1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 112 // getrusage() is prepared to handle the associated failure.
 113 #ifndef RUSAGE_THREAD
 114   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 115 #endif
 116 
 117 #define MAX_PATH    (2 * K)
 118 
 119 #define MAX_SECS 100000000
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 const int os::Linux::_vm_default_page_size = (8 * K);
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 pthread_condattr_t os::Linux::_condattr[1];
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 // Signal number used to suspend/resume a thread
 153 
 154 // do not use any signal number less than SIGSEGV, see 4355769
 155 static int SR_signum = SIGUSR2;
 156 sigset_t SR_sigset;
 157 
 158 // Declarations
 159 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 160 
 161 // utility functions
 162 
 163 static int SR_initialize();
 164 
 165 julong os::available_memory() {
 166   return Linux::available_memory();
 167 }
 168 
 169 julong os::Linux::available_memory() {
 170   // values in struct sysinfo are "unsigned long"
 171   struct sysinfo si;
 172   sysinfo(&si);
 173 
 174   return (julong)si.freeram * si.mem_unit;
 175 }
 176 
 177 julong os::physical_memory() {
 178   return Linux::physical_memory();
 179 }
 180 
 181 // Return true if user is running as root.
 182 
 183 bool os::have_special_privileges() {
 184   static bool init = false;
 185   static bool privileges = false;
 186   if (!init) {
 187     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 188     init = true;
 189   }
 190   return privileges;
 191 }
 192 
 193 
 194 #ifndef SYS_gettid
 195 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 196   #ifdef __ia64__
 197     #define SYS_gettid 1105
 198   #else
 199     #ifdef __i386__
 200       #define SYS_gettid 224
 201     #else
 202       #ifdef __amd64__
 203         #define SYS_gettid 186
 204       #else
 205         #ifdef __sparc__
 206           #define SYS_gettid 143
 207         #else
 208           #error define gettid for the arch
 209         #endif
 210       #endif
 211     #endif
 212   #endif
 213 #endif
 214 
 215 // Cpu architecture string
 216 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 217 
 218 
 219 // pid_t gettid()
 220 //
 221 // Returns the kernel thread id of the currently running thread. Kernel
 222 // thread id is used to access /proc.
 223 pid_t os::Linux::gettid() {
 224   int rslt = syscall(SYS_gettid);
 225   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 226   return (pid_t)rslt;
 227 }
 228 
 229 // Most versions of linux have a bug where the number of processors are
 230 // determined by looking at the /proc file system.  In a chroot environment,
 231 // the system call returns 1.  This causes the VM to act as if it is
 232 // a single processor and elide locking (see is_MP() call).
 233 static bool unsafe_chroot_detected = false;
 234 static const char *unstable_chroot_error = "/proc file system not found.\n"
 235                      "Java may be unstable running multithreaded in a chroot "
 236                      "environment on Linux when /proc filesystem is not mounted.";
 237 
 238 void os::Linux::initialize_system_info() {
 239   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 240   if (processor_count() == 1) {
 241     pid_t pid = os::Linux::gettid();
 242     char fname[32];
 243     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 244     FILE *fp = fopen(fname, "r");
 245     if (fp == NULL) {
 246       unsafe_chroot_detected = true;
 247     } else {
 248       fclose(fp);
 249     }
 250   }
 251   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 252   assert(processor_count() > 0, "linux error");
 253 }
 254 
 255 void os::init_system_properties_values() {
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm.so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm.so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 274   // it looks like libjvm.so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // See ld(1):
 283   //      The linker uses the following search paths to locate required
 284   //      shared libraries:
 285   //        1: ...
 286   //        ...
 287   //        7: The default directories, normally /lib and /usr/lib.
 288 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 289   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 290 #else
 291   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 292 #endif
 293 
 294 // Base path of extensions installed on the system.
 295 #define SYS_EXT_DIR     "/usr/java/packages"
 296 #define EXTENSIONS_DIR  "/lib/ext"
 297 
 298   // Buffer that fits several sprintfs.
 299   // Note that the space for the colon and the trailing null are provided
 300   // by the nulls included by the sizeof operator.
 301   const size_t bufsize =
 302     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 303          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 304   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 305 
 306   // sysclasspath, java_home, dll_dir
 307   {
 308     char *pslash;
 309     os::jvm_path(buf, bufsize);
 310 
 311     // Found the full path to libjvm.so.
 312     // Now cut the path to <java_home>/jre if we can.
 313     pslash = strrchr(buf, '/');
 314     if (pslash != NULL) {
 315       *pslash = '\0';            // Get rid of /libjvm.so.
 316     }
 317     pslash = strrchr(buf, '/');
 318     if (pslash != NULL) {
 319       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 320     }
 321     Arguments::set_dll_dir(buf);
 322 
 323     if (pslash != NULL) {
 324       pslash = strrchr(buf, '/');
 325       if (pslash != NULL) {
 326         *pslash = '\0';          // Get rid of /<arch>.
 327         pslash = strrchr(buf, '/');
 328         if (pslash != NULL) {
 329           *pslash = '\0';        // Get rid of /lib.
 330         }
 331       }
 332     }
 333     Arguments::set_java_home(buf);
 334     set_boot_path('/', ':');
 335   }
 336 
 337   // Where to look for native libraries.
 338   //
 339   // Note: Due to a legacy implementation, most of the library path
 340   // is set in the launcher. This was to accomodate linking restrictions
 341   // on legacy Linux implementations (which are no longer supported).
 342   // Eventually, all the library path setting will be done here.
 343   //
 344   // However, to prevent the proliferation of improperly built native
 345   // libraries, the new path component /usr/java/packages is added here.
 346   // Eventually, all the library path setting will be done here.
 347   {
 348     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 349     // should always exist (until the legacy problem cited above is
 350     // addressed).
 351     const char *v = ::getenv("LD_LIBRARY_PATH");
 352     const char *v_colon = ":";
 353     if (v == NULL) { v = ""; v_colon = ""; }
 354     // That's +1 for the colon and +1 for the trailing '\0'.
 355     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 356                                                      strlen(v) + 1 +
 357                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 358                                                      mtInternal);
 359     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 360     Arguments::set_library_path(ld_library_path);
 361     FREE_C_HEAP_ARRAY(char, ld_library_path);
 362   }
 363 
 364   // Extensions directories.
 365   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 366   Arguments::set_ext_dirs(buf);
 367 
 368   FREE_C_HEAP_ARRAY(char, buf);
 369 
 370 #undef DEFAULT_LIBPATH
 371 #undef SYS_EXT_DIR
 372 #undef EXTENSIONS_DIR
 373 }
 374 
 375 ////////////////////////////////////////////////////////////////////////////////
 376 // breakpoint support
 377 
 378 void os::breakpoint() {
 379   BREAKPOINT;
 380 }
 381 
 382 extern "C" void breakpoint() {
 383   // use debugger to set breakpoint here
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // signal support
 388 
 389 debug_only(static bool signal_sets_initialized = false);
 390 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 391 
 392 bool os::Linux::is_sig_ignored(int sig) {
 393   struct sigaction oact;
 394   sigaction(sig, (struct sigaction*)NULL, &oact);
 395   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 396                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 397   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 398     return true;
 399   } else {
 400     return false;
 401   }
 402 }
 403 
 404 void os::Linux::signal_sets_init() {
 405   // Should also have an assertion stating we are still single-threaded.
 406   assert(!signal_sets_initialized, "Already initialized");
 407   // Fill in signals that are necessarily unblocked for all threads in
 408   // the VM. Currently, we unblock the following signals:
 409   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 410   //                         by -Xrs (=ReduceSignalUsage));
 411   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 412   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 413   // the dispositions or masks wrt these signals.
 414   // Programs embedding the VM that want to use the above signals for their
 415   // own purposes must, at this time, use the "-Xrs" option to prevent
 416   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 417   // (See bug 4345157, and other related bugs).
 418   // In reality, though, unblocking these signals is really a nop, since
 419   // these signals are not blocked by default.
 420   sigemptyset(&unblocked_sigs);
 421   sigemptyset(&allowdebug_blocked_sigs);
 422   sigaddset(&unblocked_sigs, SIGILL);
 423   sigaddset(&unblocked_sigs, SIGSEGV);
 424   sigaddset(&unblocked_sigs, SIGBUS);
 425   sigaddset(&unblocked_sigs, SIGFPE);
 426 #if defined(PPC64)
 427   sigaddset(&unblocked_sigs, SIGTRAP);
 428 #endif
 429   sigaddset(&unblocked_sigs, SR_signum);
 430 
 431   if (!ReduceSignalUsage) {
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 434       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 435     }
 436     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 437       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 439     }
 440     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 441       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 443     }
 444   }
 445   // Fill in signals that are blocked by all but the VM thread.
 446   sigemptyset(&vm_sigs);
 447   if (!ReduceSignalUsage) {
 448     sigaddset(&vm_sigs, BREAK_SIGNAL);
 449   }
 450   debug_only(signal_sets_initialized = true);
 451 
 452 }
 453 
 454 // These are signals that are unblocked while a thread is running Java.
 455 // (For some reason, they get blocked by default.)
 456 sigset_t* os::Linux::unblocked_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &unblocked_sigs;
 459 }
 460 
 461 // These are the signals that are blocked while a (non-VM) thread is
 462 // running Java. Only the VM thread handles these signals.
 463 sigset_t* os::Linux::vm_signals() {
 464   assert(signal_sets_initialized, "Not initialized");
 465   return &vm_sigs;
 466 }
 467 
 468 // These are signals that are blocked during cond_wait to allow debugger in
 469 sigset_t* os::Linux::allowdebug_blocked_signals() {
 470   assert(signal_sets_initialized, "Not initialized");
 471   return &allowdebug_blocked_sigs;
 472 }
 473 
 474 void os::Linux::hotspot_sigmask(Thread* thread) {
 475 
 476   //Save caller's signal mask before setting VM signal mask
 477   sigset_t caller_sigmask;
 478   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 479 
 480   OSThread* osthread = thread->osthread();
 481   osthread->set_caller_sigmask(caller_sigmask);
 482 
 483   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 484 
 485   if (!ReduceSignalUsage) {
 486     if (thread->is_VM_thread()) {
 487       // Only the VM thread handles BREAK_SIGNAL ...
 488       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 489     } else {
 490       // ... all other threads block BREAK_SIGNAL
 491       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 492     }
 493   }
 494 }
 495 
 496 //////////////////////////////////////////////////////////////////////////////
 497 // detecting pthread library
 498 
 499 void os::Linux::libpthread_init() {
 500   // Save glibc and pthread version strings.
 501 #if !defined(_CS_GNU_LIBC_VERSION) || \
 502     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 503   #error "glibc too old (< 2.3.2)"
 504 #endif
 505 
 506   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 507   assert(n > 0, "cannot retrieve glibc version");
 508   char *str = (char *)malloc(n, mtInternal);
 509   confstr(_CS_GNU_LIBC_VERSION, str, n);
 510   os::Linux::set_glibc_version(str);
 511 
 512   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 513   assert(n > 0, "cannot retrieve pthread version");
 514   str = (char *)malloc(n, mtInternal);
 515   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 516   os::Linux::set_libpthread_version(str);
 517 }
 518 
 519 /////////////////////////////////////////////////////////////////////////////
 520 // thread stack expansion
 521 
 522 // os::Linux::manually_expand_stack() takes care of expanding the thread
 523 // stack. Note that this is normally not needed: pthread stacks allocate
 524 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 525 // committed. Therefore it is not necessary to expand the stack manually.
 526 //
 527 // Manually expanding the stack was historically needed on LinuxThreads
 528 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 529 // it is kept to deal with very rare corner cases:
 530 //
 531 // For one, user may run the VM on an own implementation of threads
 532 // whose stacks are - like the old LinuxThreads - implemented using
 533 // mmap(MAP_GROWSDOWN).
 534 //
 535 // Also, this coding may be needed if the VM is running on the primordial
 536 // thread. Normally we avoid running on the primordial thread; however,
 537 // user may still invoke the VM on the primordial thread.
 538 //
 539 // The following historical comment describes the details about running
 540 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 541 
 542 
 543 // Force Linux kernel to expand current thread stack. If "bottom" is close
 544 // to the stack guard, caller should block all signals.
 545 //
 546 // MAP_GROWSDOWN:
 547 //   A special mmap() flag that is used to implement thread stacks. It tells
 548 //   kernel that the memory region should extend downwards when needed. This
 549 //   allows early versions of LinuxThreads to only mmap the first few pages
 550 //   when creating a new thread. Linux kernel will automatically expand thread
 551 //   stack as needed (on page faults).
 552 //
 553 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 554 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 555 //   region, it's hard to tell if the fault is due to a legitimate stack
 556 //   access or because of reading/writing non-exist memory (e.g. buffer
 557 //   overrun). As a rule, if the fault happens below current stack pointer,
 558 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 559 //   application (see Linux kernel fault.c).
 560 //
 561 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 562 //   stack overflow detection.
 563 //
 564 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 565 //   not use MAP_GROWSDOWN.
 566 //
 567 // To get around the problem and allow stack banging on Linux, we need to
 568 // manually expand thread stack after receiving the SIGSEGV.
 569 //
 570 // There are two ways to expand thread stack to address "bottom", we used
 571 // both of them in JVM before 1.5:
 572 //   1. adjust stack pointer first so that it is below "bottom", and then
 573 //      touch "bottom"
 574 //   2. mmap() the page in question
 575 //
 576 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 577 // if current sp is already near the lower end of page 101, and we need to
 578 // call mmap() to map page 100, it is possible that part of the mmap() frame
 579 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 580 // That will destroy the mmap() frame and cause VM to crash.
 581 //
 582 // The following code works by adjusting sp first, then accessing the "bottom"
 583 // page to force a page fault. Linux kernel will then automatically expand the
 584 // stack mapping.
 585 //
 586 // _expand_stack_to() assumes its frame size is less than page size, which
 587 // should always be true if the function is not inlined.
 588 
 589 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 590   #define NOINLINE
 591 #else
 592   #define NOINLINE __attribute__ ((noinline))
 593 #endif
 594 
 595 static void _expand_stack_to(address bottom) NOINLINE;
 596 
 597 static void _expand_stack_to(address bottom) {
 598   address sp;
 599   size_t size;
 600   volatile char *p;
 601 
 602   // Adjust bottom to point to the largest address within the same page, it
 603   // gives us a one-page buffer if alloca() allocates slightly more memory.
 604   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 605   bottom += os::Linux::page_size() - 1;
 606 
 607   // sp might be slightly above current stack pointer; if that's the case, we
 608   // will alloca() a little more space than necessary, which is OK. Don't use
 609   // os::current_stack_pointer(), as its result can be slightly below current
 610   // stack pointer, causing us to not alloca enough to reach "bottom".
 611   sp = (address)&sp;
 612 
 613   if (sp > bottom) {
 614     size = sp - bottom;
 615     p = (volatile char *)alloca(size);
 616     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 617     p[0] = '\0';
 618   }
 619 }
 620 
 621 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 622   assert(t!=NULL, "just checking");
 623   assert(t->osthread()->expanding_stack(), "expand should be set");
 624   assert(t->stack_base() != NULL, "stack_base was not initialized");
 625 
 626   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 627     sigset_t mask_all, old_sigset;
 628     sigfillset(&mask_all);
 629     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 630     _expand_stack_to(addr);
 631     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 632     return true;
 633   }
 634   return false;
 635 }
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // Thread start routine for all newly created threads
 641 static void *java_start(Thread *thread) {
 642   // Try to randomize the cache line index of hot stack frames.
 643   // This helps when threads of the same stack traces evict each other's
 644   // cache lines. The threads can be either from the same JVM instance, or
 645   // from different JVM instances. The benefit is especially true for
 646   // processors with hyperthreading technology.
 647   static int counter = 0;
 648   int pid = os::current_process_id();
 649   alloca(((pid ^ counter++) & 7) * 128);
 650 
 651   ThreadLocalStorage::set_thread(thread);
 652 
 653   OSThread* osthread = thread->osthread();
 654   Monitor* sync = osthread->startThread_lock();
 655 
 656   osthread->set_thread_id(os::current_thread_id());
 657 
 658   if (UseNUMA) {
 659     int lgrp_id = os::numa_get_group_id();
 660     if (lgrp_id != -1) {
 661       thread->set_lgrp_id(lgrp_id);
 662     }
 663   }
 664   // initialize signal mask for this thread
 665   os::Linux::hotspot_sigmask(thread);
 666 
 667   // initialize floating point control register
 668   os::Linux::init_thread_fpu_state();
 669 
 670   // handshaking with parent thread
 671   {
 672     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 673 
 674     // notify parent thread
 675     osthread->set_state(INITIALIZED);
 676     sync->notify_all();
 677 
 678     // wait until os::start_thread()
 679     while (osthread->get_state() == INITIALIZED) {
 680       sync->wait(Mutex::_no_safepoint_check_flag);
 681     }
 682   }
 683 
 684   // call one more level start routine
 685   thread->run();
 686 
 687   return 0;
 688 }
 689 
 690 bool os::create_thread(Thread* thread, ThreadType thr_type,
 691                        size_t stack_size) {
 692   assert(thread->osthread() == NULL, "caller responsible");
 693 
 694   // Allocate the OSThread object
 695   OSThread* osthread = new OSThread(NULL, NULL);
 696   if (osthread == NULL) {
 697     return false;
 698   }
 699 
 700   // set the correct thread state
 701   osthread->set_thread_type(thr_type);
 702 
 703   // Initial state is ALLOCATED but not INITIALIZED
 704   osthread->set_state(ALLOCATED);
 705 
 706   thread->set_osthread(osthread);
 707 
 708   // init thread attributes
 709   pthread_attr_t attr;
 710   pthread_attr_init(&attr);
 711   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 712 
 713   // stack size
 714   // calculate stack size if it's not specified by caller
 715   if (stack_size == 0) {
 716     stack_size = os::Linux::default_stack_size(thr_type);
 717 
 718     switch (thr_type) {
 719     case os::java_thread:
 720       // Java threads use ThreadStackSize which default value can be
 721       // changed with the flag -Xss
 722       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 723       stack_size = JavaThread::stack_size_at_create();
 724       break;
 725     case os::compiler_thread:
 726       if (CompilerThreadStackSize > 0) {
 727         stack_size = (size_t)(CompilerThreadStackSize * K);
 728         break;
 729       } // else fall through:
 730         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 731     case os::vm_thread:
 732     case os::pgc_thread:
 733     case os::cgc_thread:
 734     case os::watcher_thread:
 735       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 736       break;
 737     }
 738   }
 739 
 740   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 741   pthread_attr_setstacksize(&attr, stack_size);
 742 
 743   // glibc guard page
 744   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 745 
 746   ThreadState state;
 747 
 748   {
 749     pthread_t tid;
 750     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 751 
 752     pthread_attr_destroy(&attr);
 753 
 754     if (ret != 0) {
 755       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 756         perror("pthread_create()");
 757       }
 758       // Need to clean up stuff we've allocated so far
 759       thread->set_osthread(NULL);
 760       delete osthread;
 761       return false;
 762     }
 763 
 764     // Store pthread info into the OSThread
 765     osthread->set_pthread_id(tid);
 766 
 767     // Wait until child thread is either initialized or aborted
 768     {
 769       Monitor* sync_with_child = osthread->startThread_lock();
 770       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 771       while ((state = osthread->get_state()) == ALLOCATED) {
 772         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 773       }
 774     }
 775   }
 776 
 777   // Aborted due to thread limit being reached
 778   if (state == ZOMBIE) {
 779     thread->set_osthread(NULL);
 780     delete osthread;
 781     return false;
 782   }
 783 
 784   // The thread is returned suspended (in state INITIALIZED),
 785   // and is started higher up in the call chain
 786   assert(state == INITIALIZED, "race condition");
 787   return true;
 788 }
 789 
 790 /////////////////////////////////////////////////////////////////////////////
 791 // attach existing thread
 792 
 793 // bootstrap the main thread
 794 bool os::create_main_thread(JavaThread* thread) {
 795   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 796   return create_attached_thread(thread);
 797 }
 798 
 799 bool os::create_attached_thread(JavaThread* thread) {
 800 #ifdef ASSERT
 801   thread->verify_not_published();
 802 #endif
 803 
 804   // Allocate the OSThread object
 805   OSThread* osthread = new OSThread(NULL, NULL);
 806 
 807   if (osthread == NULL) {
 808     return false;
 809   }
 810 
 811   // Store pthread info into the OSThread
 812   osthread->set_thread_id(os::Linux::gettid());
 813   osthread->set_pthread_id(::pthread_self());
 814 
 815   // initialize floating point control register
 816   os::Linux::init_thread_fpu_state();
 817 
 818   // Initial thread state is RUNNABLE
 819   osthread->set_state(RUNNABLE);
 820 
 821   thread->set_osthread(osthread);
 822 
 823   if (UseNUMA) {
 824     int lgrp_id = os::numa_get_group_id();
 825     if (lgrp_id != -1) {
 826       thread->set_lgrp_id(lgrp_id);
 827     }
 828   }
 829 
 830   if (os::Linux::is_initial_thread()) {
 831     // If current thread is initial thread, its stack is mapped on demand,
 832     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 833     // the entire stack region to avoid SEGV in stack banging.
 834     // It is also useful to get around the heap-stack-gap problem on SuSE
 835     // kernel (see 4821821 for details). We first expand stack to the top
 836     // of yellow zone, then enable stack yellow zone (order is significant,
 837     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 838     // is no gap between the last two virtual memory regions.
 839 
 840     JavaThread *jt = (JavaThread *)thread;
 841     address addr = jt->stack_yellow_zone_base();
 842     assert(addr != NULL, "initialization problem?");
 843     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 844 
 845     osthread->set_expanding_stack();
 846     os::Linux::manually_expand_stack(jt, addr);
 847     osthread->clear_expanding_stack();
 848   }
 849 
 850   // initialize signal mask for this thread
 851   // and save the caller's signal mask
 852   os::Linux::hotspot_sigmask(thread);
 853 
 854   return true;
 855 }
 856 
 857 void os::pd_start_thread(Thread* thread) {
 858   OSThread * osthread = thread->osthread();
 859   assert(osthread->get_state() != INITIALIZED, "just checking");
 860   Monitor* sync_with_child = osthread->startThread_lock();
 861   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 862   sync_with_child->notify();
 863 }
 864 
 865 // Free Linux resources related to the OSThread
 866 void os::free_thread(OSThread* osthread) {
 867   assert(osthread != NULL, "osthread not set");
 868 
 869   if (Thread::current()->osthread() == osthread) {
 870     // Restore caller's signal mask
 871     sigset_t sigmask = osthread->caller_sigmask();
 872     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873   }
 874 
 875   delete osthread;
 876 }
 877 
 878 //////////////////////////////////////////////////////////////////////////////
 879 // thread local storage
 880 
 881 // Restore the thread pointer if the destructor is called. This is in case
 882 // someone from JNI code sets up a destructor with pthread_key_create to run
 883 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 884 // will hang or crash. When detachCurrentThread is called the key will be set
 885 // to null and we will not be called again. If detachCurrentThread is never
 886 // called we could loop forever depending on the pthread implementation.
 887 static void restore_thread_pointer(void* p) {
 888   Thread* thread = (Thread*) p;
 889   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 890 }
 891 
 892 int os::allocate_thread_local_storage() {
 893   pthread_key_t key;
 894   int rslt = pthread_key_create(&key, restore_thread_pointer);
 895   assert(rslt == 0, "cannot allocate thread local storage");
 896   return (int)key;
 897 }
 898 
 899 // Note: This is currently not used by VM, as we don't destroy TLS key
 900 // on VM exit.
 901 void os::free_thread_local_storage(int index) {
 902   int rslt = pthread_key_delete((pthread_key_t)index);
 903   assert(rslt == 0, "invalid index");
 904 }
 905 
 906 void os::thread_local_storage_at_put(int index, void* value) {
 907   int rslt = pthread_setspecific((pthread_key_t)index, value);
 908   assert(rslt == 0, "pthread_setspecific failed");
 909 }
 910 
 911 extern "C" Thread* get_thread() {
 912   return ThreadLocalStorage::thread();
 913 }
 914 
 915 //////////////////////////////////////////////////////////////////////////////
 916 // initial thread
 917 
 918 // Check if current thread is the initial thread, similar to Solaris thr_main.
 919 bool os::Linux::is_initial_thread(void) {
 920   char dummy;
 921   // If called before init complete, thread stack bottom will be null.
 922   // Can be called if fatal error occurs before initialization.
 923   if (initial_thread_stack_bottom() == NULL) return false;
 924   assert(initial_thread_stack_bottom() != NULL &&
 925          initial_thread_stack_size()   != 0,
 926          "os::init did not locate initial thread's stack region");
 927   if ((address)&dummy >= initial_thread_stack_bottom() &&
 928       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 929     return true;
 930   } else {
 931     return false;
 932   }
 933 }
 934 
 935 // Find the virtual memory area that contains addr
 936 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 937   FILE *fp = fopen("/proc/self/maps", "r");
 938   if (fp) {
 939     address low, high;
 940     while (!feof(fp)) {
 941       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 942         if (low <= addr && addr < high) {
 943           if (vma_low)  *vma_low  = low;
 944           if (vma_high) *vma_high = high;
 945           fclose(fp);
 946           return true;
 947         }
 948       }
 949       for (;;) {
 950         int ch = fgetc(fp);
 951         if (ch == EOF || ch == (int)'\n') break;
 952       }
 953     }
 954     fclose(fp);
 955   }
 956   return false;
 957 }
 958 
 959 // Locate initial thread stack. This special handling of initial thread stack
 960 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 961 // bogus value for initial thread.
 962 void os::Linux::capture_initial_stack(size_t max_size) {
 963   // stack size is the easy part, get it from RLIMIT_STACK
 964   size_t stack_size;
 965   struct rlimit rlim;
 966   getrlimit(RLIMIT_STACK, &rlim);
 967   stack_size = rlim.rlim_cur;
 968 
 969   // 6308388: a bug in ld.so will relocate its own .data section to the
 970   //   lower end of primordial stack; reduce ulimit -s value a little bit
 971   //   so we won't install guard page on ld.so's data section.
 972   stack_size -= 2 * page_size();
 973 
 974   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 975   //   7.1, in both cases we will get 2G in return value.
 976   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 977   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 978   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 979   //   in case other parts in glibc still assumes 2M max stack size.
 980   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 981   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 982   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 983     stack_size = 2 * K * K IA64_ONLY(*2);
 984   }
 985   // Try to figure out where the stack base (top) is. This is harder.
 986   //
 987   // When an application is started, glibc saves the initial stack pointer in
 988   // a global variable "__libc_stack_end", which is then used by system
 989   // libraries. __libc_stack_end should be pretty close to stack top. The
 990   // variable is available since the very early days. However, because it is
 991   // a private interface, it could disappear in the future.
 992   //
 993   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 994   // to __libc_stack_end, it is very close to stack top, but isn't the real
 995   // stack top. Note that /proc may not exist if VM is running as a chroot
 996   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 997   // /proc/<pid>/stat could change in the future (though unlikely).
 998   //
 999   // We try __libc_stack_end first. If that doesn't work, look for
1000   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1001   // as a hint, which should work well in most cases.
1002 
1003   uintptr_t stack_start;
1004 
1005   // try __libc_stack_end first
1006   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1007   if (p && *p) {
1008     stack_start = *p;
1009   } else {
1010     // see if we can get the start_stack field from /proc/self/stat
1011     FILE *fp;
1012     int pid;
1013     char state;
1014     int ppid;
1015     int pgrp;
1016     int session;
1017     int nr;
1018     int tpgrp;
1019     unsigned long flags;
1020     unsigned long minflt;
1021     unsigned long cminflt;
1022     unsigned long majflt;
1023     unsigned long cmajflt;
1024     unsigned long utime;
1025     unsigned long stime;
1026     long cutime;
1027     long cstime;
1028     long prio;
1029     long nice;
1030     long junk;
1031     long it_real;
1032     uintptr_t start;
1033     uintptr_t vsize;
1034     intptr_t rss;
1035     uintptr_t rsslim;
1036     uintptr_t scodes;
1037     uintptr_t ecode;
1038     int i;
1039 
1040     // Figure what the primordial thread stack base is. Code is inspired
1041     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1042     // followed by command name surrounded by parentheses, state, etc.
1043     char stat[2048];
1044     int statlen;
1045 
1046     fp = fopen("/proc/self/stat", "r");
1047     if (fp) {
1048       statlen = fread(stat, 1, 2047, fp);
1049       stat[statlen] = '\0';
1050       fclose(fp);
1051 
1052       // Skip pid and the command string. Note that we could be dealing with
1053       // weird command names, e.g. user could decide to rename java launcher
1054       // to "java 1.4.2 :)", then the stat file would look like
1055       //                1234 (java 1.4.2 :)) R ... ...
1056       // We don't really need to know the command string, just find the last
1057       // occurrence of ")" and then start parsing from there. See bug 4726580.
1058       char * s = strrchr(stat, ')');
1059 
1060       i = 0;
1061       if (s) {
1062         // Skip blank chars
1063         do { s++; } while (s && isspace(*s));
1064 
1065 #define _UFM UINTX_FORMAT
1066 #define _DFM INTX_FORMAT
1067 
1068         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1069         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1070         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1071                    &state,          // 3  %c
1072                    &ppid,           // 4  %d
1073                    &pgrp,           // 5  %d
1074                    &session,        // 6  %d
1075                    &nr,             // 7  %d
1076                    &tpgrp,          // 8  %d
1077                    &flags,          // 9  %lu
1078                    &minflt,         // 10 %lu
1079                    &cminflt,        // 11 %lu
1080                    &majflt,         // 12 %lu
1081                    &cmajflt,        // 13 %lu
1082                    &utime,          // 14 %lu
1083                    &stime,          // 15 %lu
1084                    &cutime,         // 16 %ld
1085                    &cstime,         // 17 %ld
1086                    &prio,           // 18 %ld
1087                    &nice,           // 19 %ld
1088                    &junk,           // 20 %ld
1089                    &it_real,        // 21 %ld
1090                    &start,          // 22 UINTX_FORMAT
1091                    &vsize,          // 23 UINTX_FORMAT
1092                    &rss,            // 24 INTX_FORMAT
1093                    &rsslim,         // 25 UINTX_FORMAT
1094                    &scodes,         // 26 UINTX_FORMAT
1095                    &ecode,          // 27 UINTX_FORMAT
1096                    &stack_start);   // 28 UINTX_FORMAT
1097       }
1098 
1099 #undef _UFM
1100 #undef _DFM
1101 
1102       if (i != 28 - 2) {
1103         assert(false, "Bad conversion from /proc/self/stat");
1104         // product mode - assume we are the initial thread, good luck in the
1105         // embedded case.
1106         warning("Can't detect initial thread stack location - bad conversion");
1107         stack_start = (uintptr_t) &rlim;
1108       }
1109     } else {
1110       // For some reason we can't open /proc/self/stat (for example, running on
1111       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1112       // most cases, so don't abort:
1113       warning("Can't detect initial thread stack location - no /proc/self/stat");
1114       stack_start = (uintptr_t) &rlim;
1115     }
1116   }
1117 
1118   // Now we have a pointer (stack_start) very close to the stack top, the
1119   // next thing to do is to figure out the exact location of stack top. We
1120   // can find out the virtual memory area that contains stack_start by
1121   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1122   // and its upper limit is the real stack top. (again, this would fail if
1123   // running inside chroot, because /proc may not exist.)
1124 
1125   uintptr_t stack_top;
1126   address low, high;
1127   if (find_vma((address)stack_start, &low, &high)) {
1128     // success, "high" is the true stack top. (ignore "low", because initial
1129     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1130     stack_top = (uintptr_t)high;
1131   } else {
1132     // failed, likely because /proc/self/maps does not exist
1133     warning("Can't detect initial thread stack location - find_vma failed");
1134     // best effort: stack_start is normally within a few pages below the real
1135     // stack top, use it as stack top, and reduce stack size so we won't put
1136     // guard page outside stack.
1137     stack_top = stack_start;
1138     stack_size -= 16 * page_size();
1139   }
1140 
1141   // stack_top could be partially down the page so align it
1142   stack_top = align_size_up(stack_top, page_size());
1143 
1144   if (max_size && stack_size > max_size) {
1145     _initial_thread_stack_size = max_size;
1146   } else {
1147     _initial_thread_stack_size = stack_size;
1148   }
1149 
1150   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1151   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1152 }
1153 
1154 ////////////////////////////////////////////////////////////////////////////////
1155 // time support
1156 
1157 // Time since start-up in seconds to a fine granularity.
1158 // Used by VMSelfDestructTimer and the MemProfiler.
1159 double os::elapsedTime() {
1160 
1161   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1162 }
1163 
1164 jlong os::elapsed_counter() {
1165   return javaTimeNanos() - initial_time_count;
1166 }
1167 
1168 jlong os::elapsed_frequency() {
1169   return NANOSECS_PER_SEC; // nanosecond resolution
1170 }
1171 
1172 bool os::supports_vtime() { return true; }
1173 bool os::enable_vtime()   { return false; }
1174 bool os::vtime_enabled()  { return false; }
1175 
1176 double os::elapsedVTime() {
1177   struct rusage usage;
1178   int retval = getrusage(RUSAGE_THREAD, &usage);
1179   if (retval == 0) {
1180     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1181   } else {
1182     // better than nothing, but not much
1183     return elapsedTime();
1184   }
1185 }
1186 
1187 jlong os::javaTimeMillis() {
1188   timeval time;
1189   int status = gettimeofday(&time, NULL);
1190   assert(status != -1, "linux error");
1191   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1192 }
1193 
1194 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1195   timeval time;
1196   int status = gettimeofday(&time, NULL);
1197   assert(status != -1, "linux error");
1198   seconds = jlong(time.tv_sec);
1199   nanos = jlong(time.tv_usec) * 1000;
1200 }
1201 
1202 
1203 #ifndef CLOCK_MONOTONIC
1204   #define CLOCK_MONOTONIC (1)
1205 #endif
1206 
1207 void os::Linux::clock_init() {
1208   // we do dlopen's in this particular order due to bug in linux
1209   // dynamical loader (see 6348968) leading to crash on exit
1210   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1211   if (handle == NULL) {
1212     handle = dlopen("librt.so", RTLD_LAZY);
1213   }
1214 
1215   if (handle) {
1216     int (*clock_getres_func)(clockid_t, struct timespec*) =
1217            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1218     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1219            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1220     if (clock_getres_func && clock_gettime_func) {
1221       // See if monotonic clock is supported by the kernel. Note that some
1222       // early implementations simply return kernel jiffies (updated every
1223       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1224       // for nano time (though the monotonic property is still nice to have).
1225       // It's fixed in newer kernels, however clock_getres() still returns
1226       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1227       // resolution for now. Hopefully as people move to new kernels, this
1228       // won't be a problem.
1229       struct timespec res;
1230       struct timespec tp;
1231       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1232           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1233         // yes, monotonic clock is supported
1234         _clock_gettime = clock_gettime_func;
1235         return;
1236       } else {
1237         // close librt if there is no monotonic clock
1238         dlclose(handle);
1239       }
1240     }
1241   }
1242   warning("No monotonic clock was available - timed services may " \
1243           "be adversely affected if the time-of-day clock changes");
1244 }
1245 
1246 #ifndef SYS_clock_getres
1247   #if defined(IA32) || defined(AMD64)
1248     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1249     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1250   #else
1251     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1252     #define sys_clock_getres(x,y)  -1
1253   #endif
1254 #else
1255   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1256 #endif
1257 
1258 void os::Linux::fast_thread_clock_init() {
1259   if (!UseLinuxPosixThreadCPUClocks) {
1260     return;
1261   }
1262   clockid_t clockid;
1263   struct timespec tp;
1264   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1265       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1266 
1267   // Switch to using fast clocks for thread cpu time if
1268   // the sys_clock_getres() returns 0 error code.
1269   // Note, that some kernels may support the current thread
1270   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1271   // returned by the pthread_getcpuclockid().
1272   // If the fast Posix clocks are supported then the sys_clock_getres()
1273   // must return at least tp.tv_sec == 0 which means a resolution
1274   // better than 1 sec. This is extra check for reliability.
1275 
1276   if (pthread_getcpuclockid_func &&
1277       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1278       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1279     _supports_fast_thread_cpu_time = true;
1280     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1281   }
1282 }
1283 
1284 jlong os::javaTimeNanos() {
1285   if (os::supports_monotonic_clock()) {
1286     struct timespec tp;
1287     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1288     assert(status == 0, "gettime error");
1289     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1290     return result;
1291   } else {
1292     timeval time;
1293     int status = gettimeofday(&time, NULL);
1294     assert(status != -1, "linux error");
1295     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1296     return 1000 * usecs;
1297   }
1298 }
1299 
1300 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1301   if (os::supports_monotonic_clock()) {
1302     info_ptr->max_value = ALL_64_BITS;
1303 
1304     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1305     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1306     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1307   } else {
1308     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1309     info_ptr->max_value = ALL_64_BITS;
1310 
1311     // gettimeofday is a real time clock so it skips
1312     info_ptr->may_skip_backward = true;
1313     info_ptr->may_skip_forward = true;
1314   }
1315 
1316   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1317 }
1318 
1319 // Return the real, user, and system times in seconds from an
1320 // arbitrary fixed point in the past.
1321 bool os::getTimesSecs(double* process_real_time,
1322                       double* process_user_time,
1323                       double* process_system_time) {
1324   struct tms ticks;
1325   clock_t real_ticks = times(&ticks);
1326 
1327   if (real_ticks == (clock_t) (-1)) {
1328     return false;
1329   } else {
1330     double ticks_per_second = (double) clock_tics_per_sec;
1331     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1332     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1333     *process_real_time = ((double) real_ticks) / ticks_per_second;
1334 
1335     return true;
1336   }
1337 }
1338 
1339 
1340 char * os::local_time_string(char *buf, size_t buflen) {
1341   struct tm t;
1342   time_t long_time;
1343   time(&long_time);
1344   localtime_r(&long_time, &t);
1345   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1346                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1347                t.tm_hour, t.tm_min, t.tm_sec);
1348   return buf;
1349 }
1350 
1351 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1352   return localtime_r(clock, res);
1353 }
1354 
1355 ////////////////////////////////////////////////////////////////////////////////
1356 // runtime exit support
1357 
1358 // Note: os::shutdown() might be called very early during initialization, or
1359 // called from signal handler. Before adding something to os::shutdown(), make
1360 // sure it is async-safe and can handle partially initialized VM.
1361 void os::shutdown() {
1362 
1363   // allow PerfMemory to attempt cleanup of any persistent resources
1364   perfMemory_exit();
1365 
1366   // needs to remove object in file system
1367   AttachListener::abort();
1368 
1369   // flush buffered output, finish log files
1370   ostream_abort();
1371 
1372   // Check for abort hook
1373   abort_hook_t abort_hook = Arguments::abort_hook();
1374   if (abort_hook != NULL) {
1375     abort_hook();
1376   }
1377 
1378 }
1379 
1380 // Note: os::abort() might be called very early during initialization, or
1381 // called from signal handler. Before adding something to os::abort(), make
1382 // sure it is async-safe and can handle partially initialized VM.
1383 void os::abort(bool dump_core, void* siginfo, void* context) {
1384   os::shutdown();
1385   if (dump_core) {
1386 #ifndef PRODUCT
1387     fdStream out(defaultStream::output_fd());
1388     out.print_raw("Current thread is ");
1389     char buf[16];
1390     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1391     out.print_raw_cr(buf);
1392     out.print_raw_cr("Dumping core ...");
1393 #endif
1394     ::abort(); // dump core
1395   }
1396 
1397   ::exit(1);
1398 }
1399 
1400 // Die immediately, no exit hook, no abort hook, no cleanup.
1401 void os::die() {
1402   ::abort();
1403 }
1404 
1405 
1406 // This method is a copy of JDK's sysGetLastErrorString
1407 // from src/solaris/hpi/src/system_md.c
1408 
1409 size_t os::lasterror(char *buf, size_t len) {
1410   if (errno == 0)  return 0;
1411 
1412   const char *s = ::strerror(errno);
1413   size_t n = ::strlen(s);
1414   if (n >= len) {
1415     n = len - 1;
1416   }
1417   ::strncpy(buf, s, n);
1418   buf[n] = '\0';
1419   return n;
1420 }
1421 
1422 // thread_id is kernel thread id (similar to Solaris LWP id)
1423 intx os::current_thread_id() { return os::Linux::gettid(); }
1424 int os::current_process_id() {
1425   return ::getpid();
1426 }
1427 
1428 // DLL functions
1429 
1430 const char* os::dll_file_extension() { return ".so"; }
1431 
1432 // This must be hard coded because it's the system's temporary
1433 // directory not the java application's temp directory, ala java.io.tmpdir.
1434 const char* os::get_temp_directory() { return "/tmp"; }
1435 
1436 static bool file_exists(const char* filename) {
1437   struct stat statbuf;
1438   if (filename == NULL || strlen(filename) == 0) {
1439     return false;
1440   }
1441   return os::stat(filename, &statbuf) == 0;
1442 }
1443 
1444 bool os::dll_build_name(char* buffer, size_t buflen,
1445                         const char* pname, const char* fname) {
1446   bool retval = false;
1447   // Copied from libhpi
1448   const size_t pnamelen = pname ? strlen(pname) : 0;
1449 
1450   // Return error on buffer overflow.
1451   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1452     return retval;
1453   }
1454 
1455   if (pnamelen == 0) {
1456     snprintf(buffer, buflen, "lib%s.so", fname);
1457     retval = true;
1458   } else if (strchr(pname, *os::path_separator()) != NULL) {
1459     int n;
1460     char** pelements = split_path(pname, &n);
1461     if (pelements == NULL) {
1462       return false;
1463     }
1464     for (int i = 0; i < n; i++) {
1465       // Really shouldn't be NULL, but check can't hurt
1466       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1467         continue; // skip the empty path values
1468       }
1469       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1470       if (file_exists(buffer)) {
1471         retval = true;
1472         break;
1473       }
1474     }
1475     // release the storage
1476     for (int i = 0; i < n; i++) {
1477       if (pelements[i] != NULL) {
1478         FREE_C_HEAP_ARRAY(char, pelements[i]);
1479       }
1480     }
1481     if (pelements != NULL) {
1482       FREE_C_HEAP_ARRAY(char*, pelements);
1483     }
1484   } else {
1485     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1486     retval = true;
1487   }
1488   return retval;
1489 }
1490 
1491 // check if addr is inside libjvm.so
1492 bool os::address_is_in_vm(address addr) {
1493   static address libjvm_base_addr;
1494   Dl_info dlinfo;
1495 
1496   if (libjvm_base_addr == NULL) {
1497     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1498       libjvm_base_addr = (address)dlinfo.dli_fbase;
1499     }
1500     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1501   }
1502 
1503   if (dladdr((void *)addr, &dlinfo) != 0) {
1504     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1505   }
1506 
1507   return false;
1508 }
1509 
1510 bool os::dll_address_to_function_name(address addr, char *buf,
1511                                       int buflen, int *offset,
1512                                       bool demangle) {
1513   // buf is not optional, but offset is optional
1514   assert(buf != NULL, "sanity check");
1515 
1516   Dl_info dlinfo;
1517 
1518   if (dladdr((void*)addr, &dlinfo) != 0) {
1519     // see if we have a matching symbol
1520     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1521       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1522         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1523       }
1524       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1525       return true;
1526     }
1527     // no matching symbol so try for just file info
1528     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1529       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1530                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1531         return true;
1532       }
1533     }
1534   }
1535 
1536   buf[0] = '\0';
1537   if (offset != NULL) *offset = -1;
1538   return false;
1539 }
1540 
1541 struct _address_to_library_name {
1542   address addr;          // input : memory address
1543   size_t  buflen;        //         size of fname
1544   char*   fname;         // output: library name
1545   address base;          //         library base addr
1546 };
1547 
1548 static int address_to_library_name_callback(struct dl_phdr_info *info,
1549                                             size_t size, void *data) {
1550   int i;
1551   bool found = false;
1552   address libbase = NULL;
1553   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1554 
1555   // iterate through all loadable segments
1556   for (i = 0; i < info->dlpi_phnum; i++) {
1557     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1558     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1559       // base address of a library is the lowest address of its loaded
1560       // segments.
1561       if (libbase == NULL || libbase > segbase) {
1562         libbase = segbase;
1563       }
1564       // see if 'addr' is within current segment
1565       if (segbase <= d->addr &&
1566           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1567         found = true;
1568       }
1569     }
1570   }
1571 
1572   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1573   // so dll_address_to_library_name() can fall through to use dladdr() which
1574   // can figure out executable name from argv[0].
1575   if (found && info->dlpi_name && info->dlpi_name[0]) {
1576     d->base = libbase;
1577     if (d->fname) {
1578       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1579     }
1580     return 1;
1581   }
1582   return 0;
1583 }
1584 
1585 bool os::dll_address_to_library_name(address addr, char* buf,
1586                                      int buflen, int* offset) {
1587   // buf is not optional, but offset is optional
1588   assert(buf != NULL, "sanity check");
1589 
1590   Dl_info dlinfo;
1591   struct _address_to_library_name data;
1592 
1593   // There is a bug in old glibc dladdr() implementation that it could resolve
1594   // to wrong library name if the .so file has a base address != NULL. Here
1595   // we iterate through the program headers of all loaded libraries to find
1596   // out which library 'addr' really belongs to. This workaround can be
1597   // removed once the minimum requirement for glibc is moved to 2.3.x.
1598   data.addr = addr;
1599   data.fname = buf;
1600   data.buflen = buflen;
1601   data.base = NULL;
1602   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1603 
1604   if (rslt) {
1605     // buf already contains library name
1606     if (offset) *offset = addr - data.base;
1607     return true;
1608   }
1609   if (dladdr((void*)addr, &dlinfo) != 0) {
1610     if (dlinfo.dli_fname != NULL) {
1611       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1612     }
1613     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1614       *offset = addr - (address)dlinfo.dli_fbase;
1615     }
1616     return true;
1617   }
1618 
1619   buf[0] = '\0';
1620   if (offset) *offset = -1;
1621   return false;
1622 }
1623 
1624 // Loads .dll/.so and
1625 // in case of error it checks if .dll/.so was built for the
1626 // same architecture as Hotspot is running on
1627 
1628 
1629 // Remember the stack's state. The Linux dynamic linker will change
1630 // the stack to 'executable' at most once, so we must safepoint only once.
1631 bool os::Linux::_stack_is_executable = false;
1632 
1633 // VM operation that loads a library.  This is necessary if stack protection
1634 // of the Java stacks can be lost during loading the library.  If we
1635 // do not stop the Java threads, they can stack overflow before the stacks
1636 // are protected again.
1637 class VM_LinuxDllLoad: public VM_Operation {
1638  private:
1639   const char *_filename;
1640   char *_ebuf;
1641   int _ebuflen;
1642   void *_lib;
1643  public:
1644   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1645     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1646   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1647   void doit() {
1648     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1649     os::Linux::_stack_is_executable = true;
1650   }
1651   void* loaded_library() { return _lib; }
1652 };
1653 
1654 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1655   void * result = NULL;
1656   bool load_attempted = false;
1657 
1658   // Check whether the library to load might change execution rights
1659   // of the stack. If they are changed, the protection of the stack
1660   // guard pages will be lost. We need a safepoint to fix this.
1661   //
1662   // See Linux man page execstack(8) for more info.
1663   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1664     ElfFile ef(filename);
1665     if (!ef.specifies_noexecstack()) {
1666       if (!is_init_completed()) {
1667         os::Linux::_stack_is_executable = true;
1668         // This is OK - No Java threads have been created yet, and hence no
1669         // stack guard pages to fix.
1670         //
1671         // This should happen only when you are building JDK7 using a very
1672         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1673         //
1674         // Dynamic loader will make all stacks executable after
1675         // this function returns, and will not do that again.
1676         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1677       } else {
1678         warning("You have loaded library %s which might have disabled stack guard. "
1679                 "The VM will try to fix the stack guard now.\n"
1680                 "It's highly recommended that you fix the library with "
1681                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1682                 filename);
1683 
1684         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1685         JavaThread *jt = JavaThread::current();
1686         if (jt->thread_state() != _thread_in_native) {
1687           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1688           // that requires ExecStack. Cannot enter safe point. Let's give up.
1689           warning("Unable to fix stack guard. Giving up.");
1690         } else {
1691           if (!LoadExecStackDllInVMThread) {
1692             // This is for the case where the DLL has an static
1693             // constructor function that executes JNI code. We cannot
1694             // load such DLLs in the VMThread.
1695             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1696           }
1697 
1698           ThreadInVMfromNative tiv(jt);
1699           debug_only(VMNativeEntryWrapper vew;)
1700 
1701           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1702           VMThread::execute(&op);
1703           if (LoadExecStackDllInVMThread) {
1704             result = op.loaded_library();
1705           }
1706           load_attempted = true;
1707         }
1708       }
1709     }
1710   }
1711 
1712   if (!load_attempted) {
1713     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1714   }
1715 
1716   if (result != NULL) {
1717     // Successful loading
1718     return result;
1719   }
1720 
1721   Elf32_Ehdr elf_head;
1722   int diag_msg_max_length=ebuflen-strlen(ebuf);
1723   char* diag_msg_buf=ebuf+strlen(ebuf);
1724 
1725   if (diag_msg_max_length==0) {
1726     // No more space in ebuf for additional diagnostics message
1727     return NULL;
1728   }
1729 
1730 
1731   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1732 
1733   if (file_descriptor < 0) {
1734     // Can't open library, report dlerror() message
1735     return NULL;
1736   }
1737 
1738   bool failed_to_read_elf_head=
1739     (sizeof(elf_head)!=
1740      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1741 
1742   ::close(file_descriptor);
1743   if (failed_to_read_elf_head) {
1744     // file i/o error - report dlerror() msg
1745     return NULL;
1746   }
1747 
1748   typedef struct {
1749     Elf32_Half  code;         // Actual value as defined in elf.h
1750     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1751     char        elf_class;    // 32 or 64 bit
1752     char        endianess;    // MSB or LSB
1753     char*       name;         // String representation
1754   } arch_t;
1755 
1756 #ifndef EM_486
1757   #define EM_486          6               /* Intel 80486 */
1758 #endif
1759 #ifndef EM_AARCH64
1760   #define EM_AARCH64    183               /* ARM AARCH64 */
1761 #endif
1762 
1763   static const arch_t arch_array[]={
1764     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1765     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1766     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1767     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1768     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1769     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1770     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1771     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1772 #if defined(VM_LITTLE_ENDIAN)
1773     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1774 #else
1775     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1776 #endif
1777     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1778     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1779     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1780     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1781     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1782     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1783     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1784     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1785   };
1786 
1787 #if  (defined IA32)
1788   static  Elf32_Half running_arch_code=EM_386;
1789 #elif   (defined AMD64)
1790   static  Elf32_Half running_arch_code=EM_X86_64;
1791 #elif  (defined IA64)
1792   static  Elf32_Half running_arch_code=EM_IA_64;
1793 #elif  (defined __sparc) && (defined _LP64)
1794   static  Elf32_Half running_arch_code=EM_SPARCV9;
1795 #elif  (defined __sparc) && (!defined _LP64)
1796   static  Elf32_Half running_arch_code=EM_SPARC;
1797 #elif  (defined __powerpc64__)
1798   static  Elf32_Half running_arch_code=EM_PPC64;
1799 #elif  (defined __powerpc__)
1800   static  Elf32_Half running_arch_code=EM_PPC;
1801 #elif  (defined ARM)
1802   static  Elf32_Half running_arch_code=EM_ARM;
1803 #elif  (defined S390)
1804   static  Elf32_Half running_arch_code=EM_S390;
1805 #elif  (defined ALPHA)
1806   static  Elf32_Half running_arch_code=EM_ALPHA;
1807 #elif  (defined MIPSEL)
1808   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1809 #elif  (defined PARISC)
1810   static  Elf32_Half running_arch_code=EM_PARISC;
1811 #elif  (defined MIPS)
1812   static  Elf32_Half running_arch_code=EM_MIPS;
1813 #elif  (defined M68K)
1814   static  Elf32_Half running_arch_code=EM_68K;
1815 #elif  (defined AARCH64)
1816   static  Elf32_Half running_arch_code=EM_AARCH64;
1817 #else
1818     #error Method os::dll_load requires that one of following is defined:\
1819          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1820 #endif
1821 
1822   // Identify compatability class for VM's architecture and library's architecture
1823   // Obtain string descriptions for architectures
1824 
1825   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1826   int running_arch_index=-1;
1827 
1828   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1829     if (running_arch_code == arch_array[i].code) {
1830       running_arch_index    = i;
1831     }
1832     if (lib_arch.code == arch_array[i].code) {
1833       lib_arch.compat_class = arch_array[i].compat_class;
1834       lib_arch.name         = arch_array[i].name;
1835     }
1836   }
1837 
1838   assert(running_arch_index != -1,
1839          "Didn't find running architecture code (running_arch_code) in arch_array");
1840   if (running_arch_index == -1) {
1841     // Even though running architecture detection failed
1842     // we may still continue with reporting dlerror() message
1843     return NULL;
1844   }
1845 
1846   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1847     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1848     return NULL;
1849   }
1850 
1851 #ifndef S390
1852   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1853     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1854     return NULL;
1855   }
1856 #endif // !S390
1857 
1858   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1859     if (lib_arch.name!=NULL) {
1860       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1861                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1862                  lib_arch.name, arch_array[running_arch_index].name);
1863     } else {
1864       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1865                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1866                  lib_arch.code,
1867                  arch_array[running_arch_index].name);
1868     }
1869   }
1870 
1871   return NULL;
1872 }
1873 
1874 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1875                                 int ebuflen) {
1876   void * result = ::dlopen(filename, RTLD_LAZY);
1877   if (result == NULL) {
1878     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1879     ebuf[ebuflen-1] = '\0';
1880   }
1881   return result;
1882 }
1883 
1884 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1885                                        int ebuflen) {
1886   void * result = NULL;
1887   if (LoadExecStackDllInVMThread) {
1888     result = dlopen_helper(filename, ebuf, ebuflen);
1889   }
1890 
1891   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1892   // library that requires an executable stack, or which does not have this
1893   // stack attribute set, dlopen changes the stack attribute to executable. The
1894   // read protection of the guard pages gets lost.
1895   //
1896   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1897   // may have been queued at the same time.
1898 
1899   if (!_stack_is_executable) {
1900     JavaThread *jt = Threads::first();
1901 
1902     while (jt) {
1903       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1904           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1905         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1906                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1907           warning("Attempt to reguard stack yellow zone failed.");
1908         }
1909       }
1910       jt = jt->next();
1911     }
1912   }
1913 
1914   return result;
1915 }
1916 
1917 void* os::dll_lookup(void* handle, const char* name) {
1918   void* res = dlsym(handle, name);
1919   return res;
1920 }
1921 
1922 void* os::get_default_process_handle() {
1923   return (void*)::dlopen(NULL, RTLD_LAZY);
1924 }
1925 
1926 static bool _print_ascii_file(const char* filename, outputStream* st) {
1927   int fd = ::open(filename, O_RDONLY);
1928   if (fd == -1) {
1929     return false;
1930   }
1931 
1932   char buf[32];
1933   int bytes;
1934   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1935     st->print_raw(buf, bytes);
1936   }
1937 
1938   ::close(fd);
1939 
1940   return true;
1941 }
1942 
1943 void os::print_dll_info(outputStream *st) {
1944   st->print_cr("Dynamic libraries:");
1945 
1946   char fname[32];
1947   pid_t pid = os::Linux::gettid();
1948 
1949   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1950 
1951   if (!_print_ascii_file(fname, st)) {
1952     st->print("Can not get library information for pid = %d\n", pid);
1953   }
1954 }
1955 
1956 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1957   FILE *procmapsFile = NULL;
1958 
1959   // Open the procfs maps file for the current process
1960   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1961     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1962     char line[PATH_MAX + 100];
1963 
1964     // Read line by line from 'file'
1965     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1966       u8 base, top, offset, inode;
1967       char permissions[5];
1968       char device[6];
1969       char name[PATH_MAX + 1];
1970 
1971       // Parse fields from line
1972       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1973 
1974       // Filter by device id '00:00' so that we only get file system mapped files.
1975       if (strcmp(device, "00:00") != 0) {
1976 
1977         // Call callback with the fields of interest
1978         if(callback(name, (address)base, (address)top, param)) {
1979           // Oops abort, callback aborted
1980           fclose(procmapsFile);
1981           return 1;
1982         }
1983       }
1984     }
1985     fclose(procmapsFile);
1986   }
1987   return 0;
1988 }
1989 
1990 void os::print_os_info_brief(outputStream* st) {
1991   os::Linux::print_distro_info(st);
1992 
1993   os::Posix::print_uname_info(st);
1994 
1995   os::Linux::print_libversion_info(st);
1996 
1997 }
1998 
1999 void os::print_os_info(outputStream* st) {
2000   st->print("OS:");
2001 
2002   os::Linux::print_distro_info(st);
2003 
2004   os::Posix::print_uname_info(st);
2005 
2006   // Print warning if unsafe chroot environment detected
2007   if (unsafe_chroot_detected) {
2008     st->print("WARNING!! ");
2009     st->print_cr("%s", unstable_chroot_error);
2010   }
2011 
2012   os::Linux::print_libversion_info(st);
2013 
2014   os::Posix::print_rlimit_info(st);
2015 
2016   os::Posix::print_load_average(st);
2017 
2018   os::Linux::print_full_memory_info(st);
2019 }
2020 
2021 // Try to identify popular distros.
2022 // Most Linux distributions have a /etc/XXX-release file, which contains
2023 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2024 // file that also contains the OS version string. Some have more than one
2025 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2026 // /etc/redhat-release.), so the order is important.
2027 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2028 // their own specific XXX-release file as well as a redhat-release file.
2029 // Because of this the XXX-release file needs to be searched for before the
2030 // redhat-release file.
2031 // Since Red Hat has a lsb-release file that is not very descriptive the
2032 // search for redhat-release needs to be before lsb-release.
2033 // Since the lsb-release file is the new standard it needs to be searched
2034 // before the older style release files.
2035 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2036 // next to last resort.  The os-release file is a new standard that contains
2037 // distribution information and the system-release file seems to be an old
2038 // standard that has been replaced by the lsb-release and os-release files.
2039 // Searching for the debian_version file is the last resort.  It contains
2040 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2041 // "Debian " is printed before the contents of the debian_version file.
2042 
2043 const char* distro_files[] = {
2044   "/etc/oracle-release",
2045   "/etc/mandriva-release",
2046   "/etc/mandrake-release",
2047   "/etc/sun-release",
2048   "/etc/redhat-release",
2049   "/etc/lsb-release",
2050   "/etc/SuSE-release",
2051   "/etc/turbolinux-release",
2052   "/etc/gentoo-release",
2053   "/etc/ltib-release",
2054   "/etc/angstrom-version",
2055   "/etc/system-release",
2056   "/etc/os-release",
2057   NULL };
2058 
2059 void os::Linux::print_distro_info(outputStream* st) {
2060   for (int i = 0;; i++) {
2061     const char* file = distro_files[i];
2062     if (file == NULL) {
2063       break;  // done
2064     }
2065     // If file prints, we found it.
2066     if (_print_ascii_file(file, st)) {
2067       return;
2068     }
2069   }
2070 
2071   if (file_exists("/etc/debian_version")) {
2072     st->print("Debian ");
2073     _print_ascii_file("/etc/debian_version", st);
2074   } else {
2075     st->print("Linux");
2076   }
2077   st->cr();
2078 }
2079 
2080 static void parse_os_info(char* distro, size_t length, const char* file) {
2081   FILE* fp = fopen(file, "r");
2082   if (fp != NULL) {
2083     char buf[256];
2084     // get last line of the file.
2085     while (fgets(buf, sizeof(buf), fp)) { }
2086     // Edit out extra stuff in expected ubuntu format
2087     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2088       char* ptr = strstr(buf, "\"");  // the name is in quotes
2089       if (ptr != NULL) {
2090         ptr++; // go beyond first quote
2091         char* nl = strchr(ptr, '\"');
2092         if (nl != NULL) *nl = '\0';
2093         strncpy(distro, ptr, length);
2094       } else {
2095         ptr = strstr(buf, "=");
2096         ptr++; // go beyond equals then
2097         char* nl = strchr(ptr, '\n');
2098         if (nl != NULL) *nl = '\0';
2099         strncpy(distro, ptr, length);
2100       }
2101     } else {
2102       // if not in expected Ubuntu format, print out whole line minus \n
2103       char* nl = strchr(buf, '\n');
2104       if (nl != NULL) *nl = '\0';
2105       strncpy(distro, buf, length);
2106     }
2107     // close distro file
2108     fclose(fp);
2109   }
2110 }
2111 
2112 void os::get_summary_os_info(char* buf, size_t buflen) {
2113   for (int i = 0;; i++) {
2114     const char* file = distro_files[i];
2115     if (file == NULL) {
2116       break; // ran out of distro_files
2117     }
2118     if (file_exists(file)) {
2119       parse_os_info(buf, buflen, file);
2120       return;
2121     }
2122   }
2123   // special case for debian
2124   if (file_exists("/etc/debian_version")) {
2125     strncpy(buf, "Debian ", buflen);
2126     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2127   } else {
2128     strncpy(buf, "Linux", buflen);
2129   }
2130 }
2131 
2132 void os::Linux::print_libversion_info(outputStream* st) {
2133   // libc, pthread
2134   st->print("libc:");
2135   st->print("%s ", os::Linux::glibc_version());
2136   st->print("%s ", os::Linux::libpthread_version());
2137   st->cr();
2138 }
2139 
2140 void os::Linux::print_full_memory_info(outputStream* st) {
2141   st->print("\n/proc/meminfo:\n");
2142   _print_ascii_file("/proc/meminfo", st);
2143   st->cr();
2144 }
2145 
2146 void os::print_memory_info(outputStream* st) {
2147 
2148   st->print("Memory:");
2149   st->print(" %dk page", os::vm_page_size()>>10);
2150 
2151   // values in struct sysinfo are "unsigned long"
2152   struct sysinfo si;
2153   sysinfo(&si);
2154 
2155   st->print(", physical " UINT64_FORMAT "k",
2156             os::physical_memory() >> 10);
2157   st->print("(" UINT64_FORMAT "k free)",
2158             os::available_memory() >> 10);
2159   st->print(", swap " UINT64_FORMAT "k",
2160             ((jlong)si.totalswap * si.mem_unit) >> 10);
2161   st->print("(" UINT64_FORMAT "k free)",
2162             ((jlong)si.freeswap * si.mem_unit) >> 10);
2163   st->cr();
2164 }
2165 
2166 // Print the first "model name" line and the first "flags" line
2167 // that we find and nothing more. We assume "model name" comes
2168 // before "flags" so if we find a second "model name", then the
2169 // "flags" field is considered missing.
2170 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2171 #if defined(IA32) || defined(AMD64)
2172   // Other platforms have less repetitive cpuinfo files
2173   FILE *fp = fopen("/proc/cpuinfo", "r");
2174   if (fp) {
2175     while (!feof(fp)) {
2176       if (fgets(buf, buflen, fp)) {
2177         // Assume model name comes before flags
2178         bool model_name_printed = false;
2179         if (strstr(buf, "model name") != NULL) {
2180           if (!model_name_printed) {
2181             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2182             st->print_raw(buf);
2183             model_name_printed = true;
2184           } else {
2185             // model name printed but not flags?  Odd, just return
2186             fclose(fp);
2187             return true;
2188           }
2189         }
2190         // print the flags line too
2191         if (strstr(buf, "flags") != NULL) {
2192           st->print_raw(buf);
2193           fclose(fp);
2194           return true;
2195         }
2196       }
2197     }
2198     fclose(fp);
2199   }
2200 #endif // x86 platforms
2201   return false;
2202 }
2203 
2204 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2205   // Only print the model name if the platform provides this as a summary
2206   if (!print_model_name_and_flags(st, buf, buflen)) {
2207     st->print("\n/proc/cpuinfo:\n");
2208     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2209       st->print_cr("  <Not Available>");
2210     }
2211   }
2212 }
2213 
2214 const char* search_string = IA32_ONLY("model name") AMD64_ONLY("model name")
2215                             IA64_ONLY("") SPARC_ONLY("cpu")
2216                             ARM32_ONLY("Processor") PPC_ONLY("Processor") AARCH64_ONLY("Processor");
2217 
2218 // Parses the cpuinfo file for string representing the model name.
2219 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2220   FILE* fp = fopen("/proc/cpuinfo", "r");
2221   if (fp != NULL) {
2222     while (!feof(fp)) {
2223       char buf[256];
2224       if (fgets(buf, sizeof(buf), fp)) {
2225         char* start = strstr(buf, search_string);
2226         if (start != NULL) {
2227           char *ptr = start + strlen(search_string);
2228           char *end = buf + strlen(buf);
2229           while (ptr != end) {
2230              // skip whitespace and colon for the rest of the name.
2231              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2232                break;
2233              }
2234              ptr++;
2235           }
2236           if (ptr != end) {
2237             // reasonable string, get rid of newline and keep the rest
2238             char* nl = strchr(buf, '\n');
2239             if (nl != NULL) *nl = '\0';
2240             strncpy(cpuinfo, ptr, length);
2241             fclose(fp);
2242             return;
2243           }
2244         }
2245       }
2246     }
2247     fclose(fp);
2248   }
2249   // cpuinfo not found or parsing failed, just print generic string.  The entire
2250   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2251   strncpy(cpuinfo, IA32_ONLY("x86_32") AMD64_ONLY("x86_32")
2252                    IA64_ONLY("IA64") SPARC_ONLY("sparcv9")
2253                    ARM32_ONLY("ARM") PPC_ONLY("PPC64") AARCH64_ONLY("AArch64"), length);
2254 }
2255 
2256 void os::print_siginfo(outputStream* st, void* siginfo) {
2257   const siginfo_t* si = (const siginfo_t*)siginfo;
2258 
2259   os::Posix::print_siginfo_brief(st, si);
2260 #if INCLUDE_CDS
2261   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2262       UseSharedSpaces) {
2263     FileMapInfo* mapinfo = FileMapInfo::current_info();
2264     if (mapinfo->is_in_shared_space(si->si_addr)) {
2265       st->print("\n\nError accessing class data sharing archive."   \
2266                 " Mapped file inaccessible during execution, "      \
2267                 " possible disk/network problem.");
2268     }
2269   }
2270 #endif
2271   st->cr();
2272 }
2273 
2274 
2275 static void print_signal_handler(outputStream* st, int sig,
2276                                  char* buf, size_t buflen);
2277 
2278 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2279   st->print_cr("Signal Handlers:");
2280   print_signal_handler(st, SIGSEGV, buf, buflen);
2281   print_signal_handler(st, SIGBUS , buf, buflen);
2282   print_signal_handler(st, SIGFPE , buf, buflen);
2283   print_signal_handler(st, SIGPIPE, buf, buflen);
2284   print_signal_handler(st, SIGXFSZ, buf, buflen);
2285   print_signal_handler(st, SIGILL , buf, buflen);
2286   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2287   print_signal_handler(st, SR_signum, buf, buflen);
2288   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2289   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2290   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2291   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2292 #if defined(PPC64)
2293   print_signal_handler(st, SIGTRAP, buf, buflen);
2294 #endif
2295 }
2296 
2297 static char saved_jvm_path[MAXPATHLEN] = {0};
2298 
2299 // Find the full path to the current module, libjvm.so
2300 void os::jvm_path(char *buf, jint buflen) {
2301   // Error checking.
2302   if (buflen < MAXPATHLEN) {
2303     assert(false, "must use a large-enough buffer");
2304     buf[0] = '\0';
2305     return;
2306   }
2307   // Lazy resolve the path to current module.
2308   if (saved_jvm_path[0] != 0) {
2309     strcpy(buf, saved_jvm_path);
2310     return;
2311   }
2312 
2313   char dli_fname[MAXPATHLEN];
2314   bool ret = dll_address_to_library_name(
2315                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2316                                          dli_fname, sizeof(dli_fname), NULL);
2317   assert(ret, "cannot locate libjvm");
2318   char *rp = NULL;
2319   if (ret && dli_fname[0] != '\0') {
2320     rp = realpath(dli_fname, buf);
2321   }
2322   if (rp == NULL) {
2323     return;
2324   }
2325 
2326   if (Arguments::sun_java_launcher_is_altjvm()) {
2327     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2328     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2329     // If "/jre/lib/" appears at the right place in the string, then
2330     // assume we are installed in a JDK and we're done. Otherwise, check
2331     // for a JAVA_HOME environment variable and fix up the path so it
2332     // looks like libjvm.so is installed there (append a fake suffix
2333     // hotspot/libjvm.so).
2334     const char *p = buf + strlen(buf) - 1;
2335     for (int count = 0; p > buf && count < 5; ++count) {
2336       for (--p; p > buf && *p != '/'; --p)
2337         /* empty */ ;
2338     }
2339 
2340     if (strncmp(p, "/jre/lib/", 9) != 0) {
2341       // Look for JAVA_HOME in the environment.
2342       char* java_home_var = ::getenv("JAVA_HOME");
2343       if (java_home_var != NULL && java_home_var[0] != 0) {
2344         char* jrelib_p;
2345         int len;
2346 
2347         // Check the current module name "libjvm.so".
2348         p = strrchr(buf, '/');
2349         if (p == NULL) {
2350           return;
2351         }
2352         assert(strstr(p, "/libjvm") == p, "invalid library name");
2353 
2354         rp = realpath(java_home_var, buf);
2355         if (rp == NULL) {
2356           return;
2357         }
2358 
2359         // determine if this is a legacy image or modules image
2360         // modules image doesn't have "jre" subdirectory
2361         len = strlen(buf);
2362         assert(len < buflen, "Ran out of buffer room");
2363         jrelib_p = buf + len;
2364         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2365         if (0 != access(buf, F_OK)) {
2366           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2367         }
2368 
2369         if (0 == access(buf, F_OK)) {
2370           // Use current module name "libjvm.so"
2371           len = strlen(buf);
2372           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2373         } else {
2374           // Go back to path of .so
2375           rp = realpath(dli_fname, buf);
2376           if (rp == NULL) {
2377             return;
2378           }
2379         }
2380       }
2381     }
2382   }
2383 
2384   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2385   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2386 }
2387 
2388 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2389   // no prefix required, not even "_"
2390 }
2391 
2392 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2393   // no suffix required
2394 }
2395 
2396 ////////////////////////////////////////////////////////////////////////////////
2397 // sun.misc.Signal support
2398 
2399 static volatile jint sigint_count = 0;
2400 
2401 static void UserHandler(int sig, void *siginfo, void *context) {
2402   // 4511530 - sem_post is serialized and handled by the manager thread. When
2403   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2404   // don't want to flood the manager thread with sem_post requests.
2405   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2406     return;
2407   }
2408 
2409   // Ctrl-C is pressed during error reporting, likely because the error
2410   // handler fails to abort. Let VM die immediately.
2411   if (sig == SIGINT && is_error_reported()) {
2412     os::die();
2413   }
2414 
2415   os::signal_notify(sig);
2416 }
2417 
2418 void* os::user_handler() {
2419   return CAST_FROM_FN_PTR(void*, UserHandler);
2420 }
2421 
2422 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2423   struct timespec ts;
2424   // Semaphore's are always associated with CLOCK_REALTIME
2425   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2426   // see unpackTime for discussion on overflow checking
2427   if (sec >= MAX_SECS) {
2428     ts.tv_sec += MAX_SECS;
2429     ts.tv_nsec = 0;
2430   } else {
2431     ts.tv_sec += sec;
2432     ts.tv_nsec += nsec;
2433     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2434       ts.tv_nsec -= NANOSECS_PER_SEC;
2435       ++ts.tv_sec; // note: this must be <= max_secs
2436     }
2437   }
2438 
2439   return ts;
2440 }
2441 
2442 extern "C" {
2443   typedef void (*sa_handler_t)(int);
2444   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2445 }
2446 
2447 void* os::signal(int signal_number, void* handler) {
2448   struct sigaction sigAct, oldSigAct;
2449 
2450   sigfillset(&(sigAct.sa_mask));
2451   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2452   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2453 
2454   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2455     // -1 means registration failed
2456     return (void *)-1;
2457   }
2458 
2459   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2460 }
2461 
2462 void os::signal_raise(int signal_number) {
2463   ::raise(signal_number);
2464 }
2465 
2466 // The following code is moved from os.cpp for making this
2467 // code platform specific, which it is by its very nature.
2468 
2469 // Will be modified when max signal is changed to be dynamic
2470 int os::sigexitnum_pd() {
2471   return NSIG;
2472 }
2473 
2474 // a counter for each possible signal value
2475 static volatile jint pending_signals[NSIG+1] = { 0 };
2476 
2477 // Linux(POSIX) specific hand shaking semaphore.
2478 static sem_t sig_sem;
2479 static PosixSemaphore sr_semaphore;
2480 
2481 void os::signal_init_pd() {
2482   // Initialize signal structures
2483   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2484 
2485   // Initialize signal semaphore
2486   ::sem_init(&sig_sem, 0, 0);
2487 }
2488 
2489 void os::signal_notify(int sig) {
2490   Atomic::inc(&pending_signals[sig]);
2491   ::sem_post(&sig_sem);
2492 }
2493 
2494 static int check_pending_signals(bool wait) {
2495   Atomic::store(0, &sigint_count);
2496   for (;;) {
2497     for (int i = 0; i < NSIG + 1; i++) {
2498       jint n = pending_signals[i];
2499       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2500         return i;
2501       }
2502     }
2503     if (!wait) {
2504       return -1;
2505     }
2506     JavaThread *thread = JavaThread::current();
2507     ThreadBlockInVM tbivm(thread);
2508 
2509     bool threadIsSuspended;
2510     do {
2511       thread->set_suspend_equivalent();
2512       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2513       ::sem_wait(&sig_sem);
2514 
2515       // were we externally suspended while we were waiting?
2516       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2517       if (threadIsSuspended) {
2518         // The semaphore has been incremented, but while we were waiting
2519         // another thread suspended us. We don't want to continue running
2520         // while suspended because that would surprise the thread that
2521         // suspended us.
2522         ::sem_post(&sig_sem);
2523 
2524         thread->java_suspend_self();
2525       }
2526     } while (threadIsSuspended);
2527   }
2528 }
2529 
2530 int os::signal_lookup() {
2531   return check_pending_signals(false);
2532 }
2533 
2534 int os::signal_wait() {
2535   return check_pending_signals(true);
2536 }
2537 
2538 ////////////////////////////////////////////////////////////////////////////////
2539 // Virtual Memory
2540 
2541 int os::vm_page_size() {
2542   // Seems redundant as all get out
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Solaris allocates memory by pages.
2548 int os::vm_allocation_granularity() {
2549   assert(os::Linux::page_size() != -1, "must call os::init");
2550   return os::Linux::page_size();
2551 }
2552 
2553 // Rationale behind this function:
2554 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2555 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2556 //  samples for JITted code. Here we create private executable mapping over the code cache
2557 //  and then we can use standard (well, almost, as mapping can change) way to provide
2558 //  info for the reporting script by storing timestamp and location of symbol
2559 void linux_wrap_code(char* base, size_t size) {
2560   static volatile jint cnt = 0;
2561 
2562   if (!UseOprofile) {
2563     return;
2564   }
2565 
2566   char buf[PATH_MAX+1];
2567   int num = Atomic::add(1, &cnt);
2568 
2569   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2570            os::get_temp_directory(), os::current_process_id(), num);
2571   unlink(buf);
2572 
2573   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2574 
2575   if (fd != -1) {
2576     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2577     if (rv != (off_t)-1) {
2578       if (::write(fd, "", 1) == 1) {
2579         mmap(base, size,
2580              PROT_READ|PROT_WRITE|PROT_EXEC,
2581              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2582       }
2583     }
2584     ::close(fd);
2585     unlink(buf);
2586   }
2587 }
2588 
2589 static bool recoverable_mmap_error(int err) {
2590   // See if the error is one we can let the caller handle. This
2591   // list of errno values comes from JBS-6843484. I can't find a
2592   // Linux man page that documents this specific set of errno
2593   // values so while this list currently matches Solaris, it may
2594   // change as we gain experience with this failure mode.
2595   switch (err) {
2596   case EBADF:
2597   case EINVAL:
2598   case ENOTSUP:
2599     // let the caller deal with these errors
2600     return true;
2601 
2602   default:
2603     // Any remaining errors on this OS can cause our reserved mapping
2604     // to be lost. That can cause confusion where different data
2605     // structures think they have the same memory mapped. The worst
2606     // scenario is if both the VM and a library think they have the
2607     // same memory mapped.
2608     return false;
2609   }
2610 }
2611 
2612 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2613                                     int err) {
2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2615           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2616           strerror(err), err);
2617 }
2618 
2619 static void warn_fail_commit_memory(char* addr, size_t size,
2620                                     size_t alignment_hint, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2624           alignment_hint, exec, strerror(err), err);
2625 }
2626 
2627 // NOTE: Linux kernel does not really reserve the pages for us.
2628 //       All it does is to check if there are enough free pages
2629 //       left at the time of mmap(). This could be a potential
2630 //       problem.
2631 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2632   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2633   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2634                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2635   if (res != (uintptr_t) MAP_FAILED) {
2636     if (UseNUMAInterleaving) {
2637       numa_make_global(addr, size);
2638     }
2639     return 0;
2640   }
2641 
2642   int err = errno;  // save errno from mmap() call above
2643 
2644   if (!recoverable_mmap_error(err)) {
2645     warn_fail_commit_memory(addr, size, exec, err);
2646     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2647   }
2648 
2649   return err;
2650 }
2651 
2652 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2653   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2654 }
2655 
2656 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2657                                   const char* mesg) {
2658   assert(mesg != NULL, "mesg must be specified");
2659   int err = os::Linux::commit_memory_impl(addr, size, exec);
2660   if (err != 0) {
2661     // the caller wants all commit errors to exit with the specified mesg:
2662     warn_fail_commit_memory(addr, size, exec, err);
2663     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2664   }
2665 }
2666 
2667 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2668 #ifndef MAP_HUGETLB
2669   #define MAP_HUGETLB 0x40000
2670 #endif
2671 
2672 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2673 #ifndef MADV_HUGEPAGE
2674   #define MADV_HUGEPAGE 14
2675 #endif
2676 
2677 int os::Linux::commit_memory_impl(char* addr, size_t size,
2678                                   size_t alignment_hint, bool exec) {
2679   int err = os::Linux::commit_memory_impl(addr, size, exec);
2680   if (err == 0) {
2681     realign_memory(addr, size, alignment_hint);
2682   }
2683   return err;
2684 }
2685 
2686 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2687                           bool exec) {
2688   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2689 }
2690 
2691 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2692                                   size_t alignment_hint, bool exec,
2693                                   const char* mesg) {
2694   assert(mesg != NULL, "mesg must be specified");
2695   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2696   if (err != 0) {
2697     // the caller wants all commit errors to exit with the specified mesg:
2698     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2699     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2700   }
2701 }
2702 
2703 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2704   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2705     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2706     // be supported or the memory may already be backed by huge pages.
2707     ::madvise(addr, bytes, MADV_HUGEPAGE);
2708   }
2709 }
2710 
2711 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712   // This method works by doing an mmap over an existing mmaping and effectively discarding
2713   // the existing pages. However it won't work for SHM-based large pages that cannot be
2714   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2715   // small pages on top of the SHM segment. This method always works for small pages, so we
2716   // allow that in any case.
2717   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2718     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2719   }
2720 }
2721 
2722 void os::numa_make_global(char *addr, size_t bytes) {
2723   Linux::numa_interleave_memory(addr, bytes);
2724 }
2725 
2726 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2727 // bind policy to MPOL_PREFERRED for the current thread.
2728 #define USE_MPOL_PREFERRED 0
2729 
2730 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2731   // To make NUMA and large pages more robust when both enabled, we need to ease
2732   // the requirements on where the memory should be allocated. MPOL_BIND is the
2733   // default policy and it will force memory to be allocated on the specified
2734   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2735   // the specified node, but will not force it. Using this policy will prevent
2736   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2737   // free large pages.
2738   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2739   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2740 }
2741 
2742 bool os::numa_topology_changed() { return false; }
2743 
2744 size_t os::numa_get_groups_num() {
2745   int max_node = Linux::numa_max_node();
2746   return max_node > 0 ? max_node + 1 : 1;
2747 }
2748 
2749 int os::numa_get_group_id() {
2750   int cpu_id = Linux::sched_getcpu();
2751   if (cpu_id != -1) {
2752     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2753     if (lgrp_id != -1) {
2754       return lgrp_id;
2755     }
2756   }
2757   return 0;
2758 }
2759 
2760 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2761   for (size_t i = 0; i < size; i++) {
2762     ids[i] = i;
2763   }
2764   return size;
2765 }
2766 
2767 bool os::get_page_info(char *start, page_info* info) {
2768   return false;
2769 }
2770 
2771 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2772                      page_info* page_found) {
2773   return end;
2774 }
2775 
2776 
2777 int os::Linux::sched_getcpu_syscall(void) {
2778   unsigned int cpu;
2779   int retval = -1;
2780 
2781 #if defined(IA32)
2782   #ifndef SYS_getcpu
2783     #define SYS_getcpu 318
2784   #endif
2785   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2786 #elif defined(AMD64)
2787 // Unfortunately we have to bring all these macros here from vsyscall.h
2788 // to be able to compile on old linuxes.
2789   #define __NR_vgetcpu 2
2790   #define VSYSCALL_START (-10UL << 20)
2791   #define VSYSCALL_SIZE 1024
2792   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2793   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2794   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2795   retval = vgetcpu(&cpu, NULL, NULL);
2796 #endif
2797 
2798   return (retval == -1) ? retval : cpu;
2799 }
2800 
2801 // Something to do with the numa-aware allocator needs these symbols
2802 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2803 extern "C" JNIEXPORT void numa_error(char *where) { }
2804 extern "C" JNIEXPORT int fork1() { return fork(); }
2805 
2806 
2807 // If we are running with libnuma version > 2, then we should
2808 // be trying to use symbols with versions 1.1
2809 // If we are running with earlier version, which did not have symbol versions,
2810 // we should use the base version.
2811 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2812   void *f = dlvsym(handle, name, "libnuma_1.1");
2813   if (f == NULL) {
2814     f = dlsym(handle, name);
2815   }
2816   return f;
2817 }
2818 
2819 bool os::Linux::libnuma_init() {
2820   // sched_getcpu() should be in libc.
2821   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2822                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2823 
2824   // If it's not, try a direct syscall.
2825   if (sched_getcpu() == -1) {
2826     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2827                                     (void*)&sched_getcpu_syscall));
2828   }
2829 
2830   if (sched_getcpu() != -1) { // Does it work?
2831     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2832     if (handle != NULL) {
2833       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2834                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2835       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2836                                        libnuma_dlsym(handle, "numa_max_node")));
2837       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2838                                         libnuma_dlsym(handle, "numa_available")));
2839       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2840                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2841       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2842                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2843       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2844                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2845 
2846 
2847       if (numa_available() != -1) {
2848         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2849         // Create a cpu -> node mapping
2850         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2851         rebuild_cpu_to_node_map();
2852         return true;
2853       }
2854     }
2855   }
2856   return false;
2857 }
2858 
2859 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2860 // The table is later used in get_node_by_cpu().
2861 void os::Linux::rebuild_cpu_to_node_map() {
2862   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2863                               // in libnuma (possible values are starting from 16,
2864                               // and continuing up with every other power of 2, but less
2865                               // than the maximum number of CPUs supported by kernel), and
2866                               // is a subject to change (in libnuma version 2 the requirements
2867                               // are more reasonable) we'll just hardcode the number they use
2868                               // in the library.
2869   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2870 
2871   size_t cpu_num = os::active_processor_count();
2872   size_t cpu_map_size = NCPUS / BitsPerCLong;
2873   size_t cpu_map_valid_size =
2874     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2875 
2876   cpu_to_node()->clear();
2877   cpu_to_node()->at_grow(cpu_num - 1);
2878   size_t node_num = numa_get_groups_num();
2879 
2880   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2881   for (size_t i = 0; i < node_num; i++) {
2882     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2883       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2884         if (cpu_map[j] != 0) {
2885           for (size_t k = 0; k < BitsPerCLong; k++) {
2886             if (cpu_map[j] & (1UL << k)) {
2887               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2888             }
2889           }
2890         }
2891       }
2892     }
2893   }
2894   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2895 }
2896 
2897 int os::Linux::get_node_by_cpu(int cpu_id) {
2898   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2899     return cpu_to_node()->at(cpu_id);
2900   }
2901   return -1;
2902 }
2903 
2904 GrowableArray<int>* os::Linux::_cpu_to_node;
2905 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2906 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2907 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2908 os::Linux::numa_available_func_t os::Linux::_numa_available;
2909 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2910 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2911 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2912 unsigned long* os::Linux::_numa_all_nodes;
2913 
2914 bool os::pd_uncommit_memory(char* addr, size_t size) {
2915   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2916                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2917   return res  != (uintptr_t) MAP_FAILED;
2918 }
2919 
2920 static address get_stack_commited_bottom(address bottom, size_t size) {
2921   address nbot = bottom;
2922   address ntop = bottom + size;
2923 
2924   size_t page_sz = os::vm_page_size();
2925   unsigned pages = size / page_sz;
2926 
2927   unsigned char vec[1];
2928   unsigned imin = 1, imax = pages + 1, imid;
2929   int mincore_return_value = 0;
2930 
2931   assert(imin <= imax, "Unexpected page size");
2932 
2933   while (imin < imax) {
2934     imid = (imax + imin) / 2;
2935     nbot = ntop - (imid * page_sz);
2936 
2937     // Use a trick with mincore to check whether the page is mapped or not.
2938     // mincore sets vec to 1 if page resides in memory and to 0 if page
2939     // is swapped output but if page we are asking for is unmapped
2940     // it returns -1,ENOMEM
2941     mincore_return_value = mincore(nbot, page_sz, vec);
2942 
2943     if (mincore_return_value == -1) {
2944       // Page is not mapped go up
2945       // to find first mapped page
2946       if (errno != EAGAIN) {
2947         assert(errno == ENOMEM, "Unexpected mincore errno");
2948         imax = imid;
2949       }
2950     } else {
2951       // Page is mapped go down
2952       // to find first not mapped page
2953       imin = imid + 1;
2954     }
2955   }
2956 
2957   nbot = nbot + page_sz;
2958 
2959   // Adjust stack bottom one page up if last checked page is not mapped
2960   if (mincore_return_value == -1) {
2961     nbot = nbot + page_sz;
2962   }
2963 
2964   return nbot;
2965 }
2966 
2967 
2968 // Linux uses a growable mapping for the stack, and if the mapping for
2969 // the stack guard pages is not removed when we detach a thread the
2970 // stack cannot grow beyond the pages where the stack guard was
2971 // mapped.  If at some point later in the process the stack expands to
2972 // that point, the Linux kernel cannot expand the stack any further
2973 // because the guard pages are in the way, and a segfault occurs.
2974 //
2975 // However, it's essential not to split the stack region by unmapping
2976 // a region (leaving a hole) that's already part of the stack mapping,
2977 // so if the stack mapping has already grown beyond the guard pages at
2978 // the time we create them, we have to truncate the stack mapping.
2979 // So, we need to know the extent of the stack mapping when
2980 // create_stack_guard_pages() is called.
2981 
2982 // We only need this for stacks that are growable: at the time of
2983 // writing thread stacks don't use growable mappings (i.e. those
2984 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2985 // only applies to the main thread.
2986 
2987 // If the (growable) stack mapping already extends beyond the point
2988 // where we're going to put our guard pages, truncate the mapping at
2989 // that point by munmap()ping it.  This ensures that when we later
2990 // munmap() the guard pages we don't leave a hole in the stack
2991 // mapping. This only affects the main/initial thread
2992 
2993 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2994   if (os::Linux::is_initial_thread()) {
2995     // As we manually grow stack up to bottom inside create_attached_thread(),
2996     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2997     // we don't need to do anything special.
2998     // Check it first, before calling heavy function.
2999     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3000     unsigned char vec[1];
3001 
3002     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3003       // Fallback to slow path on all errors, including EAGAIN
3004       stack_extent = (uintptr_t) get_stack_commited_bottom(
3005                                                            os::Linux::initial_thread_stack_bottom(),
3006                                                            (size_t)addr - stack_extent);
3007     }
3008 
3009     if (stack_extent < (uintptr_t)addr) {
3010       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3011     }
3012   }
3013 
3014   return os::commit_memory(addr, size, !ExecMem);
3015 }
3016 
3017 // If this is a growable mapping, remove the guard pages entirely by
3018 // munmap()ping them.  If not, just call uncommit_memory(). This only
3019 // affects the main/initial thread, but guard against future OS changes
3020 // It's safe to always unmap guard pages for initial thread because we
3021 // always place it right after end of the mapped region
3022 
3023 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3024   uintptr_t stack_extent, stack_base;
3025 
3026   if (os::Linux::is_initial_thread()) {
3027     return ::munmap(addr, size) == 0;
3028   }
3029 
3030   return os::uncommit_memory(addr, size);
3031 }
3032 
3033 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3034 // at 'requested_addr'. If there are existing memory mappings at the same
3035 // location, however, they will be overwritten. If 'fixed' is false,
3036 // 'requested_addr' is only treated as a hint, the return value may or
3037 // may not start from the requested address. Unlike Linux mmap(), this
3038 // function returns NULL to indicate failure.
3039 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3040   char * addr;
3041   int flags;
3042 
3043   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3044   if (fixed) {
3045     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3046     flags |= MAP_FIXED;
3047   }
3048 
3049   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3050   // touch an uncommitted page. Otherwise, the read/write might
3051   // succeed if we have enough swap space to back the physical page.
3052   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3053                        flags, -1, 0);
3054 
3055   return addr == MAP_FAILED ? NULL : addr;
3056 }
3057 
3058 static int anon_munmap(char * addr, size_t size) {
3059   return ::munmap(addr, size) == 0;
3060 }
3061 
3062 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3063                             size_t alignment_hint) {
3064   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3065 }
3066 
3067 bool os::pd_release_memory(char* addr, size_t size) {
3068   return anon_munmap(addr, size);
3069 }
3070 
3071 static bool linux_mprotect(char* addr, size_t size, int prot) {
3072   // Linux wants the mprotect address argument to be page aligned.
3073   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3074 
3075   // According to SUSv3, mprotect() should only be used with mappings
3076   // established by mmap(), and mmap() always maps whole pages. Unaligned
3077   // 'addr' likely indicates problem in the VM (e.g. trying to change
3078   // protection of malloc'ed or statically allocated memory). Check the
3079   // caller if you hit this assert.
3080   assert(addr == bottom, "sanity check");
3081 
3082   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3083   return ::mprotect(bottom, size, prot) == 0;
3084 }
3085 
3086 // Set protections specified
3087 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3088                         bool is_committed) {
3089   unsigned int p = 0;
3090   switch (prot) {
3091   case MEM_PROT_NONE: p = PROT_NONE; break;
3092   case MEM_PROT_READ: p = PROT_READ; break;
3093   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3094   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3095   default:
3096     ShouldNotReachHere();
3097   }
3098   // is_committed is unused.
3099   return linux_mprotect(addr, bytes, p);
3100 }
3101 
3102 bool os::guard_memory(char* addr, size_t size) {
3103   return linux_mprotect(addr, size, PROT_NONE);
3104 }
3105 
3106 bool os::unguard_memory(char* addr, size_t size) {
3107   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3108 }
3109 
3110 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3111                                                     size_t page_size) {
3112   bool result = false;
3113   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3114                  MAP_ANONYMOUS|MAP_PRIVATE,
3115                  -1, 0);
3116   if (p != MAP_FAILED) {
3117     void *aligned_p = align_ptr_up(p, page_size);
3118 
3119     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3120 
3121     munmap(p, page_size * 2);
3122   }
3123 
3124   if (warn && !result) {
3125     warning("TransparentHugePages is not supported by the operating system.");
3126   }
3127 
3128   return result;
3129 }
3130 
3131 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3132   bool result = false;
3133   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3134                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3135                  -1, 0);
3136 
3137   if (p != MAP_FAILED) {
3138     // We don't know if this really is a huge page or not.
3139     FILE *fp = fopen("/proc/self/maps", "r");
3140     if (fp) {
3141       while (!feof(fp)) {
3142         char chars[257];
3143         long x = 0;
3144         if (fgets(chars, sizeof(chars), fp)) {
3145           if (sscanf(chars, "%lx-%*x", &x) == 1
3146               && x == (long)p) {
3147             if (strstr (chars, "hugepage")) {
3148               result = true;
3149               break;
3150             }
3151           }
3152         }
3153       }
3154       fclose(fp);
3155     }
3156     munmap(p, page_size);
3157   }
3158 
3159   if (warn && !result) {
3160     warning("HugeTLBFS is not supported by the operating system.");
3161   }
3162 
3163   return result;
3164 }
3165 
3166 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3167 //
3168 // From the coredump_filter documentation:
3169 //
3170 // - (bit 0) anonymous private memory
3171 // - (bit 1) anonymous shared memory
3172 // - (bit 2) file-backed private memory
3173 // - (bit 3) file-backed shared memory
3174 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3175 //           effective only if the bit 2 is cleared)
3176 // - (bit 5) hugetlb private memory
3177 // - (bit 6) hugetlb shared memory
3178 //
3179 static void set_coredump_filter(void) {
3180   FILE *f;
3181   long cdm;
3182 
3183   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3184     return;
3185   }
3186 
3187   if (fscanf(f, "%lx", &cdm) != 1) {
3188     fclose(f);
3189     return;
3190   }
3191 
3192   rewind(f);
3193 
3194   if ((cdm & LARGEPAGES_BIT) == 0) {
3195     cdm |= LARGEPAGES_BIT;
3196     fprintf(f, "%#lx", cdm);
3197   }
3198 
3199   fclose(f);
3200 }
3201 
3202 // Large page support
3203 
3204 static size_t _large_page_size = 0;
3205 
3206 size_t os::Linux::find_large_page_size() {
3207   size_t large_page_size = 0;
3208 
3209   // large_page_size on Linux is used to round up heap size. x86 uses either
3210   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3211   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3212   // page as large as 256M.
3213   //
3214   // Here we try to figure out page size by parsing /proc/meminfo and looking
3215   // for a line with the following format:
3216   //    Hugepagesize:     2048 kB
3217   //
3218   // If we can't determine the value (e.g. /proc is not mounted, or the text
3219   // format has been changed), we'll use the largest page size supported by
3220   // the processor.
3221 
3222 #ifndef ZERO
3223   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3224                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3225 #endif // ZERO
3226 
3227   FILE *fp = fopen("/proc/meminfo", "r");
3228   if (fp) {
3229     while (!feof(fp)) {
3230       int x = 0;
3231       char buf[16];
3232       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3233         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3234           large_page_size = x * K;
3235           break;
3236         }
3237       } else {
3238         // skip to next line
3239         for (;;) {
3240           int ch = fgetc(fp);
3241           if (ch == EOF || ch == (int)'\n') break;
3242         }
3243       }
3244     }
3245     fclose(fp);
3246   }
3247 
3248   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3249     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3250             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3251             proper_unit_for_byte_size(large_page_size));
3252   }
3253 
3254   return large_page_size;
3255 }
3256 
3257 size_t os::Linux::setup_large_page_size() {
3258   _large_page_size = Linux::find_large_page_size();
3259   const size_t default_page_size = (size_t)Linux::page_size();
3260   if (_large_page_size > default_page_size) {
3261     _page_sizes[0] = _large_page_size;
3262     _page_sizes[1] = default_page_size;
3263     _page_sizes[2] = 0;
3264   }
3265 
3266   return _large_page_size;
3267 }
3268 
3269 bool os::Linux::setup_large_page_type(size_t page_size) {
3270   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3271       FLAG_IS_DEFAULT(UseSHM) &&
3272       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3273 
3274     // The type of large pages has not been specified by the user.
3275 
3276     // Try UseHugeTLBFS and then UseSHM.
3277     UseHugeTLBFS = UseSHM = true;
3278 
3279     // Don't try UseTransparentHugePages since there are known
3280     // performance issues with it turned on. This might change in the future.
3281     UseTransparentHugePages = false;
3282   }
3283 
3284   if (UseTransparentHugePages) {
3285     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3286     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3287       UseHugeTLBFS = false;
3288       UseSHM = false;
3289       return true;
3290     }
3291     UseTransparentHugePages = false;
3292   }
3293 
3294   if (UseHugeTLBFS) {
3295     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3296     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3297       UseSHM = false;
3298       return true;
3299     }
3300     UseHugeTLBFS = false;
3301   }
3302 
3303   return UseSHM;
3304 }
3305 
3306 void os::large_page_init() {
3307   if (!UseLargePages &&
3308       !UseTransparentHugePages &&
3309       !UseHugeTLBFS &&
3310       !UseSHM) {
3311     // Not using large pages.
3312     return;
3313   }
3314 
3315   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3316     // The user explicitly turned off large pages.
3317     // Ignore the rest of the large pages flags.
3318     UseTransparentHugePages = false;
3319     UseHugeTLBFS = false;
3320     UseSHM = false;
3321     return;
3322   }
3323 
3324   size_t large_page_size = Linux::setup_large_page_size();
3325   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3326 
3327   set_coredump_filter();
3328 }
3329 
3330 #ifndef SHM_HUGETLB
3331   #define SHM_HUGETLB 04000
3332 #endif
3333 
3334 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3335                                             char* req_addr, bool exec) {
3336   // "exec" is passed in but not used.  Creating the shared image for
3337   // the code cache doesn't have an SHM_X executable permission to check.
3338   assert(UseLargePages && UseSHM, "only for SHM large pages");
3339   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3340 
3341   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3342     return NULL; // Fallback to small pages.
3343   }
3344 
3345   key_t key = IPC_PRIVATE;
3346   char *addr;
3347 
3348   bool warn_on_failure = UseLargePages &&
3349                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3350                          !FLAG_IS_DEFAULT(UseSHM) ||
3351                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3352   char msg[128];
3353 
3354   // Create a large shared memory region to attach to based on size.
3355   // Currently, size is the total size of the heap
3356   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3357   if (shmid == -1) {
3358     // Possible reasons for shmget failure:
3359     // 1. shmmax is too small for Java heap.
3360     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3361     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3362     // 2. not enough large page memory.
3363     //    > check available large pages: cat /proc/meminfo
3364     //    > increase amount of large pages:
3365     //          echo new_value > /proc/sys/vm/nr_hugepages
3366     //      Note 1: different Linux may use different name for this property,
3367     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3368     //      Note 2: it's possible there's enough physical memory available but
3369     //            they are so fragmented after a long run that they can't
3370     //            coalesce into large pages. Try to reserve large pages when
3371     //            the system is still "fresh".
3372     if (warn_on_failure) {
3373       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3374       warning("%s", msg);
3375     }
3376     return NULL;
3377   }
3378 
3379   // attach to the region
3380   addr = (char*)shmat(shmid, req_addr, 0);
3381   int err = errno;
3382 
3383   // Remove shmid. If shmat() is successful, the actual shared memory segment
3384   // will be deleted when it's detached by shmdt() or when the process
3385   // terminates. If shmat() is not successful this will remove the shared
3386   // segment immediately.
3387   shmctl(shmid, IPC_RMID, NULL);
3388 
3389   if ((intptr_t)addr == -1) {
3390     if (warn_on_failure) {
3391       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3392       warning("%s", msg);
3393     }
3394     return NULL;
3395   }
3396 
3397   return addr;
3398 }
3399 
3400 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3401                                         int error) {
3402   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3403 
3404   bool warn_on_failure = UseLargePages &&
3405       (!FLAG_IS_DEFAULT(UseLargePages) ||
3406        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3407        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3408 
3409   if (warn_on_failure) {
3410     char msg[128];
3411     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3412                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3413     warning("%s", msg);
3414   }
3415 }
3416 
3417 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3418                                                         char* req_addr,
3419                                                         bool exec) {
3420   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3421   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3422   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3423 
3424   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3425   char* addr = (char*)::mmap(req_addr, bytes, prot,
3426                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3427                              -1, 0);
3428 
3429   if (addr == MAP_FAILED) {
3430     warn_on_large_pages_failure(req_addr, bytes, errno);
3431     return NULL;
3432   }
3433 
3434   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3435 
3436   return addr;
3437 }
3438 
3439 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3440 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3441 //   (req_addr != NULL) or with a given alignment.
3442 //  - bytes shall be a multiple of alignment.
3443 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3444 //  - alignment sets the alignment at which memory shall be allocated.
3445 //     It must be a multiple of allocation granularity.
3446 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3447 //  req_addr or NULL.
3448 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3449 
3450   size_t extra_size = bytes;
3451   if (req_addr == NULL && alignment > 0) {
3452     extra_size += alignment;
3453   }
3454 
3455   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3456     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3457     -1, 0);
3458   if (start == MAP_FAILED) {
3459     start = NULL;
3460   } else {
3461     if (req_addr != NULL) {
3462       if (start != req_addr) {
3463         ::munmap(start, extra_size);
3464         start = NULL;
3465       }
3466     } else {
3467       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3468       char* const end_aligned = start_aligned + bytes;
3469       char* const end = start + extra_size;
3470       if (start_aligned > start) {
3471         ::munmap(start, start_aligned - start);
3472       }
3473       if (end_aligned < end) {
3474         ::munmap(end_aligned, end - end_aligned);
3475       }
3476       start = start_aligned;
3477     }
3478   }
3479   return start;
3480 
3481 }
3482 
3483 // Reserve memory using mmap(MAP_HUGETLB).
3484 //  - bytes shall be a multiple of alignment.
3485 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3486 //  - alignment sets the alignment at which memory shall be allocated.
3487 //     It must be a multiple of allocation granularity.
3488 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3489 //  req_addr or NULL.
3490 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3491                                                          size_t alignment,
3492                                                          char* req_addr,
3493                                                          bool exec) {
3494   size_t large_page_size = os::large_page_size();
3495   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3496 
3497   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3498   assert(is_size_aligned(bytes, alignment), "Must be");
3499 
3500   // First reserve - but not commit - the address range in small pages.
3501   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3502 
3503   if (start == NULL) {
3504     return NULL;
3505   }
3506 
3507   assert(is_ptr_aligned(start, alignment), "Must be");
3508 
3509   char* end = start + bytes;
3510 
3511   // Find the regions of the allocated chunk that can be promoted to large pages.
3512   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3513   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3514 
3515   size_t lp_bytes = lp_end - lp_start;
3516 
3517   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3518 
3519   if (lp_bytes == 0) {
3520     // The mapped region doesn't even span the start and the end of a large page.
3521     // Fall back to allocate a non-special area.
3522     ::munmap(start, end - start);
3523     return NULL;
3524   }
3525 
3526   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3527 
3528   void* result;
3529 
3530   // Commit small-paged leading area.
3531   if (start != lp_start) {
3532     result = ::mmap(start, lp_start - start, prot,
3533                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3534                     -1, 0);
3535     if (result == MAP_FAILED) {
3536       ::munmap(lp_start, end - lp_start);
3537       return NULL;
3538     }
3539   }
3540 
3541   // Commit large-paged area.
3542   result = ::mmap(lp_start, lp_bytes, prot,
3543                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3544                   -1, 0);
3545   if (result == MAP_FAILED) {
3546     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3547     // If the mmap above fails, the large pages region will be unmapped and we
3548     // have regions before and after with small pages. Release these regions.
3549     //
3550     // |  mapped  |  unmapped  |  mapped  |
3551     // ^          ^            ^          ^
3552     // start      lp_start     lp_end     end
3553     //
3554     ::munmap(start, lp_start - start);
3555     ::munmap(lp_end, end - lp_end);
3556     return NULL;
3557   }
3558 
3559   // Commit small-paged trailing area.
3560   if (lp_end != end) {
3561     result = ::mmap(lp_end, end - lp_end, prot,
3562                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3563                     -1, 0);
3564     if (result == MAP_FAILED) {
3565       ::munmap(start, lp_end - start);
3566       return NULL;
3567     }
3568   }
3569 
3570   return start;
3571 }
3572 
3573 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3574                                                    size_t alignment,
3575                                                    char* req_addr,
3576                                                    bool exec) {
3577   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3578   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3579   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3580   assert(is_power_of_2(os::large_page_size()), "Must be");
3581   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3582 
3583   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3584     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3585   } else {
3586     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3587   }
3588 }
3589 
3590 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3591                                  char* req_addr, bool exec) {
3592   assert(UseLargePages, "only for large pages");
3593 
3594   char* addr;
3595   if (UseSHM) {
3596     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3597   } else {
3598     assert(UseHugeTLBFS, "must be");
3599     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3600   }
3601 
3602   if (addr != NULL) {
3603     if (UseNUMAInterleaving) {
3604       numa_make_global(addr, bytes);
3605     }
3606 
3607     // The memory is committed
3608     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3609   }
3610 
3611   return addr;
3612 }
3613 
3614 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3615   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3616   return shmdt(base) == 0;
3617 }
3618 
3619 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3620   return pd_release_memory(base, bytes);
3621 }
3622 
3623 bool os::release_memory_special(char* base, size_t bytes) {
3624   bool res;
3625   if (MemTracker::tracking_level() > NMT_minimal) {
3626     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3627     res = os::Linux::release_memory_special_impl(base, bytes);
3628     if (res) {
3629       tkr.record((address)base, bytes);
3630     }
3631 
3632   } else {
3633     res = os::Linux::release_memory_special_impl(base, bytes);
3634   }
3635   return res;
3636 }
3637 
3638 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3639   assert(UseLargePages, "only for large pages");
3640   bool res;
3641 
3642   if (UseSHM) {
3643     res = os::Linux::release_memory_special_shm(base, bytes);
3644   } else {
3645     assert(UseHugeTLBFS, "must be");
3646     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3647   }
3648   return res;
3649 }
3650 
3651 size_t os::large_page_size() {
3652   return _large_page_size;
3653 }
3654 
3655 // With SysV SHM the entire memory region must be allocated as shared
3656 // memory.
3657 // HugeTLBFS allows application to commit large page memory on demand.
3658 // However, when committing memory with HugeTLBFS fails, the region
3659 // that was supposed to be committed will lose the old reservation
3660 // and allow other threads to steal that memory region. Because of this
3661 // behavior we can't commit HugeTLBFS memory.
3662 bool os::can_commit_large_page_memory() {
3663   return UseTransparentHugePages;
3664 }
3665 
3666 bool os::can_execute_large_page_memory() {
3667   return UseTransparentHugePages || UseHugeTLBFS;
3668 }
3669 
3670 // Reserve memory at an arbitrary address, only if that area is
3671 // available (and not reserved for something else).
3672 
3673 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3674   const int max_tries = 10;
3675   char* base[max_tries];
3676   size_t size[max_tries];
3677   const size_t gap = 0x000000;
3678 
3679   // Assert only that the size is a multiple of the page size, since
3680   // that's all that mmap requires, and since that's all we really know
3681   // about at this low abstraction level.  If we need higher alignment,
3682   // we can either pass an alignment to this method or verify alignment
3683   // in one of the methods further up the call chain.  See bug 5044738.
3684   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3685 
3686   // Repeatedly allocate blocks until the block is allocated at the
3687   // right spot.
3688 
3689   // Linux mmap allows caller to pass an address as hint; give it a try first,
3690   // if kernel honors the hint then we can return immediately.
3691   char * addr = anon_mmap(requested_addr, bytes, false);
3692   if (addr == requested_addr) {
3693     return requested_addr;
3694   }
3695 
3696   if (addr != NULL) {
3697     // mmap() is successful but it fails to reserve at the requested address
3698     anon_munmap(addr, bytes);
3699   }
3700 
3701   int i;
3702   for (i = 0; i < max_tries; ++i) {
3703     base[i] = reserve_memory(bytes);
3704 
3705     if (base[i] != NULL) {
3706       // Is this the block we wanted?
3707       if (base[i] == requested_addr) {
3708         size[i] = bytes;
3709         break;
3710       }
3711 
3712       // Does this overlap the block we wanted? Give back the overlapped
3713       // parts and try again.
3714 
3715       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3716       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3717         unmap_memory(base[i], top_overlap);
3718         base[i] += top_overlap;
3719         size[i] = bytes - top_overlap;
3720       } else {
3721         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3722         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3723           unmap_memory(requested_addr, bottom_overlap);
3724           size[i] = bytes - bottom_overlap;
3725         } else {
3726           size[i] = bytes;
3727         }
3728       }
3729     }
3730   }
3731 
3732   // Give back the unused reserved pieces.
3733 
3734   for (int j = 0; j < i; ++j) {
3735     if (base[j] != NULL) {
3736       unmap_memory(base[j], size[j]);
3737     }
3738   }
3739 
3740   if (i < max_tries) {
3741     return requested_addr;
3742   } else {
3743     return NULL;
3744   }
3745 }
3746 
3747 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3748   return ::read(fd, buf, nBytes);
3749 }
3750 
3751 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3752   return ::pread(fd, buf, nBytes, offset);
3753 }
3754 
3755 // Short sleep, direct OS call.
3756 //
3757 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3758 // sched_yield(2) will actually give up the CPU:
3759 //
3760 //   * Alone on this pariticular CPU, keeps running.
3761 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3762 //     (pre 2.6.39).
3763 //
3764 // So calling this with 0 is an alternative.
3765 //
3766 void os::naked_short_sleep(jlong ms) {
3767   struct timespec req;
3768 
3769   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3770   req.tv_sec = 0;
3771   if (ms > 0) {
3772     req.tv_nsec = (ms % 1000) * 1000000;
3773   } else {
3774     req.tv_nsec = 1;
3775   }
3776 
3777   nanosleep(&req, NULL);
3778 
3779   return;
3780 }
3781 
3782 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3783 void os::infinite_sleep() {
3784   while (true) {    // sleep forever ...
3785     ::sleep(100);   // ... 100 seconds at a time
3786   }
3787 }
3788 
3789 // Used to convert frequent JVM_Yield() to nops
3790 bool os::dont_yield() {
3791   return DontYieldALot;
3792 }
3793 
3794 void os::naked_yield() {
3795   sched_yield();
3796 }
3797 
3798 ////////////////////////////////////////////////////////////////////////////////
3799 // thread priority support
3800 
3801 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3802 // only supports dynamic priority, static priority must be zero. For real-time
3803 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3804 // However, for large multi-threaded applications, SCHED_RR is not only slower
3805 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3806 // of 5 runs - Sep 2005).
3807 //
3808 // The following code actually changes the niceness of kernel-thread/LWP. It
3809 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3810 // not the entire user process, and user level threads are 1:1 mapped to kernel
3811 // threads. It has always been the case, but could change in the future. For
3812 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3813 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3814 
3815 int os::java_to_os_priority[CriticalPriority + 1] = {
3816   19,              // 0 Entry should never be used
3817 
3818    4,              // 1 MinPriority
3819    3,              // 2
3820    2,              // 3
3821 
3822    1,              // 4
3823    0,              // 5 NormPriority
3824   -1,              // 6
3825 
3826   -2,              // 7
3827   -3,              // 8
3828   -4,              // 9 NearMaxPriority
3829 
3830   -5,              // 10 MaxPriority
3831 
3832   -5               // 11 CriticalPriority
3833 };
3834 
3835 static int prio_init() {
3836   if (ThreadPriorityPolicy == 1) {
3837     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3838     // if effective uid is not root. Perhaps, a more elegant way of doing
3839     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3840     if (geteuid() != 0) {
3841       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3842         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3843       }
3844       ThreadPriorityPolicy = 0;
3845     }
3846   }
3847   if (UseCriticalJavaThreadPriority) {
3848     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3849   }
3850   return 0;
3851 }
3852 
3853 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3854   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3855 
3856   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3857   return (ret == 0) ? OS_OK : OS_ERR;
3858 }
3859 
3860 OSReturn os::get_native_priority(const Thread* const thread,
3861                                  int *priority_ptr) {
3862   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3863     *priority_ptr = java_to_os_priority[NormPriority];
3864     return OS_OK;
3865   }
3866 
3867   errno = 0;
3868   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3869   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3870 }
3871 
3872 // Hint to the underlying OS that a task switch would not be good.
3873 // Void return because it's a hint and can fail.
3874 void os::hint_no_preempt() {}
3875 
3876 ////////////////////////////////////////////////////////////////////////////////
3877 // suspend/resume support
3878 
3879 //  the low-level signal-based suspend/resume support is a remnant from the
3880 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3881 //  within hotspot. Now there is a single use-case for this:
3882 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3883 //      that runs in the watcher thread.
3884 //  The remaining code is greatly simplified from the more general suspension
3885 //  code that used to be used.
3886 //
3887 //  The protocol is quite simple:
3888 //  - suspend:
3889 //      - sends a signal to the target thread
3890 //      - polls the suspend state of the osthread using a yield loop
3891 //      - target thread signal handler (SR_handler) sets suspend state
3892 //        and blocks in sigsuspend until continued
3893 //  - resume:
3894 //      - sets target osthread state to continue
3895 //      - sends signal to end the sigsuspend loop in the SR_handler
3896 //
3897 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3898 
3899 static void resume_clear_context(OSThread *osthread) {
3900   osthread->set_ucontext(NULL);
3901   osthread->set_siginfo(NULL);
3902 }
3903 
3904 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3905                                  ucontext_t* context) {
3906   osthread->set_ucontext(context);
3907   osthread->set_siginfo(siginfo);
3908 }
3909 
3910 // Handler function invoked when a thread's execution is suspended or
3911 // resumed. We have to be careful that only async-safe functions are
3912 // called here (Note: most pthread functions are not async safe and
3913 // should be avoided.)
3914 //
3915 // Note: sigwait() is a more natural fit than sigsuspend() from an
3916 // interface point of view, but sigwait() prevents the signal hander
3917 // from being run. libpthread would get very confused by not having
3918 // its signal handlers run and prevents sigwait()'s use with the
3919 // mutex granting granting signal.
3920 //
3921 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3922 //
3923 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3924   // Save and restore errno to avoid confusing native code with EINTR
3925   // after sigsuspend.
3926   int old_errno = errno;
3927 
3928   Thread* thread = Thread::current();
3929   OSThread* osthread = thread->osthread();
3930   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3931 
3932   os::SuspendResume::State current = osthread->sr.state();
3933   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3934     suspend_save_context(osthread, siginfo, context);
3935 
3936     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3937     os::SuspendResume::State state = osthread->sr.suspended();
3938     if (state == os::SuspendResume::SR_SUSPENDED) {
3939       sigset_t suspend_set;  // signals for sigsuspend()
3940 
3941       // get current set of blocked signals and unblock resume signal
3942       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3943       sigdelset(&suspend_set, SR_signum);
3944 
3945       sr_semaphore.signal();
3946       // wait here until we are resumed
3947       while (1) {
3948         sigsuspend(&suspend_set);
3949 
3950         os::SuspendResume::State result = osthread->sr.running();
3951         if (result == os::SuspendResume::SR_RUNNING) {
3952           sr_semaphore.signal();
3953           break;
3954         }
3955       }
3956 
3957     } else if (state == os::SuspendResume::SR_RUNNING) {
3958       // request was cancelled, continue
3959     } else {
3960       ShouldNotReachHere();
3961     }
3962 
3963     resume_clear_context(osthread);
3964   } else if (current == os::SuspendResume::SR_RUNNING) {
3965     // request was cancelled, continue
3966   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3967     // ignore
3968   } else {
3969     // ignore
3970   }
3971 
3972   errno = old_errno;
3973 }
3974 
3975 
3976 static int SR_initialize() {
3977   struct sigaction act;
3978   char *s;
3979   // Get signal number to use for suspend/resume
3980   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3981     int sig = ::strtol(s, 0, 10);
3982     if (sig > 0 || sig < _NSIG) {
3983       SR_signum = sig;
3984     }
3985   }
3986 
3987   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3988          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3989 
3990   sigemptyset(&SR_sigset);
3991   sigaddset(&SR_sigset, SR_signum);
3992 
3993   // Set up signal handler for suspend/resume
3994   act.sa_flags = SA_RESTART|SA_SIGINFO;
3995   act.sa_handler = (void (*)(int)) SR_handler;
3996 
3997   // SR_signum is blocked by default.
3998   // 4528190 - We also need to block pthread restart signal (32 on all
3999   // supported Linux platforms). Note that LinuxThreads need to block
4000   // this signal for all threads to work properly. So we don't have
4001   // to use hard-coded signal number when setting up the mask.
4002   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4003 
4004   if (sigaction(SR_signum, &act, 0) == -1) {
4005     return -1;
4006   }
4007 
4008   // Save signal flag
4009   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4010   return 0;
4011 }
4012 
4013 static int sr_notify(OSThread* osthread) {
4014   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4015   assert_status(status == 0, status, "pthread_kill");
4016   return status;
4017 }
4018 
4019 // "Randomly" selected value for how long we want to spin
4020 // before bailing out on suspending a thread, also how often
4021 // we send a signal to a thread we want to resume
4022 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4023 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4024 
4025 // returns true on success and false on error - really an error is fatal
4026 // but this seems the normal response to library errors
4027 static bool do_suspend(OSThread* osthread) {
4028   assert(osthread->sr.is_running(), "thread should be running");
4029   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4030 
4031   // mark as suspended and send signal
4032   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4033     // failed to switch, state wasn't running?
4034     ShouldNotReachHere();
4035     return false;
4036   }
4037 
4038   if (sr_notify(osthread) != 0) {
4039     ShouldNotReachHere();
4040   }
4041 
4042   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4043   while (true) {
4044     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4045       break;
4046     } else {
4047       // timeout
4048       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4049       if (cancelled == os::SuspendResume::SR_RUNNING) {
4050         return false;
4051       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4052         // make sure that we consume the signal on the semaphore as well
4053         sr_semaphore.wait();
4054         break;
4055       } else {
4056         ShouldNotReachHere();
4057         return false;
4058       }
4059     }
4060   }
4061 
4062   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4063   return true;
4064 }
4065 
4066 static void do_resume(OSThread* osthread) {
4067   assert(osthread->sr.is_suspended(), "thread should be suspended");
4068   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4069 
4070   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4071     // failed to switch to WAKEUP_REQUEST
4072     ShouldNotReachHere();
4073     return;
4074   }
4075 
4076   while (true) {
4077     if (sr_notify(osthread) == 0) {
4078       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4079         if (osthread->sr.is_running()) {
4080           return;
4081         }
4082       }
4083     } else {
4084       ShouldNotReachHere();
4085     }
4086   }
4087 
4088   guarantee(osthread->sr.is_running(), "Must be running!");
4089 }
4090 
4091 ///////////////////////////////////////////////////////////////////////////////////
4092 // signal handling (except suspend/resume)
4093 
4094 // This routine may be used by user applications as a "hook" to catch signals.
4095 // The user-defined signal handler must pass unrecognized signals to this
4096 // routine, and if it returns true (non-zero), then the signal handler must
4097 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4098 // routine will never retun false (zero), but instead will execute a VM panic
4099 // routine kill the process.
4100 //
4101 // If this routine returns false, it is OK to call it again.  This allows
4102 // the user-defined signal handler to perform checks either before or after
4103 // the VM performs its own checks.  Naturally, the user code would be making
4104 // a serious error if it tried to handle an exception (such as a null check
4105 // or breakpoint) that the VM was generating for its own correct operation.
4106 //
4107 // This routine may recognize any of the following kinds of signals:
4108 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4109 // It should be consulted by handlers for any of those signals.
4110 //
4111 // The caller of this routine must pass in the three arguments supplied
4112 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4113 // field of the structure passed to sigaction().  This routine assumes that
4114 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4115 //
4116 // Note that the VM will print warnings if it detects conflicting signal
4117 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4118 //
4119 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4120                                                  siginfo_t* siginfo,
4121                                                  void* ucontext,
4122                                                  int abort_if_unrecognized);
4123 
4124 void signalHandler(int sig, siginfo_t* info, void* uc) {
4125   assert(info != NULL && uc != NULL, "it must be old kernel");
4126   int orig_errno = errno;  // Preserve errno value over signal handler.
4127   JVM_handle_linux_signal(sig, info, uc, true);
4128   errno = orig_errno;
4129 }
4130 
4131 
4132 // This boolean allows users to forward their own non-matching signals
4133 // to JVM_handle_linux_signal, harmlessly.
4134 bool os::Linux::signal_handlers_are_installed = false;
4135 
4136 // For signal-chaining
4137 struct sigaction os::Linux::sigact[MAXSIGNUM];
4138 unsigned int os::Linux::sigs = 0;
4139 bool os::Linux::libjsig_is_loaded = false;
4140 typedef struct sigaction *(*get_signal_t)(int);
4141 get_signal_t os::Linux::get_signal_action = NULL;
4142 
4143 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4144   struct sigaction *actp = NULL;
4145 
4146   if (libjsig_is_loaded) {
4147     // Retrieve the old signal handler from libjsig
4148     actp = (*get_signal_action)(sig);
4149   }
4150   if (actp == NULL) {
4151     // Retrieve the preinstalled signal handler from jvm
4152     actp = get_preinstalled_handler(sig);
4153   }
4154 
4155   return actp;
4156 }
4157 
4158 static bool call_chained_handler(struct sigaction *actp, int sig,
4159                                  siginfo_t *siginfo, void *context) {
4160   // Call the old signal handler
4161   if (actp->sa_handler == SIG_DFL) {
4162     // It's more reasonable to let jvm treat it as an unexpected exception
4163     // instead of taking the default action.
4164     return false;
4165   } else if (actp->sa_handler != SIG_IGN) {
4166     if ((actp->sa_flags & SA_NODEFER) == 0) {
4167       // automaticlly block the signal
4168       sigaddset(&(actp->sa_mask), sig);
4169     }
4170 
4171     sa_handler_t hand;
4172     sa_sigaction_t sa;
4173     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4174     // retrieve the chained handler
4175     if (siginfo_flag_set) {
4176       sa = actp->sa_sigaction;
4177     } else {
4178       hand = actp->sa_handler;
4179     }
4180 
4181     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4182       actp->sa_handler = SIG_DFL;
4183     }
4184 
4185     // try to honor the signal mask
4186     sigset_t oset;
4187     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4188 
4189     // call into the chained handler
4190     if (siginfo_flag_set) {
4191       (*sa)(sig, siginfo, context);
4192     } else {
4193       (*hand)(sig);
4194     }
4195 
4196     // restore the signal mask
4197     pthread_sigmask(SIG_SETMASK, &oset, 0);
4198   }
4199   // Tell jvm's signal handler the signal is taken care of.
4200   return true;
4201 }
4202 
4203 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4204   bool chained = false;
4205   // signal-chaining
4206   if (UseSignalChaining) {
4207     struct sigaction *actp = get_chained_signal_action(sig);
4208     if (actp != NULL) {
4209       chained = call_chained_handler(actp, sig, siginfo, context);
4210     }
4211   }
4212   return chained;
4213 }
4214 
4215 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4216   if ((((unsigned int)1 << sig) & sigs) != 0) {
4217     return &sigact[sig];
4218   }
4219   return NULL;
4220 }
4221 
4222 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4223   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4224   sigact[sig] = oldAct;
4225   sigs |= (unsigned int)1 << sig;
4226 }
4227 
4228 // for diagnostic
4229 int os::Linux::sigflags[MAXSIGNUM];
4230 
4231 int os::Linux::get_our_sigflags(int sig) {
4232   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4233   return sigflags[sig];
4234 }
4235 
4236 void os::Linux::set_our_sigflags(int sig, int flags) {
4237   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4238   sigflags[sig] = flags;
4239 }
4240 
4241 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4242   // Check for overwrite.
4243   struct sigaction oldAct;
4244   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4245 
4246   void* oldhand = oldAct.sa_sigaction
4247                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4248                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4249   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4250       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4251       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4252     if (AllowUserSignalHandlers || !set_installed) {
4253       // Do not overwrite; user takes responsibility to forward to us.
4254       return;
4255     } else if (UseSignalChaining) {
4256       // save the old handler in jvm
4257       save_preinstalled_handler(sig, oldAct);
4258       // libjsig also interposes the sigaction() call below and saves the
4259       // old sigaction on it own.
4260     } else {
4261       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4262                     "%#lx for signal %d.", (long)oldhand, sig));
4263     }
4264   }
4265 
4266   struct sigaction sigAct;
4267   sigfillset(&(sigAct.sa_mask));
4268   sigAct.sa_handler = SIG_DFL;
4269   if (!set_installed) {
4270     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4271   } else {
4272     sigAct.sa_sigaction = signalHandler;
4273     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4274   }
4275   // Save flags, which are set by ours
4276   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4277   sigflags[sig] = sigAct.sa_flags;
4278 
4279   int ret = sigaction(sig, &sigAct, &oldAct);
4280   assert(ret == 0, "check");
4281 
4282   void* oldhand2  = oldAct.sa_sigaction
4283                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4284                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4285   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4286 }
4287 
4288 // install signal handlers for signals that HotSpot needs to
4289 // handle in order to support Java-level exception handling.
4290 
4291 void os::Linux::install_signal_handlers() {
4292   if (!signal_handlers_are_installed) {
4293     signal_handlers_are_installed = true;
4294 
4295     // signal-chaining
4296     typedef void (*signal_setting_t)();
4297     signal_setting_t begin_signal_setting = NULL;
4298     signal_setting_t end_signal_setting = NULL;
4299     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4300                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4301     if (begin_signal_setting != NULL) {
4302       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4303                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4304       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4305                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4306       libjsig_is_loaded = true;
4307       assert(UseSignalChaining, "should enable signal-chaining");
4308     }
4309     if (libjsig_is_loaded) {
4310       // Tell libjsig jvm is setting signal handlers
4311       (*begin_signal_setting)();
4312     }
4313 
4314     set_signal_handler(SIGSEGV, true);
4315     set_signal_handler(SIGPIPE, true);
4316     set_signal_handler(SIGBUS, true);
4317     set_signal_handler(SIGILL, true);
4318     set_signal_handler(SIGFPE, true);
4319 #if defined(PPC64)
4320     set_signal_handler(SIGTRAP, true);
4321 #endif
4322     set_signal_handler(SIGXFSZ, true);
4323 
4324     if (libjsig_is_loaded) {
4325       // Tell libjsig jvm finishes setting signal handlers
4326       (*end_signal_setting)();
4327     }
4328 
4329     // We don't activate signal checker if libjsig is in place, we trust ourselves
4330     // and if UserSignalHandler is installed all bets are off.
4331     // Log that signal checking is off only if -verbose:jni is specified.
4332     if (CheckJNICalls) {
4333       if (libjsig_is_loaded) {
4334         if (PrintJNIResolving) {
4335           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4336         }
4337         check_signals = false;
4338       }
4339       if (AllowUserSignalHandlers) {
4340         if (PrintJNIResolving) {
4341           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4342         }
4343         check_signals = false;
4344       }
4345     }
4346   }
4347 }
4348 
4349 // This is the fastest way to get thread cpu time on Linux.
4350 // Returns cpu time (user+sys) for any thread, not only for current.
4351 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4352 // It might work on 2.6.10+ with a special kernel/glibc patch.
4353 // For reference, please, see IEEE Std 1003.1-2004:
4354 //   http://www.unix.org/single_unix_specification
4355 
4356 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4357   struct timespec tp;
4358   int rc = os::Linux::clock_gettime(clockid, &tp);
4359   assert(rc == 0, "clock_gettime is expected to return 0 code");
4360 
4361   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4362 }
4363 
4364 /////
4365 // glibc on Linux platform uses non-documented flag
4366 // to indicate, that some special sort of signal
4367 // trampoline is used.
4368 // We will never set this flag, and we should
4369 // ignore this flag in our diagnostic
4370 #ifdef SIGNIFICANT_SIGNAL_MASK
4371   #undef SIGNIFICANT_SIGNAL_MASK
4372 #endif
4373 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4374 
4375 static const char* get_signal_handler_name(address handler,
4376                                            char* buf, int buflen) {
4377   int offset;
4378   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4379   if (found) {
4380     // skip directory names
4381     const char *p1, *p2;
4382     p1 = buf;
4383     size_t len = strlen(os::file_separator());
4384     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4385     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4386   } else {
4387     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4388   }
4389   return buf;
4390 }
4391 
4392 static void print_signal_handler(outputStream* st, int sig,
4393                                  char* buf, size_t buflen) {
4394   struct sigaction sa;
4395 
4396   sigaction(sig, NULL, &sa);
4397 
4398   // See comment for SIGNIFICANT_SIGNAL_MASK define
4399   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4400 
4401   st->print("%s: ", os::exception_name(sig, buf, buflen));
4402 
4403   address handler = (sa.sa_flags & SA_SIGINFO)
4404     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4405     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4406 
4407   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4408     st->print("SIG_DFL");
4409   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4410     st->print("SIG_IGN");
4411   } else {
4412     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4413   }
4414 
4415   st->print(", sa_mask[0]=");
4416   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4417 
4418   address rh = VMError::get_resetted_sighandler(sig);
4419   // May be, handler was resetted by VMError?
4420   if (rh != NULL) {
4421     handler = rh;
4422     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4423   }
4424 
4425   st->print(", sa_flags=");
4426   os::Posix::print_sa_flags(st, sa.sa_flags);
4427 
4428   // Check: is it our handler?
4429   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4430       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4431     // It is our signal handler
4432     // check for flags, reset system-used one!
4433     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4434       st->print(
4435                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4436                 os::Linux::get_our_sigflags(sig));
4437     }
4438   }
4439   st->cr();
4440 }
4441 
4442 
4443 #define DO_SIGNAL_CHECK(sig)                      \
4444   do {                                            \
4445     if (!sigismember(&check_signal_done, sig)) {  \
4446       os::Linux::check_signal_handler(sig);       \
4447     }                                             \
4448   } while (0)
4449 
4450 // This method is a periodic task to check for misbehaving JNI applications
4451 // under CheckJNI, we can add any periodic checks here
4452 
4453 void os::run_periodic_checks() {
4454   if (check_signals == false) return;
4455 
4456   // SEGV and BUS if overridden could potentially prevent
4457   // generation of hs*.log in the event of a crash, debugging
4458   // such a case can be very challenging, so we absolutely
4459   // check the following for a good measure:
4460   DO_SIGNAL_CHECK(SIGSEGV);
4461   DO_SIGNAL_CHECK(SIGILL);
4462   DO_SIGNAL_CHECK(SIGFPE);
4463   DO_SIGNAL_CHECK(SIGBUS);
4464   DO_SIGNAL_CHECK(SIGPIPE);
4465   DO_SIGNAL_CHECK(SIGXFSZ);
4466 #if defined(PPC64)
4467   DO_SIGNAL_CHECK(SIGTRAP);
4468 #endif
4469 
4470   // ReduceSignalUsage allows the user to override these handlers
4471   // see comments at the very top and jvm_solaris.h
4472   if (!ReduceSignalUsage) {
4473     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4474     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4475     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4476     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4477   }
4478 
4479   DO_SIGNAL_CHECK(SR_signum);
4480   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4481 }
4482 
4483 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4484 
4485 static os_sigaction_t os_sigaction = NULL;
4486 
4487 void os::Linux::check_signal_handler(int sig) {
4488   char buf[O_BUFLEN];
4489   address jvmHandler = NULL;
4490 
4491 
4492   struct sigaction act;
4493   if (os_sigaction == NULL) {
4494     // only trust the default sigaction, in case it has been interposed
4495     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4496     if (os_sigaction == NULL) return;
4497   }
4498 
4499   os_sigaction(sig, (struct sigaction*)NULL, &act);
4500 
4501 
4502   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4503 
4504   address thisHandler = (act.sa_flags & SA_SIGINFO)
4505     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4506     : CAST_FROM_FN_PTR(address, act.sa_handler);
4507 
4508 
4509   switch (sig) {
4510   case SIGSEGV:
4511   case SIGBUS:
4512   case SIGFPE:
4513   case SIGPIPE:
4514   case SIGILL:
4515   case SIGXFSZ:
4516     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4517     break;
4518 
4519   case SHUTDOWN1_SIGNAL:
4520   case SHUTDOWN2_SIGNAL:
4521   case SHUTDOWN3_SIGNAL:
4522   case BREAK_SIGNAL:
4523     jvmHandler = (address)user_handler();
4524     break;
4525 
4526   case INTERRUPT_SIGNAL:
4527     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4528     break;
4529 
4530   default:
4531     if (sig == SR_signum) {
4532       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4533     } else {
4534       return;
4535     }
4536     break;
4537   }
4538 
4539   if (thisHandler != jvmHandler) {
4540     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4541     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4542     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4543     // No need to check this sig any longer
4544     sigaddset(&check_signal_done, sig);
4545     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4546     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4547       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4548                     exception_name(sig, buf, O_BUFLEN));
4549     }
4550   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4551     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4552     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4553     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4554     // No need to check this sig any longer
4555     sigaddset(&check_signal_done, sig);
4556   }
4557 
4558   // Dump all the signal
4559   if (sigismember(&check_signal_done, sig)) {
4560     print_signal_handlers(tty, buf, O_BUFLEN);
4561   }
4562 }
4563 
4564 extern void report_error(char* file_name, int line_no, char* title,
4565                          char* format, ...);
4566 
4567 extern bool signal_name(int signo, char* buf, size_t len);
4568 
4569 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4570   if (0 < exception_code && exception_code <= SIGRTMAX) {
4571     // signal
4572     if (!signal_name(exception_code, buf, size)) {
4573       jio_snprintf(buf, size, "SIG%d", exception_code);
4574     }
4575     return buf;
4576   } else {
4577     return NULL;
4578   }
4579 }
4580 
4581 // this is called _before_ the most of global arguments have been parsed
4582 void os::init(void) {
4583   char dummy;   // used to get a guess on initial stack address
4584 //  first_hrtime = gethrtime();
4585 
4586   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4587 
4588   init_random(1234567);
4589 
4590   ThreadCritical::initialize();
4591 
4592   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4593   if (Linux::page_size() == -1) {
4594     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4595                   strerror(errno)));
4596   }
4597   init_page_sizes((size_t) Linux::page_size());
4598 
4599   Linux::initialize_system_info();
4600 
4601   // main_thread points to the aboriginal thread
4602   Linux::_main_thread = pthread_self();
4603 
4604   Linux::clock_init();
4605   initial_time_count = javaTimeNanos();
4606 
4607   // pthread_condattr initialization for monotonic clock
4608   int status;
4609   pthread_condattr_t* _condattr = os::Linux::condAttr();
4610   if ((status = pthread_condattr_init(_condattr)) != 0) {
4611     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4612   }
4613   // Only set the clock if CLOCK_MONOTONIC is available
4614   if (os::supports_monotonic_clock()) {
4615     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4616       if (status == EINVAL) {
4617         warning("Unable to use monotonic clock with relative timed-waits" \
4618                 " - changes to the time-of-day clock may have adverse affects");
4619       } else {
4620         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4621       }
4622     }
4623   }
4624   // else it defaults to CLOCK_REALTIME
4625 
4626   // If the pagesize of the VM is greater than 8K determine the appropriate
4627   // number of initial guard pages.  The user can change this with the
4628   // command line arguments, if needed.
4629   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4630     StackYellowPages = 1;
4631     StackRedPages = 1;
4632     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4633   }
4634 
4635   // retrieve entry point for pthread_setname_np
4636   Linux::_pthread_setname_np =
4637     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4638 
4639 }
4640 
4641 // To install functions for atexit system call
4642 extern "C" {
4643   static void perfMemory_exit_helper() {
4644     perfMemory_exit();
4645   }
4646 }
4647 
4648 // this is called _after_ the global arguments have been parsed
4649 jint os::init_2(void) {
4650   Linux::fast_thread_clock_init();
4651 
4652   // Allocate a single page and mark it as readable for safepoint polling
4653   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4654   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4655 
4656   os::set_polling_page(polling_page);
4657 
4658 #ifndef PRODUCT
4659   if (Verbose && PrintMiscellaneous) {
4660     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4661                (intptr_t)polling_page);
4662   }
4663 #endif
4664 
4665   if (!UseMembar) {
4666     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4667     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4668     os::set_memory_serialize_page(mem_serialize_page);
4669 
4670 #ifndef PRODUCT
4671     if (Verbose && PrintMiscellaneous) {
4672       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4673                  (intptr_t)mem_serialize_page);
4674     }
4675 #endif
4676   }
4677 
4678   // initialize suspend/resume support - must do this before signal_sets_init()
4679   if (SR_initialize() != 0) {
4680     perror("SR_initialize failed");
4681     return JNI_ERR;
4682   }
4683 
4684   Linux::signal_sets_init();
4685   Linux::install_signal_handlers();
4686 
4687   // Check minimum allowable stack size for thread creation and to initialize
4688   // the java system classes, including StackOverflowError - depends on page
4689   // size.  Add a page for compiler2 recursion in main thread.
4690   // Add in 2*BytesPerWord times page size to account for VM stack during
4691   // class initialization depending on 32 or 64 bit VM.
4692   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4693                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4694                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4695 
4696   size_t threadStackSizeInBytes = ThreadStackSize * K;
4697   if (threadStackSizeInBytes != 0 &&
4698       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4699     tty->print_cr("\nThe stack size specified is too small, "
4700                   "Specify at least %dk",
4701                   os::Linux::min_stack_allowed/ K);
4702     return JNI_ERR;
4703   }
4704 
4705   // Make the stack size a multiple of the page size so that
4706   // the yellow/red zones can be guarded.
4707   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4708                                                 vm_page_size()));
4709 
4710   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4711 
4712 #if defined(IA32)
4713   workaround_expand_exec_shield_cs_limit();
4714 #endif
4715 
4716   Linux::libpthread_init();
4717   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4718     tty->print_cr("[HotSpot is running with %s, %s]\n",
4719                   Linux::glibc_version(), Linux::libpthread_version());
4720   }
4721 
4722   if (UseNUMA) {
4723     if (!Linux::libnuma_init()) {
4724       UseNUMA = false;
4725     } else {
4726       if ((Linux::numa_max_node() < 1)) {
4727         // There's only one node(they start from 0), disable NUMA.
4728         UseNUMA = false;
4729       }
4730     }
4731     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4732     // we can make the adaptive lgrp chunk resizing work. If the user specified
4733     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4734     // disable adaptive resizing.
4735     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4736       if (FLAG_IS_DEFAULT(UseNUMA)) {
4737         UseNUMA = false;
4738       } else {
4739         if (FLAG_IS_DEFAULT(UseLargePages) &&
4740             FLAG_IS_DEFAULT(UseSHM) &&
4741             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4742           UseLargePages = false;
4743         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4744           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4745           UseAdaptiveSizePolicy = false;
4746           UseAdaptiveNUMAChunkSizing = false;
4747         }
4748       }
4749     }
4750     if (!UseNUMA && ForceNUMA) {
4751       UseNUMA = true;
4752     }
4753   }
4754 
4755   if (MaxFDLimit) {
4756     // set the number of file descriptors to max. print out error
4757     // if getrlimit/setrlimit fails but continue regardless.
4758     struct rlimit nbr_files;
4759     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4760     if (status != 0) {
4761       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4762         perror("os::init_2 getrlimit failed");
4763       }
4764     } else {
4765       nbr_files.rlim_cur = nbr_files.rlim_max;
4766       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4767       if (status != 0) {
4768         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4769           perror("os::init_2 setrlimit failed");
4770         }
4771       }
4772     }
4773   }
4774 
4775   // Initialize lock used to serialize thread creation (see os::create_thread)
4776   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4777 
4778   // at-exit methods are called in the reverse order of their registration.
4779   // atexit functions are called on return from main or as a result of a
4780   // call to exit(3C). There can be only 32 of these functions registered
4781   // and atexit() does not set errno.
4782 
4783   if (PerfAllowAtExitRegistration) {
4784     // only register atexit functions if PerfAllowAtExitRegistration is set.
4785     // atexit functions can be delayed until process exit time, which
4786     // can be problematic for embedded VM situations. Embedded VMs should
4787     // call DestroyJavaVM() to assure that VM resources are released.
4788 
4789     // note: perfMemory_exit_helper atexit function may be removed in
4790     // the future if the appropriate cleanup code can be added to the
4791     // VM_Exit VMOperation's doit method.
4792     if (atexit(perfMemory_exit_helper) != 0) {
4793       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4794     }
4795   }
4796 
4797   // initialize thread priority policy
4798   prio_init();
4799 
4800   return JNI_OK;
4801 }
4802 
4803 // Mark the polling page as unreadable
4804 void os::make_polling_page_unreadable(void) {
4805   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4806     fatal("Could not disable polling page");
4807   }
4808 }
4809 
4810 // Mark the polling page as readable
4811 void os::make_polling_page_readable(void) {
4812   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4813     fatal("Could not enable polling page");
4814   }
4815 }
4816 
4817 int os::active_processor_count() {
4818   // Linux doesn't yet have a (official) notion of processor sets,
4819   // so just return the number of online processors.
4820   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4821   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4822   return online_cpus;
4823 }
4824 
4825 void os::set_native_thread_name(const char *name) {
4826   if (Linux::_pthread_setname_np) {
4827     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4828     snprintf(buf, sizeof(buf), "%s", name);
4829     buf[sizeof(buf) - 1] = '\0';
4830     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4831     // ERANGE should not happen; all other errors should just be ignored.
4832     assert(rc != ERANGE, "pthread_setname_np failed");
4833   }
4834 }
4835 
4836 bool os::distribute_processes(uint length, uint* distribution) {
4837   // Not yet implemented.
4838   return false;
4839 }
4840 
4841 bool os::bind_to_processor(uint processor_id) {
4842   // Not yet implemented.
4843   return false;
4844 }
4845 
4846 ///
4847 
4848 void os::SuspendedThreadTask::internal_do_task() {
4849   if (do_suspend(_thread->osthread())) {
4850     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4851     do_task(context);
4852     do_resume(_thread->osthread());
4853   }
4854 }
4855 
4856 class PcFetcher : public os::SuspendedThreadTask {
4857  public:
4858   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4859   ExtendedPC result();
4860  protected:
4861   void do_task(const os::SuspendedThreadTaskContext& context);
4862  private:
4863   ExtendedPC _epc;
4864 };
4865 
4866 ExtendedPC PcFetcher::result() {
4867   guarantee(is_done(), "task is not done yet.");
4868   return _epc;
4869 }
4870 
4871 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4872   Thread* thread = context.thread();
4873   OSThread* osthread = thread->osthread();
4874   if (osthread->ucontext() != NULL) {
4875     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4876   } else {
4877     // NULL context is unexpected, double-check this is the VMThread
4878     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4879   }
4880 }
4881 
4882 // Suspends the target using the signal mechanism and then grabs the PC before
4883 // resuming the target. Used by the flat-profiler only
4884 ExtendedPC os::get_thread_pc(Thread* thread) {
4885   // Make sure that it is called by the watcher for the VMThread
4886   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4887   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4888 
4889   PcFetcher fetcher(thread);
4890   fetcher.run();
4891   return fetcher.result();
4892 }
4893 
4894 ////////////////////////////////////////////////////////////////////////////////
4895 // debug support
4896 
4897 bool os::find(address addr, outputStream* st) {
4898   Dl_info dlinfo;
4899   memset(&dlinfo, 0, sizeof(dlinfo));
4900   if (dladdr(addr, &dlinfo) != 0) {
4901     st->print(PTR_FORMAT ": ", addr);
4902     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4903       st->print("%s+%#x", dlinfo.dli_sname,
4904                 addr - (intptr_t)dlinfo.dli_saddr);
4905     } else if (dlinfo.dli_fbase != NULL) {
4906       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4907     } else {
4908       st->print("<absolute address>");
4909     }
4910     if (dlinfo.dli_fname != NULL) {
4911       st->print(" in %s", dlinfo.dli_fname);
4912     }
4913     if (dlinfo.dli_fbase != NULL) {
4914       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4915     }
4916     st->cr();
4917 
4918     if (Verbose) {
4919       // decode some bytes around the PC
4920       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4921       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4922       address       lowest = (address) dlinfo.dli_sname;
4923       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4924       if (begin < lowest)  begin = lowest;
4925       Dl_info dlinfo2;
4926       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4927           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4928         end = (address) dlinfo2.dli_saddr;
4929       }
4930       Disassembler::decode(begin, end, st);
4931     }
4932     return true;
4933   }
4934   return false;
4935 }
4936 
4937 ////////////////////////////////////////////////////////////////////////////////
4938 // misc
4939 
4940 // This does not do anything on Linux. This is basically a hook for being
4941 // able to use structured exception handling (thread-local exception filters)
4942 // on, e.g., Win32.
4943 void
4944 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4945                          JavaCallArguments* args, Thread* thread) {
4946   f(value, method, args, thread);
4947 }
4948 
4949 void os::print_statistics() {
4950 }
4951 
4952 int os::message_box(const char* title, const char* message) {
4953   int i;
4954   fdStream err(defaultStream::error_fd());
4955   for (i = 0; i < 78; i++) err.print_raw("=");
4956   err.cr();
4957   err.print_raw_cr(title);
4958   for (i = 0; i < 78; i++) err.print_raw("-");
4959   err.cr();
4960   err.print_raw_cr(message);
4961   for (i = 0; i < 78; i++) err.print_raw("=");
4962   err.cr();
4963 
4964   char buf[16];
4965   // Prevent process from exiting upon "read error" without consuming all CPU
4966   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4967 
4968   return buf[0] == 'y' || buf[0] == 'Y';
4969 }
4970 
4971 int os::stat(const char *path, struct stat *sbuf) {
4972   char pathbuf[MAX_PATH];
4973   if (strlen(path) > MAX_PATH - 1) {
4974     errno = ENAMETOOLONG;
4975     return -1;
4976   }
4977   os::native_path(strcpy(pathbuf, path));
4978   return ::stat(pathbuf, sbuf);
4979 }
4980 
4981 bool os::check_heap(bool force) {
4982   return true;
4983 }
4984 
4985 // Is a (classpath) directory empty?
4986 bool os::dir_is_empty(const char* path) {
4987   DIR *dir = NULL;
4988   struct dirent *ptr;
4989 
4990   dir = opendir(path);
4991   if (dir == NULL) return true;
4992 
4993   // Scan the directory
4994   bool result = true;
4995   char buf[sizeof(struct dirent) + MAX_PATH];
4996   while (result && (ptr = ::readdir(dir)) != NULL) {
4997     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4998       result = false;
4999     }
5000   }
5001   closedir(dir);
5002   return result;
5003 }
5004 
5005 // This code originates from JDK's sysOpen and open64_w
5006 // from src/solaris/hpi/src/system_md.c
5007 
5008 int os::open(const char *path, int oflag, int mode) {
5009   if (strlen(path) > MAX_PATH - 1) {
5010     errno = ENAMETOOLONG;
5011     return -1;
5012   }
5013 
5014   // All file descriptors that are opened in the Java process and not
5015   // specifically destined for a subprocess should have the close-on-exec
5016   // flag set.  If we don't set it, then careless 3rd party native code
5017   // might fork and exec without closing all appropriate file descriptors
5018   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5019   // turn might:
5020   //
5021   // - cause end-of-file to fail to be detected on some file
5022   //   descriptors, resulting in mysterious hangs, or
5023   //
5024   // - might cause an fopen in the subprocess to fail on a system
5025   //   suffering from bug 1085341.
5026   //
5027   // (Yes, the default setting of the close-on-exec flag is a Unix
5028   // design flaw)
5029   //
5030   // See:
5031   // 1085341: 32-bit stdio routines should support file descriptors >255
5032   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5033   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5034   //
5035   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5036   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5037   // because it saves a system call and removes a small window where the flag
5038   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5039   // and we fall back to using FD_CLOEXEC (see below).
5040 #ifdef O_CLOEXEC
5041   oflag |= O_CLOEXEC;
5042 #endif
5043 
5044   int fd = ::open64(path, oflag, mode);
5045   if (fd == -1) return -1;
5046 
5047   //If the open succeeded, the file might still be a directory
5048   {
5049     struct stat64 buf64;
5050     int ret = ::fstat64(fd, &buf64);
5051     int st_mode = buf64.st_mode;
5052 
5053     if (ret != -1) {
5054       if ((st_mode & S_IFMT) == S_IFDIR) {
5055         errno = EISDIR;
5056         ::close(fd);
5057         return -1;
5058       }
5059     } else {
5060       ::close(fd);
5061       return -1;
5062     }
5063   }
5064 
5065 #ifdef FD_CLOEXEC
5066   // Validate that the use of the O_CLOEXEC flag on open above worked.
5067   // With recent kernels, we will perform this check exactly once.
5068   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5069   if (!O_CLOEXEC_is_known_to_work) {
5070     int flags = ::fcntl(fd, F_GETFD);
5071     if (flags != -1) {
5072       if ((flags & FD_CLOEXEC) != 0)
5073         O_CLOEXEC_is_known_to_work = 1;
5074       else
5075         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5076     }
5077   }
5078 #endif
5079 
5080   return fd;
5081 }
5082 
5083 
5084 // create binary file, rewriting existing file if required
5085 int os::create_binary_file(const char* path, bool rewrite_existing) {
5086   int oflags = O_WRONLY | O_CREAT;
5087   if (!rewrite_existing) {
5088     oflags |= O_EXCL;
5089   }
5090   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5091 }
5092 
5093 // return current position of file pointer
5094 jlong os::current_file_offset(int fd) {
5095   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5096 }
5097 
5098 // move file pointer to the specified offset
5099 jlong os::seek_to_file_offset(int fd, jlong offset) {
5100   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5101 }
5102 
5103 // This code originates from JDK's sysAvailable
5104 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5105 
5106 int os::available(int fd, jlong *bytes) {
5107   jlong cur, end;
5108   int mode;
5109   struct stat64 buf64;
5110 
5111   if (::fstat64(fd, &buf64) >= 0) {
5112     mode = buf64.st_mode;
5113     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5114       // XXX: is the following call interruptible? If so, this might
5115       // need to go through the INTERRUPT_IO() wrapper as for other
5116       // blocking, interruptible calls in this file.
5117       int n;
5118       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5119         *bytes = n;
5120         return 1;
5121       }
5122     }
5123   }
5124   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5125     return 0;
5126   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5127     return 0;
5128   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5129     return 0;
5130   }
5131   *bytes = end - cur;
5132   return 1;
5133 }
5134 
5135 // Map a block of memory.
5136 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5137                         char *addr, size_t bytes, bool read_only,
5138                         bool allow_exec) {
5139   int prot;
5140   int flags = MAP_PRIVATE;
5141 
5142   if (read_only) {
5143     prot = PROT_READ;
5144   } else {
5145     prot = PROT_READ | PROT_WRITE;
5146   }
5147 
5148   if (allow_exec) {
5149     prot |= PROT_EXEC;
5150   }
5151 
5152   if (addr != NULL) {
5153     flags |= MAP_FIXED;
5154   }
5155 
5156   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5157                                      fd, file_offset);
5158   if (mapped_address == MAP_FAILED) {
5159     return NULL;
5160   }
5161   return mapped_address;
5162 }
5163 
5164 
5165 // Remap a block of memory.
5166 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5167                           char *addr, size_t bytes, bool read_only,
5168                           bool allow_exec) {
5169   // same as map_memory() on this OS
5170   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5171                         allow_exec);
5172 }
5173 
5174 
5175 // Unmap a block of memory.
5176 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5177   return munmap(addr, bytes) == 0;
5178 }
5179 
5180 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5181 
5182 static clockid_t thread_cpu_clockid(Thread* thread) {
5183   pthread_t tid = thread->osthread()->pthread_id();
5184   clockid_t clockid;
5185 
5186   // Get thread clockid
5187   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5188   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5189   return clockid;
5190 }
5191 
5192 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5193 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5194 // of a thread.
5195 //
5196 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5197 // the fast estimate available on the platform.
5198 
5199 jlong os::current_thread_cpu_time() {
5200   if (os::Linux::supports_fast_thread_cpu_time()) {
5201     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5202   } else {
5203     // return user + sys since the cost is the same
5204     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5205   }
5206 }
5207 
5208 jlong os::thread_cpu_time(Thread* thread) {
5209   // consistent with what current_thread_cpu_time() returns
5210   if (os::Linux::supports_fast_thread_cpu_time()) {
5211     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5212   } else {
5213     return slow_thread_cpu_time(thread, true /* user + sys */);
5214   }
5215 }
5216 
5217 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5218   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5219     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5220   } else {
5221     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5222   }
5223 }
5224 
5225 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5226   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5227     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5228   } else {
5229     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5230   }
5231 }
5232 
5233 //  -1 on error.
5234 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5235   pid_t  tid = thread->osthread()->thread_id();
5236   char *s;
5237   char stat[2048];
5238   int statlen;
5239   char proc_name[64];
5240   int count;
5241   long sys_time, user_time;
5242   char cdummy;
5243   int idummy;
5244   long ldummy;
5245   FILE *fp;
5246 
5247   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5248   fp = fopen(proc_name, "r");
5249   if (fp == NULL) return -1;
5250   statlen = fread(stat, 1, 2047, fp);
5251   stat[statlen] = '\0';
5252   fclose(fp);
5253 
5254   // Skip pid and the command string. Note that we could be dealing with
5255   // weird command names, e.g. user could decide to rename java launcher
5256   // to "java 1.4.2 :)", then the stat file would look like
5257   //                1234 (java 1.4.2 :)) R ... ...
5258   // We don't really need to know the command string, just find the last
5259   // occurrence of ")" and then start parsing from there. See bug 4726580.
5260   s = strrchr(stat, ')');
5261   if (s == NULL) return -1;
5262 
5263   // Skip blank chars
5264   do { s++; } while (s && isspace(*s));
5265 
5266   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5267                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5268                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5269                  &user_time, &sys_time);
5270   if (count != 13) return -1;
5271   if (user_sys_cpu_time) {
5272     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5273   } else {
5274     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5275   }
5276 }
5277 
5278 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5279   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5280   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5281   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5282   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5283 }
5284 
5285 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5286   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5287   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5288   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5289   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5290 }
5291 
5292 bool os::is_thread_cpu_time_supported() {
5293   return true;
5294 }
5295 
5296 // System loadavg support.  Returns -1 if load average cannot be obtained.
5297 // Linux doesn't yet have a (official) notion of processor sets,
5298 // so just return the system wide load average.
5299 int os::loadavg(double loadavg[], int nelem) {
5300   return ::getloadavg(loadavg, nelem);
5301 }
5302 
5303 void os::pause() {
5304   char filename[MAX_PATH];
5305   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5306     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5307   } else {
5308     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5309   }
5310 
5311   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5312   if (fd != -1) {
5313     struct stat buf;
5314     ::close(fd);
5315     while (::stat(filename, &buf) == 0) {
5316       (void)::poll(NULL, 0, 100);
5317     }
5318   } else {
5319     jio_fprintf(stderr,
5320                 "Could not open pause file '%s', continuing immediately.\n", filename);
5321   }
5322 }
5323 
5324 
5325 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5326 // comment paragraphs are worth repeating here:
5327 //
5328 // Assumption:
5329 //    Only one parker can exist on an event, which is why we allocate
5330 //    them per-thread. Multiple unparkers can coexist.
5331 //
5332 // _Event serves as a restricted-range semaphore.
5333 //   -1 : thread is blocked, i.e. there is a waiter
5334 //    0 : neutral: thread is running or ready,
5335 //        could have been signaled after a wait started
5336 //    1 : signaled - thread is running or ready
5337 //
5338 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5339 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5340 // For specifics regarding the bug see GLIBC BUGID 261237 :
5341 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5342 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5343 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5344 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5345 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5346 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5347 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5348 // of libpthread avoids the problem, but isn't practical.
5349 //
5350 // Possible remedies:
5351 //
5352 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5353 //      This is palliative and probabilistic, however.  If the thread is preempted
5354 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5355 //      than the minimum period may have passed, and the abstime may be stale (in the
5356 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5357 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5358 //
5359 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5360 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5361 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5362 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5363 //      thread.
5364 //
5365 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5366 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5367 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5368 //      This also works well.  In fact it avoids kernel-level scalability impediments
5369 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5370 //      timers in a graceful fashion.
5371 //
5372 // 4.   When the abstime value is in the past it appears that control returns
5373 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5374 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5375 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5376 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5377 //      It may be possible to avoid reinitialization by checking the return
5378 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5379 //      condvar we must establish the invariant that cond_signal() is only called
5380 //      within critical sections protected by the adjunct mutex.  This prevents
5381 //      cond_signal() from "seeing" a condvar that's in the midst of being
5382 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5383 //      desirable signal-after-unlock optimization that avoids futile context switching.
5384 //
5385 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5386 //      structure when a condvar is used or initialized.  cond_destroy()  would
5387 //      release the helper structure.  Our reinitialize-after-timedwait fix
5388 //      put excessive stress on malloc/free and locks protecting the c-heap.
5389 //
5390 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5391 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5392 // and only enabling the work-around for vulnerable environments.
5393 
5394 // utility to compute the abstime argument to timedwait:
5395 // millis is the relative timeout time
5396 // abstime will be the absolute timeout time
5397 // TODO: replace compute_abstime() with unpackTime()
5398 
5399 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5400   if (millis < 0)  millis = 0;
5401 
5402   jlong seconds = millis / 1000;
5403   millis %= 1000;
5404   if (seconds > 50000000) { // see man cond_timedwait(3T)
5405     seconds = 50000000;
5406   }
5407 
5408   if (os::supports_monotonic_clock()) {
5409     struct timespec now;
5410     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5411     assert_status(status == 0, status, "clock_gettime");
5412     abstime->tv_sec = now.tv_sec  + seconds;
5413     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5414     if (nanos >= NANOSECS_PER_SEC) {
5415       abstime->tv_sec += 1;
5416       nanos -= NANOSECS_PER_SEC;
5417     }
5418     abstime->tv_nsec = nanos;
5419   } else {
5420     struct timeval now;
5421     int status = gettimeofday(&now, NULL);
5422     assert(status == 0, "gettimeofday");
5423     abstime->tv_sec = now.tv_sec  + seconds;
5424     long usec = now.tv_usec + millis * 1000;
5425     if (usec >= 1000000) {
5426       abstime->tv_sec += 1;
5427       usec -= 1000000;
5428     }
5429     abstime->tv_nsec = usec * 1000;
5430   }
5431   return abstime;
5432 }
5433 
5434 void os::PlatformEvent::park() {       // AKA "down()"
5435   // Transitions for _Event:
5436   //   -1 => -1 : illegal
5437   //    1 =>  0 : pass - return immediately
5438   //    0 => -1 : block; then set _Event to 0 before returning
5439 
5440   // Invariant: Only the thread associated with the Event/PlatformEvent
5441   // may call park().
5442   // TODO: assert that _Assoc != NULL or _Assoc == Self
5443   assert(_nParked == 0, "invariant");
5444 
5445   int v;
5446   for (;;) {
5447     v = _Event;
5448     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5449   }
5450   guarantee(v >= 0, "invariant");
5451   if (v == 0) {
5452     // Do this the hard way by blocking ...
5453     int status = pthread_mutex_lock(_mutex);
5454     assert_status(status == 0, status, "mutex_lock");
5455     guarantee(_nParked == 0, "invariant");
5456     ++_nParked;
5457     while (_Event < 0) {
5458       status = pthread_cond_wait(_cond, _mutex);
5459       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5460       // Treat this the same as if the wait was interrupted
5461       if (status == ETIME) { status = EINTR; }
5462       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5463     }
5464     --_nParked;
5465 
5466     _Event = 0;
5467     status = pthread_mutex_unlock(_mutex);
5468     assert_status(status == 0, status, "mutex_unlock");
5469     // Paranoia to ensure our locked and lock-free paths interact
5470     // correctly with each other.
5471     OrderAccess::fence();
5472   }
5473   guarantee(_Event >= 0, "invariant");
5474 }
5475 
5476 int os::PlatformEvent::park(jlong millis) {
5477   // Transitions for _Event:
5478   //   -1 => -1 : illegal
5479   //    1 =>  0 : pass - return immediately
5480   //    0 => -1 : block; then set _Event to 0 before returning
5481 
5482   guarantee(_nParked == 0, "invariant");
5483 
5484   int v;
5485   for (;;) {
5486     v = _Event;
5487     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5488   }
5489   guarantee(v >= 0, "invariant");
5490   if (v != 0) return OS_OK;
5491 
5492   // We do this the hard way, by blocking the thread.
5493   // Consider enforcing a minimum timeout value.
5494   struct timespec abst;
5495   compute_abstime(&abst, millis);
5496 
5497   int ret = OS_TIMEOUT;
5498   int status = pthread_mutex_lock(_mutex);
5499   assert_status(status == 0, status, "mutex_lock");
5500   guarantee(_nParked == 0, "invariant");
5501   ++_nParked;
5502 
5503   // Object.wait(timo) will return because of
5504   // (a) notification
5505   // (b) timeout
5506   // (c) thread.interrupt
5507   //
5508   // Thread.interrupt and object.notify{All} both call Event::set.
5509   // That is, we treat thread.interrupt as a special case of notification.
5510   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5511   // We assume all ETIME returns are valid.
5512   //
5513   // TODO: properly differentiate simultaneous notify+interrupt.
5514   // In that case, we should propagate the notify to another waiter.
5515 
5516   while (_Event < 0) {
5517     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5518     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5519       pthread_cond_destroy(_cond);
5520       pthread_cond_init(_cond, os::Linux::condAttr());
5521     }
5522     assert_status(status == 0 || status == EINTR ||
5523                   status == ETIME || status == ETIMEDOUT,
5524                   status, "cond_timedwait");
5525     if (!FilterSpuriousWakeups) break;                 // previous semantics
5526     if (status == ETIME || status == ETIMEDOUT) break;
5527     // We consume and ignore EINTR and spurious wakeups.
5528   }
5529   --_nParked;
5530   if (_Event >= 0) {
5531     ret = OS_OK;
5532   }
5533   _Event = 0;
5534   status = pthread_mutex_unlock(_mutex);
5535   assert_status(status == 0, status, "mutex_unlock");
5536   assert(_nParked == 0, "invariant");
5537   // Paranoia to ensure our locked and lock-free paths interact
5538   // correctly with each other.
5539   OrderAccess::fence();
5540   return ret;
5541 }
5542 
5543 void os::PlatformEvent::unpark() {
5544   // Transitions for _Event:
5545   //    0 => 1 : just return
5546   //    1 => 1 : just return
5547   //   -1 => either 0 or 1; must signal target thread
5548   //         That is, we can safely transition _Event from -1 to either
5549   //         0 or 1.
5550   // See also: "Semaphores in Plan 9" by Mullender & Cox
5551   //
5552   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5553   // that it will take two back-to-back park() calls for the owning
5554   // thread to block. This has the benefit of forcing a spurious return
5555   // from the first park() call after an unpark() call which will help
5556   // shake out uses of park() and unpark() without condition variables.
5557 
5558   if (Atomic::xchg(1, &_Event) >= 0) return;
5559 
5560   // Wait for the thread associated with the event to vacate
5561   int status = pthread_mutex_lock(_mutex);
5562   assert_status(status == 0, status, "mutex_lock");
5563   int AnyWaiters = _nParked;
5564   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5565   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5566     AnyWaiters = 0;
5567     pthread_cond_signal(_cond);
5568   }
5569   status = pthread_mutex_unlock(_mutex);
5570   assert_status(status == 0, status, "mutex_unlock");
5571   if (AnyWaiters != 0) {
5572     // Note that we signal() *after* dropping the lock for "immortal" Events.
5573     // This is safe and avoids a common class of  futile wakeups.  In rare
5574     // circumstances this can cause a thread to return prematurely from
5575     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5576     // will simply re-test the condition and re-park itself.
5577     // This provides particular benefit if the underlying platform does not
5578     // provide wait morphing.
5579     status = pthread_cond_signal(_cond);
5580     assert_status(status == 0, status, "cond_signal");
5581   }
5582 }
5583 
5584 
5585 // JSR166
5586 // -------------------------------------------------------
5587 
5588 // The solaris and linux implementations of park/unpark are fairly
5589 // conservative for now, but can be improved. They currently use a
5590 // mutex/condvar pair, plus a a count.
5591 // Park decrements count if > 0, else does a condvar wait.  Unpark
5592 // sets count to 1 and signals condvar.  Only one thread ever waits
5593 // on the condvar. Contention seen when trying to park implies that someone
5594 // is unparking you, so don't wait. And spurious returns are fine, so there
5595 // is no need to track notifications.
5596 
5597 // This code is common to linux and solaris and will be moved to a
5598 // common place in dolphin.
5599 //
5600 // The passed in time value is either a relative time in nanoseconds
5601 // or an absolute time in milliseconds. Either way it has to be unpacked
5602 // into suitable seconds and nanoseconds components and stored in the
5603 // given timespec structure.
5604 // Given time is a 64-bit value and the time_t used in the timespec is only
5605 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5606 // overflow if times way in the future are given. Further on Solaris versions
5607 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5608 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5609 // As it will be 28 years before "now + 100000000" will overflow we can
5610 // ignore overflow and just impose a hard-limit on seconds using the value
5611 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5612 // years from "now".
5613 
5614 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5615   assert(time > 0, "convertTime");
5616   time_t max_secs = 0;
5617 
5618   if (!os::supports_monotonic_clock() || isAbsolute) {
5619     struct timeval now;
5620     int status = gettimeofday(&now, NULL);
5621     assert(status == 0, "gettimeofday");
5622 
5623     max_secs = now.tv_sec + MAX_SECS;
5624 
5625     if (isAbsolute) {
5626       jlong secs = time / 1000;
5627       if (secs > max_secs) {
5628         absTime->tv_sec = max_secs;
5629       } else {
5630         absTime->tv_sec = secs;
5631       }
5632       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5633     } else {
5634       jlong secs = time / NANOSECS_PER_SEC;
5635       if (secs >= MAX_SECS) {
5636         absTime->tv_sec = max_secs;
5637         absTime->tv_nsec = 0;
5638       } else {
5639         absTime->tv_sec = now.tv_sec + secs;
5640         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5641         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5642           absTime->tv_nsec -= NANOSECS_PER_SEC;
5643           ++absTime->tv_sec; // note: this must be <= max_secs
5644         }
5645       }
5646     }
5647   } else {
5648     // must be relative using monotonic clock
5649     struct timespec now;
5650     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5651     assert_status(status == 0, status, "clock_gettime");
5652     max_secs = now.tv_sec + MAX_SECS;
5653     jlong secs = time / NANOSECS_PER_SEC;
5654     if (secs >= MAX_SECS) {
5655       absTime->tv_sec = max_secs;
5656       absTime->tv_nsec = 0;
5657     } else {
5658       absTime->tv_sec = now.tv_sec + secs;
5659       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5660       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5661         absTime->tv_nsec -= NANOSECS_PER_SEC;
5662         ++absTime->tv_sec; // note: this must be <= max_secs
5663       }
5664     }
5665   }
5666   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5667   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5668   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5669   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5670 }
5671 
5672 void Parker::park(bool isAbsolute, jlong time) {
5673   // Ideally we'd do something useful while spinning, such
5674   // as calling unpackTime().
5675 
5676   // Optional fast-path check:
5677   // Return immediately if a permit is available.
5678   // We depend on Atomic::xchg() having full barrier semantics
5679   // since we are doing a lock-free update to _counter.
5680   if (Atomic::xchg(0, &_counter) > 0) return;
5681 
5682   Thread* thread = Thread::current();
5683   assert(thread->is_Java_thread(), "Must be JavaThread");
5684   JavaThread *jt = (JavaThread *)thread;
5685 
5686   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5687   // Check interrupt before trying to wait
5688   if (Thread::is_interrupted(thread, false)) {
5689     return;
5690   }
5691 
5692   // Next, demultiplex/decode time arguments
5693   timespec absTime;
5694   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5695     return;
5696   }
5697   if (time > 0) {
5698     unpackTime(&absTime, isAbsolute, time);
5699   }
5700 
5701 
5702   // Enter safepoint region
5703   // Beware of deadlocks such as 6317397.
5704   // The per-thread Parker:: mutex is a classic leaf-lock.
5705   // In particular a thread must never block on the Threads_lock while
5706   // holding the Parker:: mutex.  If safepoints are pending both the
5707   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5708   ThreadBlockInVM tbivm(jt);
5709 
5710   // Don't wait if cannot get lock since interference arises from
5711   // unblocking.  Also. check interrupt before trying wait
5712   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5713     return;
5714   }
5715 
5716   int status;
5717   if (_counter > 0)  { // no wait needed
5718     _counter = 0;
5719     status = pthread_mutex_unlock(_mutex);
5720     assert(status == 0, "invariant");
5721     // Paranoia to ensure our locked and lock-free paths interact
5722     // correctly with each other and Java-level accesses.
5723     OrderAccess::fence();
5724     return;
5725   }
5726 
5727 #ifdef ASSERT
5728   // Don't catch signals while blocked; let the running threads have the signals.
5729   // (This allows a debugger to break into the running thread.)
5730   sigset_t oldsigs;
5731   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5732   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5733 #endif
5734 
5735   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5736   jt->set_suspend_equivalent();
5737   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5738 
5739   assert(_cur_index == -1, "invariant");
5740   if (time == 0) {
5741     _cur_index = REL_INDEX; // arbitrary choice when not timed
5742     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5743   } else {
5744     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5745     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5746     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5747       pthread_cond_destroy(&_cond[_cur_index]);
5748       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5749     }
5750   }
5751   _cur_index = -1;
5752   assert_status(status == 0 || status == EINTR ||
5753                 status == ETIME || status == ETIMEDOUT,
5754                 status, "cond_timedwait");
5755 
5756 #ifdef ASSERT
5757   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5758 #endif
5759 
5760   _counter = 0;
5761   status = pthread_mutex_unlock(_mutex);
5762   assert_status(status == 0, status, "invariant");
5763   // Paranoia to ensure our locked and lock-free paths interact
5764   // correctly with each other and Java-level accesses.
5765   OrderAccess::fence();
5766 
5767   // If externally suspended while waiting, re-suspend
5768   if (jt->handle_special_suspend_equivalent_condition()) {
5769     jt->java_suspend_self();
5770   }
5771 }
5772 
5773 void Parker::unpark() {
5774   int status = pthread_mutex_lock(_mutex);
5775   assert(status == 0, "invariant");
5776   const int s = _counter;
5777   _counter = 1;
5778   if (s < 1) {
5779     // thread might be parked
5780     if (_cur_index != -1) {
5781       // thread is definitely parked
5782       if (WorkAroundNPTLTimedWaitHang) {
5783         status = pthread_cond_signal(&_cond[_cur_index]);
5784         assert(status == 0, "invariant");
5785         status = pthread_mutex_unlock(_mutex);
5786         assert(status == 0, "invariant");
5787       } else {
5788         status = pthread_mutex_unlock(_mutex);
5789         assert(status == 0, "invariant");
5790         status = pthread_cond_signal(&_cond[_cur_index]);
5791         assert(status == 0, "invariant");
5792       }
5793     } else {
5794       pthread_mutex_unlock(_mutex);
5795       assert(status == 0, "invariant");
5796     }
5797   } else {
5798     pthread_mutex_unlock(_mutex);
5799     assert(status == 0, "invariant");
5800   }
5801 }
5802 
5803 
5804 extern char** environ;
5805 
5806 // Run the specified command in a separate process. Return its exit value,
5807 // or -1 on failure (e.g. can't fork a new process).
5808 // Unlike system(), this function can be called from signal handler. It
5809 // doesn't block SIGINT et al.
5810 int os::fork_and_exec(char* cmd) {
5811   const char * argv[4] = {"sh", "-c", cmd, NULL};
5812 
5813   pid_t pid = fork();
5814 
5815   if (pid < 0) {
5816     // fork failed
5817     return -1;
5818 
5819   } else if (pid == 0) {
5820     // child process
5821 
5822     execve("/bin/sh", (char* const*)argv, environ);
5823 
5824     // execve failed
5825     _exit(-1);
5826 
5827   } else  {
5828     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5829     // care about the actual exit code, for now.
5830 
5831     int status;
5832 
5833     // Wait for the child process to exit.  This returns immediately if
5834     // the child has already exited. */
5835     while (waitpid(pid, &status, 0) < 0) {
5836       switch (errno) {
5837       case ECHILD: return 0;
5838       case EINTR: break;
5839       default: return -1;
5840       }
5841     }
5842 
5843     if (WIFEXITED(status)) {
5844       // The child exited normally; get its exit code.
5845       return WEXITSTATUS(status);
5846     } else if (WIFSIGNALED(status)) {
5847       // The child exited because of a signal
5848       // The best value to return is 0x80 + signal number,
5849       // because that is what all Unix shells do, and because
5850       // it allows callers to distinguish between process exit and
5851       // process death by signal.
5852       return 0x80 + WTERMSIG(status);
5853     } else {
5854       // Unknown exit code; pass it through
5855       return status;
5856     }
5857   }
5858 }
5859 
5860 // is_headless_jre()
5861 //
5862 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5863 // in order to report if we are running in a headless jre
5864 //
5865 // Since JDK8 xawt/libmawt.so was moved into the same directory
5866 // as libawt.so, and renamed libawt_xawt.so
5867 //
5868 bool os::is_headless_jre() {
5869   struct stat statbuf;
5870   char buf[MAXPATHLEN];
5871   char libmawtpath[MAXPATHLEN];
5872   const char *xawtstr  = "/xawt/libmawt.so";
5873   const char *new_xawtstr = "/libawt_xawt.so";
5874   char *p;
5875 
5876   // Get path to libjvm.so
5877   os::jvm_path(buf, sizeof(buf));
5878 
5879   // Get rid of libjvm.so
5880   p = strrchr(buf, '/');
5881   if (p == NULL) {
5882     return false;
5883   } else {
5884     *p = '\0';
5885   }
5886 
5887   // Get rid of client or server
5888   p = strrchr(buf, '/');
5889   if (p == NULL) {
5890     return false;
5891   } else {
5892     *p = '\0';
5893   }
5894 
5895   // check xawt/libmawt.so
5896   strcpy(libmawtpath, buf);
5897   strcat(libmawtpath, xawtstr);
5898   if (::stat(libmawtpath, &statbuf) == 0) return false;
5899 
5900   // check libawt_xawt.so
5901   strcpy(libmawtpath, buf);
5902   strcat(libmawtpath, new_xawtstr);
5903   if (::stat(libmawtpath, &statbuf) == 0) return false;
5904 
5905   return true;
5906 }
5907 
5908 // Get the default path to the core file
5909 // Returns the length of the string
5910 int os::get_core_path(char* buffer, size_t bufferSize) {
5911   /*
5912    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5913    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5914    */
5915   const int core_pattern_len = 129;
5916   char core_pattern[core_pattern_len] = {0};
5917 
5918   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5919   if (core_pattern_file != -1) {
5920     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5921     ::close(core_pattern_file);
5922 
5923     if (ret > 0) {
5924       char *last_char = core_pattern + strlen(core_pattern) - 1;
5925 
5926       if (*last_char == '\n') {
5927         *last_char = '\0';
5928       }
5929     }
5930   }
5931 
5932   if (strlen(core_pattern) == 0) {
5933     return -1;
5934   }
5935 
5936   char *pid_pos = strstr(core_pattern, "%p");
5937   int written;
5938 
5939   if (core_pattern[0] == '/') {
5940     written = jio_snprintf(buffer, bufferSize, core_pattern);
5941   } else {
5942     char cwd[PATH_MAX];
5943 
5944     const char* p = get_current_directory(cwd, PATH_MAX);
5945     if (p == NULL) {
5946       return -1;
5947     }
5948 
5949     if (core_pattern[0] == '|') {
5950       written = jio_snprintf(buffer, bufferSize,
5951                         "\"%s\" (or dumping to %s/core.%d)",
5952                                      &core_pattern[1], p, current_process_id());
5953     } else {
5954       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5955     }
5956   }
5957 
5958   if (written < 0) {
5959     return -1;
5960   }
5961 
5962   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5963     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5964 
5965     if (core_uses_pid_file != -1) {
5966       char core_uses_pid = 0;
5967       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5968       ::close(core_uses_pid_file);
5969 
5970       if (core_uses_pid == '1') {
5971         jio_snprintf(buffer + written, bufferSize - written,
5972                                           ".%d", current_process_id());
5973       }
5974     }
5975   }
5976 
5977   return strlen(buffer);
5978 }
5979 
5980 /////////////// Unit tests ///////////////
5981 
5982 #ifndef PRODUCT
5983 
5984 #define test_log(...)              \
5985   do {                             \
5986     if (VerboseInternalVMTests) {  \
5987       tty->print_cr(__VA_ARGS__);  \
5988       tty->flush();                \
5989     }                              \
5990   } while (false)
5991 
5992 class TestReserveMemorySpecial : AllStatic {
5993  public:
5994   static void small_page_write(void* addr, size_t size) {
5995     size_t page_size = os::vm_page_size();
5996 
5997     char* end = (char*)addr + size;
5998     for (char* p = (char*)addr; p < end; p += page_size) {
5999       *p = 1;
6000     }
6001   }
6002 
6003   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6004     if (!UseHugeTLBFS) {
6005       return;
6006     }
6007 
6008     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6009 
6010     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6011 
6012     if (addr != NULL) {
6013       small_page_write(addr, size);
6014 
6015       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6016     }
6017   }
6018 
6019   static void test_reserve_memory_special_huge_tlbfs_only() {
6020     if (!UseHugeTLBFS) {
6021       return;
6022     }
6023 
6024     size_t lp = os::large_page_size();
6025 
6026     for (size_t size = lp; size <= lp * 10; size += lp) {
6027       test_reserve_memory_special_huge_tlbfs_only(size);
6028     }
6029   }
6030 
6031   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6032     size_t lp = os::large_page_size();
6033     size_t ag = os::vm_allocation_granularity();
6034 
6035     // sizes to test
6036     const size_t sizes[] = {
6037       lp, lp + ag, lp + lp / 2, lp * 2,
6038       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6039       lp * 10, lp * 10 + lp / 2
6040     };
6041     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6042 
6043     // For each size/alignment combination, we test three scenarios:
6044     // 1) with req_addr == NULL
6045     // 2) with a non-null req_addr at which we expect to successfully allocate
6046     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6047     //    expect the allocation to either fail or to ignore req_addr
6048 
6049     // Pre-allocate two areas; they shall be as large as the largest allocation
6050     //  and aligned to the largest alignment we will be testing.
6051     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6052     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6053       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6054       -1, 0);
6055     assert(mapping1 != MAP_FAILED, "should work");
6056 
6057     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6058       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6059       -1, 0);
6060     assert(mapping2 != MAP_FAILED, "should work");
6061 
6062     // Unmap the first mapping, but leave the second mapping intact: the first
6063     // mapping will serve as a value for a "good" req_addr (case 2). The second
6064     // mapping, still intact, as "bad" req_addr (case 3).
6065     ::munmap(mapping1, mapping_size);
6066 
6067     // Case 1
6068     test_log("%s, req_addr NULL:", __FUNCTION__);
6069     test_log("size            align           result");
6070 
6071     for (int i = 0; i < num_sizes; i++) {
6072       const size_t size = sizes[i];
6073       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6074         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6075         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6076             size, alignment, p, (p != NULL ? "" : "(failed)"));
6077         if (p != NULL) {
6078           assert(is_ptr_aligned(p, alignment), "must be");
6079           small_page_write(p, size);
6080           os::Linux::release_memory_special_huge_tlbfs(p, size);
6081         }
6082       }
6083     }
6084 
6085     // Case 2
6086     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6087     test_log("size            align           req_addr         result");
6088 
6089     for (int i = 0; i < num_sizes; i++) {
6090       const size_t size = sizes[i];
6091       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6092         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6093         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6094         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6095             size, alignment, req_addr, p,
6096             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6097         if (p != NULL) {
6098           assert(p == req_addr, "must be");
6099           small_page_write(p, size);
6100           os::Linux::release_memory_special_huge_tlbfs(p, size);
6101         }
6102       }
6103     }
6104 
6105     // Case 3
6106     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6107     test_log("size            align           req_addr         result");
6108 
6109     for (int i = 0; i < num_sizes; i++) {
6110       const size_t size = sizes[i];
6111       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6112         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6113         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6114         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6115             size, alignment, req_addr, p,
6116             ((p != NULL ? "" : "(failed)")));
6117         // as the area around req_addr contains already existing mappings, the API should always
6118         // return NULL (as per contract, it cannot return another address)
6119         assert(p == NULL, "must be");
6120       }
6121     }
6122 
6123     ::munmap(mapping2, mapping_size);
6124 
6125   }
6126 
6127   static void test_reserve_memory_special_huge_tlbfs() {
6128     if (!UseHugeTLBFS) {
6129       return;
6130     }
6131 
6132     test_reserve_memory_special_huge_tlbfs_only();
6133     test_reserve_memory_special_huge_tlbfs_mixed();
6134   }
6135 
6136   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6137     if (!UseSHM) {
6138       return;
6139     }
6140 
6141     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6142 
6143     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6144 
6145     if (addr != NULL) {
6146       assert(is_ptr_aligned(addr, alignment), "Check");
6147       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6148 
6149       small_page_write(addr, size);
6150 
6151       os::Linux::release_memory_special_shm(addr, size);
6152     }
6153   }
6154 
6155   static void test_reserve_memory_special_shm() {
6156     size_t lp = os::large_page_size();
6157     size_t ag = os::vm_allocation_granularity();
6158 
6159     for (size_t size = ag; size < lp * 3; size += ag) {
6160       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6161         test_reserve_memory_special_shm(size, alignment);
6162       }
6163     }
6164   }
6165 
6166   static void test() {
6167     test_reserve_memory_special_huge_tlbfs();
6168     test_reserve_memory_special_shm();
6169   }
6170 };
6171 
6172 void TestReserveMemorySpecial_test() {
6173   TestReserveMemorySpecial::test();
6174 }
6175 
6176 #endif