 968 static Handle create_initial_thread_group(TRAPS) {
 969   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 970   instanceKlassHandle klass (THREAD, k);
 971 
 972   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 973   {
 974     JavaValue result(T_VOID);
 975     JavaCalls::call_special(&result,
 976                             system_instance,
 977                             klass,
 978                             vmSymbols::object_initializer_name(),
 979                             vmSymbols::void_method_signature(),
 980                             CHECK_NH);
 981   }
 982   Universe::set_system_thread_group(system_instance());
 983 
 984   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 985   {
 986     JavaValue result(T_VOID);
 987     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 988     JavaCalls::call_special(&result,
 989                             main_instance,
 990                             klass,
 991                             vmSymbols::object_initializer_name(),
 992                             vmSymbols::threadgroup_string_void_signature(),
 993                             system_instance,
 994                             string,
 995                             CHECK_NH);
 996   }
 997   return main_instance;
 998 }
 999 
1000 // Creates the initial Thread
1001 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1002   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1003   instanceKlassHandle klass (THREAD, k);
1004   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1005 
1006   java_lang_Thread::set_thread(thread_oop(), thread);
1007   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1008   thread->set_threadObj(thread_oop());
1009 
1010   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1011 
1012   JavaValue result(T_VOID);
1013   JavaCalls::call_special(&result, thread_oop,
1014                                    klass,
1015                                    vmSymbols::object_initializer_name(),
1016                                    vmSymbols::threadgroup_string_void_signature(),
1017                                    thread_group,
1018                                    string,
1019                                    CHECK_NULL);
1020   return thread_oop();
1021 }
1022 
1023 static void call_initializeSystemClass(TRAPS) {
1024   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1025   instanceKlassHandle klass (THREAD, k);
1026 
1027   JavaValue result(T_VOID);
1028   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1029                                          vmSymbols::void_method_signature(), CHECK);
1030 }
1031 
1032 char java_runtime_name[128] = "";
1033 
1034 // extract the JRE name from sun.misc.Version.java_runtime_name
1035 static const char* get_java_runtime_name(TRAPS) {
1036   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1037                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038   fieldDescriptor fd;
1039   bool found = k != NULL &&
1040                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1041                                                         vmSymbols::string_signature(), &fd);
1042   if (found) {
1043     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044     if (name_oop == NULL)
1045       return NULL;
1046     const char* name = java_lang_String::as_utf8_string(name_oop,
1047                                                         java_runtime_name,
1048                                                         sizeof(java_runtime_name));
1049     return name;
1050   } else {
1051     return NULL;
1052   }
1053 }
1054 
1055 // General purpose hook into Java code, run once when the VM is initialized.
1056 // The Java library method itself may be changed independently from the VM.
1057 static void call_postVMInitHook(TRAPS) {
1058   Klass* k = SystemDictionary::PostVMInitHook_klass();
1059   instanceKlassHandle klass (THREAD, k);
1060   if (klass.not_null()) {
1061     JavaValue result(T_VOID);
1062     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1063                                            vmSymbols::void_method_signature(),
1064                                            CHECK);
1065   }
1066 }
1067 
1068 static void reset_vm_info_property(TRAPS) {
1069   // the vm info string
1070   ResourceMark rm(THREAD);
1071   const char *vm_info = VM_Version::vm_info_string();
1072 
1073   // java.lang.System class
1074   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1075   instanceKlassHandle klass (THREAD, k);
1076 
1077   // setProperty arguments
1078   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1079   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1080 
1081   // return value
1082   JavaValue r(T_OBJECT);
1083 
1084   // public static String setProperty(String key, String value);
1085   JavaCalls::call_static(&r,
1086                          klass,
1087                          vmSymbols::setProperty_name(),
1088                          vmSymbols::string_string_string_signature(),
1089                          key_str,
1090                          value_str,
1091                          CHECK);
1092 }
1093 
1094 
1095 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1096   assert(thread_group.not_null(), "thread group should be specified");
1097   assert(threadObj() == NULL, "should only create Java thread object once");
1098 
1099   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1100   instanceKlassHandle klass (THREAD, k);
1101   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1102 
1103   java_lang_Thread::set_thread(thread_oop(), this);
1104   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1105   set_threadObj(thread_oop());
1106 
1107   JavaValue result(T_VOID);
1108   if (thread_name != NULL) {
1109     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1110     // Thread gets assigned specified name and null target
1111     JavaCalls::call_special(&result,
1112                             thread_oop,
1113                             klass,
1114                             vmSymbols::object_initializer_name(),
1115                             vmSymbols::threadgroup_string_void_signature(),
1116                             thread_group, // Argument 1
1117                             name,         // Argument 2
1118                             THREAD);
1119   } else {
1120     // Thread gets assigned name "Thread-nnn" and null target
1121     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1122     JavaCalls::call_special(&result,
1123                             thread_oop,
1124                             klass,
1125                             vmSymbols::object_initializer_name(),
1126                             vmSymbols::threadgroup_runnable_void_signature(),
1127                             thread_group, // Argument 1
1128                             Handle(),     // Argument 2
1129                             THREAD);
1130   }
1131 
1132 
1133   if (daemon) {
1134       java_lang_Thread::set_daemon(thread_oop());
1135   }
1136 
1137   if (HAS_PENDING_EXCEPTION) {
1138     return;
1139   }
1140 
1141   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1142   Handle threadObj(this, this->threadObj());
1143 
1144   JavaCalls::call_special(&result,
1145                          thread_group,
1146                          group,
1147                          vmSymbols::add_method_name(),
1148                          vmSymbols::thread_void_signature(),
1149                          threadObj,          // Arg 1
1150                          THREAD);
1151 
1152 
1153 }
1154 
1155 // NamedThread --  non-JavaThread subclasses with multiple
1156 // uniquely named instances should derive from this.
1157 NamedThread::NamedThread() : Thread() {
1158   _name = NULL;
1159   _processed_thread = NULL;
1160 }
1161 
1162 NamedThread::~NamedThread() {
1163   if (_name != NULL) {
1164     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1165     _name = NULL;
1166   }
1167 }
1168 
1169 void NamedThread::set_name(const char* format, ...) {
1170   guarantee(_name == NULL, "Only get to set name once.");
1171   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1172   guarantee(_name != NULL, "alloc failure");
1173   va_list ap;
1174   va_start(ap, format);
1175   jio_vsnprintf(_name, max_name_len, format, ap);
1176   va_end(ap);
1177 }
1178 
1179 // ======= WatcherThread ========
1180 
1181 // The watcher thread exists to simulate timer interrupts.  It should
1182 // be replaced by an abstraction over whatever native support for
1183 // timer interrupts exists on the platform.
1184 
1185 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1186 volatile bool  WatcherThread::_should_terminate = false;
1187 
1188 WatcherThread::WatcherThread() : Thread() {
1189   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1190   if (os::create_thread(this, os::watcher_thread)) {
1191     _watcher_thread = this;
1192 
1193     // Set the watcher thread to the highest OS priority which should not be
1194     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1195     // is created. The only normal thread using this priority is the reference
1196     // handler thread, which runs for very short intervals only.
1197     // If the VMThread's priority is not lower than the WatcherThread profiling
1198     // will be inaccurate.
1199     os::set_priority(this, MaxPriority);
1200     if (!DisableStartThread) {
1201       os::start_thread(this);
1202     }
1203   }
1204 }
1205 
1206 void WatcherThread::run() {
1207   assert(this == watcher_thread(), "just checking");
1208 
1209   this->record_stack_base_and_size();
1210   this->initialize_thread_local_storage();
1211   this->set_active_handles(JNIHandleBlock::allocate_block());
1212   while(!_should_terminate) {
1213     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1214     assert(watcher_thread() == this,  "thread consistency check");
1215 
1216     // Calculate how long it'll be until the next PeriodicTask work
1217     // should be done, and sleep that amount of time.
1218     size_t time_to_wait = PeriodicTask::time_to_wait();
1219 
1220     // we expect this to timeout - we only ever get unparked when
1221     // we should terminate
1222     {
1223       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1224 
1225       jlong prev_time = os::javaTimeNanos();
1226       for (;;) {
1227         int res= _SleepEvent->park(time_to_wait);
1228         if (res == OS_TIMEOUT || _should_terminate)
1229           break;
1230         // spurious wakeup of some kind
1231         jlong now = os::javaTimeNanos();
1232         time_to_wait -= (now - prev_time) / 1000000;
1233         if (time_to_wait <= 0)
1234           break;
1235         prev_time = now;
1236       }
1237     }
1238 
1239     if (is_error_reported()) {
1240       // A fatal error has happened, the error handler(VMError::report_and_die)
1241       // should abort JVM after creating an error log file. However in some
1242       // rare cases, the error handler itself might deadlock. Here we try to
1243       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1244       //
1245       // This code is in WatcherThread because WatcherThread wakes up
1246       // periodically so the fatal error handler doesn't need to do anything;
1247       // also because the WatcherThread is less likely to crash than other
1248       // threads.
1249 
1250       for (;;) {
1251         if (!ShowMessageBoxOnError
1252          && (OnError == NULL || OnError[0] == '\0')
1253          && Arguments::abort_hook() == NULL) {
1254              os::sleep(this, 2 * 60 * 1000, false);
1255              fdStream err(defaultStream::output_fd());
1256              err.print_raw_cr("# [ timer expired, abort... ]");
1257              // skip atexit/vm_exit/vm_abort hooks
1258              os::die();
1259         }
1260 
1261         // Wake up 5 seconds later, the fatal handler may reset OnError or
1262         // ShowMessageBoxOnError when it is ready to abort.
1263         os::sleep(this, 5 * 1000, false);
1264       }
1265     }
1266 
1267     PeriodicTask::real_time_tick(time_to_wait);
1268 
1269     // If we have no more tasks left due to dynamic disenrollment,
1270     // shut down the thread since we don't currently support dynamic enrollment
1271     if (PeriodicTask::num_tasks() == 0) {
1272       _should_terminate = true;
1273     }
1274   }
1275 
1276   // Signal that it is terminated
1277   {
1278     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1279     _watcher_thread = NULL;
1280     Terminator_lock->notify();
1281   }
1282 
1283   // Thread destructor usually does this..
1284   ThreadLocalStorage::set_thread(NULL);
1285 }
1286 
1287 void WatcherThread::start() {
1288   if (watcher_thread() == NULL) {
1289     _should_terminate = false;
1290     // Create the single instance of WatcherThread
1291     new WatcherThread();
1292   }
1293 }
1294 
1295 void WatcherThread::stop() {
1296   // it is ok to take late safepoints here, if needed
1297   MutexLocker mu(Terminator_lock);
1298   _should_terminate = true;
1299   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1300 
1301   Thread* watcher = watcher_thread();
1302   if (watcher != NULL)
1303     watcher->_SleepEvent->unpark();
1304 
1305   while(watcher_thread() != NULL) {
1306     // This wait should make safepoint checks, wait without a timeout,
1307     // and wait as a suspend-equivalent condition.
1308     //
1309     // Note: If the FlatProfiler is running, then this thread is waiting
1310     // for the WatcherThread to terminate and the WatcherThread, via the
1311     // FlatProfiler task, is waiting for the external suspend request on
1312     // this thread to complete. wait_for_ext_suspend_completion() will
1313     // eventually timeout, but that takes time. Making this wait a
1314     // suspend-equivalent condition solves that timeout problem.
1315     //
1316     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1317                           Mutex::_as_suspend_equivalent_flag);
1318   }
1319 }
1320 
1321 void WatcherThread::print_on(outputStream* st) const {
1322   st->print("\"%s\" ", name());
1323   Thread::print_on(st);
1324   st->cr();
1325 }
1326 
1327 // ======= JavaThread ========
1328 
1329 // A JavaThread is a normal Java thread
1330 
1331 void JavaThread::initialize() {
1332   // Initialize fields
1333 
1334   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1335   set_claimed_par_id(-1);
1336 
1337   set_saved_exception_pc(NULL);
1338   set_threadObj(NULL);
1339   _anchor.clear();
1340   set_entry_point(NULL);
1341   set_jni_functions(jni_functions());
1342   set_callee_target(NULL);
1343   set_vm_result(NULL);
1344   set_vm_result_2(NULL);
1345   set_vframe_array_head(NULL);
1346   set_vframe_array_last(NULL);
1347   set_deferred_locals(NULL);
1348   set_deopt_mark(NULL);
1349   set_deopt_nmethod(NULL);
1350   clear_must_deopt_id();
1351   set_monitor_chunks(NULL);
1352   set_next(NULL);
1353   set_thread_state(_thread_new);
1354   set_recorder(NULL);
1355   _terminated = _not_terminated;
1356   _privileged_stack_top = NULL;
1357   _array_for_gc = NULL;
1358   _suspend_equivalent = false;
1359   _in_deopt_handler = 0;
1360   _doing_unsafe_access = false;
1361   _stack_guard_state = stack_guard_unused;
1362   _exception_oop = NULL;
1363   _exception_pc  = 0;
1364   _exception_handler_pc = 0;
1365   _is_method_handle_return = 0;
1366   _jvmti_thread_state= NULL;
1367   _should_post_on_exceptions_flag = JNI_FALSE;
1368   _jvmti_get_loaded_classes_closure = NULL;
1369   _interp_only_mode    = 0;
1370   _special_runtime_exit_condition = _no_async_condition;
1371   _pending_async_exception = NULL;
1372   _is_compiling = false;
1373   _thread_stat = NULL;
1374   _thread_stat = new ThreadStatistics();
1375   _blocked_on_compilation = false;
1376   _jni_active_critical = 0;
1377   _do_not_unlock_if_synchronized = false;
1378   _cached_monitor_info = NULL;
1379   _parker = Parker::Allocate(this) ;
1380 
1381 #ifndef PRODUCT
1382   _jmp_ring_index = 0;
1383   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1384     record_jump(NULL, NULL, NULL, 0);
1385   }
1386 #endif /* PRODUCT */
1387 
1388   set_thread_profiler(NULL);
1389   if (FlatProfiler::is_active()) {
1390     // This is where we would decide to either give each thread it's own profiler
1391     // or use one global one from FlatProfiler,
1392     // or up to some count of the number of profiled threads, etc.
1393     ThreadProfiler* pp = new ThreadProfiler();
1394     pp->engage();
1395     set_thread_profiler(pp);
1396   }
1397 
1398   // Setup safepoint state info for this thread
1399   ThreadSafepointState::create(this);
1400 
1401   debug_only(_java_call_counter = 0);
1402 
1403   // JVMTI PopFrame support
1404   _popframe_condition = popframe_inactive;
1405   _popframe_preserved_args = NULL;
1406   _popframe_preserved_args_size = 0;
1407 
1408   pd_initialize();
1409 }
1410 
1411 #ifndef SERIALGC
1412 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1413 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1414 #endif // !SERIALGC
1415 
1416 JavaThread::JavaThread(bool is_attaching_via_jni) :
1417   Thread()
1418 #ifndef SERIALGC
1419   , _satb_mark_queue(&_satb_mark_queue_set),
1420   _dirty_card_queue(&_dirty_card_queue_set)
1421 #endif // !SERIALGC
1422 {
1423   initialize();
1424   if (is_attaching_via_jni) {
1425     _jni_attach_state = _attaching_via_jni;
1426   } else {
1427     _jni_attach_state = _not_attaching_via_jni;
1428   }
1429   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1430   _safepoint_visible = false;
1431 }
1432 
1433 bool JavaThread::reguard_stack(address cur_sp) {
1434   if (_stack_guard_state != stack_guard_yellow_disabled) {
1435     return true; // Stack already guarded or guard pages not needed.
1436   }
1437 
1438   if (register_stack_overflow()) {
1439     // For those architectures which have separate register and
1440     // memory stacks, we must check the register stack to see if
1441     // it has overflowed.
1442     return false;
1443   }
1444 
1445   // Java code never executes within the yellow zone: the latter is only
1446   // there to provoke an exception during stack banging.  If java code
1447   // is executing there, either StackShadowPages should be larger, or
1448   // some exception code in c1, c2 or the interpreter isn't unwinding
1449   // when it should.
1450   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1451 
1452   enable_stack_yellow_zone();
1453   return true;
1454 }
1455 
1456 bool JavaThread::reguard_stack(void) {
1457   return reguard_stack(os::current_stack_pointer());
1458 }
1459 
1460 
1461 void JavaThread::block_if_vm_exited() {
1462   if (_terminated == _vm_exited) {
1463     // _vm_exited is set at safepoint, and Threads_lock is never released
1464     // we will block here forever
1465     Threads_lock->lock_without_safepoint_check();
1466     ShouldNotReachHere();
1467   }
1468 }
1469 
1470 
1471 // Remove this ifdef when C1 is ported to the compiler interface.
1472 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1473 
1474 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1475   Thread()
1476 #ifndef SERIALGC
1477   , _satb_mark_queue(&_satb_mark_queue_set),
1478   _dirty_card_queue(&_dirty_card_queue_set)
1479 #endif // !SERIALGC
1480 {
1481   if (TraceThreadEvents) {
1482     tty->print_cr("creating thread %p", this);
1483   }
1484   initialize();
1485   _jni_attach_state = _not_attaching_via_jni;
1486   set_entry_point(entry_point);
1487   // Create the native thread itself.
1488   // %note runtime_23
1489   os::ThreadType thr_type = os::java_thread;
1490   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1491                                                      os::java_thread;
1492   os::create_thread(this, thr_type, stack_sz);
1493   _safepoint_visible = false;
1494   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1495   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1496   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1497   // the exception consists of creating the exception object & initializing it, initialization
1498   // will leave the VM via a JavaCall and then all locks must be unlocked).
1499   //
1500   // The thread is still suspended when we reach here. Thread must be explicit started
1501   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1502   // by calling Threads:add. The reason why this is not done here, is because the thread
1503   // object must be fully initialized (take a look at JVM_Start)
1504 }
1505 
1506 JavaThread::~JavaThread() {
1507   if (TraceThreadEvents) {
1508       tty->print_cr("terminate thread %p", this);
1509   }
1510 
1511   // Info NMT that this JavaThread is exiting, its memory
1512   // recorder should be collected
1513   assert(!is_safepoint_visible(), "wrong state");
1514   MemTracker::thread_exiting(this);
1515 
1516   // JSR166 -- return the parker to the free list
1517   Parker::Release(_parker);
1518   _parker = NULL ;
1519 
1520   // Free any remaining  previous UnrollBlock
1521   vframeArray* old_array = vframe_array_last();
1522 
1523   if (old_array != NULL) {
1524     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1525     old_array->set_unroll_block(NULL);
1526     delete old_info;
1527     delete old_array;
1528   }
1529 
1530   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1531   if (deferred != NULL) {
1532     // This can only happen if thread is destroyed before deoptimization occurs.
1533     assert(deferred->length() != 0, "empty array!");
1534     do {
1535       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1536       deferred->remove_at(0);
1537       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1538       delete dlv;
1539     } while (deferred->length() != 0);
1540     delete deferred;
1541   }
1542 
1543   // All Java related clean up happens in exit
1544   ThreadSafepointState::destroy(this);
1545   if (_thread_profiler != NULL) delete _thread_profiler;
1546   if (_thread_stat != NULL) delete _thread_stat;
1547 }
1548 
1549 
1550 // The first routine called by a new Java thread
1551 void JavaThread::run() {
1552   // initialize thread-local alloc buffer related fields
1553   this->initialize_tlab();
1554 
1555   // used to test validitity of stack trace backs
1556   this->record_base_of_stack_pointer();
1557 
1558   // Record real stack base and size.
1559   this->record_stack_base_and_size();
1560 
1561   // Initialize thread local storage; set before calling MutexLocker
1562   this->initialize_thread_local_storage();
1563 
1564   this->create_stack_guard_pages();
1565 
1566   this->cache_global_variables();
1567 
1568   // Thread is now sufficient initialized to be handled by the safepoint code as being
1569   // in the VM. Change thread state from _thread_new to _thread_in_vm
1570   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1571 
1572   assert(JavaThread::current() == this, "sanity check");
1573   assert(!Thread::current()->owns_locks(), "sanity check");
1574 
1575   DTRACE_THREAD_PROBE(start, this);
1576 
1577   // This operation might block. We call that after all safepoint checks for a new thread has
1578   // been completed.
1579   this->set_active_handles(JNIHandleBlock::allocate_block());
1580 
1581   if (JvmtiExport::should_post_thread_life()) {
1582     JvmtiExport::post_thread_start(this);
1583   }
1584 
1585   EVENT_BEGIN(TraceEventThreadStart, event);
1586   EVENT_COMMIT(event,
1587      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1588 
1589   // We call another function to do the rest so we are sure that the stack addresses used
1590   // from there will be lower than the stack base just computed
1591   thread_main_inner();
1592 
1593   // Note, thread is no longer valid at this point!
1594 }
1595 
1596 
1597 void JavaThread::thread_main_inner() {
1598   assert(JavaThread::current() == this, "sanity check");
1599   assert(this->threadObj() != NULL, "just checking");
1600 
1601   // Execute thread entry point unless this thread has a pending exception
1602   // or has been stopped before starting.
1603   // Note: Due to JVM_StopThread we can have pending exceptions already!
1604   if (!this->has_pending_exception() &&
1605       !java_lang_Thread::is_stillborn(this->threadObj())) {
1606     {
1607       ResourceMark rm(this);
1608       this->set_native_thread_name(this->get_thread_name());
1609     }
1610     HandleMark hm(this);
1611     this->entry_point()(this, this);
1612   }
1613 
1614   DTRACE_THREAD_PROBE(stop, this);
1615 
1616   this->exit(false);
1617   delete this;
1618 }
1619 
1620 
1621 static void ensure_join(JavaThread* thread) {
1622   // We do not need to grap the Threads_lock, since we are operating on ourself.
1623   Handle threadObj(thread, thread->threadObj());
1624   assert(threadObj.not_null(), "java thread object must exist");
1625   ObjectLocker lock(threadObj, thread);
1626   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1627   thread->clear_pending_exception();
1628   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1629   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1630   // Clear the native thread instance - this makes isAlive return false and allows the join()
1631   // to complete once we've done the notify_all below
1632   java_lang_Thread::set_thread(threadObj(), NULL);
1633   lock.notify_all(thread);
1634   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1635   thread->clear_pending_exception();
1636 }
1637 
1638 
1639 // For any new cleanup additions, please check to see if they need to be applied to
1640 // cleanup_failed_attach_current_thread as well.
1641 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1642   assert(this == JavaThread::current(),  "thread consistency check");
1643   if (!InitializeJavaLangSystem) return;
1644 
1645   HandleMark hm(this);
1646   Handle uncaught_exception(this, this->pending_exception());
1647   this->clear_pending_exception();
1648   Handle threadObj(this, this->threadObj());
1649   assert(threadObj.not_null(), "Java thread object should be created");
1650 
1651   if (get_thread_profiler() != NULL) {
1652     get_thread_profiler()->disengage();
1653     ResourceMark rm;
1654     get_thread_profiler()->print(get_thread_name());
1655   }
1656 
1657 
1658   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1659   {
1660     EXCEPTION_MARK;
1661 
1662     CLEAR_PENDING_EXCEPTION;
1663   }
1664   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1665   // has to be fixed by a runtime query method
1666   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1667     // JSR-166: change call from from ThreadGroup.uncaughtException to
1668     // java.lang.Thread.dispatchUncaughtException
1669     if (uncaught_exception.not_null()) {
1670       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1671       {
1672         EXCEPTION_MARK;
1673         // Check if the method Thread.dispatchUncaughtException() exists. If so
1674         // call it.  Otherwise we have an older library without the JSR-166 changes,
1675         // so call ThreadGroup.uncaughtException()
1676         KlassHandle recvrKlass(THREAD, threadObj->klass());
1677         CallInfo callinfo;
1678         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1679         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1680                                            vmSymbols::dispatchUncaughtException_name(),
1681                                            vmSymbols::throwable_void_signature(),
1682                                            KlassHandle(), false, false, THREAD);
1683         CLEAR_PENDING_EXCEPTION;
1684         methodHandle method = callinfo.selected_method();
1685         if (method.not_null()) {
1686           JavaValue result(T_VOID);
1687           JavaCalls::call_virtual(&result,
1688                                   threadObj, thread_klass,
1689                                   vmSymbols::dispatchUncaughtException_name(),
1690                                   vmSymbols::throwable_void_signature(),
1691                                   uncaught_exception,
1692                                   THREAD);
1693         } else {
1694           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1695           JavaValue result(T_VOID);
1696           JavaCalls::call_virtual(&result,
1697                                   group, thread_group,
1698                                   vmSymbols::uncaughtException_name(),
1699                                   vmSymbols::thread_throwable_void_signature(),
1700                                   threadObj,           // Arg 1
1701                                   uncaught_exception,  // Arg 2
1702                                   THREAD);
1703         }
1704         if (HAS_PENDING_EXCEPTION) {
1705           ResourceMark rm(this);
1706           jio_fprintf(defaultStream::error_stream(),
1707                 "\nException: %s thrown from the UncaughtExceptionHandler"
1708                 " in thread \"%s\"\n",
1709                 Klass::cast(pending_exception()->klass())->external_name(),
1710                 get_thread_name());
1711           CLEAR_PENDING_EXCEPTION;
1712         }
1713       }
1714     }
1715 
1716     // Called before the java thread exit since we want to read info
1717     // from java_lang_Thread object
1718     EVENT_BEGIN(TraceEventThreadEnd, event);
1719     EVENT_COMMIT(event,
1720         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1721 
1722     // Call after last event on thread
1723     EVENT_THREAD_EXIT(this);
1724 
1725     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1726     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1727     // is deprecated anyhow.
1728     { int count = 3;
1729       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1730         EXCEPTION_MARK;
1731         JavaValue result(T_VOID);
1732         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1733         JavaCalls::call_virtual(&result,
1734                               threadObj, thread_klass,
1735                               vmSymbols::exit_method_name(),
1736                               vmSymbols::void_method_signature(),
1737                               THREAD);
1738         CLEAR_PENDING_EXCEPTION;
1739       }
1740     }
1741 
1742     // notify JVMTI
1743     if (JvmtiExport::should_post_thread_life()) {
1744       JvmtiExport::post_thread_end(this);
1745     }
1746 
1747     // We have notified the agents that we are exiting, before we go on,
1748     // we must check for a pending external suspend request and honor it
1749     // in order to not surprise the thread that made the suspend request.
1750     while (true) {
1751       {
1752         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1753         if (!is_external_suspend()) {
1754           set_terminated(_thread_exiting);
1755           ThreadService::current_thread_exiting(this);
1756           break;
1757         }
1758         // Implied else:
1759         // Things get a little tricky here. We have a pending external
1760         // suspend request, but we are holding the SR_lock so we
1761         // can't just self-suspend. So we temporarily drop the lock
1762         // and then self-suspend.
1763       }
1764 
1765       ThreadBlockInVM tbivm(this);
1766       java_suspend_self();
1767 
1768       // We're done with this suspend request, but we have to loop around
1769       // and check again. Eventually we will get SR_lock without a pending
1770       // external suspend request and will be able to mark ourselves as
1771       // exiting.
1772     }
1773     // no more external suspends are allowed at this point
1774   } else {
1775     // before_exit() has already posted JVMTI THREAD_END events
1776   }
1777 
1778   // Notify waiters on thread object. This has to be done after exit() is called
1779   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1780   // group should have the destroyed bit set before waiters are notified).
1781   ensure_join(this);
1782   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1783 
1784   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1785   // held by this thread must be released.  A detach operation must only
1786   // get here if there are no Java frames on the stack.  Therefore, any
1787   // owned monitors at this point MUST be JNI-acquired monitors which are
1788   // pre-inflated and in the monitor cache.
1789   //
1790   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1791   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1792     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1793     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1794     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1795   }
1796 
1797   // These things needs to be done while we are still a Java Thread. Make sure that thread
1798   // is in a consistent state, in case GC happens
1799   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1800 
1801   if (active_handles() != NULL) {
1802     JNIHandleBlock* block = active_handles();
1803     set_active_handles(NULL);
1804     JNIHandleBlock::release_block(block);
1805   }
1806 
1807   if (free_handle_block() != NULL) {
1808     JNIHandleBlock* block = free_handle_block();
1809     set_free_handle_block(NULL);
1810     JNIHandleBlock::release_block(block);
1811   }
1812 
1813   // These have to be removed while this is still a valid thread.
1814   remove_stack_guard_pages();
1815 
1816   if (UseTLAB) {
1817     tlab().make_parsable(true);  // retire TLAB
1818   }
1819 
1820   if (JvmtiEnv::environments_might_exist()) {
1821     JvmtiExport::cleanup_thread(this);
1822   }
1823 
1824 #ifndef SERIALGC
1825   // We must flush G1-related buffers before removing a thread from
1826   // the list of active threads.
1827   if (UseG1GC) {
1828     flush_barrier_queues();
1829   }
1830 #endif
1831 
1832   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1833   Threads::remove(this);
1834 }
1835 
1836 #ifndef SERIALGC
1837 // Flush G1-related queues.
1838 void JavaThread::flush_barrier_queues() {
1839   satb_mark_queue().flush();
1840   dirty_card_queue().flush();
1841 }
1842 
1843 void JavaThread::initialize_queues() {
1844   assert(!SafepointSynchronize::is_at_safepoint(),
1845          "we should not be at a safepoint");
1846 
1847   ObjPtrQueue& satb_queue = satb_mark_queue();
1848   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1849   // The SATB queue should have been constructed with its active
1850   // field set to false.
1851   assert(!satb_queue.is_active(), "SATB queue should not be active");
1852   assert(satb_queue.is_empty(), "SATB queue should be empty");
1853   // If we are creating the thread during a marking cycle, we should
1854   // set the active field of the SATB queue to true.
1855   if (satb_queue_set.is_active()) {
1856     satb_queue.set_active(true);
1857   }
1858 
1859   DirtyCardQueue& dirty_queue = dirty_card_queue();
1860   // The dirty card queue should have been constructed with its
1861   // active field set to true.
1862   assert(dirty_queue.is_active(), "dirty card queue should be active");
1863 }
1864 #endif // !SERIALGC
1865 
1866 void JavaThread::cleanup_failed_attach_current_thread() {
1867   if (get_thread_profiler() != NULL) {
1868     get_thread_profiler()->disengage();
1869     ResourceMark rm;
1870     get_thread_profiler()->print(get_thread_name());
1871   }
1872 
1873   if (active_handles() != NULL) {
1874     JNIHandleBlock* block = active_handles();
1875     set_active_handles(NULL);
1876     JNIHandleBlock::release_block(block);
1877   }
1878 
1879   if (free_handle_block() != NULL) {
1880     JNIHandleBlock* block = free_handle_block();
1881     set_free_handle_block(NULL);
1882     JNIHandleBlock::release_block(block);
1883   }
1884 
1885   // These have to be removed while this is still a valid thread.
1886   remove_stack_guard_pages();
1887 
1888   if (UseTLAB) {
1889     tlab().make_parsable(true);  // retire TLAB, if any
1890   }
1891 
1892 #ifndef SERIALGC
1893   if (UseG1GC) {
1894     flush_barrier_queues();
1895   }
1896 #endif
1897 
1898   Threads::remove(this);
1899   delete this;
1900 }
1901 
1902 
1903 
1904 
1905 JavaThread* JavaThread::active() {
1906   Thread* thread = ThreadLocalStorage::thread();
1907   assert(thread != NULL, "just checking");
1908   if (thread->is_Java_thread()) {
1909     return (JavaThread*) thread;
1910   } else {
1911     assert(thread->is_VM_thread(), "this must be a vm thread");
1912     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1913     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1914     assert(ret->is_Java_thread(), "must be a Java thread");
1915     return ret;
1916   }
1917 }
1918 
1919 bool JavaThread::is_lock_owned(address adr) const {
1920   if (Thread::is_lock_owned(adr)) return true;
1921 
1922   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1923     if (chunk->contains(adr)) return true;
1924   }
1925 
1926   return false;
1927 }
1928 
1929 
1930 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1931   chunk->set_next(monitor_chunks());
1932   set_monitor_chunks(chunk);
1933 }
1934 
1935 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1936   guarantee(monitor_chunks() != NULL, "must be non empty");
1937   if (monitor_chunks() == chunk) {
1938     set_monitor_chunks(chunk->next());
1939   } else {
1940     MonitorChunk* prev = monitor_chunks();
1941     while (prev->next() != chunk) prev = prev->next();
1942     prev->set_next(chunk->next());
1943   }
1944 }
1945 
1946 // JVM support.
1947 
1948 // Note: this function shouldn't block if it's called in
1949 // _thread_in_native_trans state (such as from
1950 // check_special_condition_for_native_trans()).
1951 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1952 
1953   if (has_last_Java_frame() && has_async_condition()) {
1954     // If we are at a polling page safepoint (not a poll return)
1955     // then we must defer async exception because live registers
1956     // will be clobbered by the exception path. Poll return is
1957     // ok because the call we a returning from already collides
1958     // with exception handling registers and so there is no issue.
1959     // (The exception handling path kills call result registers but
1960     //  this is ok since the exception kills the result anyway).
1961 
1962     if (is_at_poll_safepoint()) {
1963       // if the code we are returning to has deoptimized we must defer
1964       // the exception otherwise live registers get clobbered on the
1965       // exception path before deoptimization is able to retrieve them.
1966       //
1967       RegisterMap map(this, false);
1968       frame caller_fr = last_frame().sender(&map);
1969       assert(caller_fr.is_compiled_frame(), "what?");
1970       if (caller_fr.is_deoptimized_frame()) {
1971         if (TraceExceptions) {
1972           ResourceMark rm;
1973           tty->print_cr("deferred async exception at compiled safepoint");
1974         }
1975         return;
1976       }
1977     }
1978   }
1979 
1980   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1981   if (condition == _no_async_condition) {
1982     // Conditions have changed since has_special_runtime_exit_condition()
1983     // was called:
1984     // - if we were here only because of an external suspend request,
1985     //   then that was taken care of above (or cancelled) so we are done
1986     // - if we were here because of another async request, then it has
1987     //   been cleared between the has_special_runtime_exit_condition()
1988     //   and now so again we are done
1989     return;
1990   }
1991 
1992   // Check for pending async. exception
1993   if (_pending_async_exception != NULL) {
1994     // Only overwrite an already pending exception, if it is not a threadDeath.
1995     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1996 
1997       // We cannot call Exceptions::_throw(...) here because we cannot block
1998       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1999 
2000       if (TraceExceptions) {
2001         ResourceMark rm;
2002         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2003         if (has_last_Java_frame() ) {
2004           frame f = last_frame();
2005           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2006         }
2007         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2008       }
2009       _pending_async_exception = NULL;
2010       clear_has_async_exception();
2011     }
2012   }
2013 
2014   if (check_unsafe_error &&
2015       condition == _async_unsafe_access_error && !has_pending_exception()) {
2016     condition = _no_async_condition;  // done
2017     switch (thread_state()) {
2018     case _thread_in_vm:
2019       {
2020         JavaThread* THREAD = this;
2021         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2022       }
2023     case _thread_in_native:
2024       {
2025         ThreadInVMfromNative tiv(this);
2026         JavaThread* THREAD = this;
2027         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2028       }
2029     case _thread_in_Java:
2030       {
2031         ThreadInVMfromJava tiv(this);
2032         JavaThread* THREAD = this;
2033         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2034       }
2035     default:
2036       ShouldNotReachHere();
2037     }
2038   }
2039 
2040   assert(condition == _no_async_condition || has_pending_exception() ||
2041          (!check_unsafe_error && condition == _async_unsafe_access_error),
2042          "must have handled the async condition, if no exception");
2043 }
2044 
2045 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2046   //
2047   // Check for pending external suspend. Internal suspend requests do
2048   // not use handle_special_runtime_exit_condition().
2049   // If JNIEnv proxies are allowed, don't self-suspend if the target
2050   // thread is not the current thread. In older versions of jdbx, jdbx
2051   // threads could call into the VM with another thread's JNIEnv so we
2052   // can be here operating on behalf of a suspended thread (4432884).
2053   bool do_self_suspend = is_external_suspend_with_lock();
2054   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2055     //
2056     // Because thread is external suspended the safepoint code will count
2057     // thread as at a safepoint. This can be odd because we can be here
2058     // as _thread_in_Java which would normally transition to _thread_blocked
2059     // at a safepoint. We would like to mark the thread as _thread_blocked
2060     // before calling java_suspend_self like all other callers of it but
2061     // we must then observe proper safepoint protocol. (We can't leave
2062     // _thread_blocked with a safepoint in progress). However we can be
2063     // here as _thread_in_native_trans so we can't use a normal transition
2064     // constructor/destructor pair because they assert on that type of
2065     // transition. We could do something like:
2066     //
2067     // JavaThreadState state = thread_state();
2068     // set_thread_state(_thread_in_vm);
2069     // {
2070     //   ThreadBlockInVM tbivm(this);
2071     //   java_suspend_self()
2072     // }
2073     // set_thread_state(_thread_in_vm_trans);
2074     // if (safepoint) block;
2075     // set_thread_state(state);
2076     //
2077     // but that is pretty messy. Instead we just go with the way the
2078     // code has worked before and note that this is the only path to
2079     // java_suspend_self that doesn't put the thread in _thread_blocked
2080     // mode.
2081 
2082     frame_anchor()->make_walkable(this);
2083     java_suspend_self();
2084 
2085     // We might be here for reasons in addition to the self-suspend request
2086     // so check for other async requests.
2087   }
2088 
2089   if (check_asyncs) {
2090     check_and_handle_async_exceptions();
2091   }
2092 }
2093 
2094 void JavaThread::send_thread_stop(oop java_throwable)  {
2095   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2096   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2097   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2098 
2099   // Do not throw asynchronous exceptions against the compiler thread
2100   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2101   if (is_Compiler_thread()) return;
2102 
2103   {
2104     // Actually throw the Throwable against the target Thread - however
2105     // only if there is no thread death exception installed already.
2106     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2107       // If the topmost frame is a runtime stub, then we are calling into
2108       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2109       // must deoptimize the caller before continuing, as the compiled  exception handler table
2110       // may not be valid
2111       if (has_last_Java_frame()) {
2112         frame f = last_frame();
2113         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2114           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2115           RegisterMap reg_map(this, UseBiasedLocking);
2116           frame compiled_frame = f.sender(&reg_map);
2117           if (compiled_frame.can_be_deoptimized()) {
2118             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2119           }
2120         }
2121       }
2122 
2123       // Set async. pending exception in thread.
2124       set_pending_async_exception(java_throwable);
2125 
2126       if (TraceExceptions) {
2127        ResourceMark rm;
2128        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2129       }
2130       // for AbortVMOnException flag
2131       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2132     }
2133   }
2134 
2135 
2136   // Interrupt thread so it will wake up from a potential wait()
2137   Thread::interrupt(this);
2138 }
2139 
2140 // External suspension mechanism.
2141 //
2142 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2143 // to any VM_locks and it is at a transition
2144 // Self-suspension will happen on the transition out of the vm.
2145 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2146 //
2147 // Guarantees on return:
2148 //   + Target thread will not execute any new bytecode (that's why we need to
2149 //     force a safepoint)
2150 //   + Target thread will not enter any new monitors
2151 //
2152 void JavaThread::java_suspend() {
2153   { MutexLocker mu(Threads_lock);
2154     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2155        return;
2156     }
2157   }
2158 
2159   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2160     if (!is_external_suspend()) {
2161       // a racing resume has cancelled us; bail out now
2162       return;
2163     }
2164 
2165     // suspend is done
2166     uint32_t debug_bits = 0;
2167     // Warning: is_ext_suspend_completed() may temporarily drop the
2168     // SR_lock to allow the thread to reach a stable thread state if
2169     // it is currently in a transient thread state.
2170     if (is_ext_suspend_completed(false /* !called_by_wait */,
2171                                  SuspendRetryDelay, &debug_bits) ) {
2172       return;
2173     }
2174   }
2175 
2176   VM_ForceSafepoint vm_suspend;
2177   VMThread::execute(&vm_suspend);
2178 }
2179 
2180 // Part II of external suspension.
2181 // A JavaThread self suspends when it detects a pending external suspend
2182 // request. This is usually on transitions. It is also done in places
2183 // where continuing to the next transition would surprise the caller,
2184 // e.g., monitor entry.
2185 //
2186 // Returns the number of times that the thread self-suspended.
2187 //
2188 // Note: DO NOT call java_suspend_self() when you just want to block current
2189 //       thread. java_suspend_self() is the second stage of cooperative
2190 //       suspension for external suspend requests and should only be used
2191 //       to complete an external suspend request.
2192 //
2193 int JavaThread::java_suspend_self() {
2194   int ret = 0;
2195 
2196   // we are in the process of exiting so don't suspend
2197   if (is_exiting()) {
2198      clear_external_suspend();
2199      return ret;
2200   }
2201 
2202   assert(_anchor.walkable() ||
2203     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2204     "must have walkable stack");
2205 
2206   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2207 
2208   assert(!this->is_ext_suspended(),
2209     "a thread trying to self-suspend should not already be suspended");
2210 
2211   if (this->is_suspend_equivalent()) {
2212     // If we are self-suspending as a result of the lifting of a
2213     // suspend equivalent condition, then the suspend_equivalent
2214     // flag is not cleared until we set the ext_suspended flag so
2215     // that wait_for_ext_suspend_completion() returns consistent
2216     // results.
2217     this->clear_suspend_equivalent();
2218   }
2219 
2220   // A racing resume may have cancelled us before we grabbed SR_lock
2221   // above. Or another external suspend request could be waiting for us
2222   // by the time we return from SR_lock()->wait(). The thread
2223   // that requested the suspension may already be trying to walk our
2224   // stack and if we return now, we can change the stack out from under
2225   // it. This would be a "bad thing (TM)" and cause the stack walker
2226   // to crash. We stay self-suspended until there are no more pending
2227   // external suspend requests.
2228   while (is_external_suspend()) {
2229     ret++;
2230     this->set_ext_suspended();
2231 
2232     // _ext_suspended flag is cleared by java_resume()
2233     while (is_ext_suspended()) {
2234       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2235     }
2236   }
2237 
2238   return ret;
2239 }
2240 
2241 #ifdef ASSERT
2242 // verify the JavaThread has not yet been published in the Threads::list, and
2243 // hence doesn't need protection from concurrent access at this stage
2244 void JavaThread::verify_not_published() {
2245   if (!Threads_lock->owned_by_self()) {
2246    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2247    assert( !Threads::includes(this),
2248            "java thread shouldn't have been published yet!");
2249   }
2250   else {
2251    assert( !Threads::includes(this),
2252            "java thread shouldn't have been published yet!");
2253   }
2254 }
2255 #endif
2256 
2257 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2258 // progress or when _suspend_flags is non-zero.
2259 // Current thread needs to self-suspend if there is a suspend request and/or
2260 // block if a safepoint is in progress.
2261 // Async exception ISN'T checked.
2262 // Note only the ThreadInVMfromNative transition can call this function
2263 // directly and when thread state is _thread_in_native_trans
2264 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2265   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2266 
2267   JavaThread *curJT = JavaThread::current();
2268   bool do_self_suspend = thread->is_external_suspend();
2269 
2270   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2271 
2272   // If JNIEnv proxies are allowed, don't self-suspend if the target
2273   // thread is not the current thread. In older versions of jdbx, jdbx
2274   // threads could call into the VM with another thread's JNIEnv so we
2275   // can be here operating on behalf of a suspended thread (4432884).
2276   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2277     JavaThreadState state = thread->thread_state();
2278 
2279     // We mark this thread_blocked state as a suspend-equivalent so
2280     // that a caller to is_ext_suspend_completed() won't be confused.
2281     // The suspend-equivalent state is cleared by java_suspend_self().
2282     thread->set_suspend_equivalent();
2283 
2284     // If the safepoint code sees the _thread_in_native_trans state, it will
2285     // wait until the thread changes to other thread state. There is no
2286     // guarantee on how soon we can obtain the SR_lock and complete the
2287     // self-suspend request. It would be a bad idea to let safepoint wait for
2288     // too long. Temporarily change the state to _thread_blocked to
2289     // let the VM thread know that this thread is ready for GC. The problem
2290     // of changing thread state is that safepoint could happen just after
2291     // java_suspend_self() returns after being resumed, and VM thread will
2292     // see the _thread_blocked state. We must check for safepoint
2293     // after restoring the state and make sure we won't leave while a safepoint
2294     // is in progress.
2295     thread->set_thread_state(_thread_blocked);
2296     thread->java_suspend_self();
2297     thread->set_thread_state(state);
2298     // Make sure new state is seen by VM thread
2299     if (os::is_MP()) {
2300       if (UseMembar) {
2301         // Force a fence between the write above and read below
2302         OrderAccess::fence();
2303       } else {
2304         // Must use this rather than serialization page in particular on Windows
2305         InterfaceSupport::serialize_memory(thread);
2306       }
2307     }
2308   }
2309 
2310   if (SafepointSynchronize::do_call_back()) {
2311     // If we are safepointing, then block the caller which may not be
2312     // the same as the target thread (see above).
2313     SafepointSynchronize::block(curJT);
2314   }
2315 
2316   if (thread->is_deopt_suspend()) {
2317     thread->clear_deopt_suspend();
2318     RegisterMap map(thread, false);
2319     frame f = thread->last_frame();
2320     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2321       f = f.sender(&map);
2322     }
2323     if (f.id() == thread->must_deopt_id()) {
2324       thread->clear_must_deopt_id();
2325       f.deoptimize(thread);
2326     } else {
2327       fatal("missed deoptimization!");
2328     }
2329   }
2330 }
2331 
2332 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2333 // progress or when _suspend_flags is non-zero.
2334 // Current thread needs to self-suspend if there is a suspend request and/or
2335 // block if a safepoint is in progress.
2336 // Also check for pending async exception (not including unsafe access error).
2337 // Note only the native==>VM/Java barriers can call this function and when
2338 // thread state is _thread_in_native_trans.
2339 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2340   check_safepoint_and_suspend_for_native_trans(thread);
2341 
2342   if (thread->has_async_exception()) {
2343     // We are in _thread_in_native_trans state, don't handle unsafe
2344     // access error since that may block.
2345     thread->check_and_handle_async_exceptions(false);
2346   }
2347 }
2348 
2349 // This is a variant of the normal
2350 // check_special_condition_for_native_trans with slightly different
2351 // semantics for use by critical native wrappers.  It does all the
2352 // normal checks but also performs the transition back into
2353 // thread_in_Java state.  This is required so that critical natives
2354 // can potentially block and perform a GC if they are the last thread
2355 // exiting the GC_locker.
2356 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2357   check_special_condition_for_native_trans(thread);
2358 
2359   // Finish the transition
2360   thread->set_thread_state(_thread_in_Java);
2361 
2362   if (thread->do_critical_native_unlock()) {
2363     ThreadInVMfromJavaNoAsyncException tiv(thread);
2364     GC_locker::unlock_critical(thread);
2365     thread->clear_critical_native_unlock();
2366   }
2367 }
2368 
2369 // We need to guarantee the Threads_lock here, since resumes are not
2370 // allowed during safepoint synchronization
2371 // Can only resume from an external suspension
2372 void JavaThread::java_resume() {
2373   assert_locked_or_safepoint(Threads_lock);
2374 
2375   // Sanity check: thread is gone, has started exiting or the thread
2376   // was not externally suspended.
2377   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2378     return;
2379   }
2380 
2381   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2382 
2383   clear_external_suspend();
2384 
2385   if (is_ext_suspended()) {
2386     clear_ext_suspended();
2387     SR_lock()->notify_all();
2388   }
2389 }
2390 
2391 void JavaThread::create_stack_guard_pages() {
2392   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2393   address low_addr = stack_base() - stack_size();
2394   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2395 
2396   int allocate = os::allocate_stack_guard_pages();
2397   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2398 
2399   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2400     warning("Attempt to allocate stack guard pages failed.");
2401     return;
2402   }
2403 
2404   if (os::guard_memory((char *) low_addr, len)) {
2405     _stack_guard_state = stack_guard_enabled;
2406   } else {
2407     warning("Attempt to protect stack guard pages failed.");
2408     if (os::uncommit_memory((char *) low_addr, len)) {
2409       warning("Attempt to deallocate stack guard pages failed.");
2410     }
2411   }
2412 }
2413 
2414 void JavaThread::remove_stack_guard_pages() {
2415   if (_stack_guard_state == stack_guard_unused) return;
2416   address low_addr = stack_base() - stack_size();
2417   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2418 
2419   if (os::allocate_stack_guard_pages()) {
2420     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2421       _stack_guard_state = stack_guard_unused;
2422     } else {
2423       warning("Attempt to deallocate stack guard pages failed.");
2424     }
2425   } else {
2426     if (_stack_guard_state == stack_guard_unused) return;
2427     if (os::unguard_memory((char *) low_addr, len)) {
2428       _stack_guard_state = stack_guard_unused;
2429     } else {
2430         warning("Attempt to unprotect stack guard pages failed.");
2431     }
2432   }
2433 }
2434 
2435 void JavaThread::enable_stack_yellow_zone() {
2436   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2437   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2438 
2439   // The base notation is from the stacks point of view, growing downward.
2440   // We need to adjust it to work correctly with guard_memory()
2441   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2442 
2443   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2444   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2445 
2446   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2447     _stack_guard_state = stack_guard_enabled;
2448   } else {
2449     warning("Attempt to guard stack yellow zone failed.");
2450   }
2451   enable_register_stack_guard();
2452 }
2453 
2454 void JavaThread::disable_stack_yellow_zone() {
2455   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2456   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2457 
2458   // Simply return if called for a thread that does not use guard pages.
2459   if (_stack_guard_state == stack_guard_unused) return;
2460 
2461   // The base notation is from the stacks point of view, growing downward.
2462   // We need to adjust it to work correctly with guard_memory()
2463   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2464 
2465   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2466     _stack_guard_state = stack_guard_yellow_disabled;
2467   } else {
2468     warning("Attempt to unguard stack yellow zone failed.");
2469   }
2470   disable_register_stack_guard();
2471 }
2472 
2473 void JavaThread::enable_stack_red_zone() {
2474   // The base notation is from the stacks point of view, growing downward.
2475   // We need to adjust it to work correctly with guard_memory()
2476   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2477   address base = stack_red_zone_base() - stack_red_zone_size();
2478 
2479   guarantee(base < stack_base(),"Error calculating stack red zone");
2480   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2481 
2482   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2483     warning("Attempt to guard stack red zone failed.");
2484   }
2485 }
2486 
2487 void JavaThread::disable_stack_red_zone() {
2488   // The base notation is from the stacks point of view, growing downward.
2489   // We need to adjust it to work correctly with guard_memory()
2490   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2491   address base = stack_red_zone_base() - stack_red_zone_size();
2492   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2493     warning("Attempt to unguard stack red zone failed.");
2494   }
2495 }
2496 
2497 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2498   // ignore is there is no stack
2499   if (!has_last_Java_frame()) return;
2500   // traverse the stack frames. Starts from top frame.
2501   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2502     frame* fr = fst.current();
2503     f(fr, fst.register_map());
2504   }
2505 }
2506 
2507 
2508 #ifndef PRODUCT
2509 // Deoptimization
2510 // Function for testing deoptimization
2511 void JavaThread::deoptimize() {
2512   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2513   StackFrameStream fst(this, UseBiasedLocking);
2514   bool deopt = false;           // Dump stack only if a deopt actually happens.
2515   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2516   // Iterate over all frames in the thread and deoptimize
2517   for(; !fst.is_done(); fst.next()) {
2518     if(fst.current()->can_be_deoptimized()) {
2519 
2520       if (only_at) {
2521         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2522         // consists of comma or carriage return separated numbers so
2523         // search for the current bci in that string.
2524         address pc = fst.current()->pc();
2525         nmethod* nm =  (nmethod*) fst.current()->cb();
2526         ScopeDesc* sd = nm->scope_desc_at( pc);
2527         char buffer[8];
2528         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2529         size_t len = strlen(buffer);
2530         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2531         while (found != NULL) {
2532           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2533               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2534             // Check that the bci found is bracketed by terminators.
2535             break;
2536           }
2537           found = strstr(found + 1, buffer);
2538         }
2539         if (!found) {
2540           continue;
2541         }
2542       }
2543 
2544       if (DebugDeoptimization && !deopt) {
2545         deopt = true; // One-time only print before deopt
2546         tty->print_cr("[BEFORE Deoptimization]");
2547         trace_frames();
2548         trace_stack();
2549       }
2550       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2551     }
2552   }
2553 
2554   if (DebugDeoptimization && deopt) {
2555     tty->print_cr("[AFTER Deoptimization]");
2556     trace_frames();
2557   }
2558 }
2559 
2560 
2561 // Make zombies
2562 void JavaThread::make_zombies() {
2563   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2564     if (fst.current()->can_be_deoptimized()) {
2565       // it is a Java nmethod
2566       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2567       nm->make_not_entrant();
2568     }
2569   }
2570 }
2571 #endif // PRODUCT
2572 
2573 
2574 void JavaThread::deoptimized_wrt_marked_nmethods() {
2575   if (!has_last_Java_frame()) return;
2576   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2577   StackFrameStream fst(this, UseBiasedLocking);
2578   for(; !fst.is_done(); fst.next()) {
2579     if (fst.current()->should_be_deoptimized()) {
2580       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2581     }
2582   }
2583 }
2584 
2585 
2586 // GC support
2587 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2588 
2589 void JavaThread::gc_epilogue() {
2590   frames_do(frame_gc_epilogue);
2591 }
2592 
2593 
2594 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2595 
2596 void JavaThread::gc_prologue() {
2597   frames_do(frame_gc_prologue);
2598 }
2599 
2600 // If the caller is a NamedThread, then remember, in the current scope,
2601 // the given JavaThread in its _processed_thread field.
2602 class RememberProcessedThread: public StackObj {
2603   NamedThread* _cur_thr;
2604 public:
2605   RememberProcessedThread(JavaThread* jthr) {
2606     Thread* thread = Thread::current();
2607     if (thread->is_Named_thread()) {
2608       _cur_thr = (NamedThread *)thread;
2609       _cur_thr->set_processed_thread(jthr);
2610     } else {
2611       _cur_thr = NULL;
2612     }
2613   }
2614 
2615   ~RememberProcessedThread() {
2616     if (_cur_thr) {
2617       _cur_thr->set_processed_thread(NULL);
2618     }
2619   }
2620 };
2621 
2622 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2623   // Verify that the deferred card marks have been flushed.
2624   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2625 
2626   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2627   // since there may be more than one thread using each ThreadProfiler.
2628 
2629   // Traverse the GCHandles
2630   Thread::oops_do(f, cf);
2631 
2632   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2633           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2634 
2635   if (has_last_Java_frame()) {
2636     // Record JavaThread to GC thread
2637     RememberProcessedThread rpt(this);
2638 
2639     // Traverse the privileged stack
2640     if (_privileged_stack_top != NULL) {
2641       _privileged_stack_top->oops_do(f);
2642     }
2643 
2644     // traverse the registered growable array
2645     if (_array_for_gc != NULL) {
2646       for (int index = 0; index < _array_for_gc->length(); index++) {
2647         f->do_oop(_array_for_gc->adr_at(index));
2648       }
2649     }
2650 
2651     // Traverse the monitor chunks
2652     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2653       chunk->oops_do(f);
2654     }
2655 
2656     // Traverse the execution stack
2657     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2658       fst.current()->oops_do(f, cf, fst.register_map());
2659     }
2660   }
2661 
2662   // callee_target is never live across a gc point so NULL it here should
2663   // it still contain a methdOop.
2664 
2665   set_callee_target(NULL);
2666 
2667   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2668   // If we have deferred set_locals there might be oops waiting to be
2669   // written
2670   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2671   if (list != NULL) {
2672     for (int i = 0; i < list->length(); i++) {
2673       list->at(i)->oops_do(f);
2674     }
2675   }
2676 
2677   // Traverse instance variables at the end since the GC may be moving things
2678   // around using this function
2679   f->do_oop((oop*) &_threadObj);
2680   f->do_oop((oop*) &_vm_result);
2681   f->do_oop((oop*) &_exception_oop);
2682   f->do_oop((oop*) &_pending_async_exception);
2683 
2684   if (jvmti_thread_state() != NULL) {
2685     jvmti_thread_state()->oops_do(f);
2686   }
2687 }
2688 
2689 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2690   Thread::nmethods_do(cf);  // (super method is a no-op)
2691 
2692   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2693           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2694 
2695   if (has_last_Java_frame()) {
2696     // Traverse the execution stack
2697     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2698       fst.current()->nmethods_do(cf);
2699     }
2700   }
2701 }
2702 
2703 void JavaThread::metadata_do(void f(Metadata*)) {
2704   Thread::metadata_do(f);
2705   if (has_last_Java_frame()) {
2706     // Traverse the execution stack to call f() on the methods in the stack
2707     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2708       fst.current()->metadata_do(f);
2709     }
2710   } else if (is_Compiler_thread()) {
2711     // need to walk ciMetadata in current compile tasks to keep alive.
2712     CompilerThread* ct = (CompilerThread*)this;
2713     if (ct->env() != NULL) {
2714       ct->env()->metadata_do(f);
2715     }
2716   }
2717 }
2718 
2719 // Printing
2720 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2721   switch (_thread_state) {
2722   case _thread_uninitialized:     return "_thread_uninitialized";
2723   case _thread_new:               return "_thread_new";
2724   case _thread_new_trans:         return "_thread_new_trans";
2725   case _thread_in_native:         return "_thread_in_native";
2726   case _thread_in_native_trans:   return "_thread_in_native_trans";
2727   case _thread_in_vm:             return "_thread_in_vm";
2728   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2729   case _thread_in_Java:           return "_thread_in_Java";
2730   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2731   case _thread_blocked:           return "_thread_blocked";
2732   case _thread_blocked_trans:     return "_thread_blocked_trans";
2733   default:                        return "unknown thread state";
2734   }
2735 }
2736 
2737 #ifndef PRODUCT
2738 void JavaThread::print_thread_state_on(outputStream *st) const {
2739   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2740 };
2741 void JavaThread::print_thread_state() const {
2742   print_thread_state_on(tty);
2743 };
2744 #endif // PRODUCT
2745 
2746 // Called by Threads::print() for VM_PrintThreads operation
2747 void JavaThread::print_on(outputStream *st) const {
2748   st->print("\"%s\" ", get_thread_name());
2749   oop thread_oop = threadObj();
2750   if (thread_oop != NULL) {
2751     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2752     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2753     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2754   }
2755   Thread::print_on(st);
2756   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2757   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2758   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2759     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2760   }
2761 #ifndef PRODUCT
2762   print_thread_state_on(st);
2763   _safepoint_state->print_on(st);
2764 #endif // PRODUCT
2765 }
2766 
2767 // Called by fatal error handler. The difference between this and
2768 // JavaThread::print() is that we can't grab lock or allocate memory.
2769 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2770   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2771   oop thread_obj = threadObj();
2772   if (thread_obj != NULL) {
2773      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2774   }
2775   st->print(" [");
2776   st->print("%s", _get_thread_state_name(_thread_state));
2777   if (osthread()) {
2778     st->print(", id=%d", osthread()->thread_id());
2779   }
2780   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2781             _stack_base - _stack_size, _stack_base);
2782   st->print("]");
2783   return;
2784 }
2785 
2786 // Verification
2787 
2788 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2789 
2790 void JavaThread::verify() {
2791   // Verify oops in the thread.
2792   oops_do(&VerifyOopClosure::verify_oop, NULL);
2793 
2794   // Verify the stack frames.
2795   frames_do(frame_verify);
2796 }
2797 
2798 // CR 6300358 (sub-CR 2137150)
2799 // Most callers of this method assume that it can't return NULL but a
2800 // thread may not have a name whilst it is in the process of attaching to
2801 // the VM - see CR 6412693, and there are places where a JavaThread can be
2802 // seen prior to having it's threadObj set (eg JNI attaching threads and
2803 // if vm exit occurs during initialization). These cases can all be accounted
2804 // for such that this method never returns NULL.
2805 const char* JavaThread::get_thread_name() const {
2806 #ifdef ASSERT
2807   // early safepoints can hit while current thread does not yet have TLS
2808   if (!SafepointSynchronize::is_at_safepoint()) {
2809     Thread *cur = Thread::current();
2810     if (!(cur->is_Java_thread() && cur == this)) {
2811       // Current JavaThreads are allowed to get their own name without
2812       // the Threads_lock.
2813       assert_locked_or_safepoint(Threads_lock);
2814     }
2815   }
2816 #endif // ASSERT
2817     return get_thread_name_string();
2818 }
2819 
2820 // Returns a non-NULL representation of this thread's name, or a suitable
2821 // descriptive string if there is no set name
2822 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2823   const char* name_str;
2824   oop thread_obj = threadObj();
2825   if (thread_obj != NULL) {
2826     typeArrayOop name = java_lang_Thread::name(thread_obj);
2827     if (name != NULL) {
2828       if (buf == NULL) {
2829         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2830       }
2831       else {
2832         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2833       }
2834     }
2835     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2836       name_str = "<no-name - thread is attaching>";
2837     }
2838     else {
2839       name_str = Thread::name();
2840     }
2841   }
2842   else {
2843     name_str = Thread::name();
2844   }
2845   assert(name_str != NULL, "unexpected NULL thread name");
2846   return name_str;
2847 }
2848 
2849 
2850 const char* JavaThread::get_threadgroup_name() const {
2851   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2852   oop thread_obj = threadObj();
2853   if (thread_obj != NULL) {
2854     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2855     if (thread_group != NULL) {
2856       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2857       // ThreadGroup.name can be null
2858       if (name != NULL) {
2859         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2860         return str;
2861       }
2862     }
2863   }
2864   return NULL;
2865 }
2866 
2867 const char* JavaThread::get_parent_name() const {
2868   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2869   oop thread_obj = threadObj();
2870   if (thread_obj != NULL) {
2871     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2872     if (thread_group != NULL) {
2873       oop parent = java_lang_ThreadGroup::parent(thread_group);
2874       if (parent != NULL) {
2875         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2876         // ThreadGroup.name can be null
2877         if (name != NULL) {
2878           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2879           return str;
2880         }
2881       }
2882     }
2883   }
2884   return NULL;
2885 }
2886 
2887 ThreadPriority JavaThread::java_priority() const {
2888   oop thr_oop = threadObj();
2889   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2890   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2891   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2892   return priority;
2893 }
2894 
2895 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2896 
2897   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2898   // Link Java Thread object <-> C++ Thread
2899 
2900   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2901   // and put it into a new Handle.  The Handle "thread_oop" can then
2902   // be used to pass the C++ thread object to other methods.
2903 
2904   // Set the Java level thread object (jthread) field of the
2905   // new thread (a JavaThread *) to C++ thread object using the
2906   // "thread_oop" handle.
2907 
2908   // Set the thread field (a JavaThread *) of the
2909   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2910 
2911   Handle thread_oop(Thread::current(),
2912                     JNIHandles::resolve_non_null(jni_thread));
2913   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2914     "must be initialized");
2915   set_threadObj(thread_oop());
2916   java_lang_Thread::set_thread(thread_oop(), this);
2917 
2918   if (prio == NoPriority) {
2919     prio = java_lang_Thread::priority(thread_oop());
2920     assert(prio != NoPriority, "A valid priority should be present");
2921   }
2922 
2923   // Push the Java priority down to the native thread; needs Threads_lock
2924   Thread::set_priority(this, prio);
2925 
2926   // Add the new thread to the Threads list and set it in motion.
2927   // We must have threads lock in order to call Threads::add.
2928   // It is crucial that we do not block before the thread is
2929   // added to the Threads list for if a GC happens, then the java_thread oop
2930   // will not be visited by GC.
2931   Threads::add(this);
2932 }
2933 
2934 oop JavaThread::current_park_blocker() {
2935   // Support for JSR-166 locks
2936   oop thread_oop = threadObj();
2937   if (thread_oop != NULL &&
2938       JDK_Version::current().supports_thread_park_blocker()) {
2939     return java_lang_Thread::park_blocker(thread_oop);
2940   }
2941   return NULL;
2942 }
2943 
2944 
2945 void JavaThread::print_stack_on(outputStream* st) {
2946   if (!has_last_Java_frame()) return;
2947   ResourceMark rm;
2948   HandleMark   hm;
2949 
2950   RegisterMap reg_map(this);
2951   vframe* start_vf = last_java_vframe(&reg_map);
2952   int count = 0;
2953   for (vframe* f = start_vf; f; f = f->sender() ) {
2954     if (f->is_java_frame()) {
2955       javaVFrame* jvf = javaVFrame::cast(f);
2956       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2957 
2958       // Print out lock information
2959       if (JavaMonitorsInStackTrace) {
2960         jvf->print_lock_info_on(st, count);
2961       }
2962     } else {
2963       // Ignore non-Java frames
2964     }
2965 
2966     // Bail-out case for too deep stacks
2967     count++;
2968     if (MaxJavaStackTraceDepth == count) return;
2969   }
2970 }
2971 
2972 
2973 // JVMTI PopFrame support
2974 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2975   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2976   if (in_bytes(size_in_bytes) != 0) {
2977     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2978     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2979     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2980   }
2981 }
2982 
2983 void* JavaThread::popframe_preserved_args() {
2984   return _popframe_preserved_args;
2985 }
2986 
2987 ByteSize JavaThread::popframe_preserved_args_size() {
2988   return in_ByteSize(_popframe_preserved_args_size);
2989 }
2990 
2991 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2992   int sz = in_bytes(popframe_preserved_args_size());
2993   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2994   return in_WordSize(sz / wordSize);
2995 }
2996 
2997 void JavaThread::popframe_free_preserved_args() {
2998   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2999   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3000   _popframe_preserved_args = NULL;
3001   _popframe_preserved_args_size = 0;
3002 }
3003 
3004 #ifndef PRODUCT
3005 
3006 void JavaThread::trace_frames() {
3007   tty->print_cr("[Describe stack]");
3008   int frame_no = 1;
3009   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3010     tty->print("  %d. ", frame_no++);
3011     fst.current()->print_value_on(tty,this);
3012     tty->cr();
3013   }
3014 }
3015 
3016 class PrintAndVerifyOopClosure: public OopClosure {
3017  protected:
3018   template <class T> inline void do_oop_work(T* p) {
3019     oop obj = oopDesc::load_decode_heap_oop(p);
3020     if (obj == NULL) return;
3021     tty->print(INTPTR_FORMAT ": ", p);
3022     if (obj->is_oop_or_null()) {
3023       if (obj->is_objArray()) {
3024         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3025       } else {
3026         obj->print();
3027       }
3028     } else {
3029       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3030     }
3031     tty->cr();
3032   }
3033  public:
3034   virtual void do_oop(oop* p) { do_oop_work(p); }
3035   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3036 };
3037 
3038 
3039 static void oops_print(frame* f, const RegisterMap *map) {
3040   PrintAndVerifyOopClosure print;
3041   f->print_value();
3042   f->oops_do(&print, NULL, (RegisterMap*)map);
3043 }
3044 
3045 // Print our all the locations that contain oops and whether they are
3046 // valid or not.  This useful when trying to find the oldest frame
3047 // where an oop has gone bad since the frame walk is from youngest to
3048 // oldest.
3049 void JavaThread::trace_oops() {
3050   tty->print_cr("[Trace oops]");
3051   frames_do(oops_print);
3052 }
3053 
3054 
3055 #ifdef ASSERT
3056 // Print or validate the layout of stack frames
3057 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3058   ResourceMark rm;
3059   PRESERVE_EXCEPTION_MARK;
3060   FrameValues values;
3061   int frame_no = 0;
3062   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3063     fst.current()->describe(values, ++frame_no);
3064     if (depth == frame_no) break;
3065   }
3066   if (validate_only) {
3067     values.validate();
3068   } else {
3069     tty->print_cr("[Describe stack layout]");
3070     values.print(this);
3071   }
3072 }
3073 #endif
3074 
3075 void JavaThread::trace_stack_from(vframe* start_vf) {
3076   ResourceMark rm;
3077   int vframe_no = 1;
3078   for (vframe* f = start_vf; f; f = f->sender() ) {
3079     if (f->is_java_frame()) {
3080       javaVFrame::cast(f)->print_activation(vframe_no++);
3081     } else {
3082       f->print();
3083     }
3084     if (vframe_no > StackPrintLimit) {
3085       tty->print_cr("...<more frames>...");
3086       return;
3087     }
3088   }
3089 }
3090 
3091 
3092 void JavaThread::trace_stack() {
3093   if (!has_last_Java_frame()) return;
3094   ResourceMark rm;
3095   HandleMark   hm;
3096   RegisterMap reg_map(this);
3097   trace_stack_from(last_java_vframe(&reg_map));
3098 }
3099 
3100 
3101 #endif // PRODUCT
3102 
3103 
3104 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3105   assert(reg_map != NULL, "a map must be given");
3106   frame f = last_frame();
3107   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3108     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3109   }
3110   return NULL;
3111 }
3112 
3113 
3114 Klass* JavaThread::security_get_caller_class(int depth) {
3115   vframeStream vfst(this);
3116   vfst.security_get_caller_frame(depth);
3117   if (!vfst.at_end()) {
3118     return vfst.method()->method_holder();
3119   }
3120   return NULL;
3121 }
3122 
3123 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3124   assert(thread->is_Compiler_thread(), "must be compiler thread");
3125   CompileBroker::compiler_thread_loop();
3126 }
3127 
3128 // Create a CompilerThread
3129 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3130 : JavaThread(&compiler_thread_entry) {
3131   _env   = NULL;
3132   _log   = NULL;
3133   _task  = NULL;
3134   _queue = queue;
3135   _counters = counters;
3136   _buffer_blob = NULL;
3137   _scanned_nmethod = NULL;
3138 
3139 #ifndef PRODUCT
3140   _ideal_graph_printer = NULL;
3141 #endif
3142 }
3143 
3144 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3145   JavaThread::oops_do(f, cf);
3146   if (_scanned_nmethod != NULL && cf != NULL) {
3147     // Safepoints can occur when the sweeper is scanning an nmethod so
3148     // process it here to make sure it isn't unloaded in the middle of
3149     // a scan.
3150     cf->do_code_blob(_scanned_nmethod);
3151   }
3152 }
3153 
3154 // ======= Threads ========
3155 
3156 // The Threads class links together all active threads, and provides
3157 // operations over all threads.  It is protected by its own Mutex
3158 // lock, which is also used in other contexts to protect thread
3159 // operations from having the thread being operated on from exiting
3160 // and going away unexpectedly (e.g., safepoint synchronization)
3161 
3162 JavaThread* Threads::_thread_list = NULL;
3163 int         Threads::_number_of_threads = 0;
3164 int         Threads::_number_of_non_daemon_threads = 0;
3165 int         Threads::_return_code = 0;
3166 size_t      JavaThread::_stack_size_at_create = 0;
3167 #ifdef ASSERT
3168 bool        Threads::_vm_complete = false;
3169 #endif
3170 
3171 // All JavaThreads
3172 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3173 
3174 void os_stream();
3175 
3176 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3177 void Threads::threads_do(ThreadClosure* tc) {
3178   assert_locked_or_safepoint(Threads_lock);
3179   // ALL_JAVA_THREADS iterates through all JavaThreads
3180   ALL_JAVA_THREADS(p) {
3181     tc->do_thread(p);
3182   }
3183   // Someday we could have a table or list of all non-JavaThreads.
3184   // For now, just manually iterate through them.
3185   tc->do_thread(VMThread::vm_thread());
3186   Universe::heap()->gc_threads_do(tc);
3187   WatcherThread *wt = WatcherThread::watcher_thread();
3188   // Strictly speaking, the following NULL check isn't sufficient to make sure
3189   // the data for WatcherThread is still valid upon being examined. However,
3190   // considering that WatchThread terminates when the VM is on the way to
3191   // exit at safepoint, the chance of the above is extremely small. The right
3192   // way to prevent termination of WatcherThread would be to acquire
3193   // Terminator_lock, but we can't do that without violating the lock rank
3194   // checking in some cases.
3195   if (wt != NULL)
3196     tc->do_thread(wt);
3197 
3198   // If CompilerThreads ever become non-JavaThreads, add them here
3199 }
3200 
3201 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3202 
3203   extern void JDK_Version_init();
3204 
3205   // Check version
3206   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3207 
3208   // Initialize the output stream module
3209   ostream_init();
3210 
3211   // Process java launcher properties.
3212   Arguments::process_sun_java_launcher_properties(args);
3213 
3214   // Initialize the os module before using TLS
3215   os::init();
3216 
3217   // Initialize system properties.
3218   Arguments::init_system_properties();
3219 
3220   // So that JDK version can be used as a discrimintor when parsing arguments
3221   JDK_Version_init();
3222 
3223   // Update/Initialize System properties after JDK version number is known
3224   Arguments::init_version_specific_system_properties();
3225 
3226   // Parse arguments
3227   jint parse_result = Arguments::parse(args);
3228   if (parse_result != JNI_OK) return parse_result;
3229 
3230   if (PauseAtStartup) {
3231     os::pause();
3232   }
3233 
3234 #ifndef USDT2
3235   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3236 #else /* USDT2 */
3237   HOTSPOT_VM_INIT_BEGIN();
3238 #endif /* USDT2 */
3239 
3240   // Record VM creation timing statistics
3241   TraceVmCreationTime create_vm_timer;
3242   create_vm_timer.start();
3243 
3244   // Timing (must come after argument parsing)
3245   TraceTime timer("Create VM", TraceStartupTime);
3246 
3247   // Initialize the os module after parsing the args
3248   jint os_init_2_result = os::init_2();
3249   if (os_init_2_result != JNI_OK) return os_init_2_result;
3250 
3251   // intialize TLS
3252   ThreadLocalStorage::init();
3253 
3254   // Bootstrap native memory tracking, so it can start recording memory
3255   // activities before worker thread is started. This is the first phase
3256   // of bootstrapping, VM is currently running in single-thread mode.
3257   MemTracker::bootstrap_single_thread();
3258 
3259   // Initialize output stream logging
3260   ostream_init_log();
3261 
3262   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3263   // Must be before create_vm_init_agents()
3264   if (Arguments::init_libraries_at_startup()) {
3265     convert_vm_init_libraries_to_agents();
3266   }
3267 
3268   // Launch -agentlib/-agentpath and converted -Xrun agents
3269   if (Arguments::init_agents_at_startup()) {
3270     create_vm_init_agents();
3271   }
3272 
3273   // Initialize Threads state
3274   _thread_list = NULL;
3275   _number_of_threads = 0;
3276   _number_of_non_daemon_threads = 0;
3277 
3278   // Initialize global data structures and create system classes in heap
3279   vm_init_globals();
3280 
3281   // Attach the main thread to this os thread
3282   JavaThread* main_thread = new JavaThread();
3283   main_thread->set_thread_state(_thread_in_vm);
3284   // must do this before set_active_handles and initialize_thread_local_storage
3285   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3286   // change the stack size recorded here to one based on the java thread
3287   // stacksize. This adjusted size is what is used to figure the placement
3288   // of the guard pages.
3289   main_thread->record_stack_base_and_size();
3290   main_thread->initialize_thread_local_storage();
3291 
3292   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3293 
3294   if (!main_thread->set_as_starting_thread()) {
3295     vm_shutdown_during_initialization(
3296       "Failed necessary internal allocation. Out of swap space");
3297     delete main_thread;
3298     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3299     return JNI_ENOMEM;
3300   }
3301 
3302   // Enable guard page *after* os::create_main_thread(), otherwise it would
3303   // crash Linux VM, see notes in os_linux.cpp.
3304   main_thread->create_stack_guard_pages();
3305 
3306   // Initialize Java-Level synchronization subsystem
3307   ObjectMonitor::Initialize() ;
3308 
3309   // Second phase of bootstrapping, VM is about entering multi-thread mode
3310   MemTracker::bootstrap_multi_thread();
3311 
3312   // Initialize global modules
3313   jint status = init_globals();
3314   if (status != JNI_OK) {
3315     delete main_thread;
3316     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3317     return status;
3318   }
3319 
3320   // Should be done after the heap is fully created
3321   main_thread->cache_global_variables();
3322 
3323   HandleMark hm;
3324 
3325   { MutexLocker mu(Threads_lock);
3326     Threads::add(main_thread);
3327   }
3328 
3329   // Any JVMTI raw monitors entered in onload will transition into
3330   // real raw monitor. VM is setup enough here for raw monitor enter.
3331   JvmtiExport::transition_pending_onload_raw_monitors();
3332 
3333   if (VerifyBeforeGC &&
3334       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3335     Universe::heap()->prepare_for_verify();
3336     Universe::verify();   // make sure we're starting with a clean slate
3337   }
3338 
3339   // Fully start NMT
3340   MemTracker::start();
3341 
3342   // Create the VMThread
3343   { TraceTime timer("Start VMThread", TraceStartupTime);
3344     VMThread::create();
3345     Thread* vmthread = VMThread::vm_thread();
3346 
3347     if (!os::create_thread(vmthread, os::vm_thread))
3348       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3349 
3350     // Wait for the VM thread to become ready, and VMThread::run to initialize
3351     // Monitors can have spurious returns, must always check another state flag
3352     {
3353       MutexLocker ml(Notify_lock);
3354       os::start_thread(vmthread);
3355       while (vmthread->active_handles() == NULL) {
3356         Notify_lock->wait();
3357       }
3358     }
3359   }
3360 
3361   assert (Universe::is_fully_initialized(), "not initialized");
3362   EXCEPTION_MARK;
3363 
3364   // At this point, the Universe is initialized, but we have not executed
3365   // any byte code.  Now is a good time (the only time) to dump out the
3366   // internal state of the JVM for sharing.
3367   if (DumpSharedSpaces) {
3368     MetaspaceShared::preload_and_dump(CHECK_0);
3369     ShouldNotReachHere();
3370   }
3371 
3372   // Always call even when there are not JVMTI environments yet, since environments
3373   // may be attached late and JVMTI must track phases of VM execution
3374   JvmtiExport::enter_start_phase();
3375 
3376   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3377   JvmtiExport::post_vm_start();
3378 
3379   {
3380     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3381 
3382     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3383       create_vm_init_libraries();
3384     }
3385 
3386     if (InitializeJavaLangString) {
3387       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3388     } else {
3389       warning("java.lang.String not initialized");
3390     }
3391 
3392     if (AggressiveOpts) {
3393       {
3394         // Forcibly initialize java/util/HashMap and mutate the private
3395         // static final "frontCacheEnabled" field before we start creating instances
3396 #ifdef ASSERT
3397         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3398         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3399 #endif
3400         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3401         KlassHandle k = KlassHandle(THREAD, k_o);
3402         guarantee(k.not_null(), "Must find java/util/HashMap");
3403         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3404         ik->initialize(CHECK_0);
3405         fieldDescriptor fd;
3406         // Possible we might not find this field; if so, don't break
3407         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3408           k()->java_mirror()->bool_field_put(fd.offset(), true);
3409         }
3410       }
3411 
3412       if (UseStringCache) {
3413         // Forcibly initialize java/lang/StringValue and mutate the private
3414         // static final "stringCacheEnabled" field before we start creating instances
3415         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3416         // Possible that StringValue isn't present: if so, silently don't break
3417         if (k_o != NULL) {
3418           KlassHandle k = KlassHandle(THREAD, k_o);
3419           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3420           ik->initialize(CHECK_0);
3421           fieldDescriptor fd;
3422           // Possible we might not find this field: if so, silently don't break
3423           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3424             k()->java_mirror()->bool_field_put(fd.offset(), true);
3425           }
3426         }
3427       }
3428     }
3429 
3430     // Initialize java_lang.System (needed before creating the thread)
3431     if (InitializeJavaLangSystem) {
3432       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3433       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3434       Handle thread_group = create_initial_thread_group(CHECK_0);
3435       Universe::set_main_thread_group(thread_group());
3436       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3437       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3438       main_thread->set_threadObj(thread_object);
3439       // Set thread status to running since main thread has
3440       // been started and running.
3441       java_lang_Thread::set_thread_status(thread_object,
3442                                           java_lang_Thread::RUNNABLE);
3443 
3444       // The VM preresolve methods to these classes. Make sure that get initialized
3445       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3446       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3447       // The VM creates & returns objects of this class. Make sure it's initialized.
3448       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3449       call_initializeSystemClass(CHECK_0);
3450 
3451       // get the Java runtime name after java.lang.System is initialized
3452       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3453     } else {
3454       warning("java.lang.System not initialized");
3455     }
3456 
3457     // an instance of OutOfMemory exception has been allocated earlier
3458     if (InitializeJavaLangExceptionsErrors) {
3459       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3460       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3461       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3462       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3463       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3464       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3465       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3466       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3467     } else {
3468       warning("java.lang.OutOfMemoryError has not been initialized");
3469       warning("java.lang.NullPointerException has not been initialized");
3470       warning("java.lang.ClassCastException has not been initialized");
3471       warning("java.lang.ArrayStoreException has not been initialized");
3472       warning("java.lang.ArithmeticException has not been initialized");
3473       warning("java.lang.StackOverflowError has not been initialized");
3474       warning("java.lang.IllegalArgumentException has not been initialized");
3475     }
3476   }
3477 
3478   // See        : bugid 4211085.
3479   // Background : the static initializer of java.lang.Compiler tries to read
3480   //              property"java.compiler" and read & write property "java.vm.info".
3481   //              When a security manager is installed through the command line
3482   //              option "-Djava.security.manager", the above properties are not
3483   //              readable and the static initializer for java.lang.Compiler fails
3484   //              resulting in a NoClassDefFoundError.  This can happen in any
3485   //              user code which calls methods in java.lang.Compiler.
3486   // Hack :       the hack is to pre-load and initialize this class, so that only
3487   //              system domains are on the stack when the properties are read.
3488   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3489   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3490   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3491   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3492   //              Once that is done, we should remove this hack.
3493   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3494 
3495   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3496   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3497   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3498   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3499   // This should also be taken out as soon as 4211383 gets fixed.
3500   reset_vm_info_property(CHECK_0);
3501 
3502   quicken_jni_functions();
3503 
3504   // Must be run after init_ft which initializes ft_enabled
3505   if (TRACE_INITIALIZE() != JNI_OK) {
3506     vm_exit_during_initialization("Failed to initialize tracing backend");
3507   }
3508 
3509   // Set flag that basic initialization has completed. Used by exceptions and various
3510   // debug stuff, that does not work until all basic classes have been initialized.
3511   set_init_completed();
3512 
3513 #ifndef USDT2
3514   HS_DTRACE_PROBE(hotspot, vm__init__end);
3515 #else /* USDT2 */
3516   HOTSPOT_VM_INIT_END();
3517 #endif /* USDT2 */
3518 
3519   // record VM initialization completion time
3520   Management::record_vm_init_completed();
3521 
3522   // Compute system loader. Note that this has to occur after set_init_completed, since
3523   // valid exceptions may be thrown in the process.
3524   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3525   // set_init_completed has just been called, causing exceptions not to be shortcut
3526   // anymore. We call vm_exit_during_initialization directly instead.
3527   SystemDictionary::compute_java_system_loader(THREAD);
3528   if (HAS_PENDING_EXCEPTION) {
3529     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3530   }
3531 
3532 #ifndef SERIALGC
3533   // Support for ConcurrentMarkSweep. This should be cleaned up
3534   // and better encapsulated. The ugly nested if test would go away
3535   // once things are properly refactored. XXX YSR
3536   if (UseConcMarkSweepGC || UseG1GC) {
3537     if (UseConcMarkSweepGC) {
3538       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3539     } else {
3540       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3541     }
3542     if (HAS_PENDING_EXCEPTION) {
3543       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3544     }
3545   }
3546 #endif // SERIALGC
3547 
3548   // Always call even when there are not JVMTI environments yet, since environments
3549   // may be attached late and JVMTI must track phases of VM execution
3550   JvmtiExport::enter_live_phase();
3551 
3552   // Signal Dispatcher needs to be started before VMInit event is posted
3553   os::signal_init();
3554 
3555   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3556   if (!DisableAttachMechanism) {
3557     if (StartAttachListener || AttachListener::init_at_startup()) {
3558       AttachListener::init();
3559     }
3560   }
3561 
3562   // Launch -Xrun agents
3563   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3564   // back-end can launch with -Xdebug -Xrunjdwp.
3565   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3566     create_vm_init_libraries();
3567   }
3568 
3569   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3570   JvmtiExport::post_vm_initialized();
3571 
3572   if (!TRACE_START()) {
3573     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3574   }
3575 
3576   if (CleanChunkPoolAsync) {
3577     Chunk::start_chunk_pool_cleaner_task();
3578   }
3579 
3580   // initialize compiler(s)
3581   CompileBroker::compilation_init();
3582 
3583   Management::initialize(THREAD);
3584   if (HAS_PENDING_EXCEPTION) {
3585     // management agent fails to start possibly due to
3586     // configuration problem and is responsible for printing
3587     // stack trace if appropriate. Simply exit VM.
3588     vm_exit(1);
3589   }
3590 
3591   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3592   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3593   if (MemProfiling)                   MemProfiler::engage();
3594   StatSampler::engage();
3595   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3596 
3597   BiasedLocking::init();
3598 
3599   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3600     call_postVMInitHook(THREAD);
3601     // The Java side of PostVMInitHook.run must deal with all
3602     // exceptions and provide means of diagnosis.
3603     if (HAS_PENDING_EXCEPTION) {
3604       CLEAR_PENDING_EXCEPTION;
3605     }
3606   }
3607 
3608   // Start up the WatcherThread if there are any periodic tasks
3609   // NOTE:  All PeriodicTasks should be registered by now. If they
3610   //   aren't, late joiners might appear to start slowly (we might
3611   //   take a while to process their first tick).
3612   if (PeriodicTask::num_tasks() > 0) {
3613     WatcherThread::start();
3614   }
3615 
3616   // Give os specific code one last chance to start
3617   os::init_3();
3618 
3619   create_vm_timer.end();
3620 #ifdef ASSERT
3621   _vm_complete = true;
3622 #endif
3623   return JNI_OK;
3624 }
3625 
3626 // type for the Agent_OnLoad and JVM_OnLoad entry points
3627 extern "C" {
3628   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3629 }
3630 // Find a command line agent library and return its entry point for
3631 //         -agentlib:  -agentpath:   -Xrun
3632 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3633 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3634   OnLoadEntry_t on_load_entry = NULL;
3635   void *library = agent->os_lib();  // check if we have looked it up before
3636 
3637   if (library == NULL) {
3638     char buffer[JVM_MAXPATHLEN];
3639     char ebuf[1024];
3640     const char *name = agent->name();
3641     const char *msg = "Could not find agent library ";
3642 
3643     if (agent->is_absolute_path()) {
3644       library = os::dll_load(name, ebuf, sizeof ebuf);
3645       if (library == NULL) {
3646         const char *sub_msg = " in absolute path, with error: ";
3647         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3648         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3649         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3650         // If we can't find the agent, exit.
3651         vm_exit_during_initialization(buf, NULL);
3652         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3653       }
3654     } else {
3655       // Try to load the agent from the standard dll directory
3656       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3657       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3658 #ifdef KERNEL
3659       // Download instrument dll
3660       if (library == NULL && strcmp(name, "instrument") == 0) {
3661         char *props = Arguments::get_kernel_properties();
3662         char *home  = Arguments::get_java_home();
3663         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3664                       " sun.jkernel.DownloadManager -download client_jvm";
3665         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3666         char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3667         jio_snprintf(cmd, length, fmt, home, props);
3668         int status = os::fork_and_exec(cmd);
3669         FreeHeap(props);
3670         if (status == -1) {
3671           warning(cmd);
3672           vm_exit_during_initialization("fork_and_exec failed: %s",
3673                                          strerror(errno));
3674         }
3675         FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3676         // when this comes back the instrument.dll should be where it belongs.
3677         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3678       }
3679 #endif // KERNEL
3680       if (library == NULL) { // Try the local directory
3681         char ns[1] = {0};
3682         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3683         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3684         if (library == NULL) {
3685           const char *sub_msg = " on the library path, with error: ";
3686           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3687           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3688           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3689           // If we can't find the agent, exit.
3690           vm_exit_during_initialization(buf, NULL);
3691           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3692         }
3693       }
3694     }
3695     agent->set_os_lib(library);
3696   }
3697 
3698   // Find the OnLoad function.
3699   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3700     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3701     if (on_load_entry != NULL) break;
3702   }
3703   return on_load_entry;
3704 }
3705 
3706 // Find the JVM_OnLoad entry point
3707 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3708   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3709   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3710 }
3711 
3712 // Find the Agent_OnLoad entry point
3713 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3714   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3715   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3716 }
3717 
3718 // For backwards compatibility with -Xrun
3719 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3720 // treated like -agentpath:
3721 // Must be called before agent libraries are created
3722 void Threads::convert_vm_init_libraries_to_agents() {
3723   AgentLibrary* agent;
3724   AgentLibrary* next;
3725 
3726   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3727     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3728     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3729 
3730     // If there is an JVM_OnLoad function it will get called later,
3731     // otherwise see if there is an Agent_OnLoad
3732     if (on_load_entry == NULL) {
3733       on_load_entry = lookup_agent_on_load(agent);
3734       if (on_load_entry != NULL) {
3735         // switch it to the agent list -- so that Agent_OnLoad will be called,
3736         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3737         Arguments::convert_library_to_agent(agent);
3738       } else {
3739         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3740       }
3741     }
3742   }
3743 }
3744 
3745 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3746 // Invokes Agent_OnLoad
3747 // Called very early -- before JavaThreads exist
3748 void Threads::create_vm_init_agents() {
3749   extern struct JavaVM_ main_vm;
3750   AgentLibrary* agent;
3751 
3752   JvmtiExport::enter_onload_phase();
3753   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3754     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3755 
3756     if (on_load_entry != NULL) {
3757       // Invoke the Agent_OnLoad function
3758       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3759       if (err != JNI_OK) {
3760         vm_exit_during_initialization("agent library failed to init", agent->name());
3761       }
3762     } else {
3763       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3764     }
3765   }
3766   JvmtiExport::enter_primordial_phase();
3767 }
3768 
3769 extern "C" {
3770   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3771 }
3772 
3773 void Threads::shutdown_vm_agents() {
3774   // Send any Agent_OnUnload notifications
3775   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3776   extern struct JavaVM_ main_vm;
3777   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3778 
3779     // Find the Agent_OnUnload function.
3780     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3781       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3782                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3783 
3784       // Invoke the Agent_OnUnload function
3785       if (unload_entry != NULL) {
3786         JavaThread* thread = JavaThread::current();
3787         ThreadToNativeFromVM ttn(thread);
3788         HandleMark hm(thread);
3789         (*unload_entry)(&main_vm);
3790         break;
3791       }
3792     }
3793   }
3794 }
3795 
3796 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3797 // Invokes JVM_OnLoad
3798 void Threads::create_vm_init_libraries() {
3799   extern struct JavaVM_ main_vm;
3800   AgentLibrary* agent;
3801 
3802   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3803     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3804 
3805     if (on_load_entry != NULL) {
3806       // Invoke the JVM_OnLoad function
3807       JavaThread* thread = JavaThread::current();
3808       ThreadToNativeFromVM ttn(thread);
3809       HandleMark hm(thread);
3810       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3811       if (err != JNI_OK) {
3812         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3813       }
3814     } else {
3815       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3816     }
3817   }
3818 }
3819 
3820 // Last thread running calls java.lang.Shutdown.shutdown()
3821 void JavaThread::invoke_shutdown_hooks() {
3822   HandleMark hm(this);
3823 
3824   // We could get here with a pending exception, if so clear it now.
3825   if (this->has_pending_exception()) {
3826     this->clear_pending_exception();
3827   }
3828 
3829   EXCEPTION_MARK;
3830   Klass* k =
3831     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3832                                       THREAD);
3833   if (k != NULL) {
3834     // SystemDictionary::resolve_or_null will return null if there was
3835     // an exception.  If we cannot load the Shutdown class, just don't
3836     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3837     // and finalizers (if runFinalizersOnExit is set) won't be run.
3838     // Note that if a shutdown hook was registered or runFinalizersOnExit
3839     // was called, the Shutdown class would have already been loaded
3840     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3841     instanceKlassHandle shutdown_klass (THREAD, k);
3842     JavaValue result(T_VOID);
3843     JavaCalls::call_static(&result,
3844                            shutdown_klass,
3845                            vmSymbols::shutdown_method_name(),
3846                            vmSymbols::void_method_signature(),
3847                            THREAD);
3848   }
3849   CLEAR_PENDING_EXCEPTION;
3850 }
3851 
3852 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3853 // the program falls off the end of main(). Another VM exit path is through
3854 // vm_exit() when the program calls System.exit() to return a value or when
3855 // there is a serious error in VM. The two shutdown paths are not exactly
3856 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3857 // and VM_Exit op at VM level.
3858 //
3859 // Shutdown sequence:
3860 //   + Shutdown native memory tracking if it is on
3861 //   + Wait until we are the last non-daemon thread to execute
3862 //     <-- every thing is still working at this moment -->
3863 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3864 //        shutdown hooks, run finalizers if finalization-on-exit
3865 //   + Call before_exit(), prepare for VM exit
3866 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3867 //        currently the only user of this mechanism is File.deleteOnExit())
3868 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3869 //        post thread end and vm death events to JVMTI,
3870 //        stop signal thread
3871 //   + Call JavaThread::exit(), it will:
3872 //      > release JNI handle blocks, remove stack guard pages
3873 //      > remove this thread from Threads list
3874 //     <-- no more Java code from this thread after this point -->
3875 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3876 //     the compiler threads at safepoint
3877 //     <-- do not use anything that could get blocked by Safepoint -->
3878 //   + Disable tracing at JNI/JVM barriers
3879 //   + Set _vm_exited flag for threads that are still running native code
3880 //   + Delete this thread
3881 //   + Call exit_globals()
3882 //      > deletes tty
3883 //      > deletes PerfMemory resources
3884 //   + Return to caller
3885 
3886 bool Threads::destroy_vm() {
3887   JavaThread* thread = JavaThread::current();
3888 
3889 #ifdef ASSERT
3890   _vm_complete = false;
3891 #endif
3892   // Wait until we are the last non-daemon thread to execute
3893   { MutexLocker nu(Threads_lock);
3894     while (Threads::number_of_non_daemon_threads() > 1 )
3895       // This wait should make safepoint checks, wait without a timeout,
3896       // and wait as a suspend-equivalent condition.
3897       //
3898       // Note: If the FlatProfiler is running and this thread is waiting
3899       // for another non-daemon thread to finish, then the FlatProfiler
3900       // is waiting for the external suspend request on this thread to
3901       // complete. wait_for_ext_suspend_completion() will eventually
3902       // timeout, but that takes time. Making this wait a suspend-
3903       // equivalent condition solves that timeout problem.
3904       //
3905       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3906                          Mutex::_as_suspend_equivalent_flag);
3907   }
3908 
3909   // Shutdown NMT before exit. Otherwise,
3910   // it will run into trouble when system destroys static variables.
3911   MemTracker::shutdown(MemTracker::NMT_normal);
3912 
3913   // Hang forever on exit if we are reporting an error.
3914   if (ShowMessageBoxOnError && is_error_reported()) {
3915     os::infinite_sleep();
3916   }
3917   os::wait_for_keypress_at_exit();
3918 
3919   if (JDK_Version::is_jdk12x_version()) {
3920     // We are the last thread running, so check if finalizers should be run.
3921     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3922     HandleMark rm(thread);
3923     Universe::run_finalizers_on_exit();
3924   } else {
3925     // run Java level shutdown hooks
3926     thread->invoke_shutdown_hooks();
3927   }
3928 
3929   before_exit(thread);
3930 
3931   thread->exit(true);
3932 
3933   // Stop VM thread.
3934   {
3935     // 4945125 The vm thread comes to a safepoint during exit.
3936     // GC vm_operations can get caught at the safepoint, and the
3937     // heap is unparseable if they are caught. Grab the Heap_lock
3938     // to prevent this. The GC vm_operations will not be able to
3939     // queue until after the vm thread is dead.
3940     // After this point, we'll never emerge out of the safepoint before
3941     // the VM exits, so concurrent GC threads do not need to be explicitly
3942     // stopped; they remain inactive until the process exits.
3943     // Note: some concurrent G1 threads may be running during a safepoint,
3944     // but these will not be accessing the heap, just some G1-specific side
3945     // data structures that are not accessed by any other threads but them
3946     // after this point in a terminal safepoint.
3947 
3948     MutexLocker ml(Heap_lock);
3949 
3950     VMThread::wait_for_vm_thread_exit();
3951     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3952     VMThread::destroy();
3953   }
3954 
3955   // clean up ideal graph printers
3956 #if defined(COMPILER2) && !defined(PRODUCT)
3957   IdealGraphPrinter::clean_up();
3958 #endif
3959 
3960   // Now, all Java threads are gone except daemon threads. Daemon threads
3961   // running Java code or in VM are stopped by the Safepoint. However,
3962   // daemon threads executing native code are still running.  But they
3963   // will be stopped at native=>Java/VM barriers. Note that we can't
3964   // simply kill or suspend them, as it is inherently deadlock-prone.
3965 
3966 #ifndef PRODUCT
3967   // disable function tracing at JNI/JVM barriers
3968   TraceJNICalls = false;
3969   TraceJVMCalls = false;
3970   TraceRuntimeCalls = false;
3971 #endif
3972 
3973   VM_Exit::set_vm_exited();
3974 
3975   notify_vm_shutdown();
3976 
3977   delete thread;
3978 
3979   // exit_globals() will delete tty
3980   exit_globals();
3981 
3982   return true;
3983 }
3984 
3985 
3986 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3987   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3988   return is_supported_jni_version(version);
3989 }
3990 
3991 
3992 jboolean Threads::is_supported_jni_version(jint version) {
3993   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3994   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3995   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3996   return JNI_FALSE;
3997 }
3998 
3999 
4000 void Threads::add(JavaThread* p, bool force_daemon) {
4001   // The threads lock must be owned at this point
4002   assert_locked_or_safepoint(Threads_lock);
4003 
4004   // See the comment for this method in thread.hpp for its purpose and
4005   // why it is called here.
4006   p->initialize_queues();
4007   p->set_next(_thread_list);
4008   _thread_list = p;
4009   _number_of_threads++;
4010   oop threadObj = p->threadObj();
4011   bool daemon = true;
4012   // Bootstrapping problem: threadObj can be null for initial
4013   // JavaThread (or for threads attached via JNI)
4014   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4015     _number_of_non_daemon_threads++;
4016     daemon = false;
4017   }
4018 
4019   p->set_safepoint_visible(true);
4020 
4021   ThreadService::add_thread(p, daemon);
4022 
4023   // Possible GC point.
4024   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4025 }
4026 
4027 void Threads::remove(JavaThread* p) {
4028   // Extra scope needed for Thread_lock, so we can check
4029   // that we do not remove thread without safepoint code notice
4030   { MutexLocker ml(Threads_lock);
4031 
4032     assert(includes(p), "p must be present");
4033 
4034     JavaThread* current = _thread_list;
4035     JavaThread* prev    = NULL;
4036 
4037     while (current != p) {
4038       prev    = current;
4039       current = current->next();
4040     }
4041 
4042     if (prev) {
4043       prev->set_next(current->next());
4044     } else {
4045       _thread_list = p->next();
4046     }
4047     _number_of_threads--;
4048     oop threadObj = p->threadObj();
4049     bool daemon = true;
4050     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4051       _number_of_non_daemon_threads--;
4052       daemon = false;
4053 
4054       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4055       // on destroy_vm will wake up.
4056       if (number_of_non_daemon_threads() == 1)
4057         Threads_lock->notify_all();
4058     }
4059     ThreadService::remove_thread(p, daemon);
4060 
4061     // Make sure that safepoint code disregard this thread. This is needed since
4062     // the thread might mess around with locks after this point. This can cause it
4063     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4064     // of this thread since it is removed from the queue.
4065     p->set_terminated_value();
4066 
4067     // Now, this thread is not visible to safepoint
4068     p->set_safepoint_visible(false);
4069 
4070   } // unlock Threads_lock
4071 
4072   // Since Events::log uses a lock, we grab it outside the Threads_lock
4073   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4074 }
4075 
4076 // Threads_lock must be held when this is called (or must be called during a safepoint)
4077 bool Threads::includes(JavaThread* p) {
4078   assert(Threads_lock->is_locked(), "sanity check");
4079   ALL_JAVA_THREADS(q) {
4080     if (q == p ) {
4081       return true;
4082     }
4083   }
4084   return false;
4085 }
4086 
4087 // Operations on the Threads list for GC.  These are not explicitly locked,
4088 // but the garbage collector must provide a safe context for them to run.
4089 // In particular, these things should never be called when the Threads_lock
4090 // is held by some other thread. (Note: the Safepoint abstraction also
4091 // uses the Threads_lock to gurantee this property. It also makes sure that
4092 // all threads gets blocked when exiting or starting).
4093 
4094 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4095   ALL_JAVA_THREADS(p) {
4096     p->oops_do(f, cf);
4097   }
4098   VMThread::vm_thread()->oops_do(f, cf);
4099 }
4100 
4101 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4102   // Introduce a mechanism allowing parallel threads to claim threads as
4103   // root groups.  Overhead should be small enough to use all the time,
4104   // even in sequential code.
4105   SharedHeap* sh = SharedHeap::heap();
4106   // Cannot yet substitute active_workers for n_par_threads
4107   // because of G1CollectedHeap::verify() use of
4108   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4109   // turn off parallelism in process_strong_roots while active_workers
4110   // is being used for parallelism elsewhere.
4111   bool is_par = sh->n_par_threads() > 0;
4112   assert(!is_par ||
4113          (SharedHeap::heap()->n_par_threads() ==
4114           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4115   int cp = SharedHeap::heap()->strong_roots_parity();
4116   ALL_JAVA_THREADS(p) {
4117     if (p->claim_oops_do(is_par, cp)) {
4118       p->oops_do(f, cf);
4119     }
4120   }
4121   VMThread* vmt = VMThread::vm_thread();
4122   if (vmt->claim_oops_do(is_par, cp)) {
4123     vmt->oops_do(f, cf);
4124   }
4125 }
4126 
4127 #ifndef SERIALGC
4128 // Used by ParallelScavenge
4129 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4130   ALL_JAVA_THREADS(p) {
4131     q->enqueue(new ThreadRootsTask(p));
4132   }
4133   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4134 }
4135 
4136 // Used by Parallel Old
4137 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4138   ALL_JAVA_THREADS(p) {
4139     q->enqueue(new ThreadRootsMarkingTask(p));
4140   }
4141   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4142 }
4143 #endif // SERIALGC
4144 
4145 void Threads::nmethods_do(CodeBlobClosure* cf) {
4146   ALL_JAVA_THREADS(p) {
4147     p->nmethods_do(cf);
4148   }
4149   VMThread::vm_thread()->nmethods_do(cf);
4150 }
4151 
4152 void Threads::metadata_do(void f(Metadata*)) {
4153   ALL_JAVA_THREADS(p) {
4154     p->metadata_do(f);
4155   }
4156 }
4157 
4158 void Threads::gc_epilogue() {
4159   ALL_JAVA_THREADS(p) {
4160     p->gc_epilogue();
4161   }
4162 }
4163 
4164 void Threads::gc_prologue() {
4165   ALL_JAVA_THREADS(p) {
4166     p->gc_prologue();
4167   }
4168 }
4169 
4170 void Threads::deoptimized_wrt_marked_nmethods() {
4171   ALL_JAVA_THREADS(p) {
4172     p->deoptimized_wrt_marked_nmethods();
4173   }
4174 }
4175 
4176 
4177 // Get count Java threads that are waiting to enter the specified monitor.
4178 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4179   address monitor, bool doLock) {
4180   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4181     "must grab Threads_lock or be at safepoint");
4182   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4183 
4184   int i = 0;
4185   {
4186     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4187     ALL_JAVA_THREADS(p) {
4188       if (p->is_Compiler_thread()) continue;
4189 
4190       address pending = (address)p->current_pending_monitor();
4191       if (pending == monitor) {             // found a match
4192         if (i < count) result->append(p);   // save the first count matches
4193         i++;
4194       }
4195     }
4196   }
4197   return result;
4198 }
4199 
4200 
4201 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4202   assert(doLock ||
4203          Threads_lock->owned_by_self() ||
4204          SafepointSynchronize::is_at_safepoint(),
4205          "must grab Threads_lock or be at safepoint");
4206 
4207   // NULL owner means not locked so we can skip the search
4208   if (owner == NULL) return NULL;
4209 
4210   {
4211     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4212     ALL_JAVA_THREADS(p) {
4213       // first, see if owner is the address of a Java thread
4214       if (owner == (address)p) return p;
4215     }
4216   }
4217   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4218   if (UseHeavyMonitors) return NULL;
4219 
4220   //
4221   // If we didn't find a matching Java thread and we didn't force use of
4222   // heavyweight monitors, then the owner is the stack address of the
4223   // Lock Word in the owning Java thread's stack.
4224   //
4225   JavaThread* the_owner = NULL;
4226   {
4227     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4228     ALL_JAVA_THREADS(q) {
4229       if (q->is_lock_owned(owner)) {
4230         the_owner = q;
4231         break;
4232       }
4233     }
4234   }
4235   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4236   return the_owner;
4237 }
4238 
4239 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4240 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4241   char buf[32];
4242   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4243 
4244   st->print_cr("Full thread dump %s (%s %s):",
4245                 Abstract_VM_Version::vm_name(),
4246                 Abstract_VM_Version::vm_release(),
4247                 Abstract_VM_Version::vm_info_string()
4248                );
4249   st->cr();
4250 
4251 #ifndef SERIALGC
4252   // Dump concurrent locks
4253   ConcurrentLocksDump concurrent_locks;
4254   if (print_concurrent_locks) {
4255     concurrent_locks.dump_at_safepoint();
4256   }
4257 #endif // SERIALGC
4258 
4259   ALL_JAVA_THREADS(p) {
4260     ResourceMark rm;
4261     p->print_on(st);
4262     if (print_stacks) {
4263       if (internal_format) {
4264         p->trace_stack();
4265       } else {
4266         p->print_stack_on(st);
4267       }
4268     }
4269     st->cr();
4270 #ifndef SERIALGC
4271     if (print_concurrent_locks) {
4272       concurrent_locks.print_locks_on(p, st);
4273     }
4274 #endif // SERIALGC
4275   }
4276 
4277   VMThread::vm_thread()->print_on(st);
4278   st->cr();
4279   Universe::heap()->print_gc_threads_on(st);
4280   WatcherThread* wt = WatcherThread::watcher_thread();
4281   if (wt != NULL) {
4282     wt->print_on(st);
4283     st->cr();
4284   }
4285   CompileBroker::print_compiler_threads_on(st);
4286   st->flush();
4287 }
4288 
4289 // Threads::print_on_error() is called by fatal error handler. It's possible
4290 // that VM is not at safepoint and/or current thread is inside signal handler.
4291 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4292 // memory (even in resource area), it might deadlock the error handler.
4293 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4294   bool found_current = false;
4295   st->print_cr("Java Threads: ( => current thread )");
4296   ALL_JAVA_THREADS(thread) {
4297     bool is_current = (current == thread);
4298     found_current = found_current || is_current;
4299 
4300     st->print("%s", is_current ? "=>" : "  ");
4301 
4302     st->print(PTR_FORMAT, thread);
4303     st->print(" ");
4304     thread->print_on_error(st, buf, buflen);
4305     st->cr();
4306   }
4307   st->cr();
4308 
4309   st->print_cr("Other Threads:");
4310   if (VMThread::vm_thread()) {
4311     bool is_current = (current == VMThread::vm_thread());
4312     found_current = found_current || is_current;
4313     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4314 
4315     st->print(PTR_FORMAT, VMThread::vm_thread());
4316     st->print(" ");
4317     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4318     st->cr();
4319   }
4320   WatcherThread* wt = WatcherThread::watcher_thread();
4321   if (wt != NULL) {
4322     bool is_current = (current == wt);
4323     found_current = found_current || is_current;
4324     st->print("%s", is_current ? "=>" : "  ");
4325 
4326     st->print(PTR_FORMAT, wt);
4327     st->print(" ");
4328     wt->print_on_error(st, buf, buflen);
4329     st->cr();
4330   }
4331   if (!found_current) {
4332     st->cr();
4333     st->print("=>" PTR_FORMAT " (exited) ", current);
4334     current->print_on_error(st, buf, buflen);
4335     st->cr();
4336   }
4337 }
4338 
4339 // Internal SpinLock and Mutex
4340 // Based on ParkEvent
4341 
4342 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4343 //
4344 // We employ SpinLocks _only for low-contention, fixed-length
4345 // short-duration critical sections where we're concerned
4346 // about native mutex_t or HotSpot Mutex:: latency.
4347 // The mux construct provides a spin-then-block mutual exclusion
4348 // mechanism.
4349 //
4350 // Testing has shown that contention on the ListLock guarding gFreeList
4351 // is common.  If we implement ListLock as a simple SpinLock it's common
4352 // for the JVM to devolve to yielding with little progress.  This is true
4353 // despite the fact that the critical sections protected by ListLock are
4354 // extremely short.
4355 //
4356 // TODO-FIXME: ListLock should be of type SpinLock.
4357 // We should make this a 1st-class type, integrated into the lock
4358 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4359 // should have sufficient padding to avoid false-sharing and excessive
4360 // cache-coherency traffic.
4361 
4362 
4363 typedef volatile int SpinLockT ;
4364 
4365 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4366   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4367      return ;   // normal fast-path return
4368   }
4369 
4370   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4371   TEVENT (SpinAcquire - ctx) ;
4372   int ctr = 0 ;
4373   int Yields = 0 ;
4374   for (;;) {
4375      while (*adr != 0) {
4376         ++ctr ;
4377         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4378            if (Yields > 5) {
4379              // Consider using a simple NakedSleep() instead.
4380              // Then SpinAcquire could be called by non-JVM threads
4381              Thread::current()->_ParkEvent->park(1) ;
4382            } else {
4383              os::NakedYield() ;
4384              ++Yields ;
4385            }
4386         } else {
4387            SpinPause() ;
4388         }
4389      }
4390      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4391   }
4392 }
4393 
4394 void Thread::SpinRelease (volatile int * adr) {
4395   assert (*adr != 0, "invariant") ;
4396   OrderAccess::fence() ;      // guarantee at least release consistency.
4397   // Roach-motel semantics.
4398   // It's safe if subsequent LDs and STs float "up" into the critical section,
4399   // but prior LDs and STs within the critical section can't be allowed
4400   // to reorder or float past the ST that releases the lock.
4401   *adr = 0 ;
4402 }
4403 
4404 // muxAcquire and muxRelease:
4405 //
4406 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4407 //    The LSB of the word is set IFF the lock is held.
4408 //    The remainder of the word points to the head of a singly-linked list
4409 //    of threads blocked on the lock.
4410 //
4411 // *  The current implementation of muxAcquire-muxRelease uses its own
4412 //    dedicated Thread._MuxEvent instance.  If we're interested in
4413 //    minimizing the peak number of extant ParkEvent instances then
4414 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4415 //    as certain invariants were satisfied.  Specifically, care would need
4416 //    to be taken with regards to consuming unpark() "permits".
4417 //    A safe rule of thumb is that a thread would never call muxAcquire()
4418 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4419 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4420 //    consume an unpark() permit intended for monitorenter, for instance.
4421 //    One way around this would be to widen the restricted-range semaphore
4422 //    implemented in park().  Another alternative would be to provide
4423 //    multiple instances of the PlatformEvent() for each thread.  One
4424 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4425 //
4426 // *  Usage:
4427 //    -- Only as leaf locks
4428 //    -- for short-term locking only as muxAcquire does not perform
4429 //       thread state transitions.
4430 //
4431 // Alternatives:
4432 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4433 //    but with parking or spin-then-park instead of pure spinning.
4434 // *  Use Taura-Oyama-Yonenzawa locks.
4435 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4436 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4437 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4438 //    acquiring threads use timers (ParkTimed) to detect and recover from
4439 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4440 //    boundaries by using placement-new.
4441 // *  Augment MCS with advisory back-link fields maintained with CAS().
4442 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4443 //    The validity of the backlinks must be ratified before we trust the value.
4444 //    If the backlinks are invalid the exiting thread must back-track through the
4445 //    the forward links, which are always trustworthy.
4446 // *  Add a successor indication.  The LockWord is currently encoded as
4447 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4448 //    to provide the usual futile-wakeup optimization.
4449 //    See RTStt for details.
4450 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4451 //
4452 
4453 
4454 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4455 enum MuxBits { LOCKBIT = 1 } ;
4456 
4457 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4458   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4459   if (w == 0) return ;
4460   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4461      return ;
4462   }
4463 
4464   TEVENT (muxAcquire - Contention) ;
4465   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4466   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4467   for (;;) {
4468      int its = (os::is_MP() ? 100 : 0) + 1 ;
4469 
4470      // Optional spin phase: spin-then-park strategy
4471      while (--its >= 0) {
4472        w = *Lock ;
4473        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4474           return ;
4475        }
4476      }
4477 
4478      Self->reset() ;
4479      Self->OnList = intptr_t(Lock) ;
4480      // The following fence() isn't _strictly necessary as the subsequent
4481      // CAS() both serializes execution and ratifies the fetched *Lock value.
4482      OrderAccess::fence();
4483      for (;;) {
4484         w = *Lock ;
4485         if ((w & LOCKBIT) == 0) {
4486             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4487                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4488                 return ;
4489             }
4490             continue ;      // Interference -- *Lock changed -- Just retry
4491         }
4492         assert (w & LOCKBIT, "invariant") ;
4493         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4494         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4495      }
4496 
4497      while (Self->OnList != 0) {
4498         Self->park() ;
4499      }
4500   }
4501 }
4502 
4503 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4504   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4505   if (w == 0) return ;
4506   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4507     return ;
4508   }
4509 
4510   TEVENT (muxAcquire - Contention) ;
4511   ParkEvent * ReleaseAfter = NULL ;
4512   if (ev == NULL) {
4513     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4514   }
4515   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4516   for (;;) {
4517     guarantee (ev->OnList == 0, "invariant") ;
4518     int its = (os::is_MP() ? 100 : 0) + 1 ;
4519 
4520     // Optional spin phase: spin-then-park strategy
4521     while (--its >= 0) {
4522       w = *Lock ;
4523       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524         if (ReleaseAfter != NULL) {
4525           ParkEvent::Release (ReleaseAfter) ;
4526         }
4527         return ;
4528       }
4529     }
4530 
4531     ev->reset() ;
4532     ev->OnList = intptr_t(Lock) ;
4533     // The following fence() isn't _strictly necessary as the subsequent
4534     // CAS() both serializes execution and ratifies the fetched *Lock value.
4535     OrderAccess::fence();
4536     for (;;) {
4537       w = *Lock ;
4538       if ((w & LOCKBIT) == 0) {
4539         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4540           ev->OnList = 0 ;
4541           // We call ::Release while holding the outer lock, thus
4542           // artificially lengthening the critical section.
4543           // Consider deferring the ::Release() until the subsequent unlock(),
4544           // after we've dropped the outer lock.
4545           if (ReleaseAfter != NULL) {
4546             ParkEvent::Release (ReleaseAfter) ;
4547           }
4548           return ;
4549         }
4550         continue ;      // Interference -- *Lock changed -- Just retry
4551       }
4552       assert (w & LOCKBIT, "invariant") ;
4553       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4554       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4555     }
4556 
4557     while (ev->OnList != 0) {
4558       ev->park() ;
4559     }
4560   }
4561 }
4562 
4563 // Release() must extract a successor from the list and then wake that thread.
4564 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4565 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4566 // Release() would :
4567 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4568 // (B) Extract a successor from the private list "in-hand"
4569 // (C) attempt to CAS() the residual back into *Lock over null.
4570 //     If there were any newly arrived threads and the CAS() would fail.
4571 //     In that case Release() would detach the RATs, re-merge the list in-hand
4572 //     with the RATs and repeat as needed.  Alternately, Release() might
4573 //     detach and extract a successor, but then pass the residual list to the wakee.
4574 //     The wakee would be responsible for reattaching and remerging before it
4575 //     competed for the lock.
4576 //
4577 // Both "pop" and DMR are immune from ABA corruption -- there can be
4578 // multiple concurrent pushers, but only one popper or detacher.
4579 // This implementation pops from the head of the list.  This is unfair,
4580 // but tends to provide excellent throughput as hot threads remain hot.
4581 // (We wake recently run threads first).
4582 
4583 void Thread::muxRelease (volatile intptr_t * Lock)  {
4584   for (;;) {
4585     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4586     assert (w & LOCKBIT, "invariant") ;
4587     if (w == LOCKBIT) return ;
4588     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4589     assert (List != NULL, "invariant") ;
4590     assert (List->OnList == intptr_t(Lock), "invariant") ;
4591     ParkEvent * nxt = List->ListNext ;
4592 
4593     // The following CAS() releases the lock and pops the head element.
4594     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4595       continue ;
4596     }
4597     List->OnList = 0 ;
4598     OrderAccess::fence() ;
4599     List->unpark () ;
4600     return ;
4601   }
4602 }
4603 
4604 
4605 void Threads::verify() {
4606   ALL_JAVA_THREADS(p) {
4607     p->verify();
4608   }
4609   VMThread* thread = VMThread::vm_thread();
4610   if (thread != NULL) thread->verify();
4611 }