1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 108 // getrusage() is prepared to handle the associated failure.
 109 #ifndef RUSAGE_THREAD
 110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 111 #endif
 112 
 113 #define MAX_PATH    (2 * K)
 114 
 115 #define MAX_SECS 100000000
 116 
 117 // for timer info max values which include all bits
 118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 119 
 120 #define LARGEPAGES_BIT (1 << 6)
 121 ////////////////////////////////////////////////////////////////////////////////
 122 // global variables
 123 julong os::Linux::_physical_memory = 0;
 124 
 125 address   os::Linux::_initial_thread_stack_bottom = NULL;
 126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 127 
 128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 130 Mutex* os::Linux::_createThread_lock = NULL;
 131 pthread_t os::Linux::_main_thread;
 132 int os::Linux::_page_size = -1;
 133 const int os::Linux::_vm_default_page_size = (8 * K);
 134 bool os::Linux::_is_floating_stack = false;
 135 bool os::Linux::_is_NPTL = false;
 136 bool os::Linux::_supports_fast_thread_cpu_time = false;
 137 const char * os::Linux::_glibc_version = NULL;
 138 const char * os::Linux::_libpthread_version = NULL;
 139 pthread_condattr_t os::Linux::_condattr[1];
 140 
 141 static jlong initial_time_count=0;
 142 
 143 static int clock_tics_per_sec = 100;
 144 
 145 // For diagnostics to print a message once. see run_periodic_checks
 146 static sigset_t check_signal_done;
 147 static bool check_signals = true;
 148 
 149 static pid_t _initial_pid = 0;
 150 
 151 /* Signal number used to suspend/resume a thread */
 152 
 153 /* do not use any signal number less than SIGSEGV, see 4355769 */
 154 static int SR_signum = SIGUSR2;
 155 sigset_t SR_sigset;
 156 
 157 /* Used to protect dlsym() calls */
 158 static pthread_mutex_t dl_mutex;
 159 
 160 // Declarations
 161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 ////////////////////////////////////////////////////////////////////////////////
 184 // environment support
 185 
 186 bool os::getenv(const char* name, char* buf, int len) {
 187   const char* val = ::getenv(name);
 188   if (val != NULL && strlen(val) < (size_t)len) {
 189     strcpy(buf, val);
 190     return true;
 191   }
 192   if (len > 0) buf[0] = 0;  // return a null string
 193   return false;
 194 }
 195 
 196 
 197 // Return true if user is running as root.
 198 
 199 bool os::have_special_privileges() {
 200   static bool init = false;
 201   static bool privileges = false;
 202   if (!init) {
 203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 204     init = true;
 205   }
 206   return privileges;
 207 }
 208 
 209 
 210 #ifndef SYS_gettid
 211 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 212 #ifdef __ia64__
 213 #define SYS_gettid 1105
 214 #elif __i386__
 215 #define SYS_gettid 224
 216 #elif __amd64__
 217 #define SYS_gettid 186
 218 #elif __sparc__
 219 #define SYS_gettid 143
 220 #else
 221 #error define gettid for the arch
 222 #endif
 223 #endif
 224 
 225 // Cpu architecture string
 226 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 227 
 228 // pid_t gettid()
 229 //
 230 // Returns the kernel thread id of the currently running thread. Kernel
 231 // thread id is used to access /proc.
 232 //
 233 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 234 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 235 //
 236 pid_t os::Linux::gettid() {
 237   int rslt = syscall(SYS_gettid);
 238   if (rslt == -1) {
 239      // old kernel, no NPTL support
 240      return getpid();
 241   } else {
 242      return (pid_t)rslt;
 243   }
 244 }
 245 
 246 // Most versions of linux have a bug where the number of processors are
 247 // determined by looking at the /proc file system.  In a chroot environment,
 248 // the system call returns 1.  This causes the VM to act as if it is
 249 // a single processor and elide locking (see is_MP() call).
 250 static bool unsafe_chroot_detected = false;
 251 static const char *unstable_chroot_error = "/proc file system not found.\n"
 252                      "Java may be unstable running multithreaded in a chroot "
 253                      "environment on Linux when /proc filesystem is not mounted.";
 254 
 255 void os::Linux::initialize_system_info() {
 256   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 257   if (processor_count() == 1) {
 258     pid_t pid = os::Linux::gettid();
 259     char fname[32];
 260     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 261     FILE *fp = fopen(fname, "r");
 262     if (fp == NULL) {
 263       unsafe_chroot_detected = true;
 264     } else {
 265       fclose(fp);
 266     }
 267   }
 268   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 269   assert(processor_count() > 0, "linux error");
 270 }
 271 
 272 void os::init_system_properties_values() {
 273   // The next steps are taken in the product version:
 274   //
 275   // Obtain the JAVA_HOME value from the location of libjvm.so.
 276   // This library should be located at:
 277   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 278   //
 279   // If "/jre/lib/" appears at the right place in the path, then we
 280   // assume libjvm.so is installed in a JDK and we use this path.
 281   //
 282   // Otherwise exit with message: "Could not create the Java virtual machine."
 283   //
 284   // The following extra steps are taken in the debugging version:
 285   //
 286   // If "/jre/lib/" does NOT appear at the right place in the path
 287   // instead of exit check for $JAVA_HOME environment variable.
 288   //
 289   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 290   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 291   // it looks like libjvm.so is installed there
 292   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 293   //
 294   // Otherwise exit.
 295   //
 296   // Important note: if the location of libjvm.so changes this
 297   // code needs to be changed accordingly.
 298 
 299 // See ld(1):
 300 //      The linker uses the following search paths to locate required
 301 //      shared libraries:
 302 //        1: ...
 303 //        ...
 304 //        7: The default directories, normally /lib and /usr/lib.
 305 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 306 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 307 #else
 308 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 309 #endif
 310 
 311 // Base path of extensions installed on the system.
 312 #define SYS_EXT_DIR     "/usr/java/packages"
 313 #define EXTENSIONS_DIR  "/lib/ext"
 314 #define ENDORSED_DIR    "/lib/endorsed"
 315 
 316   // Buffer that fits several sprintfs.
 317   // Note that the space for the colon and the trailing null are provided
 318   // by the nulls included by the sizeof operator.
 319   const size_t bufsize =
 320     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 321          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 322          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 323   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 324 
 325   // sysclasspath, java_home, dll_dir
 326   {
 327     char *pslash;
 328     os::jvm_path(buf, bufsize);
 329 
 330     // Found the full path to libjvm.so.
 331     // Now cut the path to <java_home>/jre if we can.
 332     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 333     pslash = strrchr(buf, '/');
 334     if (pslash != NULL) {
 335       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 336     }
 337     Arguments::set_dll_dir(buf);
 338 
 339     if (pslash != NULL) {
 340       pslash = strrchr(buf, '/');
 341       if (pslash != NULL) {
 342         *pslash = '\0';          // Get rid of /<arch>.
 343         pslash = strrchr(buf, '/');
 344         if (pslash != NULL) {
 345           *pslash = '\0';        // Get rid of /lib.
 346         }
 347       }
 348     }
 349     Arguments::set_java_home(buf);
 350     set_boot_path('/', ':');
 351   }
 352 
 353   // Where to look for native libraries.
 354   //
 355   // Note: Due to a legacy implementation, most of the library path
 356   // is set in the launcher. This was to accomodate linking restrictions
 357   // on legacy Linux implementations (which are no longer supported).
 358   // Eventually, all the library path setting will be done here.
 359   //
 360   // However, to prevent the proliferation of improperly built native
 361   // libraries, the new path component /usr/java/packages is added here.
 362   // Eventually, all the library path setting will be done here.
 363   {
 364     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 365     // should always exist (until the legacy problem cited above is
 366     // addressed).
 367     const char *v = ::getenv("LD_LIBRARY_PATH");
 368     const char *v_colon = ":";
 369     if (v == NULL) { v = ""; v_colon = ""; }
 370     // That's +1 for the colon and +1 for the trailing '\0'.
 371     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 372                                                      strlen(v) + 1 +
 373                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 374                                                      mtInternal);
 375     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 376     Arguments::set_library_path(ld_library_path);
 377     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 378   }
 379 
 380   // Extensions directories.
 381   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 382   Arguments::set_ext_dirs(buf);
 383 
 384   // Endorsed standards default directory.
 385   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 386   Arguments::set_endorsed_dirs(buf);
 387 
 388   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 389 
 390 #undef DEFAULT_LIBPATH
 391 #undef SYS_EXT_DIR
 392 #undef EXTENSIONS_DIR
 393 #undef ENDORSED_DIR
 394 }
 395 
 396 ////////////////////////////////////////////////////////////////////////////////
 397 // breakpoint support
 398 
 399 void os::breakpoint() {
 400   BREAKPOINT;
 401 }
 402 
 403 extern "C" void breakpoint() {
 404   // use debugger to set breakpoint here
 405 }
 406 
 407 ////////////////////////////////////////////////////////////////////////////////
 408 // signal support
 409 
 410 debug_only(static bool signal_sets_initialized = false);
 411 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 412 
 413 bool os::Linux::is_sig_ignored(int sig) {
 414       struct sigaction oact;
 415       sigaction(sig, (struct sigaction*)NULL, &oact);
 416       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 417                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 418       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 419            return true;
 420       else
 421            return false;
 422 }
 423 
 424 void os::Linux::signal_sets_init() {
 425   // Should also have an assertion stating we are still single-threaded.
 426   assert(!signal_sets_initialized, "Already initialized");
 427   // Fill in signals that are necessarily unblocked for all threads in
 428   // the VM. Currently, we unblock the following signals:
 429   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 430   //                         by -Xrs (=ReduceSignalUsage));
 431   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 432   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 433   // the dispositions or masks wrt these signals.
 434   // Programs embedding the VM that want to use the above signals for their
 435   // own purposes must, at this time, use the "-Xrs" option to prevent
 436   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 437   // (See bug 4345157, and other related bugs).
 438   // In reality, though, unblocking these signals is really a nop, since
 439   // these signals are not blocked by default.
 440   sigemptyset(&unblocked_sigs);
 441   sigemptyset(&allowdebug_blocked_sigs);
 442   sigaddset(&unblocked_sigs, SIGILL);
 443   sigaddset(&unblocked_sigs, SIGSEGV);
 444   sigaddset(&unblocked_sigs, SIGBUS);
 445   sigaddset(&unblocked_sigs, SIGFPE);
 446 #if defined(PPC64)
 447   sigaddset(&unblocked_sigs, SIGTRAP);
 448 #endif
 449   sigaddset(&unblocked_sigs, SR_signum);
 450 
 451   if (!ReduceSignalUsage) {
 452    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 453       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 454       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 455    }
 456    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 457       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 458       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 459    }
 460    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 461       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 462       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 463    }
 464   }
 465   // Fill in signals that are blocked by all but the VM thread.
 466   sigemptyset(&vm_sigs);
 467   if (!ReduceSignalUsage)
 468     sigaddset(&vm_sigs, BREAK_SIGNAL);
 469   debug_only(signal_sets_initialized = true);
 470 
 471 }
 472 
 473 // These are signals that are unblocked while a thread is running Java.
 474 // (For some reason, they get blocked by default.)
 475 sigset_t* os::Linux::unblocked_signals() {
 476   assert(signal_sets_initialized, "Not initialized");
 477   return &unblocked_sigs;
 478 }
 479 
 480 // These are the signals that are blocked while a (non-VM) thread is
 481 // running Java. Only the VM thread handles these signals.
 482 sigset_t* os::Linux::vm_signals() {
 483   assert(signal_sets_initialized, "Not initialized");
 484   return &vm_sigs;
 485 }
 486 
 487 // These are signals that are blocked during cond_wait to allow debugger in
 488 sigset_t* os::Linux::allowdebug_blocked_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &allowdebug_blocked_sigs;
 491 }
 492 
 493 void os::Linux::hotspot_sigmask(Thread* thread) {
 494 
 495   //Save caller's signal mask before setting VM signal mask
 496   sigset_t caller_sigmask;
 497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 498 
 499   OSThread* osthread = thread->osthread();
 500   osthread->set_caller_sigmask(caller_sigmask);
 501 
 502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 503 
 504   if (!ReduceSignalUsage) {
 505     if (thread->is_VM_thread()) {
 506       // Only the VM thread handles BREAK_SIGNAL ...
 507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 508     } else {
 509       // ... all other threads block BREAK_SIGNAL
 510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 511     }
 512   }
 513 }
 514 
 515 //////////////////////////////////////////////////////////////////////////////
 516 // detecting pthread library
 517 
 518 void os::Linux::libpthread_init() {
 519   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 520   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 521   // generic name for earlier versions.
 522   // Define macros here so we can build HotSpot on old systems.
 523 # ifndef _CS_GNU_LIBC_VERSION
 524 # define _CS_GNU_LIBC_VERSION 2
 525 # endif
 526 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 527 # define _CS_GNU_LIBPTHREAD_VERSION 3
 528 # endif
 529 
 530   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 531   if (n > 0) {
 532      char *str = (char *)malloc(n, mtInternal);
 533      confstr(_CS_GNU_LIBC_VERSION, str, n);
 534      os::Linux::set_glibc_version(str);
 535   } else {
 536      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 537      static char _gnu_libc_version[32];
 538      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 539               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 540      os::Linux::set_glibc_version(_gnu_libc_version);
 541   }
 542 
 543   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 544   if (n > 0) {
 545      char *str = (char *)malloc(n, mtInternal);
 546      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 547      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 548      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 549      // is the case. LinuxThreads has a hard limit on max number of threads.
 550      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 551      // On the other hand, NPTL does not have such a limit, sysconf()
 552      // will return -1 and errno is not changed. Check if it is really NPTL.
 553      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 554          strstr(str, "NPTL") &&
 555          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 556        free(str);
 557        os::Linux::set_libpthread_version("linuxthreads");
 558      } else {
 559        os::Linux::set_libpthread_version(str);
 560      }
 561   } else {
 562     // glibc before 2.3.2 only has LinuxThreads.
 563     os::Linux::set_libpthread_version("linuxthreads");
 564   }
 565 
 566   if (strstr(libpthread_version(), "NPTL")) {
 567      os::Linux::set_is_NPTL();
 568   } else {
 569      os::Linux::set_is_LinuxThreads();
 570   }
 571 
 572   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 573   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 574   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 575      os::Linux::set_is_floating_stack();
 576   }
 577 }
 578 
 579 /////////////////////////////////////////////////////////////////////////////
 580 // thread stack
 581 
 582 // Force Linux kernel to expand current thread stack. If "bottom" is close
 583 // to the stack guard, caller should block all signals.
 584 //
 585 // MAP_GROWSDOWN:
 586 //   A special mmap() flag that is used to implement thread stacks. It tells
 587 //   kernel that the memory region should extend downwards when needed. This
 588 //   allows early versions of LinuxThreads to only mmap the first few pages
 589 //   when creating a new thread. Linux kernel will automatically expand thread
 590 //   stack as needed (on page faults).
 591 //
 592 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 593 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 594 //   region, it's hard to tell if the fault is due to a legitimate stack
 595 //   access or because of reading/writing non-exist memory (e.g. buffer
 596 //   overrun). As a rule, if the fault happens below current stack pointer,
 597 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 598 //   application (see Linux kernel fault.c).
 599 //
 600 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 601 //   stack overflow detection.
 602 //
 603 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 604 //   not use this flag. However, the stack of initial thread is not created
 605 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 606 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 607 //   and then attach the thread to JVM.
 608 //
 609 // To get around the problem and allow stack banging on Linux, we need to
 610 // manually expand thread stack after receiving the SIGSEGV.
 611 //
 612 // There are two ways to expand thread stack to address "bottom", we used
 613 // both of them in JVM before 1.5:
 614 //   1. adjust stack pointer first so that it is below "bottom", and then
 615 //      touch "bottom"
 616 //   2. mmap() the page in question
 617 //
 618 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 619 // if current sp is already near the lower end of page 101, and we need to
 620 // call mmap() to map page 100, it is possible that part of the mmap() frame
 621 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 622 // That will destroy the mmap() frame and cause VM to crash.
 623 //
 624 // The following code works by adjusting sp first, then accessing the "bottom"
 625 // page to force a page fault. Linux kernel will then automatically expand the
 626 // stack mapping.
 627 //
 628 // _expand_stack_to() assumes its frame size is less than page size, which
 629 // should always be true if the function is not inlined.
 630 
 631 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 632 #define NOINLINE
 633 #else
 634 #define NOINLINE __attribute__ ((noinline))
 635 #endif
 636 
 637 static void _expand_stack_to(address bottom) NOINLINE;
 638 
 639 static void _expand_stack_to(address bottom) {
 640   address sp;
 641   size_t size;
 642   volatile char *p;
 643 
 644   // Adjust bottom to point to the largest address within the same page, it
 645   // gives us a one-page buffer if alloca() allocates slightly more memory.
 646   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 647   bottom += os::Linux::page_size() - 1;
 648 
 649   // sp might be slightly above current stack pointer; if that's the case, we
 650   // will alloca() a little more space than necessary, which is OK. Don't use
 651   // os::current_stack_pointer(), as its result can be slightly below current
 652   // stack pointer, causing us to not alloca enough to reach "bottom".
 653   sp = (address)&sp;
 654 
 655   if (sp > bottom) {
 656     size = sp - bottom;
 657     p = (volatile char *)alloca(size);
 658     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 659     p[0] = '\0';
 660   }
 661 }
 662 
 663 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 664   assert(t!=NULL, "just checking");
 665   assert(t->osthread()->expanding_stack(), "expand should be set");
 666   assert(t->stack_base() != NULL, "stack_base was not initialized");
 667 
 668   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 669     sigset_t mask_all, old_sigset;
 670     sigfillset(&mask_all);
 671     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 672     _expand_stack_to(addr);
 673     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 674     return true;
 675   }
 676   return false;
 677 }
 678 
 679 //////////////////////////////////////////////////////////////////////////////
 680 // create new thread
 681 
 682 static address highest_vm_reserved_address();
 683 
 684 // check if it's safe to start a new thread
 685 static bool _thread_safety_check(Thread* thread) {
 686   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 687     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 688     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 689     //   allocated (MAP_FIXED) from high address space. Every thread stack
 690     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 691     //   it to other values if they rebuild LinuxThreads).
 692     //
 693     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 694     // the memory region has already been mmap'ed. That means if we have too
 695     // many threads and/or very large heap, eventually thread stack will
 696     // collide with heap.
 697     //
 698     // Here we try to prevent heap/stack collision by comparing current
 699     // stack bottom with the highest address that has been mmap'ed by JVM
 700     // plus a safety margin for memory maps created by native code.
 701     //
 702     // This feature can be disabled by setting ThreadSafetyMargin to 0
 703     //
 704     if (ThreadSafetyMargin > 0) {
 705       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 706 
 707       // not safe if our stack extends below the safety margin
 708       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 709     } else {
 710       return true;
 711     }
 712   } else {
 713     // Floating stack LinuxThreads or NPTL:
 714     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 715     //   there's not enough space left, pthread_create() will fail. If we come
 716     //   here, that means enough space has been reserved for stack.
 717     return true;
 718   }
 719 }
 720 
 721 // Thread start routine for all newly created threads
 722 static void *java_start(Thread *thread) {
 723   // Try to randomize the cache line index of hot stack frames.
 724   // This helps when threads of the same stack traces evict each other's
 725   // cache lines. The threads can be either from the same JVM instance, or
 726   // from different JVM instances. The benefit is especially true for
 727   // processors with hyperthreading technology.
 728   static int counter = 0;
 729   int pid = os::current_process_id();
 730   alloca(((pid ^ counter++) & 7) * 128);
 731 
 732   ThreadLocalStorage::set_thread(thread);
 733 
 734   OSThread* osthread = thread->osthread();
 735   Monitor* sync = osthread->startThread_lock();
 736 
 737   // non floating stack LinuxThreads needs extra check, see above
 738   if (!_thread_safety_check(thread)) {
 739     // notify parent thread
 740     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 741     osthread->set_state(ZOMBIE);
 742     sync->notify_all();
 743     return NULL;
 744   }
 745 
 746   // thread_id is kernel thread id (similar to Solaris LWP id)
 747   osthread->set_thread_id(os::Linux::gettid());
 748 
 749   if (UseNUMA) {
 750     int lgrp_id = os::numa_get_group_id();
 751     if (lgrp_id != -1) {
 752       thread->set_lgrp_id(lgrp_id);
 753     }
 754   }
 755   // initialize signal mask for this thread
 756   os::Linux::hotspot_sigmask(thread);
 757 
 758   // initialize floating point control register
 759   os::Linux::init_thread_fpu_state();
 760 
 761   // handshaking with parent thread
 762   {
 763     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 764 
 765     // notify parent thread
 766     osthread->set_state(INITIALIZED);
 767     sync->notify_all();
 768 
 769     // wait until os::start_thread()
 770     while (osthread->get_state() == INITIALIZED) {
 771       sync->wait(Mutex::_no_safepoint_check_flag);
 772     }
 773   }
 774 
 775   // call one more level start routine
 776   thread->run();
 777 
 778   return 0;
 779 }
 780 
 781 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 782   assert(thread->osthread() == NULL, "caller responsible");
 783 
 784   // Allocate the OSThread object
 785   OSThread* osthread = new OSThread(NULL, NULL);
 786   if (osthread == NULL) {
 787     return false;
 788   }
 789 
 790   // set the correct thread state
 791   osthread->set_thread_type(thr_type);
 792 
 793   // Initial state is ALLOCATED but not INITIALIZED
 794   osthread->set_state(ALLOCATED);
 795 
 796   thread->set_osthread(osthread);
 797 
 798   // init thread attributes
 799   pthread_attr_t attr;
 800   pthread_attr_init(&attr);
 801   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 802 
 803   // stack size
 804   if (os::Linux::supports_variable_stack_size()) {
 805     // calculate stack size if it's not specified by caller
 806     if (stack_size == 0) {
 807       stack_size = os::Linux::default_stack_size(thr_type);
 808 
 809       switch (thr_type) {
 810       case os::java_thread:
 811         // Java threads use ThreadStackSize which default value can be
 812         // changed with the flag -Xss
 813         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 814         stack_size = JavaThread::stack_size_at_create();
 815         break;
 816       case os::compiler_thread:
 817         if (CompilerThreadStackSize > 0) {
 818           stack_size = (size_t)(CompilerThreadStackSize * K);
 819           break;
 820         } // else fall through:
 821           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 822       case os::vm_thread:
 823       case os::pgc_thread:
 824       case os::cgc_thread:
 825       case os::watcher_thread:
 826         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 827         break;
 828       }
 829     }
 830 
 831     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 832     pthread_attr_setstacksize(&attr, stack_size);
 833   } else {
 834     // let pthread_create() pick the default value.
 835   }
 836 
 837   // glibc guard page
 838   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 839 
 840   ThreadState state;
 841 
 842   {
 843     // Serialize thread creation if we are running with fixed stack LinuxThreads
 844     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 845     if (lock) {
 846       os::Linux::createThread_lock()->lock_without_safepoint_check();
 847     }
 848 
 849     pthread_t tid;
 850     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 851 
 852     pthread_attr_destroy(&attr);
 853 
 854     if (ret != 0) {
 855       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 856         perror("pthread_create()");
 857       }
 858       // Need to clean up stuff we've allocated so far
 859       thread->set_osthread(NULL);
 860       delete osthread;
 861       if (lock) os::Linux::createThread_lock()->unlock();
 862       return false;
 863     }
 864 
 865     // Store pthread info into the OSThread
 866     osthread->set_pthread_id(tid);
 867 
 868     // Wait until child thread is either initialized or aborted
 869     {
 870       Monitor* sync_with_child = osthread->startThread_lock();
 871       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 872       while ((state = osthread->get_state()) == ALLOCATED) {
 873         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 874       }
 875     }
 876 
 877     if (lock) {
 878       os::Linux::createThread_lock()->unlock();
 879     }
 880   }
 881 
 882   // Aborted due to thread limit being reached
 883   if (state == ZOMBIE) {
 884       thread->set_osthread(NULL);
 885       delete osthread;
 886       return false;
 887   }
 888 
 889   // The thread is returned suspended (in state INITIALIZED),
 890   // and is started higher up in the call chain
 891   assert(state == INITIALIZED, "race condition");
 892   return true;
 893 }
 894 
 895 /////////////////////////////////////////////////////////////////////////////
 896 // attach existing thread
 897 
 898 // bootstrap the main thread
 899 bool os::create_main_thread(JavaThread* thread) {
 900   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 901   return create_attached_thread(thread);
 902 }
 903 
 904 bool os::create_attached_thread(JavaThread* thread) {
 905 #ifdef ASSERT
 906     thread->verify_not_published();
 907 #endif
 908 
 909   // Allocate the OSThread object
 910   OSThread* osthread = new OSThread(NULL, NULL);
 911 
 912   if (osthread == NULL) {
 913     return false;
 914   }
 915 
 916   // Store pthread info into the OSThread
 917   osthread->set_thread_id(os::Linux::gettid());
 918   osthread->set_pthread_id(::pthread_self());
 919 
 920   // initialize floating point control register
 921   os::Linux::init_thread_fpu_state();
 922 
 923   // Initial thread state is RUNNABLE
 924   osthread->set_state(RUNNABLE);
 925 
 926   thread->set_osthread(osthread);
 927 
 928   if (UseNUMA) {
 929     int lgrp_id = os::numa_get_group_id();
 930     if (lgrp_id != -1) {
 931       thread->set_lgrp_id(lgrp_id);
 932     }
 933   }
 934 
 935   if (os::Linux::is_initial_thread()) {
 936     // If current thread is initial thread, its stack is mapped on demand,
 937     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 938     // the entire stack region to avoid SEGV in stack banging.
 939     // It is also useful to get around the heap-stack-gap problem on SuSE
 940     // kernel (see 4821821 for details). We first expand stack to the top
 941     // of yellow zone, then enable stack yellow zone (order is significant,
 942     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 943     // is no gap between the last two virtual memory regions.
 944 
 945     JavaThread *jt = (JavaThread *)thread;
 946     address addr = jt->stack_yellow_zone_base();
 947     assert(addr != NULL, "initialization problem?");
 948     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 949 
 950     osthread->set_expanding_stack();
 951     os::Linux::manually_expand_stack(jt, addr);
 952     osthread->clear_expanding_stack();
 953   }
 954 
 955   // initialize signal mask for this thread
 956   // and save the caller's signal mask
 957   os::Linux::hotspot_sigmask(thread);
 958 
 959   return true;
 960 }
 961 
 962 void os::pd_start_thread(Thread* thread) {
 963   OSThread * osthread = thread->osthread();
 964   assert(osthread->get_state() != INITIALIZED, "just checking");
 965   Monitor* sync_with_child = osthread->startThread_lock();
 966   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 967   sync_with_child->notify();
 968 }
 969 
 970 // Free Linux resources related to the OSThread
 971 void os::free_thread(OSThread* osthread) {
 972   assert(osthread != NULL, "osthread not set");
 973 
 974   if (Thread::current()->osthread() == osthread) {
 975     // Restore caller's signal mask
 976     sigset_t sigmask = osthread->caller_sigmask();
 977     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 978    }
 979 
 980   delete osthread;
 981 }
 982 
 983 //////////////////////////////////////////////////////////////////////////////
 984 // thread local storage
 985 
 986 // Restore the thread pointer if the destructor is called. This is in case
 987 // someone from JNI code sets up a destructor with pthread_key_create to run
 988 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 989 // will hang or crash. When detachCurrentThread is called the key will be set
 990 // to null and we will not be called again. If detachCurrentThread is never
 991 // called we could loop forever depending on the pthread implementation.
 992 static void restore_thread_pointer(void* p) {
 993   Thread* thread = (Thread*) p;
 994   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 995 }
 996 
 997 int os::allocate_thread_local_storage() {
 998   pthread_key_t key;
 999   int rslt = pthread_key_create(&key, restore_thread_pointer);
1000   assert(rslt == 0, "cannot allocate thread local storage");
1001   return (int)key;
1002 }
1003 
1004 // Note: This is currently not used by VM, as we don't destroy TLS key
1005 // on VM exit.
1006 void os::free_thread_local_storage(int index) {
1007   int rslt = pthread_key_delete((pthread_key_t)index);
1008   assert(rslt == 0, "invalid index");
1009 }
1010 
1011 void os::thread_local_storage_at_put(int index, void* value) {
1012   int rslt = pthread_setspecific((pthread_key_t)index, value);
1013   assert(rslt == 0, "pthread_setspecific failed");
1014 }
1015 
1016 extern "C" Thread* get_thread() {
1017   return ThreadLocalStorage::thread();
1018 }
1019 
1020 //////////////////////////////////////////////////////////////////////////////
1021 // initial thread
1022 
1023 // Check if current thread is the initial thread, similar to Solaris thr_main.
1024 bool os::Linux::is_initial_thread(void) {
1025   char dummy;
1026   // If called before init complete, thread stack bottom will be null.
1027   // Can be called if fatal error occurs before initialization.
1028   if (initial_thread_stack_bottom() == NULL) return false;
1029   assert(initial_thread_stack_bottom() != NULL &&
1030          initial_thread_stack_size()   != 0,
1031          "os::init did not locate initial thread's stack region");
1032   if ((address)&dummy >= initial_thread_stack_bottom() &&
1033       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1034        return true;
1035   else return false;
1036 }
1037 
1038 // Find the virtual memory area that contains addr
1039 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1040   FILE *fp = fopen("/proc/self/maps", "r");
1041   if (fp) {
1042     address low, high;
1043     while (!feof(fp)) {
1044       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1045         if (low <= addr && addr < high) {
1046            if (vma_low)  *vma_low  = low;
1047            if (vma_high) *vma_high = high;
1048            fclose (fp);
1049            return true;
1050         }
1051       }
1052       for (;;) {
1053         int ch = fgetc(fp);
1054         if (ch == EOF || ch == (int)'\n') break;
1055       }
1056     }
1057     fclose(fp);
1058   }
1059   return false;
1060 }
1061 
1062 // Locate initial thread stack. This special handling of initial thread stack
1063 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1064 // bogus value for initial thread.
1065 void os::Linux::capture_initial_stack(size_t max_size) {
1066   // stack size is the easy part, get it from RLIMIT_STACK
1067   size_t stack_size;
1068   struct rlimit rlim;
1069   getrlimit(RLIMIT_STACK, &rlim);
1070   stack_size = rlim.rlim_cur;
1071 
1072   // 6308388: a bug in ld.so will relocate its own .data section to the
1073   //   lower end of primordial stack; reduce ulimit -s value a little bit
1074   //   so we won't install guard page on ld.so's data section.
1075   stack_size -= 2 * page_size();
1076 
1077   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1078   //   7.1, in both cases we will get 2G in return value.
1079   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1080   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1081   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1082   //   in case other parts in glibc still assumes 2M max stack size.
1083   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1084   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1085   if (stack_size > 2 * K * K IA64_ONLY(*2))
1086       stack_size = 2 * K * K IA64_ONLY(*2);
1087   // Try to figure out where the stack base (top) is. This is harder.
1088   //
1089   // When an application is started, glibc saves the initial stack pointer in
1090   // a global variable "__libc_stack_end", which is then used by system
1091   // libraries. __libc_stack_end should be pretty close to stack top. The
1092   // variable is available since the very early days. However, because it is
1093   // a private interface, it could disappear in the future.
1094   //
1095   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1096   // to __libc_stack_end, it is very close to stack top, but isn't the real
1097   // stack top. Note that /proc may not exist if VM is running as a chroot
1098   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1099   // /proc/<pid>/stat could change in the future (though unlikely).
1100   //
1101   // We try __libc_stack_end first. If that doesn't work, look for
1102   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1103   // as a hint, which should work well in most cases.
1104 
1105   uintptr_t stack_start;
1106 
1107   // try __libc_stack_end first
1108   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1109   if (p && *p) {
1110     stack_start = *p;
1111   } else {
1112     // see if we can get the start_stack field from /proc/self/stat
1113     FILE *fp;
1114     int pid;
1115     char state;
1116     int ppid;
1117     int pgrp;
1118     int session;
1119     int nr;
1120     int tpgrp;
1121     unsigned long flags;
1122     unsigned long minflt;
1123     unsigned long cminflt;
1124     unsigned long majflt;
1125     unsigned long cmajflt;
1126     unsigned long utime;
1127     unsigned long stime;
1128     long cutime;
1129     long cstime;
1130     long prio;
1131     long nice;
1132     long junk;
1133     long it_real;
1134     uintptr_t start;
1135     uintptr_t vsize;
1136     intptr_t rss;
1137     uintptr_t rsslim;
1138     uintptr_t scodes;
1139     uintptr_t ecode;
1140     int i;
1141 
1142     // Figure what the primordial thread stack base is. Code is inspired
1143     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1144     // followed by command name surrounded by parentheses, state, etc.
1145     char stat[2048];
1146     int statlen;
1147 
1148     fp = fopen("/proc/self/stat", "r");
1149     if (fp) {
1150       statlen = fread(stat, 1, 2047, fp);
1151       stat[statlen] = '\0';
1152       fclose(fp);
1153 
1154       // Skip pid and the command string. Note that we could be dealing with
1155       // weird command names, e.g. user could decide to rename java launcher
1156       // to "java 1.4.2 :)", then the stat file would look like
1157       //                1234 (java 1.4.2 :)) R ... ...
1158       // We don't really need to know the command string, just find the last
1159       // occurrence of ")" and then start parsing from there. See bug 4726580.
1160       char * s = strrchr(stat, ')');
1161 
1162       i = 0;
1163       if (s) {
1164         // Skip blank chars
1165         do s++; while (isspace(*s));
1166 
1167 #define _UFM UINTX_FORMAT
1168 #define _DFM INTX_FORMAT
1169 
1170         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1171         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1172         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1173              &state,          /* 3  %c  */
1174              &ppid,           /* 4  %d  */
1175              &pgrp,           /* 5  %d  */
1176              &session,        /* 6  %d  */
1177              &nr,             /* 7  %d  */
1178              &tpgrp,          /* 8  %d  */
1179              &flags,          /* 9  %lu  */
1180              &minflt,         /* 10 %lu  */
1181              &cminflt,        /* 11 %lu  */
1182              &majflt,         /* 12 %lu  */
1183              &cmajflt,        /* 13 %lu  */
1184              &utime,          /* 14 %lu  */
1185              &stime,          /* 15 %lu  */
1186              &cutime,         /* 16 %ld  */
1187              &cstime,         /* 17 %ld  */
1188              &prio,           /* 18 %ld  */
1189              &nice,           /* 19 %ld  */
1190              &junk,           /* 20 %ld  */
1191              &it_real,        /* 21 %ld  */
1192              &start,          /* 22 UINTX_FORMAT */
1193              &vsize,          /* 23 UINTX_FORMAT */
1194              &rss,            /* 24 INTX_FORMAT  */
1195              &rsslim,         /* 25 UINTX_FORMAT */
1196              &scodes,         /* 26 UINTX_FORMAT */
1197              &ecode,          /* 27 UINTX_FORMAT */
1198              &stack_start);   /* 28 UINTX_FORMAT */
1199       }
1200 
1201 #undef _UFM
1202 #undef _DFM
1203 
1204       if (i != 28 - 2) {
1205          assert(false, "Bad conversion from /proc/self/stat");
1206          // product mode - assume we are the initial thread, good luck in the
1207          // embedded case.
1208          warning("Can't detect initial thread stack location - bad conversion");
1209          stack_start = (uintptr_t) &rlim;
1210       }
1211     } else {
1212       // For some reason we can't open /proc/self/stat (for example, running on
1213       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1214       // most cases, so don't abort:
1215       warning("Can't detect initial thread stack location - no /proc/self/stat");
1216       stack_start = (uintptr_t) &rlim;
1217     }
1218   }
1219 
1220   // Now we have a pointer (stack_start) very close to the stack top, the
1221   // next thing to do is to figure out the exact location of stack top. We
1222   // can find out the virtual memory area that contains stack_start by
1223   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1224   // and its upper limit is the real stack top. (again, this would fail if
1225   // running inside chroot, because /proc may not exist.)
1226 
1227   uintptr_t stack_top;
1228   address low, high;
1229   if (find_vma((address)stack_start, &low, &high)) {
1230     // success, "high" is the true stack top. (ignore "low", because initial
1231     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1232     stack_top = (uintptr_t)high;
1233   } else {
1234     // failed, likely because /proc/self/maps does not exist
1235     warning("Can't detect initial thread stack location - find_vma failed");
1236     // best effort: stack_start is normally within a few pages below the real
1237     // stack top, use it as stack top, and reduce stack size so we won't put
1238     // guard page outside stack.
1239     stack_top = stack_start;
1240     stack_size -= 16 * page_size();
1241   }
1242 
1243   // stack_top could be partially down the page so align it
1244   stack_top = align_size_up(stack_top, page_size());
1245 
1246   if (max_size && stack_size > max_size) {
1247      _initial_thread_stack_size = max_size;
1248   } else {
1249      _initial_thread_stack_size = stack_size;
1250   }
1251 
1252   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1253   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1254 }
1255 
1256 ////////////////////////////////////////////////////////////////////////////////
1257 // time support
1258 
1259 // Time since start-up in seconds to a fine granularity.
1260 // Used by VMSelfDestructTimer and the MemProfiler.
1261 double os::elapsedTime() {
1262 
1263   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1264 }
1265 
1266 jlong os::elapsed_counter() {
1267   return javaTimeNanos() - initial_time_count;
1268 }
1269 
1270 jlong os::elapsed_frequency() {
1271   return NANOSECS_PER_SEC; // nanosecond resolution
1272 }
1273 
1274 bool os::supports_vtime() { return true; }
1275 bool os::enable_vtime()   { return false; }
1276 bool os::vtime_enabled()  { return false; }
1277 
1278 double os::elapsedVTime() {
1279   struct rusage usage;
1280   int retval = getrusage(RUSAGE_THREAD, &usage);
1281   if (retval == 0) {
1282     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1283   } else {
1284     // better than nothing, but not much
1285     return elapsedTime();
1286   }
1287 }
1288 
1289 jlong os::javaTimeMillis() {
1290   timeval time;
1291   int status = gettimeofday(&time, NULL);
1292   assert(status != -1, "linux error");
1293   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1294 }
1295 
1296 #ifndef CLOCK_MONOTONIC
1297 #define CLOCK_MONOTONIC (1)
1298 #endif
1299 
1300 void os::Linux::clock_init() {
1301   // we do dlopen's in this particular order due to bug in linux
1302   // dynamical loader (see 6348968) leading to crash on exit
1303   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1304   if (handle == NULL) {
1305     handle = dlopen("librt.so", RTLD_LAZY);
1306   }
1307 
1308   if (handle) {
1309     int (*clock_getres_func)(clockid_t, struct timespec*) =
1310            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1311     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1312            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1313     if (clock_getres_func && clock_gettime_func) {
1314       // See if monotonic clock is supported by the kernel. Note that some
1315       // early implementations simply return kernel jiffies (updated every
1316       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1317       // for nano time (though the monotonic property is still nice to have).
1318       // It's fixed in newer kernels, however clock_getres() still returns
1319       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1320       // resolution for now. Hopefully as people move to new kernels, this
1321       // won't be a problem.
1322       struct timespec res;
1323       struct timespec tp;
1324       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1325           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1326         // yes, monotonic clock is supported
1327         _clock_gettime = clock_gettime_func;
1328         return;
1329       } else {
1330         // close librt if there is no monotonic clock
1331         dlclose(handle);
1332       }
1333     }
1334   }
1335   warning("No monotonic clock was available - timed services may " \
1336           "be adversely affected if the time-of-day clock changes");
1337 }
1338 
1339 #ifndef SYS_clock_getres
1340 
1341 #if defined(IA32) || defined(AMD64)
1342 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1343 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1344 #else
1345 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1346 #define sys_clock_getres(x,y)  -1
1347 #endif
1348 
1349 #else
1350 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1351 #endif
1352 
1353 void os::Linux::fast_thread_clock_init() {
1354   if (!UseLinuxPosixThreadCPUClocks) {
1355     return;
1356   }
1357   clockid_t clockid;
1358   struct timespec tp;
1359   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1360       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1361 
1362   // Switch to using fast clocks for thread cpu time if
1363   // the sys_clock_getres() returns 0 error code.
1364   // Note, that some kernels may support the current thread
1365   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1366   // returned by the pthread_getcpuclockid().
1367   // If the fast Posix clocks are supported then the sys_clock_getres()
1368   // must return at least tp.tv_sec == 0 which means a resolution
1369   // better than 1 sec. This is extra check for reliability.
1370 
1371   if(pthread_getcpuclockid_func &&
1372      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1373      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1374 
1375     _supports_fast_thread_cpu_time = true;
1376     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1377   }
1378 }
1379 
1380 jlong os::javaTimeNanos() {
1381   if (Linux::supports_monotonic_clock()) {
1382     struct timespec tp;
1383     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1384     assert(status == 0, "gettime error");
1385     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1386     return result;
1387   } else {
1388     timeval time;
1389     int status = gettimeofday(&time, NULL);
1390     assert(status != -1, "linux error");
1391     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1392     return 1000 * usecs;
1393   }
1394 }
1395 
1396 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1397   if (Linux::supports_monotonic_clock()) {
1398     info_ptr->max_value = ALL_64_BITS;
1399 
1400     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1401     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1402     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1403   } else {
1404     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1405     info_ptr->max_value = ALL_64_BITS;
1406 
1407     // gettimeofday is a real time clock so it skips
1408     info_ptr->may_skip_backward = true;
1409     info_ptr->may_skip_forward = true;
1410   }
1411 
1412   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1413 }
1414 
1415 // Return the real, user, and system times in seconds from an
1416 // arbitrary fixed point in the past.
1417 bool os::getTimesSecs(double* process_real_time,
1418                       double* process_user_time,
1419                       double* process_system_time) {
1420   struct tms ticks;
1421   clock_t real_ticks = times(&ticks);
1422 
1423   if (real_ticks == (clock_t) (-1)) {
1424     return false;
1425   } else {
1426     double ticks_per_second = (double) clock_tics_per_sec;
1427     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1428     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1429     *process_real_time = ((double) real_ticks) / ticks_per_second;
1430 
1431     return true;
1432   }
1433 }
1434 
1435 
1436 char * os::local_time_string(char *buf, size_t buflen) {
1437   struct tm t;
1438   time_t long_time;
1439   time(&long_time);
1440   localtime_r(&long_time, &t);
1441   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1442                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1443                t.tm_hour, t.tm_min, t.tm_sec);
1444   return buf;
1445 }
1446 
1447 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1448   return localtime_r(clock, res);
1449 }
1450 
1451 ////////////////////////////////////////////////////////////////////////////////
1452 // runtime exit support
1453 
1454 // Note: os::shutdown() might be called very early during initialization, or
1455 // called from signal handler. Before adding something to os::shutdown(), make
1456 // sure it is async-safe and can handle partially initialized VM.
1457 void os::shutdown() {
1458 
1459   // allow PerfMemory to attempt cleanup of any persistent resources
1460   perfMemory_exit();
1461 
1462   // needs to remove object in file system
1463   AttachListener::abort();
1464 
1465   // flush buffered output, finish log files
1466   ostream_abort();
1467 
1468   // Check for abort hook
1469   abort_hook_t abort_hook = Arguments::abort_hook();
1470   if (abort_hook != NULL) {
1471     abort_hook();
1472   }
1473 
1474 }
1475 
1476 // Note: os::abort() might be called very early during initialization, or
1477 // called from signal handler. Before adding something to os::abort(), make
1478 // sure it is async-safe and can handle partially initialized VM.
1479 void os::abort(bool dump_core) {
1480   os::shutdown();
1481   if (dump_core) {
1482 #ifndef PRODUCT
1483     fdStream out(defaultStream::output_fd());
1484     out.print_raw("Current thread is ");
1485     char buf[16];
1486     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1487     out.print_raw_cr(buf);
1488     out.print_raw_cr("Dumping core ...");
1489 #endif
1490     ::abort(); // dump core
1491   }
1492 
1493   ::exit(1);
1494 }
1495 
1496 // Die immediately, no exit hook, no abort hook, no cleanup.
1497 void os::die() {
1498   // _exit() on LinuxThreads only kills current thread
1499   ::abort();
1500 }
1501 
1502 
1503 // This method is a copy of JDK's sysGetLastErrorString
1504 // from src/solaris/hpi/src/system_md.c
1505 
1506 size_t os::lasterror(char *buf, size_t len) {
1507 
1508   if (errno == 0)  return 0;
1509 
1510   const char *s = ::strerror(errno);
1511   size_t n = ::strlen(s);
1512   if (n >= len) {
1513     n = len - 1;
1514   }
1515   ::strncpy(buf, s, n);
1516   buf[n] = '\0';
1517   return n;
1518 }
1519 
1520 intx os::current_thread_id() { return (intx)pthread_self(); }
1521 int os::current_process_id() {
1522 
1523   // Under the old linux thread library, linux gives each thread
1524   // its own process id. Because of this each thread will return
1525   // a different pid if this method were to return the result
1526   // of getpid(2). Linux provides no api that returns the pid
1527   // of the launcher thread for the vm. This implementation
1528   // returns a unique pid, the pid of the launcher thread
1529   // that starts the vm 'process'.
1530 
1531   // Under the NPTL, getpid() returns the same pid as the
1532   // launcher thread rather than a unique pid per thread.
1533   // Use gettid() if you want the old pre NPTL behaviour.
1534 
1535   // if you are looking for the result of a call to getpid() that
1536   // returns a unique pid for the calling thread, then look at the
1537   // OSThread::thread_id() method in osThread_linux.hpp file
1538 
1539   return (int)(_initial_pid ? _initial_pid : getpid());
1540 }
1541 
1542 // DLL functions
1543 
1544 const char* os::dll_file_extension() { return ".so"; }
1545 
1546 // This must be hard coded because it's the system's temporary
1547 // directory not the java application's temp directory, ala java.io.tmpdir.
1548 const char* os::get_temp_directory() { return "/tmp"; }
1549 
1550 static bool file_exists(const char* filename) {
1551   struct stat statbuf;
1552   if (filename == NULL || strlen(filename) == 0) {
1553     return false;
1554   }
1555   return os::stat(filename, &statbuf) == 0;
1556 }
1557 
1558 bool os::dll_build_name(char* buffer, size_t buflen,
1559                         const char* pname, const char* fname) {
1560   bool retval = false;
1561   // Copied from libhpi
1562   const size_t pnamelen = pname ? strlen(pname) : 0;
1563 
1564   // Return error on buffer overflow.
1565   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1566     return retval;
1567   }
1568 
1569   if (pnamelen == 0) {
1570     snprintf(buffer, buflen, "lib%s.so", fname);
1571     retval = true;
1572   } else if (strchr(pname, *os::path_separator()) != NULL) {
1573     int n;
1574     char** pelements = split_path(pname, &n);
1575     if (pelements == NULL) {
1576       return false;
1577     }
1578     for (int i = 0 ; i < n ; i++) {
1579       // Really shouldn't be NULL, but check can't hurt
1580       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1581         continue; // skip the empty path values
1582       }
1583       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1584       if (file_exists(buffer)) {
1585         retval = true;
1586         break;
1587       }
1588     }
1589     // release the storage
1590     for (int i = 0 ; i < n ; i++) {
1591       if (pelements[i] != NULL) {
1592         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1593       }
1594     }
1595     if (pelements != NULL) {
1596       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1597     }
1598   } else {
1599     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1600     retval = true;
1601   }
1602   return retval;
1603 }
1604 
1605 // check if addr is inside libjvm.so
1606 bool os::address_is_in_vm(address addr) {
1607   static address libjvm_base_addr;
1608   Dl_info dlinfo;
1609 
1610   if (libjvm_base_addr == NULL) {
1611     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1612       libjvm_base_addr = (address)dlinfo.dli_fbase;
1613     }
1614     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1615   }
1616 
1617   if (dladdr((void *)addr, &dlinfo) != 0) {
1618     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1619   }
1620 
1621   return false;
1622 }
1623 
1624 bool os::dll_address_to_function_name(address addr, char *buf,
1625                                       int buflen, int *offset) {
1626   // buf is not optional, but offset is optional
1627   assert(buf != NULL, "sanity check");
1628 
1629   Dl_info dlinfo;
1630 
1631   if (dladdr((void*)addr, &dlinfo) != 0) {
1632     // see if we have a matching symbol
1633     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1634       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1635         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1636       }
1637       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1638       return true;
1639     }
1640     // no matching symbol so try for just file info
1641     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1642       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1643                           buf, buflen, offset, dlinfo.dli_fname)) {
1644         return true;
1645       }
1646     }
1647   }
1648 
1649   buf[0] = '\0';
1650   if (offset != NULL) *offset = -1;
1651   return false;
1652 }
1653 
1654 struct _address_to_library_name {
1655   address addr;          // input : memory address
1656   size_t  buflen;        //         size of fname
1657   char*   fname;         // output: library name
1658   address base;          //         library base addr
1659 };
1660 
1661 static int address_to_library_name_callback(struct dl_phdr_info *info,
1662                                             size_t size, void *data) {
1663   int i;
1664   bool found = false;
1665   address libbase = NULL;
1666   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1667 
1668   // iterate through all loadable segments
1669   for (i = 0; i < info->dlpi_phnum; i++) {
1670     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1671     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1672       // base address of a library is the lowest address of its loaded
1673       // segments.
1674       if (libbase == NULL || libbase > segbase) {
1675         libbase = segbase;
1676       }
1677       // see if 'addr' is within current segment
1678       if (segbase <= d->addr &&
1679           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1680         found = true;
1681       }
1682     }
1683   }
1684 
1685   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1686   // so dll_address_to_library_name() can fall through to use dladdr() which
1687   // can figure out executable name from argv[0].
1688   if (found && info->dlpi_name && info->dlpi_name[0]) {
1689     d->base = libbase;
1690     if (d->fname) {
1691       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1692     }
1693     return 1;
1694   }
1695   return 0;
1696 }
1697 
1698 bool os::dll_address_to_library_name(address addr, char* buf,
1699                                      int buflen, int* offset) {
1700   // buf is not optional, but offset is optional
1701   assert(buf != NULL, "sanity check");
1702 
1703   Dl_info dlinfo;
1704   struct _address_to_library_name data;
1705 
1706   // There is a bug in old glibc dladdr() implementation that it could resolve
1707   // to wrong library name if the .so file has a base address != NULL. Here
1708   // we iterate through the program headers of all loaded libraries to find
1709   // out which library 'addr' really belongs to. This workaround can be
1710   // removed once the minimum requirement for glibc is moved to 2.3.x.
1711   data.addr = addr;
1712   data.fname = buf;
1713   data.buflen = buflen;
1714   data.base = NULL;
1715   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1716 
1717   if (rslt) {
1718      // buf already contains library name
1719      if (offset) *offset = addr - data.base;
1720      return true;
1721   }
1722   if (dladdr((void*)addr, &dlinfo) != 0) {
1723     if (dlinfo.dli_fname != NULL) {
1724       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1725     }
1726     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1727       *offset = addr - (address)dlinfo.dli_fbase;
1728     }
1729     return true;
1730   }
1731 
1732   buf[0] = '\0';
1733   if (offset) *offset = -1;
1734   return false;
1735 }
1736 
1737   // Loads .dll/.so and
1738   // in case of error it checks if .dll/.so was built for the
1739   // same architecture as Hotspot is running on
1740 
1741 
1742 // Remember the stack's state. The Linux dynamic linker will change
1743 // the stack to 'executable' at most once, so we must safepoint only once.
1744 bool os::Linux::_stack_is_executable = false;
1745 
1746 // VM operation that loads a library.  This is necessary if stack protection
1747 // of the Java stacks can be lost during loading the library.  If we
1748 // do not stop the Java threads, they can stack overflow before the stacks
1749 // are protected again.
1750 class VM_LinuxDllLoad: public VM_Operation {
1751  private:
1752   const char *_filename;
1753   char *_ebuf;
1754   int _ebuflen;
1755   void *_lib;
1756  public:
1757   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1758     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1759   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1760   void doit() {
1761     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1762     os::Linux::_stack_is_executable = true;
1763   }
1764   void* loaded_library() { return _lib; }
1765 };
1766 
1767 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1768 {
1769   void * result = NULL;
1770   bool load_attempted = false;
1771 
1772   // Check whether the library to load might change execution rights
1773   // of the stack. If they are changed, the protection of the stack
1774   // guard pages will be lost. We need a safepoint to fix this.
1775   //
1776   // See Linux man page execstack(8) for more info.
1777   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1778     ElfFile ef(filename);
1779     if (!ef.specifies_noexecstack()) {
1780       if (!is_init_completed()) {
1781         os::Linux::_stack_is_executable = true;
1782         // This is OK - No Java threads have been created yet, and hence no
1783         // stack guard pages to fix.
1784         //
1785         // This should happen only when you are building JDK7 using a very
1786         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1787         //
1788         // Dynamic loader will make all stacks executable after
1789         // this function returns, and will not do that again.
1790         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1791       } else {
1792         warning("You have loaded library %s which might have disabled stack guard. "
1793                 "The VM will try to fix the stack guard now.\n"
1794                 "It's highly recommended that you fix the library with "
1795                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1796                 filename);
1797 
1798         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1799         JavaThread *jt = JavaThread::current();
1800         if (jt->thread_state() != _thread_in_native) {
1801           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1802           // that requires ExecStack. Cannot enter safe point. Let's give up.
1803           warning("Unable to fix stack guard. Giving up.");
1804         } else {
1805           if (!LoadExecStackDllInVMThread) {
1806             // This is for the case where the DLL has an static
1807             // constructor function that executes JNI code. We cannot
1808             // load such DLLs in the VMThread.
1809             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1810           }
1811 
1812           ThreadInVMfromNative tiv(jt);
1813           debug_only(VMNativeEntryWrapper vew;)
1814 
1815           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1816           VMThread::execute(&op);
1817           if (LoadExecStackDllInVMThread) {
1818             result = op.loaded_library();
1819           }
1820           load_attempted = true;
1821         }
1822       }
1823     }
1824   }
1825 
1826   if (!load_attempted) {
1827     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1828   }
1829 
1830   if (result != NULL) {
1831     // Successful loading
1832     return result;
1833   }
1834 
1835   Elf32_Ehdr elf_head;
1836   int diag_msg_max_length=ebuflen-strlen(ebuf);
1837   char* diag_msg_buf=ebuf+strlen(ebuf);
1838 
1839   if (diag_msg_max_length==0) {
1840     // No more space in ebuf for additional diagnostics message
1841     return NULL;
1842   }
1843 
1844 
1845   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1846 
1847   if (file_descriptor < 0) {
1848     // Can't open library, report dlerror() message
1849     return NULL;
1850   }
1851 
1852   bool failed_to_read_elf_head=
1853     (sizeof(elf_head)!=
1854         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1855 
1856   ::close(file_descriptor);
1857   if (failed_to_read_elf_head) {
1858     // file i/o error - report dlerror() msg
1859     return NULL;
1860   }
1861 
1862   typedef struct {
1863     Elf32_Half  code;         // Actual value as defined in elf.h
1864     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1865     char        elf_class;    // 32 or 64 bit
1866     char        endianess;    // MSB or LSB
1867     char*       name;         // String representation
1868   } arch_t;
1869 
1870   #ifndef EM_486
1871   #define EM_486          6               /* Intel 80486 */
1872   #endif
1873 
1874   static const arch_t arch_array[]={
1875     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1876     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1877     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1878     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1879     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1880     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1881     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1882     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1883 #if defined(VM_LITTLE_ENDIAN)
1884     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1885 #else
1886     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1887 #endif
1888     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1889     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1890     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1891     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1892     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1893     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1894     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1895   };
1896 
1897   #if  (defined IA32)
1898     static  Elf32_Half running_arch_code=EM_386;
1899   #elif   (defined AMD64)
1900     static  Elf32_Half running_arch_code=EM_X86_64;
1901   #elif  (defined IA64)
1902     static  Elf32_Half running_arch_code=EM_IA_64;
1903   #elif  (defined __sparc) && (defined _LP64)
1904     static  Elf32_Half running_arch_code=EM_SPARCV9;
1905   #elif  (defined __sparc) && (!defined _LP64)
1906     static  Elf32_Half running_arch_code=EM_SPARC;
1907   #elif  (defined __powerpc64__)
1908     static  Elf32_Half running_arch_code=EM_PPC64;
1909   #elif  (defined __powerpc__)
1910     static  Elf32_Half running_arch_code=EM_PPC;
1911   #elif  (defined ARM)
1912     static  Elf32_Half running_arch_code=EM_ARM;
1913   #elif  (defined S390)
1914     static  Elf32_Half running_arch_code=EM_S390;
1915   #elif  (defined ALPHA)
1916     static  Elf32_Half running_arch_code=EM_ALPHA;
1917   #elif  (defined MIPSEL)
1918     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1919   #elif  (defined PARISC)
1920     static  Elf32_Half running_arch_code=EM_PARISC;
1921   #elif  (defined MIPS)
1922     static  Elf32_Half running_arch_code=EM_MIPS;
1923   #elif  (defined M68K)
1924     static  Elf32_Half running_arch_code=EM_68K;
1925   #else
1926     #error Method os::dll_load requires that one of following is defined:\
1927          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1928   #endif
1929 
1930   // Identify compatability class for VM's architecture and library's architecture
1931   // Obtain string descriptions for architectures
1932 
1933   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1934   int running_arch_index=-1;
1935 
1936   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1937     if (running_arch_code == arch_array[i].code) {
1938       running_arch_index    = i;
1939     }
1940     if (lib_arch.code == arch_array[i].code) {
1941       lib_arch.compat_class = arch_array[i].compat_class;
1942       lib_arch.name         = arch_array[i].name;
1943     }
1944   }
1945 
1946   assert(running_arch_index != -1,
1947     "Didn't find running architecture code (running_arch_code) in arch_array");
1948   if (running_arch_index == -1) {
1949     // Even though running architecture detection failed
1950     // we may still continue with reporting dlerror() message
1951     return NULL;
1952   }
1953 
1954   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1955     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1956     return NULL;
1957   }
1958 
1959 #ifndef S390
1960   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1962     return NULL;
1963   }
1964 #endif // !S390
1965 
1966   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1967     if ( lib_arch.name!=NULL ) {
1968       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1969         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1970         lib_arch.name, arch_array[running_arch_index].name);
1971     } else {
1972       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1973       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1974         lib_arch.code,
1975         arch_array[running_arch_index].name);
1976     }
1977   }
1978 
1979   return NULL;
1980 }
1981 
1982 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
1983   void * result = ::dlopen(filename, RTLD_LAZY);
1984   if (result == NULL) {
1985     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1986     ebuf[ebuflen-1] = '\0';
1987   }
1988   return result;
1989 }
1990 
1991 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
1992   void * result = NULL;
1993   if (LoadExecStackDllInVMThread) {
1994     result = dlopen_helper(filename, ebuf, ebuflen);
1995   }
1996 
1997   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1998   // library that requires an executable stack, or which does not have this
1999   // stack attribute set, dlopen changes the stack attribute to executable. The
2000   // read protection of the guard pages gets lost.
2001   //
2002   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2003   // may have been queued at the same time.
2004 
2005   if (!_stack_is_executable) {
2006     JavaThread *jt = Threads::first();
2007 
2008     while (jt) {
2009       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2010           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2011         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2012                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2013           warning("Attempt to reguard stack yellow zone failed.");
2014         }
2015       }
2016       jt = jt->next();
2017     }
2018   }
2019 
2020   return result;
2021 }
2022 
2023 /*
2024  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2025  * chances are you might want to run the generated bits against glibc-2.0
2026  * libdl.so, so always use locking for any version of glibc.
2027  */
2028 void* os::dll_lookup(void* handle, const char* name) {
2029   pthread_mutex_lock(&dl_mutex);
2030   void* res = dlsym(handle, name);
2031   pthread_mutex_unlock(&dl_mutex);
2032   return res;
2033 }
2034 
2035 void* os::get_default_process_handle() {
2036   return (void*)::dlopen(NULL, RTLD_LAZY);
2037 }
2038 
2039 static bool _print_ascii_file(const char* filename, outputStream* st) {
2040   int fd = ::open(filename, O_RDONLY);
2041   if (fd == -1) {
2042      return false;
2043   }
2044 
2045   char buf[32];
2046   int bytes;
2047   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2048     st->print_raw(buf, bytes);
2049   }
2050 
2051   ::close(fd);
2052 
2053   return true;
2054 }
2055 
2056 void os::print_dll_info(outputStream *st) {
2057    st->print_cr("Dynamic libraries:");
2058 
2059    char fname[32];
2060    pid_t pid = os::Linux::gettid();
2061 
2062    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2063 
2064    if (!_print_ascii_file(fname, st)) {
2065      st->print("Can not get library information for pid = %d\n", pid);
2066    }
2067 }
2068 
2069 void os::print_os_info_brief(outputStream* st) {
2070   os::Linux::print_distro_info(st);
2071 
2072   os::Posix::print_uname_info(st);
2073 
2074   os::Linux::print_libversion_info(st);
2075 
2076 }
2077 
2078 void os::print_os_info(outputStream* st) {
2079   st->print("OS:");
2080 
2081   os::Linux::print_distro_info(st);
2082 
2083   os::Posix::print_uname_info(st);
2084 
2085   // Print warning if unsafe chroot environment detected
2086   if (unsafe_chroot_detected) {
2087     st->print("WARNING!! ");
2088     st->print_cr("%s", unstable_chroot_error);
2089   }
2090 
2091   os::Linux::print_libversion_info(st);
2092 
2093   os::Posix::print_rlimit_info(st);
2094 
2095   os::Posix::print_load_average(st);
2096 
2097   os::Linux::print_full_memory_info(st);
2098 }
2099 
2100 // Try to identify popular distros.
2101 // Most Linux distributions have a /etc/XXX-release file, which contains
2102 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2103 // file that also contains the OS version string. Some have more than one
2104 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2105 // /etc/redhat-release.), so the order is important.
2106 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2107 // their own specific XXX-release file as well as a redhat-release file.
2108 // Because of this the XXX-release file needs to be searched for before the
2109 // redhat-release file.
2110 // Since Red Hat has a lsb-release file that is not very descriptive the
2111 // search for redhat-release needs to be before lsb-release.
2112 // Since the lsb-release file is the new standard it needs to be searched
2113 // before the older style release files.
2114 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2115 // next to last resort.  The os-release file is a new standard that contains
2116 // distribution information and the system-release file seems to be an old
2117 // standard that has been replaced by the lsb-release and os-release files.
2118 // Searching for the debian_version file is the last resort.  It contains
2119 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2120 // "Debian " is printed before the contents of the debian_version file.
2121 void os::Linux::print_distro_info(outputStream* st) {
2122    if (!_print_ascii_file("/etc/oracle-release", st) &&
2123        !_print_ascii_file("/etc/mandriva-release", st) &&
2124        !_print_ascii_file("/etc/mandrake-release", st) &&
2125        !_print_ascii_file("/etc/sun-release", st) &&
2126        !_print_ascii_file("/etc/redhat-release", st) &&
2127        !_print_ascii_file("/etc/lsb-release", st) &&
2128        !_print_ascii_file("/etc/SuSE-release", st) &&
2129        !_print_ascii_file("/etc/turbolinux-release", st) &&
2130        !_print_ascii_file("/etc/gentoo-release", st) &&
2131        !_print_ascii_file("/etc/ltib-release", st) &&
2132        !_print_ascii_file("/etc/angstrom-version", st) &&
2133        !_print_ascii_file("/etc/system-release", st) &&
2134        !_print_ascii_file("/etc/os-release", st)) {
2135 
2136        if (file_exists("/etc/debian_version")) {
2137          st->print("Debian ");
2138          _print_ascii_file("/etc/debian_version", st);
2139        } else {
2140          st->print("Linux");
2141        }
2142    }
2143    st->cr();
2144 }
2145 
2146 void os::Linux::print_libversion_info(outputStream* st) {
2147   // libc, pthread
2148   st->print("libc:");
2149   st->print("%s ", os::Linux::glibc_version());
2150   st->print("%s ", os::Linux::libpthread_version());
2151   if (os::Linux::is_LinuxThreads()) {
2152      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2153   }
2154   st->cr();
2155 }
2156 
2157 void os::Linux::print_full_memory_info(outputStream* st) {
2158    st->print("\n/proc/meminfo:\n");
2159    _print_ascii_file("/proc/meminfo", st);
2160    st->cr();
2161 }
2162 
2163 void os::print_memory_info(outputStream* st) {
2164 
2165   st->print("Memory:");
2166   st->print(" %dk page", os::vm_page_size()>>10);
2167 
2168   // values in struct sysinfo are "unsigned long"
2169   struct sysinfo si;
2170   sysinfo(&si);
2171 
2172   st->print(", physical " UINT64_FORMAT "k",
2173             os::physical_memory() >> 10);
2174   st->print("(" UINT64_FORMAT "k free)",
2175             os::available_memory() >> 10);
2176   st->print(", swap " UINT64_FORMAT "k",
2177             ((jlong)si.totalswap * si.mem_unit) >> 10);
2178   st->print("(" UINT64_FORMAT "k free)",
2179             ((jlong)si.freeswap * si.mem_unit) >> 10);
2180   st->cr();
2181 }
2182 
2183 void os::pd_print_cpu_info(outputStream* st) {
2184   st->print("\n/proc/cpuinfo:\n");
2185   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2186     st->print("  <Not Available>");
2187   }
2188   st->cr();
2189 }
2190 
2191 void os::print_siginfo(outputStream* st, void* siginfo) {
2192   const siginfo_t* si = (const siginfo_t*)siginfo;
2193 
2194   os::Posix::print_siginfo_brief(st, si);
2195 #if INCLUDE_CDS
2196   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2197       UseSharedSpaces) {
2198     FileMapInfo* mapinfo = FileMapInfo::current_info();
2199     if (mapinfo->is_in_shared_space(si->si_addr)) {
2200       st->print("\n\nError accessing class data sharing archive."   \
2201                 " Mapped file inaccessible during execution, "      \
2202                 " possible disk/network problem.");
2203     }
2204   }
2205 #endif
2206   st->cr();
2207 }
2208 
2209 
2210 static void print_signal_handler(outputStream* st, int sig,
2211                                  char* buf, size_t buflen);
2212 
2213 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2214   st->print_cr("Signal Handlers:");
2215   print_signal_handler(st, SIGSEGV, buf, buflen);
2216   print_signal_handler(st, SIGBUS , buf, buflen);
2217   print_signal_handler(st, SIGFPE , buf, buflen);
2218   print_signal_handler(st, SIGPIPE, buf, buflen);
2219   print_signal_handler(st, SIGXFSZ, buf, buflen);
2220   print_signal_handler(st, SIGILL , buf, buflen);
2221   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2222   print_signal_handler(st, SR_signum, buf, buflen);
2223   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2224   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2225   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2226   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2227 #if defined(PPC64)
2228   print_signal_handler(st, SIGTRAP, buf, buflen);
2229 #endif
2230 }
2231 
2232 static char saved_jvm_path[MAXPATHLEN] = {0};
2233 
2234 // Find the full path to the current module, libjvm.so
2235 void os::jvm_path(char *buf, jint buflen) {
2236   // Error checking.
2237   if (buflen < MAXPATHLEN) {
2238     assert(false, "must use a large-enough buffer");
2239     buf[0] = '\0';
2240     return;
2241   }
2242   // Lazy resolve the path to current module.
2243   if (saved_jvm_path[0] != 0) {
2244     strcpy(buf, saved_jvm_path);
2245     return;
2246   }
2247 
2248   char dli_fname[MAXPATHLEN];
2249   bool ret = dll_address_to_library_name(
2250                 CAST_FROM_FN_PTR(address, os::jvm_path),
2251                 dli_fname, sizeof(dli_fname), NULL);
2252   assert(ret, "cannot locate libjvm");
2253   char *rp = NULL;
2254   if (ret && dli_fname[0] != '\0') {
2255     rp = realpath(dli_fname, buf);
2256   }
2257   if (rp == NULL)
2258     return;
2259 
2260   if (Arguments::created_by_gamma_launcher()) {
2261     // Support for the gamma launcher.  Typical value for buf is
2262     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2263     // the right place in the string, then assume we are installed in a JDK and
2264     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2265     // up the path so it looks like libjvm.so is installed there (append a
2266     // fake suffix hotspot/libjvm.so).
2267     const char *p = buf + strlen(buf) - 1;
2268     for (int count = 0; p > buf && count < 5; ++count) {
2269       for (--p; p > buf && *p != '/'; --p)
2270         /* empty */ ;
2271     }
2272 
2273     if (strncmp(p, "/jre/lib/", 9) != 0) {
2274       // Look for JAVA_HOME in the environment.
2275       char* java_home_var = ::getenv("JAVA_HOME");
2276       if (java_home_var != NULL && java_home_var[0] != 0) {
2277         char* jrelib_p;
2278         int len;
2279 
2280         // Check the current module name "libjvm.so".
2281         p = strrchr(buf, '/');
2282         assert(strstr(p, "/libjvm") == p, "invalid library name");
2283 
2284         rp = realpath(java_home_var, buf);
2285         if (rp == NULL)
2286           return;
2287 
2288         // determine if this is a legacy image or modules image
2289         // modules image doesn't have "jre" subdirectory
2290         len = strlen(buf);
2291         assert(len < buflen, "Ran out of buffer room");
2292         jrelib_p = buf + len;
2293         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2294         if (0 != access(buf, F_OK)) {
2295           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2296         }
2297 
2298         if (0 == access(buf, F_OK)) {
2299           // Use current module name "libjvm.so"
2300           len = strlen(buf);
2301           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2302         } else {
2303           // Go back to path of .so
2304           rp = realpath(dli_fname, buf);
2305           if (rp == NULL)
2306             return;
2307         }
2308       }
2309     }
2310   }
2311 
2312   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2313 }
2314 
2315 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2316   // no prefix required, not even "_"
2317 }
2318 
2319 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2320   // no suffix required
2321 }
2322 
2323 ////////////////////////////////////////////////////////////////////////////////
2324 // sun.misc.Signal support
2325 
2326 static volatile jint sigint_count = 0;
2327 
2328 static void
2329 UserHandler(int sig, void *siginfo, void *context) {
2330   // 4511530 - sem_post is serialized and handled by the manager thread. When
2331   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2332   // don't want to flood the manager thread with sem_post requests.
2333   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2334       return;
2335 
2336   // Ctrl-C is pressed during error reporting, likely because the error
2337   // handler fails to abort. Let VM die immediately.
2338   if (sig == SIGINT && is_error_reported()) {
2339      os::die();
2340   }
2341 
2342   os::signal_notify(sig);
2343 }
2344 
2345 void* os::user_handler() {
2346   return CAST_FROM_FN_PTR(void*, UserHandler);
2347 }
2348 
2349 class Semaphore : public StackObj {
2350   public:
2351     Semaphore();
2352     ~Semaphore();
2353     void signal();
2354     void wait();
2355     bool trywait();
2356     bool timedwait(unsigned int sec, int nsec);
2357   private:
2358     sem_t _semaphore;
2359 };
2360 
2361 Semaphore::Semaphore() {
2362   sem_init(&_semaphore, 0, 0);
2363 }
2364 
2365 Semaphore::~Semaphore() {
2366   sem_destroy(&_semaphore);
2367 }
2368 
2369 void Semaphore::signal() {
2370   sem_post(&_semaphore);
2371 }
2372 
2373 void Semaphore::wait() {
2374   sem_wait(&_semaphore);
2375 }
2376 
2377 bool Semaphore::trywait() {
2378   return sem_trywait(&_semaphore) == 0;
2379 }
2380 
2381 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2382 
2383   struct timespec ts;
2384   // Semaphore's are always associated with CLOCK_REALTIME
2385   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2386   // see unpackTime for discussion on overflow checking
2387   if (sec >= MAX_SECS) {
2388     ts.tv_sec += MAX_SECS;
2389     ts.tv_nsec = 0;
2390   } else {
2391     ts.tv_sec += sec;
2392     ts.tv_nsec += nsec;
2393     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2394       ts.tv_nsec -= NANOSECS_PER_SEC;
2395       ++ts.tv_sec; // note: this must be <= max_secs
2396     }
2397   }
2398 
2399   while (1) {
2400     int result = sem_timedwait(&_semaphore, &ts);
2401     if (result == 0) {
2402       return true;
2403     } else if (errno == EINTR) {
2404       continue;
2405     } else if (errno == ETIMEDOUT) {
2406       return false;
2407     } else {
2408       return false;
2409     }
2410   }
2411 }
2412 
2413 extern "C" {
2414   typedef void (*sa_handler_t)(int);
2415   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2416 }
2417 
2418 void* os::signal(int signal_number, void* handler) {
2419   struct sigaction sigAct, oldSigAct;
2420 
2421   sigfillset(&(sigAct.sa_mask));
2422   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2423   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2424 
2425   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2426     // -1 means registration failed
2427     return (void *)-1;
2428   }
2429 
2430   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2431 }
2432 
2433 void os::signal_raise(int signal_number) {
2434   ::raise(signal_number);
2435 }
2436 
2437 /*
2438  * The following code is moved from os.cpp for making this
2439  * code platform specific, which it is by its very nature.
2440  */
2441 
2442 // Will be modified when max signal is changed to be dynamic
2443 int os::sigexitnum_pd() {
2444   return NSIG;
2445 }
2446 
2447 // a counter for each possible signal value
2448 static volatile jint pending_signals[NSIG+1] = { 0 };
2449 
2450 // Linux(POSIX) specific hand shaking semaphore.
2451 static sem_t sig_sem;
2452 static Semaphore sr_semaphore;
2453 
2454 void os::signal_init_pd() {
2455   // Initialize signal structures
2456   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2457 
2458   // Initialize signal semaphore
2459   ::sem_init(&sig_sem, 0, 0);
2460 }
2461 
2462 void os::signal_notify(int sig) {
2463   Atomic::inc(&pending_signals[sig]);
2464   ::sem_post(&sig_sem);
2465 }
2466 
2467 static int check_pending_signals(bool wait) {
2468   Atomic::store(0, &sigint_count);
2469   for (;;) {
2470     for (int i = 0; i < NSIG + 1; i++) {
2471       jint n = pending_signals[i];
2472       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2473         return i;
2474       }
2475     }
2476     if (!wait) {
2477       return -1;
2478     }
2479     JavaThread *thread = JavaThread::current();
2480     ThreadBlockInVM tbivm(thread);
2481 
2482     bool threadIsSuspended;
2483     do {
2484       thread->set_suspend_equivalent();
2485       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2486       ::sem_wait(&sig_sem);
2487 
2488       // were we externally suspended while we were waiting?
2489       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2490       if (threadIsSuspended) {
2491         //
2492         // The semaphore has been incremented, but while we were waiting
2493         // another thread suspended us. We don't want to continue running
2494         // while suspended because that would surprise the thread that
2495         // suspended us.
2496         //
2497         ::sem_post(&sig_sem);
2498 
2499         thread->java_suspend_self();
2500       }
2501     } while (threadIsSuspended);
2502   }
2503 }
2504 
2505 int os::signal_lookup() {
2506   return check_pending_signals(false);
2507 }
2508 
2509 int os::signal_wait() {
2510   return check_pending_signals(true);
2511 }
2512 
2513 ////////////////////////////////////////////////////////////////////////////////
2514 // Virtual Memory
2515 
2516 int os::vm_page_size() {
2517   // Seems redundant as all get out
2518   assert(os::Linux::page_size() != -1, "must call os::init");
2519   return os::Linux::page_size();
2520 }
2521 
2522 // Solaris allocates memory by pages.
2523 int os::vm_allocation_granularity() {
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Rationale behind this function:
2529 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2530 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2531 //  samples for JITted code. Here we create private executable mapping over the code cache
2532 //  and then we can use standard (well, almost, as mapping can change) way to provide
2533 //  info for the reporting script by storing timestamp and location of symbol
2534 void linux_wrap_code(char* base, size_t size) {
2535   static volatile jint cnt = 0;
2536 
2537   if (!UseOprofile) {
2538     return;
2539   }
2540 
2541   char buf[PATH_MAX+1];
2542   int num = Atomic::add(1, &cnt);
2543 
2544   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2545            os::get_temp_directory(), os::current_process_id(), num);
2546   unlink(buf);
2547 
2548   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2549 
2550   if (fd != -1) {
2551     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2552     if (rv != (off_t)-1) {
2553       if (::write(fd, "", 1) == 1) {
2554         mmap(base, size,
2555              PROT_READ|PROT_WRITE|PROT_EXEC,
2556              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2557       }
2558     }
2559     ::close(fd);
2560     unlink(buf);
2561   }
2562 }
2563 
2564 static bool recoverable_mmap_error(int err) {
2565   // See if the error is one we can let the caller handle. This
2566   // list of errno values comes from JBS-6843484. I can't find a
2567   // Linux man page that documents this specific set of errno
2568   // values so while this list currently matches Solaris, it may
2569   // change as we gain experience with this failure mode.
2570   switch (err) {
2571   case EBADF:
2572   case EINVAL:
2573   case ENOTSUP:
2574     // let the caller deal with these errors
2575     return true;
2576 
2577   default:
2578     // Any remaining errors on this OS can cause our reserved mapping
2579     // to be lost. That can cause confusion where different data
2580     // structures think they have the same memory mapped. The worst
2581     // scenario is if both the VM and a library think they have the
2582     // same memory mapped.
2583     return false;
2584   }
2585 }
2586 
2587 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2588                                     int err) {
2589   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2590           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2591           strerror(err), err);
2592 }
2593 
2594 static void warn_fail_commit_memory(char* addr, size_t size,
2595                                     size_t alignment_hint, bool exec,
2596                                     int err) {
2597   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2598           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2599           alignment_hint, exec, strerror(err), err);
2600 }
2601 
2602 // NOTE: Linux kernel does not really reserve the pages for us.
2603 //       All it does is to check if there are enough free pages
2604 //       left at the time of mmap(). This could be a potential
2605 //       problem.
2606 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2607   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2608   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2609                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2610   if (res != (uintptr_t) MAP_FAILED) {
2611     if (UseNUMAInterleaving) {
2612       numa_make_global(addr, size);
2613     }
2614     return 0;
2615   }
2616 
2617   int err = errno;  // save errno from mmap() call above
2618 
2619   if (!recoverable_mmap_error(err)) {
2620     warn_fail_commit_memory(addr, size, exec, err);
2621     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2622   }
2623 
2624   return err;
2625 }
2626 
2627 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2628   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2629 }
2630 
2631 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2632                                   const char* mesg) {
2633   assert(mesg != NULL, "mesg must be specified");
2634   int err = os::Linux::commit_memory_impl(addr, size, exec);
2635   if (err != 0) {
2636     // the caller wants all commit errors to exit with the specified mesg:
2637     warn_fail_commit_memory(addr, size, exec, err);
2638     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2639   }
2640 }
2641 
2642 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2643 #ifndef MAP_HUGETLB
2644 #define MAP_HUGETLB 0x40000
2645 #endif
2646 
2647 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2648 #ifndef MADV_HUGEPAGE
2649 #define MADV_HUGEPAGE 14
2650 #endif
2651 
2652 int os::Linux::commit_memory_impl(char* addr, size_t size,
2653                                   size_t alignment_hint, bool exec) {
2654   int err = os::Linux::commit_memory_impl(addr, size, exec);
2655   if (err == 0) {
2656     realign_memory(addr, size, alignment_hint);
2657   }
2658   return err;
2659 }
2660 
2661 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2662                           bool exec) {
2663   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2664 }
2665 
2666 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2667                                   size_t alignment_hint, bool exec,
2668                                   const char* mesg) {
2669   assert(mesg != NULL, "mesg must be specified");
2670   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2671   if (err != 0) {
2672     // the caller wants all commit errors to exit with the specified mesg:
2673     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2674     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2675   }
2676 }
2677 
2678 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2679   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2680     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2681     // be supported or the memory may already be backed by huge pages.
2682     ::madvise(addr, bytes, MADV_HUGEPAGE);
2683   }
2684 }
2685 
2686 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2687   // This method works by doing an mmap over an existing mmaping and effectively discarding
2688   // the existing pages. However it won't work for SHM-based large pages that cannot be
2689   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2690   // small pages on top of the SHM segment. This method always works for small pages, so we
2691   // allow that in any case.
2692   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2693     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2694   }
2695 }
2696 
2697 void os::numa_make_global(char *addr, size_t bytes) {
2698   Linux::numa_interleave_memory(addr, bytes);
2699 }
2700 
2701 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2702 // bind policy to MPOL_PREFERRED for the current thread.
2703 #define USE_MPOL_PREFERRED 0
2704 
2705 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2706   // To make NUMA and large pages more robust when both enabled, we need to ease
2707   // the requirements on where the memory should be allocated. MPOL_BIND is the
2708   // default policy and it will force memory to be allocated on the specified
2709   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2710   // the specified node, but will not force it. Using this policy will prevent
2711   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2712   // free large pages.
2713   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2714   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2715 }
2716 
2717 bool os::numa_topology_changed()   { return false; }
2718 
2719 size_t os::numa_get_groups_num() {
2720   int max_node = Linux::numa_max_node();
2721   return max_node > 0 ? max_node + 1 : 1;
2722 }
2723 
2724 int os::numa_get_group_id() {
2725   int cpu_id = Linux::sched_getcpu();
2726   if (cpu_id != -1) {
2727     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2728     if (lgrp_id != -1) {
2729       return lgrp_id;
2730     }
2731   }
2732   return 0;
2733 }
2734 
2735 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2736   for (size_t i = 0; i < size; i++) {
2737     ids[i] = i;
2738   }
2739   return size;
2740 }
2741 
2742 bool os::get_page_info(char *start, page_info* info) {
2743   return false;
2744 }
2745 
2746 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2747   return end;
2748 }
2749 
2750 
2751 int os::Linux::sched_getcpu_syscall(void) {
2752   unsigned int cpu;
2753   int retval = -1;
2754 
2755 #if defined(IA32)
2756 # ifndef SYS_getcpu
2757 # define SYS_getcpu 318
2758 # endif
2759   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2760 #elif defined(AMD64)
2761 // Unfortunately we have to bring all these macros here from vsyscall.h
2762 // to be able to compile on old linuxes.
2763 # define __NR_vgetcpu 2
2764 # define VSYSCALL_START (-10UL << 20)
2765 # define VSYSCALL_SIZE 1024
2766 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2767   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2768   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2769   retval = vgetcpu(&cpu, NULL, NULL);
2770 #endif
2771 
2772   return (retval == -1) ? retval : cpu;
2773 }
2774 
2775 // Something to do with the numa-aware allocator needs these symbols
2776 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2777 extern "C" JNIEXPORT void numa_error(char *where) { }
2778 extern "C" JNIEXPORT int fork1() { return fork(); }
2779 
2780 
2781 // If we are running with libnuma version > 2, then we should
2782 // be trying to use symbols with versions 1.1
2783 // If we are running with earlier version, which did not have symbol versions,
2784 // we should use the base version.
2785 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2786   void *f = dlvsym(handle, name, "libnuma_1.1");
2787   if (f == NULL) {
2788     f = dlsym(handle, name);
2789   }
2790   return f;
2791 }
2792 
2793 bool os::Linux::libnuma_init() {
2794   // sched_getcpu() should be in libc.
2795   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2796                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2797 
2798   // If it's not, try a direct syscall.
2799   if (sched_getcpu() == -1)
2800     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2801 
2802   if (sched_getcpu() != -1) { // Does it work?
2803     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2804     if (handle != NULL) {
2805       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2806                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2807       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2808                                        libnuma_dlsym(handle, "numa_max_node")));
2809       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2810                                         libnuma_dlsym(handle, "numa_available")));
2811       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2812                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2813       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2814                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2815       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2816                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2817 
2818 
2819       if (numa_available() != -1) {
2820         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2821         // Create a cpu -> node mapping
2822         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2823         rebuild_cpu_to_node_map();
2824         return true;
2825       }
2826     }
2827   }
2828   return false;
2829 }
2830 
2831 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2832 // The table is later used in get_node_by_cpu().
2833 void os::Linux::rebuild_cpu_to_node_map() {
2834   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2835                               // in libnuma (possible values are starting from 16,
2836                               // and continuing up with every other power of 2, but less
2837                               // than the maximum number of CPUs supported by kernel), and
2838                               // is a subject to change (in libnuma version 2 the requirements
2839                               // are more reasonable) we'll just hardcode the number they use
2840                               // in the library.
2841   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2842 
2843   size_t cpu_num = os::active_processor_count();
2844   size_t cpu_map_size = NCPUS / BitsPerCLong;
2845   size_t cpu_map_valid_size =
2846     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2847 
2848   cpu_to_node()->clear();
2849   cpu_to_node()->at_grow(cpu_num - 1);
2850   size_t node_num = numa_get_groups_num();
2851 
2852   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2853   for (size_t i = 0; i < node_num; i++) {
2854     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2855       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2856         if (cpu_map[j] != 0) {
2857           for (size_t k = 0; k < BitsPerCLong; k++) {
2858             if (cpu_map[j] & (1UL << k)) {
2859               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2860             }
2861           }
2862         }
2863       }
2864     }
2865   }
2866   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2867 }
2868 
2869 int os::Linux::get_node_by_cpu(int cpu_id) {
2870   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2871     return cpu_to_node()->at(cpu_id);
2872   }
2873   return -1;
2874 }
2875 
2876 GrowableArray<int>* os::Linux::_cpu_to_node;
2877 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2878 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2879 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2880 os::Linux::numa_available_func_t os::Linux::_numa_available;
2881 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2882 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2883 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2884 unsigned long* os::Linux::_numa_all_nodes;
2885 
2886 bool os::pd_uncommit_memory(char* addr, size_t size) {
2887   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2888                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2889   return res  != (uintptr_t) MAP_FAILED;
2890 }
2891 
2892 static
2893 address get_stack_commited_bottom(address bottom, size_t size) {
2894   address nbot = bottom;
2895   address ntop = bottom + size;
2896 
2897   size_t page_sz = os::vm_page_size();
2898   unsigned pages = size / page_sz;
2899 
2900   unsigned char vec[1];
2901   unsigned imin = 1, imax = pages + 1, imid;
2902   int mincore_return_value = 0;
2903 
2904   assert(imin <= imax, "Unexpected page size");
2905 
2906   while (imin < imax) {
2907     imid = (imax + imin) / 2;
2908     nbot = ntop - (imid * page_sz);
2909 
2910     // Use a trick with mincore to check whether the page is mapped or not.
2911     // mincore sets vec to 1 if page resides in memory and to 0 if page
2912     // is swapped output but if page we are asking for is unmapped
2913     // it returns -1,ENOMEM
2914     mincore_return_value = mincore(nbot, page_sz, vec);
2915 
2916     if (mincore_return_value == -1) {
2917       // Page is not mapped go up
2918       // to find first mapped page
2919       if (errno != EAGAIN) {
2920         assert(errno == ENOMEM, "Unexpected mincore errno");
2921         imax = imid;
2922       }
2923     } else {
2924       // Page is mapped go down
2925       // to find first not mapped page
2926       imin = imid + 1;
2927     }
2928   }
2929 
2930   nbot = nbot + page_sz;
2931 
2932   // Adjust stack bottom one page up if last checked page is not mapped
2933   if (mincore_return_value == -1) {
2934     nbot = nbot + page_sz;
2935   }
2936 
2937   return nbot;
2938 }
2939 
2940 
2941 // Linux uses a growable mapping for the stack, and if the mapping for
2942 // the stack guard pages is not removed when we detach a thread the
2943 // stack cannot grow beyond the pages where the stack guard was
2944 // mapped.  If at some point later in the process the stack expands to
2945 // that point, the Linux kernel cannot expand the stack any further
2946 // because the guard pages are in the way, and a segfault occurs.
2947 //
2948 // However, it's essential not to split the stack region by unmapping
2949 // a region (leaving a hole) that's already part of the stack mapping,
2950 // so if the stack mapping has already grown beyond the guard pages at
2951 // the time we create them, we have to truncate the stack mapping.
2952 // So, we need to know the extent of the stack mapping when
2953 // create_stack_guard_pages() is called.
2954 
2955 // We only need this for stacks that are growable: at the time of
2956 // writing thread stacks don't use growable mappings (i.e. those
2957 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2958 // only applies to the main thread.
2959 
2960 // If the (growable) stack mapping already extends beyond the point
2961 // where we're going to put our guard pages, truncate the mapping at
2962 // that point by munmap()ping it.  This ensures that when we later
2963 // munmap() the guard pages we don't leave a hole in the stack
2964 // mapping. This only affects the main/initial thread
2965 
2966 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2967 
2968   if (os::Linux::is_initial_thread()) {
2969     // As we manually grow stack up to bottom inside create_attached_thread(),
2970     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2971     // we don't need to do anything special.
2972     // Check it first, before calling heavy function.
2973     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2974     unsigned char vec[1];
2975 
2976     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2977       // Fallback to slow path on all errors, including EAGAIN
2978       stack_extent = (uintptr_t) get_stack_commited_bottom(
2979                                     os::Linux::initial_thread_stack_bottom(),
2980                                     (size_t)addr - stack_extent);
2981     }
2982 
2983     if (stack_extent < (uintptr_t)addr) {
2984       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2985     }
2986   }
2987 
2988   return os::commit_memory(addr, size, !ExecMem);
2989 }
2990 
2991 // If this is a growable mapping, remove the guard pages entirely by
2992 // munmap()ping them.  If not, just call uncommit_memory(). This only
2993 // affects the main/initial thread, but guard against future OS changes
2994 // It's safe to always unmap guard pages for initial thread because we
2995 // always place it right after end of the mapped region
2996 
2997 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2998   uintptr_t stack_extent, stack_base;
2999 
3000   if (os::Linux::is_initial_thread()) {
3001     return ::munmap(addr, size) == 0;
3002   }
3003 
3004   return os::uncommit_memory(addr, size);
3005 }
3006 
3007 static address _highest_vm_reserved_address = NULL;
3008 
3009 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3010 // at 'requested_addr'. If there are existing memory mappings at the same
3011 // location, however, they will be overwritten. If 'fixed' is false,
3012 // 'requested_addr' is only treated as a hint, the return value may or
3013 // may not start from the requested address. Unlike Linux mmap(), this
3014 // function returns NULL to indicate failure.
3015 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3016   char * addr;
3017   int flags;
3018 
3019   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3020   if (fixed) {
3021     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3022     flags |= MAP_FIXED;
3023   }
3024 
3025   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3026   // touch an uncommitted page. Otherwise, the read/write might
3027   // succeed if we have enough swap space to back the physical page.
3028   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3029                        flags, -1, 0);
3030 
3031   if (addr != MAP_FAILED) {
3032     // anon_mmap() should only get called during VM initialization,
3033     // don't need lock (actually we can skip locking even it can be called
3034     // from multiple threads, because _highest_vm_reserved_address is just a
3035     // hint about the upper limit of non-stack memory regions.)
3036     if ((address)addr + bytes > _highest_vm_reserved_address) {
3037       _highest_vm_reserved_address = (address)addr + bytes;
3038     }
3039   }
3040 
3041   return addr == MAP_FAILED ? NULL : addr;
3042 }
3043 
3044 // Don't update _highest_vm_reserved_address, because there might be memory
3045 // regions above addr + size. If so, releasing a memory region only creates
3046 // a hole in the address space, it doesn't help prevent heap-stack collision.
3047 //
3048 static int anon_munmap(char * addr, size_t size) {
3049   return ::munmap(addr, size) == 0;
3050 }
3051 
3052 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3053                          size_t alignment_hint) {
3054   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3055 }
3056 
3057 bool os::pd_release_memory(char* addr, size_t size) {
3058   return anon_munmap(addr, size);
3059 }
3060 
3061 static address highest_vm_reserved_address() {
3062   return _highest_vm_reserved_address;
3063 }
3064 
3065 static bool linux_mprotect(char* addr, size_t size, int prot) {
3066   // Linux wants the mprotect address argument to be page aligned.
3067   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3068 
3069   // According to SUSv3, mprotect() should only be used with mappings
3070   // established by mmap(), and mmap() always maps whole pages. Unaligned
3071   // 'addr' likely indicates problem in the VM (e.g. trying to change
3072   // protection of malloc'ed or statically allocated memory). Check the
3073   // caller if you hit this assert.
3074   assert(addr == bottom, "sanity check");
3075 
3076   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3077   return ::mprotect(bottom, size, prot) == 0;
3078 }
3079 
3080 // Set protections specified
3081 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3082                         bool is_committed) {
3083   unsigned int p = 0;
3084   switch (prot) {
3085   case MEM_PROT_NONE: p = PROT_NONE; break;
3086   case MEM_PROT_READ: p = PROT_READ; break;
3087   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3088   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3089   default:
3090     ShouldNotReachHere();
3091   }
3092   // is_committed is unused.
3093   return linux_mprotect(addr, bytes, p);
3094 }
3095 
3096 bool os::guard_memory(char* addr, size_t size) {
3097   return linux_mprotect(addr, size, PROT_NONE);
3098 }
3099 
3100 bool os::unguard_memory(char* addr, size_t size) {
3101   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3102 }
3103 
3104 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3105   bool result = false;
3106   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3107                  MAP_ANONYMOUS|MAP_PRIVATE,
3108                  -1, 0);
3109   if (p != MAP_FAILED) {
3110     void *aligned_p = align_ptr_up(p, page_size);
3111 
3112     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3113 
3114     munmap(p, page_size * 2);
3115   }
3116 
3117   if (warn && !result) {
3118     warning("TransparentHugePages is not supported by the operating system.");
3119   }
3120 
3121   return result;
3122 }
3123 
3124 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3125   bool result = false;
3126   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3127                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3128                  -1, 0);
3129 
3130   if (p != MAP_FAILED) {
3131     // We don't know if this really is a huge page or not.
3132     FILE *fp = fopen("/proc/self/maps", "r");
3133     if (fp) {
3134       while (!feof(fp)) {
3135         char chars[257];
3136         long x = 0;
3137         if (fgets(chars, sizeof(chars), fp)) {
3138           if (sscanf(chars, "%lx-%*x", &x) == 1
3139               && x == (long)p) {
3140             if (strstr (chars, "hugepage")) {
3141               result = true;
3142               break;
3143             }
3144           }
3145         }
3146       }
3147       fclose(fp);
3148     }
3149     munmap(p, page_size);
3150   }
3151 
3152   if (warn && !result) {
3153     warning("HugeTLBFS is not supported by the operating system.");
3154   }
3155 
3156   return result;
3157 }
3158 
3159 /*
3160 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3161 *
3162 * From the coredump_filter documentation:
3163 *
3164 * - (bit 0) anonymous private memory
3165 * - (bit 1) anonymous shared memory
3166 * - (bit 2) file-backed private memory
3167 * - (bit 3) file-backed shared memory
3168 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3169 *           effective only if the bit 2 is cleared)
3170 * - (bit 5) hugetlb private memory
3171 * - (bit 6) hugetlb shared memory
3172 */
3173 static void set_coredump_filter(void) {
3174   FILE *f;
3175   long cdm;
3176 
3177   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3178     return;
3179   }
3180 
3181   if (fscanf(f, "%lx", &cdm) != 1) {
3182     fclose(f);
3183     return;
3184   }
3185 
3186   rewind(f);
3187 
3188   if ((cdm & LARGEPAGES_BIT) == 0) {
3189     cdm |= LARGEPAGES_BIT;
3190     fprintf(f, "%#lx", cdm);
3191   }
3192 
3193   fclose(f);
3194 }
3195 
3196 // Large page support
3197 
3198 static size_t _large_page_size = 0;
3199 
3200 size_t os::Linux::find_large_page_size() {
3201   size_t large_page_size = 0;
3202 
3203   // large_page_size on Linux is used to round up heap size. x86 uses either
3204   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3205   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3206   // page as large as 256M.
3207   //
3208   // Here we try to figure out page size by parsing /proc/meminfo and looking
3209   // for a line with the following format:
3210   //    Hugepagesize:     2048 kB
3211   //
3212   // If we can't determine the value (e.g. /proc is not mounted, or the text
3213   // format has been changed), we'll use the largest page size supported by
3214   // the processor.
3215 
3216 #ifndef ZERO
3217   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3218                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3219 #endif // ZERO
3220 
3221   FILE *fp = fopen("/proc/meminfo", "r");
3222   if (fp) {
3223     while (!feof(fp)) {
3224       int x = 0;
3225       char buf[16];
3226       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3227         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3228           large_page_size = x * K;
3229           break;
3230         }
3231       } else {
3232         // skip to next line
3233         for (;;) {
3234           int ch = fgetc(fp);
3235           if (ch == EOF || ch == (int)'\n') break;
3236         }
3237       }
3238     }
3239     fclose(fp);
3240   }
3241 
3242   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3243     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3244         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3245         proper_unit_for_byte_size(large_page_size));
3246   }
3247 
3248   return large_page_size;
3249 }
3250 
3251 size_t os::Linux::setup_large_page_size() {
3252   _large_page_size = Linux::find_large_page_size();
3253   const size_t default_page_size = (size_t)Linux::page_size();
3254   if (_large_page_size > default_page_size) {
3255     _page_sizes[0] = _large_page_size;
3256     _page_sizes[1] = default_page_size;
3257     _page_sizes[2] = 0;
3258   }
3259 
3260   return _large_page_size;
3261 }
3262 
3263 bool os::Linux::setup_large_page_type(size_t page_size) {
3264   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3265       FLAG_IS_DEFAULT(UseSHM) &&
3266       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3267 
3268     // The type of large pages has not been specified by the user.
3269 
3270     // Try UseHugeTLBFS and then UseSHM.
3271     UseHugeTLBFS = UseSHM = true;
3272 
3273     // Don't try UseTransparentHugePages since there are known
3274     // performance issues with it turned on. This might change in the future.
3275     UseTransparentHugePages = false;
3276   }
3277 
3278   if (UseTransparentHugePages) {
3279     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3280     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3281       UseHugeTLBFS = false;
3282       UseSHM = false;
3283       return true;
3284     }
3285     UseTransparentHugePages = false;
3286   }
3287 
3288   if (UseHugeTLBFS) {
3289     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3290     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3291       UseSHM = false;
3292       return true;
3293     }
3294     UseHugeTLBFS = false;
3295   }
3296 
3297   return UseSHM;
3298 }
3299 
3300 void os::large_page_init() {
3301   if (!UseLargePages &&
3302       !UseTransparentHugePages &&
3303       !UseHugeTLBFS &&
3304       !UseSHM) {
3305     // Not using large pages.
3306     return;
3307   }
3308 
3309   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3310     // The user explicitly turned off large pages.
3311     // Ignore the rest of the large pages flags.
3312     UseTransparentHugePages = false;
3313     UseHugeTLBFS = false;
3314     UseSHM = false;
3315     return;
3316   }
3317 
3318   size_t large_page_size = Linux::setup_large_page_size();
3319   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3320 
3321   set_coredump_filter();
3322 }
3323 
3324 #ifndef SHM_HUGETLB
3325 #define SHM_HUGETLB 04000
3326 #endif
3327 
3328 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3329   // "exec" is passed in but not used.  Creating the shared image for
3330   // the code cache doesn't have an SHM_X executable permission to check.
3331   assert(UseLargePages && UseSHM, "only for SHM large pages");
3332   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3333 
3334   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3335     return NULL; // Fallback to small pages.
3336   }
3337 
3338   key_t key = IPC_PRIVATE;
3339   char *addr;
3340 
3341   bool warn_on_failure = UseLargePages &&
3342                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3343                          !FLAG_IS_DEFAULT(UseSHM) ||
3344                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3345                         );
3346   char msg[128];
3347 
3348   // Create a large shared memory region to attach to based on size.
3349   // Currently, size is the total size of the heap
3350   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3351   if (shmid == -1) {
3352      // Possible reasons for shmget failure:
3353      // 1. shmmax is too small for Java heap.
3354      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3355      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3356      // 2. not enough large page memory.
3357      //    > check available large pages: cat /proc/meminfo
3358      //    > increase amount of large pages:
3359      //          echo new_value > /proc/sys/vm/nr_hugepages
3360      //      Note 1: different Linux may use different name for this property,
3361      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3362      //      Note 2: it's possible there's enough physical memory available but
3363      //            they are so fragmented after a long run that they can't
3364      //            coalesce into large pages. Try to reserve large pages when
3365      //            the system is still "fresh".
3366      if (warn_on_failure) {
3367        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3368        warning("%s", msg);
3369      }
3370      return NULL;
3371   }
3372 
3373   // attach to the region
3374   addr = (char*)shmat(shmid, req_addr, 0);
3375   int err = errno;
3376 
3377   // Remove shmid. If shmat() is successful, the actual shared memory segment
3378   // will be deleted when it's detached by shmdt() or when the process
3379   // terminates. If shmat() is not successful this will remove the shared
3380   // segment immediately.
3381   shmctl(shmid, IPC_RMID, NULL);
3382 
3383   if ((intptr_t)addr == -1) {
3384      if (warn_on_failure) {
3385        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3386        warning("%s", msg);
3387      }
3388      return NULL;
3389   }
3390 
3391   return addr;
3392 }
3393 
3394 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3395   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3396 
3397   bool warn_on_failure = UseLargePages &&
3398       (!FLAG_IS_DEFAULT(UseLargePages) ||
3399        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3400        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3401 
3402   if (warn_on_failure) {
3403     char msg[128];
3404     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3405         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3406     warning("%s", msg);
3407   }
3408 }
3409 
3410 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3411   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3412   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3413   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3414 
3415   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3416   char* addr = (char*)::mmap(req_addr, bytes, prot,
3417                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3418                              -1, 0);
3419 
3420   if (addr == MAP_FAILED) {
3421     warn_on_large_pages_failure(req_addr, bytes, errno);
3422     return NULL;
3423   }
3424 
3425   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3426 
3427   return addr;
3428 }
3429 
3430 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3431   size_t large_page_size = os::large_page_size();
3432 
3433   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3434 
3435   // Allocate small pages.
3436 
3437   char* start;
3438   if (req_addr != NULL) {
3439     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3440     assert(is_size_aligned(bytes, alignment), "Must be");
3441     start = os::reserve_memory(bytes, req_addr);
3442     assert(start == NULL || start == req_addr, "Must be");
3443   } else {
3444     start = os::reserve_memory_aligned(bytes, alignment);
3445   }
3446 
3447   if (start == NULL) {
3448     return NULL;
3449   }
3450 
3451   assert(is_ptr_aligned(start, alignment), "Must be");
3452 
3453   if (MemTracker::tracking_level() > NMT_minimal) {
3454     // os::reserve_memory_special will record this memory area.
3455     // Need to release it here to prevent overlapping reservations.
3456     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3457     tkr.record((address)start, bytes);
3458   }
3459 
3460   char* end = start + bytes;
3461 
3462   // Find the regions of the allocated chunk that can be promoted to large pages.
3463   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3464   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3465 
3466   size_t lp_bytes = lp_end - lp_start;
3467 
3468   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3469 
3470   if (lp_bytes == 0) {
3471     // The mapped region doesn't even span the start and the end of a large page.
3472     // Fall back to allocate a non-special area.
3473     ::munmap(start, end - start);
3474     return NULL;
3475   }
3476 
3477   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3478 
3479 
3480   void* result;
3481 
3482   if (start != lp_start) {
3483     result = ::mmap(start, lp_start - start, prot,
3484                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3485                     -1, 0);
3486     if (result == MAP_FAILED) {
3487       ::munmap(lp_start, end - lp_start);
3488       return NULL;
3489     }
3490   }
3491 
3492   result = ::mmap(lp_start, lp_bytes, prot,
3493                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3494                   -1, 0);
3495   if (result == MAP_FAILED) {
3496     warn_on_large_pages_failure(req_addr, bytes, errno);
3497     // If the mmap above fails, the large pages region will be unmapped and we
3498     // have regions before and after with small pages. Release these regions.
3499     //
3500     // |  mapped  |  unmapped  |  mapped  |
3501     // ^          ^            ^          ^
3502     // start      lp_start     lp_end     end
3503     //
3504     ::munmap(start, lp_start - start);
3505     ::munmap(lp_end, end - lp_end);
3506     return NULL;
3507   }
3508 
3509   if (lp_end != end) {
3510       result = ::mmap(lp_end, end - lp_end, prot,
3511                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3512                       -1, 0);
3513     if (result == MAP_FAILED) {
3514       ::munmap(start, lp_end - start);
3515       return NULL;
3516     }
3517   }
3518 
3519   return start;
3520 }
3521 
3522 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3523   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3524   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3525   assert(is_power_of_2(alignment), "Must be");
3526   assert(is_power_of_2(os::large_page_size()), "Must be");
3527   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3528 
3529   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3530     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3531   } else {
3532     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3533   }
3534 }
3535 
3536 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3537   assert(UseLargePages, "only for large pages");
3538 
3539   char* addr;
3540   if (UseSHM) {
3541     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3542   } else {
3543     assert(UseHugeTLBFS, "must be");
3544     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3545   }
3546 
3547   if (addr != NULL) {
3548     if (UseNUMAInterleaving) {
3549       numa_make_global(addr, bytes);
3550     }
3551 
3552     // The memory is committed
3553     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3554   }
3555 
3556   return addr;
3557 }
3558 
3559 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3560   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3561   return shmdt(base) == 0;
3562 }
3563 
3564 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3565   return pd_release_memory(base, bytes);
3566 }
3567 
3568 bool os::release_memory_special(char* base, size_t bytes) {
3569   bool res;
3570   if (MemTracker::tracking_level() > NMT_minimal) {
3571     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3572     res = os::Linux::release_memory_special_impl(base, bytes);
3573     if (res) {
3574       tkr.record((address)base, bytes);
3575     }
3576 
3577   } else {
3578     res = os::Linux::release_memory_special_impl(base, bytes);
3579   }
3580   return res;
3581 }
3582 
3583 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3584   assert(UseLargePages, "only for large pages");
3585   bool res;
3586 
3587   if (UseSHM) {
3588     res = os::Linux::release_memory_special_shm(base, bytes);
3589   } else {
3590     assert(UseHugeTLBFS, "must be");
3591     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3592   }
3593   return res;
3594 }
3595 
3596 size_t os::large_page_size() {
3597   return _large_page_size;
3598 }
3599 
3600 // With SysV SHM the entire memory region must be allocated as shared
3601 // memory.
3602 // HugeTLBFS allows application to commit large page memory on demand.
3603 // However, when committing memory with HugeTLBFS fails, the region
3604 // that was supposed to be committed will lose the old reservation
3605 // and allow other threads to steal that memory region. Because of this
3606 // behavior we can't commit HugeTLBFS memory.
3607 bool os::can_commit_large_page_memory() {
3608   return UseTransparentHugePages;
3609 }
3610 
3611 bool os::can_execute_large_page_memory() {
3612   return UseTransparentHugePages || UseHugeTLBFS;
3613 }
3614 
3615 // Reserve memory at an arbitrary address, only if that area is
3616 // available (and not reserved for something else).
3617 
3618 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3619   const int max_tries = 10;
3620   char* base[max_tries];
3621   size_t size[max_tries];
3622   const size_t gap = 0x000000;
3623 
3624   // Assert only that the size is a multiple of the page size, since
3625   // that's all that mmap requires, and since that's all we really know
3626   // about at this low abstraction level.  If we need higher alignment,
3627   // we can either pass an alignment to this method or verify alignment
3628   // in one of the methods further up the call chain.  See bug 5044738.
3629   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3630 
3631   // Repeatedly allocate blocks until the block is allocated at the
3632   // right spot. Give up after max_tries. Note that reserve_memory() will
3633   // automatically update _highest_vm_reserved_address if the call is
3634   // successful. The variable tracks the highest memory address every reserved
3635   // by JVM. It is used to detect heap-stack collision if running with
3636   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3637   // space than needed, it could confuse the collision detecting code. To
3638   // solve the problem, save current _highest_vm_reserved_address and
3639   // calculate the correct value before return.
3640   address old_highest = _highest_vm_reserved_address;
3641 
3642   // Linux mmap allows caller to pass an address as hint; give it a try first,
3643   // if kernel honors the hint then we can return immediately.
3644   char * addr = anon_mmap(requested_addr, bytes, false);
3645   if (addr == requested_addr) {
3646      return requested_addr;
3647   }
3648 
3649   if (addr != NULL) {
3650      // mmap() is successful but it fails to reserve at the requested address
3651      anon_munmap(addr, bytes);
3652   }
3653 
3654   int i;
3655   for (i = 0; i < max_tries; ++i) {
3656     base[i] = reserve_memory(bytes);
3657 
3658     if (base[i] != NULL) {
3659       // Is this the block we wanted?
3660       if (base[i] == requested_addr) {
3661         size[i] = bytes;
3662         break;
3663       }
3664 
3665       // Does this overlap the block we wanted? Give back the overlapped
3666       // parts and try again.
3667 
3668       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3669       if (top_overlap >= 0 && top_overlap < bytes) {
3670         unmap_memory(base[i], top_overlap);
3671         base[i] += top_overlap;
3672         size[i] = bytes - top_overlap;
3673       } else {
3674         size_t bottom_overlap = base[i] + bytes - requested_addr;
3675         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3676           unmap_memory(requested_addr, bottom_overlap);
3677           size[i] = bytes - bottom_overlap;
3678         } else {
3679           size[i] = bytes;
3680         }
3681       }
3682     }
3683   }
3684 
3685   // Give back the unused reserved pieces.
3686 
3687   for (int j = 0; j < i; ++j) {
3688     if (base[j] != NULL) {
3689       unmap_memory(base[j], size[j]);
3690     }
3691   }
3692 
3693   if (i < max_tries) {
3694     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3695     return requested_addr;
3696   } else {
3697     _highest_vm_reserved_address = old_highest;
3698     return NULL;
3699   }
3700 }
3701 
3702 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3703   return ::read(fd, buf, nBytes);
3704 }
3705 
3706 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3707 // Solaris uses poll(), linux uses park().
3708 // Poll() is likely a better choice, assuming that Thread.interrupt()
3709 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3710 // SIGSEGV, see 4355769.
3711 
3712 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3713   assert(thread == Thread::current(),  "thread consistency check");
3714 
3715   ParkEvent * const slp = thread->_SleepEvent ;
3716   slp->reset() ;
3717   OrderAccess::fence() ;
3718 
3719   if (interruptible) {
3720     jlong prevtime = javaTimeNanos();
3721 
3722     for (;;) {
3723       if (os::is_interrupted(thread, true)) {
3724         return OS_INTRPT;
3725       }
3726 
3727       jlong newtime = javaTimeNanos();
3728 
3729       if (newtime - prevtime < 0) {
3730         // time moving backwards, should only happen if no monotonic clock
3731         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3732         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3733       } else {
3734         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3735       }
3736 
3737       if(millis <= 0) {
3738         return OS_OK;
3739       }
3740 
3741       prevtime = newtime;
3742 
3743       {
3744         assert(thread->is_Java_thread(), "sanity check");
3745         JavaThread *jt = (JavaThread *) thread;
3746         ThreadBlockInVM tbivm(jt);
3747         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3748 
3749         jt->set_suspend_equivalent();
3750         // cleared by handle_special_suspend_equivalent_condition() or
3751         // java_suspend_self() via check_and_wait_while_suspended()
3752 
3753         slp->park(millis);
3754 
3755         // were we externally suspended while we were waiting?
3756         jt->check_and_wait_while_suspended();
3757       }
3758     }
3759   } else {
3760     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3761     jlong prevtime = javaTimeNanos();
3762 
3763     for (;;) {
3764       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3765       // the 1st iteration ...
3766       jlong newtime = javaTimeNanos();
3767 
3768       if (newtime - prevtime < 0) {
3769         // time moving backwards, should only happen if no monotonic clock
3770         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3771         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3772       } else {
3773         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3774       }
3775 
3776       if(millis <= 0) break ;
3777 
3778       prevtime = newtime;
3779       slp->park(millis);
3780     }
3781     return OS_OK ;
3782   }
3783 }
3784 
3785 //
3786 // Short sleep, direct OS call.
3787 //
3788 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3789 // sched_yield(2) will actually give up the CPU:
3790 //
3791 //   * Alone on this pariticular CPU, keeps running.
3792 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3793 //     (pre 2.6.39).
3794 //
3795 // So calling this with 0 is an alternative.
3796 //
3797 void os::naked_short_sleep(jlong ms) {
3798   struct timespec req;
3799 
3800   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3801   req.tv_sec = 0;
3802   if (ms > 0) {
3803     req.tv_nsec = (ms % 1000) * 1000000;
3804   }
3805   else {
3806     req.tv_nsec = 1;
3807   }
3808 
3809   nanosleep(&req, NULL);
3810 
3811   return;
3812 }
3813 
3814 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3815 void os::infinite_sleep() {
3816   while (true) {    // sleep forever ...
3817     ::sleep(100);   // ... 100 seconds at a time
3818   }
3819 }
3820 
3821 // Used to convert frequent JVM_Yield() to nops
3822 bool os::dont_yield() {
3823   return DontYieldALot;
3824 }
3825 
3826 void os::yield() {
3827   sched_yield();
3828 }
3829 
3830 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3831 
3832 void os::yield_all(int attempts) {
3833   // Yields to all threads, including threads with lower priorities
3834   // Threads on Linux are all with same priority. The Solaris style
3835   // os::yield_all() with nanosleep(1ms) is not necessary.
3836   sched_yield();
3837 }
3838 
3839 // Called from the tight loops to possibly influence time-sharing heuristics
3840 void os::loop_breaker(int attempts) {
3841   os::yield_all(attempts);
3842 }
3843 
3844 ////////////////////////////////////////////////////////////////////////////////
3845 // thread priority support
3846 
3847 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3848 // only supports dynamic priority, static priority must be zero. For real-time
3849 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3850 // However, for large multi-threaded applications, SCHED_RR is not only slower
3851 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3852 // of 5 runs - Sep 2005).
3853 //
3854 // The following code actually changes the niceness of kernel-thread/LWP. It
3855 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3856 // not the entire user process, and user level threads are 1:1 mapped to kernel
3857 // threads. It has always been the case, but could change in the future. For
3858 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3859 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3860 
3861 int os::java_to_os_priority[CriticalPriority + 1] = {
3862   19,              // 0 Entry should never be used
3863 
3864    4,              // 1 MinPriority
3865    3,              // 2
3866    2,              // 3
3867 
3868    1,              // 4
3869    0,              // 5 NormPriority
3870   -1,              // 6
3871 
3872   -2,              // 7
3873   -3,              // 8
3874   -4,              // 9 NearMaxPriority
3875 
3876   -5,              // 10 MaxPriority
3877 
3878   -5               // 11 CriticalPriority
3879 };
3880 
3881 static int prio_init() {
3882   if (ThreadPriorityPolicy == 1) {
3883     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3884     // if effective uid is not root. Perhaps, a more elegant way of doing
3885     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3886     if (geteuid() != 0) {
3887       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3888         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3889       }
3890       ThreadPriorityPolicy = 0;
3891     }
3892   }
3893   if (UseCriticalJavaThreadPriority) {
3894     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3895   }
3896   return 0;
3897 }
3898 
3899 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3900   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3901 
3902   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3903   return (ret == 0) ? OS_OK : OS_ERR;
3904 }
3905 
3906 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3907   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3908     *priority_ptr = java_to_os_priority[NormPriority];
3909     return OS_OK;
3910   }
3911 
3912   errno = 0;
3913   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3914   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3915 }
3916 
3917 // Hint to the underlying OS that a task switch would not be good.
3918 // Void return because it's a hint and can fail.
3919 void os::hint_no_preempt() {}
3920 
3921 ////////////////////////////////////////////////////////////////////////////////
3922 // suspend/resume support
3923 
3924 //  the low-level signal-based suspend/resume support is a remnant from the
3925 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3926 //  within hotspot. Now there is a single use-case for this:
3927 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3928 //      that runs in the watcher thread.
3929 //  The remaining code is greatly simplified from the more general suspension
3930 //  code that used to be used.
3931 //
3932 //  The protocol is quite simple:
3933 //  - suspend:
3934 //      - sends a signal to the target thread
3935 //      - polls the suspend state of the osthread using a yield loop
3936 //      - target thread signal handler (SR_handler) sets suspend state
3937 //        and blocks in sigsuspend until continued
3938 //  - resume:
3939 //      - sets target osthread state to continue
3940 //      - sends signal to end the sigsuspend loop in the SR_handler
3941 //
3942 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3943 //
3944 
3945 static void resume_clear_context(OSThread *osthread) {
3946   osthread->set_ucontext(NULL);
3947   osthread->set_siginfo(NULL);
3948 }
3949 
3950 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3951   osthread->set_ucontext(context);
3952   osthread->set_siginfo(siginfo);
3953 }
3954 
3955 //
3956 // Handler function invoked when a thread's execution is suspended or
3957 // resumed. We have to be careful that only async-safe functions are
3958 // called here (Note: most pthread functions are not async safe and
3959 // should be avoided.)
3960 //
3961 // Note: sigwait() is a more natural fit than sigsuspend() from an
3962 // interface point of view, but sigwait() prevents the signal hander
3963 // from being run. libpthread would get very confused by not having
3964 // its signal handlers run and prevents sigwait()'s use with the
3965 // mutex granting granting signal.
3966 //
3967 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3968 //
3969 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3970   // Save and restore errno to avoid confusing native code with EINTR
3971   // after sigsuspend.
3972   int old_errno = errno;
3973 
3974   Thread* thread = Thread::current();
3975   OSThread* osthread = thread->osthread();
3976   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3977 
3978   os::SuspendResume::State current = osthread->sr.state();
3979   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3980     suspend_save_context(osthread, siginfo, context);
3981 
3982     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3983     os::SuspendResume::State state = osthread->sr.suspended();
3984     if (state == os::SuspendResume::SR_SUSPENDED) {
3985       sigset_t suspend_set;  // signals for sigsuspend()
3986 
3987       // get current set of blocked signals and unblock resume signal
3988       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3989       sigdelset(&suspend_set, SR_signum);
3990 
3991       sr_semaphore.signal();
3992       // wait here until we are resumed
3993       while (1) {
3994         sigsuspend(&suspend_set);
3995 
3996         os::SuspendResume::State result = osthread->sr.running();
3997         if (result == os::SuspendResume::SR_RUNNING) {
3998           sr_semaphore.signal();
3999           break;
4000         }
4001       }
4002 
4003     } else if (state == os::SuspendResume::SR_RUNNING) {
4004       // request was cancelled, continue
4005     } else {
4006       ShouldNotReachHere();
4007     }
4008 
4009     resume_clear_context(osthread);
4010   } else if (current == os::SuspendResume::SR_RUNNING) {
4011     // request was cancelled, continue
4012   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4013     // ignore
4014   } else {
4015     // ignore
4016   }
4017 
4018   errno = old_errno;
4019 }
4020 
4021 
4022 static int SR_initialize() {
4023   struct sigaction act;
4024   char *s;
4025   /* Get signal number to use for suspend/resume */
4026   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4027     int sig = ::strtol(s, 0, 10);
4028     if (sig > 0 || sig < _NSIG) {
4029         SR_signum = sig;
4030     }
4031   }
4032 
4033   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4034         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4035 
4036   sigemptyset(&SR_sigset);
4037   sigaddset(&SR_sigset, SR_signum);
4038 
4039   /* Set up signal handler for suspend/resume */
4040   act.sa_flags = SA_RESTART|SA_SIGINFO;
4041   act.sa_handler = (void (*)(int)) SR_handler;
4042 
4043   // SR_signum is blocked by default.
4044   // 4528190 - We also need to block pthread restart signal (32 on all
4045   // supported Linux platforms). Note that LinuxThreads need to block
4046   // this signal for all threads to work properly. So we don't have
4047   // to use hard-coded signal number when setting up the mask.
4048   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4049 
4050   if (sigaction(SR_signum, &act, 0) == -1) {
4051     return -1;
4052   }
4053 
4054   // Save signal flag
4055   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4056   return 0;
4057 }
4058 
4059 static int sr_notify(OSThread* osthread) {
4060   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4061   assert_status(status == 0, status, "pthread_kill");
4062   return status;
4063 }
4064 
4065 // "Randomly" selected value for how long we want to spin
4066 // before bailing out on suspending a thread, also how often
4067 // we send a signal to a thread we want to resume
4068 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4069 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4070 
4071 // returns true on success and false on error - really an error is fatal
4072 // but this seems the normal response to library errors
4073 static bool do_suspend(OSThread* osthread) {
4074   assert(osthread->sr.is_running(), "thread should be running");
4075   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4076 
4077   // mark as suspended and send signal
4078   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4079     // failed to switch, state wasn't running?
4080     ShouldNotReachHere();
4081     return false;
4082   }
4083 
4084   if (sr_notify(osthread) != 0) {
4085     ShouldNotReachHere();
4086   }
4087 
4088   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4089   while (true) {
4090     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4091       break;
4092     } else {
4093       // timeout
4094       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4095       if (cancelled == os::SuspendResume::SR_RUNNING) {
4096         return false;
4097       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4098         // make sure that we consume the signal on the semaphore as well
4099         sr_semaphore.wait();
4100         break;
4101       } else {
4102         ShouldNotReachHere();
4103         return false;
4104       }
4105     }
4106   }
4107 
4108   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4109   return true;
4110 }
4111 
4112 static void do_resume(OSThread* osthread) {
4113   assert(osthread->sr.is_suspended(), "thread should be suspended");
4114   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4115 
4116   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4117     // failed to switch to WAKEUP_REQUEST
4118     ShouldNotReachHere();
4119     return;
4120   }
4121 
4122   while (true) {
4123     if (sr_notify(osthread) == 0) {
4124       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4125         if (osthread->sr.is_running()) {
4126           return;
4127         }
4128       }
4129     } else {
4130       ShouldNotReachHere();
4131     }
4132   }
4133 
4134   guarantee(osthread->sr.is_running(), "Must be running!");
4135 }
4136 
4137 ////////////////////////////////////////////////////////////////////////////////
4138 // interrupt support
4139 
4140 void os::interrupt(Thread* thread) {
4141   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4142     "possibility of dangling Thread pointer");
4143 
4144   OSThread* osthread = thread->osthread();
4145 
4146   if (!osthread->interrupted()) {
4147     osthread->set_interrupted(true);
4148     // More than one thread can get here with the same value of osthread,
4149     // resulting in multiple notifications.  We do, however, want the store
4150     // to interrupted() to be visible to other threads before we execute unpark().
4151     OrderAccess::fence();
4152     ParkEvent * const slp = thread->_SleepEvent ;
4153     if (slp != NULL) slp->unpark() ;
4154   }
4155 
4156   // For JSR166. Unpark even if interrupt status already was set
4157   if (thread->is_Java_thread())
4158     ((JavaThread*)thread)->parker()->unpark();
4159 
4160   ParkEvent * ev = thread->_ParkEvent ;
4161   if (ev != NULL) ev->unpark() ;
4162 
4163 }
4164 
4165 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4166   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4167     "possibility of dangling Thread pointer");
4168 
4169   OSThread* osthread = thread->osthread();
4170 
4171   bool interrupted = osthread->interrupted();
4172 
4173   if (interrupted && clear_interrupted) {
4174     osthread->set_interrupted(false);
4175     // consider thread->_SleepEvent->reset() ... optional optimization
4176   }
4177 
4178   return interrupted;
4179 }
4180 
4181 ///////////////////////////////////////////////////////////////////////////////////
4182 // signal handling (except suspend/resume)
4183 
4184 // This routine may be used by user applications as a "hook" to catch signals.
4185 // The user-defined signal handler must pass unrecognized signals to this
4186 // routine, and if it returns true (non-zero), then the signal handler must
4187 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4188 // routine will never retun false (zero), but instead will execute a VM panic
4189 // routine kill the process.
4190 //
4191 // If this routine returns false, it is OK to call it again.  This allows
4192 // the user-defined signal handler to perform checks either before or after
4193 // the VM performs its own checks.  Naturally, the user code would be making
4194 // a serious error if it tried to handle an exception (such as a null check
4195 // or breakpoint) that the VM was generating for its own correct operation.
4196 //
4197 // This routine may recognize any of the following kinds of signals:
4198 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4199 // It should be consulted by handlers for any of those signals.
4200 //
4201 // The caller of this routine must pass in the three arguments supplied
4202 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4203 // field of the structure passed to sigaction().  This routine assumes that
4204 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4205 //
4206 // Note that the VM will print warnings if it detects conflicting signal
4207 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4208 //
4209 extern "C" JNIEXPORT int
4210 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4211                         void* ucontext, int abort_if_unrecognized);
4212 
4213 void signalHandler(int sig, siginfo_t* info, void* uc) {
4214   assert(info != NULL && uc != NULL, "it must be old kernel");
4215   int orig_errno = errno;  // Preserve errno value over signal handler.
4216   JVM_handle_linux_signal(sig, info, uc, true);
4217   errno = orig_errno;
4218 }
4219 
4220 
4221 // This boolean allows users to forward their own non-matching signals
4222 // to JVM_handle_linux_signal, harmlessly.
4223 bool os::Linux::signal_handlers_are_installed = false;
4224 
4225 // For signal-chaining
4226 struct sigaction os::Linux::sigact[MAXSIGNUM];
4227 unsigned int os::Linux::sigs = 0;
4228 bool os::Linux::libjsig_is_loaded = false;
4229 typedef struct sigaction *(*get_signal_t)(int);
4230 get_signal_t os::Linux::get_signal_action = NULL;
4231 
4232 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4233   struct sigaction *actp = NULL;
4234 
4235   if (libjsig_is_loaded) {
4236     // Retrieve the old signal handler from libjsig
4237     actp = (*get_signal_action)(sig);
4238   }
4239   if (actp == NULL) {
4240     // Retrieve the preinstalled signal handler from jvm
4241     actp = get_preinstalled_handler(sig);
4242   }
4243 
4244   return actp;
4245 }
4246 
4247 static bool call_chained_handler(struct sigaction *actp, int sig,
4248                                  siginfo_t *siginfo, void *context) {
4249   // Call the old signal handler
4250   if (actp->sa_handler == SIG_DFL) {
4251     // It's more reasonable to let jvm treat it as an unexpected exception
4252     // instead of taking the default action.
4253     return false;
4254   } else if (actp->sa_handler != SIG_IGN) {
4255     if ((actp->sa_flags & SA_NODEFER) == 0) {
4256       // automaticlly block the signal
4257       sigaddset(&(actp->sa_mask), sig);
4258     }
4259 
4260     sa_handler_t hand;
4261     sa_sigaction_t sa;
4262     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4263     // retrieve the chained handler
4264     if (siginfo_flag_set) {
4265       sa = actp->sa_sigaction;
4266     } else {
4267       hand = actp->sa_handler;
4268     }
4269 
4270     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4271       actp->sa_handler = SIG_DFL;
4272     }
4273 
4274     // try to honor the signal mask
4275     sigset_t oset;
4276     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4277 
4278     // call into the chained handler
4279     if (siginfo_flag_set) {
4280       (*sa)(sig, siginfo, context);
4281     } else {
4282       (*hand)(sig);
4283     }
4284 
4285     // restore the signal mask
4286     pthread_sigmask(SIG_SETMASK, &oset, 0);
4287   }
4288   // Tell jvm's signal handler the signal is taken care of.
4289   return true;
4290 }
4291 
4292 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4293   bool chained = false;
4294   // signal-chaining
4295   if (UseSignalChaining) {
4296     struct sigaction *actp = get_chained_signal_action(sig);
4297     if (actp != NULL) {
4298       chained = call_chained_handler(actp, sig, siginfo, context);
4299     }
4300   }
4301   return chained;
4302 }
4303 
4304 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4305   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4306     return &sigact[sig];
4307   }
4308   return NULL;
4309 }
4310 
4311 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4312   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4313   sigact[sig] = oldAct;
4314   sigs |= (unsigned int)1 << sig;
4315 }
4316 
4317 // for diagnostic
4318 int os::Linux::sigflags[MAXSIGNUM];
4319 
4320 int os::Linux::get_our_sigflags(int sig) {
4321   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4322   return sigflags[sig];
4323 }
4324 
4325 void os::Linux::set_our_sigflags(int sig, int flags) {
4326   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4327   sigflags[sig] = flags;
4328 }
4329 
4330 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4331   // Check for overwrite.
4332   struct sigaction oldAct;
4333   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4334 
4335   void* oldhand = oldAct.sa_sigaction
4336                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4337                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4338   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4339       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4340       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4341     if (AllowUserSignalHandlers || !set_installed) {
4342       // Do not overwrite; user takes responsibility to forward to us.
4343       return;
4344     } else if (UseSignalChaining) {
4345       // save the old handler in jvm
4346       save_preinstalled_handler(sig, oldAct);
4347       // libjsig also interposes the sigaction() call below and saves the
4348       // old sigaction on it own.
4349     } else {
4350       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4351                     "%#lx for signal %d.", (long)oldhand, sig));
4352     }
4353   }
4354 
4355   struct sigaction sigAct;
4356   sigfillset(&(sigAct.sa_mask));
4357   sigAct.sa_handler = SIG_DFL;
4358   if (!set_installed) {
4359     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4360   } else {
4361     sigAct.sa_sigaction = signalHandler;
4362     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4363   }
4364   // Save flags, which are set by ours
4365   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4366   sigflags[sig] = sigAct.sa_flags;
4367 
4368   int ret = sigaction(sig, &sigAct, &oldAct);
4369   assert(ret == 0, "check");
4370 
4371   void* oldhand2  = oldAct.sa_sigaction
4372                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4373                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4374   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4375 }
4376 
4377 // install signal handlers for signals that HotSpot needs to
4378 // handle in order to support Java-level exception handling.
4379 
4380 void os::Linux::install_signal_handlers() {
4381   if (!signal_handlers_are_installed) {
4382     signal_handlers_are_installed = true;
4383 
4384     // signal-chaining
4385     typedef void (*signal_setting_t)();
4386     signal_setting_t begin_signal_setting = NULL;
4387     signal_setting_t end_signal_setting = NULL;
4388     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4389                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4390     if (begin_signal_setting != NULL) {
4391       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4392                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4393       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4394                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4395       libjsig_is_loaded = true;
4396       assert(UseSignalChaining, "should enable signal-chaining");
4397     }
4398     if (libjsig_is_loaded) {
4399       // Tell libjsig jvm is setting signal handlers
4400       (*begin_signal_setting)();
4401     }
4402 
4403     set_signal_handler(SIGSEGV, true);
4404     set_signal_handler(SIGPIPE, true);
4405     set_signal_handler(SIGBUS, true);
4406     set_signal_handler(SIGILL, true);
4407     set_signal_handler(SIGFPE, true);
4408 #if defined(PPC64)
4409     set_signal_handler(SIGTRAP, true);
4410 #endif
4411     set_signal_handler(SIGXFSZ, true);
4412 
4413     if (libjsig_is_loaded) {
4414       // Tell libjsig jvm finishes setting signal handlers
4415       (*end_signal_setting)();
4416     }
4417 
4418     // We don't activate signal checker if libjsig is in place, we trust ourselves
4419     // and if UserSignalHandler is installed all bets are off.
4420     // Log that signal checking is off only if -verbose:jni is specified.
4421     if (CheckJNICalls) {
4422       if (libjsig_is_loaded) {
4423         if (PrintJNIResolving) {
4424           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4425         }
4426         check_signals = false;
4427       }
4428       if (AllowUserSignalHandlers) {
4429         if (PrintJNIResolving) {
4430           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4431         }
4432         check_signals = false;
4433       }
4434     }
4435   }
4436 }
4437 
4438 // This is the fastest way to get thread cpu time on Linux.
4439 // Returns cpu time (user+sys) for any thread, not only for current.
4440 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4441 // It might work on 2.6.10+ with a special kernel/glibc patch.
4442 // For reference, please, see IEEE Std 1003.1-2004:
4443 //   http://www.unix.org/single_unix_specification
4444 
4445 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4446   struct timespec tp;
4447   int rc = os::Linux::clock_gettime(clockid, &tp);
4448   assert(rc == 0, "clock_gettime is expected to return 0 code");
4449 
4450   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4451 }
4452 
4453 /////
4454 // glibc on Linux platform uses non-documented flag
4455 // to indicate, that some special sort of signal
4456 // trampoline is used.
4457 // We will never set this flag, and we should
4458 // ignore this flag in our diagnostic
4459 #ifdef SIGNIFICANT_SIGNAL_MASK
4460 #undef SIGNIFICANT_SIGNAL_MASK
4461 #endif
4462 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4463 
4464 static const char* get_signal_handler_name(address handler,
4465                                            char* buf, int buflen) {
4466   int offset;
4467   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4468   if (found) {
4469     // skip directory names
4470     const char *p1, *p2;
4471     p1 = buf;
4472     size_t len = strlen(os::file_separator());
4473     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4474     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4475   } else {
4476     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4477   }
4478   return buf;
4479 }
4480 
4481 static void print_signal_handler(outputStream* st, int sig,
4482                                  char* buf, size_t buflen) {
4483   struct sigaction sa;
4484 
4485   sigaction(sig, NULL, &sa);
4486 
4487   // See comment for SIGNIFICANT_SIGNAL_MASK define
4488   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4489 
4490   st->print("%s: ", os::exception_name(sig, buf, buflen));
4491 
4492   address handler = (sa.sa_flags & SA_SIGINFO)
4493     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4494     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4495 
4496   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4497     st->print("SIG_DFL");
4498   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4499     st->print("SIG_IGN");
4500   } else {
4501     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4502   }
4503 
4504   st->print(", sa_mask[0]=");
4505   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4506 
4507   address rh = VMError::get_resetted_sighandler(sig);
4508   // May be, handler was resetted by VMError?
4509   if(rh != NULL) {
4510     handler = rh;
4511     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4512   }
4513 
4514   st->print(", sa_flags=");
4515   os::Posix::print_sa_flags(st, sa.sa_flags);
4516 
4517   // Check: is it our handler?
4518   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4519      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4520     // It is our signal handler
4521     // check for flags, reset system-used one!
4522     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4523       st->print(
4524                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4525                 os::Linux::get_our_sigflags(sig));
4526     }
4527   }
4528   st->cr();
4529 }
4530 
4531 
4532 #define DO_SIGNAL_CHECK(sig) \
4533   if (!sigismember(&check_signal_done, sig)) \
4534     os::Linux::check_signal_handler(sig)
4535 
4536 // This method is a periodic task to check for misbehaving JNI applications
4537 // under CheckJNI, we can add any periodic checks here
4538 
4539 void os::run_periodic_checks() {
4540 
4541   if (check_signals == false) return;
4542 
4543   // SEGV and BUS if overridden could potentially prevent
4544   // generation of hs*.log in the event of a crash, debugging
4545   // such a case can be very challenging, so we absolutely
4546   // check the following for a good measure:
4547   DO_SIGNAL_CHECK(SIGSEGV);
4548   DO_SIGNAL_CHECK(SIGILL);
4549   DO_SIGNAL_CHECK(SIGFPE);
4550   DO_SIGNAL_CHECK(SIGBUS);
4551   DO_SIGNAL_CHECK(SIGPIPE);
4552   DO_SIGNAL_CHECK(SIGXFSZ);
4553 #if defined(PPC64)
4554   DO_SIGNAL_CHECK(SIGTRAP);
4555 #endif
4556 
4557   // ReduceSignalUsage allows the user to override these handlers
4558   // see comments at the very top and jvm_solaris.h
4559   if (!ReduceSignalUsage) {
4560     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4561     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4562     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4563     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4564   }
4565 
4566   DO_SIGNAL_CHECK(SR_signum);
4567   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4568 }
4569 
4570 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4571 
4572 static os_sigaction_t os_sigaction = NULL;
4573 
4574 void os::Linux::check_signal_handler(int sig) {
4575   char buf[O_BUFLEN];
4576   address jvmHandler = NULL;
4577 
4578 
4579   struct sigaction act;
4580   if (os_sigaction == NULL) {
4581     // only trust the default sigaction, in case it has been interposed
4582     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4583     if (os_sigaction == NULL) return;
4584   }
4585 
4586   os_sigaction(sig, (struct sigaction*)NULL, &act);
4587 
4588 
4589   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4590 
4591   address thisHandler = (act.sa_flags & SA_SIGINFO)
4592     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4593     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4594 
4595 
4596   switch(sig) {
4597   case SIGSEGV:
4598   case SIGBUS:
4599   case SIGFPE:
4600   case SIGPIPE:
4601   case SIGILL:
4602   case SIGXFSZ:
4603     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4604     break;
4605 
4606   case SHUTDOWN1_SIGNAL:
4607   case SHUTDOWN2_SIGNAL:
4608   case SHUTDOWN3_SIGNAL:
4609   case BREAK_SIGNAL:
4610     jvmHandler = (address)user_handler();
4611     break;
4612 
4613   case INTERRUPT_SIGNAL:
4614     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4615     break;
4616 
4617   default:
4618     if (sig == SR_signum) {
4619       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4620     } else {
4621       return;
4622     }
4623     break;
4624   }
4625 
4626   if (thisHandler != jvmHandler) {
4627     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4628     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4629     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4630     // No need to check this sig any longer
4631     sigaddset(&check_signal_done, sig);
4632   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4633     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4634     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4635     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4636     // No need to check this sig any longer
4637     sigaddset(&check_signal_done, sig);
4638   }
4639 
4640   // Dump all the signal
4641   if (sigismember(&check_signal_done, sig)) {
4642     print_signal_handlers(tty, buf, O_BUFLEN);
4643   }
4644 }
4645 
4646 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4647 
4648 extern bool signal_name(int signo, char* buf, size_t len);
4649 
4650 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4651   if (0 < exception_code && exception_code <= SIGRTMAX) {
4652     // signal
4653     if (!signal_name(exception_code, buf, size)) {
4654       jio_snprintf(buf, size, "SIG%d", exception_code);
4655     }
4656     return buf;
4657   } else {
4658     return NULL;
4659   }
4660 }
4661 
4662 // this is called _before_ the most of global arguments have been parsed
4663 void os::init(void) {
4664   char dummy;   /* used to get a guess on initial stack address */
4665 //  first_hrtime = gethrtime();
4666 
4667   // With LinuxThreads the JavaMain thread pid (primordial thread)
4668   // is different than the pid of the java launcher thread.
4669   // So, on Linux, the launcher thread pid is passed to the VM
4670   // via the sun.java.launcher.pid property.
4671   // Use this property instead of getpid() if it was correctly passed.
4672   // See bug 6351349.
4673   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4674 
4675   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4676 
4677   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4678 
4679   init_random(1234567);
4680 
4681   ThreadCritical::initialize();
4682 
4683   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4684   if (Linux::page_size() == -1) {
4685     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4686                   strerror(errno)));
4687   }
4688   init_page_sizes((size_t) Linux::page_size());
4689 
4690   Linux::initialize_system_info();
4691 
4692   // main_thread points to the aboriginal thread
4693   Linux::_main_thread = pthread_self();
4694 
4695   Linux::clock_init();
4696   initial_time_count = javaTimeNanos();
4697 
4698   // pthread_condattr initialization for monotonic clock
4699   int status;
4700   pthread_condattr_t* _condattr = os::Linux::condAttr();
4701   if ((status = pthread_condattr_init(_condattr)) != 0) {
4702     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4703   }
4704   // Only set the clock if CLOCK_MONOTONIC is available
4705   if (Linux::supports_monotonic_clock()) {
4706     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4707       if (status == EINVAL) {
4708         warning("Unable to use monotonic clock with relative timed-waits" \
4709                 " - changes to the time-of-day clock may have adverse affects");
4710       } else {
4711         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4712       }
4713     }
4714   }
4715   // else it defaults to CLOCK_REALTIME
4716 
4717   pthread_mutex_init(&dl_mutex, NULL);
4718 
4719   // If the pagesize of the VM is greater than 8K determine the appropriate
4720   // number of initial guard pages.  The user can change this with the
4721   // command line arguments, if needed.
4722   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4723     StackYellowPages = 1;
4724     StackRedPages = 1;
4725     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4726   }
4727 }
4728 
4729 // To install functions for atexit system call
4730 extern "C" {
4731   static void perfMemory_exit_helper() {
4732     perfMemory_exit();
4733   }
4734 }
4735 
4736 // this is called _after_ the global arguments have been parsed
4737 jint os::init_2(void)
4738 {
4739   Linux::fast_thread_clock_init();
4740 
4741   // Allocate a single page and mark it as readable for safepoint polling
4742   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4743   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4744 
4745   os::set_polling_page( polling_page );
4746 
4747 #ifndef PRODUCT
4748   if(Verbose && PrintMiscellaneous)
4749     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4750 #endif
4751 
4752   if (!UseMembar) {
4753     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4754     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4755     os::set_memory_serialize_page( mem_serialize_page );
4756 
4757 #ifndef PRODUCT
4758     if(Verbose && PrintMiscellaneous)
4759       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4760 #endif
4761   }
4762 
4763   // initialize suspend/resume support - must do this before signal_sets_init()
4764   if (SR_initialize() != 0) {
4765     perror("SR_initialize failed");
4766     return JNI_ERR;
4767   }
4768 
4769   Linux::signal_sets_init();
4770   Linux::install_signal_handlers();
4771 
4772   // Check minimum allowable stack size for thread creation and to initialize
4773   // the java system classes, including StackOverflowError - depends on page
4774   // size.  Add a page for compiler2 recursion in main thread.
4775   // Add in 2*BytesPerWord times page size to account for VM stack during
4776   // class initialization depending on 32 or 64 bit VM.
4777   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4778             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4779                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4780 
4781   size_t threadStackSizeInBytes = ThreadStackSize * K;
4782   if (threadStackSizeInBytes != 0 &&
4783       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4784         tty->print_cr("\nThe stack size specified is too small, "
4785                       "Specify at least %dk",
4786                       os::Linux::min_stack_allowed/ K);
4787         return JNI_ERR;
4788   }
4789 
4790   // Make the stack size a multiple of the page size so that
4791   // the yellow/red zones can be guarded.
4792   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4793         vm_page_size()));
4794 
4795   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4796 
4797 #if defined(IA32)
4798   workaround_expand_exec_shield_cs_limit();
4799 #endif
4800 
4801   Linux::libpthread_init();
4802   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4803      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4804           Linux::glibc_version(), Linux::libpthread_version(),
4805           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4806   }
4807 
4808   if (UseNUMA) {
4809     if (!Linux::libnuma_init()) {
4810       UseNUMA = false;
4811     } else {
4812       if ((Linux::numa_max_node() < 1)) {
4813         // There's only one node(they start from 0), disable NUMA.
4814         UseNUMA = false;
4815       }
4816     }
4817     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4818     // we can make the adaptive lgrp chunk resizing work. If the user specified
4819     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4820     // disable adaptive resizing.
4821     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4822       if (FLAG_IS_DEFAULT(UseNUMA)) {
4823         UseNUMA = false;
4824       } else {
4825         if (FLAG_IS_DEFAULT(UseLargePages) &&
4826             FLAG_IS_DEFAULT(UseSHM) &&
4827             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4828           UseLargePages = false;
4829         } else {
4830           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4831           UseAdaptiveSizePolicy = false;
4832           UseAdaptiveNUMAChunkSizing = false;
4833         }
4834       }
4835     }
4836     if (!UseNUMA && ForceNUMA) {
4837       UseNUMA = true;
4838     }
4839   }
4840 
4841   if (MaxFDLimit) {
4842     // set the number of file descriptors to max. print out error
4843     // if getrlimit/setrlimit fails but continue regardless.
4844     struct rlimit nbr_files;
4845     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4846     if (status != 0) {
4847       if (PrintMiscellaneous && (Verbose || WizardMode))
4848         perror("os::init_2 getrlimit failed");
4849     } else {
4850       nbr_files.rlim_cur = nbr_files.rlim_max;
4851       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4852       if (status != 0) {
4853         if (PrintMiscellaneous && (Verbose || WizardMode))
4854           perror("os::init_2 setrlimit failed");
4855       }
4856     }
4857   }
4858 
4859   // Initialize lock used to serialize thread creation (see os::create_thread)
4860   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4861 
4862   // at-exit methods are called in the reverse order of their registration.
4863   // atexit functions are called on return from main or as a result of a
4864   // call to exit(3C). There can be only 32 of these functions registered
4865   // and atexit() does not set errno.
4866 
4867   if (PerfAllowAtExitRegistration) {
4868     // only register atexit functions if PerfAllowAtExitRegistration is set.
4869     // atexit functions can be delayed until process exit time, which
4870     // can be problematic for embedded VM situations. Embedded VMs should
4871     // call DestroyJavaVM() to assure that VM resources are released.
4872 
4873     // note: perfMemory_exit_helper atexit function may be removed in
4874     // the future if the appropriate cleanup code can be added to the
4875     // VM_Exit VMOperation's doit method.
4876     if (atexit(perfMemory_exit_helper) != 0) {
4877       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4878     }
4879   }
4880 
4881   // initialize thread priority policy
4882   prio_init();
4883 
4884   return JNI_OK;
4885 }
4886 
4887 // Mark the polling page as unreadable
4888 void os::make_polling_page_unreadable(void) {
4889   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4890     fatal("Could not disable polling page");
4891 };
4892 
4893 // Mark the polling page as readable
4894 void os::make_polling_page_readable(void) {
4895   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4896     fatal("Could not enable polling page");
4897   }
4898 };
4899 
4900 int os::active_processor_count() {
4901   // Linux doesn't yet have a (official) notion of processor sets,
4902   // so just return the number of online processors.
4903   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4904   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4905   return online_cpus;
4906 }
4907 
4908 void os::set_native_thread_name(const char *name) {
4909   // Not yet implemented.
4910   return;
4911 }
4912 
4913 bool os::distribute_processes(uint length, uint* distribution) {
4914   // Not yet implemented.
4915   return false;
4916 }
4917 
4918 bool os::bind_to_processor(uint processor_id) {
4919   // Not yet implemented.
4920   return false;
4921 }
4922 
4923 ///
4924 
4925 void os::SuspendedThreadTask::internal_do_task() {
4926   if (do_suspend(_thread->osthread())) {
4927     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4928     do_task(context);
4929     do_resume(_thread->osthread());
4930   }
4931 }
4932 
4933 class PcFetcher : public os::SuspendedThreadTask {
4934 public:
4935   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4936   ExtendedPC result();
4937 protected:
4938   void do_task(const os::SuspendedThreadTaskContext& context);
4939 private:
4940   ExtendedPC _epc;
4941 };
4942 
4943 ExtendedPC PcFetcher::result() {
4944   guarantee(is_done(), "task is not done yet.");
4945   return _epc;
4946 }
4947 
4948 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4949   Thread* thread = context.thread();
4950   OSThread* osthread = thread->osthread();
4951   if (osthread->ucontext() != NULL) {
4952     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4953   } else {
4954     // NULL context is unexpected, double-check this is the VMThread
4955     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4956   }
4957 }
4958 
4959 // Suspends the target using the signal mechanism and then grabs the PC before
4960 // resuming the target. Used by the flat-profiler only
4961 ExtendedPC os::get_thread_pc(Thread* thread) {
4962   // Make sure that it is called by the watcher for the VMThread
4963   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4964   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4965 
4966   PcFetcher fetcher(thread);
4967   fetcher.run();
4968   return fetcher.result();
4969 }
4970 
4971 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4972 {
4973    if (is_NPTL()) {
4974       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4975    } else {
4976       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4977       // word back to default 64bit precision if condvar is signaled. Java
4978       // wants 53bit precision.  Save and restore current value.
4979       int fpu = get_fpu_control_word();
4980       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4981       set_fpu_control_word(fpu);
4982       return status;
4983    }
4984 }
4985 
4986 ////////////////////////////////////////////////////////////////////////////////
4987 // debug support
4988 
4989 bool os::find(address addr, outputStream* st) {
4990   Dl_info dlinfo;
4991   memset(&dlinfo, 0, sizeof(dlinfo));
4992   if (dladdr(addr, &dlinfo) != 0) {
4993     st->print(PTR_FORMAT ": ", addr);
4994     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4995       st->print("%s+%#x", dlinfo.dli_sname,
4996                  addr - (intptr_t)dlinfo.dli_saddr);
4997     } else if (dlinfo.dli_fbase != NULL) {
4998       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4999     } else {
5000       st->print("<absolute address>");
5001     }
5002     if (dlinfo.dli_fname != NULL) {
5003       st->print(" in %s", dlinfo.dli_fname);
5004     }
5005     if (dlinfo.dli_fbase != NULL) {
5006       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5007     }
5008     st->cr();
5009 
5010     if (Verbose) {
5011       // decode some bytes around the PC
5012       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5013       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5014       address       lowest = (address) dlinfo.dli_sname;
5015       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5016       if (begin < lowest)  begin = lowest;
5017       Dl_info dlinfo2;
5018       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5019           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5020         end = (address) dlinfo2.dli_saddr;
5021       Disassembler::decode(begin, end, st);
5022     }
5023     return true;
5024   }
5025   return false;
5026 }
5027 
5028 ////////////////////////////////////////////////////////////////////////////////
5029 // misc
5030 
5031 // This does not do anything on Linux. This is basically a hook for being
5032 // able to use structured exception handling (thread-local exception filters)
5033 // on, e.g., Win32.
5034 void
5035 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5036                          JavaCallArguments* args, Thread* thread) {
5037   f(value, method, args, thread);
5038 }
5039 
5040 void os::print_statistics() {
5041 }
5042 
5043 int os::message_box(const char* title, const char* message) {
5044   int i;
5045   fdStream err(defaultStream::error_fd());
5046   for (i = 0; i < 78; i++) err.print_raw("=");
5047   err.cr();
5048   err.print_raw_cr(title);
5049   for (i = 0; i < 78; i++) err.print_raw("-");
5050   err.cr();
5051   err.print_raw_cr(message);
5052   for (i = 0; i < 78; i++) err.print_raw("=");
5053   err.cr();
5054 
5055   char buf[16];
5056   // Prevent process from exiting upon "read error" without consuming all CPU
5057   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5058 
5059   return buf[0] == 'y' || buf[0] == 'Y';
5060 }
5061 
5062 int os::stat(const char *path, struct stat *sbuf) {
5063   char pathbuf[MAX_PATH];
5064   if (strlen(path) > MAX_PATH - 1) {
5065     errno = ENAMETOOLONG;
5066     return -1;
5067   }
5068   os::native_path(strcpy(pathbuf, path));
5069   return ::stat(pathbuf, sbuf);
5070 }
5071 
5072 bool os::check_heap(bool force) {
5073   return true;
5074 }
5075 
5076 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5077   return ::vsnprintf(buf, count, format, args);
5078 }
5079 
5080 // Is a (classpath) directory empty?
5081 bool os::dir_is_empty(const char* path) {
5082   DIR *dir = NULL;
5083   struct dirent *ptr;
5084 
5085   dir = opendir(path);
5086   if (dir == NULL) return true;
5087 
5088   /* Scan the directory */
5089   bool result = true;
5090   char buf[sizeof(struct dirent) + MAX_PATH];
5091   while (result && (ptr = ::readdir(dir)) != NULL) {
5092     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5093       result = false;
5094     }
5095   }
5096   closedir(dir);
5097   return result;
5098 }
5099 
5100 // This code originates from JDK's sysOpen and open64_w
5101 // from src/solaris/hpi/src/system_md.c
5102 
5103 #ifndef O_DELETE
5104 #define O_DELETE 0x10000
5105 #endif
5106 
5107 // Open a file. Unlink the file immediately after open returns
5108 // if the specified oflag has the O_DELETE flag set.
5109 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5110 
5111 int os::open(const char *path, int oflag, int mode) {
5112 
5113   if (strlen(path) > MAX_PATH - 1) {
5114     errno = ENAMETOOLONG;
5115     return -1;
5116   }
5117   int fd;
5118   int o_delete = (oflag & O_DELETE);
5119   oflag = oflag & ~O_DELETE;
5120 
5121   fd = ::open64(path, oflag, mode);
5122   if (fd == -1) return -1;
5123 
5124   //If the open succeeded, the file might still be a directory
5125   {
5126     struct stat64 buf64;
5127     int ret = ::fstat64(fd, &buf64);
5128     int st_mode = buf64.st_mode;
5129 
5130     if (ret != -1) {
5131       if ((st_mode & S_IFMT) == S_IFDIR) {
5132         errno = EISDIR;
5133         ::close(fd);
5134         return -1;
5135       }
5136     } else {
5137       ::close(fd);
5138       return -1;
5139     }
5140   }
5141 
5142     /*
5143      * All file descriptors that are opened in the JVM and not
5144      * specifically destined for a subprocess should have the
5145      * close-on-exec flag set.  If we don't set it, then careless 3rd
5146      * party native code might fork and exec without closing all
5147      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5148      * UNIXProcess.c), and this in turn might:
5149      *
5150      * - cause end-of-file to fail to be detected on some file
5151      *   descriptors, resulting in mysterious hangs, or
5152      *
5153      * - might cause an fopen in the subprocess to fail on a system
5154      *   suffering from bug 1085341.
5155      *
5156      * (Yes, the default setting of the close-on-exec flag is a Unix
5157      * design flaw)
5158      *
5159      * See:
5160      * 1085341: 32-bit stdio routines should support file descriptors >255
5161      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5162      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5163      */
5164 #ifdef FD_CLOEXEC
5165     {
5166         int flags = ::fcntl(fd, F_GETFD);
5167         if (flags != -1)
5168             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5169     }
5170 #endif
5171 
5172   if (o_delete != 0) {
5173     ::unlink(path);
5174   }
5175   return fd;
5176 }
5177 
5178 
5179 // create binary file, rewriting existing file if required
5180 int os::create_binary_file(const char* path, bool rewrite_existing) {
5181   int oflags = O_WRONLY | O_CREAT;
5182   if (!rewrite_existing) {
5183     oflags |= O_EXCL;
5184   }
5185   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5186 }
5187 
5188 // return current position of file pointer
5189 jlong os::current_file_offset(int fd) {
5190   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5191 }
5192 
5193 // move file pointer to the specified offset
5194 jlong os::seek_to_file_offset(int fd, jlong offset) {
5195   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5196 }
5197 
5198 // This code originates from JDK's sysAvailable
5199 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5200 
5201 int os::available(int fd, jlong *bytes) {
5202   jlong cur, end;
5203   int mode;
5204   struct stat64 buf64;
5205 
5206   if (::fstat64(fd, &buf64) >= 0) {
5207     mode = buf64.st_mode;
5208     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5209       /*
5210       * XXX: is the following call interruptible? If so, this might
5211       * need to go through the INTERRUPT_IO() wrapper as for other
5212       * blocking, interruptible calls in this file.
5213       */
5214       int n;
5215       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5216         *bytes = n;
5217         return 1;
5218       }
5219     }
5220   }
5221   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5222     return 0;
5223   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5224     return 0;
5225   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5226     return 0;
5227   }
5228   *bytes = end - cur;
5229   return 1;
5230 }
5231 
5232 int os::socket_available(int fd, jint *pbytes) {
5233   // Linux doc says EINTR not returned, unlike Solaris
5234   int ret = ::ioctl(fd, FIONREAD, pbytes);
5235 
5236   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5237   // is expected to return 0 on failure and 1 on success to the jdk.
5238   return (ret < 0) ? 0 : 1;
5239 }
5240 
5241 // Map a block of memory.
5242 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5243                      char *addr, size_t bytes, bool read_only,
5244                      bool allow_exec) {
5245   int prot;
5246   int flags = MAP_PRIVATE;
5247 
5248   if (read_only) {
5249     prot = PROT_READ;
5250   } else {
5251     prot = PROT_READ | PROT_WRITE;
5252   }
5253 
5254   if (allow_exec) {
5255     prot |= PROT_EXEC;
5256   }
5257 
5258   if (addr != NULL) {
5259     flags |= MAP_FIXED;
5260   }
5261 
5262   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5263                                      fd, file_offset);
5264   if (mapped_address == MAP_FAILED) {
5265     return NULL;
5266   }
5267   return mapped_address;
5268 }
5269 
5270 
5271 // Remap a block of memory.
5272 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5273                        char *addr, size_t bytes, bool read_only,
5274                        bool allow_exec) {
5275   // same as map_memory() on this OS
5276   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5277                         allow_exec);
5278 }
5279 
5280 
5281 // Unmap a block of memory.
5282 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5283   return munmap(addr, bytes) == 0;
5284 }
5285 
5286 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5287 
5288 static clockid_t thread_cpu_clockid(Thread* thread) {
5289   pthread_t tid = thread->osthread()->pthread_id();
5290   clockid_t clockid;
5291 
5292   // Get thread clockid
5293   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5294   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5295   return clockid;
5296 }
5297 
5298 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5299 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5300 // of a thread.
5301 //
5302 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5303 // the fast estimate available on the platform.
5304 
5305 jlong os::current_thread_cpu_time() {
5306   if (os::Linux::supports_fast_thread_cpu_time()) {
5307     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5308   } else {
5309     // return user + sys since the cost is the same
5310     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5311   }
5312 }
5313 
5314 jlong os::thread_cpu_time(Thread* thread) {
5315   // consistent with what current_thread_cpu_time() returns
5316   if (os::Linux::supports_fast_thread_cpu_time()) {
5317     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5318   } else {
5319     return slow_thread_cpu_time(thread, true /* user + sys */);
5320   }
5321 }
5322 
5323 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5324   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5325     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5326   } else {
5327     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5328   }
5329 }
5330 
5331 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5332   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5333     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5334   } else {
5335     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5336   }
5337 }
5338 
5339 //
5340 //  -1 on error.
5341 //
5342 
5343 PRAGMA_DIAG_PUSH
5344 PRAGMA_FORMAT_NONLITERAL_IGNORED
5345 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5346   static bool proc_task_unchecked = true;
5347   static const char *proc_stat_path = "/proc/%d/stat";
5348   pid_t  tid = thread->osthread()->thread_id();
5349   char *s;
5350   char stat[2048];
5351   int statlen;
5352   char proc_name[64];
5353   int count;
5354   long sys_time, user_time;
5355   char cdummy;
5356   int idummy;
5357   long ldummy;
5358   FILE *fp;
5359 
5360   // The /proc/<tid>/stat aggregates per-process usage on
5361   // new Linux kernels 2.6+ where NPTL is supported.
5362   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5363   // See bug 6328462.
5364   // There possibly can be cases where there is no directory
5365   // /proc/self/task, so we check its availability.
5366   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5367     // This is executed only once
5368     proc_task_unchecked = false;
5369     fp = fopen("/proc/self/task", "r");
5370     if (fp != NULL) {
5371       proc_stat_path = "/proc/self/task/%d/stat";
5372       fclose(fp);
5373     }
5374   }
5375 
5376   sprintf(proc_name, proc_stat_path, tid);
5377   fp = fopen(proc_name, "r");
5378   if ( fp == NULL ) return -1;
5379   statlen = fread(stat, 1, 2047, fp);
5380   stat[statlen] = '\0';
5381   fclose(fp);
5382 
5383   // Skip pid and the command string. Note that we could be dealing with
5384   // weird command names, e.g. user could decide to rename java launcher
5385   // to "java 1.4.2 :)", then the stat file would look like
5386   //                1234 (java 1.4.2 :)) R ... ...
5387   // We don't really need to know the command string, just find the last
5388   // occurrence of ")" and then start parsing from there. See bug 4726580.
5389   s = strrchr(stat, ')');
5390   if (s == NULL ) return -1;
5391 
5392   // Skip blank chars
5393   do s++; while (isspace(*s));
5394 
5395   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5396                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5397                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5398                  &user_time, &sys_time);
5399   if ( count != 13 ) return -1;
5400   if (user_sys_cpu_time) {
5401     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5402   } else {
5403     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5404   }
5405 }
5406 PRAGMA_DIAG_POP
5407 
5408 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5409   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5410   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5411   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5412   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5413 }
5414 
5415 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5416   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5417   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5418   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5419   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5420 }
5421 
5422 bool os::is_thread_cpu_time_supported() {
5423   return true;
5424 }
5425 
5426 // System loadavg support.  Returns -1 if load average cannot be obtained.
5427 // Linux doesn't yet have a (official) notion of processor sets,
5428 // so just return the system wide load average.
5429 int os::loadavg(double loadavg[], int nelem) {
5430   return ::getloadavg(loadavg, nelem);
5431 }
5432 
5433 void os::pause() {
5434   char filename[MAX_PATH];
5435   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5436     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5437   } else {
5438     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5439   }
5440 
5441   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5442   if (fd != -1) {
5443     struct stat buf;
5444     ::close(fd);
5445     while (::stat(filename, &buf) == 0) {
5446       (void)::poll(NULL, 0, 100);
5447     }
5448   } else {
5449     jio_fprintf(stderr,
5450       "Could not open pause file '%s', continuing immediately.\n", filename);
5451   }
5452 }
5453 
5454 
5455 // Refer to the comments in os_solaris.cpp park-unpark.
5456 //
5457 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5458 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5459 // For specifics regarding the bug see GLIBC BUGID 261237 :
5460 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5461 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5462 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5463 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5464 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5465 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5466 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5467 // of libpthread avoids the problem, but isn't practical.
5468 //
5469 // Possible remedies:
5470 //
5471 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5472 //      This is palliative and probabilistic, however.  If the thread is preempted
5473 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5474 //      than the minimum period may have passed, and the abstime may be stale (in the
5475 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5476 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5477 //
5478 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5479 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5480 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5481 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5482 //      thread.
5483 //
5484 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5485 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5486 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5487 //      This also works well.  In fact it avoids kernel-level scalability impediments
5488 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5489 //      timers in a graceful fashion.
5490 //
5491 // 4.   When the abstime value is in the past it appears that control returns
5492 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5493 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5494 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5495 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5496 //      It may be possible to avoid reinitialization by checking the return
5497 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5498 //      condvar we must establish the invariant that cond_signal() is only called
5499 //      within critical sections protected by the adjunct mutex.  This prevents
5500 //      cond_signal() from "seeing" a condvar that's in the midst of being
5501 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5502 //      desirable signal-after-unlock optimization that avoids futile context switching.
5503 //
5504 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5505 //      structure when a condvar is used or initialized.  cond_destroy()  would
5506 //      release the helper structure.  Our reinitialize-after-timedwait fix
5507 //      put excessive stress on malloc/free and locks protecting the c-heap.
5508 //
5509 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5510 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5511 // and only enabling the work-around for vulnerable environments.
5512 
5513 // utility to compute the abstime argument to timedwait:
5514 // millis is the relative timeout time
5515 // abstime will be the absolute timeout time
5516 // TODO: replace compute_abstime() with unpackTime()
5517 
5518 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5519   if (millis < 0)  millis = 0;
5520 
5521   jlong seconds = millis / 1000;
5522   millis %= 1000;
5523   if (seconds > 50000000) { // see man cond_timedwait(3T)
5524     seconds = 50000000;
5525   }
5526 
5527   if (os::Linux::supports_monotonic_clock()) {
5528     struct timespec now;
5529     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5530     assert_status(status == 0, status, "clock_gettime");
5531     abstime->tv_sec = now.tv_sec  + seconds;
5532     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5533     if (nanos >= NANOSECS_PER_SEC) {
5534       abstime->tv_sec += 1;
5535       nanos -= NANOSECS_PER_SEC;
5536     }
5537     abstime->tv_nsec = nanos;
5538   } else {
5539     struct timeval now;
5540     int status = gettimeofday(&now, NULL);
5541     assert(status == 0, "gettimeofday");
5542     abstime->tv_sec = now.tv_sec  + seconds;
5543     long usec = now.tv_usec + millis * 1000;
5544     if (usec >= 1000000) {
5545       abstime->tv_sec += 1;
5546       usec -= 1000000;
5547     }
5548     abstime->tv_nsec = usec * 1000;
5549   }
5550   return abstime;
5551 }
5552 
5553 
5554 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5555 // Conceptually TryPark() should be equivalent to park(0).
5556 
5557 int os::PlatformEvent::TryPark() {
5558   for (;;) {
5559     const int v = _Event ;
5560     guarantee ((v == 0) || (v == 1), "invariant") ;
5561     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5562   }
5563 }
5564 
5565 void os::PlatformEvent::park() {       // AKA "down()"
5566   // Invariant: Only the thread associated with the Event/PlatformEvent
5567   // may call park().
5568   // TODO: assert that _Assoc != NULL or _Assoc == Self
5569   int v ;
5570   for (;;) {
5571       v = _Event ;
5572       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5573   }
5574   guarantee (v >= 0, "invariant") ;
5575   if (v == 0) {
5576      // Do this the hard way by blocking ...
5577      int status = pthread_mutex_lock(_mutex);
5578      assert_status(status == 0, status, "mutex_lock");
5579      guarantee (_nParked == 0, "invariant") ;
5580      ++ _nParked ;
5581      while (_Event < 0) {
5582         status = pthread_cond_wait(_cond, _mutex);
5583         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5584         // Treat this the same as if the wait was interrupted
5585         if (status == ETIME) { status = EINTR; }
5586         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5587      }
5588      -- _nParked ;
5589 
5590     _Event = 0 ;
5591      status = pthread_mutex_unlock(_mutex);
5592      assert_status(status == 0, status, "mutex_unlock");
5593     // Paranoia to ensure our locked and lock-free paths interact
5594     // correctly with each other.
5595     OrderAccess::fence();
5596   }
5597   guarantee (_Event >= 0, "invariant") ;
5598 }
5599 
5600 int os::PlatformEvent::park(jlong millis) {
5601   guarantee (_nParked == 0, "invariant") ;
5602 
5603   int v ;
5604   for (;;) {
5605       v = _Event ;
5606       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5607   }
5608   guarantee (v >= 0, "invariant") ;
5609   if (v != 0) return OS_OK ;
5610 
5611   // We do this the hard way, by blocking the thread.
5612   // Consider enforcing a minimum timeout value.
5613   struct timespec abst;
5614   compute_abstime(&abst, millis);
5615 
5616   int ret = OS_TIMEOUT;
5617   int status = pthread_mutex_lock(_mutex);
5618   assert_status(status == 0, status, "mutex_lock");
5619   guarantee (_nParked == 0, "invariant") ;
5620   ++_nParked ;
5621 
5622   // Object.wait(timo) will return because of
5623   // (a) notification
5624   // (b) timeout
5625   // (c) thread.interrupt
5626   //
5627   // Thread.interrupt and object.notify{All} both call Event::set.
5628   // That is, we treat thread.interrupt as a special case of notification.
5629   // The underlying Solaris implementation, cond_timedwait, admits
5630   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5631   // JVM from making those visible to Java code.  As such, we must
5632   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5633   //
5634   // TODO: properly differentiate simultaneous notify+interrupt.
5635   // In that case, we should propagate the notify to another waiter.
5636 
5637   while (_Event < 0) {
5638     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5639     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5640       pthread_cond_destroy (_cond);
5641       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5642     }
5643     assert_status(status == 0 || status == EINTR ||
5644                   status == ETIME || status == ETIMEDOUT,
5645                   status, "cond_timedwait");
5646     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5647     if (status == ETIME || status == ETIMEDOUT) break ;
5648     // We consume and ignore EINTR and spurious wakeups.
5649   }
5650   --_nParked ;
5651   if (_Event >= 0) {
5652      ret = OS_OK;
5653   }
5654   _Event = 0 ;
5655   status = pthread_mutex_unlock(_mutex);
5656   assert_status(status == 0, status, "mutex_unlock");
5657   assert (_nParked == 0, "invariant") ;
5658   // Paranoia to ensure our locked and lock-free paths interact
5659   // correctly with each other.
5660   OrderAccess::fence();
5661   return ret;
5662 }
5663 
5664 void os::PlatformEvent::unpark() {
5665   // Transitions for _Event:
5666   //    0 :=> 1
5667   //    1 :=> 1
5668   //   -1 :=> either 0 or 1; must signal target thread
5669   //          That is, we can safely transition _Event from -1 to either
5670   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5671   //          unpark() calls.
5672   // See also: "Semaphores in Plan 9" by Mullender & Cox
5673   //
5674   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5675   // that it will take two back-to-back park() calls for the owning
5676   // thread to block. This has the benefit of forcing a spurious return
5677   // from the first park() call after an unpark() call which will help
5678   // shake out uses of park() and unpark() without condition variables.
5679 
5680   if (Atomic::xchg(1, &_Event) >= 0) return;
5681 
5682   // Wait for the thread associated with the event to vacate
5683   int status = pthread_mutex_lock(_mutex);
5684   assert_status(status == 0, status, "mutex_lock");
5685   int AnyWaiters = _nParked;
5686   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5687   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5688     AnyWaiters = 0;
5689     pthread_cond_signal(_cond);
5690   }
5691   status = pthread_mutex_unlock(_mutex);
5692   assert_status(status == 0, status, "mutex_unlock");
5693   if (AnyWaiters != 0) {
5694     status = pthread_cond_signal(_cond);
5695     assert_status(status == 0, status, "cond_signal");
5696   }
5697 
5698   // Note that we signal() _after dropping the lock for "immortal" Events.
5699   // This is safe and avoids a common class of  futile wakeups.  In rare
5700   // circumstances this can cause a thread to return prematurely from
5701   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5702   // simply re-test the condition and re-park itself.
5703 }
5704 
5705 
5706 // JSR166
5707 // -------------------------------------------------------
5708 
5709 /*
5710  * The solaris and linux implementations of park/unpark are fairly
5711  * conservative for now, but can be improved. They currently use a
5712  * mutex/condvar pair, plus a a count.
5713  * Park decrements count if > 0, else does a condvar wait.  Unpark
5714  * sets count to 1 and signals condvar.  Only one thread ever waits
5715  * on the condvar. Contention seen when trying to park implies that someone
5716  * is unparking you, so don't wait. And spurious returns are fine, so there
5717  * is no need to track notifications.
5718  */
5719 
5720 /*
5721  * This code is common to linux and solaris and will be moved to a
5722  * common place in dolphin.
5723  *
5724  * The passed in time value is either a relative time in nanoseconds
5725  * or an absolute time in milliseconds. Either way it has to be unpacked
5726  * into suitable seconds and nanoseconds components and stored in the
5727  * given timespec structure.
5728  * Given time is a 64-bit value and the time_t used in the timespec is only
5729  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5730  * overflow if times way in the future are given. Further on Solaris versions
5731  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5732  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5733  * As it will be 28 years before "now + 100000000" will overflow we can
5734  * ignore overflow and just impose a hard-limit on seconds using the value
5735  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5736  * years from "now".
5737  */
5738 
5739 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5740   assert (time > 0, "convertTime");
5741   time_t max_secs = 0;
5742 
5743   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5744     struct timeval now;
5745     int status = gettimeofday(&now, NULL);
5746     assert(status == 0, "gettimeofday");
5747 
5748     max_secs = now.tv_sec + MAX_SECS;
5749 
5750     if (isAbsolute) {
5751       jlong secs = time / 1000;
5752       if (secs > max_secs) {
5753         absTime->tv_sec = max_secs;
5754       } else {
5755         absTime->tv_sec = secs;
5756       }
5757       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5758     } else {
5759       jlong secs = time / NANOSECS_PER_SEC;
5760       if (secs >= MAX_SECS) {
5761         absTime->tv_sec = max_secs;
5762         absTime->tv_nsec = 0;
5763       } else {
5764         absTime->tv_sec = now.tv_sec + secs;
5765         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5766         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5767           absTime->tv_nsec -= NANOSECS_PER_SEC;
5768           ++absTime->tv_sec; // note: this must be <= max_secs
5769         }
5770       }
5771     }
5772   } else {
5773     // must be relative using monotonic clock
5774     struct timespec now;
5775     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5776     assert_status(status == 0, status, "clock_gettime");
5777     max_secs = now.tv_sec + MAX_SECS;
5778     jlong secs = time / NANOSECS_PER_SEC;
5779     if (secs >= MAX_SECS) {
5780       absTime->tv_sec = max_secs;
5781       absTime->tv_nsec = 0;
5782     } else {
5783       absTime->tv_sec = now.tv_sec + secs;
5784       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5785       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5786         absTime->tv_nsec -= NANOSECS_PER_SEC;
5787         ++absTime->tv_sec; // note: this must be <= max_secs
5788       }
5789     }
5790   }
5791   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5792   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5793   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5794   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5795 }
5796 
5797 void Parker::park(bool isAbsolute, jlong time) {
5798   // Ideally we'd do something useful while spinning, such
5799   // as calling unpackTime().
5800 
5801   // Optional fast-path check:
5802   // Return immediately if a permit is available.
5803   // We depend on Atomic::xchg() having full barrier semantics
5804   // since we are doing a lock-free update to _counter.
5805   if (Atomic::xchg(0, &_counter) > 0) return;
5806 
5807   Thread* thread = Thread::current();
5808   assert(thread->is_Java_thread(), "Must be JavaThread");
5809   JavaThread *jt = (JavaThread *)thread;
5810 
5811   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5812   // Check interrupt before trying to wait
5813   if (Thread::is_interrupted(thread, false)) {
5814     return;
5815   }
5816 
5817   // Next, demultiplex/decode time arguments
5818   timespec absTime;
5819   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5820     return;
5821   }
5822   if (time > 0) {
5823     unpackTime(&absTime, isAbsolute, time);
5824   }
5825 
5826 
5827   // Enter safepoint region
5828   // Beware of deadlocks such as 6317397.
5829   // The per-thread Parker:: mutex is a classic leaf-lock.
5830   // In particular a thread must never block on the Threads_lock while
5831   // holding the Parker:: mutex.  If safepoints are pending both the
5832   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5833   ThreadBlockInVM tbivm(jt);
5834 
5835   // Don't wait if cannot get lock since interference arises from
5836   // unblocking.  Also. check interrupt before trying wait
5837   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5838     return;
5839   }
5840 
5841   int status ;
5842   if (_counter > 0)  { // no wait needed
5843     _counter = 0;
5844     status = pthread_mutex_unlock(_mutex);
5845     assert (status == 0, "invariant") ;
5846     // Paranoia to ensure our locked and lock-free paths interact
5847     // correctly with each other and Java-level accesses.
5848     OrderAccess::fence();
5849     return;
5850   }
5851 
5852 #ifdef ASSERT
5853   // Don't catch signals while blocked; let the running threads have the signals.
5854   // (This allows a debugger to break into the running thread.)
5855   sigset_t oldsigs;
5856   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5857   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5858 #endif
5859 
5860   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5861   jt->set_suspend_equivalent();
5862   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5863 
5864   assert(_cur_index == -1, "invariant");
5865   if (time == 0) {
5866     _cur_index = REL_INDEX; // arbitrary choice when not timed
5867     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5868   } else {
5869     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5870     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5871     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5872       pthread_cond_destroy (&_cond[_cur_index]) ;
5873       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5874     }
5875   }
5876   _cur_index = -1;
5877   assert_status(status == 0 || status == EINTR ||
5878                 status == ETIME || status == ETIMEDOUT,
5879                 status, "cond_timedwait");
5880 
5881 #ifdef ASSERT
5882   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5883 #endif
5884 
5885   _counter = 0 ;
5886   status = pthread_mutex_unlock(_mutex) ;
5887   assert_status(status == 0, status, "invariant") ;
5888   // Paranoia to ensure our locked and lock-free paths interact
5889   // correctly with each other and Java-level accesses.
5890   OrderAccess::fence();
5891 
5892   // If externally suspended while waiting, re-suspend
5893   if (jt->handle_special_suspend_equivalent_condition()) {
5894     jt->java_suspend_self();
5895   }
5896 }
5897 
5898 void Parker::unpark() {
5899   int s, status ;
5900   status = pthread_mutex_lock(_mutex);
5901   assert (status == 0, "invariant") ;
5902   s = _counter;
5903   _counter = 1;
5904   if (s < 1) {
5905     // thread might be parked
5906     if (_cur_index != -1) {
5907       // thread is definitely parked
5908       if (WorkAroundNPTLTimedWaitHang) {
5909         status = pthread_cond_signal (&_cond[_cur_index]);
5910         assert (status == 0, "invariant");
5911         status = pthread_mutex_unlock(_mutex);
5912         assert (status == 0, "invariant");
5913       } else {
5914         status = pthread_mutex_unlock(_mutex);
5915         assert (status == 0, "invariant");
5916         status = pthread_cond_signal (&_cond[_cur_index]);
5917         assert (status == 0, "invariant");
5918       }
5919     } else {
5920       pthread_mutex_unlock(_mutex);
5921       assert (status == 0, "invariant") ;
5922     }
5923   } else {
5924     pthread_mutex_unlock(_mutex);
5925     assert (status == 0, "invariant") ;
5926   }
5927 }
5928 
5929 
5930 extern char** environ;
5931 
5932 // Run the specified command in a separate process. Return its exit value,
5933 // or -1 on failure (e.g. can't fork a new process).
5934 // Unlike system(), this function can be called from signal handler. It
5935 // doesn't block SIGINT et al.
5936 int os::fork_and_exec(char* cmd) {
5937   const char * argv[4] = {"sh", "-c", cmd, NULL};
5938 
5939   pid_t pid = fork();
5940 
5941   if (pid < 0) {
5942     // fork failed
5943     return -1;
5944 
5945   } else if (pid == 0) {
5946     // child process
5947 
5948     execve("/bin/sh", (char* const*)argv, environ);
5949 
5950     // execve failed
5951     _exit(-1);
5952 
5953   } else  {
5954     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5955     // care about the actual exit code, for now.
5956 
5957     int status;
5958 
5959     // Wait for the child process to exit.  This returns immediately if
5960     // the child has already exited. */
5961     while (waitpid(pid, &status, 0) < 0) {
5962         switch (errno) {
5963         case ECHILD: return 0;
5964         case EINTR: break;
5965         default: return -1;
5966         }
5967     }
5968 
5969     if (WIFEXITED(status)) {
5970        // The child exited normally; get its exit code.
5971        return WEXITSTATUS(status);
5972     } else if (WIFSIGNALED(status)) {
5973        // The child exited because of a signal
5974        // The best value to return is 0x80 + signal number,
5975        // because that is what all Unix shells do, and because
5976        // it allows callers to distinguish between process exit and
5977        // process death by signal.
5978        return 0x80 + WTERMSIG(status);
5979     } else {
5980        // Unknown exit code; pass it through
5981        return status;
5982     }
5983   }
5984 }
5985 
5986 // is_headless_jre()
5987 //
5988 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5989 // in order to report if we are running in a headless jre
5990 //
5991 // Since JDK8 xawt/libmawt.so was moved into the same directory
5992 // as libawt.so, and renamed libawt_xawt.so
5993 //
5994 bool os::is_headless_jre() {
5995     struct stat statbuf;
5996     char buf[MAXPATHLEN];
5997     char libmawtpath[MAXPATHLEN];
5998     const char *xawtstr  = "/xawt/libmawt.so";
5999     const char *new_xawtstr = "/libawt_xawt.so";
6000     char *p;
6001 
6002     // Get path to libjvm.so
6003     os::jvm_path(buf, sizeof(buf));
6004 
6005     // Get rid of libjvm.so
6006     p = strrchr(buf, '/');
6007     if (p == NULL) return false;
6008     else *p = '\0';
6009 
6010     // Get rid of client or server
6011     p = strrchr(buf, '/');
6012     if (p == NULL) return false;
6013     else *p = '\0';
6014 
6015     // check xawt/libmawt.so
6016     strcpy(libmawtpath, buf);
6017     strcat(libmawtpath, xawtstr);
6018     if (::stat(libmawtpath, &statbuf) == 0) return false;
6019 
6020     // check libawt_xawt.so
6021     strcpy(libmawtpath, buf);
6022     strcat(libmawtpath, new_xawtstr);
6023     if (::stat(libmawtpath, &statbuf) == 0) return false;
6024 
6025     return true;
6026 }
6027 
6028 // Get the default path to the core file
6029 // Returns the length of the string
6030 int os::get_core_path(char* buffer, size_t bufferSize) {
6031   const char* p = get_current_directory(buffer, bufferSize);
6032 
6033   if (p == NULL) {
6034     assert(p != NULL, "failed to get current directory");
6035     return 0;
6036   }
6037 
6038   return strlen(buffer);
6039 }
6040 
6041 /////////////// Unit tests ///////////////
6042 
6043 #ifndef PRODUCT
6044 
6045 #define test_log(...) \
6046   do {\
6047     if (VerboseInternalVMTests) { \
6048       tty->print_cr(__VA_ARGS__); \
6049       tty->flush(); \
6050     }\
6051   } while (false)
6052 
6053 class TestReserveMemorySpecial : AllStatic {
6054  public:
6055   static void small_page_write(void* addr, size_t size) {
6056     size_t page_size = os::vm_page_size();
6057 
6058     char* end = (char*)addr + size;
6059     for (char* p = (char*)addr; p < end; p += page_size) {
6060       *p = 1;
6061     }
6062   }
6063 
6064   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6065     if (!UseHugeTLBFS) {
6066       return;
6067     }
6068 
6069     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6070 
6071     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6072 
6073     if (addr != NULL) {
6074       small_page_write(addr, size);
6075 
6076       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6077     }
6078   }
6079 
6080   static void test_reserve_memory_special_huge_tlbfs_only() {
6081     if (!UseHugeTLBFS) {
6082       return;
6083     }
6084 
6085     size_t lp = os::large_page_size();
6086 
6087     for (size_t size = lp; size <= lp * 10; size += lp) {
6088       test_reserve_memory_special_huge_tlbfs_only(size);
6089     }
6090   }
6091 
6092   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6093     if (!UseHugeTLBFS) {
6094         return;
6095     }
6096 
6097     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6098         size, alignment);
6099 
6100     assert(size >= os::large_page_size(), "Incorrect input to test");
6101 
6102     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6103 
6104     if (addr != NULL) {
6105       small_page_write(addr, size);
6106 
6107       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6108     }
6109   }
6110 
6111   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6112     size_t lp = os::large_page_size();
6113     size_t ag = os::vm_allocation_granularity();
6114 
6115     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6116       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6117     }
6118   }
6119 
6120   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6121     size_t lp = os::large_page_size();
6122     size_t ag = os::vm_allocation_granularity();
6123 
6124     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6125     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6126     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6127     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6128     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6129     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6130     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6131     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6132     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6133   }
6134 
6135   static void test_reserve_memory_special_huge_tlbfs() {
6136     if (!UseHugeTLBFS) {
6137       return;
6138     }
6139 
6140     test_reserve_memory_special_huge_tlbfs_only();
6141     test_reserve_memory_special_huge_tlbfs_mixed();
6142   }
6143 
6144   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6145     if (!UseSHM) {
6146       return;
6147     }
6148 
6149     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6150 
6151     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6152 
6153     if (addr != NULL) {
6154       assert(is_ptr_aligned(addr, alignment), "Check");
6155       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6156 
6157       small_page_write(addr, size);
6158 
6159       os::Linux::release_memory_special_shm(addr, size);
6160     }
6161   }
6162 
6163   static void test_reserve_memory_special_shm() {
6164     size_t lp = os::large_page_size();
6165     size_t ag = os::vm_allocation_granularity();
6166 
6167     for (size_t size = ag; size < lp * 3; size += ag) {
6168       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6169         test_reserve_memory_special_shm(size, alignment);
6170       }
6171     }
6172   }
6173 
6174   static void test() {
6175     test_reserve_memory_special_huge_tlbfs();
6176     test_reserve_memory_special_shm();
6177   }
6178 };
6179 
6180 void TestReserveMemorySpecial_test() {
6181   TestReserveMemorySpecial::test();
6182 }
6183 
6184 #endif