1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 
  31 import javax.lang.model.element.ElementKind;
  32 import javax.tools.JavaFileObject;
  33 
  34 import com.sun.source.tree.IdentifierTree;
  35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  36 import com.sun.source.tree.MemberSelectTree;
  37 import com.sun.source.tree.TreeVisitor;
  38 import com.sun.source.util.SimpleTreeVisitor;
  39 import com.sun.tools.javac.code.*;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.comp.Check.CheckContext;
  44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
  47 import com.sun.tools.javac.jvm.*;
  48 import com.sun.tools.javac.jvm.Target;
  49 import com.sun.tools.javac.tree.*;
  50 import com.sun.tools.javac.tree.JCTree.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  53 import com.sun.tools.javac.util.List;
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  56 import static com.sun.tools.javac.code.Flags.BLOCK;
  57 import static com.sun.tools.javac.code.Kinds.*;
  58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  62 
  63 /** This is the main context-dependent analysis phase in GJC. It
  64  *  encompasses name resolution, type checking and constant folding as
  65  *  subtasks. Some subtasks involve auxiliary classes.
  66  *  @see Check
  67  *  @see Resolve
  68  *  @see ConstFold
  69  *  @see Infer
  70  *
  71  *  <p><b>This is NOT part of any supported API.
  72  *  If you write code that depends on this, you do so at your own risk.
  73  *  This code and its internal interfaces are subject to change or
  74  *  deletion without notice.</b>
  75  */
  76 public class Attr extends JCTree.Visitor {
  77     protected static final Context.Key<Attr> attrKey =
  78         new Context.Key<Attr>();
  79 
  80     final Names names;
  81     final Log log;
  82     final Symtab syms;
  83     final Resolve rs;
  84     final Infer infer;
  85     final DeferredAttr deferredAttr;
  86     final Check chk;
  87     final Flow flow;
  88     final MemberEnter memberEnter;
  89     final TreeMaker make;
  90     final ConstFold cfolder;
  91     final Enter enter;
  92     final Target target;
  93     final Types types;
  94     final JCDiagnostic.Factory diags;
  95     final Annotate annotate;
  96     final DeferredLintHandler deferredLintHandler;
  97 
  98     public static Attr instance(Context context) {
  99         Attr instance = context.get(attrKey);
 100         if (instance == null)
 101             instance = new Attr(context);
 102         return instance;
 103     }
 104 
 105     protected Attr(Context context) {
 106         context.put(attrKey, this);
 107 
 108         names = Names.instance(context);
 109         log = Log.instance(context);
 110         syms = Symtab.instance(context);
 111         rs = Resolve.instance(context);
 112         chk = Check.instance(context);
 113         flow = Flow.instance(context);
 114         memberEnter = MemberEnter.instance(context);
 115         make = TreeMaker.instance(context);
 116         enter = Enter.instance(context);
 117         infer = Infer.instance(context);
 118         deferredAttr = DeferredAttr.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         types = Types.instance(context);
 122         diags = JCDiagnostic.Factory.instance(context);
 123         annotate = Annotate.instance(context);
 124         deferredLintHandler = DeferredLintHandler.instance(context);
 125 
 126         Options options = Options.instance(context);
 127 
 128         Source source = Source.instance(context);
 129         allowGenerics = source.allowGenerics();
 130         allowVarargs = source.allowVarargs();
 131         allowEnums = source.allowEnums();
 132         allowBoxing = source.allowBoxing();
 133         allowCovariantReturns = source.allowCovariantReturns();
 134         allowAnonOuterThis = source.allowAnonOuterThis();
 135         allowStringsInSwitch = source.allowStringsInSwitch();
 136         allowPoly = source.allowPoly();
 137         allowLambda = source.allowLambda();
 138         allowDefaultMethods = source.allowDefaultMethods();
 139         sourceName = source.name;
 140         relax = (options.isSet("-retrofit") ||
 141                  options.isSet("-relax"));
 142         findDiamonds = options.get("findDiamond") != null &&
 143                  source.allowDiamond();
 144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
 146 
 147         statInfo = new ResultInfo(NIL, Type.noType);
 148         varInfo = new ResultInfo(VAR, Type.noType);
 149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
 150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
 151         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 152     }
 153 
 154     /** Switch: relax some constraints for retrofit mode.
 155      */
 156     boolean relax;
 157 
 158     /** Switch: support target-typing inference
 159      */
 160     boolean allowPoly;
 161 
 162     /** Switch: support generics?
 163      */
 164     boolean allowGenerics;
 165 
 166     /** Switch: allow variable-arity methods.
 167      */
 168     boolean allowVarargs;
 169 
 170     /** Switch: support enums?
 171      */
 172     boolean allowEnums;
 173 
 174     /** Switch: support boxing and unboxing?
 175      */
 176     boolean allowBoxing;
 177 
 178     /** Switch: support covariant result types?
 179      */
 180     boolean allowCovariantReturns;
 181 
 182     /** Switch: support lambda expressions ?
 183      */
 184     boolean allowLambda;
 185 
 186     /** Switch: support default methods ?
 187      */
 188     boolean allowDefaultMethods;
 189 
 190     /** Switch: allow references to surrounding object from anonymous
 191      * objects during constructor call?
 192      */
 193     boolean allowAnonOuterThis;
 194 
 195     /** Switch: generates a warning if diamond can be safely applied
 196      *  to a given new expression
 197      */
 198     boolean findDiamonds;
 199 
 200     /**
 201      * Internally enables/disables diamond finder feature
 202      */
 203     static final boolean allowDiamondFinder = true;
 204 
 205     /**
 206      * Switch: warn about use of variable before declaration?
 207      * RFE: 6425594
 208      */
 209     boolean useBeforeDeclarationWarning;
 210 
 211     /**
 212      * Switch: generate warnings whenever an anonymous inner class that is convertible
 213      * to a lambda expression is found
 214      */
 215     boolean identifyLambdaCandidate;
 216 
 217     /**
 218      * Switch: allow strings in switch?
 219      */
 220     boolean allowStringsInSwitch;
 221 
 222     /**
 223      * Switch: name of source level; used for error reporting.
 224      */
 225     String sourceName;
 226 
 227     /** Check kind and type of given tree against protokind and prototype.
 228      *  If check succeeds, store type in tree and return it.
 229      *  If check fails, store errType in tree and return it.
 230      *  No checks are performed if the prototype is a method type.
 231      *  It is not necessary in this case since we know that kind and type
 232      *  are correct.
 233      *
 234      *  @param tree     The tree whose kind and type is checked
 235      *  @param ownkind  The computed kind of the tree
 236      *  @param resultInfo  The expected result of the tree
 237      */
 238     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
 239         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 240         Type owntype = found;
 241         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
 242             if (inferenceContext.free(found)) {
 243                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
 244                     @Override
 245                     public void typesInferred(InferenceContext inferenceContext) {
 246                         ResultInfo pendingResult =
 247                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types));
 248                         check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult);
 249                     }
 250                 });
 251                 return tree.type = resultInfo.pt;
 252             } else {
 253                 if ((ownkind & ~resultInfo.pkind) == 0) {
 254                     owntype = resultInfo.check(tree, owntype);
 255                 } else {
 256                     log.error(tree.pos(), "unexpected.type",
 257                             kindNames(resultInfo.pkind),
 258                             kindName(ownkind));
 259                     owntype = types.createErrorType(owntype);
 260                 }
 261             }
 262         }
 263         tree.type = owntype;
 264         return owntype;
 265     }
 266 
 267     /** Is given blank final variable assignable, i.e. in a scope where it
 268      *  may be assigned to even though it is final?
 269      *  @param v      The blank final variable.
 270      *  @param env    The current environment.
 271      */
 272     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 273         Symbol owner = owner(env);
 274            // owner refers to the innermost variable, method or
 275            // initializer block declaration at this point.
 276         return
 277             v.owner == owner
 278             ||
 279             ((owner.name == names.init ||    // i.e. we are in a constructor
 280               owner.kind == VAR ||           // i.e. we are in a variable initializer
 281               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 282              &&
 283              v.owner == owner.owner
 284              &&
 285              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 286     }
 287 
 288     /**
 289      * Return the innermost enclosing owner symbol in a given attribution context
 290      */
 291     Symbol owner(Env<AttrContext> env) {
 292         while (true) {
 293             switch (env.tree.getTag()) {
 294                 case VARDEF:
 295                     //a field can be owner
 296                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
 297                     if (vsym.owner.kind == TYP) {
 298                         return vsym;
 299                     }
 300                     break;
 301                 case METHODDEF:
 302                     //method def is always an owner
 303                     return ((JCMethodDecl)env.tree).sym;
 304                 case CLASSDEF:
 305                     //class def is always an owner
 306                     return ((JCClassDecl)env.tree).sym;
 307                 case LAMBDA:
 308                     //a lambda is an owner - return a fresh synthetic method symbol
 309                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
 310                 case BLOCK:
 311                     //static/instance init blocks are owner
 312                     Symbol blockSym = env.info.scope.owner;
 313                     if ((blockSym.flags() & BLOCK) != 0) {
 314                         return blockSym;
 315                     }
 316                     break;
 317                 case TOPLEVEL:
 318                     //toplevel is always an owner (for pkge decls)
 319                     return env.info.scope.owner;
 320             }
 321             Assert.checkNonNull(env.next);
 322             env = env.next;
 323         }
 324     }
 325 
 326     /** Check that variable can be assigned to.
 327      *  @param pos    The current source code position.
 328      *  @param v      The assigned varaible
 329      *  @param base   If the variable is referred to in a Select, the part
 330      *                to the left of the `.', null otherwise.
 331      *  @param env    The current environment.
 332      */
 333     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 334         if ((v.flags() & FINAL) != 0 &&
 335             ((v.flags() & HASINIT) != 0
 336              ||
 337              !((base == null ||
 338                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 339                isAssignableAsBlankFinal(v, env)))) {
 340             if (v.isResourceVariable()) { //TWR resource
 341                 log.error(pos, "try.resource.may.not.be.assigned", v);
 342             } else {
 343                 log.error(pos, "cant.assign.val.to.final.var", v);
 344             }
 345         }
 346     }
 347 
 348     /** Does tree represent a static reference to an identifier?
 349      *  It is assumed that tree is either a SELECT or an IDENT.
 350      *  We have to weed out selects from non-type names here.
 351      *  @param tree    The candidate tree.
 352      */
 353     boolean isStaticReference(JCTree tree) {
 354         if (tree.hasTag(SELECT)) {
 355             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 356             if (lsym == null || lsym.kind != TYP) {
 357                 return false;
 358             }
 359         }
 360         return true;
 361     }
 362 
 363     /** Is this symbol a type?
 364      */
 365     static boolean isType(Symbol sym) {
 366         return sym != null && sym.kind == TYP;
 367     }
 368 
 369     /** The current `this' symbol.
 370      *  @param env    The current environment.
 371      */
 372     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 373         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 374     }
 375 
 376     /** Attribute a parsed identifier.
 377      * @param tree Parsed identifier name
 378      * @param topLevel The toplevel to use
 379      */
 380     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 381         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 382         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 383                                            syms.errSymbol.name,
 384                                            null, null, null, null);
 385         localEnv.enclClass.sym = syms.errSymbol;
 386         return tree.accept(identAttributer, localEnv);
 387     }
 388     // where
 389         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 390         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 391             @Override
 392             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 393                 Symbol site = visit(node.getExpression(), env);
 394                 if (site.kind == ERR)
 395                     return site;
 396                 Name name = (Name)node.getIdentifier();
 397                 if (site.kind == PCK) {
 398                     env.toplevel.packge = (PackageSymbol)site;
 399                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 400                 } else {
 401                     env.enclClass.sym = (ClassSymbol)site;
 402                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 403                 }
 404             }
 405 
 406             @Override
 407             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 408                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 409             }
 410         }
 411 
 412     public Type coerce(Type etype, Type ttype) {
 413         return cfolder.coerce(etype, ttype);
 414     }
 415 
 416     public Type attribType(JCTree node, TypeSymbol sym) {
 417         Env<AttrContext> env = enter.typeEnvs.get(sym);
 418         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 419         return attribTree(node, localEnv, unknownTypeInfo);
 420     }
 421 
 422     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 423         // Attribute qualifying package or class.
 424         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 425         return attribTree(s.selected,
 426                        env,
 427                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
 428                        Type.noType));
 429     }
 430 
 431     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 432         breakTree = tree;
 433         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 434         try {
 435             attribExpr(expr, env);
 436         } catch (BreakAttr b) {
 437             return b.env;
 438         } catch (AssertionError ae) {
 439             if (ae.getCause() instanceof BreakAttr) {
 440                 return ((BreakAttr)(ae.getCause())).env;
 441             } else {
 442                 throw ae;
 443             }
 444         } finally {
 445             breakTree = null;
 446             log.useSource(prev);
 447         }
 448         return env;
 449     }
 450 
 451     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 452         breakTree = tree;
 453         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 454         try {
 455             attribStat(stmt, env);
 456         } catch (BreakAttr b) {
 457             return b.env;
 458         } catch (AssertionError ae) {
 459             if (ae.getCause() instanceof BreakAttr) {
 460                 return ((BreakAttr)(ae.getCause())).env;
 461             } else {
 462                 throw ae;
 463             }
 464         } finally {
 465             breakTree = null;
 466             log.useSource(prev);
 467         }
 468         return env;
 469     }
 470 
 471     private JCTree breakTree = null;
 472 
 473     private static class BreakAttr extends RuntimeException {
 474         static final long serialVersionUID = -6924771130405446405L;
 475         private Env<AttrContext> env;
 476         private BreakAttr(Env<AttrContext> env) {
 477             this.env = copyEnv(env);
 478         }
 479 
 480         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
 481             Env<AttrContext> newEnv =
 482                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 483             if (newEnv.outer != null) {
 484                 newEnv.outer = copyEnv(newEnv.outer);
 485             }
 486             return newEnv;
 487         }
 488 
 489         private Scope copyScope(Scope sc) {
 490             Scope newScope = new Scope(sc.owner);
 491             List<Symbol> elemsList = List.nil();
 492             while (sc != null) {
 493                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
 494                     elemsList = elemsList.prepend(e.sym);
 495                 }
 496                 sc = sc.next;
 497             }
 498             for (Symbol s : elemsList) {
 499                 newScope.enter(s);
 500             }
 501             return newScope;
 502         }
 503     }
 504 
 505     class ResultInfo {
 506         final int pkind;
 507         final Type pt;
 508         final CheckContext checkContext;
 509 
 510         ResultInfo(int pkind, Type pt) {
 511             this(pkind, pt, chk.basicHandler);
 512         }
 513 
 514         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
 515             this.pkind = pkind;
 516             this.pt = pt;
 517             this.checkContext = checkContext;
 518         }
 519 
 520         protected Type check(final DiagnosticPosition pos, final Type found) {
 521             return chk.checkType(pos, found, pt, checkContext);
 522         }
 523 
 524         protected ResultInfo dup(Type newPt) {
 525             return new ResultInfo(pkind, newPt, checkContext);
 526         }
 527 
 528         protected ResultInfo dup(CheckContext newContext) {
 529             return new ResultInfo(pkind, pt, newContext);
 530         }
 531     }
 532 
 533     class RecoveryInfo extends ResultInfo {
 534 
 535         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 536             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
 537                 @Override
 538                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 539                     return deferredAttrContext;
 540                 }
 541                 @Override
 542                 public boolean compatible(Type found, Type req, Warner warn) {
 543                     return true;
 544                 }
 545                 @Override
 546                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 547                     chk.basicHandler.report(pos, details);
 548                 }
 549             });
 550         }
 551 
 552         @Override
 553         protected Type check(DiagnosticPosition pos, Type found) {
 554             return chk.checkNonVoid(pos, super.check(pos, found));
 555         }
 556     }
 557 
 558     final ResultInfo statInfo;
 559     final ResultInfo varInfo;
 560     final ResultInfo unknownExprInfo;
 561     final ResultInfo unknownTypeInfo;
 562     final ResultInfo recoveryInfo;
 563 
 564     Type pt() {
 565         return resultInfo.pt;
 566     }
 567 
 568     int pkind() {
 569         return resultInfo.pkind;
 570     }
 571 
 572 /* ************************************************************************
 573  * Visitor methods
 574  *************************************************************************/
 575 
 576     /** Visitor argument: the current environment.
 577      */
 578     Env<AttrContext> env;
 579 
 580     /** Visitor argument: the currently expected attribution result.
 581      */
 582     ResultInfo resultInfo;
 583 
 584     /** Visitor result: the computed type.
 585      */
 586     Type result;
 587 
 588     /** Visitor method: attribute a tree, catching any completion failure
 589      *  exceptions. Return the tree's type.
 590      *
 591      *  @param tree    The tree to be visited.
 592      *  @param env     The environment visitor argument.
 593      *  @param resultInfo   The result info visitor argument.
 594      */
 595     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 596         Env<AttrContext> prevEnv = this.env;
 597         ResultInfo prevResult = this.resultInfo;
 598         try {
 599             this.env = env;
 600             this.resultInfo = resultInfo;
 601             tree.accept(this);
 602             if (tree == breakTree &&
 603                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 604                 throw new BreakAttr(env);
 605             }
 606             return result;
 607         } catch (CompletionFailure ex) {
 608             tree.type = syms.errType;
 609             return chk.completionError(tree.pos(), ex);
 610         } finally {
 611             this.env = prevEnv;
 612             this.resultInfo = prevResult;
 613         }
 614     }
 615 
 616     /** Derived visitor method: attribute an expression tree.
 617      */
 618     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 619         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 620     }
 621 
 622     /** Derived visitor method: attribute an expression tree with
 623      *  no constraints on the computed type.
 624      */
 625     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 626         return attribTree(tree, env, unknownExprInfo);
 627     }
 628 
 629     /** Derived visitor method: attribute a type tree.
 630      */
 631     public Type attribType(JCTree tree, Env<AttrContext> env) {
 632         Type result = attribType(tree, env, Type.noType);
 633         return result;
 634     }
 635 
 636     /** Derived visitor method: attribute a type tree.
 637      */
 638     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 639         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
 640         return result;
 641     }
 642 
 643     /** Derived visitor method: attribute a statement or definition tree.
 644      */
 645     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 646         return attribTree(tree, env, statInfo);
 647     }
 648 
 649     /** Attribute a list of expressions, returning a list of types.
 650      */
 651     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 652         ListBuffer<Type> ts = new ListBuffer<Type>();
 653         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 654             ts.append(attribExpr(l.head, env, pt));
 655         return ts.toList();
 656     }
 657 
 658     /** Attribute a list of statements, returning nothing.
 659      */
 660     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 661         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 662             attribStat(l.head, env);
 663     }
 664 
 665     /** Attribute the arguments in a method call, returning a list of types.
 666      */
 667     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 668         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 669         for (JCExpression arg : trees) {
 670             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
 671                     deferredAttr.new DeferredType(arg, env) :
 672                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
 673             argtypes.append(argtype);
 674         }
 675         return argtypes.toList();
 676     }
 677 
 678     /** Attribute a type argument list, returning a list of types.
 679      *  Caller is responsible for calling checkRefTypes.
 680      */
 681     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 682         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 683         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 684             argtypes.append(attribType(l.head, env));
 685         return argtypes.toList();
 686     }
 687 
 688     /** Attribute a type argument list, returning a list of types.
 689      *  Check that all the types are references.
 690      */
 691     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 692         List<Type> types = attribAnyTypes(trees, env);
 693         return chk.checkRefTypes(trees, types);
 694     }
 695 
 696     /**
 697      * Attribute type variables (of generic classes or methods).
 698      * Compound types are attributed later in attribBounds.
 699      * @param typarams the type variables to enter
 700      * @param env      the current environment
 701      */
 702     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 703         for (JCTypeParameter tvar : typarams) {
 704             TypeVar a = (TypeVar)tvar.type;
 705             a.tsym.flags_field |= UNATTRIBUTED;
 706             a.bound = Type.noType;
 707             if (!tvar.bounds.isEmpty()) {
 708                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 709                 for (JCExpression bound : tvar.bounds.tail)
 710                     bounds = bounds.prepend(attribType(bound, env));
 711                 types.setBounds(a, bounds.reverse());
 712             } else {
 713                 // if no bounds are given, assume a single bound of
 714                 // java.lang.Object.
 715                 types.setBounds(a, List.of(syms.objectType));
 716             }
 717             a.tsym.flags_field &= ~UNATTRIBUTED;
 718         }
 719         for (JCTypeParameter tvar : typarams) {
 720             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 721         }
 722     }
 723 
 724     /**
 725      * Attribute the type references in a list of annotations.
 726      */
 727     void attribAnnotationTypes(List<JCAnnotation> annotations,
 728                                Env<AttrContext> env) {
 729         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 730             JCAnnotation a = al.head;
 731             attribType(a.annotationType, env);
 732         }
 733     }
 734 
 735     /**
 736      * Attribute a "lazy constant value".
 737      *  @param env         The env for the const value
 738      *  @param initializer The initializer for the const value
 739      *  @param type        The expected type, or null
 740      *  @see VarSymbol#setLazyConstValue
 741      */
 742     public Object attribLazyConstantValue(Env<AttrContext> env,
 743                                       JCTree.JCExpression initializer,
 744                                       Type type) {
 745 
 746         // in case no lint value has been set up for this env, scan up
 747         // env stack looking for smallest enclosing env for which it is set.
 748         Env<AttrContext> lintEnv = env;
 749         while (lintEnv.info.lint == null)
 750             lintEnv = lintEnv.next;
 751 
 752         // Having found the enclosing lint value, we can initialize the lint value for this class
 753         // ... but ...
 754         // There's a problem with evaluating annotations in the right order, such that
 755         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
 756         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
 757         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
 758         if (env.info.enclVar.annotations.pendingCompletion()) {
 759             env.info.lint = lintEnv.info.lint;
 760         } else {
 761             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
 762                                                       env.info.enclVar.flags());
 763         }
 764 
 765         Lint prevLint = chk.setLint(env.info.lint);
 766         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 767 
 768         try {
 769             Type itype = attribExpr(initializer, env, type);
 770             if (itype.constValue() != null)
 771                 return coerce(itype, type).constValue();
 772             else
 773                 return null;
 774         } finally {
 775             env.info.lint = prevLint;
 776             log.useSource(prevSource);
 777         }
 778     }
 779 
 780     /** Attribute type reference in an `extends' or `implements' clause.
 781      *  Supertypes of anonymous inner classes are usually already attributed.
 782      *
 783      *  @param tree              The tree making up the type reference.
 784      *  @param env               The environment current at the reference.
 785      *  @param classExpected     true if only a class is expected here.
 786      *  @param interfaceExpected true if only an interface is expected here.
 787      */
 788     Type attribBase(JCTree tree,
 789                     Env<AttrContext> env,
 790                     boolean classExpected,
 791                     boolean interfaceExpected,
 792                     boolean checkExtensible) {
 793         Type t = tree.type != null ?
 794             tree.type :
 795             attribType(tree, env);
 796         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 797     }
 798     Type checkBase(Type t,
 799                    JCTree tree,
 800                    Env<AttrContext> env,
 801                    boolean classExpected,
 802                    boolean interfaceExpected,
 803                    boolean checkExtensible) {
 804         if (t.isErroneous())
 805             return t;
 806         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 807             // check that type variable is already visible
 808             if (t.getUpperBound() == null) {
 809                 log.error(tree.pos(), "illegal.forward.ref");
 810                 return types.createErrorType(t);
 811             }
 812         } else {
 813             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 814         }
 815         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 816             log.error(tree.pos(), "intf.expected.here");
 817             // return errType is necessary since otherwise there might
 818             // be undetected cycles which cause attribution to loop
 819             return types.createErrorType(t);
 820         } else if (checkExtensible &&
 821                    classExpected &&
 822                    (t.tsym.flags() & INTERFACE) != 0) {
 823                 log.error(tree.pos(), "no.intf.expected.here");
 824             return types.createErrorType(t);
 825         }
 826         if (checkExtensible &&
 827             ((t.tsym.flags() & FINAL) != 0)) {
 828             log.error(tree.pos(),
 829                       "cant.inherit.from.final", t.tsym);
 830         }
 831         chk.checkNonCyclic(tree.pos(), t);
 832         return t;
 833     }
 834 
 835     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 836         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 837         id.type = env.info.scope.owner.type;
 838         id.sym = env.info.scope.owner;
 839         return id.type;
 840     }
 841 
 842     public void visitClassDef(JCClassDecl tree) {
 843         // Local classes have not been entered yet, so we need to do it now:
 844         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 845             enter.classEnter(tree, env);
 846 
 847         ClassSymbol c = tree.sym;
 848         if (c == null) {
 849             // exit in case something drastic went wrong during enter.
 850             result = null;
 851         } else {
 852             // make sure class has been completed:
 853             c.complete();
 854 
 855             // If this class appears as an anonymous class
 856             // in a superclass constructor call where
 857             // no explicit outer instance is given,
 858             // disable implicit outer instance from being passed.
 859             // (This would be an illegal access to "this before super").
 860             if (env.info.isSelfCall &&
 861                 env.tree.hasTag(NEWCLASS) &&
 862                 ((JCNewClass) env.tree).encl == null)
 863             {
 864                 c.flags_field |= NOOUTERTHIS;
 865             }
 866             attribClass(tree.pos(), c);
 867             result = tree.type = c.type;
 868         }
 869     }
 870 
 871     public void visitMethodDef(JCMethodDecl tree) {
 872         MethodSymbol m = tree.sym;
 873         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 874 
 875         Lint lint = env.info.lint.augment(m.annotations, m.flags());
 876         Lint prevLint = chk.setLint(lint);
 877         MethodSymbol prevMethod = chk.setMethod(m);
 878         try {
 879             deferredLintHandler.flush(tree.pos());
 880             chk.checkDeprecatedAnnotation(tree.pos(), m);
 881 
 882             // Create a new environment with local scope
 883             // for attributing the method.
 884             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 885             localEnv.info.lint = lint;
 886 
 887             attribStats(tree.typarams, localEnv);
 888 
 889             // If we override any other methods, check that we do so properly.
 890             // JLS ???
 891             if (m.isStatic()) {
 892                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 893             } else {
 894                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 895             }
 896             chk.checkOverride(tree, m);
 897 
 898             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 899                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 900             }
 901 
 902             // Enter all type parameters into the local method scope.
 903             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 904                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 905 
 906             ClassSymbol owner = env.enclClass.sym;
 907             if ((owner.flags() & ANNOTATION) != 0 &&
 908                 tree.params.nonEmpty())
 909                 log.error(tree.params.head.pos(),
 910                           "intf.annotation.members.cant.have.params");
 911 
 912             // Attribute all value parameters.
 913             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 914                 attribStat(l.head, localEnv);
 915             }
 916 
 917             chk.checkVarargsMethodDecl(localEnv, tree);
 918 
 919             // Check that type parameters are well-formed.
 920             chk.validate(tree.typarams, localEnv);
 921 
 922             // Check that result type is well-formed.
 923             chk.validate(tree.restype, localEnv);
 924 
 925             // annotation method checks
 926             if ((owner.flags() & ANNOTATION) != 0) {
 927                 // annotation method cannot have throws clause
 928                 if (tree.thrown.nonEmpty()) {
 929                     log.error(tree.thrown.head.pos(),
 930                             "throws.not.allowed.in.intf.annotation");
 931                 }
 932                 // annotation method cannot declare type-parameters
 933                 if (tree.typarams.nonEmpty()) {
 934                     log.error(tree.typarams.head.pos(),
 935                             "intf.annotation.members.cant.have.type.params");
 936                 }
 937                 // validate annotation method's return type (could be an annotation type)
 938                 chk.validateAnnotationType(tree.restype);
 939                 // ensure that annotation method does not clash with members of Object/Annotation
 940                 chk.validateAnnotationMethod(tree.pos(), m);
 941 
 942                 if (tree.defaultValue != null) {
 943                     // if default value is an annotation, check it is a well-formed
 944                     // annotation value (e.g. no duplicate values, no missing values, etc.)
 945                     chk.validateAnnotationTree(tree.defaultValue);
 946                 }
 947             }
 948 
 949             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 950                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 951 
 952             if (tree.body == null) {
 953                 // Empty bodies are only allowed for
 954                 // abstract, native, or interface methods, or for methods
 955                 // in a retrofit signature class.
 956                 if (isDefaultMethod || ((owner.flags() & INTERFACE) == 0 &&
 957                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0) &&
 958                     !relax)
 959                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 960                 if (tree.defaultValue != null) {
 961                     if ((owner.flags() & ANNOTATION) == 0)
 962                         log.error(tree.pos(),
 963                                   "default.allowed.in.intf.annotation.member");
 964                 }
 965             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 966                 if ((owner.flags() & INTERFACE) != 0) {
 967                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 968                 } else {
 969                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 970                 }
 971             } else if ((tree.mods.flags & NATIVE) != 0) {
 972                 log.error(tree.pos(), "native.meth.cant.have.body");
 973             } else {
 974                 // Add an implicit super() call unless an explicit call to
 975                 // super(...) or this(...) is given
 976                 // or we are compiling class java.lang.Object.
 977                 if (tree.name == names.init && owner.type != syms.objectType) {
 978                     JCBlock body = tree.body;
 979                     if (body.stats.isEmpty() ||
 980                         !TreeInfo.isSelfCall(body.stats.head)) {
 981                         body.stats = body.stats.
 982                             prepend(memberEnter.SuperCall(make.at(body.pos),
 983                                                           List.<Type>nil(),
 984                                                           List.<JCVariableDecl>nil(),
 985                                                           false));
 986                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
 987                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
 988                                TreeInfo.isSuperCall(body.stats.head)) {
 989                         // enum constructors are not allowed to call super
 990                         // directly, so make sure there aren't any super calls
 991                         // in enum constructors, except in the compiler
 992                         // generated one.
 993                         log.error(tree.body.stats.head.pos(),
 994                                   "call.to.super.not.allowed.in.enum.ctor",
 995                                   env.enclClass.sym);
 996                     }
 997                 }
 998 
 999                 // Attribute method body.
1000                 attribStat(tree.body, localEnv);
1001             }
1002             localEnv.info.scope.leave();
1003             result = tree.type = m.type;
1004             chk.validateAnnotations(tree.mods.annotations, m);
1005         }
1006         finally {
1007             chk.setLint(prevLint);
1008             chk.setMethod(prevMethod);
1009         }
1010     }
1011 
1012     public void visitVarDef(JCVariableDecl tree) {
1013         // Local variables have not been entered yet, so we need to do it now:
1014         if (env.info.scope.owner.kind == MTH) {
1015             if (tree.sym != null) {
1016                 // parameters have already been entered
1017                 env.info.scope.enter(tree.sym);
1018             } else {
1019                 memberEnter.memberEnter(tree, env);
1020                 annotate.flush();
1021             }
1022         }
1023 
1024         VarSymbol v = tree.sym;
1025         Lint lint = env.info.lint.augment(v.annotations, v.flags());
1026         Lint prevLint = chk.setLint(lint);
1027 
1028         // Check that the variable's declared type is well-formed.
1029         chk.validate(tree.vartype, env);
1030         deferredLintHandler.flush(tree.pos());
1031 
1032         try {
1033             chk.checkDeprecatedAnnotation(tree.pos(), v);
1034 
1035             if (tree.init != null) {
1036                 if ((v.flags_field & FINAL) != 0 &&
1037                         !tree.init.hasTag(NEWCLASS) &&
1038                         !tree.init.hasTag(LAMBDA) &&
1039                         !tree.init.hasTag(REFERENCE)) {
1040                     // In this case, `v' is final.  Ensure that it's initializer is
1041                     // evaluated.
1042                     v.getConstValue(); // ensure initializer is evaluated
1043                 } else {
1044                     // Attribute initializer in a new environment
1045                     // with the declared variable as owner.
1046                     // Check that initializer conforms to variable's declared type.
1047                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1048                     initEnv.info.lint = lint;
1049                     // In order to catch self-references, we set the variable's
1050                     // declaration position to maximal possible value, effectively
1051                     // marking the variable as undefined.
1052                     initEnv.info.enclVar = v;
1053                     attribExpr(tree.init, initEnv, v.type);
1054                 }
1055             }
1056             result = tree.type = v.type;
1057             chk.validateAnnotations(tree.mods.annotations, v);
1058         }
1059         finally {
1060             chk.setLint(prevLint);
1061         }
1062     }
1063 
1064     public void visitSkip(JCSkip tree) {
1065         result = null;
1066     }
1067 
1068     public void visitBlock(JCBlock tree) {
1069         if (env.info.scope.owner.kind == TYP) {
1070             // Block is a static or instance initializer;
1071             // let the owner of the environment be a freshly
1072             // created BLOCK-method.
1073             Env<AttrContext> localEnv =
1074                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1075             localEnv.info.scope.owner =
1076                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
1077                                  env.info.scope.owner);
1078             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1079             attribStats(tree.stats, localEnv);
1080         } else {
1081             // Create a new local environment with a local scope.
1082             Env<AttrContext> localEnv =
1083                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1084             try {
1085                 attribStats(tree.stats, localEnv);
1086             } finally {
1087                 localEnv.info.scope.leave();
1088             }
1089         }
1090         result = null;
1091     }
1092 
1093     public void visitDoLoop(JCDoWhileLoop tree) {
1094         attribStat(tree.body, env.dup(tree));
1095         attribExpr(tree.cond, env, syms.booleanType);
1096         result = null;
1097     }
1098 
1099     public void visitWhileLoop(JCWhileLoop tree) {
1100         attribExpr(tree.cond, env, syms.booleanType);
1101         attribStat(tree.body, env.dup(tree));
1102         result = null;
1103     }
1104 
1105     public void visitForLoop(JCForLoop tree) {
1106         Env<AttrContext> loopEnv =
1107             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1108         try {
1109             attribStats(tree.init, loopEnv);
1110             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1111             loopEnv.tree = tree; // before, we were not in loop!
1112             attribStats(tree.step, loopEnv);
1113             attribStat(tree.body, loopEnv);
1114             result = null;
1115         }
1116         finally {
1117             loopEnv.info.scope.leave();
1118         }
1119     }
1120 
1121     public void visitForeachLoop(JCEnhancedForLoop tree) {
1122         Env<AttrContext> loopEnv =
1123             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1124         try {
1125             attribStat(tree.var, loopEnv);
1126             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
1127             chk.checkNonVoid(tree.pos(), exprType);
1128             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1129             if (elemtype == null) {
1130                 // or perhaps expr implements Iterable<T>?
1131                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1132                 if (base == null) {
1133                     log.error(tree.expr.pos(),
1134                             "foreach.not.applicable.to.type",
1135                             exprType,
1136                             diags.fragment("type.req.array.or.iterable"));
1137                     elemtype = types.createErrorType(exprType);
1138                 } else {
1139                     List<Type> iterableParams = base.allparams();
1140                     elemtype = iterableParams.isEmpty()
1141                         ? syms.objectType
1142                         : types.upperBound(iterableParams.head);
1143                 }
1144             }
1145             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1146             loopEnv.tree = tree; // before, we were not in loop!
1147             attribStat(tree.body, loopEnv);
1148             result = null;
1149         }
1150         finally {
1151             loopEnv.info.scope.leave();
1152         }
1153     }
1154 
1155     public void visitLabelled(JCLabeledStatement tree) {
1156         // Check that label is not used in an enclosing statement
1157         Env<AttrContext> env1 = env;
1158         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1159             if (env1.tree.hasTag(LABELLED) &&
1160                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1161                 log.error(tree.pos(), "label.already.in.use",
1162                           tree.label);
1163                 break;
1164             }
1165             env1 = env1.next;
1166         }
1167 
1168         attribStat(tree.body, env.dup(tree));
1169         result = null;
1170     }
1171 
1172     public void visitSwitch(JCSwitch tree) {
1173         Type seltype = attribExpr(tree.selector, env);
1174 
1175         Env<AttrContext> switchEnv =
1176             env.dup(tree, env.info.dup(env.info.scope.dup()));
1177 
1178         try {
1179 
1180             boolean enumSwitch =
1181                 allowEnums &&
1182                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1183             boolean stringSwitch = false;
1184             if (types.isSameType(seltype, syms.stringType)) {
1185                 if (allowStringsInSwitch) {
1186                     stringSwitch = true;
1187                 } else {
1188                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1189                 }
1190             }
1191             if (!enumSwitch && !stringSwitch)
1192                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1193 
1194             // Attribute all cases and
1195             // check that there are no duplicate case labels or default clauses.
1196             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1197             boolean hasDefault = false;      // Is there a default label?
1198             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1199                 JCCase c = l.head;
1200                 Env<AttrContext> caseEnv =
1201                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1202                 try {
1203                     if (c.pat != null) {
1204                         if (enumSwitch) {
1205                             Symbol sym = enumConstant(c.pat, seltype);
1206                             if (sym == null) {
1207                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1208                             } else if (!labels.add(sym)) {
1209                                 log.error(c.pos(), "duplicate.case.label");
1210                             }
1211                         } else {
1212                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1213                             if (!pattype.hasTag(ERROR)) {
1214                                 if (pattype.constValue() == null) {
1215                                     log.error(c.pat.pos(),
1216                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1217                                 } else if (labels.contains(pattype.constValue())) {
1218                                     log.error(c.pos(), "duplicate.case.label");
1219                                 } else {
1220                                     labels.add(pattype.constValue());
1221                                 }
1222                             }
1223                         }
1224                     } else if (hasDefault) {
1225                         log.error(c.pos(), "duplicate.default.label");
1226                     } else {
1227                         hasDefault = true;
1228                     }
1229                     attribStats(c.stats, caseEnv);
1230                 } finally {
1231                     caseEnv.info.scope.leave();
1232                     addVars(c.stats, switchEnv.info.scope);
1233                 }
1234             }
1235 
1236             result = null;
1237         }
1238         finally {
1239             switchEnv.info.scope.leave();
1240         }
1241     }
1242     // where
1243         /** Add any variables defined in stats to the switch scope. */
1244         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1245             for (;stats.nonEmpty(); stats = stats.tail) {
1246                 JCTree stat = stats.head;
1247                 if (stat.hasTag(VARDEF))
1248                     switchScope.enter(((JCVariableDecl) stat).sym);
1249             }
1250         }
1251     // where
1252     /** Return the selected enumeration constant symbol, or null. */
1253     private Symbol enumConstant(JCTree tree, Type enumType) {
1254         if (!tree.hasTag(IDENT)) {
1255             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1256             return syms.errSymbol;
1257         }
1258         JCIdent ident = (JCIdent)tree;
1259         Name name = ident.name;
1260         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1261              e.scope != null; e = e.next()) {
1262             if (e.sym.kind == VAR) {
1263                 Symbol s = ident.sym = e.sym;
1264                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1265                 ident.type = s.type;
1266                 return ((s.flags_field & Flags.ENUM) == 0)
1267                     ? null : s;
1268             }
1269         }
1270         return null;
1271     }
1272 
1273     public void visitSynchronized(JCSynchronized tree) {
1274         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1275         attribStat(tree.body, env);
1276         result = null;
1277     }
1278 
1279     public void visitTry(JCTry tree) {
1280         // Create a new local environment with a local
1281         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1282         try {
1283             boolean isTryWithResource = tree.resources.nonEmpty();
1284             // Create a nested environment for attributing the try block if needed
1285             Env<AttrContext> tryEnv = isTryWithResource ?
1286                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1287                 localEnv;
1288             try {
1289                 // Attribute resource declarations
1290                 for (JCTree resource : tree.resources) {
1291                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1292                         @Override
1293                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1294                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1295                         }
1296                     };
1297                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1298                     if (resource.hasTag(VARDEF)) {
1299                         attribStat(resource, tryEnv);
1300                         twrResult.check(resource, resource.type);
1301 
1302                         //check that resource type cannot throw InterruptedException
1303                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1304 
1305                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
1306                         var.setData(ElementKind.RESOURCE_VARIABLE);
1307                     } else {
1308                         attribTree(resource, tryEnv, twrResult);
1309                     }
1310                 }
1311                 // Attribute body
1312                 attribStat(tree.body, tryEnv);
1313             } finally {
1314                 if (isTryWithResource)
1315                     tryEnv.info.scope.leave();
1316             }
1317 
1318             // Attribute catch clauses
1319             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1320                 JCCatch c = l.head;
1321                 Env<AttrContext> catchEnv =
1322                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1323                 try {
1324                     Type ctype = attribStat(c.param, catchEnv);
1325                     if (TreeInfo.isMultiCatch(c)) {
1326                         //multi-catch parameter is implicitly marked as final
1327                         c.param.sym.flags_field |= FINAL | UNION;
1328                     }
1329                     if (c.param.sym.kind == Kinds.VAR) {
1330                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1331                     }
1332                     chk.checkType(c.param.vartype.pos(),
1333                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1334                                   syms.throwableType);
1335                     attribStat(c.body, catchEnv);
1336                 } finally {
1337                     catchEnv.info.scope.leave();
1338                 }
1339             }
1340 
1341             // Attribute finalizer
1342             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1343             result = null;
1344         }
1345         finally {
1346             localEnv.info.scope.leave();
1347         }
1348     }
1349 
1350     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1351         if (!resource.isErroneous() &&
1352             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1353             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1354             Symbol close = syms.noSymbol;
1355             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1356             try {
1357                 close = rs.resolveQualifiedMethod(pos,
1358                         env,
1359                         resource,
1360                         names.close,
1361                         List.<Type>nil(),
1362                         List.<Type>nil());
1363             }
1364             finally {
1365                 log.popDiagnosticHandler(discardHandler);
1366             }
1367             if (close.kind == MTH &&
1368                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1369                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1370                     env.info.lint.isEnabled(LintCategory.TRY)) {
1371                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1372             }
1373         }
1374     }
1375 
1376     public void visitConditional(JCConditional tree) {
1377         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1378 
1379         boolean standaloneConditional = !allowPoly ||
1380                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1381                 isBooleanOrNumeric(env, tree);
1382 
1383         if (!standaloneConditional && resultInfo.pt.hasTag(VOID)) {
1384             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1385             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1386             result = tree.type = types.createErrorType(resultInfo.pt);
1387             return;
1388         }
1389 
1390         ResultInfo condInfo = standaloneConditional ?
1391                 unknownExprInfo :
1392                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1393                     //this will use enclosing check context to check compatibility of
1394                     //subexpression against target type; if we are in a method check context,
1395                     //depending on whether boxing is allowed, we could have incompatibilities
1396                     @Override
1397                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1398                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1399                     }
1400                 });
1401 
1402         Type truetype = attribTree(tree.truepart, env, condInfo);
1403         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1404 
1405         Type owntype = standaloneConditional ? condType(tree, truetype, falsetype) : pt();
1406         if (condtype.constValue() != null &&
1407                 truetype.constValue() != null &&
1408                 falsetype.constValue() != null &&
1409                 !owntype.hasTag(NONE)) {
1410             //constant folding
1411             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1412         }
1413         result = check(tree, owntype, VAL, resultInfo);
1414     }
1415     //where
1416         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1417             switch (tree.getTag()) {
1418                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1419                               ((JCLiteral)tree).typetag == BOOLEAN ||
1420                               ((JCLiteral)tree).typetag == BOT;
1421                 case LAMBDA: case REFERENCE: return false;
1422                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1423                 case CONDEXPR:
1424                     JCConditional condTree = (JCConditional)tree;
1425                     return isBooleanOrNumeric(env, condTree.truepart) &&
1426                             isBooleanOrNumeric(env, condTree.falsepart);
1427                 default:
1428                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1429                     speculativeType = types.unboxedTypeOrType(speculativeType);
1430                     return speculativeType.isPrimitive();
1431             }
1432         }
1433 
1434         /** Compute the type of a conditional expression, after
1435          *  checking that it exists.  See JLS 15.25. Does not take into
1436          *  account the special case where condition and both arms
1437          *  are constants.
1438          *
1439          *  @param pos      The source position to be used for error
1440          *                  diagnostics.
1441          *  @param thentype The type of the expression's then-part.
1442          *  @param elsetype The type of the expression's else-part.
1443          */
1444         private Type condType(DiagnosticPosition pos,
1445                                Type thentype, Type elsetype) {
1446             // If same type, that is the result
1447             if (types.isSameType(thentype, elsetype))
1448                 return thentype.baseType();
1449 
1450             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1451                 ? thentype : types.unboxedType(thentype);
1452             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1453                 ? elsetype : types.unboxedType(elsetype);
1454 
1455             // Otherwise, if both arms can be converted to a numeric
1456             // type, return the least numeric type that fits both arms
1457             // (i.e. return larger of the two, or return int if one
1458             // arm is short, the other is char).
1459             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1460                 // If one arm has an integer subrange type (i.e., byte,
1461                 // short, or char), and the other is an integer constant
1462                 // that fits into the subrange, return the subrange type.
1463                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
1464                     types.isAssignable(elseUnboxed, thenUnboxed))
1465                     return thenUnboxed.baseType();
1466                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
1467                     types.isAssignable(thenUnboxed, elseUnboxed))
1468                     return elseUnboxed.baseType();
1469 
1470                 for (TypeTag tag : TypeTag.values()) {
1471                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
1472                     Type candidate = syms.typeOfTag[tag.ordinal()];
1473                     if (candidate != null &&
1474                         candidate.isPrimitive() &&
1475                         types.isSubtype(thenUnboxed, candidate) &&
1476                         types.isSubtype(elseUnboxed, candidate))
1477                         return candidate;
1478                 }
1479             }
1480 
1481             // Those were all the cases that could result in a primitive
1482             if (allowBoxing) {
1483                 if (thentype.isPrimitive())
1484                     thentype = types.boxedClass(thentype).type;
1485                 if (elsetype.isPrimitive())
1486                     elsetype = types.boxedClass(elsetype).type;
1487             }
1488 
1489             if (types.isSubtype(thentype, elsetype))
1490                 return elsetype.baseType();
1491             if (types.isSubtype(elsetype, thentype))
1492                 return thentype.baseType();
1493 
1494             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1495                 log.error(pos, "neither.conditional.subtype",
1496                           thentype, elsetype);
1497                 return thentype.baseType();
1498             }
1499 
1500             // both are known to be reference types.  The result is
1501             // lub(thentype,elsetype). This cannot fail, as it will
1502             // always be possible to infer "Object" if nothing better.
1503             return types.lub(thentype.baseType(), elsetype.baseType());
1504         }
1505 
1506     public void visitIf(JCIf tree) {
1507         attribExpr(tree.cond, env, syms.booleanType);
1508         attribStat(tree.thenpart, env);
1509         if (tree.elsepart != null)
1510             attribStat(tree.elsepart, env);
1511         chk.checkEmptyIf(tree);
1512         result = null;
1513     }
1514 
1515     public void visitExec(JCExpressionStatement tree) {
1516         //a fresh environment is required for 292 inference to work properly ---
1517         //see Infer.instantiatePolymorphicSignatureInstance()
1518         Env<AttrContext> localEnv = env.dup(tree);
1519         attribExpr(tree.expr, localEnv);
1520         result = null;
1521     }
1522 
1523     public void visitBreak(JCBreak tree) {
1524         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1525         result = null;
1526     }
1527 
1528     public void visitContinue(JCContinue tree) {
1529         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1530         result = null;
1531     }
1532     //where
1533         /** Return the target of a break or continue statement, if it exists,
1534          *  report an error if not.
1535          *  Note: The target of a labelled break or continue is the
1536          *  (non-labelled) statement tree referred to by the label,
1537          *  not the tree representing the labelled statement itself.
1538          *
1539          *  @param pos     The position to be used for error diagnostics
1540          *  @param tag     The tag of the jump statement. This is either
1541          *                 Tree.BREAK or Tree.CONTINUE.
1542          *  @param label   The label of the jump statement, or null if no
1543          *                 label is given.
1544          *  @param env     The environment current at the jump statement.
1545          */
1546         private JCTree findJumpTarget(DiagnosticPosition pos,
1547                                     JCTree.Tag tag,
1548                                     Name label,
1549                                     Env<AttrContext> env) {
1550             // Search environments outwards from the point of jump.
1551             Env<AttrContext> env1 = env;
1552             LOOP:
1553             while (env1 != null) {
1554                 switch (env1.tree.getTag()) {
1555                     case LABELLED:
1556                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1557                         if (label == labelled.label) {
1558                             // If jump is a continue, check that target is a loop.
1559                             if (tag == CONTINUE) {
1560                                 if (!labelled.body.hasTag(DOLOOP) &&
1561                                         !labelled.body.hasTag(WHILELOOP) &&
1562                                         !labelled.body.hasTag(FORLOOP) &&
1563                                         !labelled.body.hasTag(FOREACHLOOP))
1564                                     log.error(pos, "not.loop.label", label);
1565                                 // Found labelled statement target, now go inwards
1566                                 // to next non-labelled tree.
1567                                 return TreeInfo.referencedStatement(labelled);
1568                             } else {
1569                                 return labelled;
1570                             }
1571                         }
1572                         break;
1573                     case DOLOOP:
1574                     case WHILELOOP:
1575                     case FORLOOP:
1576                     case FOREACHLOOP:
1577                         if (label == null) return env1.tree;
1578                         break;
1579                     case SWITCH:
1580                         if (label == null && tag == BREAK) return env1.tree;
1581                         break;
1582                     case LAMBDA:
1583                     case METHODDEF:
1584                     case CLASSDEF:
1585                         break LOOP;
1586                     default:
1587                 }
1588                 env1 = env1.next;
1589             }
1590             if (label != null)
1591                 log.error(pos, "undef.label", label);
1592             else if (tag == CONTINUE)
1593                 log.error(pos, "cont.outside.loop");
1594             else
1595                 log.error(pos, "break.outside.switch.loop");
1596             return null;
1597         }
1598 
1599     public void visitReturn(JCReturn tree) {
1600         // Check that there is an enclosing method which is
1601         // nested within than the enclosing class.
1602         if (env.info.returnResult == null) {
1603             log.error(tree.pos(), "ret.outside.meth");
1604         } else {
1605             // Attribute return expression, if it exists, and check that
1606             // it conforms to result type of enclosing method.
1607             if (tree.expr != null) {
1608                 if (env.info.returnResult.pt.hasTag(VOID)) {
1609                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1610                               diags.fragment("unexpected.ret.val"));
1611                 }
1612                 attribTree(tree.expr, env, env.info.returnResult);
1613             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
1614                 env.info.returnResult.checkContext.report(tree.pos(),
1615                               diags.fragment("missing.ret.val"));
1616             }
1617         }
1618         result = null;
1619     }
1620 
1621     public void visitThrow(JCThrow tree) {
1622         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1623         if (allowPoly) {
1624             chk.checkType(tree, owntype, syms.throwableType);
1625         }
1626         result = null;
1627     }
1628 
1629     public void visitAssert(JCAssert tree) {
1630         attribExpr(tree.cond, env, syms.booleanType);
1631         if (tree.detail != null) {
1632             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1633         }
1634         result = null;
1635     }
1636 
1637      /** Visitor method for method invocations.
1638      *  NOTE: The method part of an application will have in its type field
1639      *        the return type of the method, not the method's type itself!
1640      */
1641     public void visitApply(JCMethodInvocation tree) {
1642         // The local environment of a method application is
1643         // a new environment nested in the current one.
1644         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1645 
1646         // The types of the actual method arguments.
1647         List<Type> argtypes;
1648 
1649         // The types of the actual method type arguments.
1650         List<Type> typeargtypes = null;
1651 
1652         Name methName = TreeInfo.name(tree.meth);
1653 
1654         boolean isConstructorCall =
1655             methName == names._this || methName == names._super;
1656 
1657         if (isConstructorCall) {
1658             // We are seeing a ...this(...) or ...super(...) call.
1659             // Check that this is the first statement in a constructor.
1660             if (checkFirstConstructorStat(tree, env)) {
1661 
1662                 // Record the fact
1663                 // that this is a constructor call (using isSelfCall).
1664                 localEnv.info.isSelfCall = true;
1665 
1666                 // Attribute arguments, yielding list of argument types.
1667                 argtypes = attribArgs(tree.args, localEnv);
1668                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1669 
1670                 // Variable `site' points to the class in which the called
1671                 // constructor is defined.
1672                 Type site = env.enclClass.sym.type;
1673                 if (methName == names._super) {
1674                     if (site == syms.objectType) {
1675                         log.error(tree.meth.pos(), "no.superclass", site);
1676                         site = types.createErrorType(syms.objectType);
1677                     } else {
1678                         site = types.supertype(site);
1679                     }
1680                 }
1681 
1682                 if (site.hasTag(CLASS)) {
1683                     Type encl = site.getEnclosingType();
1684                     while (encl != null && encl.hasTag(TYPEVAR))
1685                         encl = encl.getUpperBound();
1686                     if (encl.hasTag(CLASS)) {
1687                         // we are calling a nested class
1688 
1689                         if (tree.meth.hasTag(SELECT)) {
1690                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1691 
1692                             // We are seeing a prefixed call, of the form
1693                             //     <expr>.super(...).
1694                             // Check that the prefix expression conforms
1695                             // to the outer instance type of the class.
1696                             chk.checkRefType(qualifier.pos(),
1697                                              attribExpr(qualifier, localEnv,
1698                                                         encl));
1699                         } else if (methName == names._super) {
1700                             // qualifier omitted; check for existence
1701                             // of an appropriate implicit qualifier.
1702                             rs.resolveImplicitThis(tree.meth.pos(),
1703                                                    localEnv, site, true);
1704                         }
1705                     } else if (tree.meth.hasTag(SELECT)) {
1706                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1707                                   site.tsym);
1708                     }
1709 
1710                     // if we're calling a java.lang.Enum constructor,
1711                     // prefix the implicit String and int parameters
1712                     if (site.tsym == syms.enumSym && allowEnums)
1713                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1714 
1715                     // Resolve the called constructor under the assumption
1716                     // that we are referring to a superclass instance of the
1717                     // current instance (JLS ???).
1718                     boolean selectSuperPrev = localEnv.info.selectSuper;
1719                     localEnv.info.selectSuper = true;
1720                     localEnv.info.pendingResolutionPhase = null;
1721                     Symbol sym = rs.resolveConstructor(
1722                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1723                     localEnv.info.selectSuper = selectSuperPrev;
1724 
1725                     // Set method symbol to resolved constructor...
1726                     TreeInfo.setSymbol(tree.meth, sym);
1727 
1728                     // ...and check that it is legal in the current context.
1729                     // (this will also set the tree's type)
1730                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1731                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
1732                 }
1733                 // Otherwise, `site' is an error type and we do nothing
1734             }
1735             result = tree.type = syms.voidType;
1736         } else {
1737             // Otherwise, we are seeing a regular method call.
1738             // Attribute the arguments, yielding list of argument types, ...
1739             argtypes = attribArgs(tree.args, localEnv);
1740             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1741 
1742             // ... and attribute the method using as a prototype a methodtype
1743             // whose formal argument types is exactly the list of actual
1744             // arguments (this will also set the method symbol).
1745             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1746             localEnv.info.pendingResolutionPhase = null;
1747             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
1748 
1749             // Compute the result type.
1750             Type restype = mtype.getReturnType();
1751             if (restype.hasTag(WILDCARD))
1752                 throw new AssertionError(mtype);
1753 
1754             Type qualifier = (tree.meth.hasTag(SELECT))
1755                     ? ((JCFieldAccess) tree.meth).selected.type
1756                     : env.enclClass.sym.type;
1757             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1758 
1759             chk.checkRefTypes(tree.typeargs, typeargtypes);
1760 
1761             // Check that value of resulting type is admissible in the
1762             // current context.  Also, capture the return type
1763             result = check(tree, capture(restype), VAL, resultInfo);
1764 
1765             if (localEnv.info.lastResolveVarargs())
1766                 Assert.check(result.isErroneous() || tree.varargsElement != null);
1767         }
1768         chk.validate(tree.typeargs, localEnv);
1769     }
1770     //where
1771         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1772             if (allowCovariantReturns &&
1773                     methodName == names.clone &&
1774                 types.isArray(qualifierType)) {
1775                 // as a special case, array.clone() has a result that is
1776                 // the same as static type of the array being cloned
1777                 return qualifierType;
1778             } else if (allowGenerics &&
1779                     methodName == names.getClass &&
1780                     argtypes.isEmpty()) {
1781                 // as a special case, x.getClass() has type Class<? extends |X|>
1782                 return new ClassType(restype.getEnclosingType(),
1783                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1784                                                                BoundKind.EXTENDS,
1785                                                                syms.boundClass)),
1786                               restype.tsym);
1787             } else {
1788                 return restype;
1789             }
1790         }
1791 
1792         /** Check that given application node appears as first statement
1793          *  in a constructor call.
1794          *  @param tree   The application node
1795          *  @param env    The environment current at the application.
1796          */
1797         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1798             JCMethodDecl enclMethod = env.enclMethod;
1799             if (enclMethod != null && enclMethod.name == names.init) {
1800                 JCBlock body = enclMethod.body;
1801                 if (body.stats.head.hasTag(EXEC) &&
1802                     ((JCExpressionStatement) body.stats.head).expr == tree)
1803                     return true;
1804             }
1805             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1806                       TreeInfo.name(tree.meth));
1807             return false;
1808         }
1809 
1810         /** Obtain a method type with given argument types.
1811          */
1812         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1813             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1814             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1815         }
1816 
1817     public void visitNewClass(final JCNewClass tree) {
1818         Type owntype = types.createErrorType(tree.type);
1819 
1820         // The local environment of a class creation is
1821         // a new environment nested in the current one.
1822         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1823 
1824         // The anonymous inner class definition of the new expression,
1825         // if one is defined by it.
1826         JCClassDecl cdef = tree.def;
1827 
1828         // If enclosing class is given, attribute it, and
1829         // complete class name to be fully qualified
1830         JCExpression clazz = tree.clazz; // Class field following new
1831         JCExpression clazzid =          // Identifier in class field
1832             (clazz.hasTag(TYPEAPPLY))
1833             ? ((JCTypeApply) clazz).clazz
1834             : clazz;
1835 
1836         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1837 
1838         if (tree.encl != null) {
1839             // We are seeing a qualified new, of the form
1840             //    <expr>.new C <...> (...) ...
1841             // In this case, we let clazz stand for the name of the
1842             // allocated class C prefixed with the type of the qualifier
1843             // expression, so that we can
1844             // resolve it with standard techniques later. I.e., if
1845             // <expr> has type T, then <expr>.new C <...> (...)
1846             // yields a clazz T.C.
1847             Type encltype = chk.checkRefType(tree.encl.pos(),
1848                                              attribExpr(tree.encl, env));
1849             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1850                                                  ((JCIdent) clazzid).name);
1851             if (clazz.hasTag(TYPEAPPLY))
1852                 clazz = make.at(tree.pos).
1853                     TypeApply(clazzid1,
1854                               ((JCTypeApply) clazz).arguments);
1855             else
1856                 clazz = clazzid1;
1857         }
1858 
1859         // Attribute clazz expression and store
1860         // symbol + type back into the attributed tree.
1861         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1862             attribIdentAsEnumType(env, (JCIdent)clazz) :
1863             attribType(clazz, env);
1864 
1865         clazztype = chk.checkDiamond(tree, clazztype);
1866         chk.validate(clazz, localEnv);
1867         if (tree.encl != null) {
1868             // We have to work in this case to store
1869             // symbol + type back into the attributed tree.
1870             tree.clazz.type = clazztype;
1871             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1872             clazzid.type = ((JCIdent) clazzid).sym.type;
1873             if (!clazztype.isErroneous()) {
1874                 if (cdef != null && clazztype.tsym.isInterface()) {
1875                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1876                 } else if (clazztype.tsym.isStatic()) {
1877                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1878                 }
1879             }
1880         } else if (!clazztype.tsym.isInterface() &&
1881                    clazztype.getEnclosingType().hasTag(CLASS)) {
1882             // Check for the existence of an apropos outer instance
1883             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1884         }
1885 
1886         // Attribute constructor arguments.
1887         List<Type> argtypes = attribArgs(tree.args, localEnv);
1888         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1889 
1890         // If we have made no mistakes in the class type...
1891         if (clazztype.hasTag(CLASS)) {
1892             // Enums may not be instantiated except implicitly
1893             if (allowEnums &&
1894                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1895                 (!env.tree.hasTag(VARDEF) ||
1896                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1897                  ((JCVariableDecl) env.tree).init != tree))
1898                 log.error(tree.pos(), "enum.cant.be.instantiated");
1899             // Check that class is not abstract
1900             if (cdef == null &&
1901                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1902                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1903                           clazztype.tsym);
1904             } else if (cdef != null && clazztype.tsym.isInterface()) {
1905                 // Check that no constructor arguments are given to
1906                 // anonymous classes implementing an interface
1907                 if (!argtypes.isEmpty())
1908                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1909 
1910                 if (!typeargtypes.isEmpty())
1911                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1912 
1913                 // Error recovery: pretend no arguments were supplied.
1914                 argtypes = List.nil();
1915                 typeargtypes = List.nil();
1916             } else if (TreeInfo.isDiamond(tree)) {
1917                 ClassType site = new ClassType(clazztype.getEnclosingType(),
1918                             clazztype.tsym.type.getTypeArguments(),
1919                             clazztype.tsym);
1920 
1921                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
1922                 diamondEnv.info.selectSuper = cdef != null;
1923                 diamondEnv.info.pendingResolutionPhase = null;
1924 
1925                 //if the type of the instance creation expression is a class type
1926                 //apply method resolution inference (JLS 15.12.2.7). The return type
1927                 //of the resolved constructor will be a partially instantiated type
1928                 Symbol constructor = rs.resolveDiamond(tree.pos(),
1929                             diamondEnv,
1930                             site,
1931                             argtypes,
1932                             typeargtypes);
1933                 tree.constructor = constructor.baseSymbol();
1934 
1935                 final TypeSymbol csym = clazztype.tsym;
1936                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
1937                     @Override
1938                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
1939                         enclosingContext.report(tree.clazz,
1940                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
1941                     }
1942                 });
1943                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
1944                 constructorType = checkId(tree, site,
1945                         constructor,
1946                         diamondEnv,
1947                         diamondResult);
1948 
1949                 tree.clazz.type = types.createErrorType(clazztype);
1950                 if (!constructorType.isErroneous()) {
1951                     tree.clazz.type = clazztype = constructorType.getReturnType();
1952                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
1953                 }
1954                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
1955             }
1956 
1957             // Resolve the called constructor under the assumption
1958             // that we are referring to a superclass instance of the
1959             // current instance (JLS ???).
1960             else {
1961                 //the following code alters some of the fields in the current
1962                 //AttrContext - hence, the current context must be dup'ed in
1963                 //order to avoid downstream failures
1964                 Env<AttrContext> rsEnv = localEnv.dup(tree);
1965                 rsEnv.info.selectSuper = cdef != null;
1966                 rsEnv.info.pendingResolutionPhase = null;
1967                 tree.constructor = rs.resolveConstructor(
1968                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
1969                 if (cdef == null) { //do not check twice!
1970                     tree.constructorType = checkId(tree,
1971                             clazztype,
1972                             tree.constructor,
1973                             rsEnv,
1974                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
1975                     if (rsEnv.info.lastResolveVarargs())
1976                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
1977                 }
1978                 findDiamondIfNeeded(localEnv, tree, clazztype);
1979             }
1980 
1981             if (cdef != null) {
1982                 // We are seeing an anonymous class instance creation.
1983                 // In this case, the class instance creation
1984                 // expression
1985                 //
1986                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1987                 //
1988                 // is represented internally as
1989                 //
1990                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
1991                 //
1992                 // This expression is then *transformed* as follows:
1993                 //
1994                 // (1) add a STATIC flag to the class definition
1995                 //     if the current environment is static
1996                 // (2) add an extends or implements clause
1997                 // (3) add a constructor.
1998                 //
1999                 // For instance, if C is a class, and ET is the type of E,
2000                 // the expression
2001                 //
2002                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2003                 //
2004                 // is translated to (where X is a fresh name and typarams is the
2005                 // parameter list of the super constructor):
2006                 //
2007                 //   new <typeargs1>X(<*nullchk*>E, args) where
2008                 //     X extends C<typargs2> {
2009                 //       <typarams> X(ET e, args) {
2010                 //         e.<typeargs1>super(args)
2011                 //       }
2012                 //       ...
2013                 //     }
2014                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2015 
2016                 if (clazztype.tsym.isInterface()) {
2017                     cdef.implementing = List.of(clazz);
2018                 } else {
2019                     cdef.extending = clazz;
2020                 }
2021 
2022                 attribStat(cdef, localEnv);
2023 
2024                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2025 
2026                 // If an outer instance is given,
2027                 // prefix it to the constructor arguments
2028                 // and delete it from the new expression
2029                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2030                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2031                     argtypes = argtypes.prepend(tree.encl.type);
2032                     tree.encl = null;
2033                 }
2034 
2035                 // Reassign clazztype and recompute constructor.
2036                 clazztype = cdef.sym.type;
2037                 Symbol sym = tree.constructor = rs.resolveConstructor(
2038                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2039                 Assert.check(sym.kind < AMBIGUOUS);
2040                 tree.constructor = sym;
2041                 tree.constructorType = checkId(tree,
2042                     clazztype,
2043                     tree.constructor,
2044                     localEnv,
2045                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2046             }
2047 
2048             if (tree.constructor != null && tree.constructor.kind == MTH)
2049                 owntype = clazztype;
2050         }
2051         result = check(tree, owntype, VAL, resultInfo);
2052         chk.validate(tree.typeargs, localEnv);
2053     }
2054     //where
2055         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2056             if (tree.def == null &&
2057                     !clazztype.isErroneous() &&
2058                     clazztype.getTypeArguments().nonEmpty() &&
2059                     findDiamonds) {
2060                 JCTypeApply ta = (JCTypeApply)tree.clazz;
2061                 List<JCExpression> prevTypeargs = ta.arguments;
2062                 try {
2063                     //create a 'fake' diamond AST node by removing type-argument trees
2064                     ta.arguments = List.nil();
2065                     ResultInfo findDiamondResult = new ResultInfo(VAL,
2066                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2067                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2068                     if (!inferred.isErroneous() &&
2069                         types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), types.noWarnings)) {
2070                         String key = types.isSameType(clazztype, inferred) ?
2071                             "diamond.redundant.args" :
2072                             "diamond.redundant.args.1";
2073                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
2074                     }
2075                 } finally {
2076                     ta.arguments = prevTypeargs;
2077                 }
2078             }
2079         }
2080 
2081             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2082                 if (allowLambda &&
2083                         identifyLambdaCandidate &&
2084                         clazztype.hasTag(CLASS) &&
2085                         !pt().hasTag(NONE) &&
2086                         types.isFunctionalInterface(clazztype.tsym)) {
2087                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2088                     int count = 0;
2089                     boolean found = false;
2090                     for (Symbol sym : csym.members().getElements()) {
2091                         if ((sym.flags() & SYNTHETIC) != 0 ||
2092                                 sym.isConstructor()) continue;
2093                         count++;
2094                         if (sym.kind != MTH ||
2095                                 !sym.name.equals(descriptor.name)) continue;
2096                         Type mtype = types.memberType(clazztype, sym);
2097                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2098                             found = true;
2099                         }
2100                     }
2101                     if (found && count == 1) {
2102                         log.note(tree.def, "potential.lambda.found");
2103                     }
2104                 }
2105             }
2106 
2107     /** Make an attributed null check tree.
2108      */
2109     public JCExpression makeNullCheck(JCExpression arg) {
2110         // optimization: X.this is never null; skip null check
2111         Name name = TreeInfo.name(arg);
2112         if (name == names._this || name == names._super) return arg;
2113 
2114         JCTree.Tag optag = NULLCHK;
2115         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2116         tree.operator = syms.nullcheck;
2117         tree.type = arg.type;
2118         return tree;
2119     }
2120 
2121     public void visitNewArray(JCNewArray tree) {
2122         Type owntype = types.createErrorType(tree.type);
2123         Env<AttrContext> localEnv = env.dup(tree);
2124         Type elemtype;
2125         if (tree.elemtype != null) {
2126             elemtype = attribType(tree.elemtype, localEnv);
2127             chk.validate(tree.elemtype, localEnv);
2128             owntype = elemtype;
2129             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2130                 attribExpr(l.head, localEnv, syms.intType);
2131                 owntype = new ArrayType(owntype, syms.arrayClass);
2132             }
2133         } else {
2134             // we are seeing an untyped aggregate { ... }
2135             // this is allowed only if the prototype is an array
2136             if (pt().hasTag(ARRAY)) {
2137                 elemtype = types.elemtype(pt());
2138             } else {
2139                 if (!pt().hasTag(ERROR)) {
2140                     log.error(tree.pos(), "illegal.initializer.for.type",
2141                               pt());
2142                 }
2143                 elemtype = types.createErrorType(pt());
2144             }
2145         }
2146         if (tree.elems != null) {
2147             attribExprs(tree.elems, localEnv, elemtype);
2148             owntype = new ArrayType(elemtype, syms.arrayClass);
2149         }
2150         if (!types.isReifiable(elemtype))
2151             log.error(tree.pos(), "generic.array.creation");
2152         result = check(tree, owntype, VAL, resultInfo);
2153     }
2154 
2155     /*
2156      * A lambda expression can only be attributed when a target-type is available.
2157      * In addition, if the target-type is that of a functional interface whose
2158      * descriptor contains inference variables in argument position the lambda expression
2159      * is 'stuck' (see DeferredAttr).
2160      */
2161     @Override
2162     public void visitLambda(final JCLambda that) {
2163         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2164             if (pt().hasTag(NONE)) {
2165                 //lambda only allowed in assignment or method invocation/cast context
2166                 log.error(that.pos(), "unexpected.lambda");
2167             }
2168             result = that.type = types.createErrorType(pt());
2169             return;
2170         }
2171         //create an environment for attribution of the lambda expression
2172         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2173         boolean needsRecovery =
2174                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2175         try {
2176             List<Type> explicitParamTypes = null;
2177             if (TreeInfo.isExplicitLambda(that)) {
2178                 //attribute lambda parameters
2179                 attribStats(that.params, localEnv);
2180                 explicitParamTypes = TreeInfo.types(that.params);
2181             }
2182 
2183             Type target;
2184             Type lambdaType;
2185             if (pt() != Type.recoveryType) {
2186                 target = infer.instantiateFunctionalInterface(that, checkIntersectionTarget(that, resultInfo), explicitParamTypes, resultInfo.checkContext);
2187                 lambdaType = types.findDescriptorType(target);
2188                 chk.checkFunctionalInterface(that, target);
2189             } else {
2190                 target = Type.recoveryType;
2191                 lambdaType = fallbackDescriptorType(that);
2192             }
2193 
2194             if (lambdaType.hasTag(FORALL)) {
2195                 //lambda expression target desc cannot be a generic method
2196                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2197                         lambdaType, kindName(target.tsym), target.tsym));
2198                 result = that.type = types.createErrorType(pt());
2199                 return;
2200             }
2201 
2202             if (!TreeInfo.isExplicitLambda(that)) {
2203                 //add param type info in the AST
2204                 List<Type> actuals = lambdaType.getParameterTypes();
2205                 List<JCVariableDecl> params = that.params;
2206 
2207                 boolean arityMismatch = false;
2208 
2209                 while (params.nonEmpty()) {
2210                     if (actuals.isEmpty()) {
2211                         //not enough actuals to perform lambda parameter inference
2212                         arityMismatch = true;
2213                     }
2214                     //reset previously set info
2215                     Type argType = arityMismatch ?
2216                             syms.errType :
2217                             actuals.head;
2218                     params.head.vartype = make.Type(argType);
2219                     params.head.sym = null;
2220                     actuals = actuals.isEmpty() ?
2221                             actuals :
2222                             actuals.tail;
2223                     params = params.tail;
2224                 }
2225 
2226                 //attribute lambda parameters
2227                 attribStats(that.params, localEnv);
2228 
2229                 if (arityMismatch) {
2230                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2231                         result = that.type = types.createErrorType(target);
2232                         return;
2233                 }
2234             }
2235 
2236             //from this point on, no recovery is needed; if we are in assignment context
2237             //we will be able to attribute the whole lambda body, regardless of errors;
2238             //if we are in a 'check' method context, and the lambda is not compatible
2239             //with the target-type, it will be recovered anyway in Attr.checkId
2240             needsRecovery = false;
2241 
2242             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2243                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2244                     new FunctionalReturnContext(resultInfo.checkContext);
2245 
2246             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2247                 recoveryInfo :
2248                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2249             localEnv.info.returnResult = bodyResultInfo;
2250 
2251             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2252                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2253             } else {
2254                 JCBlock body = (JCBlock)that.body;
2255                 attribStats(body.stats, localEnv);
2256             }
2257 
2258             result = check(that, target, VAL, resultInfo);
2259 
2260             boolean isSpeculativeRound =
2261                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2262 
2263             postAttr(that);
2264             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2265 
2266             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
2267 
2268             if (!isSpeculativeRound) {
2269                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
2270             }
2271             result = check(that, target, VAL, resultInfo);
2272         } catch (Types.FunctionDescriptorLookupError ex) {
2273             JCDiagnostic cause = ex.getDiagnostic();
2274             resultInfo.checkContext.report(that, cause);
2275             result = that.type = types.createErrorType(pt());
2276             return;
2277         } finally {
2278             localEnv.info.scope.leave();
2279             if (needsRecovery) {
2280                 attribTree(that, env, recoveryInfo);
2281             }
2282         }
2283     }
2284 
2285     private Type checkIntersectionTarget(DiagnosticPosition pos, ResultInfo resultInfo) {
2286         Type pt = resultInfo.pt;
2287         if (pt != Type.recoveryType && pt.isCompound()) {
2288             IntersectionClassType ict = (IntersectionClassType)pt;
2289             List<Type> bounds = ict.allInterfaces ?
2290                     ict.getComponents().tail :
2291                     ict.getComponents();
2292             types.findDescriptorType(bounds.head); //propagate exception outwards!
2293             for (Type bound : bounds.tail) {
2294                 if (!types.isMarkerInterface(bound)) {
2295                     resultInfo.checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound));
2296                 }
2297             }
2298             //for now (translation doesn't support intersection types)
2299             return bounds.head;
2300         } else {
2301             return pt;
2302         }
2303     }
2304     //where
2305         private Type fallbackDescriptorType(JCExpression tree) {
2306             switch (tree.getTag()) {
2307                 case LAMBDA:
2308                     JCLambda lambda = (JCLambda)tree;
2309                     List<Type> argtypes = List.nil();
2310                     for (JCVariableDecl param : lambda.params) {
2311                         argtypes = param.vartype != null ?
2312                                 argtypes.append(param.vartype.type) :
2313                                 argtypes.append(syms.errType);
2314                     }
2315                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
2316                 case REFERENCE:
2317                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
2318                 default:
2319                     Assert.error("Cannot get here!");
2320             }
2321             return null;
2322         }
2323 
2324         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final Type... ts) {
2325             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2326         }
2327 
2328         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final List<Type> ts) {
2329             if (inferenceContext.free(ts)) {
2330                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2331                     @Override
2332                     public void typesInferred(InferenceContext inferenceContext) {
2333                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts, types));
2334                     }
2335                 });
2336             } else {
2337                 for (Type t : ts) {
2338                     rs.checkAccessibleType(env, t);
2339                 }
2340             }
2341         }
2342 
2343         /**
2344          * Lambda/method reference have a special check context that ensures
2345          * that i.e. a lambda return type is compatible with the expected
2346          * type according to both the inherited context and the assignment
2347          * context.
2348          */
2349         class FunctionalReturnContext extends Check.NestedCheckContext {
2350 
2351             FunctionalReturnContext(CheckContext enclosingContext) {
2352                 super(enclosingContext);
2353             }
2354 
2355             @Override
2356             public boolean compatible(Type found, Type req, Warner warn) {
2357                 //return type must be compatible in both current context and assignment context
2358                 return types.isAssignable(found, inferenceContext().asFree(req, types), warn) &&
2359                         super.compatible(found, req, warn);
2360             }
2361             @Override
2362             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2363                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2364             }
2365         }
2366 
2367         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2368 
2369             JCExpression expr;
2370 
2371             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2372                 super(enclosingContext);
2373                 this.expr = expr;
2374             }
2375 
2376             @Override
2377             public boolean compatible(Type found, Type req, Warner warn) {
2378                 //a void return is compatible with an expression statement lambda
2379                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2380                         super.compatible(found, req, warn);
2381             }
2382         }
2383 
2384         /**
2385         * Lambda compatibility. Check that given return types, thrown types, parameter types
2386         * are compatible with the expected functional interface descriptor. This means that:
2387         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2388         * types must be compatible with the return type of the expected descriptor;
2389         * (iii) thrown types must be 'included' in the thrown types list of the expected
2390         * descriptor.
2391         */
2392         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
2393             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
2394 
2395             //return values have already been checked - but if lambda has no return
2396             //values, we must ensure that void/value compatibility is correct;
2397             //this amounts at checking that, if a lambda body can complete normally,
2398             //the descriptor's return type must be void
2399             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2400                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2401                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2402                         diags.fragment("missing.ret.val", returnType)));
2403             }
2404 
2405             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types);
2406             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2407                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2408             }
2409 
2410             if (!speculativeAttr) {
2411                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
2412                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
2413                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
2414                 }
2415             }
2416         }
2417 
2418         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2419             Env<AttrContext> lambdaEnv;
2420             Symbol owner = env.info.scope.owner;
2421             if (owner.kind == VAR && owner.owner.kind == TYP) {
2422                 //field initializer
2423                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2424                 lambdaEnv.info.scope.owner =
2425                     new MethodSymbol(0, names.empty, null,
2426                                      env.info.scope.owner);
2427             } else {
2428                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2429             }
2430             return lambdaEnv;
2431         }
2432 
2433     @Override
2434     public void visitReference(final JCMemberReference that) {
2435         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2436             if (pt().hasTag(NONE)) {
2437                 //method reference only allowed in assignment or method invocation/cast context
2438                 log.error(that.pos(), "unexpected.mref");
2439             }
2440             result = that.type = types.createErrorType(pt());
2441             return;
2442         }
2443         final Env<AttrContext> localEnv = env.dup(that);
2444         try {
2445             //attribute member reference qualifier - if this is a constructor
2446             //reference, the expected kind must be a type
2447             Type exprType = attribTree(that.expr,
2448                     env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType));
2449 
2450             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2451                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2452             }
2453 
2454             if (exprType.isErroneous()) {
2455                 //if the qualifier expression contains problems,
2456                 //give up atttribution of method reference
2457                 result = that.type = exprType;
2458                 return;
2459             }
2460 
2461             if (TreeInfo.isStaticSelector(that.expr, names) &&
2462                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
2463                 //if the qualifier is a type, validate it
2464                 chk.validate(that.expr, env);
2465             }
2466 
2467             //attrib type-arguments
2468             List<Type> typeargtypes = List.nil();
2469             if (that.typeargs != null) {
2470                 typeargtypes = attribTypes(that.typeargs, localEnv);
2471             }
2472 
2473             Type target;
2474             Type desc;
2475             if (pt() != Type.recoveryType) {
2476                 target = infer.instantiateFunctionalInterface(that, checkIntersectionTarget(that, resultInfo), null, resultInfo.checkContext);
2477                 desc = types.findDescriptorType(target);
2478                 chk.checkFunctionalInterface(that, target);
2479             } else {
2480                 target = Type.recoveryType;
2481                 desc = fallbackDescriptorType(that);
2482             }
2483 
2484             List<Type> argtypes = desc.getParameterTypes();
2485 
2486             boolean allowBoxing =
2487                     resultInfo.checkContext.deferredAttrContext().phase.isBoxingRequired();
2488             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
2489                     that.expr.type, that.name, argtypes, typeargtypes, allowBoxing);
2490 
2491             Symbol refSym = refResult.fst;
2492             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2493 
2494             if (refSym.kind != MTH) {
2495                 boolean targetError;
2496                 switch (refSym.kind) {
2497                     case ABSENT_MTH:
2498                         targetError = false;
2499                         break;
2500                     case WRONG_MTH:
2501                     case WRONG_MTHS:
2502                     case AMBIGUOUS:
2503                     case HIDDEN:
2504                     case STATICERR:
2505                     case MISSING_ENCL:
2506                         targetError = true;
2507                         break;
2508                     default:
2509                         Assert.error("unexpected result kind " + refSym.kind);
2510                         targetError = false;
2511                 }
2512 
2513                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2514                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2515 
2516                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2517                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2518 
2519                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2520                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2521 
2522                 if (targetError && target == Type.recoveryType) {
2523                     //a target error doesn't make sense during recovery stage
2524                     //as we don't know what actual parameter types are
2525                     result = that.type = target;
2526                     return;
2527                 } else {
2528                     if (targetError) {
2529                         resultInfo.checkContext.report(that, diag);
2530                     } else {
2531                         log.report(diag);
2532                     }
2533                     result = that.type = types.createErrorType(target);
2534                     return;
2535                 }
2536             }
2537 
2538             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2539                 if (refSym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2540                         exprType.getTypeArguments().nonEmpty()) {
2541                     //static ref with class type-args
2542                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2543                             diags.fragment("static.mref.with.targs"));
2544                     result = that.type = types.createErrorType(target);
2545                     return;
2546                 }
2547 
2548                 if (refSym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2549                         !lookupHelper.referenceKind(refSym).isUnbound()) {
2550                     //no static bound mrefs
2551                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2552                             diags.fragment("static.bound.mref"));
2553                     result = that.type = types.createErrorType(target);
2554                     return;
2555                 }
2556             }
2557 
2558             if (desc.getReturnType() == Type.recoveryType) {
2559                 // stop here
2560                 result = that.type = target;
2561                 return;
2562             }
2563 
2564             that.sym = refSym.baseSymbol();
2565             that.kind = lookupHelper.referenceKind(that.sym);
2566 
2567             ResultInfo checkInfo =
2568                     resultInfo.dup(newMethodTemplate(
2569                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2570                         lookupHelper.argtypes,
2571                         typeargtypes));
2572 
2573             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2574 
2575             if (!refType.isErroneous()) {
2576                 refType = types.createMethodTypeWithReturn(refType,
2577                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2578             }
2579 
2580             //go ahead with standard method reference compatibility check - note that param check
2581             //is a no-op (as this has been taken care during method applicability)
2582             boolean isSpeculativeRound =
2583                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2584             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2585             if (!isSpeculativeRound) {
2586                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
2587             }
2588             result = check(that, target, VAL, resultInfo);
2589         } catch (Types.FunctionDescriptorLookupError ex) {
2590             JCDiagnostic cause = ex.getDiagnostic();
2591             resultInfo.checkContext.report(that, cause);
2592             result = that.type = types.createErrorType(pt());
2593             return;
2594         }
2595     }
2596 
2597     @SuppressWarnings("fallthrough")
2598     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2599         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
2600 
2601         Type resType;
2602         switch (tree.getMode()) {
2603             case NEW:
2604                 if (!tree.expr.type.isRaw()) {
2605                     resType = tree.expr.type;
2606                     break;
2607                 }
2608             default:
2609                 resType = refType.getReturnType();
2610         }
2611 
2612         Type incompatibleReturnType = resType;
2613 
2614         if (returnType.hasTag(VOID)) {
2615             incompatibleReturnType = null;
2616         }
2617 
2618         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2619             if (resType.isErroneous() ||
2620                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2621                 incompatibleReturnType = null;
2622             }
2623         }
2624 
2625         if (incompatibleReturnType != null) {
2626             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2627                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2628         }
2629 
2630         if (!speculativeAttr) {
2631             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
2632             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2633                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2634             }
2635         }
2636     }
2637 
2638     public void visitParens(JCParens tree) {
2639         Type owntype = attribTree(tree.expr, env, resultInfo);
2640         result = check(tree, owntype, pkind(), resultInfo);
2641         Symbol sym = TreeInfo.symbol(tree);
2642         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2643             log.error(tree.pos(), "illegal.start.of.type");
2644     }
2645 
2646     public void visitAssign(JCAssign tree) {
2647         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2648         Type capturedType = capture(owntype);
2649         attribExpr(tree.rhs, env, owntype);
2650         result = check(tree, capturedType, VAL, resultInfo);
2651     }
2652 
2653     public void visitAssignop(JCAssignOp tree) {
2654         // Attribute arguments.
2655         Type owntype = attribTree(tree.lhs, env, varInfo);
2656         Type operand = attribExpr(tree.rhs, env);
2657         // Find operator.
2658         Symbol operator = tree.operator = rs.resolveBinaryOperator(
2659             tree.pos(), tree.getTag().noAssignOp(), env,
2660             owntype, operand);
2661 
2662         if (operator.kind == MTH &&
2663                 !owntype.isErroneous() &&
2664                 !operand.isErroneous()) {
2665             chk.checkOperator(tree.pos(),
2666                               (OperatorSymbol)operator,
2667                               tree.getTag().noAssignOp(),
2668                               owntype,
2669                               operand);
2670             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2671             chk.checkCastable(tree.rhs.pos(),
2672                               operator.type.getReturnType(),
2673                               owntype);
2674         }
2675         result = check(tree, owntype, VAL, resultInfo);
2676     }
2677 
2678     public void visitUnary(JCUnary tree) {
2679         // Attribute arguments.
2680         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2681             ? attribTree(tree.arg, env, varInfo)
2682             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2683 
2684         // Find operator.
2685         Symbol operator = tree.operator =
2686             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2687 
2688         Type owntype = types.createErrorType(tree.type);
2689         if (operator.kind == MTH &&
2690                 !argtype.isErroneous()) {
2691             owntype = (tree.getTag().isIncOrDecUnaryOp())
2692                 ? tree.arg.type
2693                 : operator.type.getReturnType();
2694             int opc = ((OperatorSymbol)operator).opcode;
2695 
2696             // If the argument is constant, fold it.
2697             if (argtype.constValue() != null) {
2698                 Type ctype = cfolder.fold1(opc, argtype);
2699                 if (ctype != null) {
2700                     owntype = cfolder.coerce(ctype, owntype);
2701 
2702                     // Remove constant types from arguments to
2703                     // conserve space. The parser will fold concatenations
2704                     // of string literals; the code here also
2705                     // gets rid of intermediate results when some of the
2706                     // operands are constant identifiers.
2707                     if (tree.arg.type.tsym == syms.stringType.tsym) {
2708                         tree.arg.type = syms.stringType;
2709                     }
2710                 }
2711             }
2712         }
2713         result = check(tree, owntype, VAL, resultInfo);
2714     }
2715 
2716     public void visitBinary(JCBinary tree) {
2717         // Attribute arguments.
2718         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2719         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2720 
2721         // Find operator.
2722         Symbol operator = tree.operator =
2723             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
2724 
2725         Type owntype = types.createErrorType(tree.type);
2726         if (operator.kind == MTH &&
2727                 !left.isErroneous() &&
2728                 !right.isErroneous()) {
2729             owntype = operator.type.getReturnType();
2730             int opc = chk.checkOperator(tree.lhs.pos(),
2731                                         (OperatorSymbol)operator,
2732                                         tree.getTag(),
2733                                         left,
2734                                         right);
2735 
2736             // If both arguments are constants, fold them.
2737             if (left.constValue() != null && right.constValue() != null) {
2738                 Type ctype = cfolder.fold2(opc, left, right);
2739                 if (ctype != null) {
2740                     owntype = cfolder.coerce(ctype, owntype);
2741 
2742                     // Remove constant types from arguments to
2743                     // conserve space. The parser will fold concatenations
2744                     // of string literals; the code here also
2745                     // gets rid of intermediate results when some of the
2746                     // operands are constant identifiers.
2747                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
2748                         tree.lhs.type = syms.stringType;
2749                     }
2750                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
2751                         tree.rhs.type = syms.stringType;
2752                     }
2753                 }
2754             }
2755 
2756             // Check that argument types of a reference ==, != are
2757             // castable to each other, (JLS???).
2758             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2759                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
2760                     log.error(tree.pos(), "incomparable.types", left, right);
2761                 }
2762             }
2763 
2764             chk.checkDivZero(tree.rhs.pos(), operator, right);
2765         }
2766         result = check(tree, owntype, VAL, resultInfo);
2767     }
2768 
2769     public void visitTypeCast(final JCTypeCast tree) {
2770         Type clazztype = attribType(tree.clazz, env);
2771         chk.validate(tree.clazz, env, false);
2772         //a fresh environment is required for 292 inference to work properly ---
2773         //see Infer.instantiatePolymorphicSignatureInstance()
2774         Env<AttrContext> localEnv = env.dup(tree);
2775         //should we propagate the target type?
2776         final ResultInfo castInfo;
2777         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
2778         if (isPoly) {
2779             //expression is a poly - we need to propagate target type info
2780             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
2781                 @Override
2782                 public boolean compatible(Type found, Type req, Warner warn) {
2783                     return types.isCastable(found, req, warn);
2784                 }
2785             });
2786         } else {
2787             //standalone cast - target-type info is not propagated
2788             castInfo = unknownExprInfo;
2789         }
2790         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
2791         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
2792         if (exprtype.constValue() != null)
2793             owntype = cfolder.coerce(exprtype, owntype);
2794         result = check(tree, capture(owntype), VAL, resultInfo);
2795         if (!isPoly)
2796             chk.checkRedundantCast(localEnv, tree);
2797     }
2798 
2799     public void visitTypeTest(JCInstanceOf tree) {
2800         Type exprtype = chk.checkNullOrRefType(
2801             tree.expr.pos(), attribExpr(tree.expr, env));
2802         Type clazztype = chk.checkReifiableReferenceType(
2803             tree.clazz.pos(), attribType(tree.clazz, env));
2804         chk.validate(tree.clazz, env, false);
2805         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
2806         result = check(tree, syms.booleanType, VAL, resultInfo);
2807     }
2808 
2809     public void visitIndexed(JCArrayAccess tree) {
2810         Type owntype = types.createErrorType(tree.type);
2811         Type atype = attribExpr(tree.indexed, env);
2812         attribExpr(tree.index, env, syms.intType);
2813         if (types.isArray(atype))
2814             owntype = types.elemtype(atype);
2815         else if (!atype.hasTag(ERROR))
2816             log.error(tree.pos(), "array.req.but.found", atype);
2817         if ((pkind() & VAR) == 0) owntype = capture(owntype);
2818         result = check(tree, owntype, VAR, resultInfo);
2819     }
2820 
2821     public void visitIdent(JCIdent tree) {
2822         Symbol sym;
2823 
2824         // Find symbol
2825         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
2826             // If we are looking for a method, the prototype `pt' will be a
2827             // method type with the type of the call's arguments as parameters.
2828             env.info.pendingResolutionPhase = null;
2829             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
2830         } else if (tree.sym != null && tree.sym.kind != VAR) {
2831             sym = tree.sym;
2832         } else {
2833             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
2834         }
2835         tree.sym = sym;
2836 
2837         // (1) Also find the environment current for the class where
2838         //     sym is defined (`symEnv').
2839         // Only for pre-tiger versions (1.4 and earlier):
2840         // (2) Also determine whether we access symbol out of an anonymous
2841         //     class in a this or super call.  This is illegal for instance
2842         //     members since such classes don't carry a this$n link.
2843         //     (`noOuterThisPath').
2844         Env<AttrContext> symEnv = env;
2845         boolean noOuterThisPath = false;
2846         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
2847             (sym.kind & (VAR | MTH | TYP)) != 0 &&
2848             sym.owner.kind == TYP &&
2849             tree.name != names._this && tree.name != names._super) {
2850 
2851             // Find environment in which identifier is defined.
2852             while (symEnv.outer != null &&
2853                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
2854                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
2855                     noOuterThisPath = !allowAnonOuterThis;
2856                 symEnv = symEnv.outer;
2857             }
2858         }
2859 
2860         // If symbol is a variable, ...
2861         if (sym.kind == VAR) {
2862             VarSymbol v = (VarSymbol)sym;
2863 
2864             // ..., evaluate its initializer, if it has one, and check for
2865             // illegal forward reference.
2866             checkInit(tree, env, v, false);
2867 
2868             // If we are expecting a variable (as opposed to a value), check
2869             // that the variable is assignable in the current environment.
2870             if (pkind() == VAR)
2871                 checkAssignable(tree.pos(), v, null, env);
2872         }
2873 
2874         // In a constructor body,
2875         // if symbol is a field or instance method, check that it is
2876         // not accessed before the supertype constructor is called.
2877         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
2878             (sym.kind & (VAR | MTH)) != 0 &&
2879             sym.owner.kind == TYP &&
2880             (sym.flags() & STATIC) == 0) {
2881             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
2882         }
2883         Env<AttrContext> env1 = env;
2884         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
2885             // If the found symbol is inaccessible, then it is
2886             // accessed through an enclosing instance.  Locate this
2887             // enclosing instance:
2888             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
2889                 env1 = env1.outer;
2890         }
2891         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
2892     }
2893 
2894     public void visitSelect(JCFieldAccess tree) {
2895         // Determine the expected kind of the qualifier expression.
2896         int skind = 0;
2897         if (tree.name == names._this || tree.name == names._super ||
2898             tree.name == names._class)
2899         {
2900             skind = TYP;
2901         } else {
2902             if ((pkind() & PCK) != 0) skind = skind | PCK;
2903             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
2904             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
2905         }
2906 
2907         // Attribute the qualifier expression, and determine its symbol (if any).
2908         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
2909         if ((pkind() & (PCK | TYP)) == 0)
2910             site = capture(site); // Capture field access
2911 
2912         // don't allow T.class T[].class, etc
2913         if (skind == TYP) {
2914             Type elt = site;
2915             while (elt.hasTag(ARRAY))
2916                 elt = ((ArrayType)elt).elemtype;
2917             if (elt.hasTag(TYPEVAR)) {
2918                 log.error(tree.pos(), "type.var.cant.be.deref");
2919                 result = types.createErrorType(tree.type);
2920                 return;
2921             }
2922         }
2923 
2924         // If qualifier symbol is a type or `super', assert `selectSuper'
2925         // for the selection. This is relevant for determining whether
2926         // protected symbols are accessible.
2927         Symbol sitesym = TreeInfo.symbol(tree.selected);
2928         boolean selectSuperPrev = env.info.selectSuper;
2929         env.info.selectSuper =
2930             sitesym != null &&
2931             sitesym.name == names._super;
2932 
2933         // Determine the symbol represented by the selection.
2934         env.info.pendingResolutionPhase = null;
2935         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
2936         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
2937             site = capture(site);
2938             sym = selectSym(tree, sitesym, site, env, resultInfo);
2939         }
2940         boolean varArgs = env.info.lastResolveVarargs();
2941         tree.sym = sym;
2942 
2943         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
2944             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
2945             site = capture(site);
2946         }
2947 
2948         // If that symbol is a variable, ...
2949         if (sym.kind == VAR) {
2950             VarSymbol v = (VarSymbol)sym;
2951 
2952             // ..., evaluate its initializer, if it has one, and check for
2953             // illegal forward reference.
2954             checkInit(tree, env, v, true);
2955 
2956             // If we are expecting a variable (as opposed to a value), check
2957             // that the variable is assignable in the current environment.
2958             if (pkind() == VAR)
2959                 checkAssignable(tree.pos(), v, tree.selected, env);
2960         }
2961 
2962         if (sitesym != null &&
2963                 sitesym.kind == VAR &&
2964                 ((VarSymbol)sitesym).isResourceVariable() &&
2965                 sym.kind == MTH &&
2966                 sym.name.equals(names.close) &&
2967                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
2968                 env.info.lint.isEnabled(LintCategory.TRY)) {
2969             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
2970         }
2971 
2972         // Disallow selecting a type from an expression
2973         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
2974             tree.type = check(tree.selected, pt(),
2975                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
2976         }
2977 
2978         if (isType(sitesym)) {
2979             if (sym.name == names._this) {
2980                 // If `C' is the currently compiled class, check that
2981                 // C.this' does not appear in a call to a super(...)
2982                 if (env.info.isSelfCall &&
2983                     site.tsym == env.enclClass.sym) {
2984                     chk.earlyRefError(tree.pos(), sym);
2985                 }
2986             } else {
2987                 // Check if type-qualified fields or methods are static (JLS)
2988                 if ((sym.flags() & STATIC) == 0 &&
2989                     !env.next.tree.hasTag(REFERENCE) &&
2990                     sym.name != names._super &&
2991                     (sym.kind == VAR || sym.kind == MTH)) {
2992                     rs.accessBase(rs.new StaticError(sym),
2993                               tree.pos(), site, sym.name, true);
2994                 }
2995             }
2996         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
2997             // If the qualified item is not a type and the selected item is static, report
2998             // a warning. Make allowance for the class of an array type e.g. Object[].class)
2999             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3000         }
3001 
3002         // If we are selecting an instance member via a `super', ...
3003         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3004 
3005             // Check that super-qualified symbols are not abstract (JLS)
3006             rs.checkNonAbstract(tree.pos(), sym);
3007 
3008             if (site.isRaw()) {
3009                 // Determine argument types for site.
3010                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3011                 if (site1 != null) site = site1;
3012             }
3013         }
3014 
3015         env.info.selectSuper = selectSuperPrev;
3016         result = checkId(tree, site, sym, env, resultInfo);
3017     }
3018     //where
3019         /** Determine symbol referenced by a Select expression,
3020          *
3021          *  @param tree   The select tree.
3022          *  @param site   The type of the selected expression,
3023          *  @param env    The current environment.
3024          *  @param resultInfo The current result.
3025          */
3026         private Symbol selectSym(JCFieldAccess tree,
3027                                  Symbol location,
3028                                  Type site,
3029                                  Env<AttrContext> env,
3030                                  ResultInfo resultInfo) {
3031             DiagnosticPosition pos = tree.pos();
3032             Name name = tree.name;
3033             switch (site.getTag()) {
3034             case PACKAGE:
3035                 return rs.accessBase(
3036                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3037                     pos, location, site, name, true);
3038             case ARRAY:
3039             case CLASS:
3040                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3041                     return rs.resolveQualifiedMethod(
3042                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3043                 } else if (name == names._this || name == names._super) {
3044                     return rs.resolveSelf(pos, env, site.tsym, name);
3045                 } else if (name == names._class) {
3046                     // In this case, we have already made sure in
3047                     // visitSelect that qualifier expression is a type.
3048                     Type t = syms.classType;
3049                     List<Type> typeargs = allowGenerics
3050                         ? List.of(types.erasure(site))
3051                         : List.<Type>nil();
3052                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3053                     return new VarSymbol(
3054                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3055                 } else {
3056                     // We are seeing a plain identifier as selector.
3057                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3058                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3059                         sym = rs.accessBase(sym, pos, location, site, name, true);
3060                     return sym;
3061                 }
3062             case WILDCARD:
3063                 throw new AssertionError(tree);
3064             case TYPEVAR:
3065                 // Normally, site.getUpperBound() shouldn't be null.
3066                 // It should only happen during memberEnter/attribBase
3067                 // when determining the super type which *must* beac
3068                 // done before attributing the type variables.  In
3069                 // other words, we are seeing this illegal program:
3070                 // class B<T> extends A<T.foo> {}
3071                 Symbol sym = (site.getUpperBound() != null)
3072                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3073                     : null;
3074                 if (sym == null) {
3075                     log.error(pos, "type.var.cant.be.deref");
3076                     return syms.errSymbol;
3077                 } else {
3078                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3079                         rs.new AccessError(env, site, sym) :
3080                                 sym;
3081                     rs.accessBase(sym2, pos, location, site, name, true);
3082                     return sym;
3083                 }
3084             case ERROR:
3085                 // preserve identifier names through errors
3086                 return types.createErrorType(name, site.tsym, site).tsym;
3087             default:
3088                 // The qualifier expression is of a primitive type -- only
3089                 // .class is allowed for these.
3090                 if (name == names._class) {
3091                     // In this case, we have already made sure in Select that
3092                     // qualifier expression is a type.
3093                     Type t = syms.classType;
3094                     Type arg = types.boxedClass(site).type;
3095                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3096                     return new VarSymbol(
3097                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3098                 } else {
3099                     log.error(pos, "cant.deref", site);
3100                     return syms.errSymbol;
3101                 }
3102             }
3103         }
3104 
3105         /** Determine type of identifier or select expression and check that
3106          *  (1) the referenced symbol is not deprecated
3107          *  (2) the symbol's type is safe (@see checkSafe)
3108          *  (3) if symbol is a variable, check that its type and kind are
3109          *      compatible with the prototype and protokind.
3110          *  (4) if symbol is an instance field of a raw type,
3111          *      which is being assigned to, issue an unchecked warning if its
3112          *      type changes under erasure.
3113          *  (5) if symbol is an instance method of a raw type, issue an
3114          *      unchecked warning if its argument types change under erasure.
3115          *  If checks succeed:
3116          *    If symbol is a constant, return its constant type
3117          *    else if symbol is a method, return its result type
3118          *    otherwise return its type.
3119          *  Otherwise return errType.
3120          *
3121          *  @param tree       The syntax tree representing the identifier
3122          *  @param site       If this is a select, the type of the selected
3123          *                    expression, otherwise the type of the current class.
3124          *  @param sym        The symbol representing the identifier.
3125          *  @param env        The current environment.
3126          *  @param resultInfo    The expected result
3127          */
3128         Type checkId(JCTree tree,
3129                      Type site,
3130                      Symbol sym,
3131                      Env<AttrContext> env,
3132                      ResultInfo resultInfo) {
3133             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3134                     checkMethodId(tree, site, sym, env, resultInfo) :
3135                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3136         }
3137 
3138         Type checkMethodId(JCTree tree,
3139                      Type site,
3140                      Symbol sym,
3141                      Env<AttrContext> env,
3142                      ResultInfo resultInfo) {
3143             boolean isPolymorhicSignature =
3144                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
3145             return isPolymorhicSignature ?
3146                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3147                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3148         }
3149 
3150         Type checkSigPolyMethodId(JCTree tree,
3151                      Type site,
3152                      Symbol sym,
3153                      Env<AttrContext> env,
3154                      ResultInfo resultInfo) {
3155             //recover original symbol for signature polymorphic methods
3156             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3157             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3158             return sym.type;
3159         }
3160 
3161         Type checkMethodIdInternal(JCTree tree,
3162                      Type site,
3163                      Symbol sym,
3164                      Env<AttrContext> env,
3165                      ResultInfo resultInfo) {
3166             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3167             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3168             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3169             return owntype;
3170         }
3171 
3172         Type checkIdInternal(JCTree tree,
3173                      Type site,
3174                      Symbol sym,
3175                      Type pt,
3176                      Env<AttrContext> env,
3177                      ResultInfo resultInfo) {
3178             if (pt.isErroneous()) {
3179                 return types.createErrorType(site);
3180             }
3181             Type owntype; // The computed type of this identifier occurrence.
3182             switch (sym.kind) {
3183             case TYP:
3184                 // For types, the computed type equals the symbol's type,
3185                 // except for two situations:
3186                 owntype = sym.type;
3187                 if (owntype.hasTag(CLASS)) {
3188                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3189                     Type ownOuter = owntype.getEnclosingType();
3190 
3191                     // (a) If the symbol's type is parameterized, erase it
3192                     // because no type parameters were given.
3193                     // We recover generic outer type later in visitTypeApply.
3194                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3195                         owntype = types.erasure(owntype);
3196                     }
3197 
3198                     // (b) If the symbol's type is an inner class, then
3199                     // we have to interpret its outer type as a superclass
3200                     // of the site type. Example:
3201                     //
3202                     // class Tree<A> { class Visitor { ... } }
3203                     // class PointTree extends Tree<Point> { ... }
3204                     // ...PointTree.Visitor...
3205                     //
3206                     // Then the type of the last expression above is
3207                     // Tree<Point>.Visitor.
3208                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3209                         Type normOuter = site;
3210                         if (normOuter.hasTag(CLASS))
3211                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3212                         if (normOuter == null) // perhaps from an import
3213                             normOuter = types.erasure(ownOuter);
3214                         if (normOuter != ownOuter)
3215                             owntype = new ClassType(
3216                                 normOuter, List.<Type>nil(), owntype.tsym);
3217                     }
3218                 }
3219                 break;
3220             case VAR:
3221                 VarSymbol v = (VarSymbol)sym;
3222                 // Test (4): if symbol is an instance field of a raw type,
3223                 // which is being assigned to, issue an unchecked warning if
3224                 // its type changes under erasure.
3225                 if (allowGenerics &&
3226                     resultInfo.pkind == VAR &&
3227                     v.owner.kind == TYP &&
3228                     (v.flags() & STATIC) == 0 &&
3229                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3230                     Type s = types.asOuterSuper(site, v.owner);
3231                     if (s != null &&
3232                         s.isRaw() &&
3233                         !types.isSameType(v.type, v.erasure(types))) {
3234                         chk.warnUnchecked(tree.pos(),
3235                                           "unchecked.assign.to.var",
3236                                           v, s);
3237                     }
3238                 }
3239                 // The computed type of a variable is the type of the
3240                 // variable symbol, taken as a member of the site type.
3241                 owntype = (sym.owner.kind == TYP &&
3242                            sym.name != names._this && sym.name != names._super)
3243                     ? types.memberType(site, sym)
3244                     : sym.type;
3245 
3246                 // If the variable is a constant, record constant value in
3247                 // computed type.
3248                 if (v.getConstValue() != null && isStaticReference(tree))
3249                     owntype = owntype.constType(v.getConstValue());
3250 
3251                 if (resultInfo.pkind == VAL) {
3252                     owntype = capture(owntype); // capture "names as expressions"
3253                 }
3254                 break;
3255             case MTH: {
3256                 owntype = checkMethod(site, sym,
3257                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3258                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3259                         resultInfo.pt.getTypeArguments());
3260                 break;
3261             }
3262             case PCK: case ERR:
3263                 owntype = sym.type;
3264                 break;
3265             default:
3266                 throw new AssertionError("unexpected kind: " + sym.kind +
3267                                          " in tree " + tree);
3268             }
3269 
3270             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3271             // (for constructors, the error was given when the constructor was
3272             // resolved)
3273 
3274             if (sym.name != names.init) {
3275                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3276                 chk.checkSunAPI(tree.pos(), sym);
3277             }
3278 
3279             // Test (3): if symbol is a variable, check that its type and
3280             // kind are compatible with the prototype and protokind.
3281             return check(tree, owntype, sym.kind, resultInfo);
3282         }
3283 
3284         /** Check that variable is initialized and evaluate the variable's
3285          *  initializer, if not yet done. Also check that variable is not
3286          *  referenced before it is defined.
3287          *  @param tree    The tree making up the variable reference.
3288          *  @param env     The current environment.
3289          *  @param v       The variable's symbol.
3290          */
3291         private void checkInit(JCTree tree,
3292                                Env<AttrContext> env,
3293                                VarSymbol v,
3294                                boolean onlyWarning) {
3295 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3296 //                             tree.pos + " " + v.pos + " " +
3297 //                             Resolve.isStatic(env));//DEBUG
3298 
3299             // A forward reference is diagnosed if the declaration position
3300             // of the variable is greater than the current tree position
3301             // and the tree and variable definition occur in the same class
3302             // definition.  Note that writes don't count as references.
3303             // This check applies only to class and instance
3304             // variables.  Local variables follow different scope rules,
3305             // and are subject to definite assignment checking.
3306             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3307                 v.owner.kind == TYP &&
3308                 canOwnInitializer(owner(env)) &&
3309                 v.owner == env.info.scope.owner.enclClass() &&
3310                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3311                 (!env.tree.hasTag(ASSIGN) ||
3312                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3313                 String suffix = (env.info.enclVar == v) ?
3314                                 "self.ref" : "forward.ref";
3315                 if (!onlyWarning || isStaticEnumField(v)) {
3316                     log.error(tree.pos(), "illegal." + suffix);
3317                 } else if (useBeforeDeclarationWarning) {
3318                     log.warning(tree.pos(), suffix, v);
3319                 }
3320             }
3321 
3322             v.getConstValue(); // ensure initializer is evaluated
3323 
3324             checkEnumInitializer(tree, env, v);
3325         }
3326 
3327         /**
3328          * Check for illegal references to static members of enum.  In
3329          * an enum type, constructors and initializers may not
3330          * reference its static members unless they are constant.
3331          *
3332          * @param tree    The tree making up the variable reference.
3333          * @param env     The current environment.
3334          * @param v       The variable's symbol.
3335          * @jls  section 8.9 Enums
3336          */
3337         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3338             // JLS:
3339             //
3340             // "It is a compile-time error to reference a static field
3341             // of an enum type that is not a compile-time constant
3342             // (15.28) from constructors, instance initializer blocks,
3343             // or instance variable initializer expressions of that
3344             // type. It is a compile-time error for the constructors,
3345             // instance initializer blocks, or instance variable
3346             // initializer expressions of an enum constant e to refer
3347             // to itself or to an enum constant of the same type that
3348             // is declared to the right of e."
3349             if (isStaticEnumField(v)) {
3350                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3351 
3352                 if (enclClass == null || enclClass.owner == null)
3353                     return;
3354 
3355                 // See if the enclosing class is the enum (or a
3356                 // subclass thereof) declaring v.  If not, this
3357                 // reference is OK.
3358                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3359                     return;
3360 
3361                 // If the reference isn't from an initializer, then
3362                 // the reference is OK.
3363                 if (!Resolve.isInitializer(env))
3364                     return;
3365 
3366                 log.error(tree.pos(), "illegal.enum.static.ref");
3367             }
3368         }
3369 
3370         /** Is the given symbol a static, non-constant field of an Enum?
3371          *  Note: enum literals should not be regarded as such
3372          */
3373         private boolean isStaticEnumField(VarSymbol v) {
3374             return Flags.isEnum(v.owner) &&
3375                    Flags.isStatic(v) &&
3376                    !Flags.isConstant(v) &&
3377                    v.name != names._class;
3378         }
3379 
3380         /** Can the given symbol be the owner of code which forms part
3381          *  if class initialization? This is the case if the symbol is
3382          *  a type or field, or if the symbol is the synthetic method.
3383          *  owning a block.
3384          */
3385         private boolean canOwnInitializer(Symbol sym) {
3386             return
3387                 (sym.kind & (VAR | TYP)) != 0 ||
3388                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
3389         }
3390 
3391     Warner noteWarner = new Warner();
3392 
3393     /**
3394      * Check that method arguments conform to its instantiation.
3395      **/
3396     public Type checkMethod(Type site,
3397                             Symbol sym,
3398                             ResultInfo resultInfo,
3399                             Env<AttrContext> env,
3400                             final List<JCExpression> argtrees,
3401                             List<Type> argtypes,
3402                             List<Type> typeargtypes) {
3403         // Test (5): if symbol is an instance method of a raw type, issue
3404         // an unchecked warning if its argument types change under erasure.
3405         if (allowGenerics &&
3406             (sym.flags() & STATIC) == 0 &&
3407             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3408             Type s = types.asOuterSuper(site, sym.owner);
3409             if (s != null && s.isRaw() &&
3410                 !types.isSameTypes(sym.type.getParameterTypes(),
3411                                    sym.erasure(types).getParameterTypes())) {
3412                 chk.warnUnchecked(env.tree.pos(),
3413                                   "unchecked.call.mbr.of.raw.type",
3414                                   sym, s);
3415             }
3416         }
3417 
3418         if (env.info.defaultSuperCallSite != null) {
3419             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3420                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3421                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3422                 List<MethodSymbol> icand_sup =
3423                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3424                 if (icand_sup.nonEmpty() &&
3425                         icand_sup.head != sym &&
3426                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3427                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3428                         diags.fragment("overridden.default", sym, sup));
3429                     break;
3430                 }
3431             }
3432             env.info.defaultSuperCallSite = null;
3433         }
3434 
3435         // Compute the identifier's instantiated type.
3436         // For methods, we need to compute the instance type by
3437         // Resolve.instantiate from the symbol's type as well as
3438         // any type arguments and value arguments.
3439         noteWarner.clear();
3440         try {
3441             Type owntype = rs.checkMethod(
3442                     env,
3443                     site,
3444                     sym,
3445                     resultInfo,
3446                     argtypes,
3447                     typeargtypes,
3448                     noteWarner);
3449 
3450             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3451                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
3452         } catch (Infer.InferenceException ex) {
3453             //invalid target type - propagate exception outwards or report error
3454             //depending on the current check context
3455             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3456             return types.createErrorType(site);
3457         } catch (Resolve.InapplicableMethodException ex) {
3458             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
3459             return null;
3460         }
3461     }
3462 
3463     public void visitLiteral(JCLiteral tree) {
3464         result = check(
3465             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3466     }
3467     //where
3468     /** Return the type of a literal with given type tag.
3469      */
3470     Type litType(TypeTag tag) {
3471         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3472     }
3473 
3474     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3475         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3476     }
3477 
3478     public void visitTypeArray(JCArrayTypeTree tree) {
3479         Type etype = attribType(tree.elemtype, env);
3480         Type type = new ArrayType(etype, syms.arrayClass);
3481         result = check(tree, type, TYP, resultInfo);
3482     }
3483 
3484     /** Visitor method for parameterized types.
3485      *  Bound checking is left until later, since types are attributed
3486      *  before supertype structure is completely known
3487      */
3488     public void visitTypeApply(JCTypeApply tree) {
3489         Type owntype = types.createErrorType(tree.type);
3490 
3491         // Attribute functor part of application and make sure it's a class.
3492         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3493 
3494         // Attribute type parameters
3495         List<Type> actuals = attribTypes(tree.arguments, env);
3496 
3497         if (clazztype.hasTag(CLASS)) {
3498             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3499             if (actuals.isEmpty()) //diamond
3500                 actuals = formals;
3501 
3502             if (actuals.length() == formals.length()) {
3503                 List<Type> a = actuals;
3504                 List<Type> f = formals;
3505                 while (a.nonEmpty()) {
3506                     a.head = a.head.withTypeVar(f.head);
3507                     a = a.tail;
3508                     f = f.tail;
3509                 }
3510                 // Compute the proper generic outer
3511                 Type clazzOuter = clazztype.getEnclosingType();
3512                 if (clazzOuter.hasTag(CLASS)) {
3513                     Type site;
3514                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3515                     if (clazz.hasTag(IDENT)) {
3516                         site = env.enclClass.sym.type;
3517                     } else if (clazz.hasTag(SELECT)) {
3518                         site = ((JCFieldAccess) clazz).selected.type;
3519                     } else throw new AssertionError(""+tree);
3520                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3521                         if (site.hasTag(CLASS))
3522                             site = types.asOuterSuper(site, clazzOuter.tsym);
3523                         if (site == null)
3524                             site = types.erasure(clazzOuter);
3525                         clazzOuter = site;
3526                     }
3527                 }
3528                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3529             } else {
3530                 if (formals.length() != 0) {
3531                     log.error(tree.pos(), "wrong.number.type.args",
3532                               Integer.toString(formals.length()));
3533                 } else {
3534                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3535                 }
3536                 owntype = types.createErrorType(tree.type);
3537             }
3538         }
3539         result = check(tree, owntype, TYP, resultInfo);
3540     }
3541 
3542     public void visitTypeUnion(JCTypeUnion tree) {
3543         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
3544         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3545         for (JCExpression typeTree : tree.alternatives) {
3546             Type ctype = attribType(typeTree, env);
3547             ctype = chk.checkType(typeTree.pos(),
3548                           chk.checkClassType(typeTree.pos(), ctype),
3549                           syms.throwableType);
3550             if (!ctype.isErroneous()) {
3551                 //check that alternatives of a union type are pairwise
3552                 //unrelated w.r.t. subtyping
3553                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3554                     for (Type t : multicatchTypes) {
3555                         boolean sub = types.isSubtype(ctype, t);
3556                         boolean sup = types.isSubtype(t, ctype);
3557                         if (sub || sup) {
3558                             //assume 'a' <: 'b'
3559                             Type a = sub ? ctype : t;
3560                             Type b = sub ? t : ctype;
3561                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3562                         }
3563                     }
3564                 }
3565                 multicatchTypes.append(ctype);
3566                 if (all_multicatchTypes != null)
3567                     all_multicatchTypes.append(ctype);
3568             } else {
3569                 if (all_multicatchTypes == null) {
3570                     all_multicatchTypes = ListBuffer.lb();
3571                     all_multicatchTypes.appendList(multicatchTypes);
3572                 }
3573                 all_multicatchTypes.append(ctype);
3574             }
3575         }
3576         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3577         if (t.hasTag(CLASS)) {
3578             List<Type> alternatives =
3579                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3580             t = new UnionClassType((ClassType) t, alternatives);
3581         }
3582         tree.type = result = t;
3583     }
3584 
3585     public void visitTypeIntersection(JCTypeIntersection tree) {
3586         attribTypes(tree.bounds, env);
3587         tree.type = result = checkIntersection(tree, tree.bounds);
3588     }
3589 
3590      public void visitTypeParameter(JCTypeParameter tree) {
3591         TypeVar typeVar = (TypeVar)tree.type;
3592         if (!typeVar.bound.isErroneous()) {
3593             //fixup type-parameter bound computed in 'attribTypeVariables'
3594             typeVar.bound = checkIntersection(tree, tree.bounds);
3595         }
3596     }
3597 
3598     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3599         Set<Type> boundSet = new HashSet<Type>();
3600         if (bounds.nonEmpty()) {
3601             // accept class or interface or typevar as first bound.
3602             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3603             boundSet.add(types.erasure(bounds.head.type));
3604             if (bounds.head.type.isErroneous()) {
3605                 return bounds.head.type;
3606             }
3607             else if (bounds.head.type.hasTag(TYPEVAR)) {
3608                 // if first bound was a typevar, do not accept further bounds.
3609                 if (bounds.tail.nonEmpty()) {
3610                     log.error(bounds.tail.head.pos(),
3611                               "type.var.may.not.be.followed.by.other.bounds");
3612                     return bounds.head.type;
3613                 }
3614             } else {
3615                 // if first bound was a class or interface, accept only interfaces
3616                 // as further bounds.
3617                 for (JCExpression bound : bounds.tail) {
3618                     bound.type = checkBase(bound.type, bound, env, false, true, false);
3619                     if (bound.type.isErroneous()) {
3620                         bounds = List.of(bound);
3621                     }
3622                     else if (bound.type.hasTag(CLASS)) {
3623                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3624                     }
3625                 }
3626             }
3627         }
3628 
3629         if (bounds.length() == 0) {
3630             return syms.objectType;
3631         } else if (bounds.length() == 1) {
3632             return bounds.head.type;
3633         } else {
3634             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3635             if (tree.hasTag(TYPEINTERSECTION)) {
3636                 ((IntersectionClassType)owntype).intersectionKind =
3637                         IntersectionClassType.IntersectionKind.EXPLICIT;
3638             }
3639             // ... the variable's bound is a class type flagged COMPOUND
3640             // (see comment for TypeVar.bound).
3641             // In this case, generate a class tree that represents the
3642             // bound class, ...
3643             JCExpression extending;
3644             List<JCExpression> implementing;
3645             if (!bounds.head.type.isInterface()) {
3646                 extending = bounds.head;
3647                 implementing = bounds.tail;
3648             } else {
3649                 extending = null;
3650                 implementing = bounds;
3651             }
3652             JCClassDecl cd = make.at(tree).ClassDef(
3653                 make.Modifiers(PUBLIC | ABSTRACT),
3654                 names.empty, List.<JCTypeParameter>nil(),
3655                 extending, implementing, List.<JCTree>nil());
3656 
3657             ClassSymbol c = (ClassSymbol)owntype.tsym;
3658             Assert.check((c.flags() & COMPOUND) != 0);
3659             cd.sym = c;
3660             c.sourcefile = env.toplevel.sourcefile;
3661 
3662             // ... and attribute the bound class
3663             c.flags_field |= UNATTRIBUTED;
3664             Env<AttrContext> cenv = enter.classEnv(cd, env);
3665             enter.typeEnvs.put(c, cenv);
3666             attribClass(c);
3667             return owntype;
3668         }
3669     }
3670 
3671     public void visitWildcard(JCWildcard tree) {
3672         //- System.err.println("visitWildcard("+tree+");");//DEBUG
3673         Type type = (tree.kind.kind == BoundKind.UNBOUND)
3674             ? syms.objectType
3675             : attribType(tree.inner, env);
3676         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
3677                                               tree.kind.kind,
3678                                               syms.boundClass),
3679                        TYP, resultInfo);
3680     }
3681 
3682     public void visitAnnotation(JCAnnotation tree) {
3683         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
3684         result = tree.type = syms.errType;
3685     }
3686 
3687     public void visitErroneous(JCErroneous tree) {
3688         if (tree.errs != null)
3689             for (JCTree err : tree.errs)
3690                 attribTree(err, env, new ResultInfo(ERR, pt()));
3691         result = tree.type = syms.errType;
3692     }
3693 
3694     /** Default visitor method for all other trees.
3695      */
3696     public void visitTree(JCTree tree) {
3697         throw new AssertionError();
3698     }
3699 
3700     /**
3701      * Attribute an env for either a top level tree or class declaration.
3702      */
3703     public void attrib(Env<AttrContext> env) {
3704         if (env.tree.hasTag(TOPLEVEL))
3705             attribTopLevel(env);
3706         else
3707             attribClass(env.tree.pos(), env.enclClass.sym);
3708     }
3709 
3710     /**
3711      * Attribute a top level tree. These trees are encountered when the
3712      * package declaration has annotations.
3713      */
3714     public void attribTopLevel(Env<AttrContext> env) {
3715         JCCompilationUnit toplevel = env.toplevel;
3716         try {
3717             annotate.flush();
3718             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
3719         } catch (CompletionFailure ex) {
3720             chk.completionError(toplevel.pos(), ex);
3721         }
3722     }
3723 
3724     /** Main method: attribute class definition associated with given class symbol.
3725      *  reporting completion failures at the given position.
3726      *  @param pos The source position at which completion errors are to be
3727      *             reported.
3728      *  @param c   The class symbol whose definition will be attributed.
3729      */
3730     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
3731         try {
3732             annotate.flush();
3733             attribClass(c);
3734         } catch (CompletionFailure ex) {
3735             chk.completionError(pos, ex);
3736         }
3737     }
3738 
3739     /** Attribute class definition associated with given class symbol.
3740      *  @param c   The class symbol whose definition will be attributed.
3741      */
3742     void attribClass(ClassSymbol c) throws CompletionFailure {
3743         if (c.type.hasTag(ERROR)) return;
3744 
3745         // Check for cycles in the inheritance graph, which can arise from
3746         // ill-formed class files.
3747         chk.checkNonCyclic(null, c.type);
3748 
3749         Type st = types.supertype(c.type);
3750         if ((c.flags_field & Flags.COMPOUND) == 0) {
3751             // First, attribute superclass.
3752             if (st.hasTag(CLASS))
3753                 attribClass((ClassSymbol)st.tsym);
3754 
3755             // Next attribute owner, if it is a class.
3756             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
3757                 attribClass((ClassSymbol)c.owner);
3758         }
3759 
3760         // The previous operations might have attributed the current class
3761         // if there was a cycle. So we test first whether the class is still
3762         // UNATTRIBUTED.
3763         if ((c.flags_field & UNATTRIBUTED) != 0) {
3764             c.flags_field &= ~UNATTRIBUTED;
3765 
3766             // Get environment current at the point of class definition.
3767             Env<AttrContext> env = enter.typeEnvs.get(c);
3768 
3769             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
3770             // because the annotations were not available at the time the env was created. Therefore,
3771             // we look up the environment chain for the first enclosing environment for which the
3772             // lint value is set. Typically, this is the parent env, but might be further if there
3773             // are any envs created as a result of TypeParameter nodes.
3774             Env<AttrContext> lintEnv = env;
3775             while (lintEnv.info.lint == null)
3776                 lintEnv = lintEnv.next;
3777 
3778             // Having found the enclosing lint value, we can initialize the lint value for this class
3779             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
3780 
3781             Lint prevLint = chk.setLint(env.info.lint);
3782             JavaFileObject prev = log.useSource(c.sourcefile);
3783             ResultInfo prevReturnRes = env.info.returnResult;
3784 
3785             try {
3786                 env.info.returnResult = null;
3787                 // java.lang.Enum may not be subclassed by a non-enum
3788                 if (st.tsym == syms.enumSym &&
3789                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
3790                     log.error(env.tree.pos(), "enum.no.subclassing");
3791 
3792                 // Enums may not be extended by source-level classes
3793                 if (st.tsym != null &&
3794                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
3795                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
3796                     !target.compilerBootstrap(c)) {
3797                     log.error(env.tree.pos(), "enum.types.not.extensible");
3798                 }
3799                 attribClassBody(env, c);
3800 
3801                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
3802             } finally {
3803                 env.info.returnResult = prevReturnRes;
3804                 log.useSource(prev);
3805                 chk.setLint(prevLint);
3806             }
3807 
3808         }
3809     }
3810 
3811     public void visitImport(JCImport tree) {
3812         // nothing to do
3813     }
3814 
3815     /** Finish the attribution of a class. */
3816     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
3817         JCClassDecl tree = (JCClassDecl)env.tree;
3818         Assert.check(c == tree.sym);
3819 
3820         // Validate annotations
3821         chk.validateAnnotations(tree.mods.annotations, c);
3822 
3823         // Validate type parameters, supertype and interfaces.
3824         attribStats(tree.typarams, env);
3825         if (!c.isAnonymous()) {
3826             //already checked if anonymous
3827             chk.validate(tree.typarams, env);
3828             chk.validate(tree.extending, env);
3829             chk.validate(tree.implementing, env);
3830         }
3831 
3832         // If this is a non-abstract class, check that it has no abstract
3833         // methods or unimplemented methods of an implemented interface.
3834         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
3835             if (!relax)
3836                 chk.checkAllDefined(tree.pos(), c);
3837         }
3838 
3839         if ((c.flags() & ANNOTATION) != 0) {
3840             if (tree.implementing.nonEmpty())
3841                 log.error(tree.implementing.head.pos(),
3842                           "cant.extend.intf.annotation");
3843             if (tree.typarams.nonEmpty())
3844                 log.error(tree.typarams.head.pos(),
3845                           "intf.annotation.cant.have.type.params");
3846 
3847             // If this annotation has a @ContainedBy, validate
3848             Attribute.Compound containedBy = c.attribute(syms.containedByType.tsym);
3849             if (containedBy != null) {
3850                 // get diagnositc position for error reporting
3851                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, containedBy.type);
3852                 Assert.checkNonNull(cbPos);
3853 
3854                 chk.validateContainedBy(c, containedBy, cbPos);
3855             }
3856 
3857             // If this annotation has a @ContainerFor, validate
3858             Attribute.Compound containerFor = c.attribute(syms.containerForType.tsym);
3859             if (containerFor != null) {
3860                 // get diagnositc position for error reporting
3861                 DiagnosticPosition cfPos = getDiagnosticPosition(tree, containerFor.type);
3862                 Assert.checkNonNull(cfPos);
3863 
3864                 chk.validateContainerFor(c, containerFor, cfPos);
3865             }
3866         } else {
3867             // Check that all extended classes and interfaces
3868             // are compatible (i.e. no two define methods with same arguments
3869             // yet different return types).  (JLS 8.4.6.3)
3870             chk.checkCompatibleSupertypes(tree.pos(), c.type);
3871             if (allowDefaultMethods) {
3872                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
3873             }
3874         }
3875 
3876         // Check that class does not import the same parameterized interface
3877         // with two different argument lists.
3878         chk.checkClassBounds(tree.pos(), c.type);
3879 
3880         tree.type = c.type;
3881 
3882         for (List<JCTypeParameter> l = tree.typarams;
3883              l.nonEmpty(); l = l.tail) {
3884              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
3885         }
3886 
3887         // Check that a generic class doesn't extend Throwable
3888         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
3889             log.error(tree.extending.pos(), "generic.throwable");
3890 
3891         // Check that all methods which implement some
3892         // method conform to the method they implement.
3893         chk.checkImplementations(tree);
3894 
3895         //check that a resource implementing AutoCloseable cannot throw InterruptedException
3896         checkAutoCloseable(tree.pos(), env, c.type);
3897 
3898         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3899             // Attribute declaration
3900             attribStat(l.head, env);
3901             // Check that declarations in inner classes are not static (JLS 8.1.2)
3902             // Make an exception for static constants.
3903             if (c.owner.kind != PCK &&
3904                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
3905                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
3906                 Symbol sym = null;
3907                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
3908                 if (sym == null ||
3909                     sym.kind != VAR ||
3910                     ((VarSymbol) sym).getConstValue() == null)
3911                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
3912             }
3913         }
3914 
3915         // Check for cycles among non-initial constructors.
3916         chk.checkCyclicConstructors(tree);
3917 
3918         // Check for cycles among annotation elements.
3919         chk.checkNonCyclicElements(tree);
3920 
3921         // Check for proper use of serialVersionUID
3922         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
3923             isSerializable(c) &&
3924             (c.flags() & Flags.ENUM) == 0 &&
3925             (c.flags() & ABSTRACT) == 0) {
3926             checkSerialVersionUID(tree, c);
3927         }
3928     }
3929         // where
3930         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
3931         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
3932             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
3933                 if (types.isSameType(al.head.annotationType.type, t))
3934                     return al.head.pos();
3935             }
3936 
3937             return null;
3938         }
3939 
3940         /** check if a class is a subtype of Serializable, if that is available. */
3941         private boolean isSerializable(ClassSymbol c) {
3942             try {
3943                 syms.serializableType.complete();
3944             }
3945             catch (CompletionFailure e) {
3946                 return false;
3947             }
3948             return types.isSubtype(c.type, syms.serializableType);
3949         }
3950 
3951         /** Check that an appropriate serialVersionUID member is defined. */
3952         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
3953 
3954             // check for presence of serialVersionUID
3955             Scope.Entry e = c.members().lookup(names.serialVersionUID);
3956             while (e.scope != null && e.sym.kind != VAR) e = e.next();
3957             if (e.scope == null) {
3958                 log.warning(LintCategory.SERIAL,
3959                         tree.pos(), "missing.SVUID", c);
3960                 return;
3961             }
3962 
3963             // check that it is static final
3964             VarSymbol svuid = (VarSymbol)e.sym;
3965             if ((svuid.flags() & (STATIC | FINAL)) !=
3966                 (STATIC | FINAL))
3967                 log.warning(LintCategory.SERIAL,
3968                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
3969 
3970             // check that it is long
3971             else if (!svuid.type.hasTag(LONG))
3972                 log.warning(LintCategory.SERIAL,
3973                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
3974 
3975             // check constant
3976             else if (svuid.getConstValue() == null)
3977                 log.warning(LintCategory.SERIAL,
3978                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
3979         }
3980 
3981     private Type capture(Type type) {
3982         return types.capture(type);
3983     }
3984 
3985     // <editor-fold desc="post-attribution visitor">
3986 
3987     /**
3988      * Handle missing types/symbols in an AST. This routine is useful when
3989      * the compiler has encountered some errors (which might have ended up
3990      * terminating attribution abruptly); if the compiler is used in fail-over
3991      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
3992      * prevents NPE to be progagated during subsequent compilation steps.
3993      */
3994     public void postAttr(JCTree tree) {
3995         new PostAttrAnalyzer().scan(tree);
3996     }
3997 
3998     class PostAttrAnalyzer extends TreeScanner {
3999 
4000         private void initTypeIfNeeded(JCTree that) {
4001             if (that.type == null) {
4002                 that.type = syms.unknownType;
4003             }
4004         }
4005 
4006         @Override
4007         public void scan(JCTree tree) {
4008             if (tree == null) return;
4009             if (tree instanceof JCExpression) {
4010                 initTypeIfNeeded(tree);
4011             }
4012             super.scan(tree);
4013         }
4014 
4015         @Override
4016         public void visitIdent(JCIdent that) {
4017             if (that.sym == null) {
4018                 that.sym = syms.unknownSymbol;
4019             }
4020         }
4021 
4022         @Override
4023         public void visitSelect(JCFieldAccess that) {
4024             if (that.sym == null) {
4025                 that.sym = syms.unknownSymbol;
4026             }
4027             super.visitSelect(that);
4028         }
4029 
4030         @Override
4031         public void visitClassDef(JCClassDecl that) {
4032             initTypeIfNeeded(that);
4033             if (that.sym == null) {
4034                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4035             }
4036             super.visitClassDef(that);
4037         }
4038 
4039         @Override
4040         public void visitMethodDef(JCMethodDecl that) {
4041             initTypeIfNeeded(that);
4042             if (that.sym == null) {
4043                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4044             }
4045             super.visitMethodDef(that);
4046         }
4047 
4048         @Override
4049         public void visitVarDef(JCVariableDecl that) {
4050             initTypeIfNeeded(that);
4051             if (that.sym == null) {
4052                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4053                 that.sym.adr = 0;
4054             }
4055             super.visitVarDef(that);
4056         }
4057 
4058         @Override
4059         public void visitNewClass(JCNewClass that) {
4060             if (that.constructor == null) {
4061                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
4062             }
4063             if (that.constructorType == null) {
4064                 that.constructorType = syms.unknownType;
4065             }
4066             super.visitNewClass(that);
4067         }
4068 
4069         @Override
4070         public void visitAssignop(JCAssignOp that) {
4071             if (that.operator == null)
4072                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4073             super.visitAssignop(that);
4074         }
4075 
4076         @Override
4077         public void visitBinary(JCBinary that) {
4078             if (that.operator == null)
4079                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4080             super.visitBinary(that);
4081         }
4082 
4083         @Override
4084         public void visitUnary(JCUnary that) {
4085             if (that.operator == null)
4086                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4087             super.visitUnary(that);
4088         }
4089 
4090         @Override
4091         public void visitReference(JCMemberReference that) {
4092             super.visitReference(that);
4093             if (that.sym == null) {
4094                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
4095             }
4096         }
4097     }
4098     // </editor-fold>
4099 }