1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "gc/shared/barrierSetAssembler.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreter.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/methodHandles.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/safepointMechanism.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/synchronizer.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 #undef __
  46 #define __ _masm->
  47 
  48 // ============================================================================
  49 // Misc helpers
  50 
  51 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  52 // (only one of both variants is possible at the same time).
  53 // Index can be noreg.
  54 // Kills:
  55 //   Rbase, Rtmp
  56 static void do_oop_store(InterpreterMacroAssembler* _masm,
  57                          Register           base,
  58                          RegisterOrConstant offset,
  59                          Register           val,         // Noreg means always null.
  60                          Register           tmp1,
  61                          Register           tmp2,
  62                          Register           tmp3,
  63                          DecoratorSet       decorators) {
  64   assert_different_registers(tmp1, tmp2, tmp3, val, base);
  65   __ store_heap_oop(val, offset, base, tmp1, tmp2, tmp3, false, decorators);
  66 }
  67 
  68 static void do_oop_load(InterpreterMacroAssembler* _masm,
  69                         Register base,
  70                         RegisterOrConstant offset,
  71                         Register dst,
  72                         Register tmp1,
  73                         Register tmp2,
  74                         DecoratorSet decorators) {
  75   assert_different_registers(base, tmp1, tmp2);
  76   assert_different_registers(dst, tmp1, tmp2);
  77   __ load_heap_oop(dst, offset, base, tmp1, tmp2, false, decorators);
  78 }
  79 
  80 // ============================================================================
  81 // Platform-dependent initialization
  82 
  83 void TemplateTable::pd_initialize() {
  84   // No ppc64 specific initialization.
  85 }
  86 
  87 Address TemplateTable::at_bcp(int offset) {
  88   // Not used on ppc.
  89   ShouldNotReachHere();
  90   return Address();
  91 }
  92 
  93 // Patches the current bytecode (ptr to it located in bcp)
  94 // in the bytecode stream with a new one.
  95 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
  96   // With sharing on, may need to test method flag.
  97   if (!RewriteBytecodes) return;
  98   Label L_patch_done;
  99 
 100   switch (new_bc) {
 101     case Bytecodes::_fast_aputfield:
 102     case Bytecodes::_fast_bputfield:
 103     case Bytecodes::_fast_zputfield:
 104     case Bytecodes::_fast_cputfield:
 105     case Bytecodes::_fast_dputfield:
 106     case Bytecodes::_fast_fputfield:
 107     case Bytecodes::_fast_iputfield:
 108     case Bytecodes::_fast_lputfield:
 109     case Bytecodes::_fast_sputfield:
 110     {
 111       // We skip bytecode quickening for putfield instructions when
 112       // the put_code written to the constant pool cache is zero.
 113       // This is required so that every execution of this instruction
 114       // calls out to InterpreterRuntime::resolve_get_put to do
 115       // additional, required work.
 116       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 117       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 118       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 119       // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
 120 #if defined(VM_LITTLE_ENDIAN)
 121       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
 122 #else
 123       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 124 #endif
 125       __ cmpwi(CCR0, Rnew_bc, 0);
 126       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 127       __ beq(CCR0, L_patch_done);
 128       // __ isync(); // acquire not needed
 129       break;
 130     }
 131 
 132     default:
 133       assert(byte_no == -1, "sanity");
 134       if (load_bc_into_bc_reg) {
 135         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 136       }
 137   }
 138 
 139   if (JvmtiExport::can_post_breakpoint()) {
 140     Label L_fast_patch;
 141     __ lbz(Rtemp, 0, R14_bcp);
 142     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 143     __ bne(CCR0, L_fast_patch);
 144     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 145     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 146     __ b(L_patch_done);
 147     __ bind(L_fast_patch);
 148   }
 149 
 150   // Patch bytecode.
 151   __ stb(Rnew_bc, 0, R14_bcp);
 152 
 153   __ bind(L_patch_done);
 154 }
 155 
 156 // ============================================================================
 157 // Individual instructions
 158 
 159 void TemplateTable::nop() {
 160   transition(vtos, vtos);
 161   // Nothing to do.
 162 }
 163 
 164 void TemplateTable::shouldnotreachhere() {
 165   transition(vtos, vtos);
 166   __ stop("shouldnotreachhere bytecode");
 167 }
 168 
 169 void TemplateTable::aconst_null() {
 170   transition(vtos, atos);
 171   __ li(R17_tos, 0);
 172 }
 173 
 174 void TemplateTable::iconst(int value) {
 175   transition(vtos, itos);
 176   assert(value >= -1 && value <= 5, "");
 177   __ li(R17_tos, value);
 178 }
 179 
 180 void TemplateTable::lconst(int value) {
 181   transition(vtos, ltos);
 182   assert(value >= -1 && value <= 5, "");
 183   __ li(R17_tos, value);
 184 }
 185 
 186 void TemplateTable::fconst(int value) {
 187   transition(vtos, ftos);
 188   static float zero = 0.0;
 189   static float one  = 1.0;
 190   static float two  = 2.0;
 191   switch (value) {
 192     default: ShouldNotReachHere();
 193     case 0: {
 194       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 195       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 196       break;
 197     }
 198     case 1: {
 199       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 200       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 201       break;
 202     }
 203     case 2: {
 204       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 205       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 206       break;
 207     }
 208   }
 209 }
 210 
 211 void TemplateTable::dconst(int value) {
 212   transition(vtos, dtos);
 213   static double zero = 0.0;
 214   static double one  = 1.0;
 215   switch (value) {
 216     case 0: {
 217       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 218       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 219       break;
 220     }
 221     case 1: {
 222       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 223       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 224       break;
 225     }
 226     default: ShouldNotReachHere();
 227   }
 228 }
 229 
 230 void TemplateTable::bipush() {
 231   transition(vtos, itos);
 232   __ lbz(R17_tos, 1, R14_bcp);
 233   __ extsb(R17_tos, R17_tos);
 234 }
 235 
 236 void TemplateTable::sipush() {
 237   transition(vtos, itos);
 238   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 239 }
 240 
 241 void TemplateTable::ldc(bool wide) {
 242   Register Rscratch1 = R11_scratch1,
 243            Rscratch2 = R12_scratch2,
 244            Rcpool    = R3_ARG1;
 245 
 246   transition(vtos, vtos);
 247   Label notInt, notFloat, notClass, exit;
 248 
 249   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 250   if (wide) { // Read index.
 251     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 252   } else {
 253     __ lbz(Rscratch1, 1, R14_bcp);
 254   }
 255 
 256   const int base_offset = ConstantPool::header_size() * wordSize;
 257   const int tags_offset = Array<u1>::base_offset_in_bytes();
 258 
 259   // Get type from tags.
 260   __ addi(Rscratch2, Rscratch2, tags_offset);
 261   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 262 
 263   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 264   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 265   __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
 266 
 267   // Resolved class - need to call vm to get java mirror of the class.
 268   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 269   __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above?
 270   __ beq(CCR0, notClass);
 271 
 272   __ li(R4, wide ? 1 : 0);
 273   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 274   __ push(atos);
 275   __ b(exit);
 276 
 277   __ align(32, 12);
 278   __ bind(notClass);
 279   __ addi(Rcpool, Rcpool, base_offset);
 280   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 281   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 282   __ bne(CCR0, notInt);
 283   __ lwax(R17_tos, Rcpool, Rscratch1);
 284   __ push(itos);
 285   __ b(exit);
 286 
 287   __ align(32, 12);
 288   __ bind(notInt);
 289   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 290   __ bne(CCR0, notFloat);
 291   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 292   __ push(ftos);
 293   __ b(exit);
 294 
 295   __ align(32, 12);
 296   // assume the tag is for condy; if not, the VM runtime will tell us
 297   __ bind(notFloat);
 298   condy_helper(exit);
 299 
 300   __ align(32, 12);
 301   __ bind(exit);
 302 }
 303 
 304 // Fast path for caching oop constants.
 305 void TemplateTable::fast_aldc(bool wide) {
 306   transition(vtos, atos);
 307 
 308   int index_size = wide ? sizeof(u2) : sizeof(u1);
 309   const Register Rscratch = R11_scratch1;
 310   Label is_null;
 311 
 312   // We are resolved if the resolved reference cache entry contains a
 313   // non-null object (CallSite, etc.)
 314   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 315   __ load_resolved_reference_at_index(R17_tos, Rscratch, &is_null);
 316 
 317   // Convert null sentinel to NULL.
 318   int simm16_rest = __ load_const_optimized(Rscratch, Universe::the_null_sentinel_addr(), R0, true);
 319   __ ld(Rscratch, simm16_rest, Rscratch);
 320   __ cmpld(CCR0, R17_tos, Rscratch);
 321   if (VM_Version::has_isel()) {
 322     __ isel_0(R17_tos, CCR0, Assembler::equal);
 323   } else {
 324     Label not_sentinel;
 325     __ bne(CCR0, not_sentinel);
 326     __ li(R17_tos, 0);
 327     __ bind(not_sentinel);
 328   }
 329   __ verify_oop(R17_tos);
 330   __ dispatch_epilog(atos, Bytecodes::length_for(bytecode()));
 331 
 332   __ bind(is_null);
 333   __ load_const_optimized(R3_ARG1, (int)bytecode());
 334 
 335   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 336 
 337   // First time invocation - must resolve first.
 338   __ call_VM(R17_tos, entry, R3_ARG1);
 339   __ verify_oop(R17_tos);
 340 }
 341 
 342 void TemplateTable::ldc2_w() {
 343   transition(vtos, vtos);
 344   Label not_double, not_long, exit;
 345 
 346   Register Rindex = R11_scratch1,
 347            Rcpool = R12_scratch2,
 348            Rtag   = R3_ARG1;
 349   __ get_cpool_and_tags(Rcpool, Rtag);
 350   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 351 
 352   const int base_offset = ConstantPool::header_size() * wordSize;
 353   const int tags_offset = Array<u1>::base_offset_in_bytes();
 354   // Get type from tags.
 355   __ addi(Rcpool, Rcpool, base_offset);
 356   __ addi(Rtag, Rtag, tags_offset);
 357 
 358   __ lbzx(Rtag, Rtag, Rindex);
 359   __ sldi(Rindex, Rindex, LogBytesPerWord);
 360 
 361   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 362   __ bne(CCR0, not_double);
 363   __ lfdx(F15_ftos, Rcpool, Rindex);
 364   __ push(dtos);
 365   __ b(exit);
 366 
 367   __ bind(not_double);
 368   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Long);
 369   __ bne(CCR0, not_long);
 370   __ ldx(R17_tos, Rcpool, Rindex);
 371   __ push(ltos);
 372   __ b(exit);
 373 
 374   __ bind(not_long);
 375   condy_helper(exit);
 376 
 377   __ align(32, 12);
 378   __ bind(exit);
 379 }
 380 
 381 void TemplateTable::condy_helper(Label& Done) {
 382   const Register obj   = R31;
 383   const Register off   = R11_scratch1;
 384   const Register flags = R12_scratch2;
 385   const Register rarg  = R4_ARG2;
 386   __ li(rarg, (int)bytecode());
 387   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 388   __ get_vm_result_2(flags);
 389 
 390   // VMr = obj = base address to find primitive value to push
 391   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 392   __ andi(off, flags, ConstantPoolCacheEntry::field_index_mask);
 393 
 394   // What sort of thing are we loading?
 395   __ rldicl(flags, flags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
 396 
 397   switch (bytecode()) {
 398   case Bytecodes::_ldc:
 399   case Bytecodes::_ldc_w:
 400     {
 401       // tos in (itos, ftos, stos, btos, ctos, ztos)
 402       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 403       __ cmplwi(CCR0, flags, itos);
 404       __ bne(CCR0, notInt);
 405       // itos
 406       __ lwax(R17_tos, obj, off);
 407       __ push(itos);
 408       __ b(Done);
 409 
 410       __ bind(notInt);
 411       __ cmplwi(CCR0, flags, ftos);
 412       __ bne(CCR0, notFloat);
 413       // ftos
 414       __ lfsx(F15_ftos, obj, off);
 415       __ push(ftos);
 416       __ b(Done);
 417 
 418       __ bind(notFloat);
 419       __ cmplwi(CCR0, flags, stos);
 420       __ bne(CCR0, notShort);
 421       // stos
 422       __ lhax(R17_tos, obj, off);
 423       __ push(stos);
 424       __ b(Done);
 425 
 426       __ bind(notShort);
 427       __ cmplwi(CCR0, flags, btos);
 428       __ bne(CCR0, notByte);
 429       // btos
 430       __ lbzx(R17_tos, obj, off);
 431       __ extsb(R17_tos, R17_tos);
 432       __ push(btos);
 433       __ b(Done);
 434 
 435       __ bind(notByte);
 436       __ cmplwi(CCR0, flags, ctos);
 437       __ bne(CCR0, notChar);
 438       // ctos
 439       __ lhzx(R17_tos, obj, off);
 440       __ push(ctos);
 441       __ b(Done);
 442 
 443       __ bind(notChar);
 444       __ cmplwi(CCR0, flags, ztos);
 445       __ bne(CCR0, notBool);
 446       // ztos
 447       __ lbzx(R17_tos, obj, off);
 448       __ push(ztos);
 449       __ b(Done);
 450 
 451       __ bind(notBool);
 452       break;
 453     }
 454 
 455   case Bytecodes::_ldc2_w:
 456     {
 457       Label notLong, notDouble;
 458       __ cmplwi(CCR0, flags, ltos);
 459       __ bne(CCR0, notLong);
 460       // ltos
 461       __ ldx(R17_tos, obj, off);
 462       __ push(ltos);
 463       __ b(Done);
 464 
 465       __ bind(notLong);
 466       __ cmplwi(CCR0, flags, dtos);
 467       __ bne(CCR0, notDouble);
 468       // dtos
 469       __ lfdx(F15_ftos, obj, off);
 470       __ push(dtos);
 471       __ b(Done);
 472 
 473       __ bind(notDouble);
 474       break;
 475     }
 476 
 477   default:
 478     ShouldNotReachHere();
 479   }
 480 
 481   __ stop("bad ldc/condy");
 482 }
 483 
 484 // Get the locals index located in the bytecode stream at bcp + offset.
 485 void TemplateTable::locals_index(Register Rdst, int offset) {
 486   __ lbz(Rdst, offset, R14_bcp);
 487 }
 488 
 489 void TemplateTable::iload() {
 490   iload_internal();
 491 }
 492 
 493 void TemplateTable::nofast_iload() {
 494   iload_internal(may_not_rewrite);
 495 }
 496 
 497 void TemplateTable::iload_internal(RewriteControl rc) {
 498   transition(vtos, itos);
 499 
 500   // Get the local value into tos
 501   const Register Rindex = R22_tmp2;
 502   locals_index(Rindex);
 503 
 504   // Rewrite iload,iload  pair into fast_iload2
 505   //         iload,caload pair into fast_icaload
 506   if (RewriteFrequentPairs && rc == may_rewrite) {
 507     Label Lrewrite, Ldone;
 508     Register Rnext_byte  = R3_ARG1,
 509              Rrewrite_to = R6_ARG4,
 510              Rscratch    = R11_scratch1;
 511 
 512     // get next byte
 513     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 514 
 515     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 516     // last two iloads in a pair. Comparing against fast_iload means that
 517     // the next bytecode is neither an iload or a caload, and therefore
 518     // an iload pair.
 519     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 520     __ beq(CCR0, Ldone);
 521 
 522     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 523     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 524     __ beq(CCR1, Lrewrite);
 525 
 526     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 527     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 528     __ beq(CCR0, Lrewrite);
 529 
 530     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 531 
 532     __ bind(Lrewrite);
 533     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 534     __ bind(Ldone);
 535   }
 536 
 537   __ load_local_int(R17_tos, Rindex, Rindex);
 538 }
 539 
 540 // Load 2 integers in a row without dispatching
 541 void TemplateTable::fast_iload2() {
 542   transition(vtos, itos);
 543 
 544   __ lbz(R3_ARG1, 1, R14_bcp);
 545   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 546 
 547   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 548   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 549   __ push_i(R3_ARG1);
 550 }
 551 
 552 void TemplateTable::fast_iload() {
 553   transition(vtos, itos);
 554   // Get the local value into tos
 555 
 556   const Register Rindex = R11_scratch1;
 557   locals_index(Rindex);
 558   __ load_local_int(R17_tos, Rindex, Rindex);
 559 }
 560 
 561 // Load a local variable type long from locals area to TOS cache register.
 562 // Local index resides in bytecodestream.
 563 void TemplateTable::lload() {
 564   transition(vtos, ltos);
 565 
 566   const Register Rindex = R11_scratch1;
 567   locals_index(Rindex);
 568   __ load_local_long(R17_tos, Rindex, Rindex);
 569 }
 570 
 571 void TemplateTable::fload() {
 572   transition(vtos, ftos);
 573 
 574   const Register Rindex = R11_scratch1;
 575   locals_index(Rindex);
 576   __ load_local_float(F15_ftos, Rindex, Rindex);
 577 }
 578 
 579 void TemplateTable::dload() {
 580   transition(vtos, dtos);
 581 
 582   const Register Rindex = R11_scratch1;
 583   locals_index(Rindex);
 584   __ load_local_double(F15_ftos, Rindex, Rindex);
 585 }
 586 
 587 void TemplateTable::aload() {
 588   transition(vtos, atos);
 589 
 590   const Register Rindex = R11_scratch1;
 591   locals_index(Rindex);
 592   __ load_local_ptr(R17_tos, Rindex, Rindex);
 593 }
 594 
 595 void TemplateTable::locals_index_wide(Register Rdst) {
 596   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 597   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 598 }
 599 
 600 void TemplateTable::wide_iload() {
 601   // Get the local value into tos.
 602 
 603   const Register Rindex = R11_scratch1;
 604   locals_index_wide(Rindex);
 605   __ load_local_int(R17_tos, Rindex, Rindex);
 606 }
 607 
 608 void TemplateTable::wide_lload() {
 609   transition(vtos, ltos);
 610 
 611   const Register Rindex = R11_scratch1;
 612   locals_index_wide(Rindex);
 613   __ load_local_long(R17_tos, Rindex, Rindex);
 614 }
 615 
 616 void TemplateTable::wide_fload() {
 617   transition(vtos, ftos);
 618 
 619   const Register Rindex = R11_scratch1;
 620   locals_index_wide(Rindex);
 621   __ load_local_float(F15_ftos, Rindex, Rindex);
 622 }
 623 
 624 void TemplateTable::wide_dload() {
 625   transition(vtos, dtos);
 626 
 627   const Register Rindex = R11_scratch1;
 628   locals_index_wide(Rindex);
 629   __ load_local_double(F15_ftos, Rindex, Rindex);
 630 }
 631 
 632 void TemplateTable::wide_aload() {
 633   transition(vtos, atos);
 634 
 635   const Register Rindex = R11_scratch1;
 636   locals_index_wide(Rindex);
 637   __ load_local_ptr(R17_tos, Rindex, Rindex);
 638 }
 639 
 640 void TemplateTable::iaload() {
 641   transition(itos, itos);
 642 
 643   const Register Rload_addr = R3_ARG1,
 644                  Rarray     = R4_ARG2,
 645                  Rtemp      = R5_ARG3;
 646   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 647   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 648 }
 649 
 650 void TemplateTable::laload() {
 651   transition(itos, ltos);
 652 
 653   const Register Rload_addr = R3_ARG1,
 654                  Rarray     = R4_ARG2,
 655                  Rtemp      = R5_ARG3;
 656   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 657   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 658 }
 659 
 660 void TemplateTable::faload() {
 661   transition(itos, ftos);
 662 
 663   const Register Rload_addr = R3_ARG1,
 664                  Rarray     = R4_ARG2,
 665                  Rtemp      = R5_ARG3;
 666   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 667   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 668 }
 669 
 670 void TemplateTable::daload() {
 671   transition(itos, dtos);
 672 
 673   const Register Rload_addr = R3_ARG1,
 674                  Rarray     = R4_ARG2,
 675                  Rtemp      = R5_ARG3;
 676   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 677   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 678 }
 679 
 680 void TemplateTable::aaload() {
 681   transition(itos, atos);
 682 
 683   // tos: index
 684   // result tos: array
 685   const Register Rload_addr = R3_ARG1,
 686                  Rarray     = R4_ARG2,
 687                  Rtemp      = R5_ARG3,
 688                  Rtemp2     = R31;
 689   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 690   do_oop_load(_masm, Rload_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos, Rtemp, Rtemp2,
 691               IN_HEAP_ARRAY);
 692   __ verify_oop(R17_tos);
 693   //__ dcbt(R17_tos); // prefetch
 694 }
 695 
 696 void TemplateTable::baload() {
 697   transition(itos, itos);
 698 
 699   const Register Rload_addr = R3_ARG1,
 700                  Rarray     = R4_ARG2,
 701                  Rtemp      = R5_ARG3;
 702   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 703   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 704   __ extsb(R17_tos, R17_tos);
 705 }
 706 
 707 void TemplateTable::caload() {
 708   transition(itos, itos);
 709 
 710   const Register Rload_addr = R3_ARG1,
 711                  Rarray     = R4_ARG2,
 712                  Rtemp      = R5_ARG3;
 713   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 714   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 715 }
 716 
 717 // Iload followed by caload frequent pair.
 718 void TemplateTable::fast_icaload() {
 719   transition(vtos, itos);
 720 
 721   const Register Rload_addr = R3_ARG1,
 722                  Rarray     = R4_ARG2,
 723                  Rtemp      = R11_scratch1;
 724 
 725   locals_index(R17_tos);
 726   __ load_local_int(R17_tos, Rtemp, R17_tos);
 727   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 728   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 729 }
 730 
 731 void TemplateTable::saload() {
 732   transition(itos, itos);
 733 
 734   const Register Rload_addr = R11_scratch1,
 735                  Rarray     = R12_scratch2,
 736                  Rtemp      = R3_ARG1;
 737   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 738   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 739 }
 740 
 741 void TemplateTable::iload(int n) {
 742   transition(vtos, itos);
 743 
 744   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 745 }
 746 
 747 void TemplateTable::lload(int n) {
 748   transition(vtos, ltos);
 749 
 750   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 751 }
 752 
 753 void TemplateTable::fload(int n) {
 754   transition(vtos, ftos);
 755 
 756   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 757 }
 758 
 759 void TemplateTable::dload(int n) {
 760   transition(vtos, dtos);
 761 
 762   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 763 }
 764 
 765 void TemplateTable::aload(int n) {
 766   transition(vtos, atos);
 767 
 768   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 769 }
 770 
 771 void TemplateTable::aload_0() {
 772   aload_0_internal();
 773 }
 774 
 775 void TemplateTable::nofast_aload_0() {
 776   aload_0_internal(may_not_rewrite);
 777 }
 778 
 779 void TemplateTable::aload_0_internal(RewriteControl rc) {
 780   transition(vtos, atos);
 781   // According to bytecode histograms, the pairs:
 782   //
 783   // _aload_0, _fast_igetfield
 784   // _aload_0, _fast_agetfield
 785   // _aload_0, _fast_fgetfield
 786   //
 787   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 788   // _aload_0 bytecode checks if the next bytecode is either
 789   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 790   // rewrites the current bytecode into a pair bytecode; otherwise it
 791   // rewrites the current bytecode into _0 that doesn't do
 792   // the pair check anymore.
 793   //
 794   // Note: If the next bytecode is _getfield, the rewrite must be
 795   //       delayed, otherwise we may miss an opportunity for a pair.
 796   //
 797   // Also rewrite frequent pairs
 798   //   aload_0, aload_1
 799   //   aload_0, iload_1
 800   // These bytecodes with a small amount of code are most profitable
 801   // to rewrite.
 802 
 803   if (RewriteFrequentPairs && rc == may_rewrite) {
 804 
 805     Label Lrewrite, Ldont_rewrite;
 806     Register Rnext_byte  = R3_ARG1,
 807              Rrewrite_to = R6_ARG4,
 808              Rscratch    = R11_scratch1;
 809 
 810     // Get next byte.
 811     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 812 
 813     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 814     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 815     __ beq(CCR0, Ldont_rewrite);
 816 
 817     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 818     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 819     __ beq(CCR1, Lrewrite);
 820 
 821     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 822     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 823     __ beq(CCR0, Lrewrite);
 824 
 825     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 826     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 827     __ beq(CCR1, Lrewrite);
 828 
 829     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 830 
 831     __ bind(Lrewrite);
 832     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 833     __ bind(Ldont_rewrite);
 834   }
 835 
 836   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 837   aload(0);
 838 }
 839 
 840 void TemplateTable::istore() {
 841   transition(itos, vtos);
 842 
 843   const Register Rindex = R11_scratch1;
 844   locals_index(Rindex);
 845   __ store_local_int(R17_tos, Rindex);
 846 }
 847 
 848 void TemplateTable::lstore() {
 849   transition(ltos, vtos);
 850   const Register Rindex = R11_scratch1;
 851   locals_index(Rindex);
 852   __ store_local_long(R17_tos, Rindex);
 853 }
 854 
 855 void TemplateTable::fstore() {
 856   transition(ftos, vtos);
 857 
 858   const Register Rindex = R11_scratch1;
 859   locals_index(Rindex);
 860   __ store_local_float(F15_ftos, Rindex);
 861 }
 862 
 863 void TemplateTable::dstore() {
 864   transition(dtos, vtos);
 865 
 866   const Register Rindex = R11_scratch1;
 867   locals_index(Rindex);
 868   __ store_local_double(F15_ftos, Rindex);
 869 }
 870 
 871 void TemplateTable::astore() {
 872   transition(vtos, vtos);
 873 
 874   const Register Rindex = R11_scratch1;
 875   __ pop_ptr();
 876   __ verify_oop_or_return_address(R17_tos, Rindex);
 877   locals_index(Rindex);
 878   __ store_local_ptr(R17_tos, Rindex);
 879 }
 880 
 881 void TemplateTable::wide_istore() {
 882   transition(vtos, vtos);
 883 
 884   const Register Rindex = R11_scratch1;
 885   __ pop_i();
 886   locals_index_wide(Rindex);
 887   __ store_local_int(R17_tos, Rindex);
 888 }
 889 
 890 void TemplateTable::wide_lstore() {
 891   transition(vtos, vtos);
 892 
 893   const Register Rindex = R11_scratch1;
 894   __ pop_l();
 895   locals_index_wide(Rindex);
 896   __ store_local_long(R17_tos, Rindex);
 897 }
 898 
 899 void TemplateTable::wide_fstore() {
 900   transition(vtos, vtos);
 901 
 902   const Register Rindex = R11_scratch1;
 903   __ pop_f();
 904   locals_index_wide(Rindex);
 905   __ store_local_float(F15_ftos, Rindex);
 906 }
 907 
 908 void TemplateTable::wide_dstore() {
 909   transition(vtos, vtos);
 910 
 911   const Register Rindex = R11_scratch1;
 912   __ pop_d();
 913   locals_index_wide(Rindex);
 914   __ store_local_double(F15_ftos, Rindex);
 915 }
 916 
 917 void TemplateTable::wide_astore() {
 918   transition(vtos, vtos);
 919 
 920   const Register Rindex = R11_scratch1;
 921   __ pop_ptr();
 922   __ verify_oop_or_return_address(R17_tos, Rindex);
 923   locals_index_wide(Rindex);
 924   __ store_local_ptr(R17_tos, Rindex);
 925 }
 926 
 927 void TemplateTable::iastore() {
 928   transition(itos, vtos);
 929 
 930   const Register Rindex      = R3_ARG1,
 931                  Rstore_addr = R4_ARG2,
 932                  Rarray      = R5_ARG3,
 933                  Rtemp       = R6_ARG4;
 934   __ pop_i(Rindex);
 935   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 936   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
 937   }
 938 
 939 void TemplateTable::lastore() {
 940   transition(ltos, vtos);
 941 
 942   const Register Rindex      = R3_ARG1,
 943                  Rstore_addr = R4_ARG2,
 944                  Rarray      = R5_ARG3,
 945                  Rtemp       = R6_ARG4;
 946   __ pop_i(Rindex);
 947   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 948   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
 949   }
 950 
 951 void TemplateTable::fastore() {
 952   transition(ftos, vtos);
 953 
 954   const Register Rindex      = R3_ARG1,
 955                  Rstore_addr = R4_ARG2,
 956                  Rarray      = R5_ARG3,
 957                  Rtemp       = R6_ARG4;
 958   __ pop_i(Rindex);
 959   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 960   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
 961   }
 962 
 963 void TemplateTable::dastore() {
 964   transition(dtos, vtos);
 965 
 966   const Register Rindex      = R3_ARG1,
 967                  Rstore_addr = R4_ARG2,
 968                  Rarray      = R5_ARG3,
 969                  Rtemp       = R6_ARG4;
 970   __ pop_i(Rindex);
 971   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 972   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
 973   }
 974 
 975 // Pop 3 values from the stack and...
 976 void TemplateTable::aastore() {
 977   transition(vtos, vtos);
 978 
 979   Label Lstore_ok, Lis_null, Ldone;
 980   const Register Rindex    = R3_ARG1,
 981                  Rarray    = R4_ARG2,
 982                  Rscratch  = R11_scratch1,
 983                  Rscratch2 = R12_scratch2,
 984                  Rarray_klass = R5_ARG3,
 985                  Rarray_element_klass = Rarray_klass,
 986                  Rvalue_klass = R6_ARG4,
 987                  Rstore_addr = R31;    // Use register which survives VM call.
 988 
 989   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
 990   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
 991   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
 992 
 993   __ verify_oop(R17_tos);
 994   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
 995   // Rindex is dead!
 996   Register Rscratch3 = Rindex;
 997 
 998   // Do array store check - check for NULL value first.
 999   __ cmpdi(CCR0, R17_tos, 0);
1000   __ beq(CCR0, Lis_null);
1001 
1002   __ load_klass(Rarray_klass, Rarray);
1003   __ load_klass(Rvalue_klass, R17_tos);
1004 
1005   // Do fast instanceof cache test.
1006   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
1007 
1008   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
1009   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
1010 
1011   // Fell through: subtype check failed => throw an exception.
1012   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
1013   __ mtctr(R11_scratch1);
1014   __ bctr();
1015 
1016   __ bind(Lis_null);
1017   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
1018                Rscratch, Rscratch2, Rscratch3, IN_HEAP_ARRAY);
1019   __ profile_null_seen(Rscratch, Rscratch2);
1020   __ b(Ldone);
1021 
1022   // Store is OK.
1023   __ bind(Lstore_ok);
1024   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
1025                Rscratch, Rscratch2, Rscratch3, IN_HEAP_ARRAY | OOP_NOT_NULL);
1026 
1027   __ bind(Ldone);
1028   // Adjust sp (pops array, index and value).
1029   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
1030 }
1031 
1032 void TemplateTable::bastore() {
1033   transition(itos, vtos);
1034 
1035   const Register Rindex   = R11_scratch1,
1036                  Rarray   = R12_scratch2,
1037                  Rscratch = R3_ARG1;
1038   __ pop_i(Rindex);
1039   __ pop_ptr(Rarray);
1040   // tos: val
1041 
1042   // Need to check whether array is boolean or byte
1043   // since both types share the bastore bytecode.
1044   __ load_klass(Rscratch, Rarray);
1045   __ lwz(Rscratch, in_bytes(Klass::layout_helper_offset()), Rscratch);
1046   int diffbit = exact_log2(Klass::layout_helper_boolean_diffbit());
1047   __ testbitdi(CCR0, R0, Rscratch, diffbit);
1048   Label L_skip;
1049   __ bfalse(CCR0, L_skip);
1050   __ andi(R17_tos, R17_tos, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1051   __ bind(L_skip);
1052 
1053   __ index_check_without_pop(Rarray, Rindex, 0, Rscratch, Rarray);
1054   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
1055 }
1056 
1057 void TemplateTable::castore() {
1058   transition(itos, vtos);
1059 
1060   const Register Rindex   = R11_scratch1,
1061                  Rarray   = R12_scratch2,
1062                  Rscratch = R3_ARG1;
1063   __ pop_i(Rindex);
1064   // tos: val
1065   // Rarray: array ptr (popped by index_check)
1066   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
1067   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
1068 }
1069 
1070 void TemplateTable::sastore() {
1071   castore();
1072 }
1073 
1074 void TemplateTable::istore(int n) {
1075   transition(itos, vtos);
1076   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1077 }
1078 
1079 void TemplateTable::lstore(int n) {
1080   transition(ltos, vtos);
1081   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1082 }
1083 
1084 void TemplateTable::fstore(int n) {
1085   transition(ftos, vtos);
1086   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1087 }
1088 
1089 void TemplateTable::dstore(int n) {
1090   transition(dtos, vtos);
1091   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1092 }
1093 
1094 void TemplateTable::astore(int n) {
1095   transition(vtos, vtos);
1096 
1097   __ pop_ptr();
1098   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1099   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1100 }
1101 
1102 void TemplateTable::pop() {
1103   transition(vtos, vtos);
1104 
1105   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1106 }
1107 
1108 void TemplateTable::pop2() {
1109   transition(vtos, vtos);
1110 
1111   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1112 }
1113 
1114 void TemplateTable::dup() {
1115   transition(vtos, vtos);
1116 
1117   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1118   __ push_ptr(R11_scratch1);
1119 }
1120 
1121 void TemplateTable::dup_x1() {
1122   transition(vtos, vtos);
1123 
1124   Register Ra = R11_scratch1,
1125            Rb = R12_scratch2;
1126   // stack: ..., a, b
1127   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1128   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1129   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1130   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1131   __ push_ptr(Rb);
1132   // stack: ..., b, a, b
1133 }
1134 
1135 void TemplateTable::dup_x2() {
1136   transition(vtos, vtos);
1137 
1138   Register Ra = R11_scratch1,
1139            Rb = R12_scratch2,
1140            Rc = R3_ARG1;
1141 
1142   // stack: ..., a, b, c
1143   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1144   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1145   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1146   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1147   // stack: ..., c, b, c
1148   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1149   // stack: ..., c, a, c
1150   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1151   __ push_ptr(Rc);                                        // push c
1152   // stack: ..., c, a, b, c
1153 }
1154 
1155 void TemplateTable::dup2() {
1156   transition(vtos, vtos);
1157 
1158   Register Ra = R11_scratch1,
1159            Rb = R12_scratch2;
1160   // stack: ..., a, b
1161   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1162   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1163   __ push_2ptrs(Ra, Rb);
1164   // stack: ..., a, b, a, b
1165 }
1166 
1167 void TemplateTable::dup2_x1() {
1168   transition(vtos, vtos);
1169 
1170   Register Ra = R11_scratch1,
1171            Rb = R12_scratch2,
1172            Rc = R3_ARG1;
1173   // stack: ..., a, b, c
1174   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1175   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1176   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1177   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1178   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1179   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1180   // stack: ..., b, c, a
1181   __ push_2ptrs(Rb, Rc);
1182   // stack: ..., b, c, a, b, c
1183 }
1184 
1185 void TemplateTable::dup2_x2() {
1186   transition(vtos, vtos);
1187 
1188   Register Ra = R11_scratch1,
1189            Rb = R12_scratch2,
1190            Rc = R3_ARG1,
1191            Rd = R4_ARG2;
1192   // stack: ..., a, b, c, d
1193   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1194   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1195   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1196   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1197   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1198   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1199   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1200   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1201   // stack: ..., c, d, a, b
1202   __ push_2ptrs(Rc, Rd);
1203   // stack: ..., c, d, a, b, c, d
1204 }
1205 
1206 void TemplateTable::swap() {
1207   transition(vtos, vtos);
1208   // stack: ..., a, b
1209 
1210   Register Ra = R11_scratch1,
1211            Rb = R12_scratch2;
1212   // stack: ..., a, b
1213   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1214   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1215   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1216   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1217   // stack: ..., b, a
1218 }
1219 
1220 void TemplateTable::iop2(Operation op) {
1221   transition(itos, itos);
1222 
1223   Register Rscratch = R11_scratch1;
1224 
1225   __ pop_i(Rscratch);
1226   // tos  = number of bits to shift
1227   // Rscratch = value to shift
1228   switch (op) {
1229     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1230     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1231     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1232     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1233     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1234     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1235     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1236     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1237     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1238     default:     ShouldNotReachHere();
1239   }
1240 }
1241 
1242 void TemplateTable::lop2(Operation op) {
1243   transition(ltos, ltos);
1244 
1245   Register Rscratch = R11_scratch1;
1246   __ pop_l(Rscratch);
1247   switch (op) {
1248     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1249     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1250     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1251     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1252     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1253     default:     ShouldNotReachHere();
1254   }
1255 }
1256 
1257 void TemplateTable::idiv() {
1258   transition(itos, itos);
1259 
1260   Label Lnormal, Lexception, Ldone;
1261   Register Rdividend = R11_scratch1; // Used by irem.
1262 
1263   __ addi(R0, R17_tos, 1);
1264   __ cmplwi(CCR0, R0, 2);
1265   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1266 
1267   __ cmpwi(CCR1, R17_tos, 0);
1268   __ beq(CCR1, Lexception); // divisor == 0
1269 
1270   __ pop_i(Rdividend);
1271   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1272   __ b(Ldone);
1273 
1274   __ bind(Lexception);
1275   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1276   __ mtctr(R11_scratch1);
1277   __ bctr();
1278 
1279   __ align(32, 12);
1280   __ bind(Lnormal);
1281   __ pop_i(Rdividend);
1282   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1283   __ bind(Ldone);
1284 }
1285 
1286 void TemplateTable::irem() {
1287   transition(itos, itos);
1288 
1289   __ mr(R12_scratch2, R17_tos);
1290   idiv();
1291   __ mullw(R17_tos, R17_tos, R12_scratch2);
1292   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1293 }
1294 
1295 void TemplateTable::lmul() {
1296   transition(ltos, ltos);
1297 
1298   __ pop_l(R11_scratch1);
1299   __ mulld(R17_tos, R11_scratch1, R17_tos);
1300 }
1301 
1302 void TemplateTable::ldiv() {
1303   transition(ltos, ltos);
1304 
1305   Label Lnormal, Lexception, Ldone;
1306   Register Rdividend = R11_scratch1; // Used by lrem.
1307 
1308   __ addi(R0, R17_tos, 1);
1309   __ cmpldi(CCR0, R0, 2);
1310   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1311 
1312   __ cmpdi(CCR1, R17_tos, 0);
1313   __ beq(CCR1, Lexception); // divisor == 0
1314 
1315   __ pop_l(Rdividend);
1316   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1317   __ b(Ldone);
1318 
1319   __ bind(Lexception);
1320   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1321   __ mtctr(R11_scratch1);
1322   __ bctr();
1323 
1324   __ align(32, 12);
1325   __ bind(Lnormal);
1326   __ pop_l(Rdividend);
1327   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1328   __ bind(Ldone);
1329 }
1330 
1331 void TemplateTable::lrem() {
1332   transition(ltos, ltos);
1333 
1334   __ mr(R12_scratch2, R17_tos);
1335   ldiv();
1336   __ mulld(R17_tos, R17_tos, R12_scratch2);
1337   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1338 }
1339 
1340 void TemplateTable::lshl() {
1341   transition(itos, ltos);
1342 
1343   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1344   __ pop_l(R11_scratch1);
1345   __ sld(R17_tos, R11_scratch1, R17_tos);
1346 }
1347 
1348 void TemplateTable::lshr() {
1349   transition(itos, ltos);
1350 
1351   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1352   __ pop_l(R11_scratch1);
1353   __ srad(R17_tos, R11_scratch1, R17_tos);
1354 }
1355 
1356 void TemplateTable::lushr() {
1357   transition(itos, ltos);
1358 
1359   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1360   __ pop_l(R11_scratch1);
1361   __ srd(R17_tos, R11_scratch1, R17_tos);
1362 }
1363 
1364 void TemplateTable::fop2(Operation op) {
1365   transition(ftos, ftos);
1366 
1367   switch (op) {
1368     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1369     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1370     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1371     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1372     case rem:
1373       __ pop_f(F1_ARG1);
1374       __ fmr(F2_ARG2, F15_ftos);
1375       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1376       __ fmr(F15_ftos, F1_RET);
1377       break;
1378 
1379     default: ShouldNotReachHere();
1380   }
1381 }
1382 
1383 void TemplateTable::dop2(Operation op) {
1384   transition(dtos, dtos);
1385 
1386   switch (op) {
1387     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1388     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1389     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1390     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1391     case rem:
1392       __ pop_d(F1_ARG1);
1393       __ fmr(F2_ARG2, F15_ftos);
1394       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1395       __ fmr(F15_ftos, F1_RET);
1396       break;
1397 
1398     default: ShouldNotReachHere();
1399   }
1400 }
1401 
1402 // Negate the value in the TOS cache.
1403 void TemplateTable::ineg() {
1404   transition(itos, itos);
1405 
1406   __ neg(R17_tos, R17_tos);
1407 }
1408 
1409 // Negate the value in the TOS cache.
1410 void TemplateTable::lneg() {
1411   transition(ltos, ltos);
1412 
1413   __ neg(R17_tos, R17_tos);
1414 }
1415 
1416 void TemplateTable::fneg() {
1417   transition(ftos, ftos);
1418 
1419   __ fneg(F15_ftos, F15_ftos);
1420 }
1421 
1422 void TemplateTable::dneg() {
1423   transition(dtos, dtos);
1424 
1425   __ fneg(F15_ftos, F15_ftos);
1426 }
1427 
1428 // Increments a local variable in place.
1429 void TemplateTable::iinc() {
1430   transition(vtos, vtos);
1431 
1432   const Register Rindex     = R11_scratch1,
1433                  Rincrement = R0,
1434                  Rvalue     = R12_scratch2;
1435 
1436   locals_index(Rindex);              // Load locals index from bytecode stream.
1437   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1438   __ extsb(Rincrement, Rincrement);
1439 
1440   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1441 
1442   __ add(Rvalue, Rincrement, Rvalue);
1443   __ stw(Rvalue, 0, Rindex);
1444 }
1445 
1446 void TemplateTable::wide_iinc() {
1447   transition(vtos, vtos);
1448 
1449   Register Rindex       = R11_scratch1,
1450            Rlocals_addr = Rindex,
1451            Rincr        = R12_scratch2;
1452   locals_index_wide(Rindex);
1453   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1454   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1455   __ add(R17_tos, Rincr, R17_tos);
1456   __ stw(R17_tos, 0, Rlocals_addr);
1457 }
1458 
1459 void TemplateTable::convert() {
1460   // %%%%% Factor this first part accross platforms
1461 #ifdef ASSERT
1462   TosState tos_in  = ilgl;
1463   TosState tos_out = ilgl;
1464   switch (bytecode()) {
1465     case Bytecodes::_i2l: // fall through
1466     case Bytecodes::_i2f: // fall through
1467     case Bytecodes::_i2d: // fall through
1468     case Bytecodes::_i2b: // fall through
1469     case Bytecodes::_i2c: // fall through
1470     case Bytecodes::_i2s: tos_in = itos; break;
1471     case Bytecodes::_l2i: // fall through
1472     case Bytecodes::_l2f: // fall through
1473     case Bytecodes::_l2d: tos_in = ltos; break;
1474     case Bytecodes::_f2i: // fall through
1475     case Bytecodes::_f2l: // fall through
1476     case Bytecodes::_f2d: tos_in = ftos; break;
1477     case Bytecodes::_d2i: // fall through
1478     case Bytecodes::_d2l: // fall through
1479     case Bytecodes::_d2f: tos_in = dtos; break;
1480     default             : ShouldNotReachHere();
1481   }
1482   switch (bytecode()) {
1483     case Bytecodes::_l2i: // fall through
1484     case Bytecodes::_f2i: // fall through
1485     case Bytecodes::_d2i: // fall through
1486     case Bytecodes::_i2b: // fall through
1487     case Bytecodes::_i2c: // fall through
1488     case Bytecodes::_i2s: tos_out = itos; break;
1489     case Bytecodes::_i2l: // fall through
1490     case Bytecodes::_f2l: // fall through
1491     case Bytecodes::_d2l: tos_out = ltos; break;
1492     case Bytecodes::_i2f: // fall through
1493     case Bytecodes::_l2f: // fall through
1494     case Bytecodes::_d2f: tos_out = ftos; break;
1495     case Bytecodes::_i2d: // fall through
1496     case Bytecodes::_l2d: // fall through
1497     case Bytecodes::_f2d: tos_out = dtos; break;
1498     default             : ShouldNotReachHere();
1499   }
1500   transition(tos_in, tos_out);
1501 #endif
1502 
1503   // Conversion
1504   Label done;
1505   switch (bytecode()) {
1506     case Bytecodes::_i2l:
1507       __ extsw(R17_tos, R17_tos);
1508       break;
1509 
1510     case Bytecodes::_l2i:
1511       // Nothing to do, we'll continue to work with the lower bits.
1512       break;
1513 
1514     case Bytecodes::_i2b:
1515       __ extsb(R17_tos, R17_tos);
1516       break;
1517 
1518     case Bytecodes::_i2c:
1519       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1520       break;
1521 
1522     case Bytecodes::_i2s:
1523       __ extsh(R17_tos, R17_tos);
1524       break;
1525 
1526     case Bytecodes::_i2d:
1527       __ extsw(R17_tos, R17_tos);
1528     case Bytecodes::_l2d:
1529       __ move_l_to_d();
1530       __ fcfid(F15_ftos, F15_ftos);
1531       break;
1532 
1533     case Bytecodes::_i2f:
1534       __ extsw(R17_tos, R17_tos);
1535       __ move_l_to_d();
1536       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1537         // Comment: alternatively, load with sign extend could be done by lfiwax.
1538         __ fcfids(F15_ftos, F15_ftos);
1539       } else {
1540         __ fcfid(F15_ftos, F15_ftos);
1541         __ frsp(F15_ftos, F15_ftos);
1542       }
1543       break;
1544 
1545     case Bytecodes::_l2f:
1546       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1547         __ move_l_to_d();
1548         __ fcfids(F15_ftos, F15_ftos);
1549       } else {
1550         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1551         __ mr(R3_ARG1, R17_tos);
1552         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1553         __ fmr(F15_ftos, F1_RET);
1554       }
1555       break;
1556 
1557     case Bytecodes::_f2d:
1558       // empty
1559       break;
1560 
1561     case Bytecodes::_d2f:
1562       __ frsp(F15_ftos, F15_ftos);
1563       break;
1564 
1565     case Bytecodes::_d2i:
1566     case Bytecodes::_f2i:
1567       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1568       __ li(R17_tos, 0); // 0 in case of NAN
1569       __ bso(CCR0, done);
1570       __ fctiwz(F15_ftos, F15_ftos);
1571       __ move_d_to_l();
1572       break;
1573 
1574     case Bytecodes::_d2l:
1575     case Bytecodes::_f2l:
1576       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1577       __ li(R17_tos, 0); // 0 in case of NAN
1578       __ bso(CCR0, done);
1579       __ fctidz(F15_ftos, F15_ftos);
1580       __ move_d_to_l();
1581       break;
1582 
1583     default: ShouldNotReachHere();
1584   }
1585   __ bind(done);
1586 }
1587 
1588 // Long compare
1589 void TemplateTable::lcmp() {
1590   transition(ltos, itos);
1591 
1592   const Register Rscratch = R11_scratch1;
1593   __ pop_l(Rscratch); // first operand, deeper in stack
1594 
1595   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1596   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1597   __ srwi(Rscratch, R17_tos, 30);
1598   __ srawi(R17_tos, R17_tos, 31);
1599   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1600 }
1601 
1602 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1603 // unordered_result == -1 => fcmpl or dcmpl
1604 // unordered_result ==  1 => fcmpg or dcmpg
1605 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1606   const FloatRegister Rfirst  = F0_SCRATCH,
1607                       Rsecond = F15_ftos;
1608   const Register Rscratch = R11_scratch1;
1609 
1610   if (is_float) {
1611     __ pop_f(Rfirst);
1612   } else {
1613     __ pop_d(Rfirst);
1614   }
1615 
1616   Label Lunordered, Ldone;
1617   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1618   if (unordered_result) {
1619     __ bso(CCR0, Lunordered);
1620   }
1621   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1622   __ srwi(Rscratch, R17_tos, 30);
1623   __ srawi(R17_tos, R17_tos, 31);
1624   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1625   if (unordered_result) {
1626     __ b(Ldone);
1627     __ bind(Lunordered);
1628     __ load_const_optimized(R17_tos, unordered_result);
1629   }
1630   __ bind(Ldone);
1631 }
1632 
1633 // Branch_conditional which takes TemplateTable::Condition.
1634 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1635   bool positive = false;
1636   Assembler::Condition cond = Assembler::equal;
1637   switch (cc) {
1638     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1639     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1640     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1641     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1642     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1643     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1644     default: ShouldNotReachHere();
1645   }
1646   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1647   int bi = Assembler::bi0(crx, cond);
1648   __ bc(bo, bi, L);
1649 }
1650 
1651 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1652 
1653   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1654   __ verify_thread();
1655 
1656   const Register Rscratch1    = R11_scratch1,
1657                  Rscratch2    = R12_scratch2,
1658                  Rscratch3    = R3_ARG1,
1659                  R4_counters  = R4_ARG2,
1660                  bumped_count = R31,
1661                  Rdisp        = R22_tmp2;
1662 
1663   __ profile_taken_branch(Rscratch1, bumped_count);
1664 
1665   // Get (wide) offset.
1666   if (is_wide) {
1667     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1668   } else {
1669     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1670   }
1671 
1672   // --------------------------------------------------------------------------
1673   // Handle all the JSR stuff here, then exit.
1674   // It's much shorter and cleaner than intermingling with the
1675   // non-JSR normal-branch stuff occurring below.
1676   if (is_jsr) {
1677     // Compute return address as bci in Otos_i.
1678     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1679     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1680     __ subf(R17_tos, Rscratch1, Rscratch2);
1681 
1682     // Bump bcp to target of JSR.
1683     __ add(R14_bcp, Rdisp, R14_bcp);
1684     // Push returnAddress for "ret" on stack.
1685     __ push_ptr(R17_tos);
1686     // And away we go!
1687     __ dispatch_next(vtos, 0 ,true);
1688     return;
1689   }
1690 
1691   // --------------------------------------------------------------------------
1692   // Normal (non-jsr) branch handling
1693 
1694   // Bump bytecode pointer by displacement (take the branch).
1695   __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1696 
1697   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1698   if (increment_invocation_counter_for_backward_branches) {
1699     Label Lforward;
1700 
1701     // Check branch direction.
1702     __ cmpdi(CCR0, Rdisp, 0);
1703     __ bgt(CCR0, Lforward);
1704 
1705     __ get_method_counters(R19_method, R4_counters, Lforward);
1706 
1707     if (TieredCompilation) {
1708       Label Lno_mdo, Loverflow;
1709       const int increment = InvocationCounter::count_increment;
1710       if (ProfileInterpreter) {
1711         Register Rmdo = Rscratch1;
1712 
1713         // If no method data exists, go to profile_continue.
1714         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1715         __ cmpdi(CCR0, Rmdo, 0);
1716         __ beq(CCR0, Lno_mdo);
1717 
1718         // Increment backedge counter in the MDO.
1719         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1720         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1721         __ lwz(Rscratch3, in_bytes(MethodData::backedge_mask_offset()), Rmdo);
1722         __ addi(Rscratch2, Rscratch2, increment);
1723         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1724         if (UseOnStackReplacement) {
1725           __ and_(Rscratch3, Rscratch2, Rscratch3);
1726           __ bne(CCR0, Lforward);
1727           __ b(Loverflow);
1728         } else {
1729           __ b(Lforward);
1730         }
1731       }
1732 
1733       // If there's no MDO, increment counter in method.
1734       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1735       __ bind(Lno_mdo);
1736       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1737       __ lwz(Rscratch3, in_bytes(MethodCounters::backedge_mask_offset()), R4_counters);
1738       __ addi(Rscratch2, Rscratch2, increment);
1739       __ stw(Rscratch2, mo_bc_offs, R4_counters);
1740       if (UseOnStackReplacement) {
1741         __ and_(Rscratch3, Rscratch2, Rscratch3);
1742         __ bne(CCR0, Lforward);
1743       } else {
1744         __ b(Lforward);
1745       }
1746       __ bind(Loverflow);
1747 
1748       // Notify point for loop, pass branch bytecode.
1749       __ subf(R4_ARG2, Rdisp, R14_bcp); // Compute branch bytecode (previous bcp).
1750       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
1751 
1752       // Was an OSR adapter generated?
1753       __ cmpdi(CCR0, R3_RET, 0);
1754       __ beq(CCR0, Lforward);
1755 
1756       // Has the nmethod been invalidated already?
1757       __ lbz(R0, nmethod::state_offset(), R3_RET);
1758       __ cmpwi(CCR0, R0, nmethod::in_use);
1759       __ bne(CCR0, Lforward);
1760 
1761       // Migrate the interpreter frame off of the stack.
1762       // We can use all registers because we will not return to interpreter from this point.
1763 
1764       // Save nmethod.
1765       const Register osr_nmethod = R31;
1766       __ mr(osr_nmethod, R3_RET);
1767       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1768       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1769       __ reset_last_Java_frame();
1770       // OSR buffer is in ARG1.
1771 
1772       // Remove the interpreter frame.
1773       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1774 
1775       // Jump to the osr code.
1776       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1777       __ mtlr(R0);
1778       __ mtctr(R11_scratch1);
1779       __ bctr();
1780 
1781     } else {
1782 
1783       const Register invoke_ctr = Rscratch1;
1784       // Update Backedge branch separately from invocations.
1785       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1786 
1787       if (ProfileInterpreter) {
1788         __ test_invocation_counter_for_mdp(invoke_ctr, R4_counters, Rscratch2, Lforward);
1789         if (UseOnStackReplacement) {
1790           __ test_backedge_count_for_osr(bumped_count, R4_counters, R14_bcp, Rdisp, Rscratch2);
1791         }
1792       } else {
1793         if (UseOnStackReplacement) {
1794           __ test_backedge_count_for_osr(invoke_ctr, R4_counters, R14_bcp, Rdisp, Rscratch2);
1795         }
1796       }
1797     }
1798 
1799     __ bind(Lforward);
1800   }
1801   __ dispatch_next(vtos, 0, true);
1802 }
1803 
1804 // Helper function for if_cmp* methods below.
1805 // Factored out common compare and branch code.
1806 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1807   Label Lnot_taken;
1808   // Note: The condition code we get is the condition under which we
1809   // *fall through*! So we have to inverse the CC here.
1810 
1811   if (is_jint) {
1812     if (cmp0) {
1813       __ cmpwi(CCR0, Rfirst, 0);
1814     } else {
1815       __ cmpw(CCR0, Rfirst, Rsecond);
1816     }
1817   } else {
1818     if (cmp0) {
1819       __ cmpdi(CCR0, Rfirst, 0);
1820     } else {
1821       __ cmpd(CCR0, Rfirst, Rsecond);
1822     }
1823   }
1824   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1825 
1826   // Conition is false => Jump!
1827   branch(false, false);
1828 
1829   // Condition is not true => Continue.
1830   __ align(32, 12);
1831   __ bind(Lnot_taken);
1832   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1833 }
1834 
1835 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1836 void TemplateTable::if_0cmp(Condition cc) {
1837   transition(itos, vtos);
1838 
1839   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1840 }
1841 
1842 // Compare integer values and fall through if CC holds, branch away otherwise.
1843 //
1844 // Interface:
1845 //  - Rfirst: First operand  (older stack value)
1846 //  - tos:    Second operand (younger stack value)
1847 void TemplateTable::if_icmp(Condition cc) {
1848   transition(itos, vtos);
1849 
1850   const Register Rfirst  = R0,
1851                  Rsecond = R17_tos;
1852 
1853   __ pop_i(Rfirst);
1854   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1855 }
1856 
1857 void TemplateTable::if_nullcmp(Condition cc) {
1858   transition(atos, vtos);
1859 
1860   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1861 }
1862 
1863 void TemplateTable::if_acmp(Condition cc) {
1864   transition(atos, vtos);
1865 
1866   const Register Rfirst  = R0,
1867                  Rsecond = R17_tos;
1868 
1869   __ pop_ptr(Rfirst);
1870   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1871 }
1872 
1873 void TemplateTable::ret() {
1874   locals_index(R11_scratch1);
1875   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1876 
1877   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1878 
1879   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1880   __ add(R11_scratch1, R17_tos, R11_scratch1);
1881   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1882   __ dispatch_next(vtos, 0, true);
1883 }
1884 
1885 void TemplateTable::wide_ret() {
1886   transition(vtos, vtos);
1887 
1888   const Register Rindex = R3_ARG1,
1889                  Rscratch1 = R11_scratch1,
1890                  Rscratch2 = R12_scratch2;
1891 
1892   locals_index_wide(Rindex);
1893   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1894   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1895   // Tos now contains the bci, compute the bcp from that.
1896   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1897   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1898   __ add(R14_bcp, Rscratch1, Rscratch2);
1899   __ dispatch_next(vtos, 0, true);
1900 }
1901 
1902 void TemplateTable::tableswitch() {
1903   transition(itos, vtos);
1904 
1905   Label Ldispatch, Ldefault_case;
1906   Register Rlow_byte         = R3_ARG1,
1907            Rindex            = Rlow_byte,
1908            Rhigh_byte        = R4_ARG2,
1909            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1910            Rscratch1         = R11_scratch1,
1911            Rscratch2         = R12_scratch2,
1912            Roffset           = R6_ARG4;
1913 
1914   // Align bcp.
1915   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1916   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1917 
1918   // Load lo & hi.
1919   __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1920   __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1921 
1922   // Check for default case (=index outside [low,high]).
1923   __ cmpw(CCR0, R17_tos, Rlow_byte);
1924   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1925   __ blt(CCR0, Ldefault_case);
1926   __ bgt(CCR1, Ldefault_case);
1927 
1928   // Lookup dispatch offset.
1929   __ sub(Rindex, R17_tos, Rlow_byte);
1930   __ extsw(Rindex, Rindex);
1931   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1932   __ sldi(Rindex, Rindex, LogBytesPerInt);
1933   __ addi(Rindex, Rindex, 3 * BytesPerInt);
1934 #if defined(VM_LITTLE_ENDIAN)
1935   __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
1936   __ extsw(Roffset, Roffset);
1937 #else
1938   __ lwax(Roffset, Rdef_offset_addr, Rindex);
1939 #endif
1940   __ b(Ldispatch);
1941 
1942   __ bind(Ldefault_case);
1943   __ profile_switch_default(Rhigh_byte, Rscratch1);
1944   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1945 
1946   __ bind(Ldispatch);
1947 
1948   __ add(R14_bcp, Roffset, R14_bcp);
1949   __ dispatch_next(vtos, 0, true);
1950 }
1951 
1952 void TemplateTable::lookupswitch() {
1953   transition(itos, itos);
1954   __ stop("lookupswitch bytecode should have been rewritten");
1955 }
1956 
1957 // Table switch using linear search through cases.
1958 // Bytecode stream format:
1959 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1960 // Note: Everything is big-endian format here.
1961 void TemplateTable::fast_linearswitch() {
1962   transition(itos, vtos);
1963 
1964   Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1965   Register Rcount           = R3_ARG1,
1966            Rcurrent_pair    = R4_ARG2,
1967            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1968            Roffset          = R31,     // Might need to survive C call.
1969            Rvalue           = R12_scratch2,
1970            Rscratch         = R11_scratch1,
1971            Rcmp_value       = R17_tos;
1972 
1973   // Align bcp.
1974   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1975   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1976 
1977   // Setup loop counter and limit.
1978   __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1979   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1980 
1981   __ mtctr(Rcount);
1982   __ cmpwi(CCR0, Rcount, 0);
1983   __ bne(CCR0, Lloop_entry);
1984 
1985   // Default case
1986   __ bind(Ldefault_case);
1987   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1988   if (ProfileInterpreter) {
1989     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1990   }
1991   __ b(Lcontinue_execution);
1992 
1993   // Next iteration
1994   __ bind(Lsearch_loop);
1995   __ bdz(Ldefault_case);
1996   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1997   __ bind(Lloop_entry);
1998   __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
1999   __ cmpw(CCR0, Rvalue, Rcmp_value);
2000   __ bne(CCR0, Lsearch_loop);
2001 
2002   // Found, load offset.
2003   __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
2004   // Calculate case index and profile
2005   __ mfctr(Rcurrent_pair);
2006   if (ProfileInterpreter) {
2007     __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
2008     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
2009   }
2010 
2011   __ bind(Lcontinue_execution);
2012   __ add(R14_bcp, Roffset, R14_bcp);
2013   __ dispatch_next(vtos, 0, true);
2014 }
2015 
2016 // Table switch using binary search (value/offset pairs are ordered).
2017 // Bytecode stream format:
2018 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
2019 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
2020 void TemplateTable::fast_binaryswitch() {
2021 
2022   transition(itos, vtos);
2023   // Implementation using the following core algorithm: (copied from Intel)
2024   //
2025   // int binary_search(int key, LookupswitchPair* array, int n) {
2026   //   // Binary search according to "Methodik des Programmierens" by
2027   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2028   //   int i = 0;
2029   //   int j = n;
2030   //   while (i+1 < j) {
2031   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2032   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2033   //     // where a stands for the array and assuming that the (inexisting)
2034   //     // element a[n] is infinitely big.
2035   //     int h = (i + j) >> 1;
2036   //     // i < h < j
2037   //     if (key < array[h].fast_match()) {
2038   //       j = h;
2039   //     } else {
2040   //       i = h;
2041   //     }
2042   //   }
2043   //   // R: a[i] <= key < a[i+1] or Q
2044   //   // (i.e., if key is within array, i is the correct index)
2045   //   return i;
2046   // }
2047 
2048   // register allocation
2049   const Register Rkey     = R17_tos;          // already set (tosca)
2050   const Register Rarray   = R3_ARG1;
2051   const Register Ri       = R4_ARG2;
2052   const Register Rj       = R5_ARG3;
2053   const Register Rh       = R6_ARG4;
2054   const Register Rscratch = R11_scratch1;
2055 
2056   const int log_entry_size = 3;
2057   const int entry_size = 1 << log_entry_size;
2058 
2059   Label found;
2060 
2061   // Find Array start,
2062   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
2063   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
2064 
2065   // initialize i & j
2066   __ li(Ri,0);
2067   __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
2068 
2069   // and start.
2070   Label entry;
2071   __ b(entry);
2072 
2073   // binary search loop
2074   { Label loop;
2075     __ bind(loop);
2076     // int h = (i + j) >> 1;
2077     __ srdi(Rh, Rh, 1);
2078     // if (key < array[h].fast_match()) {
2079     //   j = h;
2080     // } else {
2081     //   i = h;
2082     // }
2083     __ sldi(Rscratch, Rh, log_entry_size);
2084 #if defined(VM_LITTLE_ENDIAN)
2085     __ lwbrx(Rscratch, Rscratch, Rarray);
2086 #else
2087     __ lwzx(Rscratch, Rscratch, Rarray);
2088 #endif
2089 
2090     // if (key < current value)
2091     //   Rh = Rj
2092     // else
2093     //   Rh = Ri
2094     Label Lgreater;
2095     __ cmpw(CCR0, Rkey, Rscratch);
2096     __ bge(CCR0, Lgreater);
2097     __ mr(Rj, Rh);
2098     __ b(entry);
2099     __ bind(Lgreater);
2100     __ mr(Ri, Rh);
2101 
2102     // while (i+1 < j)
2103     __ bind(entry);
2104     __ addi(Rscratch, Ri, 1);
2105     __ cmpw(CCR0, Rscratch, Rj);
2106     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2107 
2108     __ blt(CCR0, loop);
2109   }
2110 
2111   // End of binary search, result index is i (must check again!).
2112   Label default_case;
2113   Label continue_execution;
2114   if (ProfileInterpreter) {
2115     __ mr(Rh, Ri);              // Save index in i for profiling.
2116   }
2117   // Ri = value offset
2118   __ sldi(Ri, Ri, log_entry_size);
2119   __ add(Ri, Ri, Rarray);
2120   __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2121 
2122   Label not_found;
2123   // Ri = offset offset
2124   __ cmpw(CCR0, Rkey, Rscratch);
2125   __ beq(CCR0, not_found);
2126   // entry not found -> j = default offset
2127   __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2128   __ b(default_case);
2129 
2130   __ bind(not_found);
2131   // entry found -> j = offset
2132   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2133   __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2134 
2135   if (ProfileInterpreter) {
2136     __ b(continue_execution);
2137   }
2138 
2139   __ bind(default_case); // fall through (if not profiling)
2140   __ profile_switch_default(Ri, Rscratch);
2141 
2142   __ bind(continue_execution);
2143 
2144   __ extsw(Rj, Rj);
2145   __ add(R14_bcp, Rj, R14_bcp);
2146   __ dispatch_next(vtos, 0 , true);
2147 }
2148 
2149 void TemplateTable::_return(TosState state) {
2150   transition(state, state);
2151   assert(_desc->calls_vm(),
2152          "inconsistent calls_vm information"); // call in remove_activation
2153 
2154   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2155 
2156     Register Rscratch     = R11_scratch1,
2157              Rklass       = R12_scratch2,
2158              Rklass_flags = Rklass;
2159     Label Lskip_register_finalizer;
2160 
2161     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2162     assert(state == vtos, "only valid state");
2163     __ ld(R17_tos, 0, R18_locals);
2164 
2165     // Load klass of this obj.
2166     __ load_klass(Rklass, R17_tos);
2167     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2168     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2169     __ bfalse(CCR0, Lskip_register_finalizer);
2170 
2171     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2172 
2173     __ align(32, 12);
2174     __ bind(Lskip_register_finalizer);
2175   }
2176 
2177   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2178     Label no_safepoint;
2179     __ ld(R11_scratch1, in_bytes(Thread::polling_page_offset()), R16_thread);
2180     __ andi_(R11_scratch1, R11_scratch1, SafepointMechanism::poll_bit());
2181     __ beq(CCR0, no_safepoint);
2182     __ push(state);
2183     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2184     __ pop(state);
2185     __ bind(no_safepoint);
2186   }
2187 
2188   // Move the result value into the correct register and remove memory stack frame.
2189   __ remove_activation(state, /* throw_monitor_exception */ true);
2190   // Restoration of lr done by remove_activation.
2191   switch (state) {
2192     // Narrow result if state is itos but result type is smaller.
2193     // Need to narrow in the return bytecode rather than in generate_return_entry
2194     // since compiled code callers expect the result to already be narrowed.
2195     case itos: __ narrow(R17_tos); /* fall through */
2196     case ltos:
2197     case atos: __ mr(R3_RET, R17_tos); break;
2198     case ftos:
2199     case dtos: __ fmr(F1_RET, F15_ftos); break;
2200     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2201                // to get visible before the reference to the object gets stored anywhere.
2202                __ membar(Assembler::StoreStore); break;
2203     default  : ShouldNotReachHere();
2204   }
2205   __ blr();
2206 }
2207 
2208 // ============================================================================
2209 // Constant pool cache access
2210 //
2211 // Memory ordering:
2212 //
2213 // Like done in C++ interpreter, we load the fields
2214 //   - _indices
2215 //   - _f12_oop
2216 // acquired, because these are asked if the cache is already resolved. We don't
2217 // want to float loads above this check.
2218 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2219 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2220 
2221 // Call into the VM if call site is not yet resolved
2222 //
2223 // Input regs:
2224 //   - None, all passed regs are outputs.
2225 //
2226 // Returns:
2227 //   - Rcache:  The const pool cache entry that contains the resolved result.
2228 //   - Rresult: Either noreg or output for f1/f2.
2229 //
2230 // Kills:
2231 //   - Rscratch
2232 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2233 
2234   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2235   Label Lresolved, Ldone;
2236 
2237   Bytecodes::Code code = bytecode();
2238   switch (code) {
2239   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2240   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2241   }
2242 
2243   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2244   // We are resolved if the indices offset contains the current bytecode.
2245 #if defined(VM_LITTLE_ENDIAN)
2246   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2247 #else
2248   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2249 #endif
2250   // Acquire by cmp-br-isync (see below).
2251   __ cmpdi(CCR0, Rscratch, (int)code);
2252   __ beq(CCR0, Lresolved);
2253 
2254   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2255   __ li(R4_ARG2, code);
2256   __ call_VM(noreg, entry, R4_ARG2, true);
2257 
2258   // Update registers with resolved info.
2259   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2260   __ b(Ldone);
2261 
2262   __ bind(Lresolved);
2263   __ isync(); // Order load wrt. succeeding loads.
2264   __ bind(Ldone);
2265 }
2266 
2267 // Load the constant pool cache entry at field accesses into registers.
2268 // The Rcache and Rindex registers must be set before call.
2269 // Input:
2270 //   - Rcache, Rindex
2271 // Output:
2272 //   - Robj, Roffset, Rflags
2273 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2274                                               Register Rcache,
2275                                               Register Rindex /* unused on PPC64 */,
2276                                               Register Roffset,
2277                                               Register Rflags,
2278                                               bool is_static = false) {
2279   assert_different_registers(Rcache, Rflags, Roffset);
2280   // assert(Rindex == noreg, "parameter not used on PPC64");
2281 
2282   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2283   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2284   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2285   if (is_static) {
2286     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2287     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2288     __ resolve_oop_handle(Robj);
2289     // Acquire not needed here. Following access has an address dependency on this value.
2290   }
2291 }
2292 
2293 // Load the constant pool cache entry at invokes into registers.
2294 // Resolve if necessary.
2295 
2296 // Input Registers:
2297 //   - None, bcp is used, though
2298 //
2299 // Return registers:
2300 //   - Rmethod       (f1 field or f2 if invokevirtual)
2301 //   - Ritable_index (f2 field)
2302 //   - Rflags        (flags field)
2303 //
2304 // Kills:
2305 //   - R21
2306 //
2307 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2308                                                Register Rmethod,
2309                                                Register Ritable_index,
2310                                                Register Rflags,
2311                                                bool is_invokevirtual,
2312                                                bool is_invokevfinal,
2313                                                bool is_invokedynamic) {
2314 
2315   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2316   // Determine constant pool cache field offsets.
2317   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2318   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2319   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2320   // Access constant pool cache fields.
2321   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2322 
2323   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2324 
2325   if (is_invokevfinal) {
2326     assert(Ritable_index == noreg, "register not used");
2327     // Already resolved.
2328     __ get_cache_and_index_at_bcp(Rcache, 1);
2329   } else {
2330     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2331   }
2332 
2333   __ ld(Rmethod, method_offset, Rcache);
2334   __ ld(Rflags, flags_offset, Rcache);
2335 
2336   if (Ritable_index != noreg) {
2337     __ ld(Ritable_index, index_offset, Rcache);
2338   }
2339 }
2340 
2341 // ============================================================================
2342 // Field access
2343 
2344 // Volatile variables demand their effects be made known to all CPU's
2345 // in order. Store buffers on most chips allow reads & writes to
2346 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2347 // without some kind of memory barrier (i.e., it's not sufficient that
2348 // the interpreter does not reorder volatile references, the hardware
2349 // also must not reorder them).
2350 //
2351 // According to the new Java Memory Model (JMM):
2352 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2353 //     writes act as aquire & release, so:
2354 // (2) A read cannot let unrelated NON-volatile memory refs that
2355 //     happen after the read float up to before the read. It's OK for
2356 //     non-volatile memory refs that happen before the volatile read to
2357 //     float down below it.
2358 // (3) Similar a volatile write cannot let unrelated NON-volatile
2359 //     memory refs that happen BEFORE the write float down to after the
2360 //     write. It's OK for non-volatile memory refs that happen after the
2361 //     volatile write to float up before it.
2362 //
2363 // We only put in barriers around volatile refs (they are expensive),
2364 // not _between_ memory refs (that would require us to track the
2365 // flavor of the previous memory refs). Requirements (2) and (3)
2366 // require some barriers before volatile stores and after volatile
2367 // loads. These nearly cover requirement (1) but miss the
2368 // volatile-store-volatile-load case.  This final case is placed after
2369 // volatile-stores although it could just as well go before
2370 // volatile-loads.
2371 
2372 // The registers cache and index expected to be set before call.
2373 // Correct values of the cache and index registers are preserved.
2374 // Kills:
2375 //   Rcache (if has_tos)
2376 //   Rscratch
2377 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2378 
2379   assert_different_registers(Rcache, Rscratch);
2380 
2381   if (JvmtiExport::can_post_field_access()) {
2382     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2383     Label Lno_field_access_post;
2384 
2385     // Check if post field access in enabled.
2386     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2387     __ lwz(Rscratch, offs, Rscratch);
2388 
2389     __ cmpwi(CCR0, Rscratch, 0);
2390     __ beq(CCR0, Lno_field_access_post);
2391 
2392     // Post access enabled - do it!
2393     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2394     if (is_static) {
2395       __ li(R17_tos, 0);
2396     } else {
2397       if (has_tos) {
2398         // The fast bytecode versions have obj ptr in register.
2399         // Thus, save object pointer before call_VM() clobbers it
2400         // put object on tos where GC wants it.
2401         __ push_ptr(R17_tos);
2402       } else {
2403         // Load top of stack (do not pop the value off the stack).
2404         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2405       }
2406       __ verify_oop(R17_tos);
2407     }
2408     // tos:   object pointer or NULL if static
2409     // cache: cache entry pointer
2410     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2411     if (!is_static && has_tos) {
2412       // Restore object pointer.
2413       __ pop_ptr(R17_tos);
2414       __ verify_oop(R17_tos);
2415     } else {
2416       // Cache is still needed to get class or obj.
2417       __ get_cache_and_index_at_bcp(Rcache, 1);
2418     }
2419 
2420     __ align(32, 12);
2421     __ bind(Lno_field_access_post);
2422   }
2423 }
2424 
2425 // kills R11_scratch1
2426 void TemplateTable::pop_and_check_object(Register Roop) {
2427   Register Rtmp = R11_scratch1;
2428 
2429   assert_different_registers(Rtmp, Roop);
2430   __ pop_ptr(Roop);
2431   // For field access must check obj.
2432   __ null_check_throw(Roop, -1, Rtmp);
2433   __ verify_oop(Roop);
2434 }
2435 
2436 // PPC64: implement volatile loads as fence-store-acquire.
2437 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2438   transition(vtos, vtos);
2439 
2440   Label Lacquire, Lisync;
2441 
2442   const Register Rcache        = R3_ARG1,
2443                  Rclass_or_obj = R22_tmp2,
2444                  Roffset       = R23_tmp3,
2445                  Rflags        = R31,
2446                  Rbtable       = R5_ARG3,
2447                  Rbc           = R6_ARG4,
2448                  Rscratch      = R12_scratch2;
2449 
2450   static address field_branch_table[number_of_states],
2451                  static_branch_table[number_of_states];
2452 
2453   address* branch_table = (is_static || rc == may_not_rewrite) ? static_branch_table : field_branch_table;
2454 
2455   // Get field offset.
2456   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2457 
2458   // JVMTI support
2459   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2460 
2461   // Load after possible GC.
2462   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2463 
2464   // Load pointer to branch table.
2465   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2466 
2467   // Get volatile flag.
2468   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2469   // Note: sync is needed before volatile load on PPC64.
2470 
2471   // Check field type.
2472   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2473 
2474 #ifdef ASSERT
2475   Label LFlagInvalid;
2476   __ cmpldi(CCR0, Rflags, number_of_states);
2477   __ bge(CCR0, LFlagInvalid);
2478 #endif
2479 
2480   // Load from branch table and dispatch (volatile case: one instruction ahead).
2481   __ sldi(Rflags, Rflags, LogBytesPerWord);
2482   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2483   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2484     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2485   }
2486   __ ldx(Rbtable, Rbtable, Rflags);
2487 
2488   // Get the obj from stack.
2489   if (!is_static) {
2490     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2491   } else {
2492     __ verify_oop(Rclass_or_obj);
2493   }
2494 
2495   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2496     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2497   }
2498   __ mtctr(Rbtable);
2499   __ bctr();
2500 
2501 #ifdef ASSERT
2502   __ bind(LFlagInvalid);
2503   __ stop("got invalid flag", 0x654);
2504 #endif
2505 
2506   if (!is_static && rc == may_not_rewrite) {
2507     // We reuse the code from is_static.  It's jumped to via the table above.
2508     return;
2509   }
2510 
2511 #ifdef ASSERT
2512   // __ bind(Lvtos);
2513   address pc_before_fence = __ pc();
2514   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2515   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2516   assert(branch_table[vtos] == 0, "can't compute twice");
2517   branch_table[vtos] = __ pc(); // non-volatile_entry point
2518   __ stop("vtos unexpected", 0x655);
2519 #endif
2520 
2521   __ align(32, 28, 28); // Align load.
2522   // __ bind(Ldtos);
2523   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2524   assert(branch_table[dtos] == 0, "can't compute twice");
2525   branch_table[dtos] = __ pc(); // non-volatile_entry point
2526   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2527   __ push(dtos);
2528   if (!is_static && rc == may_rewrite) {
2529     patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2530   }
2531   {
2532     Label acquire_double;
2533     __ beq(CCR6, acquire_double); // Volatile?
2534     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2535 
2536     __ bind(acquire_double);
2537     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2538     __ beq_predict_taken(CCR0, Lisync);
2539     __ b(Lisync); // In case of NAN.
2540   }
2541 
2542   __ align(32, 28, 28); // Align load.
2543   // __ bind(Lftos);
2544   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2545   assert(branch_table[ftos] == 0, "can't compute twice");
2546   branch_table[ftos] = __ pc(); // non-volatile_entry point
2547   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2548   __ push(ftos);
2549   if (!is_static && rc == may_rewrite) {
2550     patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch);
2551   }
2552   {
2553     Label acquire_float;
2554     __ beq(CCR6, acquire_float); // Volatile?
2555     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2556 
2557     __ bind(acquire_float);
2558     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2559     __ beq_predict_taken(CCR0, Lisync);
2560     __ b(Lisync); // In case of NAN.
2561   }
2562 
2563   __ align(32, 28, 28); // Align load.
2564   // __ bind(Litos);
2565   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2566   assert(branch_table[itos] == 0, "can't compute twice");
2567   branch_table[itos] = __ pc(); // non-volatile_entry point
2568   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2569   __ push(itos);
2570   if (!is_static && rc == may_rewrite) {
2571     patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2572   }
2573   __ beq(CCR6, Lacquire); // Volatile?
2574   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2575 
2576   __ align(32, 28, 28); // Align load.
2577   // __ bind(Lltos);
2578   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2579   assert(branch_table[ltos] == 0, "can't compute twice");
2580   branch_table[ltos] = __ pc(); // non-volatile_entry point
2581   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2582   __ push(ltos);
2583   if (!is_static && rc == may_rewrite) {
2584     patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2585   }
2586   __ beq(CCR6, Lacquire); // Volatile?
2587   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2588 
2589   __ align(32, 28, 28); // Align load.
2590   // __ bind(Lbtos);
2591   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2592   assert(branch_table[btos] == 0, "can't compute twice");
2593   branch_table[btos] = __ pc(); // non-volatile_entry point
2594   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2595   __ extsb(R17_tos, R17_tos);
2596   __ push(btos);
2597   if (!is_static && rc == may_rewrite) {
2598     patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2599   }
2600   __ beq(CCR6, Lacquire); // Volatile?
2601   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2602 
2603   __ align(32, 28, 28); // Align load.
2604   // __ bind(Lztos); (same code as btos)
2605   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2606   assert(branch_table[ztos] == 0, "can't compute twice");
2607   branch_table[ztos] = __ pc(); // non-volatile_entry point
2608   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2609   __ push(ztos);
2610   if (!is_static && rc == may_rewrite) {
2611     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2612     patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2613   }
2614   __ beq(CCR6, Lacquire); // Volatile?
2615   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2616 
2617   __ align(32, 28, 28); // Align load.
2618   // __ bind(Lctos);
2619   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2620   assert(branch_table[ctos] == 0, "can't compute twice");
2621   branch_table[ctos] = __ pc(); // non-volatile_entry point
2622   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2623   __ push(ctos);
2624   if (!is_static && rc == may_rewrite) {
2625     patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2626   }
2627   __ beq(CCR6, Lacquire); // Volatile?
2628   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2629 
2630   __ align(32, 28, 28); // Align load.
2631   // __ bind(Lstos);
2632   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2633   assert(branch_table[stos] == 0, "can't compute twice");
2634   branch_table[stos] = __ pc(); // non-volatile_entry point
2635   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2636   __ push(stos);
2637   if (!is_static && rc == may_rewrite) {
2638     patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2639   }
2640   __ beq(CCR6, Lacquire); // Volatile?
2641   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2642 
2643   __ align(32, 28, 28); // Align load.
2644   // __ bind(Latos);
2645   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2646   assert(branch_table[atos] == 0, "can't compute twice");
2647   branch_table[atos] = __ pc(); // non-volatile_entry point
2648   do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
2649   __ verify_oop(R17_tos);
2650   __ push(atos);
2651   //__ dcbt(R17_tos); // prefetch
2652   if (!is_static && rc == may_rewrite) {
2653     patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2654   }
2655   __ beq(CCR6, Lacquire); // Volatile?
2656   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2657 
2658   __ align(32, 12);
2659   __ bind(Lacquire);
2660   __ twi_0(R17_tos);
2661   __ bind(Lisync);
2662   __ isync(); // acquire
2663 
2664 #ifdef ASSERT
2665   for (int i = 0; i<number_of_states; ++i) {
2666     assert(branch_table[i], "get initialization");
2667     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2668     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2669   }
2670 #endif
2671 }
2672 
2673 void TemplateTable::getfield(int byte_no) {
2674   getfield_or_static(byte_no, false);
2675 }
2676 
2677 void TemplateTable::nofast_getfield(int byte_no) {
2678   getfield_or_static(byte_no, false, may_not_rewrite);
2679 }
2680 
2681 void TemplateTable::getstatic(int byte_no) {
2682   getfield_or_static(byte_no, true);
2683 }
2684 
2685 // The registers cache and index expected to be set before call.
2686 // The function may destroy various registers, just not the cache and index registers.
2687 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2688 
2689   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2690 
2691   if (JvmtiExport::can_post_field_modification()) {
2692     Label Lno_field_mod_post;
2693 
2694     // Check if post field access in enabled.
2695     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2696     __ lwz(Rscratch, offs, Rscratch);
2697 
2698     __ cmpwi(CCR0, Rscratch, 0);
2699     __ beq(CCR0, Lno_field_mod_post);
2700 
2701     // Do the post
2702     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2703     const Register Robj = Rscratch;
2704 
2705     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2706     if (is_static) {
2707       // Life is simple. Null out the object pointer.
2708       __ li(Robj, 0);
2709     } else {
2710       // In case of the fast versions, value lives in registers => put it back on tos.
2711       int offs = Interpreter::expr_offset_in_bytes(0);
2712       Register base = R15_esp;
2713       switch(bytecode()) {
2714         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2715         case Bytecodes::_fast_iputfield: // Fall through
2716         case Bytecodes::_fast_bputfield: // Fall through
2717         case Bytecodes::_fast_zputfield: // Fall through
2718         case Bytecodes::_fast_cputfield: // Fall through
2719         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2720         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2721         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2722         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2723         default: {
2724           offs = 0;
2725           base = Robj;
2726           const Register Rflags = Robj;
2727           Label is_one_slot;
2728           // Life is harder. The stack holds the value on top, followed by the
2729           // object. We don't know the size of the value, though; it could be
2730           // one or two words depending on its type. As a result, we must find
2731           // the type to determine where the object is.
2732           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2733           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2734 
2735           __ cmpwi(CCR0, Rflags, ltos);
2736           __ cmpwi(CCR1, Rflags, dtos);
2737           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2738           __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal);
2739           __ beq(CCR0, is_one_slot);
2740           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2741           __ bind(is_one_slot);
2742           break;
2743         }
2744       }
2745       __ ld(Robj, offs, base);
2746       __ verify_oop(Robj);
2747     }
2748 
2749     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2750     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2751     __ get_cache_and_index_at_bcp(Rcache, 1);
2752 
2753     // In case of the fast versions, value lives in registers => put it back on tos.
2754     switch(bytecode()) {
2755       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2756       case Bytecodes::_fast_iputfield: // Fall through
2757       case Bytecodes::_fast_bputfield: // Fall through
2758       case Bytecodes::_fast_zputfield: // Fall through
2759       case Bytecodes::_fast_cputfield: // Fall through
2760       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2761       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2762       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2763       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2764       default: break; // Nothin' to do.
2765     }
2766 
2767     __ align(32, 12);
2768     __ bind(Lno_field_mod_post);
2769   }
2770 }
2771 
2772 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2773 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2774   Label Lvolatile;
2775 
2776   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2777                  Rclass_or_obj = R31,      // Needs to survive C call.
2778                  Roffset       = R22_tmp2, // Needs to survive C call.
2779                  Rflags        = R3_ARG1,
2780                  Rbtable       = R4_ARG2,
2781                  Rscratch      = R11_scratch1,
2782                  Rscratch2     = R12_scratch2,
2783                  Rscratch3     = R6_ARG4,
2784                  Rbc           = Rscratch3;
2785   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2786 
2787   static address field_rw_branch_table[number_of_states],
2788                  field_norw_branch_table[number_of_states],
2789                  static_branch_table[number_of_states];
2790 
2791   address* branch_table = is_static ? static_branch_table :
2792     (rc == may_rewrite ? field_rw_branch_table : field_norw_branch_table);
2793 
2794   // Stack (grows up):
2795   //  value
2796   //  obj
2797 
2798   // Load the field offset.
2799   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2800   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2801   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2802 
2803   // Load pointer to branch table.
2804   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2805 
2806   // Get volatile flag.
2807   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2808 
2809   // Check the field type.
2810   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2811 
2812 #ifdef ASSERT
2813   Label LFlagInvalid;
2814   __ cmpldi(CCR0, Rflags, number_of_states);
2815   __ bge(CCR0, LFlagInvalid);
2816 #endif
2817 
2818   // Load from branch table and dispatch (volatile case: one instruction ahead).
2819   __ sldi(Rflags, Rflags, LogBytesPerWord);
2820   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2821     __ cmpwi(CR_is_vol, Rscratch, 1);  // Volatile?
2822   }
2823   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2824   __ ldx(Rbtable, Rbtable, Rflags);
2825 
2826   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2827   __ mtctr(Rbtable);
2828   __ bctr();
2829 
2830 #ifdef ASSERT
2831   __ bind(LFlagInvalid);
2832   __ stop("got invalid flag", 0x656);
2833 
2834   // __ bind(Lvtos);
2835   address pc_before_release = __ pc();
2836   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2837   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2838   assert(branch_table[vtos] == 0, "can't compute twice");
2839   branch_table[vtos] = __ pc(); // non-volatile_entry point
2840   __ stop("vtos unexpected", 0x657);
2841 #endif
2842 
2843   __ align(32, 28, 28); // Align pop.
2844   // __ bind(Ldtos);
2845   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2846   assert(branch_table[dtos] == 0, "can't compute twice");
2847   branch_table[dtos] = __ pc(); // non-volatile_entry point
2848   __ pop(dtos);
2849   if (!is_static) {
2850     pop_and_check_object(Rclass_or_obj);  // Kills R11_scratch1.
2851   }
2852   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2853   if (!is_static && rc == may_rewrite) {
2854     patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no);
2855   }
2856   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2857     __ beq(CR_is_vol, Lvolatile); // Volatile?
2858   }
2859   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2860 
2861   __ align(32, 28, 28); // Align pop.
2862   // __ bind(Lftos);
2863   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2864   assert(branch_table[ftos] == 0, "can't compute twice");
2865   branch_table[ftos] = __ pc(); // non-volatile_entry point
2866   __ pop(ftos);
2867   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2868   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2869   if (!is_static && rc == may_rewrite) {
2870     patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no);
2871   }
2872   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2873     __ beq(CR_is_vol, Lvolatile); // Volatile?
2874   }
2875   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2876 
2877   __ align(32, 28, 28); // Align pop.
2878   // __ bind(Litos);
2879   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2880   assert(branch_table[itos] == 0, "can't compute twice");
2881   branch_table[itos] = __ pc(); // non-volatile_entry point
2882   __ pop(itos);
2883   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2884   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2885   if (!is_static && rc == may_rewrite) {
2886     patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no);
2887   }
2888   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2889     __ beq(CR_is_vol, Lvolatile); // Volatile?
2890   }
2891   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2892 
2893   __ align(32, 28, 28); // Align pop.
2894   // __ bind(Lltos);
2895   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2896   assert(branch_table[ltos] == 0, "can't compute twice");
2897   branch_table[ltos] = __ pc(); // non-volatile_entry point
2898   __ pop(ltos);
2899   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2900   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2901   if (!is_static && rc == may_rewrite) {
2902     patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no);
2903   }
2904   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2905     __ beq(CR_is_vol, Lvolatile); // Volatile?
2906   }
2907   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2908 
2909   __ align(32, 28, 28); // Align pop.
2910   // __ bind(Lbtos);
2911   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2912   assert(branch_table[btos] == 0, "can't compute twice");
2913   branch_table[btos] = __ pc(); // non-volatile_entry point
2914   __ pop(btos);
2915   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2916   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2917   if (!is_static && rc == may_rewrite) {
2918     patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no);
2919   }
2920   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2921     __ beq(CR_is_vol, Lvolatile); // Volatile?
2922   }
2923   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2924 
2925   __ align(32, 28, 28); // Align pop.
2926   // __ bind(Lztos);
2927   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2928   assert(branch_table[ztos] == 0, "can't compute twice");
2929   branch_table[ztos] = __ pc(); // non-volatile_entry point
2930   __ pop(ztos);
2931   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2932   __ andi(R17_tos, R17_tos, 0x1);
2933   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2934   if (!is_static && rc == may_rewrite) {
2935     patch_bytecode(Bytecodes::_fast_zputfield, Rbc, Rscratch, true, byte_no);
2936   }
2937   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2938     __ beq(CR_is_vol, Lvolatile); // Volatile?
2939   }
2940   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2941 
2942   __ align(32, 28, 28); // Align pop.
2943   // __ bind(Lctos);
2944   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2945   assert(branch_table[ctos] == 0, "can't compute twice");
2946   branch_table[ctos] = __ pc(); // non-volatile_entry point
2947   __ pop(ctos);
2948   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2949   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2950   if (!is_static && rc == may_rewrite) {
2951     patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no);
2952   }
2953   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2954     __ beq(CR_is_vol, Lvolatile); // Volatile?
2955   }
2956   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2957 
2958   __ align(32, 28, 28); // Align pop.
2959   // __ bind(Lstos);
2960   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2961   assert(branch_table[stos] == 0, "can't compute twice");
2962   branch_table[stos] = __ pc(); // non-volatile_entry point
2963   __ pop(stos);
2964   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2965   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2966   if (!is_static && rc == may_rewrite) {
2967     patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no);
2968   }
2969   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2970     __ beq(CR_is_vol, Lvolatile); // Volatile?
2971   }
2972   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2973 
2974   __ align(32, 28, 28); // Align pop.
2975   // __ bind(Latos);
2976   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2977   assert(branch_table[atos] == 0, "can't compute twice");
2978   branch_table[atos] = __ pc(); // non-volatile_entry point
2979   __ pop(atos);
2980   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2981   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, IN_HEAP);
2982   if (!is_static && rc == may_rewrite) {
2983     patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no);
2984   }
2985   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2986     __ beq(CR_is_vol, Lvolatile); // Volatile?
2987     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2988 
2989     __ align(32, 12);
2990     __ bind(Lvolatile);
2991     __ fence();
2992   }
2993   // fallthru: __ b(Lexit);
2994 
2995 #ifdef ASSERT
2996   for (int i = 0; i<number_of_states; ++i) {
2997     assert(branch_table[i], "put initialization");
2998     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2999     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
3000   }
3001 #endif
3002 }
3003 
3004 void TemplateTable::putfield(int byte_no) {
3005   putfield_or_static(byte_no, false);
3006 }
3007 
3008 void TemplateTable::nofast_putfield(int byte_no) {
3009   putfield_or_static(byte_no, false, may_not_rewrite);
3010 }
3011 
3012 void TemplateTable::putstatic(int byte_no) {
3013   putfield_or_static(byte_no, true);
3014 }
3015 
3016 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
3017 void TemplateTable::jvmti_post_fast_field_mod() {
3018   __ should_not_reach_here();
3019 }
3020 
3021 void TemplateTable::fast_storefield(TosState state) {
3022   transition(state, vtos);
3023 
3024   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
3025                  Rclass_or_obj = R31,      // Needs to survive C call.
3026                  Roffset       = R22_tmp2, // Needs to survive C call.
3027                  Rflags        = R3_ARG1,
3028                  Rscratch      = R11_scratch1,
3029                  Rscratch2     = R12_scratch2,
3030                  Rscratch3     = R4_ARG2;
3031   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
3032 
3033   // Constant pool already resolved => Load flags and offset of field.
3034   __ get_cache_and_index_at_bcp(Rcache, 1);
3035   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
3036   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3037 
3038   // Get the obj and the final store addr.
3039   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
3040 
3041   // Get volatile flag.
3042   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3043   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
3044   {
3045     Label LnotVolatile;
3046     __ beq(CCR0, LnotVolatile);
3047     __ release();
3048     __ align(32, 12);
3049     __ bind(LnotVolatile);
3050   }
3051 
3052   // Do the store and fencing.
3053   switch(bytecode()) {
3054     case Bytecodes::_fast_aputfield:
3055       // Store into the field.
3056       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, IN_HEAP);
3057       break;
3058 
3059     case Bytecodes::_fast_iputfield:
3060       __ stwx(R17_tos, Rclass_or_obj, Roffset);
3061       break;
3062 
3063     case Bytecodes::_fast_lputfield:
3064       __ stdx(R17_tos, Rclass_or_obj, Roffset);
3065       break;
3066 
3067     case Bytecodes::_fast_zputfield:
3068       __ andi(R17_tos, R17_tos, 0x1);  // boolean is true if LSB is 1
3069       // fall through to bputfield
3070     case Bytecodes::_fast_bputfield:
3071       __ stbx(R17_tos, Rclass_or_obj, Roffset);
3072       break;
3073 
3074     case Bytecodes::_fast_cputfield:
3075     case Bytecodes::_fast_sputfield:
3076       __ sthx(R17_tos, Rclass_or_obj, Roffset);
3077       break;
3078 
3079     case Bytecodes::_fast_fputfield:
3080       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
3081       break;
3082 
3083     case Bytecodes::_fast_dputfield:
3084       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
3085       break;
3086 
3087     default: ShouldNotReachHere();
3088   }
3089 
3090   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3091     Label LVolatile;
3092     __ beq(CR_is_vol, LVolatile);
3093     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3094 
3095     __ align(32, 12);
3096     __ bind(LVolatile);
3097     __ fence();
3098   }
3099 }
3100 
3101 void TemplateTable::fast_accessfield(TosState state) {
3102   transition(atos, state);
3103 
3104   Label LisVolatile;
3105   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3106 
3107   const Register Rcache        = R3_ARG1,
3108                  Rclass_or_obj = R17_tos,
3109                  Roffset       = R22_tmp2,
3110                  Rflags        = R23_tmp3,
3111                  Rscratch      = R12_scratch2;
3112 
3113   // Constant pool already resolved. Get the field offset.
3114   __ get_cache_and_index_at_bcp(Rcache, 1);
3115   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3116 
3117   // JVMTI support
3118   jvmti_post_field_access(Rcache, Rscratch, false, true);
3119 
3120   // Get the load address.
3121   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3122 
3123   // Get volatile flag.
3124   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3125   __ bne(CCR0, LisVolatile);
3126 
3127   switch(bytecode()) {
3128     case Bytecodes::_fast_agetfield:
3129     {
3130       do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
3131       __ verify_oop(R17_tos);
3132       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3133 
3134       __ bind(LisVolatile);
3135       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3136       do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
3137       __ verify_oop(R17_tos);
3138       __ twi_0(R17_tos);
3139       __ isync();
3140       break;
3141     }
3142     case Bytecodes::_fast_igetfield:
3143     {
3144       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3145       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3146 
3147       __ bind(LisVolatile);
3148       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3149       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3150       __ twi_0(R17_tos);
3151       __ isync();
3152       break;
3153     }
3154     case Bytecodes::_fast_lgetfield:
3155     {
3156       __ ldx(R17_tos, Rclass_or_obj, Roffset);
3157       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3158 
3159       __ bind(LisVolatile);
3160       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3161       __ ldx(R17_tos, Rclass_or_obj, Roffset);
3162       __ twi_0(R17_tos);
3163       __ isync();
3164       break;
3165     }
3166     case Bytecodes::_fast_bgetfield:
3167     {
3168       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3169       __ extsb(R17_tos, R17_tos);
3170       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3171 
3172       __ bind(LisVolatile);
3173       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3174       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3175       __ twi_0(R17_tos);
3176       __ extsb(R17_tos, R17_tos);
3177       __ isync();
3178       break;
3179     }
3180     case Bytecodes::_fast_cgetfield:
3181     {
3182       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3183       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3184 
3185       __ bind(LisVolatile);
3186       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3187       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3188       __ twi_0(R17_tos);
3189       __ isync();
3190       break;
3191     }
3192     case Bytecodes::_fast_sgetfield:
3193     {
3194       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3195       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3196 
3197       __ bind(LisVolatile);
3198       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3199       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3200       __ twi_0(R17_tos);
3201       __ isync();
3202       break;
3203     }
3204     case Bytecodes::_fast_fgetfield:
3205     {
3206       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3207       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3208 
3209       __ bind(LisVolatile);
3210       Label Ldummy;
3211       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3212       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3213       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3214       __ bne_predict_not_taken(CCR0, Ldummy);
3215       __ bind(Ldummy);
3216       __ isync();
3217       break;
3218     }
3219     case Bytecodes::_fast_dgetfield:
3220     {
3221       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3222       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3223 
3224       __ bind(LisVolatile);
3225       Label Ldummy;
3226       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3227       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3228       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3229       __ bne_predict_not_taken(CCR0, Ldummy);
3230       __ bind(Ldummy);
3231       __ isync();
3232       break;
3233     }
3234     default: ShouldNotReachHere();
3235   }
3236 }
3237 
3238 void TemplateTable::fast_xaccess(TosState state) {
3239   transition(vtos, state);
3240 
3241   Label LisVolatile;
3242   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3243   const Register Rcache        = R3_ARG1,
3244                  Rclass_or_obj = R17_tos,
3245                  Roffset       = R22_tmp2,
3246                  Rflags        = R23_tmp3,
3247                  Rscratch      = R12_scratch2;
3248 
3249   __ ld(Rclass_or_obj, 0, R18_locals);
3250 
3251   // Constant pool already resolved. Get the field offset.
3252   __ get_cache_and_index_at_bcp(Rcache, 2);
3253   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3254 
3255   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3256 
3257   // Needed to report exception at the correct bcp.
3258   __ addi(R14_bcp, R14_bcp, 1);
3259 
3260   // Get the load address.
3261   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3262 
3263   // Get volatile flag.
3264   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3265   __ bne(CCR0, LisVolatile);
3266 
3267   switch(state) {
3268   case atos:
3269     {
3270       do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
3271       __ verify_oop(R17_tos);
3272       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3273 
3274       __ bind(LisVolatile);
3275       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3276       do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
3277       __ verify_oop(R17_tos);
3278       __ twi_0(R17_tos);
3279       __ isync();
3280       break;
3281     }
3282   case itos:
3283     {
3284       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3285       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3286 
3287       __ bind(LisVolatile);
3288       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3289       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3290       __ twi_0(R17_tos);
3291       __ isync();
3292       break;
3293     }
3294   case ftos:
3295     {
3296       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3297       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3298 
3299       __ bind(LisVolatile);
3300       Label Ldummy;
3301       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3302       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3303       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3304       __ bne_predict_not_taken(CCR0, Ldummy);
3305       __ bind(Ldummy);
3306       __ isync();
3307       break;
3308     }
3309   default: ShouldNotReachHere();
3310   }
3311   __ addi(R14_bcp, R14_bcp, -1);
3312 }
3313 
3314 // ============================================================================
3315 // Calls
3316 
3317 // Common code for invoke
3318 //
3319 // Input:
3320 //   - byte_no
3321 //
3322 // Output:
3323 //   - Rmethod:        The method to invoke next.
3324 //   - Rret_addr:      The return address to return to.
3325 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3326 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3327 //   - Rflags:         Method flags from const pool cache.
3328 //
3329 //  Kills:
3330 //   - Rscratch1
3331 //
3332 void TemplateTable::prepare_invoke(int byte_no,
3333                                    Register Rmethod,  // linked method (or i-klass)
3334                                    Register Rret_addr,// return address
3335                                    Register Rindex,   // itable index, MethodType, etc.
3336                                    Register Rrecv,    // If caller wants to see it.
3337                                    Register Rflags,   // If caller wants to test it.
3338                                    Register Rscratch
3339                                    ) {
3340   // Determine flags.
3341   const Bytecodes::Code code = bytecode();
3342   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3343   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3344   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3345   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3346   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3347   const bool load_receiver       = (Rrecv != noreg);
3348   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3349 
3350   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3351   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3352   assert_different_registers(Rret_addr, Rscratch);
3353 
3354   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3355 
3356   // Saving of SP done in call_from_interpreter.
3357 
3358   // Maybe push "appendix" to arguments.
3359   if (is_invokedynamic || is_invokehandle) {
3360     Label Ldone;
3361     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3362     __ beq(CCR0, Ldone);
3363     // Push "appendix" (MethodType, CallSite, etc.).
3364     // This must be done before we get the receiver,
3365     // since the parameter_size includes it.
3366     __ load_resolved_reference_at_index(Rscratch, Rindex);
3367     __ verify_oop(Rscratch);
3368     __ push_ptr(Rscratch);
3369     __ bind(Ldone);
3370   }
3371 
3372   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3373   if (load_receiver) {
3374     const Register Rparam_count = Rscratch;
3375     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3376     __ load_receiver(Rparam_count, Rrecv);
3377     __ verify_oop(Rrecv);
3378   }
3379 
3380   // Get return address.
3381   {
3382     Register Rtable_addr = Rscratch;
3383     Register Rret_type = Rret_addr;
3384     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3385 
3386     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3387     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3388     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3389     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3390     // Get return address.
3391     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3392   }
3393 }
3394 
3395 // Helper for virtual calls. Load target out of vtable and jump off!
3396 // Kills all passed registers.
3397 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3398 
3399   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3400   const Register Rtarget_method = Rindex;
3401 
3402   // Get target method & entry point.
3403   const int base = in_bytes(Klass::vtable_start_offset());
3404   // Calc vtable addr scale the vtable index by 8.
3405   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size_in_bytes()));
3406   // Load target.
3407   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3408   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3409   // Argument and return type profiling.
3410   __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3411   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3412 }
3413 
3414 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3415 void TemplateTable::invokevirtual(int byte_no) {
3416   transition(vtos, vtos);
3417 
3418   Register Rtable_addr = R11_scratch1,
3419            Rret_type = R12_scratch2,
3420            Rret_addr = R5_ARG3,
3421            Rflags = R22_tmp2, // Should survive C call.
3422            Rrecv = R3_ARG1,
3423            Rrecv_klass = Rrecv,
3424            Rvtableindex_or_method = R31, // Should survive C call.
3425            Rnum_params = R4_ARG2,
3426            Rnew_bc = R6_ARG4;
3427 
3428   Label LnotFinal;
3429 
3430   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3431 
3432   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3433   __ bfalse(CCR0, LnotFinal);
3434 
3435   if (RewriteBytecodes && !UseSharedSpaces && !DumpSharedSpaces) {
3436     patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3437   }
3438   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3439 
3440   __ align(32, 12);
3441   __ bind(LnotFinal);
3442   // Load "this" pointer (receiver).
3443   __ rldicl(Rnum_params, Rflags, 64, 48);
3444   __ load_receiver(Rnum_params, Rrecv);
3445   __ verify_oop(Rrecv);
3446 
3447   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3448   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3449   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3450   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3451   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3452   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3453   __ load_klass(Rrecv_klass, Rrecv);
3454   __ verify_klass_ptr(Rrecv_klass);
3455   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3456 
3457   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3458 }
3459 
3460 void TemplateTable::fast_invokevfinal(int byte_no) {
3461   transition(vtos, vtos);
3462 
3463   assert(byte_no == f2_byte, "use this argument");
3464   Register Rflags  = R22_tmp2,
3465            Rmethod = R31;
3466   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3467   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3468 }
3469 
3470 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3471 
3472   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3473 
3474   // Load receiver from stack slot.
3475   Register Rrecv = Rscratch2;
3476   Register Rnum_params = Rrecv;
3477 
3478   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3479   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3480 
3481   // Get return address.
3482   Register Rtable_addr = Rscratch1,
3483            Rret_addr   = Rflags,
3484            Rret_type   = Rret_addr;
3485   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3486   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3487   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3488   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3489   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3490 
3491   // Load receiver and receiver NULL check.
3492   __ load_receiver(Rnum_params, Rrecv);
3493   __ null_check_throw(Rrecv, -1, Rscratch1);
3494 
3495   __ profile_final_call(Rrecv, Rscratch1);
3496   // Argument and return type profiling.
3497   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3498 
3499   // Do the call.
3500   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3501 }
3502 
3503 void TemplateTable::invokespecial(int byte_no) {
3504   assert(byte_no == f1_byte, "use this argument");
3505   transition(vtos, vtos);
3506 
3507   Register Rtable_addr = R3_ARG1,
3508            Rret_addr   = R4_ARG2,
3509            Rflags      = R5_ARG3,
3510            Rreceiver   = R6_ARG4,
3511            Rmethod     = R31;
3512 
3513   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3514 
3515   // Receiver NULL check.
3516   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3517 
3518   __ profile_call(R11_scratch1, R12_scratch2);
3519   // Argument and return type profiling.
3520   __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3521   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3522 }
3523 
3524 void TemplateTable::invokestatic(int byte_no) {
3525   assert(byte_no == f1_byte, "use this argument");
3526   transition(vtos, vtos);
3527 
3528   Register Rtable_addr = R3_ARG1,
3529            Rret_addr   = R4_ARG2,
3530            Rflags      = R5_ARG3;
3531 
3532   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3533 
3534   __ profile_call(R11_scratch1, R12_scratch2);
3535   // Argument and return type profiling.
3536   __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3537   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3538 }
3539 
3540 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3541                                                   Register Rret,
3542                                                   Register Rflags,
3543                                                   Register Rmethod,
3544                                                   Register Rtemp1,
3545                                                   Register Rtemp2) {
3546 
3547   assert_different_registers(Rmethod, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3548   Label LnotFinal;
3549 
3550   // Check for vfinal.
3551   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3552   __ bfalse(CCR0, LnotFinal);
3553 
3554   Register Rscratch = Rflags; // Rflags is dead now.
3555 
3556   // Final call case.
3557   __ profile_final_call(Rtemp1, Rscratch);
3558   // Argument and return type profiling.
3559   __ profile_arguments_type(Rmethod, Rscratch, Rrecv_klass /* scratch */, true);
3560   // Do the final call - the index (f2) contains the method.
3561   __ call_from_interpreter(Rmethod, Rret, Rscratch, Rrecv_klass /* scratch */);
3562 
3563   // Non-final callc case.
3564   __ bind(LnotFinal);
3565   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3566   generate_vtable_call(Rrecv_klass, Rmethod, Rret, Rscratch);
3567 }
3568 
3569 void TemplateTable::invokeinterface(int byte_no) {
3570   assert(byte_no == f1_byte, "use this argument");
3571   transition(vtos, vtos);
3572 
3573   const Register Rscratch1        = R11_scratch1,
3574                  Rscratch2        = R12_scratch2,
3575                  Rmethod          = R6_ARG4,
3576                  Rmethod2         = R9_ARG7,
3577                  Rinterface_klass = R5_ARG3,
3578                  Rret_addr        = R8_ARG6,
3579                  Rindex           = R10_ARG8,
3580                  Rreceiver        = R3_ARG1,
3581                  Rrecv_klass      = R4_ARG2,
3582                  Rflags           = R7_ARG5;
3583 
3584   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rmethod, Rreceiver, Rflags, Rscratch1);
3585 
3586   // First check for Object case, then private interface method,
3587   // then regular interface method.
3588 
3589   // Get receiver klass - this is also a null check
3590   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch2);
3591   __ load_klass(Rrecv_klass, Rreceiver);
3592 
3593   // Check corner case object method.
3594   // Special case of invokeinterface called for virtual method of
3595   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3596   // The invokeinterface was rewritten to a invokevirtual, hence we have
3597   // to handle this corner case.
3598 
3599   Label LnotObjectMethod, Lthrow_ame;
3600   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3601   __ bfalse(CCR0, LnotObjectMethod);
3602   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rmethod, Rscratch1, Rscratch2);
3603   __ bind(LnotObjectMethod);
3604 
3605   // Check for private method invocation - indicated by vfinal
3606   Label LnotVFinal, L_no_such_interface, L_subtype;
3607 
3608   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3609   __ bfalse(CCR0, LnotVFinal);
3610 
3611   __ check_klass_subtype(Rrecv_klass, Rinterface_klass, Rscratch1, Rscratch2, L_subtype);
3612   // If we get here the typecheck failed
3613   __ b(L_no_such_interface);
3614   __ bind(L_subtype);
3615 
3616   // do the call
3617 
3618   Register Rscratch = Rflags; // Rflags is dead now.
3619 
3620   __ profile_final_call(Rscratch1, Rscratch);
3621   __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true);
3622 
3623   __ call_from_interpreter(Rindex, Rret_addr, Rscratch, Rrecv_klass /* scratch */);
3624 
3625   __ bind(LnotVFinal);
3626 
3627   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, noreg, noreg, Rscratch1, Rscratch2,
3628                              L_no_such_interface, /*return_method=*/false);
3629 
3630   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3631 
3632   // Find entry point to call.
3633 
3634   // Get declaring interface class from method
3635   __ ld(Rinterface_klass, in_bytes(Method::const_offset()), Rmethod);
3636   __ ld(Rinterface_klass, in_bytes(ConstMethod::constants_offset()), Rinterface_klass);
3637   __ ld(Rinterface_klass, ConstantPool::pool_holder_offset_in_bytes(), Rinterface_klass);
3638 
3639   // Get itable index from method
3640   __ lwa(Rindex, in_bytes(Method::itable_index_offset()), Rmethod);
3641   __ subfic(Rindex, Rindex, Method::itable_index_max);
3642 
3643   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rmethod2, Rscratch1, Rscratch2,
3644                              L_no_such_interface);
3645 
3646   __ cmpdi(CCR0, Rmethod2, 0);
3647   __ beq(CCR0, Lthrow_ame);
3648   // Found entry. Jump off!
3649   // Argument and return type profiling.
3650   __ profile_arguments_type(Rmethod2, Rscratch1, Rscratch2, true);
3651   //__ profile_called_method(Rindex, Rscratch1);
3652   __ call_from_interpreter(Rmethod2, Rret_addr, Rscratch1, Rscratch2);
3653 
3654   // Vtable entry was NULL => Throw abstract method error.
3655   __ bind(Lthrow_ame);
3656   // Pass arguments for generating a verbose error message.
3657   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3658           Rrecv_klass, Rmethod);
3659 
3660   // Interface was not found => Throw incompatible class change error.
3661   __ bind(L_no_such_interface);
3662   // Pass arguments for generating a verbose error message.
3663   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3664           Rrecv_klass, Rinterface_klass);
3665   DEBUG_ONLY( __ should_not_reach_here(); )
3666 }
3667 
3668 void TemplateTable::invokedynamic(int byte_no) {
3669   transition(vtos, vtos);
3670 
3671   const Register Rret_addr = R3_ARG1,
3672                  Rflags    = R4_ARG2,
3673                  Rmethod   = R22_tmp2,
3674                  Rscratch1 = R11_scratch1,
3675                  Rscratch2 = R12_scratch2;
3676 
3677   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3678 
3679   // Profile this call.
3680   __ profile_call(Rscratch1, Rscratch2);
3681 
3682   // Off we go. With the new method handles, we don't jump to a method handle
3683   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3684   // to be the callsite object the bootstrap method returned. This is passed to a
3685   // "link" method which does the dispatch (Most likely just grabs the MH stored
3686   // inside the callsite and does an invokehandle).
3687   // Argument and return type profiling.
3688   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3689   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3690 }
3691 
3692 void TemplateTable::invokehandle(int byte_no) {
3693   transition(vtos, vtos);
3694 
3695   const Register Rret_addr = R3_ARG1,
3696                  Rflags    = R4_ARG2,
3697                  Rrecv     = R5_ARG3,
3698                  Rmethod   = R22_tmp2,
3699                  Rscratch1 = R11_scratch1,
3700                  Rscratch2 = R12_scratch2;
3701 
3702   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3703   __ verify_method_ptr(Rmethod);
3704   __ null_check_throw(Rrecv, -1, Rscratch2);
3705 
3706   __ profile_final_call(Rrecv, Rscratch1);
3707 
3708   // Still no call from handle => We call the method handle interpreter here.
3709   // Argument and return type profiling.
3710   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3711   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3712 }
3713 
3714 // =============================================================================
3715 // Allocation
3716 
3717 // Puts allocated obj ref onto the expression stack.
3718 void TemplateTable::_new() {
3719   transition(vtos, atos);
3720 
3721   Label Lslow_case,
3722         Ldone;
3723 
3724   const Register RallocatedObject = R17_tos,
3725                  RinstanceKlass   = R9_ARG7,
3726                  Rscratch         = R11_scratch1,
3727                  Roffset          = R8_ARG6,
3728                  Rinstance_size   = Roffset,
3729                  Rcpool           = R4_ARG2,
3730                  Rtags            = R3_ARG1,
3731                  Rindex           = R5_ARG3;
3732 
3733   // --------------------------------------------------------------------------
3734   // Check if fast case is possible.
3735 
3736   // Load pointers to const pool and const pool's tags array.
3737   __ get_cpool_and_tags(Rcpool, Rtags);
3738   // Load index of constant pool entry.
3739   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3740 
3741   // Note: compared to other architectures, PPC's implementation always goes
3742   // to the slow path if TLAB is used and fails.
3743   if (UseTLAB) {
3744     // Make sure the class we're about to instantiate has been resolved
3745     // This is done before loading instanceKlass to be consistent with the order
3746     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3747     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3748     __ lbzx(Rtags, Rindex, Rtags);
3749 
3750     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3751     __ bne(CCR0, Lslow_case);
3752 
3753     // Get instanceKlass
3754     __ sldi(Roffset, Rindex, LogBytesPerWord);
3755     __ load_resolved_klass_at_offset(Rcpool, Roffset, RinstanceKlass);
3756 
3757     // Make sure klass is fully initialized and get instance_size.
3758     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3759     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3760 
3761     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3762     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3763     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3764 
3765     __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized?
3766     __ beq(CCR0, Lslow_case);
3767 
3768     // --------------------------------------------------------------------------
3769     // Fast case:
3770     // Allocate the instance.
3771     // 1) Try to allocate in the TLAB.
3772     // 2) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3773 
3774     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3775     Register RnewTopValue = R6_ARG4;
3776     Register RendValue    = R7_ARG5;
3777 
3778     // Check if we can allocate in the TLAB.
3779     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3780     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3781 
3782     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3783 
3784     // If there is enough space, we do not CAS and do not clear.
3785     __ cmpld(CCR0, RnewTopValue, RendValue);
3786     __ bgt(CCR0, Lslow_case);
3787 
3788     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3789 
3790     if (!ZeroTLAB) {
3791       // --------------------------------------------------------------------------
3792       // Init1: Zero out newly allocated memory.
3793       // Initialize remaining object fields.
3794       Register Rbase = Rtags;
3795       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3796       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3797       __ srdi(Rinstance_size, Rinstance_size, 3);
3798 
3799       // Clear out object skipping header. Takes also care of the zero length case.
3800       __ clear_memory_doubleword(Rbase, Rinstance_size);
3801     }
3802 
3803     // --------------------------------------------------------------------------
3804     // Init2: Initialize the header: mark, klass
3805     // Init mark.
3806     if (UseBiasedLocking) {
3807       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3808     } else {
3809       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3810     }
3811     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3812 
3813     // Init klass.
3814     __ store_klass_gap(RallocatedObject);
3815     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3816 
3817     // Check and trigger dtrace event.
3818     SkipIfEqualZero::skip_to_label_if_equal_zero(_masm, Rscratch, &DTraceAllocProbes, Ldone);
3819     __ push(atos);
3820     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3821     __ pop(atos);
3822 
3823     __ b(Ldone);
3824   }
3825 
3826   // --------------------------------------------------------------------------
3827   // slow case
3828   __ bind(Lslow_case);
3829   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3830 
3831   // continue
3832   __ bind(Ldone);
3833 
3834   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3835   __ membar(Assembler::StoreStore);
3836 }
3837 
3838 void TemplateTable::newarray() {
3839   transition(itos, atos);
3840 
3841   __ lbz(R4, 1, R14_bcp);
3842   __ extsw(R5, R17_tos);
3843   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3844 
3845   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3846   __ membar(Assembler::StoreStore);
3847 }
3848 
3849 void TemplateTable::anewarray() {
3850   transition(itos, atos);
3851 
3852   __ get_constant_pool(R4);
3853   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3854   __ extsw(R6, R17_tos); // size
3855   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3856 
3857   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3858   __ membar(Assembler::StoreStore);
3859 }
3860 
3861 // Allocate a multi dimensional array
3862 void TemplateTable::multianewarray() {
3863   transition(vtos, atos);
3864 
3865   Register Rptr = R31; // Needs to survive C call.
3866 
3867   // Put ndims * wordSize into frame temp slot
3868   __ lbz(Rptr, 3, R14_bcp);
3869   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3870   // Esp points past last_dim, so set to R4 to first_dim address.
3871   __ add(R4, Rptr, R15_esp);
3872   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3873   // Pop all dimensions off the stack.
3874   __ add(R15_esp, Rptr, R15_esp);
3875 
3876   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3877   __ membar(Assembler::StoreStore);
3878 }
3879 
3880 void TemplateTable::arraylength() {
3881   transition(atos, itos);
3882 
3883   Label LnoException;
3884   __ verify_oop(R17_tos);
3885   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3886   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3887 }
3888 
3889 // ============================================================================
3890 // Typechecks
3891 
3892 void TemplateTable::checkcast() {
3893   transition(atos, atos);
3894 
3895   Label Ldone, Lis_null, Lquicked, Lresolved;
3896   Register Roffset         = R6_ARG4,
3897            RobjKlass       = R4_ARG2,
3898            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3899            Rcpool          = R11_scratch1,
3900            Rtags           = R12_scratch2;
3901 
3902   // Null does not pass.
3903   __ cmpdi(CCR0, R17_tos, 0);
3904   __ beq(CCR0, Lis_null);
3905 
3906   // Get constant pool tag to find out if the bytecode has already been "quickened".
3907   __ get_cpool_and_tags(Rcpool, Rtags);
3908 
3909   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3910 
3911   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3912   __ lbzx(Rtags, Rtags, Roffset);
3913 
3914   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3915   __ beq(CCR0, Lquicked);
3916 
3917   // Call into the VM to "quicken" instanceof.
3918   __ push_ptr();  // for GC
3919   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3920   __ get_vm_result_2(RspecifiedKlass);
3921   __ pop_ptr();   // Restore receiver.
3922   __ b(Lresolved);
3923 
3924   // Extract target class from constant pool.
3925   __ bind(Lquicked);
3926   __ sldi(Roffset, Roffset, LogBytesPerWord);
3927   __ load_resolved_klass_at_offset(Rcpool, Roffset, RspecifiedKlass);
3928 
3929   // Do the checkcast.
3930   __ bind(Lresolved);
3931   // Get value klass in RobjKlass.
3932   __ load_klass(RobjKlass, R17_tos);
3933   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3934   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3935 
3936   // Not a subtype; so must throw exception
3937   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3938   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3939   __ mtctr(R11_scratch1);
3940   __ bctr();
3941 
3942   // Profile the null case.
3943   __ align(32, 12);
3944   __ bind(Lis_null);
3945   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3946 
3947   __ align(32, 12);
3948   __ bind(Ldone);
3949 }
3950 
3951 // Output:
3952 //   - tos == 0: Obj was null or not an instance of class.
3953 //   - tos == 1: Obj was an instance of class.
3954 void TemplateTable::instanceof() {
3955   transition(atos, itos);
3956 
3957   Label Ldone, Lis_null, Lquicked, Lresolved;
3958   Register Roffset         = R6_ARG4,
3959            RobjKlass       = R4_ARG2,
3960            RspecifiedKlass = R5_ARG3,
3961            Rcpool          = R11_scratch1,
3962            Rtags           = R12_scratch2;
3963 
3964   // Null does not pass.
3965   __ cmpdi(CCR0, R17_tos, 0);
3966   __ beq(CCR0, Lis_null);
3967 
3968   // Get constant pool tag to find out if the bytecode has already been "quickened".
3969   __ get_cpool_and_tags(Rcpool, Rtags);
3970 
3971   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3972 
3973   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3974   __ lbzx(Rtags, Rtags, Roffset);
3975 
3976   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3977   __ beq(CCR0, Lquicked);
3978 
3979   // Call into the VM to "quicken" instanceof.
3980   __ push_ptr();  // for GC
3981   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3982   __ get_vm_result_2(RspecifiedKlass);
3983   __ pop_ptr();   // Restore receiver.
3984   __ b(Lresolved);
3985 
3986   // Extract target class from constant pool.
3987   __ bind(Lquicked);
3988   __ sldi(Roffset, Roffset, LogBytesPerWord);
3989   __ load_resolved_klass_at_offset(Rcpool, Roffset, RspecifiedKlass);
3990 
3991   // Do the checkcast.
3992   __ bind(Lresolved);
3993   // Get value klass in RobjKlass.
3994   __ load_klass(RobjKlass, R17_tos);
3995   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3996   __ li(R17_tos, 1);
3997   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3998   __ li(R17_tos, 0);
3999 
4000   if (ProfileInterpreter) {
4001     __ b(Ldone);
4002   }
4003 
4004   // Profile the null case.
4005   __ align(32, 12);
4006   __ bind(Lis_null);
4007   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
4008 
4009   __ align(32, 12);
4010   __ bind(Ldone);
4011 }
4012 
4013 // =============================================================================
4014 // Breakpoints
4015 
4016 void TemplateTable::_breakpoint() {
4017   transition(vtos, vtos);
4018 
4019   // Get the unpatched byte code.
4020   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
4021   __ mr(R31, R3_RET);
4022 
4023   // Post the breakpoint event.
4024   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
4025 
4026   // Complete the execution of original bytecode.
4027   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
4028 }
4029 
4030 // =============================================================================
4031 // Exceptions
4032 
4033 void TemplateTable::athrow() {
4034   transition(atos, vtos);
4035 
4036   // Exception oop is in tos
4037   __ verify_oop(R17_tos);
4038 
4039   __ null_check_throw(R17_tos, -1, R11_scratch1);
4040 
4041   // Throw exception interpreter entry expects exception oop to be in R3.
4042   __ mr(R3_RET, R17_tos);
4043   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
4044   __ mtctr(R11_scratch1);
4045   __ bctr();
4046 }
4047 
4048 // =============================================================================
4049 // Synchronization
4050 // Searches the basic object lock list on the stack for a free slot
4051 // and uses it to lock the obect in tos.
4052 //
4053 // Recursive locking is enabled by exiting the search if the same
4054 // object is already found in the list. Thus, a new basic lock obj lock
4055 // is allocated "higher up" in the stack and thus is found first
4056 // at next monitor exit.
4057 void TemplateTable::monitorenter() {
4058   transition(atos, vtos);
4059 
4060   __ verify_oop(R17_tos);
4061 
4062   Register Rcurrent_monitor  = R11_scratch1,
4063            Rcurrent_obj      = R12_scratch2,
4064            Robj_to_lock      = R17_tos,
4065            Rscratch1         = R3_ARG1,
4066            Rscratch2         = R4_ARG2,
4067            Rscratch3         = R5_ARG3,
4068            Rcurrent_obj_addr = R6_ARG4;
4069 
4070   // ------------------------------------------------------------------------------
4071   // Null pointer exception.
4072   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4073 
4074   // Try to acquire a lock on the object.
4075   // Repeat until succeeded (i.e., until monitorenter returns true).
4076 
4077   // ------------------------------------------------------------------------------
4078   // Find a free slot in the monitor block.
4079   Label Lfound, Lexit, Lallocate_new;
4080   ConditionRegister found_free_slot = CCR0,
4081                     found_same_obj  = CCR1,
4082                     reached_limit   = CCR6;
4083   {
4084     Label Lloop, Lentry;
4085     Register Rlimit = Rcurrent_monitor;
4086 
4087     // Set up search loop - start with topmost monitor.
4088     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
4089 
4090     __ ld(Rlimit, 0, R1_SP);
4091     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
4092 
4093     // Check if any slot is present => short cut to allocation if not.
4094     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
4095     __ bgt(reached_limit, Lallocate_new);
4096 
4097     // Pre-load topmost slot.
4098     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4099     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4100     // The search loop.
4101     __ bind(Lloop);
4102     // Found free slot?
4103     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
4104     // Is this entry for same obj? If so, stop the search and take the found
4105     // free slot or allocate a new one to enable recursive locking.
4106     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
4107     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
4108     __ beq(found_free_slot, Lexit);
4109     __ beq(found_same_obj, Lallocate_new);
4110     __ bgt(reached_limit, Lallocate_new);
4111     // Check if last allocated BasicLockObj reached.
4112     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4113     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4114     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4115     __ b(Lloop);
4116   }
4117 
4118   // ------------------------------------------------------------------------------
4119   // Check if we found a free slot.
4120   __ bind(Lexit);
4121 
4122   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4123   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
4124   __ b(Lfound);
4125 
4126   // We didn't find a free BasicObjLock => allocate one.
4127   __ align(32, 12);
4128   __ bind(Lallocate_new);
4129   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
4130   __ mr(Rcurrent_monitor, R26_monitor);
4131   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4132 
4133   // ------------------------------------------------------------------------------
4134   // We now have a slot to lock.
4135   __ bind(Lfound);
4136 
4137   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
4138   // The object has already been poped from the stack, so the expression stack looks correct.
4139   __ addi(R14_bcp, R14_bcp, 1);
4140 
4141   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
4142   __ lock_object(Rcurrent_monitor, Robj_to_lock);
4143 
4144   // Check if there's enough space on the stack for the monitors after locking.
4145   // This emits a single store.
4146   __ generate_stack_overflow_check(0);
4147 
4148   // The bcp has already been incremented. Just need to dispatch to next instruction.
4149   __ dispatch_next(vtos);
4150 }
4151 
4152 void TemplateTable::monitorexit() {
4153   transition(atos, vtos);
4154   __ verify_oop(R17_tos);
4155 
4156   Register Rcurrent_monitor  = R11_scratch1,
4157            Rcurrent_obj      = R12_scratch2,
4158            Robj_to_lock      = R17_tos,
4159            Rcurrent_obj_addr = R3_ARG1,
4160            Rlimit            = R4_ARG2;
4161   Label Lfound, Lillegal_monitor_state;
4162 
4163   // Check corner case: unbalanced monitorEnter / Exit.
4164   __ ld(Rlimit, 0, R1_SP);
4165   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4166 
4167   // Null pointer check.
4168   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4169 
4170   __ cmpld(CCR0, R26_monitor, Rlimit);
4171   __ bgt(CCR0, Lillegal_monitor_state);
4172 
4173   // Find the corresponding slot in the monitors stack section.
4174   {
4175     Label Lloop;
4176 
4177     // Start with topmost monitor.
4178     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4179     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4180     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4181     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4182 
4183     __ bind(Lloop);
4184     // Is this entry for same obj?
4185     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4186     __ beq(CCR0, Lfound);
4187 
4188     // Check if last allocated BasicLockObj reached.
4189 
4190     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4191     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4192     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4193 
4194     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4195     __ ble(CCR0, Lloop);
4196   }
4197 
4198   // Fell through without finding the basic obj lock => throw up!
4199   __ bind(Lillegal_monitor_state);
4200   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4201   __ should_not_reach_here();
4202 
4203   __ align(32, 12);
4204   __ bind(Lfound);
4205   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4206           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4207   __ unlock_object(Rcurrent_monitor);
4208 }
4209 
4210 // ============================================================================
4211 // Wide bytecodes
4212 
4213 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4214 void TemplateTable::wide() {
4215   transition(vtos, vtos);
4216 
4217   const Register Rtable = R11_scratch1,
4218                  Rindex = R12_scratch2,
4219                  Rtmp   = R0;
4220 
4221   __ lbz(Rindex, 1, R14_bcp);
4222 
4223   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4224 
4225   __ slwi(Rindex, Rindex, LogBytesPerWord);
4226   __ ldx(Rtmp, Rtable, Rindex);
4227   __ mtctr(Rtmp);
4228   __ bctr();
4229   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4230 }