1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.concurrent.ConcurrentHashMap;
  58 import java.util.stream.Collectors;
  59 import java.util.stream.Stream;
  60 
  61 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  62 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  63 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  64 import static java.lang.invoke.MethodType.methodType;
  65 
  66 /**
  67  * This class consists exclusively of static methods that operate on or return
  68  * method handles. They fall into several categories:
  69  * <ul>
  70  * <li>Lookup methods which help create method handles for methods and fields.
  71  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  72  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  73  * </ul>
  74  *
  75  * @author John Rose, JSR 292 EG
  76  * @since 1.7
  77  */
  78 public class MethodHandles {
  79 
  80     private MethodHandles() { }  // do not instantiate
  81 
  82     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  83 
  84     // See IMPL_LOOKUP below.
  85 
  86     //// Method handle creation from ordinary methods.
  87 
  88     /**
  89      * Returns a {@link Lookup lookup object} with
  90      * full capabilities to emulate all supported bytecode behaviors of the caller.
  91      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  92      * Factory methods on the lookup object can create
  93      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  94      * for any member that the caller has access to via bytecodes,
  95      * including protected and private fields and methods.
  96      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  97      * Do not store it in place where untrusted code can access it.
  98      * <p>
  99      * This method is caller sensitive, which means that it may return different
 100      * values to different callers.
 101      * @return a lookup object for the caller of this method, with private access
 102      */
 103     @CallerSensitive
 104     @ForceInline // to ensure Reflection.getCallerClass optimization
 105     public static Lookup lookup() {
 106         return new Lookup(Reflection.getCallerClass());
 107     }
 108 
 109     /**
 110      * This reflected$lookup method is the alternate implementation of
 111      * the lookup method when being invoked by reflection.
 112      */
 113     @CallerSensitive
 114     private static Lookup reflected$lookup() {
 115         Class<?> caller = Reflection.getCallerClass();
 116         if (caller.getClassLoader() == null) {
 117             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 118         }
 119         return new Lookup(caller);
 120     }
 121 
 122     /**
 123      * Returns a {@link Lookup lookup object} which is trusted minimally.
 124      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 125      * It can only be used to create method handles to public members of
 126      * public classes in packages that are exported unconditionally.
 127      * <p>
 128      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 129      * of this lookup object will be {@link java.lang.Object}.
 130      *
 131      * @apiNote The use of Object is conventional, and because the lookup modes are
 132      * limited, there is no special access provided to the internals of Object, its package
 133      * or its module. Consequently, the lookup context of this lookup object will be the
 134      * bootstrap class loader, which means it cannot find user classes.
 135      *
 136      * <p style="font-size:smaller;">
 137      * <em>Discussion:</em>
 138      * The lookup class can be changed to any other class {@code C} using an expression of the form
 139      * {@link Lookup#in publicLookup().in(C.class)}.
 140      * but may change the lookup context by virtue of changing the class loader.
 141      * A public lookup object is always subject to
 142      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 143      * Also, it cannot access
 144      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 145      * @return a lookup object which is trusted minimally
 146      *
 147      * @revised 9
 148      * @spec JPMS
 149      */
 150     public static Lookup publicLookup() {
 151         return Lookup.PUBLIC_LOOKUP;
 152     }
 153 
 154     /**
 155      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 156      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 157      * private access</a>, on a target class.
 158      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 159      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 160      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 161      * the target class, then this check ensures that
 162      * <ul>
 163      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 164      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 165      *     the target class to at least {@code m1}.</li>
 166      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 167      * </ul>
 168      * <p>
 169      * If there is a security manager, its {@code checkPermission} method is called to
 170      * check {@code ReflectPermission("suppressAccessChecks")}.
 171      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 172      * was created by code in the caller module (or derived from a lookup object originally
 173      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 174      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 175      * access to the caller.
 176      * @param targetClass the target class
 177      * @param lookup the caller lookup object
 178      * @return a lookup object for the target class, with private access
 179      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 180      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 181      * @throws IllegalAccessException if the access check specified above fails
 182      * @throws SecurityException if denied by the security manager
 183      * @since 9
 184      * @spec JPMS
 185      * @see Lookup#dropLookupMode
 186      */
 187     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 188         SecurityManager sm = System.getSecurityManager();
 189         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 190         if (targetClass.isPrimitive())
 191             throw new IllegalArgumentException(targetClass + " is a primitive class");
 192         if (targetClass.isArray())
 193             throw new IllegalArgumentException(targetClass + " is an array class");
 194         Module targetModule = targetClass.getModule();
 195         Module callerModule = lookup.lookupClass().getModule();
 196         if (!callerModule.canRead(targetModule))
 197             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 198         if (targetModule.isNamed()) {
 199             String pn = targetClass.getPackageName();
 200             assert pn.length() > 0 : "unnamed package cannot be in named module";
 201             if (!targetModule.isOpen(pn, callerModule))
 202                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 203         }
 204         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 205             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 206         if (!callerModule.isNamed() && targetModule.isNamed()) {
 207             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 208             if (logger != null) {
 209                 logger.logIfOpenedForIllegalAccess(lookup, targetClass);
 210             }
 211         }
 212         return new Lookup(targetClass);
 213     }
 214 
 215     /**
 216      * Performs an unchecked "crack" of a
 217      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 218      * The result is as if the user had obtained a lookup object capable enough
 219      * to crack the target method handle, called
 220      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 221      * on the target to obtain its symbolic reference, and then called
 222      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 223      * to resolve the symbolic reference to a member.
 224      * <p>
 225      * If there is a security manager, its {@code checkPermission} method
 226      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 227      * @param <T> the desired type of the result, either {@link Member} or a subtype
 228      * @param target a direct method handle to crack into symbolic reference components
 229      * @param expected a class object representing the desired result type {@code T}
 230      * @return a reference to the method, constructor, or field object
 231      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 232      * @exception NullPointerException if either argument is {@code null}
 233      * @exception IllegalArgumentException if the target is not a direct method handle
 234      * @exception ClassCastException if the member is not of the expected type
 235      * @since 1.8
 236      */
 237     public static <T extends Member> T
 238     reflectAs(Class<T> expected, MethodHandle target) {
 239         SecurityManager smgr = System.getSecurityManager();
 240         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 241         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 242         return lookup.revealDirect(target).reflectAs(expected, lookup);
 243     }
 244     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 245     private static final java.security.Permission ACCESS_PERMISSION =
 246         new ReflectPermission("suppressAccessChecks");
 247 
 248     /**
 249      * A <em>lookup object</em> is a factory for creating method handles,
 250      * when the creation requires access checking.
 251      * Method handles do not perform
 252      * access checks when they are called, but rather when they are created.
 253      * Therefore, method handle access
 254      * restrictions must be enforced when a method handle is created.
 255      * The caller class against which those restrictions are enforced
 256      * is known as the {@linkplain #lookupClass() lookup class}.
 257      * <p>
 258      * A lookup class which needs to create method handles will call
 259      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 260      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 261      * determined, and securely stored in the {@code Lookup} object.
 262      * The lookup class (or its delegates) may then use factory methods
 263      * on the {@code Lookup} object to create method handles for access-checked members.
 264      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 265      * even private ones.
 266      *
 267      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
 268      * The factory methods on a {@code Lookup} object correspond to all major
 269      * use cases for methods, constructors, and fields.
 270      * Each method handle created by a factory method is the functional
 271      * equivalent of a particular <em>bytecode behavior</em>.
 272      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 273      * Here is a summary of the correspondence between these factory methods and
 274      * the behavior of the resulting method handles:
 275      * <table class="striped">
 276      * <caption style="display:none">lookup method behaviors</caption>
 277      * <thead>
 278      * <tr>
 279      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 280      *     <th scope="col">member</th>
 281      *     <th scope="col">bytecode behavior</th>
 282      * </tr>
 283      * </thead>
 284      * <tbody>
 285      * <tr>
 286      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 287      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 288      * </tr>
 289      * <tr>
 290      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 291      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 292      * </tr>
 293      * <tr>
 294      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 295      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 296      * </tr>
 297      * <tr>
 298      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 299      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 300      * </tr>
 301      * <tr>
 302      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 303      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 304      * </tr>
 305      * <tr>
 306      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 307      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 308      * </tr>
 309      * <tr>
 310      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 311      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 312      * </tr>
 313      * <tr>
 314      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 315      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 316      * </tr>
 317      * <tr>
 318      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 319      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 320      * </tr>
 321      * <tr>
 322      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 323      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 324      * </tr>
 325      * <tr>
 326      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 327      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 328      * </tr>
 329      * <tr>
 330      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 331      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 332      * </tr>
 333      * <tr>
 334      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 335      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 336      * </tr>
 337      * <tr>
 338      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 339      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 340      * </tr>
 341      * </tbody>
 342      * </table>
 343      *
 344      * Here, the type {@code C} is the class or interface being searched for a member,
 345      * documented as a parameter named {@code refc} in the lookup methods.
 346      * The method type {@code MT} is composed from the return type {@code T}
 347      * and the sequence of argument types {@code A*}.
 348      * The constructor also has a sequence of argument types {@code A*} and
 349      * is deemed to return the newly-created object of type {@code C}.
 350      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 351      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 352      * if it is present, it is always the leading argument to the method handle invocation.
 353      * (In the case of some {@code protected} members, {@code this} may be
 354      * restricted in type to the lookup class; see below.)
 355      * The name {@code arg} stands for all the other method handle arguments.
 356      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 357      * stands for a null reference if the accessed method or field is static,
 358      * and {@code this} otherwise.
 359      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 360      * for reflective objects corresponding to the given members.
 361      * <p>
 362      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 363      * as if by {@code ldc CONSTANT_Class}.
 364      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 365      * <p>
 366      * In cases where the given member is of variable arity (i.e., a method or constructor)
 367      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 368      * In all other cases, the returned method handle will be of fixed arity.
 369      * <p style="font-size:smaller;">
 370      * <em>Discussion:</em>
 371      * The equivalence between looked-up method handles and underlying
 372      * class members and bytecode behaviors
 373      * can break down in a few ways:
 374      * <ul style="font-size:smaller;">
 375      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 376      * the lookup can still succeed, even when there is no equivalent
 377      * Java expression or bytecoded constant.
 378      * <li>Likewise, if {@code T} or {@code MT}
 379      * is not symbolically accessible from the lookup class's loader,
 380      * the lookup can still succeed.
 381      * For example, lookups for {@code MethodHandle.invokeExact} and
 382      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 383      * <li>If there is a security manager installed, it can forbid the lookup
 384      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 385      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 386      * constant is not subject to security manager checks.
 387      * <li>If the looked-up method has a
 388      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 389      * the method handle creation may fail, due to the method handle
 390      * type having too many parameters.
 391      * </ul>
 392      *
 393      * <h1><a id="access"></a>Access checking</h1>
 394      * Access checks are applied in the factory methods of {@code Lookup},
 395      * when a method handle is created.
 396      * This is a key difference from the Core Reflection API, since
 397      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 398      * performs access checking against every caller, on every call.
 399      * <p>
 400      * All access checks start from a {@code Lookup} object, which
 401      * compares its recorded lookup class against all requests to
 402      * create method handles.
 403      * A single {@code Lookup} object can be used to create any number
 404      * of access-checked method handles, all checked against a single
 405      * lookup class.
 406      * <p>
 407      * A {@code Lookup} object can be shared with other trusted code,
 408      * such as a metaobject protocol.
 409      * A shared {@code Lookup} object delegates the capability
 410      * to create method handles on private members of the lookup class.
 411      * Even if privileged code uses the {@code Lookup} object,
 412      * the access checking is confined to the privileges of the
 413      * original lookup class.
 414      * <p>
 415      * A lookup can fail, because
 416      * the containing class is not accessible to the lookup class, or
 417      * because the desired class member is missing, or because the
 418      * desired class member is not accessible to the lookup class, or
 419      * because the lookup object is not trusted enough to access the member.
 420      * In any of these cases, a {@code ReflectiveOperationException} will be
 421      * thrown from the attempted lookup.  The exact class will be one of
 422      * the following:
 423      * <ul>
 424      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 425      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 426      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 427      * </ul>
 428      * <p>
 429      * In general, the conditions under which a method handle may be
 430      * looked up for a method {@code M} are no more restrictive than the conditions
 431      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 432      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 433      * a method handle lookup will generally raise a corresponding
 434      * checked exception, such as {@code NoSuchMethodException}.
 435      * And the effect of invoking the method handle resulting from the lookup
 436      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 437      * to executing the compiled, verified, and resolved call to {@code M}.
 438      * The same point is true of fields and constructors.
 439      * <p style="font-size:smaller;">
 440      * <em>Discussion:</em>
 441      * Access checks only apply to named and reflected methods,
 442      * constructors, and fields.
 443      * Other method handle creation methods, such as
 444      * {@link MethodHandle#asType MethodHandle.asType},
 445      * do not require any access checks, and are used
 446      * independently of any {@code Lookup} object.
 447      * <p>
 448      * If the desired member is {@code protected}, the usual JVM rules apply,
 449      * including the requirement that the lookup class must be either be in the
 450      * same package as the desired member, or must inherit that member.
 451      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 452      * In addition, if the desired member is a non-static field or method
 453      * in a different package, the resulting method handle may only be applied
 454      * to objects of the lookup class or one of its subclasses.
 455      * This requirement is enforced by narrowing the type of the leading
 456      * {@code this} parameter from {@code C}
 457      * (which will necessarily be a superclass of the lookup class)
 458      * to the lookup class itself.
 459      * <p>
 460      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 461      * that the receiver argument must match both the resolved method <em>and</em>
 462      * the current class.  Again, this requirement is enforced by narrowing the
 463      * type of the leading parameter to the resulting method handle.
 464      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 465      * <p>
 466      * The JVM represents constructors and static initializer blocks as internal methods
 467      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 468      * The internal syntax of invocation instructions allows them to refer to such internal
 469      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 470      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 471      * <p>
 472      * In some cases, access between nested classes is obtained by the Java compiler by creating
 473      * an wrapper method to access a private method of another class
 474      * in the same top-level declaration.
 475      * For example, a nested class {@code C.D}
 476      * can access private members within other related classes such as
 477      * {@code C}, {@code C.D.E}, or {@code C.B},
 478      * but the Java compiler may need to generate wrapper methods in
 479      * those related classes.  In such cases, a {@code Lookup} object on
 480      * {@code C.E} would be unable to those private members.
 481      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 482      * which can transform a lookup on {@code C.E} into one on any of those other
 483      * classes, without special elevation of privilege.
 484      * <p>
 485      * The accesses permitted to a given lookup object may be limited,
 486      * according to its set of {@link #lookupModes lookupModes},
 487      * to a subset of members normally accessible to the lookup class.
 488      * For example, the {@link MethodHandles#publicLookup publicLookup}
 489      * method produces a lookup object which is only allowed to access
 490      * public members in public classes of exported packages.
 491      * The caller sensitive method {@link MethodHandles#lookup lookup}
 492      * produces a lookup object with full capabilities relative to
 493      * its caller class, to emulate all supported bytecode behaviors.
 494      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 495      * with fewer access modes than the original lookup object.
 496      *
 497      * <p style="font-size:smaller;">
 498      * <a id="privacc"></a>
 499      * <em>Discussion of private access:</em>
 500      * We say that a lookup has <em>private access</em>
 501      * if its {@linkplain #lookupModes lookup modes}
 502      * include the possibility of accessing {@code private} members.
 503      * As documented in the relevant methods elsewhere,
 504      * only lookups with private access possess the following capabilities:
 505      * <ul style="font-size:smaller;">
 506      * <li>access private fields, methods, and constructors of the lookup class
 507      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 508      *     such as {@code Class.forName}
 509      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 510      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 511      *     for classes accessible to the lookup class
 512      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 513      *     within the same package member
 514      * </ul>
 515      * <p style="font-size:smaller;">
 516      * Each of these permissions is a consequence of the fact that a lookup object
 517      * with private access can be securely traced back to an originating class,
 518      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 519      * can be reliably determined and emulated by method handles.
 520      *
 521      * <h1><a id="secmgr"></a>Security manager interactions</h1>
 522      * Although bytecode instructions can only refer to classes in
 523      * a related class loader, this API can search for methods in any
 524      * class, as long as a reference to its {@code Class} object is
 525      * available.  Such cross-loader references are also possible with the
 526      * Core Reflection API, and are impossible to bytecode instructions
 527      * such as {@code invokestatic} or {@code getfield}.
 528      * There is a {@linkplain java.lang.SecurityManager security manager API}
 529      * to allow applications to check such cross-loader references.
 530      * These checks apply to both the {@code MethodHandles.Lookup} API
 531      * and the Core Reflection API
 532      * (as found on {@link java.lang.Class Class}).
 533      * <p>
 534      * If a security manager is present, member and class lookups are subject to
 535      * additional checks.
 536      * From one to three calls are made to the security manager.
 537      * Any of these calls can refuse access by throwing a
 538      * {@link java.lang.SecurityException SecurityException}.
 539      * Define {@code smgr} as the security manager,
 540      * {@code lookc} as the lookup class of the current lookup object,
 541      * {@code refc} as the containing class in which the member
 542      * is being sought, and {@code defc} as the class in which the
 543      * member is actually defined.
 544      * (If a class or other type is being accessed,
 545      * the {@code refc} and {@code defc} values are the class itself.)
 546      * The value {@code lookc} is defined as <em>not present</em>
 547      * if the current lookup object does not have
 548      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 549      * The calls are made according to the following rules:
 550      * <ul>
 551      * <li><b>Step 1:</b>
 552      *     If {@code lookc} is not present, or if its class loader is not
 553      *     the same as or an ancestor of the class loader of {@code refc},
 554      *     then {@link SecurityManager#checkPackageAccess
 555      *     smgr.checkPackageAccess(refcPkg)} is called,
 556      *     where {@code refcPkg} is the package of {@code refc}.
 557      * <li><b>Step 2a:</b>
 558      *     If the retrieved member is not public and
 559      *     {@code lookc} is not present, then
 560      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 561      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 562      * <li><b>Step 2b:</b>
 563      *     If the retrieved class has a {@code null} class loader,
 564      *     and {@code lookc} is not present, then
 565      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 566      *     with {@code RuntimePermission("getClassLoader")} is called.
 567      * <li><b>Step 3:</b>
 568      *     If the retrieved member is not public,
 569      *     and if {@code lookc} is not present,
 570      *     and if {@code defc} and {@code refc} are different,
 571      *     then {@link SecurityManager#checkPackageAccess
 572      *     smgr.checkPackageAccess(defcPkg)} is called,
 573      *     where {@code defcPkg} is the package of {@code defc}.
 574      * </ul>
 575      * Security checks are performed after other access checks have passed.
 576      * Therefore, the above rules presuppose a member or class that is public,
 577      * or else that is being accessed from a lookup class that has
 578      * rights to access the member or class.
 579      *
 580      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
 581      * A small number of Java methods have a special property called caller sensitivity.
 582      * A <em>caller-sensitive</em> method can behave differently depending on the
 583      * identity of its immediate caller.
 584      * <p>
 585      * If a method handle for a caller-sensitive method is requested,
 586      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 587      * but they take account of the lookup class in a special way.
 588      * The resulting method handle behaves as if it were called
 589      * from an instruction contained in the lookup class,
 590      * so that the caller-sensitive method detects the lookup class.
 591      * (By contrast, the invoker of the method handle is disregarded.)
 592      * Thus, in the case of caller-sensitive methods,
 593      * different lookup classes may give rise to
 594      * differently behaving method handles.
 595      * <p>
 596      * In cases where the lookup object is
 597      * {@link MethodHandles#publicLookup() publicLookup()},
 598      * or some other lookup object without
 599      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 600      * the lookup class is disregarded.
 601      * In such cases, no caller-sensitive method handle can be created,
 602      * access is forbidden, and the lookup fails with an
 603      * {@code IllegalAccessException}.
 604      * <p style="font-size:smaller;">
 605      * <em>Discussion:</em>
 606      * For example, the caller-sensitive method
 607      * {@link java.lang.Class#forName(String) Class.forName(x)}
 608      * can return varying classes or throw varying exceptions,
 609      * depending on the class loader of the class that calls it.
 610      * A public lookup of {@code Class.forName} will fail, because
 611      * there is no reasonable way to determine its bytecode behavior.
 612      * <p style="font-size:smaller;">
 613      * If an application caches method handles for broad sharing,
 614      * it should use {@code publicLookup()} to create them.
 615      * If there is a lookup of {@code Class.forName}, it will fail,
 616      * and the application must take appropriate action in that case.
 617      * It may be that a later lookup, perhaps during the invocation of a
 618      * bootstrap method, can incorporate the specific identity
 619      * of the caller, making the method accessible.
 620      * <p style="font-size:smaller;">
 621      * The function {@code MethodHandles.lookup} is caller sensitive
 622      * so that there can be a secure foundation for lookups.
 623      * Nearly all other methods in the JSR 292 API rely on lookup
 624      * objects to check access requests.
 625      *
 626      * @revised 9
 627      */
 628     public static final
 629     class Lookup {
 630         /** The class on behalf of whom the lookup is being performed. */
 631         private final Class<?> lookupClass;
 632 
 633         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 634         private final int allowedModes;
 635 
 636         /** A single-bit mask representing {@code public} access,
 637          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 638          *  The value, {@code 0x01}, happens to be the same as the value of the
 639          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 640          */
 641         public static final int PUBLIC = Modifier.PUBLIC;
 642 
 643         /** A single-bit mask representing {@code private} access,
 644          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 645          *  The value, {@code 0x02}, happens to be the same as the value of the
 646          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 647          */
 648         public static final int PRIVATE = Modifier.PRIVATE;
 649 
 650         /** A single-bit mask representing {@code protected} access,
 651          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 652          *  The value, {@code 0x04}, happens to be the same as the value of the
 653          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 654          */
 655         public static final int PROTECTED = Modifier.PROTECTED;
 656 
 657         /** A single-bit mask representing {@code package} access (default access),
 658          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 659          *  The value is {@code 0x08}, which does not correspond meaningfully to
 660          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 661          */
 662         public static final int PACKAGE = Modifier.STATIC;
 663 
 664         /** A single-bit mask representing {@code module} access (default access),
 665          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 666          *  The value is {@code 0x10}, which does not correspond meaningfully to
 667          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 668          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 669          *  with this lookup mode can access all public types in the module of the
 670          *  lookup class and public types in packages exported by other modules
 671          *  to the module of the lookup class.
 672          *  @since 9
 673          *  @spec JPMS
 674          */
 675         public static final int MODULE = PACKAGE << 1;
 676 
 677         /** A single-bit mask representing {@code unconditional} access
 678          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 679          *  The value is {@code 0x20}, which does not correspond meaningfully to
 680          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 681          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 682          *  java.lang.Module#canRead(java.lang.Module) readability}.
 683          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 684          *  with this lookup mode can access all public members of public types
 685          *  of all modules where the type is in a package that is {@link
 686          *  java.lang.Module#isExported(String) exported unconditionally}.
 687          *  @since 9
 688          *  @spec JPMS
 689          *  @see #publicLookup()
 690          */
 691         public static final int UNCONDITIONAL = PACKAGE << 2;
 692 
 693         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 694         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 695         private static final int TRUSTED   = -1;
 696 
 697         private static int fixmods(int mods) {
 698             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 699             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 700         }
 701 
 702         /** Tells which class is performing the lookup.  It is this class against
 703          *  which checks are performed for visibility and access permissions.
 704          *  <p>
 705          *  The class implies a maximum level of access permission,
 706          *  but the permissions may be additionally limited by the bitmask
 707          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 708          *  can be accessed.
 709          *  @return the lookup class, on behalf of which this lookup object finds members
 710          */
 711         public Class<?> lookupClass() {
 712             return lookupClass;
 713         }
 714 
 715         // This is just for calling out to MethodHandleImpl.
 716         private Class<?> lookupClassOrNull() {
 717             return (allowedModes == TRUSTED) ? null : lookupClass;
 718         }
 719 
 720         /** Tells which access-protection classes of members this lookup object can produce.
 721          *  The result is a bit-mask of the bits
 722          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 723          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 724          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 725          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 726          *  {@linkplain #MODULE MODULE (0x10)},
 727          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 728          *  <p>
 729          *  A freshly-created lookup object
 730          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 731          *  all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to
 732          *  access all members of the caller's class, all public types in the caller's module,
 733          *  and all public types in packages exported by other modules to the caller's module.
 734          *  A lookup object on a new lookup class
 735          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 736          *  may have some mode bits set to zero.
 737          *  Mode bits can also be
 738          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 739          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 740          *  The purpose of this is to restrict access via the new lookup object,
 741          *  so that it can access only names which can be reached by the original
 742          *  lookup object, and also by the new lookup class.
 743          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 744          *  @see #in
 745          *  @see #dropLookupMode
 746          *
 747          *  @revised 9
 748          *  @spec JPMS
 749          */
 750         public int lookupModes() {
 751             return allowedModes & ALL_MODES;
 752         }
 753 
 754         /** Embody the current class (the lookupClass) as a lookup class
 755          * for method handle creation.
 756          * Must be called by from a method in this package,
 757          * which in turn is called by a method not in this package.
 758          */
 759         Lookup(Class<?> lookupClass) {
 760             this(lookupClass, FULL_POWER_MODES);
 761             // make sure we haven't accidentally picked up a privileged class:
 762             checkUnprivilegedlookupClass(lookupClass);
 763         }
 764 
 765         private Lookup(Class<?> lookupClass, int allowedModes) {
 766             this.lookupClass = lookupClass;
 767             this.allowedModes = allowedModes;
 768         }
 769 
 770         /**
 771          * Creates a lookup on the specified new lookup class.
 772          * The resulting object will report the specified
 773          * class as its own {@link #lookupClass() lookupClass}.
 774          * <p>
 775          * However, the resulting {@code Lookup} object is guaranteed
 776          * to have no more access capabilities than the original.
 777          * In particular, access capabilities can be lost as follows:<ul>
 778          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 779          * the new lookup class is in a different module {@code M}, then no members, not
 780          * even public members in {@code M}'s exported packages, will be accessible.
 781          * The exception to this is when this lookup is {@link #publicLookup()
 782          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 783          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 784          * is a different module then {@link #MODULE MODULE} access is lost.
 785          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 786          * <li>If the new lookup class is in a different package
 787          * than the old one, protected and default (package) members will not be accessible.
 788          * <li>If the new lookup class is not within the same package member
 789          * as the old one, private members will not be accessible, and protected members
 790          * will not be accessible by virtue of inheritance.
 791          * (Protected members may continue to be accessible because of package sharing.)
 792          * <li>If the new lookup class is not accessible to the old lookup class,
 793          * then no members, not even public members, will be accessible.
 794          * (In all other cases, public members will continue to be accessible.)
 795          * </ul>
 796          * <p>
 797          * The resulting lookup's capabilities for loading classes
 798          * (used during {@link #findClass} invocations)
 799          * are determined by the lookup class' loader,
 800          * which may change due to this operation.
 801          *
 802          * @param requestedLookupClass the desired lookup class for the new lookup object
 803          * @return a lookup object which reports the desired lookup class, or the same object
 804          * if there is no change
 805          * @throws NullPointerException if the argument is null
 806          *
 807          * @revised 9
 808          * @spec JPMS
 809          */
 810         public Lookup in(Class<?> requestedLookupClass) {
 811             Objects.requireNonNull(requestedLookupClass);
 812             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 813                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 814             if (requestedLookupClass == this.lookupClass)
 815                 return this;  // keep same capabilities
 816             int newModes = (allowedModes & FULL_POWER_MODES);
 817             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 818                 // Need to drop all access when teleporting from a named module to another
 819                 // module. The exception is publicLookup where PUBLIC is not lost.
 820                 if (this.lookupClass.getModule().isNamed()
 821                     && (this.allowedModes & UNCONDITIONAL) == 0)
 822                     newModes = 0;
 823                 else
 824                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 825             }
 826             if ((newModes & PACKAGE) != 0
 827                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 828                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 829             }
 830             // Allow nestmate lookups to be created without special privilege:
 831             if ((newModes & PRIVATE) != 0
 832                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 833                 newModes &= ~(PRIVATE|PROTECTED);
 834             }
 835             if ((newModes & PUBLIC) != 0
 836                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 837                 // The requested class it not accessible from the lookup class.
 838                 // No permissions.
 839                 newModes = 0;
 840             }
 841 
 842             checkUnprivilegedlookupClass(requestedLookupClass);
 843             return new Lookup(requestedLookupClass, newModes);
 844         }
 845 
 846 
 847         /**
 848          * Creates a lookup on the same lookup class which this lookup object
 849          * finds members, but with a lookup mode that has lost the given lookup mode.
 850          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 851          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 852          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 853          * dropped and so the resulting lookup mode will never have these access capabilities.
 854          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 855          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 856          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 857          * is dropped then the resulting lookup has no access.
 858          * @param modeToDrop the lookup mode to drop
 859          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 860          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 861          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 862          * @see MethodHandles#privateLookupIn
 863          * @since 9
 864          */
 865         public Lookup dropLookupMode(int modeToDrop) {
 866             int oldModes = lookupModes();
 867             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 868             switch (modeToDrop) {
 869                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 870                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 871                 case PACKAGE: newModes &= ~(PRIVATE); break;
 872                 case PROTECTED:
 873                 case PRIVATE:
 874                 case UNCONDITIONAL: break;
 875                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 876             }
 877             if (newModes == oldModes) return this;  // return self if no change
 878             return new Lookup(lookupClass(), newModes);
 879         }
 880 
 881         /**
 882          * Defines a class to the same class loader and in the same runtime package and
 883          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
 884          * {@linkplain #lookupClass() lookup class}.
 885          *
 886          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
 887          * {@link #PACKAGE PACKAGE} access as default (package) members will be
 888          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
 889          * that the lookup object was created by a caller in the runtime package (or derived
 890          * from a lookup originally created by suitably privileged code to a target class in
 891          * the runtime package). </p>
 892          *
 893          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
 894          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
 895          * same package as the lookup class. </p>
 896          *
 897          * <p> This method does not run the class initializer. The class initializer may
 898          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
 899          * Specification</em>. </p>
 900          *
 901          * <p> If there is a security manager, its {@code checkPermission} method is first called
 902          * to check {@code RuntimePermission("defineClass")}. </p>
 903          *
 904          * @param bytes the class bytes
 905          * @return the {@code Class} object for the class
 906          * @throws IllegalArgumentException the bytes are for a class in a different package
 907          * to the lookup class
 908          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
 909          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
 910          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
 911          * @throws SecurityException if denied by the security manager
 912          * @throws NullPointerException if {@code bytes} is {@code null}
 913          * @since 9
 914          * @spec JPMS
 915          * @see Lookup#privateLookupIn
 916          * @see Lookup#dropLookupMode
 917          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
 918          */
 919         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
 920             SecurityManager sm = System.getSecurityManager();
 921             if (sm != null)
 922                 sm.checkPermission(new RuntimePermission("defineClass"));
 923             if ((lookupModes() & PACKAGE) == 0)
 924                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
 925             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
 926 
 927             // parse class bytes to get class name (in internal form)
 928             bytes = bytes.clone();
 929             String name;
 930             try {
 931                 ClassReader reader = new ClassReader(bytes);
 932                 name = reader.getClassName();
 933             } catch (RuntimeException e) {
 934                 // ASM exceptions are poorly specified
 935                 ClassFormatError cfe = new ClassFormatError();
 936                 cfe.initCause(e);
 937                 throw cfe;
 938             }
 939 
 940             // get package and class name in binary form
 941             String cn, pn;
 942             int index = name.lastIndexOf('/');
 943             if (index == -1) {
 944                 cn = name;
 945                 pn = "";
 946             } else {
 947                 cn = name.replace('/', '.');
 948                 pn = cn.substring(0, index);
 949             }
 950             if (!pn.equals(lookupClass.getPackageName())) {
 951                 throw new IllegalArgumentException("Class not in same package as lookup class");
 952             }
 953 
 954             // invoke the class loader's defineClass method
 955             ClassLoader loader = lookupClass.getClassLoader();
 956             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
 957             String source = "__Lookup_defineClass__";
 958             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
 959             assert clazz.getClassLoader() == lookupClass.getClassLoader()
 960                     && clazz.getPackageName().equals(lookupClass.getPackageName())
 961                     && protectionDomain(clazz) == lookupClassProtectionDomain();
 962             return clazz;
 963         }
 964 
 965         private ProtectionDomain lookupClassProtectionDomain() {
 966             ProtectionDomain pd = cachedProtectionDomain;
 967             if (pd == null) {
 968                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
 969             }
 970             return pd;
 971         }
 972 
 973         private ProtectionDomain protectionDomain(Class<?> clazz) {
 974             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
 975             return AccessController.doPrivileged(pa);
 976         }
 977 
 978         // cached protection domain
 979         private volatile ProtectionDomain cachedProtectionDomain;
 980 
 981 
 982         // Make sure outer class is initialized first.
 983         static { IMPL_NAMES.getClass(); }
 984 
 985         /** Package-private version of lookup which is trusted. */
 986         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 987 
 988         /** Version of lookup which is trusted minimally.
 989          *  It can only be used to create method handles to publicly accessible
 990          *  members in packages that are exported unconditionally.
 991          */
 992         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
 993 
 994         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
 995             String name = lookupClass.getName();
 996             if (name.startsWith("java.lang.invoke."))
 997                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 998         }
 999 
1000         /**
1001          * Displays the name of the class from which lookups are to be made.
1002          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1003          * If there are restrictions on the access permitted to this lookup,
1004          * this is indicated by adding a suffix to the class name, consisting
1005          * of a slash and a keyword.  The keyword represents the strongest
1006          * allowed access, and is chosen as follows:
1007          * <ul>
1008          * <li>If no access is allowed, the suffix is "/noaccess".
1009          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1010          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1011          * <li>If only public and module access are allowed, the suffix is "/module".
1012          * <li>If only public, module and package access are allowed, the suffix is "/package".
1013          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1014          * </ul>
1015          * If none of the above cases apply, it is the case that full
1016          * access (public, module, package, private, and protected) is allowed.
1017          * In this case, no suffix is added.
1018          * This is true only of an object obtained originally from
1019          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1020          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1021          * always have restricted access, and will display a suffix.
1022          * <p>
1023          * (It may seem strange that protected access should be
1024          * stronger than private access.  Viewed independently from
1025          * package access, protected access is the first to be lost,
1026          * because it requires a direct subclass relationship between
1027          * caller and callee.)
1028          * @see #in
1029          *
1030          * @revised 9
1031          * @spec JPMS
1032          */
1033         @Override
1034         public String toString() {
1035             String cname = lookupClass.getName();
1036             switch (allowedModes) {
1037             case 0:  // no privileges
1038                 return cname + "/noaccess";
1039             case PUBLIC:
1040                 return cname + "/public";
1041             case PUBLIC|UNCONDITIONAL:
1042                 return cname  + "/publicLookup";
1043             case PUBLIC|MODULE:
1044                 return cname + "/module";
1045             case PUBLIC|MODULE|PACKAGE:
1046                 return cname + "/package";
1047             case FULL_POWER_MODES & ~PROTECTED:
1048                 return cname + "/private";
1049             case FULL_POWER_MODES:
1050                 return cname;
1051             case TRUSTED:
1052                 return "/trusted";  // internal only; not exported
1053             default:  // Should not happen, but it's a bitfield...
1054                 cname = cname + "/" + Integer.toHexString(allowedModes);
1055                 assert(false) : cname;
1056                 return cname;
1057             }
1058         }
1059 
1060         /**
1061          * Produces a method handle for a static method.
1062          * The type of the method handle will be that of the method.
1063          * (Since static methods do not take receivers, there is no
1064          * additional receiver argument inserted into the method handle type,
1065          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1066          * The method and all its argument types must be accessible to the lookup object.
1067          * <p>
1068          * The returned method handle will have
1069          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1070          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1071          * <p>
1072          * If the returned method handle is invoked, the method's class will
1073          * be initialized, if it has not already been initialized.
1074          * <p><b>Example:</b>
1075          * <blockquote><pre>{@code
1076 import static java.lang.invoke.MethodHandles.*;
1077 import static java.lang.invoke.MethodType.*;
1078 ...
1079 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1080   "asList", methodType(List.class, Object[].class));
1081 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1082          * }</pre></blockquote>
1083          * @param refc the class from which the method is accessed
1084          * @param name the name of the method
1085          * @param type the type of the method
1086          * @return the desired method handle
1087          * @throws NoSuchMethodException if the method does not exist
1088          * @throws IllegalAccessException if access checking fails,
1089          *                                or if the method is not {@code static},
1090          *                                or if the method's variable arity modifier bit
1091          *                                is set and {@code asVarargsCollector} fails
1092          * @exception SecurityException if a security manager is present and it
1093          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1094          * @throws NullPointerException if any argument is null
1095          */
1096         public
1097         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1098             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1099             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1100         }
1101 
1102         /**
1103          * Produces a method handle for a virtual method.
1104          * The type of the method handle will be that of the method,
1105          * with the receiver type (usually {@code refc}) prepended.
1106          * The method and all its argument types must be accessible to the lookup object.
1107          * <p>
1108          * When called, the handle will treat the first argument as a receiver
1109          * and dispatch on the receiver's type to determine which method
1110          * implementation to enter.
1111          * (The dispatching action is identical with that performed by an
1112          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1113          * <p>
1114          * The first argument will be of type {@code refc} if the lookup
1115          * class has full privileges to access the member.  Otherwise
1116          * the member must be {@code protected} and the first argument
1117          * will be restricted in type to the lookup class.
1118          * <p>
1119          * The returned method handle will have
1120          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1121          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1122          * <p>
1123          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1124          * instructions and method handles produced by {@code findVirtual},
1125          * if the class is {@code MethodHandle} and the name string is
1126          * {@code invokeExact} or {@code invoke}, the resulting
1127          * method handle is equivalent to one produced by
1128          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1129          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1130          * with the same {@code type} argument.
1131          * <p>
1132          * If the class is {@code VarHandle} and the name string corresponds to
1133          * the name of a signature-polymorphic access mode method, the resulting
1134          * method handle is equivalent to one produced by
1135          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1136          * the access mode corresponding to the name string and with the same
1137          * {@code type} arguments.
1138          * <p>
1139          * <b>Example:</b>
1140          * <blockquote><pre>{@code
1141 import static java.lang.invoke.MethodHandles.*;
1142 import static java.lang.invoke.MethodType.*;
1143 ...
1144 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1145   "concat", methodType(String.class, String.class));
1146 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1147   "hashCode", methodType(int.class));
1148 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1149   "hashCode", methodType(int.class));
1150 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1151 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1152 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1153 // interface method:
1154 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1155   "subSequence", methodType(CharSequence.class, int.class, int.class));
1156 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1157 // constructor "internal method" must be accessed differently:
1158 MethodType MT_newString = methodType(void.class); //()V for new String()
1159 try { assertEquals("impossible", lookup()
1160         .findVirtual(String.class, "<init>", MT_newString));
1161  } catch (NoSuchMethodException ex) { } // OK
1162 MethodHandle MH_newString = publicLookup()
1163   .findConstructor(String.class, MT_newString);
1164 assertEquals("", (String) MH_newString.invokeExact());
1165          * }</pre></blockquote>
1166          *
1167          * @param refc the class or interface from which the method is accessed
1168          * @param name the name of the method
1169          * @param type the type of the method, with the receiver argument omitted
1170          * @return the desired method handle
1171          * @throws NoSuchMethodException if the method does not exist
1172          * @throws IllegalAccessException if access checking fails,
1173          *                                or if the method is {@code static},
1174          *                                or if the method is {@code private} method of interface,
1175          *                                or if the method's variable arity modifier bit
1176          *                                is set and {@code asVarargsCollector} fails
1177          * @exception SecurityException if a security manager is present and it
1178          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1179          * @throws NullPointerException if any argument is null
1180          */
1181         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1182             if (refc == MethodHandle.class) {
1183                 MethodHandle mh = findVirtualForMH(name, type);
1184                 if (mh != null)  return mh;
1185             } else if (refc == VarHandle.class) {
1186                 MethodHandle mh = findVirtualForVH(name, type);
1187                 if (mh != null)  return mh;
1188             }
1189             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1190             MemberName method = resolveOrFail(refKind, refc, name, type);
1191             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1192         }
1193         private MethodHandle findVirtualForMH(String name, MethodType type) {
1194             // these names require special lookups because of the implicit MethodType argument
1195             if ("invoke".equals(name))
1196                 return invoker(type);
1197             if ("invokeExact".equals(name))
1198                 return exactInvoker(type);
1199             assert(!MemberName.isMethodHandleInvokeName(name));
1200             return null;
1201         }
1202         private MethodHandle findVirtualForVH(String name, MethodType type) {
1203             try {
1204                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1205             } catch (IllegalArgumentException e) {
1206                 return null;
1207             }
1208         }
1209 
1210         /**
1211          * Produces a method handle which creates an object and initializes it, using
1212          * the constructor of the specified type.
1213          * The parameter types of the method handle will be those of the constructor,
1214          * while the return type will be a reference to the constructor's class.
1215          * The constructor and all its argument types must be accessible to the lookup object.
1216          * <p>
1217          * The requested type must have a return type of {@code void}.
1218          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1219          * <p>
1220          * The returned method handle will have
1221          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1222          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1223          * <p>
1224          * If the returned method handle is invoked, the constructor's class will
1225          * be initialized, if it has not already been initialized.
1226          * <p><b>Example:</b>
1227          * <blockquote><pre>{@code
1228 import static java.lang.invoke.MethodHandles.*;
1229 import static java.lang.invoke.MethodType.*;
1230 ...
1231 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1232   ArrayList.class, methodType(void.class, Collection.class));
1233 Collection orig = Arrays.asList("x", "y");
1234 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1235 assert(orig != copy);
1236 assertEquals(orig, copy);
1237 // a variable-arity constructor:
1238 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1239   ProcessBuilder.class, methodType(void.class, String[].class));
1240 ProcessBuilder pb = (ProcessBuilder)
1241   MH_newProcessBuilder.invoke("x", "y", "z");
1242 assertEquals("[x, y, z]", pb.command().toString());
1243          * }</pre></blockquote>
1244          * @param refc the class or interface from which the method is accessed
1245          * @param type the type of the method, with the receiver argument omitted, and a void return type
1246          * @return the desired method handle
1247          * @throws NoSuchMethodException if the constructor does not exist
1248          * @throws IllegalAccessException if access checking fails
1249          *                                or if the method's variable arity modifier bit
1250          *                                is set and {@code asVarargsCollector} fails
1251          * @exception SecurityException if a security manager is present and it
1252          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1253          * @throws NullPointerException if any argument is null
1254          */
1255         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1256             if (refc.isArray()) {
1257                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1258             }
1259             String name = "<init>";
1260             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1261             return getDirectConstructor(refc, ctor);
1262         }
1263 
1264         /**
1265          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1266          * initializer of the class is not run.
1267          * <p>
1268          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1269          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1270          * load the requested class, and then determines whether the class is accessible to this lookup object.
1271          *
1272          * @param targetName the fully qualified name of the class to be looked up.
1273          * @return the requested class.
1274          * @exception SecurityException if a security manager is present and it
1275          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1276          * @throws LinkageError if the linkage fails
1277          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1278          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1279          * modes.
1280          * @exception SecurityException if a security manager is present and it
1281          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1282          * @since 9
1283          */
1284         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1285             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1286             return accessClass(targetClass);
1287         }
1288 
1289         /**
1290          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1291          * static initializer of the class is not run.
1292          * <p>
1293          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1294          * {@linkplain #lookupModes() lookup modes}.
1295          *
1296          * @param targetClass the class to be access-checked
1297          *
1298          * @return the class that has been access-checked
1299          *
1300          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1301          * modes.
1302          * @exception SecurityException if a security manager is present and it
1303          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1304          * @since 9
1305          */
1306         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1307             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1308                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1309             }
1310             checkSecurityManager(targetClass, null);
1311             return targetClass;
1312         }
1313 
1314         /**
1315          * Produces an early-bound method handle for a virtual method.
1316          * It will bypass checks for overriding methods on the receiver,
1317          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1318          * instruction from within the explicitly specified {@code specialCaller}.
1319          * The type of the method handle will be that of the method,
1320          * with a suitably restricted receiver type prepended.
1321          * (The receiver type will be {@code specialCaller} or a subtype.)
1322          * The method and all its argument types must be accessible
1323          * to the lookup object.
1324          * <p>
1325          * Before method resolution,
1326          * if the explicitly specified caller class is not identical with the
1327          * lookup class, or if this lookup object does not have
1328          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1329          * privileges, the access fails.
1330          * <p>
1331          * The returned method handle will have
1332          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1333          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1334          * <p style="font-size:smaller;">
1335          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1336          * even though the {@code invokespecial} instruction can refer to them
1337          * in special circumstances.  Use {@link #findConstructor findConstructor}
1338          * to access instance initialization methods in a safe manner.)</em>
1339          * <p><b>Example:</b>
1340          * <blockquote><pre>{@code
1341 import static java.lang.invoke.MethodHandles.*;
1342 import static java.lang.invoke.MethodType.*;
1343 ...
1344 static class Listie extends ArrayList {
1345   public String toString() { return "[wee Listie]"; }
1346   static Lookup lookup() { return MethodHandles.lookup(); }
1347 }
1348 ...
1349 // no access to constructor via invokeSpecial:
1350 MethodHandle MH_newListie = Listie.lookup()
1351   .findConstructor(Listie.class, methodType(void.class));
1352 Listie l = (Listie) MH_newListie.invokeExact();
1353 try { assertEquals("impossible", Listie.lookup().findSpecial(
1354         Listie.class, "<init>", methodType(void.class), Listie.class));
1355  } catch (NoSuchMethodException ex) { } // OK
1356 // access to super and self methods via invokeSpecial:
1357 MethodHandle MH_super = Listie.lookup().findSpecial(
1358   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1359 MethodHandle MH_this = Listie.lookup().findSpecial(
1360   Listie.class, "toString" , methodType(String.class), Listie.class);
1361 MethodHandle MH_duper = Listie.lookup().findSpecial(
1362   Object.class, "toString" , methodType(String.class), Listie.class);
1363 assertEquals("[]", (String) MH_super.invokeExact(l));
1364 assertEquals(""+l, (String) MH_this.invokeExact(l));
1365 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1366 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1367         String.class, "toString", methodType(String.class), Listie.class));
1368  } catch (IllegalAccessException ex) { } // OK
1369 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1370 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1371          * }</pre></blockquote>
1372          *
1373          * @param refc the class or interface from which the method is accessed
1374          * @param name the name of the method (which must not be "&lt;init&gt;")
1375          * @param type the type of the method, with the receiver argument omitted
1376          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1377          * @return the desired method handle
1378          * @throws NoSuchMethodException if the method does not exist
1379          * @throws IllegalAccessException if access checking fails,
1380          *                                or if the method is {@code static},
1381          *                                or if the method's variable arity modifier bit
1382          *                                is set and {@code asVarargsCollector} fails
1383          * @exception SecurityException if a security manager is present and it
1384          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1385          * @throws NullPointerException if any argument is null
1386          */
1387         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1388                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1389             checkSpecialCaller(specialCaller, refc);
1390             Lookup specialLookup = this.in(specialCaller);
1391             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1392             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1393         }
1394 
1395         /**
1396          * Produces a method handle giving read access to a non-static field.
1397          * The type of the method handle will have a return type of the field's
1398          * value type.
1399          * The method handle's single argument will be the instance containing
1400          * the field.
1401          * Access checking is performed immediately on behalf of the lookup class.
1402          * @param refc the class or interface from which the method is accessed
1403          * @param name the field's name
1404          * @param type the field's type
1405          * @return a method handle which can load values from the field
1406          * @throws NoSuchFieldException if the field does not exist
1407          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1408          * @exception SecurityException if a security manager is present and it
1409          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1410          * @throws NullPointerException if any argument is null
1411          * @see #findVarHandle(Class, String, Class)
1412          */
1413         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1414             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1415             return getDirectField(REF_getField, refc, field);
1416         }
1417 
1418         /**
1419          * Produces a method handle giving write access to a non-static field.
1420          * The type of the method handle will have a void return type.
1421          * The method handle will take two arguments, the instance containing
1422          * the field, and the value to be stored.
1423          * The second argument will be of the field's value type.
1424          * Access checking is performed immediately on behalf of the lookup class.
1425          * @param refc the class or interface from which the method is accessed
1426          * @param name the field's name
1427          * @param type the field's type
1428          * @return a method handle which can store values into the field
1429          * @throws NoSuchFieldException if the field does not exist
1430          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1431          * @exception SecurityException if a security manager is present and it
1432          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1433          * @throws NullPointerException if any argument is null
1434          * @see #findVarHandle(Class, String, Class)
1435          */
1436         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1437             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1438             return getDirectField(REF_putField, refc, field);
1439         }
1440 
1441         /**
1442          * Produces a VarHandle giving access to a non-static field {@code name}
1443          * of type {@code type} declared in a class of type {@code recv}.
1444          * The VarHandle's variable type is {@code type} and it has one
1445          * coordinate type, {@code recv}.
1446          * <p>
1447          * Access checking is performed immediately on behalf of the lookup
1448          * class.
1449          * <p>
1450          * Certain access modes of the returned VarHandle are unsupported under
1451          * the following conditions:
1452          * <ul>
1453          * <li>if the field is declared {@code final}, then the write, atomic
1454          *     update, numeric atomic update, and bitwise atomic update access
1455          *     modes are unsupported.
1456          * <li>if the field type is anything other than {@code byte},
1457          *     {@code short}, {@code char}, {@code int}, {@code long},
1458          *     {@code float}, or {@code double} then numeric atomic update
1459          *     access modes are unsupported.
1460          * <li>if the field type is anything other than {@code boolean},
1461          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1462          *     {@code long} then bitwise atomic update access modes are
1463          *     unsupported.
1464          * </ul>
1465          * <p>
1466          * If the field is declared {@code volatile} then the returned VarHandle
1467          * will override access to the field (effectively ignore the
1468          * {@code volatile} declaration) in accordance to its specified
1469          * access modes.
1470          * <p>
1471          * If the field type is {@code float} or {@code double} then numeric
1472          * and atomic update access modes compare values using their bitwise
1473          * representation (see {@link Float#floatToRawIntBits} and
1474          * {@link Double#doubleToRawLongBits}, respectively).
1475          * @apiNote
1476          * Bitwise comparison of {@code float} values or {@code double} values,
1477          * as performed by the numeric and atomic update access modes, differ
1478          * from the primitive {@code ==} operator and the {@link Float#equals}
1479          * and {@link Double#equals} methods, specifically with respect to
1480          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1481          * Care should be taken when performing a compare and set or a compare
1482          * and exchange operation with such values since the operation may
1483          * unexpectedly fail.
1484          * There are many possible NaN values that are considered to be
1485          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1486          * provided by Java can distinguish between them.  Operation failure can
1487          * occur if the expected or witness value is a NaN value and it is
1488          * transformed (perhaps in a platform specific manner) into another NaN
1489          * value, and thus has a different bitwise representation (see
1490          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1491          * details).
1492          * The values {@code -0.0} and {@code +0.0} have different bitwise
1493          * representations but are considered equal when using the primitive
1494          * {@code ==} operator.  Operation failure can occur if, for example, a
1495          * numeric algorithm computes an expected value to be say {@code -0.0}
1496          * and previously computed the witness value to be say {@code +0.0}.
1497          * @param recv the receiver class, of type {@code R}, that declares the
1498          * non-static field
1499          * @param name the field's name
1500          * @param type the field's type, of type {@code T}
1501          * @return a VarHandle giving access to non-static fields.
1502          * @throws NoSuchFieldException if the field does not exist
1503          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1504          * @exception SecurityException if a security manager is present and it
1505          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1506          * @throws NullPointerException if any argument is null
1507          * @since 9
1508          */
1509         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1510             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1511             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1512             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1513         }
1514 
1515         /**
1516          * Produces a method handle giving read access to a static field.
1517          * The type of the method handle will have a return type of the field's
1518          * value type.
1519          * The method handle will take no arguments.
1520          * Access checking is performed immediately on behalf of the lookup class.
1521          * <p>
1522          * If the returned method handle is invoked, the field's class will
1523          * be initialized, if it has not already been initialized.
1524          * @param refc the class or interface from which the method is accessed
1525          * @param name the field's name
1526          * @param type the field's type
1527          * @return a method handle which can load values from the field
1528          * @throws NoSuchFieldException if the field does not exist
1529          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1530          * @exception SecurityException if a security manager is present and it
1531          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1532          * @throws NullPointerException if any argument is null
1533          */
1534         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1535             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1536             return getDirectField(REF_getStatic, refc, field);
1537         }
1538 
1539         /**
1540          * Produces a method handle giving write access to a static field.
1541          * The type of the method handle will have a void return type.
1542          * The method handle will take a single
1543          * argument, of the field's value type, the value to be stored.
1544          * Access checking is performed immediately on behalf of the lookup class.
1545          * <p>
1546          * If the returned method handle is invoked, the field's class will
1547          * be initialized, if it has not already been initialized.
1548          * @param refc the class or interface from which the method is accessed
1549          * @param name the field's name
1550          * @param type the field's type
1551          * @return a method handle which can store values into the field
1552          * @throws NoSuchFieldException if the field does not exist
1553          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1554          * @exception SecurityException if a security manager is present and it
1555          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1556          * @throws NullPointerException if any argument is null
1557          */
1558         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1559             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1560             return getDirectField(REF_putStatic, refc, field);
1561         }
1562 
1563         /**
1564          * Produces a VarHandle giving access to a static field {@code name} of
1565          * type {@code type} declared in a class of type {@code decl}.
1566          * The VarHandle's variable type is {@code type} and it has no
1567          * coordinate types.
1568          * <p>
1569          * Access checking is performed immediately on behalf of the lookup
1570          * class.
1571          * <p>
1572          * If the returned VarHandle is operated on, the declaring class will be
1573          * initialized, if it has not already been initialized.
1574          * <p>
1575          * Certain access modes of the returned VarHandle are unsupported under
1576          * the following conditions:
1577          * <ul>
1578          * <li>if the field is declared {@code final}, then the write, atomic
1579          *     update, numeric atomic update, and bitwise atomic update access
1580          *     modes are unsupported.
1581          * <li>if the field type is anything other than {@code byte},
1582          *     {@code short}, {@code char}, {@code int}, {@code long},
1583          *     {@code float}, or {@code double}, then numeric atomic update
1584          *     access modes are unsupported.
1585          * <li>if the field type is anything other than {@code boolean},
1586          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1587          *     {@code long} then bitwise atomic update access modes are
1588          *     unsupported.
1589          * </ul>
1590          * <p>
1591          * If the field is declared {@code volatile} then the returned VarHandle
1592          * will override access to the field (effectively ignore the
1593          * {@code volatile} declaration) in accordance to its specified
1594          * access modes.
1595          * <p>
1596          * If the field type is {@code float} or {@code double} then numeric
1597          * and atomic update access modes compare values using their bitwise
1598          * representation (see {@link Float#floatToRawIntBits} and
1599          * {@link Double#doubleToRawLongBits}, respectively).
1600          * @apiNote
1601          * Bitwise comparison of {@code float} values or {@code double} values,
1602          * as performed by the numeric and atomic update access modes, differ
1603          * from the primitive {@code ==} operator and the {@link Float#equals}
1604          * and {@link Double#equals} methods, specifically with respect to
1605          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1606          * Care should be taken when performing a compare and set or a compare
1607          * and exchange operation with such values since the operation may
1608          * unexpectedly fail.
1609          * There are many possible NaN values that are considered to be
1610          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1611          * provided by Java can distinguish between them.  Operation failure can
1612          * occur if the expected or witness value is a NaN value and it is
1613          * transformed (perhaps in a platform specific manner) into another NaN
1614          * value, and thus has a different bitwise representation (see
1615          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1616          * details).
1617          * The values {@code -0.0} and {@code +0.0} have different bitwise
1618          * representations but are considered equal when using the primitive
1619          * {@code ==} operator.  Operation failure can occur if, for example, a
1620          * numeric algorithm computes an expected value to be say {@code -0.0}
1621          * and previously computed the witness value to be say {@code +0.0}.
1622          * @param decl the class that declares the static field
1623          * @param name the field's name
1624          * @param type the field's type, of type {@code T}
1625          * @return a VarHandle giving access to a static field
1626          * @throws NoSuchFieldException if the field does not exist
1627          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1628          * @exception SecurityException if a security manager is present and it
1629          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1630          * @throws NullPointerException if any argument is null
1631          * @since 9
1632          */
1633         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1634             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1635             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1636             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1637         }
1638 
1639         /**
1640          * Produces an early-bound method handle for a non-static method.
1641          * The receiver must have a supertype {@code defc} in which a method
1642          * of the given name and type is accessible to the lookup class.
1643          * The method and all its argument types must be accessible to the lookup object.
1644          * The type of the method handle will be that of the method,
1645          * without any insertion of an additional receiver parameter.
1646          * The given receiver will be bound into the method handle,
1647          * so that every call to the method handle will invoke the
1648          * requested method on the given receiver.
1649          * <p>
1650          * The returned method handle will have
1651          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1652          * the method's variable arity modifier bit ({@code 0x0080}) is set
1653          * <em>and</em> the trailing array argument is not the only argument.
1654          * (If the trailing array argument is the only argument,
1655          * the given receiver value will be bound to it.)
1656          * <p>
1657          * This is almost equivalent to the following code, with some differences noted below:
1658          * <blockquote><pre>{@code
1659 import static java.lang.invoke.MethodHandles.*;
1660 import static java.lang.invoke.MethodType.*;
1661 ...
1662 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1663 MethodHandle mh1 = mh0.bindTo(receiver);
1664 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1665 return mh1;
1666          * }</pre></blockquote>
1667          * where {@code defc} is either {@code receiver.getClass()} or a super
1668          * type of that class, in which the requested method is accessible
1669          * to the lookup class.
1670          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
1671          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
1672          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
1673          * the receiver is restricted by {@code findVirtual} to the lookup class.)
1674          * @param receiver the object from which the method is accessed
1675          * @param name the name of the method
1676          * @param type the type of the method, with the receiver argument omitted
1677          * @return the desired method handle
1678          * @throws NoSuchMethodException if the method does not exist
1679          * @throws IllegalAccessException if access checking fails
1680          *                                or if the method's variable arity modifier bit
1681          *                                is set and {@code asVarargsCollector} fails
1682          * @exception SecurityException if a security manager is present and it
1683          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1684          * @throws NullPointerException if any argument is null
1685          * @see MethodHandle#bindTo
1686          * @see #findVirtual
1687          */
1688         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1689             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1690             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1691             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
1692             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
1693                 throw new IllegalAccessException("The restricted defining class " +
1694                                                  mh.type().leadingReferenceParameter().getName() +
1695                                                  " is not assignable from receiver class " +
1696                                                  receiver.getClass().getName());
1697             }
1698             return mh.bindArgumentL(0, receiver).setVarargs(method);
1699         }
1700 
1701         /**
1702          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1703          * to <i>m</i>, if the lookup class has permission.
1704          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1705          * If <i>m</i> is virtual, overriding is respected on every call.
1706          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1707          * The type of the method handle will be that of the method,
1708          * with the receiver type prepended (but only if it is non-static).
1709          * If the method's {@code accessible} flag is not set,
1710          * access checking is performed immediately on behalf of the lookup class.
1711          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1712          * <p>
1713          * The returned method handle will have
1714          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1715          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1716          * <p>
1717          * If <i>m</i> is static, and
1718          * if the returned method handle is invoked, the method's class will
1719          * be initialized, if it has not already been initialized.
1720          * @param m the reflected method
1721          * @return a method handle which can invoke the reflected method
1722          * @throws IllegalAccessException if access checking fails
1723          *                                or if the method's variable arity modifier bit
1724          *                                is set and {@code asVarargsCollector} fails
1725          * @throws NullPointerException if the argument is null
1726          */
1727         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1728             if (m.getDeclaringClass() == MethodHandle.class) {
1729                 MethodHandle mh = unreflectForMH(m);
1730                 if (mh != null)  return mh;
1731             }
1732             if (m.getDeclaringClass() == VarHandle.class) {
1733                 MethodHandle mh = unreflectForVH(m);
1734                 if (mh != null)  return mh;
1735             }
1736             MemberName method = new MemberName(m);
1737             byte refKind = method.getReferenceKind();
1738             if (refKind == REF_invokeSpecial)
1739                 refKind = REF_invokeVirtual;
1740             assert(method.isMethod());
1741             @SuppressWarnings("deprecation")
1742             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1743             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1744         }
1745         private MethodHandle unreflectForMH(Method m) {
1746             // these names require special lookups because they throw UnsupportedOperationException
1747             if (MemberName.isMethodHandleInvokeName(m.getName()))
1748                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1749             return null;
1750         }
1751         private MethodHandle unreflectForVH(Method m) {
1752             // these names require special lookups because they throw UnsupportedOperationException
1753             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1754                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1755             return null;
1756         }
1757 
1758         /**
1759          * Produces a method handle for a reflected method.
1760          * It will bypass checks for overriding methods on the receiver,
1761          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1762          * instruction from within the explicitly specified {@code specialCaller}.
1763          * The type of the method handle will be that of the method,
1764          * with a suitably restricted receiver type prepended.
1765          * (The receiver type will be {@code specialCaller} or a subtype.)
1766          * If the method's {@code accessible} flag is not set,
1767          * access checking is performed immediately on behalf of the lookup class,
1768          * as if {@code invokespecial} instruction were being linked.
1769          * <p>
1770          * Before method resolution,
1771          * if the explicitly specified caller class is not identical with the
1772          * lookup class, or if this lookup object does not have
1773          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1774          * privileges, the access fails.
1775          * <p>
1776          * The returned method handle will have
1777          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1778          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1779          * @param m the reflected method
1780          * @param specialCaller the class nominally calling the method
1781          * @return a method handle which can invoke the reflected method
1782          * @throws IllegalAccessException if access checking fails,
1783          *                                or if the method is {@code static},
1784          *                                or if the method's variable arity modifier bit
1785          *                                is set and {@code asVarargsCollector} fails
1786          * @throws NullPointerException if any argument is null
1787          */
1788         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1789             checkSpecialCaller(specialCaller, null);
1790             Lookup specialLookup = this.in(specialCaller);
1791             MemberName method = new MemberName(m, true);
1792             assert(method.isMethod());
1793             // ignore m.isAccessible:  this is a new kind of access
1794             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1795         }
1796 
1797         /**
1798          * Produces a method handle for a reflected constructor.
1799          * The type of the method handle will be that of the constructor,
1800          * with the return type changed to the declaring class.
1801          * The method handle will perform a {@code newInstance} operation,
1802          * creating a new instance of the constructor's class on the
1803          * arguments passed to the method handle.
1804          * <p>
1805          * If the constructor's {@code accessible} flag is not set,
1806          * access checking is performed immediately on behalf of the lookup class.
1807          * <p>
1808          * The returned method handle will have
1809          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1810          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1811          * <p>
1812          * If the returned method handle is invoked, the constructor's class will
1813          * be initialized, if it has not already been initialized.
1814          * @param c the reflected constructor
1815          * @return a method handle which can invoke the reflected constructor
1816          * @throws IllegalAccessException if access checking fails
1817          *                                or if the method's variable arity modifier bit
1818          *                                is set and {@code asVarargsCollector} fails
1819          * @throws NullPointerException if the argument is null
1820          */
1821         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1822             MemberName ctor = new MemberName(c);
1823             assert(ctor.isConstructor());
1824             @SuppressWarnings("deprecation")
1825             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1826             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1827         }
1828 
1829         /**
1830          * Produces a method handle giving read access to a reflected field.
1831          * The type of the method handle will have a return type of the field's
1832          * value type.
1833          * If the field is static, the method handle will take no arguments.
1834          * Otherwise, its single argument will be the instance containing
1835          * the field.
1836          * If the field's {@code accessible} flag is not set,
1837          * access checking is performed immediately on behalf of the lookup class.
1838          * <p>
1839          * If the field is static, and
1840          * if the returned method handle is invoked, the field's class will
1841          * be initialized, if it has not already been initialized.
1842          * @param f the reflected field
1843          * @return a method handle which can load values from the reflected field
1844          * @throws IllegalAccessException if access checking fails
1845          * @throws NullPointerException if the argument is null
1846          */
1847         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1848             return unreflectField(f, false);
1849         }
1850         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1851             MemberName field = new MemberName(f, isSetter);
1852             assert(isSetter
1853                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1854                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1855             @SuppressWarnings("deprecation")
1856             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1857             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1858         }
1859 
1860         /**
1861          * Produces a method handle giving write access to a reflected field.
1862          * The type of the method handle will have a void return type.
1863          * If the field is static, the method handle will take a single
1864          * argument, of the field's value type, the value to be stored.
1865          * Otherwise, the two arguments will be the instance containing
1866          * the field, and the value to be stored.
1867          * If the field's {@code accessible} flag is not set,
1868          * access checking is performed immediately on behalf of the lookup class.
1869          * <p>
1870          * If the field is static, and
1871          * if the returned method handle is invoked, the field's class will
1872          * be initialized, if it has not already been initialized.
1873          * @param f the reflected field
1874          * @return a method handle which can store values into the reflected field
1875          * @throws IllegalAccessException if access checking fails
1876          * @throws NullPointerException if the argument is null
1877          */
1878         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1879             return unreflectField(f, true);
1880         }
1881 
1882         /**
1883          * Produces a VarHandle giving access to a reflected field {@code f}
1884          * of type {@code T} declared in a class of type {@code R}.
1885          * The VarHandle's variable type is {@code T}.
1886          * If the field is non-static the VarHandle has one coordinate type,
1887          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1888          * coordinate types.
1889          * <p>
1890          * Access checking is performed immediately on behalf of the lookup
1891          * class, regardless of the value of the field's {@code accessible}
1892          * flag.
1893          * <p>
1894          * If the field is static, and if the returned VarHandle is operated
1895          * on, the field's declaring class will be initialized, if it has not
1896          * already been initialized.
1897          * <p>
1898          * Certain access modes of the returned VarHandle are unsupported under
1899          * the following conditions:
1900          * <ul>
1901          * <li>if the field is declared {@code final}, then the write, atomic
1902          *     update, numeric atomic update, and bitwise atomic update access
1903          *     modes are unsupported.
1904          * <li>if the field type is anything other than {@code byte},
1905          *     {@code short}, {@code char}, {@code int}, {@code long},
1906          *     {@code float}, or {@code double} then numeric atomic update
1907          *     access modes are unsupported.
1908          * <li>if the field type is anything other than {@code boolean},
1909          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1910          *     {@code long} then bitwise atomic update access modes are
1911          *     unsupported.
1912          * </ul>
1913          * <p>
1914          * If the field is declared {@code volatile} then the returned VarHandle
1915          * will override access to the field (effectively ignore the
1916          * {@code volatile} declaration) in accordance to its specified
1917          * access modes.
1918          * <p>
1919          * If the field type is {@code float} or {@code double} then numeric
1920          * and atomic update access modes compare values using their bitwise
1921          * representation (see {@link Float#floatToRawIntBits} and
1922          * {@link Double#doubleToRawLongBits}, respectively).
1923          * @apiNote
1924          * Bitwise comparison of {@code float} values or {@code double} values,
1925          * as performed by the numeric and atomic update access modes, differ
1926          * from the primitive {@code ==} operator and the {@link Float#equals}
1927          * and {@link Double#equals} methods, specifically with respect to
1928          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1929          * Care should be taken when performing a compare and set or a compare
1930          * and exchange operation with such values since the operation may
1931          * unexpectedly fail.
1932          * There are many possible NaN values that are considered to be
1933          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1934          * provided by Java can distinguish between them.  Operation failure can
1935          * occur if the expected or witness value is a NaN value and it is
1936          * transformed (perhaps in a platform specific manner) into another NaN
1937          * value, and thus has a different bitwise representation (see
1938          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1939          * details).
1940          * The values {@code -0.0} and {@code +0.0} have different bitwise
1941          * representations but are considered equal when using the primitive
1942          * {@code ==} operator.  Operation failure can occur if, for example, a
1943          * numeric algorithm computes an expected value to be say {@code -0.0}
1944          * and previously computed the witness value to be say {@code +0.0}.
1945          * @param f the reflected field, with a field of type {@code T}, and
1946          * a declaring class of type {@code R}
1947          * @return a VarHandle giving access to non-static fields or a static
1948          * field
1949          * @throws IllegalAccessException if access checking fails
1950          * @throws NullPointerException if the argument is null
1951          * @since 9
1952          */
1953         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1954             MemberName getField = new MemberName(f, false);
1955             MemberName putField = new MemberName(f, true);
1956             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1957                                                       f.getDeclaringClass(), getField, putField);
1958         }
1959 
1960         /**
1961          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1962          * created by this lookup object or a similar one.
1963          * Security and access checks are performed to ensure that this lookup object
1964          * is capable of reproducing the target method handle.
1965          * This means that the cracking may fail if target is a direct method handle
1966          * but was created by an unrelated lookup object.
1967          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1968          * and was created by a lookup object for a different class.
1969          * @param target a direct method handle to crack into symbolic reference components
1970          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1971          * @exception SecurityException if a security manager is present and it
1972          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1973          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1974          * @exception NullPointerException if the target is {@code null}
1975          * @see MethodHandleInfo
1976          * @since 1.8
1977          */
1978         public MethodHandleInfo revealDirect(MethodHandle target) {
1979             MemberName member = target.internalMemberName();
1980             if (member == null || (!member.isResolved() &&
1981                                    !member.isMethodHandleInvoke() &&
1982                                    !member.isVarHandleMethodInvoke()))
1983                 throw newIllegalArgumentException("not a direct method handle");
1984             Class<?> defc = member.getDeclaringClass();
1985             byte refKind = member.getReferenceKind();
1986             assert(MethodHandleNatives.refKindIsValid(refKind));
1987             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1988                 // Devirtualized method invocation is usually formally virtual.
1989                 // To avoid creating extra MemberName objects for this common case,
1990                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1991                 refKind = REF_invokeVirtual;
1992             if (refKind == REF_invokeVirtual && defc.isInterface())
1993                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1994                 refKind = REF_invokeInterface;
1995             // Check SM permissions and member access before cracking.
1996             try {
1997                 checkAccess(refKind, defc, member);
1998                 checkSecurityManager(defc, member);
1999             } catch (IllegalAccessException ex) {
2000                 throw new IllegalArgumentException(ex);
2001             }
2002             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2003                 Class<?> callerClass = target.internalCallerClass();
2004                 if (!hasPrivateAccess() || callerClass != lookupClass())
2005                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2006             }
2007             // Produce the handle to the results.
2008             return new InfoFromMemberName(this, member, refKind);
2009         }
2010 
2011         /// Helper methods, all package-private.
2012 
2013         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2014             checkSymbolicClass(refc);  // do this before attempting to resolve
2015             Objects.requireNonNull(name);
2016             Objects.requireNonNull(type);
2017             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2018                                             NoSuchFieldException.class);
2019         }
2020 
2021         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2022             checkSymbolicClass(refc);  // do this before attempting to resolve
2023             Objects.requireNonNull(name);
2024             Objects.requireNonNull(type);
2025             checkMethodName(refKind, name);  // NPE check on name
2026             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2027                                             NoSuchMethodException.class);
2028         }
2029 
2030         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2031             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2032             Objects.requireNonNull(member.getName());
2033             Objects.requireNonNull(member.getType());
2034             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2035                                             ReflectiveOperationException.class);
2036         }
2037 
2038         MemberName resolveOrNull(byte refKind, MemberName member) {
2039             // do this before attempting to resolve
2040             if (!isClassAccessible(member.getDeclaringClass())) {
2041                 return null;
2042             }
2043             Objects.requireNonNull(member.getName());
2044             Objects.requireNonNull(member.getType());
2045             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2046         }
2047 
2048         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2049             if (!isClassAccessible(refc)) {
2050                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2051             }
2052         }
2053 
2054         boolean isClassAccessible(Class<?> refc) {
2055             Objects.requireNonNull(refc);
2056             Class<?> caller = lookupClassOrNull();
2057             return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes);
2058         }
2059 
2060         /** Check name for an illegal leading "&lt;" character. */
2061         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2062             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2063                 throw new NoSuchMethodException("illegal method name: "+name);
2064         }
2065 
2066 
2067         /**
2068          * Find my trustable caller class if m is a caller sensitive method.
2069          * If this lookup object has private access, then the caller class is the lookupClass.
2070          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2071          */
2072         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2073             Class<?> callerClass = null;
2074             if (MethodHandleNatives.isCallerSensitive(m)) {
2075                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2076                 if (hasPrivateAccess()) {
2077                     callerClass = lookupClass;
2078                 } else {
2079                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2080                 }
2081             }
2082             return callerClass;
2083         }
2084 
2085         /**
2086          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2087          * @return {@code true} if this lookup has {@code PRIVATE} access.
2088          * @since 9
2089          */
2090         public boolean hasPrivateAccess() {
2091             return (allowedModes & PRIVATE) != 0;
2092         }
2093 
2094         /**
2095          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2096          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2097          * If this lookup object has private access, then the caller class is the lookupClass.
2098          */
2099         void checkSecurityManager(Class<?> refc, MemberName m) {
2100             SecurityManager smgr = System.getSecurityManager();
2101             if (smgr == null)  return;
2102             if (allowedModes == TRUSTED)  return;
2103 
2104             // Step 1:
2105             boolean fullPowerLookup = hasPrivateAccess();
2106             if (!fullPowerLookup ||
2107                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2108                 ReflectUtil.checkPackageAccess(refc);
2109             }
2110 
2111             if (m == null) {  // findClass or accessClass
2112                 // Step 2b:
2113                 if (!fullPowerLookup) {
2114                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2115                 }
2116                 return;
2117             }
2118 
2119             // Step 2a:
2120             if (m.isPublic()) return;
2121             if (!fullPowerLookup) {
2122                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2123             }
2124 
2125             // Step 3:
2126             Class<?> defc = m.getDeclaringClass();
2127             if (!fullPowerLookup && defc != refc) {
2128                 ReflectUtil.checkPackageAccess(defc);
2129             }
2130         }
2131 
2132         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2133             boolean wantStatic = (refKind == REF_invokeStatic);
2134             String message;
2135             if (m.isConstructor())
2136                 message = "expected a method, not a constructor";
2137             else if (!m.isMethod())
2138                 message = "expected a method";
2139             else if (wantStatic != m.isStatic())
2140                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2141             else
2142                 { checkAccess(refKind, refc, m); return; }
2143             throw m.makeAccessException(message, this);
2144         }
2145 
2146         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2147             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2148             String message;
2149             if (wantStatic != m.isStatic())
2150                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2151             else
2152                 { checkAccess(refKind, refc, m); return; }
2153             throw m.makeAccessException(message, this);
2154         }
2155 
2156         /** Check public/protected/private bits on the symbolic reference class and its member. */
2157         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2158             assert(m.referenceKindIsConsistentWith(refKind) &&
2159                    MethodHandleNatives.refKindIsValid(refKind) &&
2160                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2161             int allowedModes = this.allowedModes;
2162             if (allowedModes == TRUSTED)  return;
2163             int mods = m.getModifiers();
2164             if (Modifier.isProtected(mods) &&
2165                     refKind == REF_invokeVirtual &&
2166                     m.getDeclaringClass() == Object.class &&
2167                     m.getName().equals("clone") &&
2168                     refc.isArray()) {
2169                 // The JVM does this hack also.
2170                 // (See ClassVerifier::verify_invoke_instructions
2171                 // and LinkResolver::check_method_accessability.)
2172                 // Because the JVM does not allow separate methods on array types,
2173                 // there is no separate method for int[].clone.
2174                 // All arrays simply inherit Object.clone.
2175                 // But for access checking logic, we make Object.clone
2176                 // (normally protected) appear to be public.
2177                 // Later on, when the DirectMethodHandle is created,
2178                 // its leading argument will be restricted to the
2179                 // requested array type.
2180                 // N.B. The return type is not adjusted, because
2181                 // that is *not* the bytecode behavior.
2182                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2183             }
2184             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2185                 // cannot "new" a protected ctor in a different package
2186                 mods ^= Modifier.PROTECTED;
2187             }
2188             if (Modifier.isFinal(mods) &&
2189                     MethodHandleNatives.refKindIsSetter(refKind))
2190                 throw m.makeAccessException("unexpected set of a final field", this);
2191             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2192             if ((requestedModes & allowedModes) != 0) {
2193                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2194                                                     mods, lookupClass(), allowedModes))
2195                     return;
2196             } else {
2197                 // Protected members can also be checked as if they were package-private.
2198                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2199                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2200                     return;
2201             }
2202             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2203         }
2204 
2205         String accessFailedMessage(Class<?> refc, MemberName m) {
2206             Class<?> defc = m.getDeclaringClass();
2207             int mods = m.getModifiers();
2208             // check the class first:
2209             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2210                                (defc == refc ||
2211                                 Modifier.isPublic(refc.getModifiers())));
2212             if (!classOK && (allowedModes & PACKAGE) != 0) {
2213                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2214                            (defc == refc ||
2215                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2216             }
2217             if (!classOK)
2218                 return "class is not public";
2219             if (Modifier.isPublic(mods))
2220                 return "access to public member failed";  // (how?, module not readable?)
2221             if (Modifier.isPrivate(mods))
2222                 return "member is private";
2223             if (Modifier.isProtected(mods))
2224                 return "member is protected";
2225             return "member is private to package";
2226         }
2227 
2228         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2229 
2230         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2231             int allowedModes = this.allowedModes;
2232             if (allowedModes == TRUSTED)  return;
2233             if (!hasPrivateAccess()
2234                 || (specialCaller != lookupClass()
2235                        // ensure non-abstract methods in superinterfaces can be special-invoked
2236                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2237                     && !(ALLOW_NESTMATE_ACCESS &&
2238                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2239                 throw new MemberName(specialCaller).
2240                     makeAccessException("no private access for invokespecial", this);
2241         }
2242 
2243         private boolean restrictProtectedReceiver(MemberName method) {
2244             // The accessing class only has the right to use a protected member
2245             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2246             if (!method.isProtected() || method.isStatic()
2247                 || allowedModes == TRUSTED
2248                 || method.getDeclaringClass() == lookupClass()
2249                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2250                 || (ALLOW_NESTMATE_ACCESS &&
2251                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2252                 return false;
2253             return true;
2254         }
2255         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2256             assert(!method.isStatic());
2257             // receiver type of mh is too wide; narrow to caller
2258             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2259                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2260             }
2261             MethodType rawType = mh.type();
2262             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2263             MethodType narrowType = rawType.changeParameterType(0, caller);
2264             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2265             assert(mh.viewAsTypeChecks(narrowType, true));
2266             return mh.copyWith(narrowType, mh.form);
2267         }
2268 
2269         /** Check access and get the requested method. */
2270         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2271             final boolean doRestrict    = true;
2272             final boolean checkSecurity = true;
2273             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2274         }
2275         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
2276         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2277             final boolean doRestrict    = false;
2278             final boolean checkSecurity = true;
2279             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
2280         }
2281         /** Check access and get the requested method, eliding security manager checks. */
2282         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2283             final boolean doRestrict    = true;
2284             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2285             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2286         }
2287         /** Common code for all methods; do not call directly except from immediately above. */
2288         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2289                                                    boolean checkSecurity,
2290                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
2291             checkMethod(refKind, refc, method);
2292             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2293             if (checkSecurity)
2294                 checkSecurityManager(refc, method);
2295             assert(!method.isMethodHandleInvoke());
2296 
2297             if (refKind == REF_invokeSpecial &&
2298                 refc != lookupClass() &&
2299                 !refc.isInterface() &&
2300                 refc != lookupClass().getSuperclass() &&
2301                 refc.isAssignableFrom(lookupClass())) {
2302                 assert(!method.getName().equals("<init>"));  // not this code path
2303                 // Per JVMS 6.5, desc. of invokespecial instruction:
2304                 // If the method is in a superclass of the LC,
2305                 // and if our original search was above LC.super,
2306                 // repeat the search (symbolic lookup) from LC.super
2307                 // and continue with the direct superclass of that class,
2308                 // and so forth, until a match is found or no further superclasses exist.
2309                 // FIXME: MemberName.resolve should handle this instead.
2310                 Class<?> refcAsSuper = lookupClass();
2311                 MemberName m2;
2312                 do {
2313                     refcAsSuper = refcAsSuper.getSuperclass();
2314                     m2 = new MemberName(refcAsSuper,
2315                                         method.getName(),
2316                                         method.getMethodType(),
2317                                         REF_invokeSpecial);
2318                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2319                 } while (m2 == null &&         // no method is found yet
2320                          refc != refcAsSuper); // search up to refc
2321                 if (m2 == null)  throw new InternalError(method.toString());
2322                 method = m2;
2323                 refc = refcAsSuper;
2324                 // redo basic checks
2325                 checkMethod(refKind, refc, method);
2326             }
2327 
2328             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
2329             MethodHandle mh = dmh;
2330             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
2331             if ((doRestrict && refKind == REF_invokeSpecial) ||
2332                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2333                 mh = restrictReceiver(method, dmh, lookupClass());
2334             }
2335             mh = maybeBindCaller(method, mh, boundCallerClass);
2336             mh = mh.setVarargs(method);
2337             return mh;
2338         }
2339         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2340                                              Class<?> boundCallerClass)
2341                                              throws IllegalAccessException {
2342             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2343                 return mh;
2344             Class<?> hostClass = lookupClass;
2345             if (!hasPrivateAccess())  // caller must have private access
2346                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
2347             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2348             // Note: caller will apply varargs after this step happens.
2349             return cbmh;
2350         }
2351         /** Check access and get the requested field. */
2352         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2353             final boolean checkSecurity = true;
2354             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2355         }
2356         /** Check access and get the requested field, eliding security manager checks. */
2357         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2358             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2359             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2360         }
2361         /** Common code for all fields; do not call directly except from immediately above. */
2362         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2363                                                   boolean checkSecurity) throws IllegalAccessException {
2364             checkField(refKind, refc, field);
2365             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2366             if (checkSecurity)
2367                 checkSecurityManager(refc, field);
2368             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2369             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2370                                     restrictProtectedReceiver(field));
2371             if (doRestrict)
2372                 return restrictReceiver(field, dmh, lookupClass());
2373             return dmh;
2374         }
2375         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2376                                             Class<?> refc, MemberName getField, MemberName putField)
2377                 throws IllegalAccessException {
2378             final boolean checkSecurity = true;
2379             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2380         }
2381         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2382                                                              Class<?> refc, MemberName getField, MemberName putField)
2383                 throws IllegalAccessException {
2384             final boolean checkSecurity = false;
2385             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2386         }
2387         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2388                                                   Class<?> refc, MemberName getField, MemberName putField,
2389                                                   boolean checkSecurity) throws IllegalAccessException {
2390             assert getField.isStatic() == putField.isStatic();
2391             assert getField.isGetter() && putField.isSetter();
2392             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2393             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2394 
2395             checkField(getRefKind, refc, getField);
2396             if (checkSecurity)
2397                 checkSecurityManager(refc, getField);
2398 
2399             if (!putField.isFinal()) {
2400                 // A VarHandle does not support updates to final fields, any
2401                 // such VarHandle to a final field will be read-only and
2402                 // therefore the following write-based accessibility checks are
2403                 // only required for non-final fields
2404                 checkField(putRefKind, refc, putField);
2405                 if (checkSecurity)
2406                     checkSecurityManager(refc, putField);
2407             }
2408 
2409             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2410                                   restrictProtectedReceiver(getField));
2411             if (doRestrict) {
2412                 assert !getField.isStatic();
2413                 // receiver type of VarHandle is too wide; narrow to caller
2414                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2415                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2416                 }
2417                 refc = lookupClass();
2418             }
2419             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2420         }
2421         /** Check access and get the requested constructor. */
2422         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2423             final boolean checkSecurity = true;
2424             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2425         }
2426         /** Check access and get the requested constructor, eliding security manager checks. */
2427         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2428             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2429             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2430         }
2431         /** Common code for all constructors; do not call directly except from immediately above. */
2432         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2433                                                   boolean checkSecurity) throws IllegalAccessException {
2434             assert(ctor.isConstructor());
2435             checkAccess(REF_newInvokeSpecial, refc, ctor);
2436             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2437             if (checkSecurity)
2438                 checkSecurityManager(refc, ctor);
2439             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2440             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2441         }
2442 
2443         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2444          */
2445         /*non-public*/
2446         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2447             if (!(type instanceof Class || type instanceof MethodType))
2448                 throw new InternalError("unresolved MemberName");
2449             MemberName member = new MemberName(refKind, defc, name, type);
2450             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2451             if (mh != null) {
2452                 checkSymbolicClass(defc);
2453                 return mh;
2454             }
2455             // Treat MethodHandle.invoke and invokeExact specially.
2456             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2457                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2458                 if (mh != null) {
2459                     return mh;
2460                 }
2461             }
2462             MemberName resolved = resolveOrFail(refKind, member);
2463             mh = getDirectMethodForConstant(refKind, defc, resolved);
2464             if (mh instanceof DirectMethodHandle
2465                     && canBeCached(refKind, defc, resolved)) {
2466                 MemberName key = mh.internalMemberName();
2467                 if (key != null) {
2468                     key = key.asNormalOriginal();
2469                 }
2470                 if (member.equals(key)) {  // better safe than sorry
2471                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2472                 }
2473             }
2474             return mh;
2475         }
2476         private
2477         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2478             if (refKind == REF_invokeSpecial) {
2479                 return false;
2480             }
2481             if (!Modifier.isPublic(defc.getModifiers()) ||
2482                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2483                     !member.isPublic() ||
2484                     member.isCallerSensitive()) {
2485                 return false;
2486             }
2487             ClassLoader loader = defc.getClassLoader();
2488             if (loader != null) {
2489                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2490                 boolean found = false;
2491                 while (sysl != null) {
2492                     if (loader == sysl) { found = true; break; }
2493                     sysl = sysl.getParent();
2494                 }
2495                 if (!found) {
2496                     return false;
2497                 }
2498             }
2499             try {
2500                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
2501                     new MemberName(refKind, defc, member.getName(), member.getType()));
2502                 if (resolved2 == null) {
2503                     return false;
2504                 }
2505                 checkSecurityManager(defc, resolved2);
2506             } catch (SecurityException ex) {
2507                 return false;
2508             }
2509             return true;
2510         }
2511         private
2512         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2513                 throws ReflectiveOperationException {
2514             if (MethodHandleNatives.refKindIsField(refKind)) {
2515                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2516             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2517                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2518             } else if (refKind == REF_newInvokeSpecial) {
2519                 return getDirectConstructorNoSecurityManager(defc, member);
2520             }
2521             // oops
2522             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2523         }
2524 
2525         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2526     }
2527 
2528     /**
2529      * Produces a method handle constructing arrays of a desired type,
2530      * as if by the {@code anewarray} bytecode.
2531      * The return type of the method handle will be the array type.
2532      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2533      *
2534      * <p> If the returned method handle is invoked with a negative
2535      * array size, a {@code NegativeArraySizeException} will be thrown.
2536      *
2537      * @param arrayClass an array type
2538      * @return a method handle which can create arrays of the given type
2539      * @throws NullPointerException if the argument is {@code null}
2540      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2541      * @see java.lang.reflect.Array#newInstance(Class, int)
2542      * @jvms 6.5 {@code anewarray} Instruction
2543      * @since 9
2544      */
2545     public static
2546     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2547         if (!arrayClass.isArray()) {
2548             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2549         }
2550         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2551                 bindTo(arrayClass.getComponentType());
2552         return ani.asType(ani.type().changeReturnType(arrayClass));
2553     }
2554 
2555     /**
2556      * Produces a method handle returning the length of an array,
2557      * as if by the {@code arraylength} bytecode.
2558      * The type of the method handle will have {@code int} as return type,
2559      * and its sole argument will be the array type.
2560      *
2561      * <p> If the returned method handle is invoked with a {@code null}
2562      * array reference, a {@code NullPointerException} will be thrown.
2563      *
2564      * @param arrayClass an array type
2565      * @return a method handle which can retrieve the length of an array of the given array type
2566      * @throws NullPointerException if the argument is {@code null}
2567      * @throws IllegalArgumentException if arrayClass is not an array type
2568      * @jvms 6.5 {@code arraylength} Instruction
2569      * @since 9
2570      */
2571     public static
2572     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2573         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2574     }
2575 
2576     /**
2577      * Produces a method handle giving read access to elements of an array,
2578      * as if by the {@code aaload} bytecode.
2579      * The type of the method handle will have a return type of the array's
2580      * element type.  Its first argument will be the array type,
2581      * and the second will be {@code int}.
2582      *
2583      * <p> When the returned method handle is invoked,
2584      * the array reference and array index are checked.
2585      * A {@code NullPointerException} will be thrown if the array reference
2586      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2587      * thrown if the index is negative or if it is greater than or equal to
2588      * the length of the array.
2589      *
2590      * @param arrayClass an array type
2591      * @return a method handle which can load values from the given array type
2592      * @throws NullPointerException if the argument is null
2593      * @throws  IllegalArgumentException if arrayClass is not an array type
2594      * @jvms 6.5 {@code aaload} Instruction
2595      */
2596     public static
2597     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2598         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2599     }
2600 
2601     /**
2602      * Produces a method handle giving write access to elements of an array,
2603      * as if by the {@code astore} bytecode.
2604      * The type of the method handle will have a void return type.
2605      * Its last argument will be the array's element type.
2606      * The first and second arguments will be the array type and int.
2607      *
2608      * <p> When the returned method handle is invoked,
2609      * the array reference and array index are checked.
2610      * A {@code NullPointerException} will be thrown if the array reference
2611      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2612      * thrown if the index is negative or if it is greater than or equal to
2613      * the length of the array.
2614      *
2615      * @param arrayClass the class of an array
2616      * @return a method handle which can store values into the array type
2617      * @throws NullPointerException if the argument is null
2618      * @throws IllegalArgumentException if arrayClass is not an array type
2619      * @jvms 6.5 {@code aastore} Instruction
2620      */
2621     public static
2622     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2623         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2624     }
2625 
2626     /**
2627      * Produces a VarHandle giving access to elements of an array of type
2628      * {@code arrayClass}.  The VarHandle's variable type is the component type
2629      * of {@code arrayClass} and the list of coordinate types is
2630      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2631      * corresponds to an argument that is an index into an array.
2632      * <p>
2633      * Certain access modes of the returned VarHandle are unsupported under
2634      * the following conditions:
2635      * <ul>
2636      * <li>if the component type is anything other than {@code byte},
2637      *     {@code short}, {@code char}, {@code int}, {@code long},
2638      *     {@code float}, or {@code double} then numeric atomic update access
2639      *     modes are unsupported.
2640      * <li>if the field type is anything other than {@code boolean},
2641      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2642      *     {@code long} then bitwise atomic update access modes are
2643      *     unsupported.
2644      * </ul>
2645      * <p>
2646      * If the component type is {@code float} or {@code double} then numeric
2647      * and atomic update access modes compare values using their bitwise
2648      * representation (see {@link Float#floatToRawIntBits} and
2649      * {@link Double#doubleToRawLongBits}, respectively).
2650      *
2651      * <p> When the returned {@code VarHandle} is invoked,
2652      * the array reference and array index are checked.
2653      * A {@code NullPointerException} will be thrown if the array reference
2654      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2655      * thrown if the index is negative or if it is greater than or equal to
2656      * the length of the array.
2657      *
2658      * @apiNote
2659      * Bitwise comparison of {@code float} values or {@code double} values,
2660      * as performed by the numeric and atomic update access modes, differ
2661      * from the primitive {@code ==} operator and the {@link Float#equals}
2662      * and {@link Double#equals} methods, specifically with respect to
2663      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2664      * Care should be taken when performing a compare and set or a compare
2665      * and exchange operation with such values since the operation may
2666      * unexpectedly fail.
2667      * There are many possible NaN values that are considered to be
2668      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2669      * provided by Java can distinguish between them.  Operation failure can
2670      * occur if the expected or witness value is a NaN value and it is
2671      * transformed (perhaps in a platform specific manner) into another NaN
2672      * value, and thus has a different bitwise representation (see
2673      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2674      * details).
2675      * The values {@code -0.0} and {@code +0.0} have different bitwise
2676      * representations but are considered equal when using the primitive
2677      * {@code ==} operator.  Operation failure can occur if, for example, a
2678      * numeric algorithm computes an expected value to be say {@code -0.0}
2679      * and previously computed the witness value to be say {@code +0.0}.
2680      * @param arrayClass the class of an array, of type {@code T[]}
2681      * @return a VarHandle giving access to elements of an array
2682      * @throws NullPointerException if the arrayClass is null
2683      * @throws IllegalArgumentException if arrayClass is not an array type
2684      * @since 9
2685      */
2686     public static
2687     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2688         return VarHandles.makeArrayElementHandle(arrayClass);
2689     }
2690 
2691     /**
2692      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2693      * viewed as if it were a different primitive array type, such as
2694      * {@code int[]} or {@code long[]}.
2695      * The VarHandle's variable type is the component type of
2696      * {@code viewArrayClass} and the list of coordinate types is
2697      * {@code (byte[], int)}, where the {@code int} coordinate type
2698      * corresponds to an argument that is an index into a {@code byte[]} array.
2699      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2700      * array, composing bytes to or from a value of the component type of
2701      * {@code viewArrayClass} according to the given endianness.
2702      * <p>
2703      * The supported component types (variables types) are {@code short},
2704      * {@code char}, {@code int}, {@code long}, {@code float} and
2705      * {@code double}.
2706      * <p>
2707      * Access of bytes at a given index will result in an
2708      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2709      * or greater than the {@code byte[]} array length minus the size (in bytes)
2710      * of {@code T}.
2711      * <p>
2712      * Access of bytes at an index may be aligned or misaligned for {@code T},
2713      * with respect to the underlying memory address, {@code A} say, associated
2714      * with the array and index.
2715      * If access is misaligned then access for anything other than the
2716      * {@code get} and {@code set} access modes will result in an
2717      * {@code IllegalStateException}.  In such cases atomic access is only
2718      * guaranteed with respect to the largest power of two that divides the GCD
2719      * of {@code A} and the size (in bytes) of {@code T}.
2720      * If access is aligned then following access modes are supported and are
2721      * guaranteed to support atomic access:
2722      * <ul>
2723      * <li>read write access modes for all {@code T}, with the exception of
2724      *     access modes {@code get} and {@code set} for {@code long} and
2725      *     {@code double} on 32-bit platforms.
2726      * <li>atomic update access modes for {@code int}, {@code long},
2727      *     {@code float} or {@code double}.
2728      *     (Future major platform releases of the JDK may support additional
2729      *     types for certain currently unsupported access modes.)
2730      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2731      *     (Future major platform releases of the JDK may support additional
2732      *     numeric types for certain currently unsupported access modes.)
2733      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2734      *     (Future major platform releases of the JDK may support additional
2735      *     numeric types for certain currently unsupported access modes.)
2736      * </ul>
2737      * <p>
2738      * Misaligned access, and therefore atomicity guarantees, may be determined
2739      * for {@code byte[]} arrays without operating on a specific array.  Given
2740      * an {@code index}, {@code T} and it's corresponding boxed type,
2741      * {@code T_BOX}, misalignment may be determined as follows:
2742      * <pre>{@code
2743      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2744      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2745      *     alignmentOffset(0, sizeOfT);
2746      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2747      * boolean isMisaligned = misalignedAtIndex != 0;
2748      * }</pre>
2749      * <p>
2750      * If the variable type is {@code float} or {@code double} then atomic
2751      * update access modes compare values using their bitwise representation
2752      * (see {@link Float#floatToRawIntBits} and
2753      * {@link Double#doubleToRawLongBits}, respectively).
2754      * @param viewArrayClass the view array class, with a component type of
2755      * type {@code T}
2756      * @param byteOrder the endianness of the view array elements, as
2757      * stored in the underlying {@code byte} array
2758      * @return a VarHandle giving access to elements of a {@code byte[]} array
2759      * viewed as if elements corresponding to the components type of the view
2760      * array class
2761      * @throws NullPointerException if viewArrayClass or byteOrder is null
2762      * @throws IllegalArgumentException if viewArrayClass is not an array type
2763      * @throws UnsupportedOperationException if the component type of
2764      * viewArrayClass is not supported as a variable type
2765      * @since 9
2766      */
2767     public static
2768     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2769                                      ByteOrder byteOrder) throws IllegalArgumentException {
2770         Objects.requireNonNull(byteOrder);
2771         return VarHandles.byteArrayViewHandle(viewArrayClass,
2772                                               byteOrder == ByteOrder.BIG_ENDIAN);
2773     }
2774 
2775     /**
2776      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2777      * viewed as if it were an array of elements of a different primitive
2778      * component type to that of {@code byte}, such as {@code int[]} or
2779      * {@code long[]}.
2780      * The VarHandle's variable type is the component type of
2781      * {@code viewArrayClass} and the list of coordinate types is
2782      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2783      * corresponds to an argument that is an index into a {@code byte[]} array.
2784      * The returned VarHandle accesses bytes at an index in a
2785      * {@code ByteBuffer}, composing bytes to or from a value of the component
2786      * type of {@code viewArrayClass} according to the given endianness.
2787      * <p>
2788      * The supported component types (variables types) are {@code short},
2789      * {@code char}, {@code int}, {@code long}, {@code float} and
2790      * {@code double}.
2791      * <p>
2792      * Access will result in a {@code ReadOnlyBufferException} for anything
2793      * other than the read access modes if the {@code ByteBuffer} is read-only.
2794      * <p>
2795      * Access of bytes at a given index will result in an
2796      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2797      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2798      * {@code T}.
2799      * <p>
2800      * Access of bytes at an index may be aligned or misaligned for {@code T},
2801      * with respect to the underlying memory address, {@code A} say, associated
2802      * with the {@code ByteBuffer} and index.
2803      * If access is misaligned then access for anything other than the
2804      * {@code get} and {@code set} access modes will result in an
2805      * {@code IllegalStateException}.  In such cases atomic access is only
2806      * guaranteed with respect to the largest power of two that divides the GCD
2807      * of {@code A} and the size (in bytes) of {@code T}.
2808      * If access is aligned then following access modes are supported and are
2809      * guaranteed to support atomic access:
2810      * <ul>
2811      * <li>read write access modes for all {@code T}, with the exception of
2812      *     access modes {@code get} and {@code set} for {@code long} and
2813      *     {@code double} on 32-bit platforms.
2814      * <li>atomic update access modes for {@code int}, {@code long},
2815      *     {@code float} or {@code double}.
2816      *     (Future major platform releases of the JDK may support additional
2817      *     types for certain currently unsupported access modes.)
2818      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2819      *     (Future major platform releases of the JDK may support additional
2820      *     numeric types for certain currently unsupported access modes.)
2821      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2822      *     (Future major platform releases of the JDK may support additional
2823      *     numeric types for certain currently unsupported access modes.)
2824      * </ul>
2825      * <p>
2826      * Misaligned access, and therefore atomicity guarantees, may be determined
2827      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2828      * {@code index}, {@code T} and it's corresponding boxed type,
2829      * {@code T_BOX}, as follows:
2830      * <pre>{@code
2831      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2832      * ByteBuffer bb = ...
2833      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2834      * boolean isMisaligned = misalignedAtIndex != 0;
2835      * }</pre>
2836      * <p>
2837      * If the variable type is {@code float} or {@code double} then atomic
2838      * update access modes compare values using their bitwise representation
2839      * (see {@link Float#floatToRawIntBits} and
2840      * {@link Double#doubleToRawLongBits}, respectively).
2841      * @param viewArrayClass the view array class, with a component type of
2842      * type {@code T}
2843      * @param byteOrder the endianness of the view array elements, as
2844      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2845      * endianness of a {@code ByteBuffer})
2846      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2847      * viewed as if elements corresponding to the components type of the view
2848      * array class
2849      * @throws NullPointerException if viewArrayClass or byteOrder is null
2850      * @throws IllegalArgumentException if viewArrayClass is not an array type
2851      * @throws UnsupportedOperationException if the component type of
2852      * viewArrayClass is not supported as a variable type
2853      * @since 9
2854      */
2855     public static
2856     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2857                                       ByteOrder byteOrder) throws IllegalArgumentException {
2858         Objects.requireNonNull(byteOrder);
2859         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2860                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2861     }
2862 
2863 
2864     /// method handle invocation (reflective style)
2865 
2866     /**
2867      * Produces a method handle which will invoke any method handle of the
2868      * given {@code type}, with a given number of trailing arguments replaced by
2869      * a single trailing {@code Object[]} array.
2870      * The resulting invoker will be a method handle with the following
2871      * arguments:
2872      * <ul>
2873      * <li>a single {@code MethodHandle} target
2874      * <li>zero or more leading values (counted by {@code leadingArgCount})
2875      * <li>an {@code Object[]} array containing trailing arguments
2876      * </ul>
2877      * <p>
2878      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2879      * the indicated {@code type}.
2880      * That is, if the target is exactly of the given {@code type}, it will behave
2881      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2882      * is used to convert the target to the required {@code type}.
2883      * <p>
2884      * The type of the returned invoker will not be the given {@code type}, but rather
2885      * will have all parameters except the first {@code leadingArgCount}
2886      * replaced by a single array of type {@code Object[]}, which will be
2887      * the final parameter.
2888      * <p>
2889      * Before invoking its target, the invoker will spread the final array, apply
2890      * reference casts as necessary, and unbox and widen primitive arguments.
2891      * If, when the invoker is called, the supplied array argument does
2892      * not have the correct number of elements, the invoker will throw
2893      * an {@link IllegalArgumentException} instead of invoking the target.
2894      * <p>
2895      * This method is equivalent to the following code (though it may be more efficient):
2896      * <blockquote><pre>{@code
2897 MethodHandle invoker = MethodHandles.invoker(type);
2898 int spreadArgCount = type.parameterCount() - leadingArgCount;
2899 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2900 return invoker;
2901      * }</pre></blockquote>
2902      * This method throws no reflective or security exceptions.
2903      * @param type the desired target type
2904      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2905      * @return a method handle suitable for invoking any method handle of the given type
2906      * @throws NullPointerException if {@code type} is null
2907      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2908      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2909      *                  or if the resulting method handle's type would have
2910      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2911      */
2912     public static
2913     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2914         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2915             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2916         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2917         return type.invokers().spreadInvoker(leadingArgCount);
2918     }
2919 
2920     /**
2921      * Produces a special <em>invoker method handle</em> which can be used to
2922      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2923      * The resulting invoker will have a type which is
2924      * exactly equal to the desired type, except that it will accept
2925      * an additional leading argument of type {@code MethodHandle}.
2926      * <p>
2927      * This method is equivalent to the following code (though it may be more efficient):
2928      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2929      *
2930      * <p style="font-size:smaller;">
2931      * <em>Discussion:</em>
2932      * Invoker method handles can be useful when working with variable method handles
2933      * of unknown types.
2934      * For example, to emulate an {@code invokeExact} call to a variable method
2935      * handle {@code M}, extract its type {@code T},
2936      * look up the invoker method {@code X} for {@code T},
2937      * and call the invoker method, as {@code X.invoke(T, A...)}.
2938      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2939      * is unknown.)
2940      * If spreading, collecting, or other argument transformations are required,
2941      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2942      * method handle values, as long as they are compatible with the type of {@code X}.
2943      * <p style="font-size:smaller;">
2944      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2945      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2946      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2947      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2948      * <p>
2949      * This method throws no reflective or security exceptions.
2950      * @param type the desired target type
2951      * @return a method handle suitable for invoking any method handle of the given type
2952      * @throws IllegalArgumentException if the resulting method handle's type would have
2953      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2954      */
2955     public static
2956     MethodHandle exactInvoker(MethodType type) {
2957         return type.invokers().exactInvoker();
2958     }
2959 
2960     /**
2961      * Produces a special <em>invoker method handle</em> which can be used to
2962      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2963      * The resulting invoker will have a type which is
2964      * exactly equal to the desired type, except that it will accept
2965      * an additional leading argument of type {@code MethodHandle}.
2966      * <p>
2967      * Before invoking its target, if the target differs from the expected type,
2968      * the invoker will apply reference casts as
2969      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2970      * Similarly, the return value will be converted as necessary.
2971      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2972      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2973      * <p>
2974      * This method is equivalent to the following code (though it may be more efficient):
2975      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2976      * <p style="font-size:smaller;">
2977      * <em>Discussion:</em>
2978      * A {@linkplain MethodType#genericMethodType general method type} is one which
2979      * mentions only {@code Object} arguments and return values.
2980      * An invoker for such a type is capable of calling any method handle
2981      * of the same arity as the general type.
2982      * <p style="font-size:smaller;">
2983      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2984      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2985      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2986      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2987      * <p>
2988      * This method throws no reflective or security exceptions.
2989      * @param type the desired target type
2990      * @return a method handle suitable for invoking any method handle convertible to the given type
2991      * @throws IllegalArgumentException if the resulting method handle's type would have
2992      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2993      */
2994     public static
2995     MethodHandle invoker(MethodType type) {
2996         return type.invokers().genericInvoker();
2997     }
2998 
2999     /**
3000      * Produces a special <em>invoker method handle</em> which can be used to
3001      * invoke a signature-polymorphic access mode method on any VarHandle whose
3002      * associated access mode type is compatible with the given type.
3003      * The resulting invoker will have a type which is exactly equal to the
3004      * desired given type, except that it will accept an additional leading
3005      * argument of type {@code VarHandle}.
3006      *
3007      * @param accessMode the VarHandle access mode
3008      * @param type the desired target type
3009      * @return a method handle suitable for invoking an access mode method of
3010      *         any VarHandle whose access mode type is of the given type.
3011      * @since 9
3012      */
3013     static public
3014     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3015         return type.invokers().varHandleMethodExactInvoker(accessMode);
3016     }
3017 
3018     /**
3019      * Produces a special <em>invoker method handle</em> which can be used to
3020      * invoke a signature-polymorphic access mode method on any VarHandle whose
3021      * associated access mode type is compatible with the given type.
3022      * The resulting invoker will have a type which is exactly equal to the
3023      * desired given type, except that it will accept an additional leading
3024      * argument of type {@code VarHandle}.
3025      * <p>
3026      * Before invoking its target, if the access mode type differs from the
3027      * desired given type, the invoker will apply reference casts as necessary
3028      * and box, unbox, or widen primitive values, as if by
3029      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3030      * converted as necessary.
3031      * <p>
3032      * This method is equivalent to the following code (though it may be more
3033      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3034      *
3035      * @param accessMode the VarHandle access mode
3036      * @param type the desired target type
3037      * @return a method handle suitable for invoking an access mode method of
3038      *         any VarHandle whose access mode type is convertible to the given
3039      *         type.
3040      * @since 9
3041      */
3042     static public
3043     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3044         return type.invokers().varHandleMethodInvoker(accessMode);
3045     }
3046 
3047     static /*non-public*/
3048     MethodHandle basicInvoker(MethodType type) {
3049         return type.invokers().basicInvoker();
3050     }
3051 
3052      /// method handle modification (creation from other method handles)
3053 
3054     /**
3055      * Produces a method handle which adapts the type of the
3056      * given method handle to a new type by pairwise argument and return type conversion.
3057      * The original type and new type must have the same number of arguments.
3058      * The resulting method handle is guaranteed to report a type
3059      * which is equal to the desired new type.
3060      * <p>
3061      * If the original type and new type are equal, returns target.
3062      * <p>
3063      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3064      * and some additional conversions are also applied if those conversions fail.
3065      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3066      * if possible, before or instead of any conversions done by {@code asType}:
3067      * <ul>
3068      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3069      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3070      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3071      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3072      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3073      *     (This treatment follows the usage of the bytecode verifier.)
3074      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3075      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3076      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3077      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3078      *     then a Java casting conversion (JLS 5.5) is applied.
3079      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3080      *     widening and/or narrowing.)
3081      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3082      *     conversion will be applied at runtime, possibly followed
3083      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3084      *     possibly followed by a conversion from byte to boolean by testing
3085      *     the low-order bit.
3086      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3087      *     and if the reference is null at runtime, a zero value is introduced.
3088      * </ul>
3089      * @param target the method handle to invoke after arguments are retyped
3090      * @param newType the expected type of the new method handle
3091      * @return a method handle which delegates to the target after performing
3092      *           any necessary argument conversions, and arranges for any
3093      *           necessary return value conversions
3094      * @throws NullPointerException if either argument is null
3095      * @throws WrongMethodTypeException if the conversion cannot be made
3096      * @see MethodHandle#asType
3097      */
3098     public static
3099     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3100         explicitCastArgumentsChecks(target, newType);
3101         // use the asTypeCache when possible:
3102         MethodType oldType = target.type();
3103         if (oldType == newType)  return target;
3104         if (oldType.explicitCastEquivalentToAsType(newType)) {
3105             return target.asFixedArity().asType(newType);
3106         }
3107         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3108     }
3109 
3110     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3111         if (target.type().parameterCount() != newType.parameterCount()) {
3112             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3113         }
3114     }
3115 
3116     /**
3117      * Produces a method handle which adapts the calling sequence of the
3118      * given method handle to a new type, by reordering the arguments.
3119      * The resulting method handle is guaranteed to report a type
3120      * which is equal to the desired new type.
3121      * <p>
3122      * The given array controls the reordering.
3123      * Call {@code #I} the number of incoming parameters (the value
3124      * {@code newType.parameterCount()}, and call {@code #O} the number
3125      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3126      * Then the length of the reordering array must be {@code #O},
3127      * and each element must be a non-negative number less than {@code #I}.
3128      * For every {@code N} less than {@code #O}, the {@code N}-th
3129      * outgoing argument will be taken from the {@code I}-th incoming
3130      * argument, where {@code I} is {@code reorder[N]}.
3131      * <p>
3132      * No argument or return value conversions are applied.
3133      * The type of each incoming argument, as determined by {@code newType},
3134      * must be identical to the type of the corresponding outgoing parameter
3135      * or parameters in the target method handle.
3136      * The return type of {@code newType} must be identical to the return
3137      * type of the original target.
3138      * <p>
3139      * The reordering array need not specify an actual permutation.
3140      * An incoming argument will be duplicated if its index appears
3141      * more than once in the array, and an incoming argument will be dropped
3142      * if its index does not appear in the array.
3143      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3144      * incoming arguments which are not mentioned in the reordering array
3145      * may be of any type, as determined only by {@code newType}.
3146      * <blockquote><pre>{@code
3147 import static java.lang.invoke.MethodHandles.*;
3148 import static java.lang.invoke.MethodType.*;
3149 ...
3150 MethodType intfn1 = methodType(int.class, int.class);
3151 MethodType intfn2 = methodType(int.class, int.class, int.class);
3152 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3153 assert(sub.type().equals(intfn2));
3154 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3155 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3156 assert((int)rsub.invokeExact(1, 100) == 99);
3157 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3158 assert(add.type().equals(intfn2));
3159 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3160 assert(twice.type().equals(intfn1));
3161 assert((int)twice.invokeExact(21) == 42);
3162      * }</pre></blockquote>
3163      * <p>
3164      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3165      * variable-arity method handle}, even if the original target method handle was.
3166      * @param target the method handle to invoke after arguments are reordered
3167      * @param newType the expected type of the new method handle
3168      * @param reorder an index array which controls the reordering
3169      * @return a method handle which delegates to the target after it
3170      *           drops unused arguments and moves and/or duplicates the other arguments
3171      * @throws NullPointerException if any argument is null
3172      * @throws IllegalArgumentException if the index array length is not equal to
3173      *                  the arity of the target, or if any index array element
3174      *                  not a valid index for a parameter of {@code newType},
3175      *                  or if two corresponding parameter types in
3176      *                  {@code target.type()} and {@code newType} are not identical,
3177      */
3178     public static
3179     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3180         reorder = reorder.clone();  // get a private copy
3181         MethodType oldType = target.type();
3182         permuteArgumentChecks(reorder, newType, oldType);
3183         // first detect dropped arguments and handle them separately
3184         int[] originalReorder = reorder;
3185         BoundMethodHandle result = target.rebind();
3186         LambdaForm form = result.form;
3187         int newArity = newType.parameterCount();
3188         // Normalize the reordering into a real permutation,
3189         // by removing duplicates and adding dropped elements.
3190         // This somewhat improves lambda form caching, as well
3191         // as simplifying the transform by breaking it up into steps.
3192         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3193             if (ddIdx > 0) {
3194                 // We found a duplicated entry at reorder[ddIdx].
3195                 // Example:  (x,y,z)->asList(x,y,z)
3196                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3197                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3198                 // The starred element corresponds to the argument
3199                 // deleted by the dupArgumentForm transform.
3200                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3201                 boolean killFirst = false;
3202                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3203                     // Set killFirst if the dup is larger than an intervening position.
3204                     // This will remove at least one inversion from the permutation.
3205                     if (dupVal > val) killFirst = true;
3206                 }
3207                 if (!killFirst) {
3208                     srcPos = dstPos;
3209                     dstPos = ddIdx;
3210                 }
3211                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3212                 assert (reorder[srcPos] == reorder[dstPos]);
3213                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3214                 // contract the reordering by removing the element at dstPos
3215                 int tailPos = dstPos + 1;
3216                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3217                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3218             } else {
3219                 int dropVal = ~ddIdx, insPos = 0;
3220                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3221                     // Find first element of reorder larger than dropVal.
3222                     // This is where we will insert the dropVal.
3223                     insPos += 1;
3224                 }
3225                 Class<?> ptype = newType.parameterType(dropVal);
3226                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3227                 oldType = oldType.insertParameterTypes(insPos, ptype);
3228                 // expand the reordering by inserting an element at insPos
3229                 int tailPos = insPos + 1;
3230                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3231                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3232                 reorder[insPos] = dropVal;
3233             }
3234             assert (permuteArgumentChecks(reorder, newType, oldType));
3235         }
3236         assert (reorder.length == newArity);  // a perfect permutation
3237         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3238         form = form.editor().permuteArgumentsForm(1, reorder);
3239         if (newType == result.type() && form == result.internalForm())
3240             return result;
3241         return result.copyWith(newType, form);
3242     }
3243 
3244     /**
3245      * Return an indication of any duplicate or omission in reorder.
3246      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3247      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3248      * Otherwise, return zero.
3249      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3250      */
3251     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3252         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3253         if (newArity < BIT_LIMIT) {
3254             long mask = 0;
3255             for (int i = 0; i < reorder.length; i++) {
3256                 int arg = reorder[i];
3257                 if (arg >= newArity) {
3258                     return reorder.length;
3259                 }
3260                 long bit = 1L << arg;
3261                 if ((mask & bit) != 0) {
3262                     return i;  // >0 indicates a dup
3263                 }
3264                 mask |= bit;
3265             }
3266             if (mask == (1L << newArity) - 1) {
3267                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3268                 return 0;
3269             }
3270             // find first zero
3271             long zeroBit = Long.lowestOneBit(~mask);
3272             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3273             assert(zeroPos <= newArity);
3274             if (zeroPos == newArity) {
3275                 return 0;
3276             }
3277             return ~zeroPos;
3278         } else {
3279             // same algorithm, different bit set
3280             BitSet mask = new BitSet(newArity);
3281             for (int i = 0; i < reorder.length; i++) {
3282                 int arg = reorder[i];
3283                 if (arg >= newArity) {
3284                     return reorder.length;
3285                 }
3286                 if (mask.get(arg)) {
3287                     return i;  // >0 indicates a dup
3288                 }
3289                 mask.set(arg);
3290             }
3291             int zeroPos = mask.nextClearBit(0);
3292             assert(zeroPos <= newArity);
3293             if (zeroPos == newArity) {
3294                 return 0;
3295             }
3296             return ~zeroPos;
3297         }
3298     }
3299 
3300     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3301         if (newType.returnType() != oldType.returnType())
3302             throw newIllegalArgumentException("return types do not match",
3303                     oldType, newType);
3304         if (reorder.length == oldType.parameterCount()) {
3305             int limit = newType.parameterCount();
3306             boolean bad = false;
3307             for (int j = 0; j < reorder.length; j++) {
3308                 int i = reorder[j];
3309                 if (i < 0 || i >= limit) {
3310                     bad = true; break;
3311                 }
3312                 Class<?> src = newType.parameterType(i);
3313                 Class<?> dst = oldType.parameterType(j);
3314                 if (src != dst)
3315                     throw newIllegalArgumentException("parameter types do not match after reorder",
3316                             oldType, newType);
3317             }
3318             if (!bad)  return true;
3319         }
3320         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3321     }
3322 
3323     /**
3324      * Produces a method handle of the requested return type which returns the given
3325      * constant value every time it is invoked.
3326      * <p>
3327      * Before the method handle is returned, the passed-in value is converted to the requested type.
3328      * If the requested type is primitive, widening primitive conversions are attempted,
3329      * else reference conversions are attempted.
3330      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3331      * @param type the return type of the desired method handle
3332      * @param value the value to return
3333      * @return a method handle of the given return type and no arguments, which always returns the given value
3334      * @throws NullPointerException if the {@code type} argument is null
3335      * @throws ClassCastException if the value cannot be converted to the required return type
3336      * @throws IllegalArgumentException if the given type is {@code void.class}
3337      */
3338     public static
3339     MethodHandle constant(Class<?> type, Object value) {
3340         if (type.isPrimitive()) {
3341             if (type == void.class)
3342                 throw newIllegalArgumentException("void type");
3343             Wrapper w = Wrapper.forPrimitiveType(type);
3344             value = w.convert(value, type);
3345             if (w.zero().equals(value))
3346                 return zero(w, type);
3347             return insertArguments(identity(type), 0, value);
3348         } else {
3349             if (value == null)
3350                 return zero(Wrapper.OBJECT, type);
3351             return identity(type).bindTo(value);
3352         }
3353     }
3354 
3355     /**
3356      * Produces a method handle which returns its sole argument when invoked.
3357      * @param type the type of the sole parameter and return value of the desired method handle
3358      * @return a unary method handle which accepts and returns the given type
3359      * @throws NullPointerException if the argument is null
3360      * @throws IllegalArgumentException if the given type is {@code void.class}
3361      */
3362     public static
3363     MethodHandle identity(Class<?> type) {
3364         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3365         int pos = btw.ordinal();
3366         MethodHandle ident = IDENTITY_MHS[pos];
3367         if (ident == null) {
3368             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3369         }
3370         if (ident.type().returnType() == type)
3371             return ident;
3372         // something like identity(Foo.class); do not bother to intern these
3373         assert (btw == Wrapper.OBJECT);
3374         return makeIdentity(type);
3375     }
3376 
3377     /**
3378      * Produces a constant method handle of the requested return type which
3379      * returns the default value for that type every time it is invoked.
3380      * The resulting constant method handle will have no side effects.
3381      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3382      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3383      * since {@code explicitCastArguments} converts {@code null} to default values.
3384      * @param type the expected return type of the desired method handle
3385      * @return a constant method handle that takes no arguments
3386      *         and returns the default value of the given type (or void, if the type is void)
3387      * @throws NullPointerException if the argument is null
3388      * @see MethodHandles#constant
3389      * @see MethodHandles#empty
3390      * @see MethodHandles#explicitCastArguments
3391      * @since 9
3392      */
3393     public static MethodHandle zero(Class<?> type) {
3394         Objects.requireNonNull(type);
3395         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3396     }
3397 
3398     private static MethodHandle identityOrVoid(Class<?> type) {
3399         return type == void.class ? zero(type) : identity(type);
3400     }
3401 
3402     /**
3403      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3404      * and returns a suitable default depending on the return type.
3405      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3406      * <p>The returned method handle is equivalent to
3407      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3408      *
3409      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3410      * {@code guardWithTest(pred, target, empty(target.type())}.
3411      * @param type the type of the desired method handle
3412      * @return a constant method handle of the given type, which returns a default value of the given return type
3413      * @throws NullPointerException if the argument is null
3414      * @see MethodHandles#zero
3415      * @see MethodHandles#constant
3416      * @since 9
3417      */
3418     public static  MethodHandle empty(MethodType type) {
3419         Objects.requireNonNull(type);
3420         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3421     }
3422 
3423     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3424     private static MethodHandle makeIdentity(Class<?> ptype) {
3425         MethodType mtype = methodType(ptype, ptype);
3426         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3427         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3428     }
3429 
3430     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3431         int pos = btw.ordinal();
3432         MethodHandle zero = ZERO_MHS[pos];
3433         if (zero == null) {
3434             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3435         }
3436         if (zero.type().returnType() == rtype)
3437             return zero;
3438         assert(btw == Wrapper.OBJECT);
3439         return makeZero(rtype);
3440     }
3441     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3442     private static MethodHandle makeZero(Class<?> rtype) {
3443         MethodType mtype = methodType(rtype);
3444         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3445         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3446     }
3447 
3448     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3449         // Simulate a CAS, to avoid racy duplication of results.
3450         MethodHandle prev = cache[pos];
3451         if (prev != null) return prev;
3452         return cache[pos] = value;
3453     }
3454 
3455     /**
3456      * Provides a target method handle with one or more <em>bound arguments</em>
3457      * in advance of the method handle's invocation.
3458      * The formal parameters to the target corresponding to the bound
3459      * arguments are called <em>bound parameters</em>.
3460      * Returns a new method handle which saves away the bound arguments.
3461      * When it is invoked, it receives arguments for any non-bound parameters,
3462      * binds the saved arguments to their corresponding parameters,
3463      * and calls the original target.
3464      * <p>
3465      * The type of the new method handle will drop the types for the bound
3466      * parameters from the original target type, since the new method handle
3467      * will no longer require those arguments to be supplied by its callers.
3468      * <p>
3469      * Each given argument object must match the corresponding bound parameter type.
3470      * If a bound parameter type is a primitive, the argument object
3471      * must be a wrapper, and will be unboxed to produce the primitive value.
3472      * <p>
3473      * The {@code pos} argument selects which parameters are to be bound.
3474      * It may range between zero and <i>N-L</i> (inclusively),
3475      * where <i>N</i> is the arity of the target method handle
3476      * and <i>L</i> is the length of the values array.
3477      * <p>
3478      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3479      * variable-arity method handle}, even if the original target method handle was.
3480      * @param target the method handle to invoke after the argument is inserted
3481      * @param pos where to insert the argument (zero for the first)
3482      * @param values the series of arguments to insert
3483      * @return a method handle which inserts an additional argument,
3484      *         before calling the original method handle
3485      * @throws NullPointerException if the target or the {@code values} array is null
3486      * @see MethodHandle#bindTo
3487      */
3488     public static
3489     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3490         int insCount = values.length;
3491         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3492         if (insCount == 0)  return target;
3493         BoundMethodHandle result = target.rebind();
3494         for (int i = 0; i < insCount; i++) {
3495             Object value = values[i];
3496             Class<?> ptype = ptypes[pos+i];
3497             if (ptype.isPrimitive()) {
3498                 result = insertArgumentPrimitive(result, pos, ptype, value);
3499             } else {
3500                 value = ptype.cast(value);  // throw CCE if needed
3501                 result = result.bindArgumentL(pos, value);
3502             }
3503         }
3504         return result;
3505     }
3506 
3507     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3508                                                              Class<?> ptype, Object value) {
3509         Wrapper w = Wrapper.forPrimitiveType(ptype);
3510         // perform unboxing and/or primitive conversion
3511         value = w.convert(value, ptype);
3512         switch (w) {
3513         case INT:     return result.bindArgumentI(pos, (int)value);
3514         case LONG:    return result.bindArgumentJ(pos, (long)value);
3515         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3516         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3517         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3518         }
3519     }
3520 
3521     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3522         MethodType oldType = target.type();
3523         int outargs = oldType.parameterCount();
3524         int inargs  = outargs - insCount;
3525         if (inargs < 0)
3526             throw newIllegalArgumentException("too many values to insert");
3527         if (pos < 0 || pos > inargs)
3528             throw newIllegalArgumentException("no argument type to append");
3529         return oldType.ptypes();
3530     }
3531 
3532     /**
3533      * Produces a method handle which will discard some dummy arguments
3534      * before calling some other specified <i>target</i> method handle.
3535      * The type of the new method handle will be the same as the target's type,
3536      * except it will also include the dummy argument types,
3537      * at some given position.
3538      * <p>
3539      * The {@code pos} argument may range between zero and <i>N</i>,
3540      * where <i>N</i> is the arity of the target.
3541      * If {@code pos} is zero, the dummy arguments will precede
3542      * the target's real arguments; if {@code pos} is <i>N</i>
3543      * they will come after.
3544      * <p>
3545      * <b>Example:</b>
3546      * <blockquote><pre>{@code
3547 import static java.lang.invoke.MethodHandles.*;
3548 import static java.lang.invoke.MethodType.*;
3549 ...
3550 MethodHandle cat = lookup().findVirtual(String.class,
3551   "concat", methodType(String.class, String.class));
3552 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3553 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3554 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3555 assertEquals(bigType, d0.type());
3556 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3557      * }</pre></blockquote>
3558      * <p>
3559      * This method is also equivalent to the following code:
3560      * <blockquote><pre>
3561      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3562      * </pre></blockquote>
3563      * @param target the method handle to invoke after the arguments are dropped
3564      * @param valueTypes the type(s) of the argument(s) to drop
3565      * @param pos position of first argument to drop (zero for the leftmost)
3566      * @return a method handle which drops arguments of the given types,
3567      *         before calling the original method handle
3568      * @throws NullPointerException if the target is null,
3569      *                              or if the {@code valueTypes} list or any of its elements is null
3570      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3571      *                  or if {@code pos} is negative or greater than the arity of the target,
3572      *                  or if the new method handle's type would have too many parameters
3573      */
3574     public static
3575     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3576         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3577     }
3578 
3579     private static List<Class<?>> copyTypes(Object[] array) {
3580         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3581     }
3582 
3583     private static
3584     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3585         MethodType oldType = target.type();  // get NPE
3586         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3587         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3588         if (dropped == 0)  return target;
3589         BoundMethodHandle result = target.rebind();
3590         LambdaForm lform = result.form;
3591         int insertFormArg = 1 + pos;
3592         for (Class<?> ptype : valueTypes) {
3593             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3594         }
3595         result = result.copyWith(newType, lform);
3596         return result;
3597     }
3598 
3599     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3600         int dropped = valueTypes.size();
3601         MethodType.checkSlotCount(dropped);
3602         int outargs = oldType.parameterCount();
3603         int inargs  = outargs + dropped;
3604         if (pos < 0 || pos > outargs)
3605             throw newIllegalArgumentException("no argument type to remove"
3606                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3607                     );
3608         return dropped;
3609     }
3610 
3611     /**
3612      * Produces a method handle which will discard some dummy arguments
3613      * before calling some other specified <i>target</i> method handle.
3614      * The type of the new method handle will be the same as the target's type,
3615      * except it will also include the dummy argument types,
3616      * at some given position.
3617      * <p>
3618      * The {@code pos} argument may range between zero and <i>N</i>,
3619      * where <i>N</i> is the arity of the target.
3620      * If {@code pos} is zero, the dummy arguments will precede
3621      * the target's real arguments; if {@code pos} is <i>N</i>
3622      * they will come after.
3623      * @apiNote
3624      * <blockquote><pre>{@code
3625 import static java.lang.invoke.MethodHandles.*;
3626 import static java.lang.invoke.MethodType.*;
3627 ...
3628 MethodHandle cat = lookup().findVirtual(String.class,
3629   "concat", methodType(String.class, String.class));
3630 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3631 MethodHandle d0 = dropArguments(cat, 0, String.class);
3632 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3633 MethodHandle d1 = dropArguments(cat, 1, String.class);
3634 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3635 MethodHandle d2 = dropArguments(cat, 2, String.class);
3636 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3637 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3638 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3639      * }</pre></blockquote>
3640      * <p>
3641      * This method is also equivalent to the following code:
3642      * <blockquote><pre>
3643      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3644      * </pre></blockquote>
3645      * @param target the method handle to invoke after the arguments are dropped
3646      * @param valueTypes the type(s) of the argument(s) to drop
3647      * @param pos position of first argument to drop (zero for the leftmost)
3648      * @return a method handle which drops arguments of the given types,
3649      *         before calling the original method handle
3650      * @throws NullPointerException if the target is null,
3651      *                              or if the {@code valueTypes} array or any of its elements is null
3652      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3653      *                  or if {@code pos} is negative or greater than the arity of the target,
3654      *                  or if the new method handle's type would have
3655      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3656      */
3657     public static
3658     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3659         return dropArguments0(target, pos, copyTypes(valueTypes));
3660     }
3661 
3662     // private version which allows caller some freedom with error handling
3663     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3664                                       boolean nullOnFailure) {
3665         newTypes = copyTypes(newTypes.toArray());
3666         List<Class<?>> oldTypes = target.type().parameterList();
3667         int match = oldTypes.size();
3668         if (skip != 0) {
3669             if (skip < 0 || skip > match) {
3670                 throw newIllegalArgumentException("illegal skip", skip, target);
3671             }
3672             oldTypes = oldTypes.subList(skip, match);
3673             match -= skip;
3674         }
3675         List<Class<?>> addTypes = newTypes;
3676         int add = addTypes.size();
3677         if (pos != 0) {
3678             if (pos < 0 || pos > add) {
3679                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3680             }
3681             addTypes = addTypes.subList(pos, add);
3682             add -= pos;
3683             assert(addTypes.size() == add);
3684         }
3685         // Do not add types which already match the existing arguments.
3686         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3687             if (nullOnFailure) {
3688                 return null;
3689             }
3690             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3691         }
3692         addTypes = addTypes.subList(match, add);
3693         add -= match;
3694         assert(addTypes.size() == add);
3695         // newTypes:     (   P*[pos], M*[match], A*[add] )
3696         // target: ( S*[skip],        M*[match]  )
3697         MethodHandle adapter = target;
3698         if (add > 0) {
3699             adapter = dropArguments0(adapter, skip+ match, addTypes);
3700         }
3701         // adapter: (S*[skip],        M*[match], A*[add] )
3702         if (pos > 0) {
3703             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3704         }
3705         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3706         return adapter;
3707     }
3708 
3709     /**
3710      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3711      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3712      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3713      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3714      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3715      * {@link #dropArguments(MethodHandle, int, Class[])}.
3716      * <p>
3717      * The resulting handle will have the same return type as the target handle.
3718      * <p>
3719      * In more formal terms, assume these two type lists:<ul>
3720      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3721      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3722      * {@code newTypes}.
3723      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3724      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3725      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3726      * sub-list.
3727      * </ul>
3728      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3729      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3730      * {@link #dropArguments(MethodHandle, int, Class[])}.
3731      *
3732      * @apiNote
3733      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3734      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3735      * <blockquote><pre>{@code
3736 import static java.lang.invoke.MethodHandles.*;
3737 import static java.lang.invoke.MethodType.*;
3738 ...
3739 ...
3740 MethodHandle h0 = constant(boolean.class, true);
3741 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3742 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3743 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3744 if (h1.type().parameterCount() < h2.type().parameterCount())
3745     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3746 else
3747     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3748 MethodHandle h3 = guardWithTest(h0, h1, h2);
3749 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3750      * }</pre></blockquote>
3751      * @param target the method handle to adapt
3752      * @param skip number of targets parameters to disregard (they will be unchanged)
3753      * @param newTypes the list of types to match {@code target}'s parameter type list to
3754      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3755      * @return a possibly adapted method handle
3756      * @throws NullPointerException if either argument is null
3757      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3758      *         or if {@code skip} is negative or greater than the arity of the target,
3759      *         or if {@code pos} is negative or greater than the newTypes list size,
3760      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3761      *         {@code pos}.
3762      * @since 9
3763      */
3764     public static
3765     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3766         Objects.requireNonNull(target);
3767         Objects.requireNonNull(newTypes);
3768         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3769     }
3770 
3771     /**
3772      * Adapts a target method handle by pre-processing
3773      * one or more of its arguments, each with its own unary filter function,
3774      * and then calling the target with each pre-processed argument
3775      * replaced by the result of its corresponding filter function.
3776      * <p>
3777      * The pre-processing is performed by one or more method handles,
3778      * specified in the elements of the {@code filters} array.
3779      * The first element of the filter array corresponds to the {@code pos}
3780      * argument of the target, and so on in sequence.
3781      * The filter functions are invoked in left to right order.
3782      * <p>
3783      * Null arguments in the array are treated as identity functions,
3784      * and the corresponding arguments left unchanged.
3785      * (If there are no non-null elements in the array, the original target is returned.)
3786      * Each filter is applied to the corresponding argument of the adapter.
3787      * <p>
3788      * If a filter {@code F} applies to the {@code N}th argument of
3789      * the target, then {@code F} must be a method handle which
3790      * takes exactly one argument.  The type of {@code F}'s sole argument
3791      * replaces the corresponding argument type of the target
3792      * in the resulting adapted method handle.
3793      * The return type of {@code F} must be identical to the corresponding
3794      * parameter type of the target.
3795      * <p>
3796      * It is an error if there are elements of {@code filters}
3797      * (null or not)
3798      * which do not correspond to argument positions in the target.
3799      * <p><b>Example:</b>
3800      * <blockquote><pre>{@code
3801 import static java.lang.invoke.MethodHandles.*;
3802 import static java.lang.invoke.MethodType.*;
3803 ...
3804 MethodHandle cat = lookup().findVirtual(String.class,
3805   "concat", methodType(String.class, String.class));
3806 MethodHandle upcase = lookup().findVirtual(String.class,
3807   "toUpperCase", methodType(String.class));
3808 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3809 MethodHandle f0 = filterArguments(cat, 0, upcase);
3810 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3811 MethodHandle f1 = filterArguments(cat, 1, upcase);
3812 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3813 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3814 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3815      * }</pre></blockquote>
3816      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3817      * denotes the return type of both the {@code target} and resulting adapter.
3818      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3819      * of the parameters and arguments that precede and follow the filter position
3820      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3821      * values of the filtered parameters and arguments; they also represent the
3822      * return types of the {@code filter[i]} handles. The latter accept arguments
3823      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3824      * the resulting adapter.
3825      * <blockquote><pre>{@code
3826      * T target(P... p, A[i]... a[i], B... b);
3827      * A[i] filter[i](V[i]);
3828      * T adapter(P... p, V[i]... v[i], B... b) {
3829      *   return target(p..., filter[i](v[i])..., b...);
3830      * }
3831      * }</pre></blockquote>
3832      * <p>
3833      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3834      * variable-arity method handle}, even if the original target method handle was.
3835      *
3836      * @param target the method handle to invoke after arguments are filtered
3837      * @param pos the position of the first argument to filter
3838      * @param filters method handles to call initially on filtered arguments
3839      * @return method handle which incorporates the specified argument filtering logic
3840      * @throws NullPointerException if the target is null
3841      *                              or if the {@code filters} array is null
3842      * @throws IllegalArgumentException if a non-null element of {@code filters}
3843      *          does not match a corresponding argument type of target as described above,
3844      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3845      *          or if the resulting method handle's type would have
3846      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3847      */
3848     public static
3849     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3850         filterArgumentsCheckArity(target, pos, filters);
3851         MethodHandle adapter = target;
3852         // process filters in reverse order so that the invocation of
3853         // the resulting adapter will invoke the filters in left-to-right order
3854         for (int i = filters.length - 1; i >= 0; --i) {
3855             MethodHandle filter = filters[i];
3856             if (filter == null)  continue;  // ignore null elements of filters
3857             adapter = filterArgument(adapter, pos + i, filter);
3858         }
3859         return adapter;
3860     }
3861 
3862     /*non-public*/ static
3863     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3864         filterArgumentChecks(target, pos, filter);
3865         MethodType targetType = target.type();
3866         MethodType filterType = filter.type();
3867         BoundMethodHandle result = target.rebind();
3868         Class<?> newParamType = filterType.parameterType(0);
3869         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3870         MethodType newType = targetType.changeParameterType(pos, newParamType);
3871         result = result.copyWithExtendL(newType, lform, filter);
3872         return result;
3873     }
3874 
3875     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3876         MethodType targetType = target.type();
3877         int maxPos = targetType.parameterCount();
3878         if (pos + filters.length > maxPos)
3879             throw newIllegalArgumentException("too many filters");
3880     }
3881 
3882     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3883         MethodType targetType = target.type();
3884         MethodType filterType = filter.type();
3885         if (filterType.parameterCount() != 1
3886             || filterType.returnType() != targetType.parameterType(pos))
3887             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3888     }
3889 
3890     /**
3891      * Adapts a target method handle by pre-processing
3892      * a sub-sequence of its arguments with a filter (another method handle).
3893      * The pre-processed arguments are replaced by the result (if any) of the
3894      * filter function.
3895      * The target is then called on the modified (usually shortened) argument list.
3896      * <p>
3897      * If the filter returns a value, the target must accept that value as
3898      * its argument in position {@code pos}, preceded and/or followed by
3899      * any arguments not passed to the filter.
3900      * If the filter returns void, the target must accept all arguments
3901      * not passed to the filter.
3902      * No arguments are reordered, and a result returned from the filter
3903      * replaces (in order) the whole subsequence of arguments originally
3904      * passed to the adapter.
3905      * <p>
3906      * The argument types (if any) of the filter
3907      * replace zero or one argument types of the target, at position {@code pos},
3908      * in the resulting adapted method handle.
3909      * The return type of the filter (if any) must be identical to the
3910      * argument type of the target at position {@code pos}, and that target argument
3911      * is supplied by the return value of the filter.
3912      * <p>
3913      * In all cases, {@code pos} must be greater than or equal to zero, and
3914      * {@code pos} must also be less than or equal to the target's arity.
3915      * <p><b>Example:</b>
3916      * <blockquote><pre>{@code
3917 import static java.lang.invoke.MethodHandles.*;
3918 import static java.lang.invoke.MethodType.*;
3919 ...
3920 MethodHandle deepToString = publicLookup()
3921   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3922 
3923 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3924 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3925 
3926 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3927 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3928 
3929 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3930 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3931 assertEquals("[top, [up, down], strange]",
3932              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3933 
3934 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3935 assertEquals("[top, [up, down], [strange]]",
3936              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3937 
3938 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3939 assertEquals("[top, [[up, down, strange], charm], bottom]",
3940              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3941      * }</pre></blockquote>
3942      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3943      * represents the return type of the {@code target} and resulting adapter.
3944      * {@code V}/{@code v} stand for the return type and value of the
3945      * {@code filter}, which are also found in the signature and arguments of
3946      * the {@code target}, respectively, unless {@code V} is {@code void}.
3947      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3948      * and values preceding and following the collection position, {@code pos},
3949      * in the {@code target}'s signature. They also turn up in the resulting
3950      * adapter's signature and arguments, where they surround
3951      * {@code B}/{@code b}, which represent the parameter types and arguments
3952      * to the {@code filter} (if any).
3953      * <blockquote><pre>{@code
3954      * T target(A...,V,C...);
3955      * V filter(B...);
3956      * T adapter(A... a,B... b,C... c) {
3957      *   V v = filter(b...);
3958      *   return target(a...,v,c...);
3959      * }
3960      * // and if the filter has no arguments:
3961      * T target2(A...,V,C...);
3962      * V filter2();
3963      * T adapter2(A... a,C... c) {
3964      *   V v = filter2();
3965      *   return target2(a...,v,c...);
3966      * }
3967      * // and if the filter has a void return:
3968      * T target3(A...,C...);
3969      * void filter3(B...);
3970      * T adapter3(A... a,B... b,C... c) {
3971      *   filter3(b...);
3972      *   return target3(a...,c...);
3973      * }
3974      * }</pre></blockquote>
3975      * <p>
3976      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3977      * one which first "folds" the affected arguments, and then drops them, in separate
3978      * steps as follows:
3979      * <blockquote><pre>{@code
3980      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3981      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3982      * }</pre></blockquote>
3983      * If the target method handle consumes no arguments besides than the result
3984      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3985      * is equivalent to {@code filterReturnValue(coll, mh)}.
3986      * If the filter method handle {@code coll} consumes one argument and produces
3987      * a non-void result, then {@code collectArguments(mh, N, coll)}
3988      * is equivalent to {@code filterArguments(mh, N, coll)}.
3989      * Other equivalences are possible but would require argument permutation.
3990      * <p>
3991      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3992      * variable-arity method handle}, even if the original target method handle was.
3993      *
3994      * @param target the method handle to invoke after filtering the subsequence of arguments
3995      * @param pos the position of the first adapter argument to pass to the filter,
3996      *            and/or the target argument which receives the result of the filter
3997      * @param filter method handle to call on the subsequence of arguments
3998      * @return method handle which incorporates the specified argument subsequence filtering logic
3999      * @throws NullPointerException if either argument is null
4000      * @throws IllegalArgumentException if the return type of {@code filter}
4001      *          is non-void and is not the same as the {@code pos} argument of the target,
4002      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4003      *          or if the resulting method handle's type would have
4004      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4005      * @see MethodHandles#foldArguments
4006      * @see MethodHandles#filterArguments
4007      * @see MethodHandles#filterReturnValue
4008      */
4009     public static
4010     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4011         MethodType newType = collectArgumentsChecks(target, pos, filter);
4012         MethodType collectorType = filter.type();
4013         BoundMethodHandle result = target.rebind();
4014         LambdaForm lform;
4015         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4016             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4017             if (lform != null) {
4018                 return result.copyWith(newType, lform);
4019             }
4020         }
4021         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4022         return result.copyWithExtendL(newType, lform, filter);
4023     }
4024 
4025     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4026         MethodType targetType = target.type();
4027         MethodType filterType = filter.type();
4028         Class<?> rtype = filterType.returnType();
4029         List<Class<?>> filterArgs = filterType.parameterList();
4030         if (rtype == void.class) {
4031             return targetType.insertParameterTypes(pos, filterArgs);
4032         }
4033         if (rtype != targetType.parameterType(pos)) {
4034             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4035         }
4036         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4037     }
4038 
4039     /**
4040      * Adapts a target method handle by post-processing
4041      * its return value (if any) with a filter (another method handle).
4042      * The result of the filter is returned from the adapter.
4043      * <p>
4044      * If the target returns a value, the filter must accept that value as
4045      * its only argument.
4046      * If the target returns void, the filter must accept no arguments.
4047      * <p>
4048      * The return type of the filter
4049      * replaces the return type of the target
4050      * in the resulting adapted method handle.
4051      * The argument type of the filter (if any) must be identical to the
4052      * return type of the target.
4053      * <p><b>Example:</b>
4054      * <blockquote><pre>{@code
4055 import static java.lang.invoke.MethodHandles.*;
4056 import static java.lang.invoke.MethodType.*;
4057 ...
4058 MethodHandle cat = lookup().findVirtual(String.class,
4059   "concat", methodType(String.class, String.class));
4060 MethodHandle length = lookup().findVirtual(String.class,
4061   "length", methodType(int.class));
4062 System.out.println((String) cat.invokeExact("x", "y")); // xy
4063 MethodHandle f0 = filterReturnValue(cat, length);
4064 System.out.println((int) f0.invokeExact("x", "y")); // 2
4065      * }</pre></blockquote>
4066      * <p>Here is pseudocode for the resulting adapter. In the code,
4067      * {@code T}/{@code t} represent the result type and value of the
4068      * {@code target}; {@code V}, the result type of the {@code filter}; and
4069      * {@code A}/{@code a}, the types and values of the parameters and arguments
4070      * of the {@code target} as well as the resulting adapter.
4071      * <blockquote><pre>{@code
4072      * T target(A...);
4073      * V filter(T);
4074      * V adapter(A... a) {
4075      *   T t = target(a...);
4076      *   return filter(t);
4077      * }
4078      * // and if the target has a void return:
4079      * void target2(A...);
4080      * V filter2();
4081      * V adapter2(A... a) {
4082      *   target2(a...);
4083      *   return filter2();
4084      * }
4085      * // and if the filter has a void return:
4086      * T target3(A...);
4087      * void filter3(V);
4088      * void adapter3(A... a) {
4089      *   T t = target3(a...);
4090      *   filter3(t);
4091      * }
4092      * }</pre></blockquote>
4093      * <p>
4094      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4095      * variable-arity method handle}, even if the original target method handle was.
4096      * @param target the method handle to invoke before filtering the return value
4097      * @param filter method handle to call on the return value
4098      * @return method handle which incorporates the specified return value filtering logic
4099      * @throws NullPointerException if either argument is null
4100      * @throws IllegalArgumentException if the argument list of {@code filter}
4101      *          does not match the return type of target as described above
4102      */
4103     public static
4104     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4105         MethodType targetType = target.type();
4106         MethodType filterType = filter.type();
4107         filterReturnValueChecks(targetType, filterType);
4108         BoundMethodHandle result = target.rebind();
4109         BasicType rtype = BasicType.basicType(filterType.returnType());
4110         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4111         MethodType newType = targetType.changeReturnType(filterType.returnType());
4112         result = result.copyWithExtendL(newType, lform, filter);
4113         return result;
4114     }
4115 
4116     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4117         Class<?> rtype = targetType.returnType();
4118         int filterValues = filterType.parameterCount();
4119         if (filterValues == 0
4120                 ? (rtype != void.class)
4121                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4122             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4123     }
4124 
4125     /**
4126      * Adapts a target method handle by pre-processing
4127      * some of its arguments, and then calling the target with
4128      * the result of the pre-processing, inserted into the original
4129      * sequence of arguments.
4130      * <p>
4131      * The pre-processing is performed by {@code combiner}, a second method handle.
4132      * Of the arguments passed to the adapter, the first {@code N} arguments
4133      * are copied to the combiner, which is then called.
4134      * (Here, {@code N} is defined as the parameter count of the combiner.)
4135      * After this, control passes to the target, with any result
4136      * from the combiner inserted before the original {@code N} incoming
4137      * arguments.
4138      * <p>
4139      * If the combiner returns a value, the first parameter type of the target
4140      * must be identical with the return type of the combiner, and the next
4141      * {@code N} parameter types of the target must exactly match the parameters
4142      * of the combiner.
4143      * <p>
4144      * If the combiner has a void return, no result will be inserted,
4145      * and the first {@code N} parameter types of the target
4146      * must exactly match the parameters of the combiner.
4147      * <p>
4148      * The resulting adapter is the same type as the target, except that the
4149      * first parameter type is dropped,
4150      * if it corresponds to the result of the combiner.
4151      * <p>
4152      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4153      * that either the combiner or the target does not wish to receive.
4154      * If some of the incoming arguments are destined only for the combiner,
4155      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4156      * arguments will not need to be live on the stack on entry to the
4157      * target.)
4158      * <p><b>Example:</b>
4159      * <blockquote><pre>{@code
4160 import static java.lang.invoke.MethodHandles.*;
4161 import static java.lang.invoke.MethodType.*;
4162 ...
4163 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4164   "println", methodType(void.class, String.class))
4165     .bindTo(System.out);
4166 MethodHandle cat = lookup().findVirtual(String.class,
4167   "concat", methodType(String.class, String.class));
4168 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4169 MethodHandle catTrace = foldArguments(cat, trace);
4170 // also prints "boo":
4171 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4172      * }</pre></blockquote>
4173      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4174      * represents the result type of the {@code target} and resulting adapter.
4175      * {@code V}/{@code v} represent the type and value of the parameter and argument
4176      * of {@code target} that precedes the folding position; {@code V} also is
4177      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4178      * types and values of the {@code N} parameters and arguments at the folding
4179      * position. {@code B}/{@code b} represent the types and values of the
4180      * {@code target} parameters and arguments that follow the folded parameters
4181      * and arguments.
4182      * <blockquote><pre>{@code
4183      * // there are N arguments in A...
4184      * T target(V, A[N]..., B...);
4185      * V combiner(A...);
4186      * T adapter(A... a, B... b) {
4187      *   V v = combiner(a...);
4188      *   return target(v, a..., b...);
4189      * }
4190      * // and if the combiner has a void return:
4191      * T target2(A[N]..., B...);
4192      * void combiner2(A...);
4193      * T adapter2(A... a, B... b) {
4194      *   combiner2(a...);
4195      *   return target2(a..., b...);
4196      * }
4197      * }</pre></blockquote>
4198      * <p>
4199      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4200      * variable-arity method handle}, even if the original target method handle was.
4201      * @param target the method handle to invoke after arguments are combined
4202      * @param combiner method handle to call initially on the incoming arguments
4203      * @return method handle which incorporates the specified argument folding logic
4204      * @throws NullPointerException if either argument is null
4205      * @throws IllegalArgumentException if {@code combiner}'s return type
4206      *          is non-void and not the same as the first argument type of
4207      *          the target, or if the initial {@code N} argument types
4208      *          of the target
4209      *          (skipping one matching the {@code combiner}'s return type)
4210      *          are not identical with the argument types of {@code combiner}
4211      */
4212     public static
4213     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4214         return foldArguments(target, 0, combiner);
4215     }
4216 
4217     /**
4218      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4219      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4220      * before the folded arguments.
4221      * <p>
4222      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4223      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4224      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4225      * 0.
4226      *
4227      * @apiNote Example:
4228      * <blockquote><pre>{@code
4229     import static java.lang.invoke.MethodHandles.*;
4230     import static java.lang.invoke.MethodType.*;
4231     ...
4232     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4233     "println", methodType(void.class, String.class))
4234     .bindTo(System.out);
4235     MethodHandle cat = lookup().findVirtual(String.class,
4236     "concat", methodType(String.class, String.class));
4237     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4238     MethodHandle catTrace = foldArguments(cat, 1, trace);
4239     // also prints "jum":
4240     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4241      * }</pre></blockquote>
4242      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4243      * represents the result type of the {@code target} and resulting adapter.
4244      * {@code V}/{@code v} represent the type and value of the parameter and argument
4245      * of {@code target} that precedes the folding position; {@code V} also is
4246      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4247      * types and values of the {@code N} parameters and arguments at the folding
4248      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4249      * and values of the {@code target} parameters and arguments that precede and
4250      * follow the folded parameters and arguments starting at {@code pos},
4251      * respectively.
4252      * <blockquote><pre>{@code
4253      * // there are N arguments in A...
4254      * T target(Z..., V, A[N]..., B...);
4255      * V combiner(A...);
4256      * T adapter(Z... z, A... a, B... b) {
4257      *   V v = combiner(a...);
4258      *   return target(z..., v, a..., b...);
4259      * }
4260      * // and if the combiner has a void return:
4261      * T target2(Z..., A[N]..., B...);
4262      * void combiner2(A...);
4263      * T adapter2(Z... z, A... a, B... b) {
4264      *   combiner2(a...);
4265      *   return target2(z..., a..., b...);
4266      * }
4267      * }</pre></blockquote>
4268      * <p>
4269      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4270      * variable-arity method handle}, even if the original target method handle was.
4271      *
4272      * @param target the method handle to invoke after arguments are combined
4273      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4274      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4275      * @param combiner method handle to call initially on the incoming arguments
4276      * @return method handle which incorporates the specified argument folding logic
4277      * @throws NullPointerException if either argument is null
4278      * @throws IllegalArgumentException if either of the following two conditions holds:
4279      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4280      *              {@code pos} of the target signature;
4281      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4282      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4283      *
4284      * @see #foldArguments(MethodHandle, MethodHandle)
4285      * @since 9
4286      */
4287     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4288         MethodType targetType = target.type();
4289         MethodType combinerType = combiner.type();
4290         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4291         BoundMethodHandle result = target.rebind();
4292         boolean dropResult = rtype == void.class;
4293         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4294         MethodType newType = targetType;
4295         if (!dropResult) {
4296             newType = newType.dropParameterTypes(pos, pos + 1);
4297         }
4298         result = result.copyWithExtendL(newType, lform, combiner);
4299         return result;
4300     }
4301 
4302     /**
4303      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4304      * added capability of selecting the arguments from the targets parameters
4305      * to call the combiner with. This allows us to avoid some simple cases of
4306      * permutations and padding the combiner with dropArguments to select the
4307      * right argument, which may ultimately produce fewer intermediaries.
4308      */
4309     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4310         MethodType targetType = target.type();
4311         MethodType combinerType = combiner.type();
4312         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4313         BoundMethodHandle result = target.rebind();
4314         boolean dropResult = rtype == void.class;
4315         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4316         MethodType newType = targetType;
4317         if (!dropResult) {
4318             newType = newType.dropParameterTypes(pos, pos + 1);
4319         }
4320         result = result.copyWithExtendL(newType, lform, combiner);
4321         return result;
4322     }
4323 
4324     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4325         int foldArgs   = combinerType.parameterCount();
4326         Class<?> rtype = combinerType.returnType();
4327         int foldVals = rtype == void.class ? 0 : 1;
4328         int afterInsertPos = foldPos + foldVals;
4329         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4330         if (ok) {
4331             for (int i = 0; i < foldArgs; i++) {
4332                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4333                     ok = false;
4334                     break;
4335                 }
4336             }
4337         }
4338         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4339             ok = false;
4340         if (!ok)
4341             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4342         return rtype;
4343     }
4344 
4345     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4346         int foldArgs = combinerType.parameterCount();
4347         if (argPos.length != foldArgs) {
4348             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4349         }
4350         Class<?> rtype = combinerType.returnType();
4351         int foldVals = rtype == void.class ? 0 : 1;
4352         boolean ok = true;
4353         for (int i = 0; i < foldArgs; i++) {
4354             int arg = argPos[i];
4355             if (arg < 0 || arg > targetType.parameterCount()) {
4356                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4357             }
4358             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4359                 throw newIllegalArgumentException("target argument type at position " + arg
4360                         + " must match combiner argument type at index " + i + ": " + targetType
4361                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4362             }
4363         }
4364         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4365             ok = false;
4366         }
4367         if (!ok)
4368             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4369         return rtype;
4370     }
4371 
4372     /**
4373      * Makes a method handle which adapts a target method handle,
4374      * by guarding it with a test, a boolean-valued method handle.
4375      * If the guard fails, a fallback handle is called instead.
4376      * All three method handles must have the same corresponding
4377      * argument and return types, except that the return type
4378      * of the test must be boolean, and the test is allowed
4379      * to have fewer arguments than the other two method handles.
4380      * <p>
4381      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4382      * represents the uniform result type of the three involved handles;
4383      * {@code A}/{@code a}, the types and values of the {@code target}
4384      * parameters and arguments that are consumed by the {@code test}; and
4385      * {@code B}/{@code b}, those types and values of the {@code target}
4386      * parameters and arguments that are not consumed by the {@code test}.
4387      * <blockquote><pre>{@code
4388      * boolean test(A...);
4389      * T target(A...,B...);
4390      * T fallback(A...,B...);
4391      * T adapter(A... a,B... b) {
4392      *   if (test(a...))
4393      *     return target(a..., b...);
4394      *   else
4395      *     return fallback(a..., b...);
4396      * }
4397      * }</pre></blockquote>
4398      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4399      * be modified by execution of the test, and so are passed unchanged
4400      * from the caller to the target or fallback as appropriate.
4401      * @param test method handle used for test, must return boolean
4402      * @param target method handle to call if test passes
4403      * @param fallback method handle to call if test fails
4404      * @return method handle which incorporates the specified if/then/else logic
4405      * @throws NullPointerException if any argument is null
4406      * @throws IllegalArgumentException if {@code test} does not return boolean,
4407      *          or if all three method types do not match (with the return
4408      *          type of {@code test} changed to match that of the target).
4409      */
4410     public static
4411     MethodHandle guardWithTest(MethodHandle test,
4412                                MethodHandle target,
4413                                MethodHandle fallback) {
4414         MethodType gtype = test.type();
4415         MethodType ttype = target.type();
4416         MethodType ftype = fallback.type();
4417         if (!ttype.equals(ftype))
4418             throw misMatchedTypes("target and fallback types", ttype, ftype);
4419         if (gtype.returnType() != boolean.class)
4420             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4421         List<Class<?>> targs = ttype.parameterList();
4422         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4423         if (test == null) {
4424             throw misMatchedTypes("target and test types", ttype, gtype);
4425         }
4426         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4427     }
4428 
4429     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4430         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4431     }
4432 
4433     /**
4434      * Makes a method handle which adapts a target method handle,
4435      * by running it inside an exception handler.
4436      * If the target returns normally, the adapter returns that value.
4437      * If an exception matching the specified type is thrown, the fallback
4438      * handle is called instead on the exception, plus the original arguments.
4439      * <p>
4440      * The target and handler must have the same corresponding
4441      * argument and return types, except that handler may omit trailing arguments
4442      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4443      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4444      * <p>
4445      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4446      * represents the return type of the {@code target} and {@code handler},
4447      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4448      * the types and values of arguments to the resulting handle consumed by
4449      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4450      * resulting handle discarded by {@code handler}.
4451      * <blockquote><pre>{@code
4452      * T target(A..., B...);
4453      * T handler(ExType, A...);
4454      * T adapter(A... a, B... b) {
4455      *   try {
4456      *     return target(a..., b...);
4457      *   } catch (ExType ex) {
4458      *     return handler(ex, a...);
4459      *   }
4460      * }
4461      * }</pre></blockquote>
4462      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4463      * be modified by execution of the target, and so are passed unchanged
4464      * from the caller to the handler, if the handler is invoked.
4465      * <p>
4466      * The target and handler must return the same type, even if the handler
4467      * always throws.  (This might happen, for instance, because the handler
4468      * is simulating a {@code finally} clause).
4469      * To create such a throwing handler, compose the handler creation logic
4470      * with {@link #throwException throwException},
4471      * in order to create a method handle of the correct return type.
4472      * @param target method handle to call
4473      * @param exType the type of exception which the handler will catch
4474      * @param handler method handle to call if a matching exception is thrown
4475      * @return method handle which incorporates the specified try/catch logic
4476      * @throws NullPointerException if any argument is null
4477      * @throws IllegalArgumentException if {@code handler} does not accept
4478      *          the given exception type, or if the method handle types do
4479      *          not match in their return types and their
4480      *          corresponding parameters
4481      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4482      */
4483     public static
4484     MethodHandle catchException(MethodHandle target,
4485                                 Class<? extends Throwable> exType,
4486                                 MethodHandle handler) {
4487         MethodType ttype = target.type();
4488         MethodType htype = handler.type();
4489         if (!Throwable.class.isAssignableFrom(exType))
4490             throw new ClassCastException(exType.getName());
4491         if (htype.parameterCount() < 1 ||
4492             !htype.parameterType(0).isAssignableFrom(exType))
4493             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4494         if (htype.returnType() != ttype.returnType())
4495             throw misMatchedTypes("target and handler return types", ttype, htype);
4496         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4497         if (handler == null) {
4498             throw misMatchedTypes("target and handler types", ttype, htype);
4499         }
4500         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4501     }
4502 
4503     /**
4504      * Produces a method handle which will throw exceptions of the given {@code exType}.
4505      * The method handle will accept a single argument of {@code exType},
4506      * and immediately throw it as an exception.
4507      * The method type will nominally specify a return of {@code returnType}.
4508      * The return type may be anything convenient:  It doesn't matter to the
4509      * method handle's behavior, since it will never return normally.
4510      * @param returnType the return type of the desired method handle
4511      * @param exType the parameter type of the desired method handle
4512      * @return method handle which can throw the given exceptions
4513      * @throws NullPointerException if either argument is null
4514      */
4515     public static
4516     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4517         if (!Throwable.class.isAssignableFrom(exType))
4518             throw new ClassCastException(exType.getName());
4519         return MethodHandleImpl.throwException(methodType(returnType, exType));
4520     }
4521 
4522     /**
4523      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4524      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4525      * delivers the loop's result, which is the return value of the resulting handle.
4526      * <p>
4527      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4528      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4529      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4530      * terms of method handles, each clause will specify up to four independent actions:<ul>
4531      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4532      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4533      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4534      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4535      * </ul>
4536      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4537      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4538      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4539      * <p>
4540      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4541      * this case. See below for a detailed description.
4542      * <p>
4543      * <em>Parameters optional everywhere:</em>
4544      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4545      * As an exception, the init functions cannot take any {@code v} parameters,
4546      * because those values are not yet computed when the init functions are executed.
4547      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4548      * In fact, any clause function may take no arguments at all.
4549      * <p>
4550      * <em>Loop parameters:</em>
4551      * A clause function may take all the iteration variable values it is entitled to, in which case
4552      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4553      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4554      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4555      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4556      * init function is automatically a loop parameter {@code a}.)
4557      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4558      * These loop parameters act as loop-invariant values visible across the whole loop.
4559      * <p>
4560      * <em>Parameters visible everywhere:</em>
4561      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4562      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4563      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4564      * Most clause functions will not need all of this information, but they will be formally connected to it
4565      * as if by {@link #dropArguments}.
4566      * <a id="astar"></a>
4567      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4568      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4569      * In that notation, the general form of an init function parameter list
4570      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4571      * <p>
4572      * <em>Checking clause structure:</em>
4573      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4574      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4575      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4576      * met by the inputs to the loop combinator.
4577      * <p>
4578      * <em>Effectively identical sequences:</em>
4579      * <a id="effid"></a>
4580      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4581      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4582      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4583      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4584      * that longest list.
4585      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4586      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4587      * <p>
4588      * <em>Step 0: Determine clause structure.</em><ol type="a">
4589      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4590      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4591      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4592      * four. Padding takes place by appending elements to the array.
4593      * <li>Clauses with all {@code null}s are disregarded.
4594      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4595      * </ol>
4596      * <p>
4597      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4598      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4599      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4600      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4601      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4602      * iteration variable type.
4603      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4604      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4605      * </ol>
4606      * <p>
4607      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4608      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4609      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4610      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4611      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4612      * (These types will checked in step 2, along with all the clause function types.)
4613      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4614      * <li>All of the collected parameter lists must be effectively identical.
4615      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4616      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4617      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4618      * the "internal parameter list".
4619      * </ul>
4620      * <p>
4621      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4622      * <li>Examine fini function return types, disregarding omitted fini functions.
4623      * <li>If there are no fini functions, the loop return type is {@code void}.
4624      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4625      * type.
4626      * </ol>
4627      * <p>
4628      * <em>Step 1D: Check other types.</em><ol type="a">
4629      * <li>There must be at least one non-omitted pred function.
4630      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4631      * </ol>
4632      * <p>
4633      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4634      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4635      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4636      * (Note that their parameter lists are already effectively identical to this list.)
4637      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4638      * effectively identical to the internal parameter list {@code (V... A...)}.
4639      * </ol>
4640      * <p>
4641      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4642      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4643      * type.
4644      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4645      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4646      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4647      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4648      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4649      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4650      * loop return type.
4651      * </ol>
4652      * <p>
4653      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4654      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4655      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4656      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4657      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4658      * pad out the end of the list.
4659      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
4660      * </ol>
4661      * <p>
4662      * <em>Final observations.</em><ol type="a">
4663      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4664      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4665      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4666      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4667      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4668      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4669      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4670      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4671      * </ol>
4672      * <p>
4673      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4674      * <ul>
4675      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4676      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4677      * (Only one {@code Pn} has to be non-{@code null}.)
4678      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4679      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4680      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4681      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4682      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4683      * the resulting loop handle's parameter types {@code (A...)}.
4684      * </ul>
4685      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4686      * which is natural if most of the loop computation happens in the steps.  For some loops,
4687      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4688      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4689      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4690      * where the init functions will need the extra parameters.  For such reasons, the rules for
4691      * determining these parameters are as symmetric as possible, across all clause parts.
4692      * In general, the loop parameters function as common invariant values across the whole
4693      * loop, while the iteration variables function as common variant values, or (if there is
4694      * no step function) as internal loop invariant temporaries.
4695      * <p>
4696      * <em>Loop execution.</em><ol type="a">
4697      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4698      * every clause function. These locals are loop invariant.
4699      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4700      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4701      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4702      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4703      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4704      * (in argument order).
4705      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4706      * returns {@code false}.
4707      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4708      * sequence {@code (v...)} of loop variables.
4709      * The updated value is immediately visible to all subsequent function calls.
4710      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4711      * (of type {@code R}) is returned from the loop as a whole.
4712      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4713      * except by throwing an exception.
4714      * </ol>
4715      * <p>
4716      * <em>Usage tips.</em>
4717      * <ul>
4718      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4719      * sometimes a step function only needs to observe the current value of its own variable.
4720      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4721      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4722      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4723      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4724      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4725      * <li>If some of the clause functions are virtual methods on an instance, the instance
4726      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4727      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4728      * will be the first iteration variable value, and it will be easy to use virtual
4729      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4730      * </ul>
4731      * <p>
4732      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4733      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4734      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4735      * <blockquote><pre>{@code
4736      * V... init...(A...);
4737      * boolean pred...(V..., A...);
4738      * V... step...(V..., A...);
4739      * R fini...(V..., A...);
4740      * R loop(A... a) {
4741      *   V... v... = init...(a...);
4742      *   for (;;) {
4743      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4744      *       v = s(v..., a...);
4745      *       if (!p(v..., a...)) {
4746      *         return f(v..., a...);
4747      *       }
4748      *     }
4749      *   }
4750      * }
4751      * }</pre></blockquote>
4752      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4753      * to their full length, even though individual clause functions may neglect to take them all.
4754      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
4755      *
4756      * @apiNote Example:
4757      * <blockquote><pre>{@code
4758      * // iterative implementation of the factorial function as a loop handle
4759      * static int one(int k) { return 1; }
4760      * static int inc(int i, int acc, int k) { return i + 1; }
4761      * static int mult(int i, int acc, int k) { return i * acc; }
4762      * static boolean pred(int i, int acc, int k) { return i < k; }
4763      * static int fin(int i, int acc, int k) { return acc; }
4764      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4765      * // null initializer for counter, should initialize to 0
4766      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4767      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4768      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4769      * assertEquals(120, loop.invoke(5));
4770      * }</pre></blockquote>
4771      * The same example, dropping arguments and using combinators:
4772      * <blockquote><pre>{@code
4773      * // simplified implementation of the factorial function as a loop handle
4774      * static int inc(int i) { return i + 1; } // drop acc, k
4775      * static int mult(int i, int acc) { return i * acc; } //drop k
4776      * static boolean cmp(int i, int k) { return i < k; }
4777      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4778      * // null initializer for counter, should initialize to 0
4779      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4780      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4781      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4782      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4783      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4784      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4785      * assertEquals(720, loop.invoke(6));
4786      * }</pre></blockquote>
4787      * A similar example, using a helper object to hold a loop parameter:
4788      * <blockquote><pre>{@code
4789      * // instance-based implementation of the factorial function as a loop handle
4790      * static class FacLoop {
4791      *   final int k;
4792      *   FacLoop(int k) { this.k = k; }
4793      *   int inc(int i) { return i + 1; }
4794      *   int mult(int i, int acc) { return i * acc; }
4795      *   boolean pred(int i) { return i < k; }
4796      *   int fin(int i, int acc) { return acc; }
4797      * }
4798      * // assume MH_FacLoop is a handle to the constructor
4799      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4800      * // null initializer for counter, should initialize to 0
4801      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4802      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4803      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4804      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4805      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4806      * assertEquals(5040, loop.invoke(7));
4807      * }</pre></blockquote>
4808      *
4809      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4810      *
4811      * @return a method handle embodying the looping behavior as defined by the arguments.
4812      *
4813      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4814      *
4815      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4816      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4817      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4818      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4819      * @since 9
4820      */
4821     public static MethodHandle loop(MethodHandle[]... clauses) {
4822         // Step 0: determine clause structure.
4823         loopChecks0(clauses);
4824 
4825         List<MethodHandle> init = new ArrayList<>();
4826         List<MethodHandle> step = new ArrayList<>();
4827         List<MethodHandle> pred = new ArrayList<>();
4828         List<MethodHandle> fini = new ArrayList<>();
4829 
4830         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4831             init.add(clause[0]); // all clauses have at least length 1
4832             step.add(clause.length <= 1 ? null : clause[1]);
4833             pred.add(clause.length <= 2 ? null : clause[2]);
4834             fini.add(clause.length <= 3 ? null : clause[3]);
4835         });
4836 
4837         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4838         final int nclauses = init.size();
4839 
4840         // Step 1A: determine iteration variables (V...).
4841         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4842         for (int i = 0; i < nclauses; ++i) {
4843             MethodHandle in = init.get(i);
4844             MethodHandle st = step.get(i);
4845             if (in == null && st == null) {
4846                 iterationVariableTypes.add(void.class);
4847             } else if (in != null && st != null) {
4848                 loopChecks1a(i, in, st);
4849                 iterationVariableTypes.add(in.type().returnType());
4850             } else {
4851                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4852             }
4853         }
4854         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4855                 collect(Collectors.toList());
4856 
4857         // Step 1B: determine loop parameters (A...).
4858         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4859         loopChecks1b(init, commonSuffix);
4860 
4861         // Step 1C: determine loop return type.
4862         // Step 1D: check other types.
4863         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4864                 map(MethodType::returnType).findFirst().orElse(void.class);
4865         loopChecks1cd(pred, fini, loopReturnType);
4866 
4867         // Step 2: determine parameter lists.
4868         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4869         commonParameterSequence.addAll(commonSuffix);
4870         loopChecks2(step, pred, fini, commonParameterSequence);
4871 
4872         // Step 3: fill in omitted functions.
4873         for (int i = 0; i < nclauses; ++i) {
4874             Class<?> t = iterationVariableTypes.get(i);
4875             if (init.get(i) == null) {
4876                 init.set(i, empty(methodType(t, commonSuffix)));
4877             }
4878             if (step.get(i) == null) {
4879                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4880             }
4881             if (pred.get(i) == null) {
4882                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4883             }
4884             if (fini.get(i) == null) {
4885                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4886             }
4887         }
4888 
4889         // Step 4: fill in missing parameter types.
4890         // Also convert all handles to fixed-arity handles.
4891         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4892         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4893         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4894         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4895 
4896         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4897                 allMatch(pl -> pl.equals(commonSuffix));
4898         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4899                 allMatch(pl -> pl.equals(commonParameterSequence));
4900 
4901         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4902     }
4903 
4904     private static void loopChecks0(MethodHandle[][] clauses) {
4905         if (clauses == null || clauses.length == 0) {
4906             throw newIllegalArgumentException("null or no clauses passed");
4907         }
4908         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4909             throw newIllegalArgumentException("null clauses are not allowed");
4910         }
4911         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4912             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4913         }
4914     }
4915 
4916     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4917         if (in.type().returnType() != st.type().returnType()) {
4918             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4919                     st.type().returnType());
4920         }
4921     }
4922 
4923     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4924         final List<Class<?>> empty = List.of();
4925         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4926                 // take only those that can contribute to a common suffix because they are longer than the prefix
4927                         map(MethodHandle::type).
4928                         filter(t -> t.parameterCount() > skipSize).
4929                         map(MethodType::parameterList).
4930                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4931         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4932     }
4933 
4934     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4935         final List<Class<?>> empty = List.of();
4936         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4937     }
4938 
4939     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4940         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4941         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4942         return longestParameterList(Arrays.asList(longest1, longest2));
4943     }
4944 
4945     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4946         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4947                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4948             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4949                     " (common suffix: " + commonSuffix + ")");
4950         }
4951     }
4952 
4953     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4954         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4955                 anyMatch(t -> t != loopReturnType)) {
4956             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4957                     loopReturnType + ")");
4958         }
4959 
4960         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4961             throw newIllegalArgumentException("no predicate found", pred);
4962         }
4963         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4964                 anyMatch(t -> t != boolean.class)) {
4965             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4966         }
4967     }
4968 
4969     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4970         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4971                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4972             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4973                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4974         }
4975     }
4976 
4977     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4978         return hs.stream().map(h -> {
4979             int pc = h.type().parameterCount();
4980             int tpsize = targetParams.size();
4981             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4982         }).collect(Collectors.toList());
4983     }
4984 
4985     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4986         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4987     }
4988 
4989     /**
4990      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4991      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4992      * <p>
4993      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4994      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4995      * evaluates to {@code true}).
4996      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4997      * <p>
4998      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4999      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5000      * and updated with the value returned from its invocation. The result of loop execution will be
5001      * the final value of the additional loop-local variable (if present).
5002      * <p>
5003      * The following rules hold for these argument handles:<ul>
5004      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5005      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5006      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5007      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5008      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5009      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5010      * It will constrain the parameter lists of the other loop parts.
5011      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5012      * list {@code (A...)} is called the <em>external parameter list</em>.
5013      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5014      * additional state variable of the loop.
5015      * The body must both accept and return a value of this type {@code V}.
5016      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5017      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5018      * <a href="MethodHandles.html#effid">effectively identical</a>
5019      * to the external parameter list {@code (A...)}.
5020      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5021      * {@linkplain #empty default value}.
5022      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5023      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5024      * effectively identical to the internal parameter list.
5025      * </ul>
5026      * <p>
5027      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5028      * <li>The loop handle's result type is the result type {@code V} of the body.
5029      * <li>The loop handle's parameter types are the types {@code (A...)},
5030      * from the external parameter list.
5031      * </ul>
5032      * <p>
5033      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5034      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5035      * passed to the loop.
5036      * <blockquote><pre>{@code
5037      * V init(A...);
5038      * boolean pred(V, A...);
5039      * V body(V, A...);
5040      * V whileLoop(A... a...) {
5041      *   V v = init(a...);
5042      *   while (pred(v, a...)) {
5043      *     v = body(v, a...);
5044      *   }
5045      *   return v;
5046      * }
5047      * }</pre></blockquote>
5048      *
5049      * @apiNote Example:
5050      * <blockquote><pre>{@code
5051      * // implement the zip function for lists as a loop handle
5052      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5053      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5054      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5055      *   zip.add(a.next());
5056      *   zip.add(b.next());
5057      *   return zip;
5058      * }
5059      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5060      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5061      * List<String> a = Arrays.asList("a", "b", "c", "d");
5062      * List<String> b = Arrays.asList("e", "f", "g", "h");
5063      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5064      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5065      * }</pre></blockquote>
5066      *
5067      *
5068      * @apiNote The implementation of this method can be expressed as follows:
5069      * <blockquote><pre>{@code
5070      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5071      *     MethodHandle fini = (body.type().returnType() == void.class
5072      *                         ? null : identity(body.type().returnType()));
5073      *     MethodHandle[]
5074      *         checkExit = { null, null, pred, fini },
5075      *         varBody   = { init, body };
5076      *     return loop(checkExit, varBody);
5077      * }
5078      * }</pre></blockquote>
5079      *
5080      * @param init optional initializer, providing the initial value of the loop variable.
5081      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5082      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5083      *             above for other constraints.
5084      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5085      *             See above for other constraints.
5086      *
5087      * @return a method handle implementing the {@code while} loop as described by the arguments.
5088      * @throws IllegalArgumentException if the rules for the arguments are violated.
5089      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5090      *
5091      * @see #loop(MethodHandle[][])
5092      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5093      * @since 9
5094      */
5095     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5096         whileLoopChecks(init, pred, body);
5097         MethodHandle fini = identityOrVoid(body.type().returnType());
5098         MethodHandle[] checkExit = { null, null, pred, fini };
5099         MethodHandle[] varBody = { init, body };
5100         return loop(checkExit, varBody);
5101     }
5102 
5103     /**
5104      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5105      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5106      * <p>
5107      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5108      * method will, in each iteration, first execute its body and then evaluate the predicate.
5109      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5110      * <p>
5111      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5112      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5113      * and updated with the value returned from its invocation. The result of loop execution will be
5114      * the final value of the additional loop-local variable (if present).
5115      * <p>
5116      * The following rules hold for these argument handles:<ul>
5117      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5118      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5119      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5120      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5121      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5122      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5123      * It will constrain the parameter lists of the other loop parts.
5124      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5125      * list {@code (A...)} is called the <em>external parameter list</em>.
5126      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5127      * additional state variable of the loop.
5128      * The body must both accept and return a value of this type {@code V}.
5129      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5130      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5131      * <a href="MethodHandles.html#effid">effectively identical</a>
5132      * to the external parameter list {@code (A...)}.
5133      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5134      * {@linkplain #empty default value}.
5135      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5136      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5137      * effectively identical to the internal parameter list.
5138      * </ul>
5139      * <p>
5140      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5141      * <li>The loop handle's result type is the result type {@code V} of the body.
5142      * <li>The loop handle's parameter types are the types {@code (A...)},
5143      * from the external parameter list.
5144      * </ul>
5145      * <p>
5146      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5147      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5148      * passed to the loop.
5149      * <blockquote><pre>{@code
5150      * V init(A...);
5151      * boolean pred(V, A...);
5152      * V body(V, A...);
5153      * V doWhileLoop(A... a...) {
5154      *   V v = init(a...);
5155      *   do {
5156      *     v = body(v, a...);
5157      *   } while (pred(v, a...));
5158      *   return v;
5159      * }
5160      * }</pre></blockquote>
5161      *
5162      * @apiNote Example:
5163      * <blockquote><pre>{@code
5164      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5165      * static int zero(int limit) { return 0; }
5166      * static int step(int i, int limit) { return i + 1; }
5167      * static boolean pred(int i, int limit) { return i < limit; }
5168      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5169      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5170      * assertEquals(23, loop.invoke(23));
5171      * }</pre></blockquote>
5172      *
5173      *
5174      * @apiNote The implementation of this method can be expressed as follows:
5175      * <blockquote><pre>{@code
5176      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5177      *     MethodHandle fini = (body.type().returnType() == void.class
5178      *                         ? null : identity(body.type().returnType()));
5179      *     MethodHandle[] clause = { init, body, pred, fini };
5180      *     return loop(clause);
5181      * }
5182      * }</pre></blockquote>
5183      *
5184      * @param init optional initializer, providing the initial value of the loop variable.
5185      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5186      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5187      *             See above for other constraints.
5188      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5189      *             above for other constraints.
5190      *
5191      * @return a method handle implementing the {@code while} loop as described by the arguments.
5192      * @throws IllegalArgumentException if the rules for the arguments are violated.
5193      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5194      *
5195      * @see #loop(MethodHandle[][])
5196      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5197      * @since 9
5198      */
5199     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5200         whileLoopChecks(init, pred, body);
5201         MethodHandle fini = identityOrVoid(body.type().returnType());
5202         MethodHandle[] clause = {init, body, pred, fini };
5203         return loop(clause);
5204     }
5205 
5206     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5207         Objects.requireNonNull(pred);
5208         Objects.requireNonNull(body);
5209         MethodType bodyType = body.type();
5210         Class<?> returnType = bodyType.returnType();
5211         List<Class<?>> innerList = bodyType.parameterList();
5212         List<Class<?>> outerList = innerList;
5213         if (returnType == void.class) {
5214             // OK
5215         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5216             // leading V argument missing => error
5217             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5218             throw misMatchedTypes("body function", bodyType, expected);
5219         } else {
5220             outerList = innerList.subList(1, innerList.size());
5221         }
5222         MethodType predType = pred.type();
5223         if (predType.returnType() != boolean.class ||
5224                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5225             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5226         }
5227         if (init != null) {
5228             MethodType initType = init.type();
5229             if (initType.returnType() != returnType ||
5230                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5231                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5232             }
5233         }
5234     }
5235 
5236     /**
5237      * Constructs a loop that runs a given number of iterations.
5238      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5239      * <p>
5240      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5241      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5242      * It will be initialized to 0 and incremented by 1 in each iteration.
5243      * <p>
5244      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5245      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5246      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5247      * <p>
5248      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5249      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5250      * iteration variable.
5251      * The result of the loop handle execution will be the final {@code V} value of that variable
5252      * (or {@code void} if there is no {@code V} variable).
5253      * <p>
5254      * The following rules hold for the argument handles:<ul>
5255      * <li>The {@code iterations} handle must not be {@code null}, and must return
5256      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5257      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5258      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5259      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5260      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5261      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5262      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5263      * of types called the <em>internal parameter list</em>.
5264      * It will constrain the parameter lists of the other loop parts.
5265      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5266      * with no additional {@code A} types, then the internal parameter list is extended by
5267      * the argument types {@code A...} of the {@code iterations} handle.
5268      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5269      * list {@code (A...)} is called the <em>external parameter list</em>.
5270      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5271      * additional state variable of the loop.
5272      * The body must both accept a leading parameter and return a value of this type {@code V}.
5273      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5274      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5275      * <a href="MethodHandles.html#effid">effectively identical</a>
5276      * to the external parameter list {@code (A...)}.
5277      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5278      * {@linkplain #empty default value}.
5279      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5280      * effectively identical to the external parameter list {@code (A...)}.
5281      * </ul>
5282      * <p>
5283      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5284      * <li>The loop handle's result type is the result type {@code V} of the body.
5285      * <li>The loop handle's parameter types are the types {@code (A...)},
5286      * from the external parameter list.
5287      * </ul>
5288      * <p>
5289      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5290      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5291      * arguments passed to the loop.
5292      * <blockquote><pre>{@code
5293      * int iterations(A...);
5294      * V init(A...);
5295      * V body(V, int, A...);
5296      * V countedLoop(A... a...) {
5297      *   int end = iterations(a...);
5298      *   V v = init(a...);
5299      *   for (int i = 0; i < end; ++i) {
5300      *     v = body(v, i, a...);
5301      *   }
5302      *   return v;
5303      * }
5304      * }</pre></blockquote>
5305      *
5306      * @apiNote Example with a fully conformant body method:
5307      * <blockquote><pre>{@code
5308      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5309      * // => a variation on a well known theme
5310      * static String step(String v, int counter, String init) { return "na " + v; }
5311      * // assume MH_step is a handle to the method above
5312      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5313      * MethodHandle start = MethodHandles.identity(String.class);
5314      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5315      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5316      * }</pre></blockquote>
5317      *
5318      * @apiNote Example with the simplest possible body method type,
5319      * and passing the number of iterations to the loop invocation:
5320      * <blockquote><pre>{@code
5321      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5322      * // => a variation on a well known theme
5323      * static String step(String v, int counter ) { return "na " + v; }
5324      * // assume MH_step is a handle to the method above
5325      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5326      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5327      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5328      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5329      * }</pre></blockquote>
5330      *
5331      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5332      * as loop parameters:
5333      * <blockquote><pre>{@code
5334      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5335      * // => a variation on a well known theme
5336      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5337      * // assume MH_step is a handle to the method above
5338      * MethodHandle count = MethodHandles.identity(int.class);
5339      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5340      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5341      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5342      * }</pre></blockquote>
5343      *
5344      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5345      * to enforce a loop type:
5346      * <blockquote><pre>{@code
5347      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5348      * // => a variation on a well known theme
5349      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5350      * // assume MH_step is a handle to the method above
5351      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5352      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5353      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5354      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5355      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5356      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5357      * }</pre></blockquote>
5358      *
5359      * @apiNote The implementation of this method can be expressed as follows:
5360      * <blockquote><pre>{@code
5361      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5362      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5363      * }
5364      * }</pre></blockquote>
5365      *
5366      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5367      *                   result type must be {@code int}. See above for other constraints.
5368      * @param init optional initializer, providing the initial value of the loop variable.
5369      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5370      * @param body body of the loop, which may not be {@code null}.
5371      *             It controls the loop parameters and result type in the standard case (see above for details).
5372      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5373      *             and may accept any number of additional types.
5374      *             See above for other constraints.
5375      *
5376      * @return a method handle representing the loop.
5377      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5378      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5379      *
5380      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5381      * @since 9
5382      */
5383     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5384         return countedLoop(empty(iterations.type()), iterations, init, body);
5385     }
5386 
5387     /**
5388      * Constructs a loop that counts over a range of numbers.
5389      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5390      * <p>
5391      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5392      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5393      * values of the loop counter.
5394      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5395      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5396      * <p>
5397      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5398      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5399      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5400      * <p>
5401      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5402      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5403      * iteration variable.
5404      * The result of the loop handle execution will be the final {@code V} value of that variable
5405      * (or {@code void} if there is no {@code V} variable).
5406      * <p>
5407      * The following rules hold for the argument handles:<ul>
5408      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5409      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5410      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5411      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5412      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5413      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5414      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5415      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5416      * of types called the <em>internal parameter list</em>.
5417      * It will constrain the parameter lists of the other loop parts.
5418      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5419      * with no additional {@code A} types, then the internal parameter list is extended by
5420      * the argument types {@code A...} of the {@code end} handle.
5421      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5422      * list {@code (A...)} is called the <em>external parameter list</em>.
5423      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5424      * additional state variable of the loop.
5425      * The body must both accept a leading parameter and return a value of this type {@code V}.
5426      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5427      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5428      * <a href="MethodHandles.html#effid">effectively identical</a>
5429      * to the external parameter list {@code (A...)}.
5430      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5431      * {@linkplain #empty default value}.
5432      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5433      * effectively identical to the external parameter list {@code (A...)}.
5434      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5435      * to the external parameter list.
5436      * </ul>
5437      * <p>
5438      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5439      * <li>The loop handle's result type is the result type {@code V} of the body.
5440      * <li>The loop handle's parameter types are the types {@code (A...)},
5441      * from the external parameter list.
5442      * </ul>
5443      * <p>
5444      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5445      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5446      * arguments passed to the loop.
5447      * <blockquote><pre>{@code
5448      * int start(A...);
5449      * int end(A...);
5450      * V init(A...);
5451      * V body(V, int, A...);
5452      * V countedLoop(A... a...) {
5453      *   int e = end(a...);
5454      *   int s = start(a...);
5455      *   V v = init(a...);
5456      *   for (int i = s; i < e; ++i) {
5457      *     v = body(v, i, a...);
5458      *   }
5459      *   return v;
5460      * }
5461      * }</pre></blockquote>
5462      *
5463      * @apiNote The implementation of this method can be expressed as follows:
5464      * <blockquote><pre>{@code
5465      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5466      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5467      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5468      *     // the following semantics:
5469      *     // MH_increment: (int limit, int counter) -> counter + 1
5470      *     // MH_predicate: (int limit, int counter) -> counter < limit
5471      *     Class<?> counterType = start.type().returnType();  // int
5472      *     Class<?> returnType = body.type().returnType();
5473      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5474      *     if (returnType != void.class) {  // ignore the V variable
5475      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5476      *         pred = dropArguments(pred, 1, returnType);  // ditto
5477      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5478      *     }
5479      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5480      *     MethodHandle[]
5481      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5482      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5483      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5484      *     return loop(loopLimit, bodyClause, indexVar);
5485      * }
5486      * }</pre></blockquote>
5487      *
5488      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5489      *              See above for other constraints.
5490      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5491      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5492      * @param init optional initializer, providing the initial value of the loop variable.
5493      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5494      * @param body body of the loop, which may not be {@code null}.
5495      *             It controls the loop parameters and result type in the standard case (see above for details).
5496      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5497      *             and may accept any number of additional types.
5498      *             See above for other constraints.
5499      *
5500      * @return a method handle representing the loop.
5501      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5502      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5503      *
5504      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5505      * @since 9
5506      */
5507     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5508         countedLoopChecks(start, end, init, body);
5509         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5510         Class<?> limitType   = end.type().returnType();    // yes, int again
5511         Class<?> returnType  = body.type().returnType();
5512         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5513         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5514         MethodHandle retv = null;
5515         if (returnType != void.class) {
5516             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5517             pred = dropArguments(pred, 1, returnType);  // ditto
5518             retv = dropArguments(identity(returnType), 0, counterType);
5519         }
5520         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5521         MethodHandle[]
5522             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5523             bodyClause = { init, body },            // v = init(); v = body(v, i)
5524             indexVar   = { start, incr };           // i = start(); i = i + 1
5525         return loop(loopLimit, bodyClause, indexVar);
5526     }
5527 
5528     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5529         Objects.requireNonNull(start);
5530         Objects.requireNonNull(end);
5531         Objects.requireNonNull(body);
5532         Class<?> counterType = start.type().returnType();
5533         if (counterType != int.class) {
5534             MethodType expected = start.type().changeReturnType(int.class);
5535             throw misMatchedTypes("start function", start.type(), expected);
5536         } else if (end.type().returnType() != counterType) {
5537             MethodType expected = end.type().changeReturnType(counterType);
5538             throw misMatchedTypes("end function", end.type(), expected);
5539         }
5540         MethodType bodyType = body.type();
5541         Class<?> returnType = bodyType.returnType();
5542         List<Class<?>> innerList = bodyType.parameterList();
5543         // strip leading V value if present
5544         int vsize = (returnType == void.class ? 0 : 1);
5545         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5546             // argument list has no "V" => error
5547             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5548             throw misMatchedTypes("body function", bodyType, expected);
5549         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5550             // missing I type => error
5551             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5552             throw misMatchedTypes("body function", bodyType, expected);
5553         }
5554         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5555         if (outerList.isEmpty()) {
5556             // special case; take lists from end handle
5557             outerList = end.type().parameterList();
5558             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5559         }
5560         MethodType expected = methodType(counterType, outerList);
5561         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5562             throw misMatchedTypes("start parameter types", start.type(), expected);
5563         }
5564         if (end.type() != start.type() &&
5565             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5566             throw misMatchedTypes("end parameter types", end.type(), expected);
5567         }
5568         if (init != null) {
5569             MethodType initType = init.type();
5570             if (initType.returnType() != returnType ||
5571                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5572                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5573             }
5574         }
5575     }
5576 
5577     /**
5578      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5579      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5580      * <p>
5581      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5582      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5583      * <p>
5584      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5585      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5586      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5587      * <p>
5588      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5589      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5590      * iteration variable.
5591      * The result of the loop handle execution will be the final {@code V} value of that variable
5592      * (or {@code void} if there is no {@code V} variable).
5593      * <p>
5594      * The following rules hold for the argument handles:<ul>
5595      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5596      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5597      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5598      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5599      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5600      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5601      * of types called the <em>internal parameter list</em>.
5602      * It will constrain the parameter lists of the other loop parts.
5603      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5604      * with no additional {@code A} types, then the internal parameter list is extended by
5605      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5606      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5607      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5608      * list {@code (A...)} is called the <em>external parameter list</em>.
5609      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5610      * additional state variable of the loop.
5611      * The body must both accept a leading parameter and return a value of this type {@code V}.
5612      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5613      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5614      * <a href="MethodHandles.html#effid">effectively identical</a>
5615      * to the external parameter list {@code (A...)}.
5616      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5617      * {@linkplain #empty default value}.
5618      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5619      * type {@code java.util.Iterator} or a subtype thereof.
5620      * The iterator it produces when the loop is executed will be assumed
5621      * to yield values which can be converted to type {@code T}.
5622      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5623      * effectively identical to the external parameter list {@code (A...)}.
5624      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5625      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5626      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5627      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5628      * the {@link MethodHandle#asType asType} conversion method.
5629      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5630      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5631      * </ul>
5632      * <p>
5633      * The type {@code T} may be either a primitive or reference.
5634      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5635      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5636      * as if by the {@link MethodHandle#asType asType} conversion method.
5637      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5638      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5639      * <p>
5640      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5641      * <li>The loop handle's result type is the result type {@code V} of the body.
5642      * <li>The loop handle's parameter types are the types {@code (A...)},
5643      * from the external parameter list.
5644      * </ul>
5645      * <p>
5646      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5647      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5648      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5649      * <blockquote><pre>{@code
5650      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5651      * V init(A...);
5652      * V body(V,T,A...);
5653      * V iteratedLoop(A... a...) {
5654      *   Iterator<T> it = iterator(a...);
5655      *   V v = init(a...);
5656      *   while (it.hasNext()) {
5657      *     T t = it.next();
5658      *     v = body(v, t, a...);
5659      *   }
5660      *   return v;
5661      * }
5662      * }</pre></blockquote>
5663      *
5664      * @apiNote Example:
5665      * <blockquote><pre>{@code
5666      * // get an iterator from a list
5667      * static List<String> reverseStep(List<String> r, String e) {
5668      *   r.add(0, e);
5669      *   return r;
5670      * }
5671      * static List<String> newArrayList() { return new ArrayList<>(); }
5672      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5673      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5674      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5675      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5676      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5677      * }</pre></blockquote>
5678      *
5679      * @apiNote The implementation of this method can be expressed approximately as follows:
5680      * <blockquote><pre>{@code
5681      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5682      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5683      *     Class<?> returnType = body.type().returnType();
5684      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5685      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5686      *     MethodHandle retv = null, step = body, startIter = iterator;
5687      *     if (returnType != void.class) {
5688      *         // the simple thing first:  in (I V A...), drop the I to get V
5689      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5690      *         // body type signature (V T A...), internal loop types (I V A...)
5691      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5692      *     }
5693      *     if (startIter == null)  startIter = MH_getIter;
5694      *     MethodHandle[]
5695      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5696      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5697      *     return loop(iterVar, bodyClause);
5698      * }
5699      * }</pre></blockquote>
5700      *
5701      * @param iterator an optional handle to return the iterator to start the loop.
5702      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5703      *                 See above for other constraints.
5704      * @param init optional initializer, providing the initial value of the loop variable.
5705      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5706      * @param body body of the loop, which may not be {@code null}.
5707      *             It controls the loop parameters and result type in the standard case (see above for details).
5708      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5709      *             and may accept any number of additional types.
5710      *             See above for other constraints.
5711      *
5712      * @return a method handle embodying the iteration loop functionality.
5713      * @throws NullPointerException if the {@code body} handle is {@code null}.
5714      * @throws IllegalArgumentException if any argument violates the above requirements.
5715      *
5716      * @since 9
5717      */
5718     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5719         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5720         Class<?> returnType = body.type().returnType();
5721         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5722         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5723         MethodHandle startIter;
5724         MethodHandle nextVal;
5725         {
5726             MethodType iteratorType;
5727             if (iterator == null) {
5728                 // derive argument type from body, if available, else use Iterable
5729                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5730                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5731             } else {
5732                 // force return type to the internal iterator class
5733                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5734                 startIter = iterator;
5735             }
5736             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5737             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5738 
5739             // perform the asType transforms under an exception transformer, as per spec.:
5740             try {
5741                 startIter = startIter.asType(iteratorType);
5742                 nextVal = nextRaw.asType(nextValType);
5743             } catch (WrongMethodTypeException ex) {
5744                 throw new IllegalArgumentException(ex);
5745             }
5746         }
5747 
5748         MethodHandle retv = null, step = body;
5749         if (returnType != void.class) {
5750             // the simple thing first:  in (I V A...), drop the I to get V
5751             retv = dropArguments(identity(returnType), 0, Iterator.class);
5752             // body type signature (V T A...), internal loop types (I V A...)
5753             step = swapArguments(body, 0, 1);  // swap V <-> T
5754         }
5755 
5756         MethodHandle[]
5757             iterVar    = { startIter, null, hasNext, retv },
5758             bodyClause = { init, filterArgument(step, 0, nextVal) };
5759         return loop(iterVar, bodyClause);
5760     }
5761 
5762     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5763         Objects.requireNonNull(body);
5764         MethodType bodyType = body.type();
5765         Class<?> returnType = bodyType.returnType();
5766         List<Class<?>> internalParamList = bodyType.parameterList();
5767         // strip leading V value if present
5768         int vsize = (returnType == void.class ? 0 : 1);
5769         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5770             // argument list has no "V" => error
5771             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5772             throw misMatchedTypes("body function", bodyType, expected);
5773         } else if (internalParamList.size() <= vsize) {
5774             // missing T type => error
5775             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5776             throw misMatchedTypes("body function", bodyType, expected);
5777         }
5778         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5779         Class<?> iterableType = null;
5780         if (iterator != null) {
5781             // special case; if the body handle only declares V and T then
5782             // the external parameter list is obtained from iterator handle
5783             if (externalParamList.isEmpty()) {
5784                 externalParamList = iterator.type().parameterList();
5785             }
5786             MethodType itype = iterator.type();
5787             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5788                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5789             }
5790             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5791                 MethodType expected = methodType(itype.returnType(), externalParamList);
5792                 throw misMatchedTypes("iterator parameters", itype, expected);
5793             }
5794         } else {
5795             if (externalParamList.isEmpty()) {
5796                 // special case; if the iterator handle is null and the body handle
5797                 // only declares V and T then the external parameter list consists
5798                 // of Iterable
5799                 externalParamList = Arrays.asList(Iterable.class);
5800                 iterableType = Iterable.class;
5801             } else {
5802                 // special case; if the iterator handle is null and the external
5803                 // parameter list is not empty then the first parameter must be
5804                 // assignable to Iterable
5805                 iterableType = externalParamList.get(0);
5806                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5807                     throw newIllegalArgumentException(
5808                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5809                 }
5810             }
5811         }
5812         if (init != null) {
5813             MethodType initType = init.type();
5814             if (initType.returnType() != returnType ||
5815                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5816                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5817             }
5818         }
5819         return iterableType;  // help the caller a bit
5820     }
5821 
5822     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5823         // there should be a better way to uncross my wires
5824         int arity = mh.type().parameterCount();
5825         int[] order = new int[arity];
5826         for (int k = 0; k < arity; k++)  order[k] = k;
5827         order[i] = j; order[j] = i;
5828         Class<?>[] types = mh.type().parameterArray();
5829         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5830         MethodType swapType = methodType(mh.type().returnType(), types);
5831         return permuteArguments(mh, swapType, order);
5832     }
5833 
5834     /**
5835      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5836      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5837      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5838      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5839      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5840      * {@code try-finally} handle.
5841      * <p>
5842      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5843      * The first is the exception thrown during the
5844      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5845      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5846      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5847      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5848      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5849      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5850      * <p>
5851      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5852      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5853      * two extra leading parameters:<ul>
5854      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5855      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5856      * the result from the execution of the {@code target} handle.
5857      * This parameter is not present if the {@code target} returns {@code void}.
5858      * </ul>
5859      * <p>
5860      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5861      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5862      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5863      * the cleanup.
5864      * <blockquote><pre>{@code
5865      * V target(A..., B...);
5866      * V cleanup(Throwable, V, A...);
5867      * V adapter(A... a, B... b) {
5868      *   V result = (zero value for V);
5869      *   Throwable throwable = null;
5870      *   try {
5871      *     result = target(a..., b...);
5872      *   } catch (Throwable t) {
5873      *     throwable = t;
5874      *     throw t;
5875      *   } finally {
5876      *     result = cleanup(throwable, result, a...);
5877      *   }
5878      *   return result;
5879      * }
5880      * }</pre></blockquote>
5881      * <p>
5882      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5883      * be modified by execution of the target, and so are passed unchanged
5884      * from the caller to the cleanup, if it is invoked.
5885      * <p>
5886      * The target and cleanup must return the same type, even if the cleanup
5887      * always throws.
5888      * To create such a throwing cleanup, compose the cleanup logic
5889      * with {@link #throwException throwException},
5890      * in order to create a method handle of the correct return type.
5891      * <p>
5892      * Note that {@code tryFinally} never converts exceptions into normal returns.
5893      * In rare cases where exceptions must be converted in that way, first wrap
5894      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5895      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5896      * <p>
5897      * It is recommended that the first parameter type of {@code cleanup} be
5898      * declared {@code Throwable} rather than a narrower subtype.  This ensures
5899      * {@code cleanup} will always be invoked with whatever exception that
5900      * {@code target} throws.  Declaring a narrower type may result in a
5901      * {@code ClassCastException} being thrown by the {@code try-finally}
5902      * handle if the type of the exception thrown by {@code target} is not
5903      * assignable to the first parameter type of {@code cleanup}.  Note that
5904      * various exception types of {@code VirtualMachineError},
5905      * {@code LinkageError}, and {@code RuntimeException} can in principle be
5906      * thrown by almost any kind of Java code, and a finally clause that
5907      * catches (say) only {@code IOException} would mask any of the others
5908      * behind a {@code ClassCastException}.
5909      *
5910      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5911      * @param cleanup the handle that is invoked in the finally block.
5912      *
5913      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5914      * @throws NullPointerException if any argument is null
5915      * @throws IllegalArgumentException if {@code cleanup} does not accept
5916      *          the required leading arguments, or if the method handle types do
5917      *          not match in their return types and their
5918      *          corresponding trailing parameters
5919      *
5920      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5921      * @since 9
5922      */
5923     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5924         List<Class<?>> targetParamTypes = target.type().parameterList();
5925         Class<?> rtype = target.type().returnType();
5926 
5927         tryFinallyChecks(target, cleanup);
5928 
5929         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5930         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5931         // target parameter list.
5932         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5933 
5934         // Ensure that the intrinsic type checks the instance thrown by the
5935         // target against the first parameter of cleanup
5936         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
5937 
5938         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5939         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5940     }
5941 
5942     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5943         Class<?> rtype = target.type().returnType();
5944         if (rtype != cleanup.type().returnType()) {
5945             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5946         }
5947         MethodType cleanupType = cleanup.type();
5948         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5949             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5950         }
5951         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5952             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5953         }
5954         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5955         // target parameter list.
5956         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5957         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5958             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5959                     cleanup.type(), target.type());
5960         }
5961     }
5962 
5963 }