1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "classfile/classLoader.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "jvm_aix.h"
  39 #include "libperfstat_aix.hpp"
  40 #include "loadlib_aix.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/filemap.hpp"
  43 #include "mutex_aix.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "os_aix.inline.hpp"
  46 #include "os_share_aix.hpp"
  47 #include "porting_aix.hpp"
  48 #include "prims/jniFastGetField.hpp"
  49 #include "prims/jvm.h"
  50 #include "prims/jvm_misc.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/extendedPC.hpp"
  54 #include "runtime/globals.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/orderAccess.inline.hpp"
  61 #include "runtime/os.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/perfMemory.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vm_version.hpp"
  71 #include "services/attachListener.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/decoder.hpp"
  74 #include "utilities/defaultStream.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here (sorted alphabetically)
  80 #include <errno.h>
  81 #include <fcntl.h>
  82 #include <inttypes.h>
  83 #include <poll.h>
  84 #include <procinfo.h>
  85 #include <pthread.h>
  86 #include <pwd.h>
  87 #include <semaphore.h>
  88 #include <signal.h>
  89 #include <stdint.h>
  90 #include <stdio.h>
  91 #include <string.h>
  92 #include <unistd.h>
  93 #include <sys/ioctl.h>
  94 #include <sys/ipc.h>
  95 #include <sys/mman.h>
  96 #include <sys/resource.h>
  97 #include <sys/select.h>
  98 #include <sys/shm.h>
  99 #include <sys/socket.h>
 100 #include <sys/stat.h>
 101 #include <sys/sysinfo.h>
 102 #include <sys/systemcfg.h>
 103 #include <sys/time.h>
 104 #include <sys/times.h>
 105 #include <sys/types.h>
 106 #include <sys/utsname.h>
 107 #include <sys/vminfo.h>
 108 #include <sys/wait.h>
 109 
 110 // If RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 // PPC port
 117 static const uintx Use64KPagesThreshold       = 1*M;
 118 static const uintx MaxExpectedDataSegmentSize = SIZE_4G*2;
 119 
 120 // Add missing declarations (should be in procinfo.h but isn't until AIX 6.1).
 121 #if !defined(_AIXVERSION_610)
 122 extern "C" {
 123   int getthrds64(pid_t ProcessIdentifier,
 124                  struct thrdentry64* ThreadBuffer,
 125                  int ThreadSize,
 126                  tid64_t* IndexPointer,
 127                  int Count);
 128 }
 129 #endif
 130 
 131 #define MAX_PATH (2 * K)
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 // for multipage initialization error analysis (in 'g_multipage_error')
 136 #define ERROR_MP_OS_TOO_OLD                          100
 137 #define ERROR_MP_EXTSHM_ACTIVE                       101
 138 #define ERROR_MP_VMGETINFO_FAILED                    102
 139 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 140 
 141 // The semantics in this file are thus that codeptr_t is a *real code ptr*.
 142 // This means that any function taking codeptr_t as arguments will assume
 143 // a real codeptr and won't handle function descriptors (eg getFuncName),
 144 // whereas functions taking address as args will deal with function
 145 // descriptors (eg os::dll_address_to_library_name).
 146 typedef unsigned int* codeptr_t;
 147 
 148 // Typedefs for stackslots, stack pointers, pointers to op codes.
 149 typedef unsigned long stackslot_t;
 150 typedef stackslot_t* stackptr_t;
 151 
 152 // Excerpts from systemcfg.h definitions newer than AIX 5.3.
 153 #ifndef PV_7
 154 #define PV_7 0x200000          /* Power PC 7 */
 155 #define PV_7_Compat 0x208000   /* Power PC 7 */
 156 #endif
 157 #ifndef PV_8
 158 #define PV_8 0x300000          /* Power PC 8 */
 159 #define PV_8_Compat 0x308000   /* Power PC 8 */
 160 #endif
 161 
 162 #define trcVerbose(fmt, ...) { /* PPC port */  \
 163   if (Verbose) { \
 164     fprintf(stderr, fmt, ##__VA_ARGS__); \
 165     fputc('\n', stderr); fflush(stderr); \
 166   } \
 167 }
 168 #define trc(fmt, ...)        /* PPC port */
 169 
 170 #define ERRBYE(s) { \
 171     trcVerbose(s); \
 172     return -1; \
 173 }
 174 
 175 // Query dimensions of the stack of the calling thread.
 176 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size);
 177 
 178 // function to check a given stack pointer against given stack limits
 179 inline bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) {
 180   if (((uintptr_t)sp) & 0x7) {
 181     return false;
 182   }
 183   if (sp > stack_base) {
 184     return false;
 185   }
 186   if (sp < (stackptr_t) ((address)stack_base - stack_size)) {
 187     return false;
 188   }
 189   return true;
 190 }
 191 
 192 // returns true if function is a valid codepointer
 193 inline bool is_valid_codepointer(codeptr_t p) {
 194   if (!p) {
 195     return false;
 196   }
 197   if (((uintptr_t)p) & 0x3) {
 198     return false;
 199   }
 200   if (LoadedLibraries::find_for_text_address((address)p) == NULL) {
 201     return false;
 202   }
 203   return true;
 204 }
 205 
 206 // Macro to check a given stack pointer against given stack limits and to die if test fails.
 207 #define CHECK_STACK_PTR(sp, stack_base, stack_size) { \
 208     guarantee(is_valid_stackpointer((stackptr_t)(sp), (stackptr_t)(stack_base), stack_size), "Stack Pointer Invalid"); \
 209 }
 210 
 211 // Macro to check the current stack pointer against given stacklimits.
 212 #define CHECK_CURRENT_STACK_PTR(stack_base, stack_size) { \
 213   address sp; \
 214   sp = os::current_stack_pointer(); \
 215   CHECK_STACK_PTR(sp, stack_base, stack_size); \
 216 }
 217 
 218 ////////////////////////////////////////////////////////////////////////////////
 219 // global variables (for a description see os_aix.hpp)
 220 
 221 julong    os::Aix::_physical_memory = 0;
 222 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 223 int       os::Aix::_page_size = -1;
 224 int       os::Aix::_on_pase = -1;
 225 int       os::Aix::_os_version = -1;
 226 int       os::Aix::_stack_page_size = -1;
 227 int       os::Aix::_xpg_sus_mode = -1;
 228 int       os::Aix::_extshm = -1;
 229 int       os::Aix::_logical_cpus = -1;
 230 
 231 ////////////////////////////////////////////////////////////////////////////////
 232 // local variables
 233 
 234 static int      g_multipage_error  = -1;   // error analysis for multipage initialization
 235 static jlong    initial_time_count = 0;
 236 static int      clock_tics_per_sec = 100;
 237 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 238 static bool     check_signals      = true;
 239 static pid_t    _initial_pid       = 0;
 240 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 241 static sigset_t SR_sigset;
 242 
 243 // This describes the state of multipage support of the underlying
 244 // OS. Note that this is of no interest to the outsize world and
 245 // therefore should not be defined in AIX class.
 246 //
 247 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 248 // latter two (16M "large" resp. 16G "huge" pages) require special
 249 // setup and are normally not available.
 250 //
 251 // AIX supports multiple page sizes per process, for:
 252 //  - Stack (of the primordial thread, so not relevant for us)
 253 //  - Data - data, bss, heap, for us also pthread stacks
 254 //  - Text - text code
 255 //  - shared memory
 256 //
 257 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 258 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 259 //
 260 // For shared memory, page size can be set dynamically via
 261 // shmctl(). Different shared memory regions can have different page
 262 // sizes.
 263 //
 264 // More information can be found at AIBM info center:
 265 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 266 //
 267 static struct {
 268   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 269   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 270   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 271   size_t pthr_stack_pagesize; // stack page size of pthread threads
 272   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 273   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 274   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 275   int error;                  // Error describing if something went wrong at multipage init.
 276 } g_multipage_support = {
 277   (size_t) -1,
 278   (size_t) -1,
 279   (size_t) -1,
 280   (size_t) -1,
 281   (size_t) -1,
 282   false, false,
 283   0
 284 };
 285 
 286 // We must not accidentally allocate memory close to the BRK - even if
 287 // that would work - because then we prevent the BRK segment from
 288 // growing which may result in a malloc OOM even though there is
 289 // enough memory. The problem only arises if we shmat() or mmap() at
 290 // a specific wish address, e.g. to place the heap in a
 291 // compressed-oops-friendly way.
 292 static bool is_close_to_brk(address a) {
 293   address a1 = (address) sbrk(0);
 294   if (a >= a1 && a < (a1 + MaxExpectedDataSegmentSize)) {
 295     return true;
 296   }
 297   return false;
 298 }
 299 
 300 julong os::available_memory() {
 301   return Aix::available_memory();
 302 }
 303 
 304 julong os::Aix::available_memory() {
 305   os::Aix::meminfo_t mi;
 306   if (os::Aix::get_meminfo(&mi)) {
 307     return mi.real_free;
 308   } else {
 309     return 0xFFFFFFFFFFFFFFFFLL;
 310   }
 311 }
 312 
 313 julong os::physical_memory() {
 314   return Aix::physical_memory();
 315 }
 316 
 317 // Return true if user is running as root.
 318 
 319 bool os::have_special_privileges() {
 320   static bool init = false;
 321   static bool privileges = false;
 322   if (!init) {
 323     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 324     init = true;
 325   }
 326   return privileges;
 327 }
 328 
 329 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 330 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 331 static bool my_disclaim64(char* addr, size_t size) {
 332 
 333   if (size == 0) {
 334     return true;
 335   }
 336 
 337   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 338   const unsigned int maxDisclaimSize = 0x40000000;
 339 
 340   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 341   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 342 
 343   char* p = addr;
 344 
 345   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 346     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 347       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 348       return false;
 349     }
 350     p += maxDisclaimSize;
 351   }
 352 
 353   if (lastDisclaimSize > 0) {
 354     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 355       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 356       return false;
 357     }
 358   }
 359 
 360   return true;
 361 }
 362 
 363 // Cpu architecture string
 364 #if defined(PPC32)
 365 static char cpu_arch[] = "ppc";
 366 #elif defined(PPC64)
 367 static char cpu_arch[] = "ppc64";
 368 #else
 369 #error Add appropriate cpu_arch setting
 370 #endif
 371 
 372 
 373 // Given an address, returns the size of the page backing that address.
 374 size_t os::Aix::query_pagesize(void* addr) {
 375 
 376   vm_page_info pi;
 377   pi.addr = (uint64_t)addr;
 378   if (::vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 379     return pi.pagesize;
 380   } else {
 381     fprintf(stderr, "vmgetinfo failed to retrieve page size for address %p (errno %d).\n", addr, errno);
 382     assert(false, "vmgetinfo failed to retrieve page size");
 383     return SIZE_4K;
 384   }
 385 
 386 }
 387 
 388 // Returns the kernel thread id of the currently running thread.
 389 pid_t os::Aix::gettid() {
 390   return (pid_t) thread_self();
 391 }
 392 
 393 void os::Aix::initialize_system_info() {
 394 
 395   // Get the number of online(logical) cpus instead of configured.
 396   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 397   assert(_processor_count > 0, "_processor_count must be > 0");
 398 
 399   // Retrieve total physical storage.
 400   os::Aix::meminfo_t mi;
 401   if (!os::Aix::get_meminfo(&mi)) {
 402     fprintf(stderr, "os::Aix::get_meminfo failed.\n"); fflush(stderr);
 403     assert(false, "os::Aix::get_meminfo failed.");
 404   }
 405   _physical_memory = (julong) mi.real_total;
 406 }
 407 
 408 // Helper function for tracing page sizes.
 409 static const char* describe_pagesize(size_t pagesize) {
 410   switch (pagesize) {
 411     case SIZE_4K : return "4K";
 412     case SIZE_64K: return "64K";
 413     case SIZE_16M: return "16M";
 414     case SIZE_16G: return "16G";
 415     case -1:       return "not set";
 416     default:
 417       assert(false, "surprise");
 418       return "??";
 419   }
 420 }
 421 
 422 // Probe OS for multipage support.
 423 // Will fill the global g_multipage_support structure.
 424 // Must be called before calling os::large_page_init().
 425 static void query_multipage_support() {
 426 
 427   guarantee(g_multipage_support.pagesize == -1,
 428             "do not call twice");
 429 
 430   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 431 
 432   // This really would surprise me.
 433   assert(g_multipage_support.pagesize == SIZE_4K, "surprise!");
 434 
 435   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 436   // Default data page size is defined either by linker options (-bdatapsize)
 437   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 438   // default should be 4K.
 439   {
 440     void* p = ::malloc(SIZE_16M);
 441     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 442     ::free(p);
 443   }
 444 
 445   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 446   {
 447     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 448     guarantee(shmid != -1, "shmget failed");
 449     void* p = ::shmat(shmid, NULL, 0);
 450     ::shmctl(shmid, IPC_RMID, NULL);
 451     guarantee(p != (void*) -1, "shmat failed");
 452     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 453     ::shmdt(p);
 454   }
 455 
 456   // Before querying the stack page size, make sure we are not running as primordial
 457   // thread (because primordial thread's stack may have different page size than
 458   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 459   // number of reasons so we may just as well guarantee it here.
 460   guarantee0(!os::Aix::is_primordial_thread());
 461 
 462   // Query pthread stack page size.
 463   {
 464     int dummy = 0;
 465     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 466   }
 467 
 468   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 469   /* PPC port: so far unused.
 470   {
 471     address any_function =
 472       (address) resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 473     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 474   }
 475   */
 476 
 477   // Now probe for support of 64K pages and 16M pages.
 478 
 479   // Before OS/400 V6R1, there is no support for pages other than 4K.
 480   if (os::Aix::on_pase_V5R4_or_older()) {
 481     Unimplemented();
 482     goto query_multipage_support_end;
 483   }
 484 
 485   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 486   {
 487     const int MAX_PAGE_SIZES = 4;
 488     psize_t sizes[MAX_PAGE_SIZES];
 489     const int num_psizes = ::vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 490     if (num_psizes == -1) {
 491       trc("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)\n", errno);
 492       trc("disabling multipage support.\n");
 493       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 494       goto query_multipage_support_end;
 495     }
 496     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 497     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 498     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 499     for (int i = 0; i < num_psizes; i ++) {
 500       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 501     }
 502 
 503     // Can we use 64K, 16M pages?
 504     for (int i = 0; i < num_psizes; i ++) {
 505       const size_t pagesize = sizes[i];
 506       if (pagesize != SIZE_64K && pagesize != SIZE_16M) {
 507         continue;
 508       }
 509       bool can_use = false;
 510       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 511       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 512         IPC_CREAT | S_IRUSR | S_IWUSR);
 513       guarantee0(shmid != -1); // Should always work.
 514       // Try to set pagesize.
 515       struct shmid_ds shm_buf = { 0 };
 516       shm_buf.shm_pagesize = pagesize;
 517       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 518         const int en = errno;
 519         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 520         // PPC port trcVerbose("shmctl(SHM_PAGESIZE) failed with %s",
 521         // PPC port  MiscUtils::describe_errno(en));
 522       } else {
 523         // Attach and double check pageisze.
 524         void* p = ::shmat(shmid, NULL, 0);
 525         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 526         guarantee0(p != (void*) -1); // Should always work.
 527         const size_t real_pagesize = os::Aix::query_pagesize(p);
 528         if (real_pagesize != pagesize) {
 529           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 530         } else {
 531           can_use = true;
 532         }
 533         ::shmdt(p);
 534       }
 535       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 536       if (pagesize == SIZE_64K) {
 537         g_multipage_support.can_use_64K_pages = can_use;
 538       } else if (pagesize == SIZE_16M) {
 539         g_multipage_support.can_use_16M_pages = can_use;
 540       }
 541     }
 542 
 543   } // end: check which pages can be used for shared memory
 544 
 545 query_multipage_support_end:
 546 
 547   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s\n",
 548       describe_pagesize(g_multipage_support.pagesize));
 549   trcVerbose("Data page size (C-Heap, bss, etc): %s\n",
 550       describe_pagesize(g_multipage_support.datapsize));
 551   trcVerbose("Text page size: %s\n",
 552       describe_pagesize(g_multipage_support.textpsize));
 553   trcVerbose("Thread stack page size (pthread): %s\n",
 554       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 555   trcVerbose("Default shared memory page size: %s\n",
 556       describe_pagesize(g_multipage_support.shmpsize));
 557   trcVerbose("Can use 64K pages dynamically with shared meory: %s\n",
 558       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 559   trcVerbose("Can use 16M pages dynamically with shared memory: %s\n",
 560       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 561   trcVerbose("Multipage error details: %d\n",
 562       g_multipage_support.error);
 563 
 564   // sanity checks
 565   assert0(g_multipage_support.pagesize == SIZE_4K);
 566   assert0(g_multipage_support.datapsize == SIZE_4K || g_multipage_support.datapsize == SIZE_64K);
 567   // PPC port: so far unused.assert0(g_multipage_support.textpsize == SIZE_4K || g_multipage_support.textpsize == SIZE_64K);
 568   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 569   assert0(g_multipage_support.shmpsize == SIZE_4K || g_multipage_support.shmpsize == SIZE_64K);
 570 
 571 } // end os::Aix::query_multipage_support()
 572 
 573 void os::init_system_properties_values() {
 574 
 575 #define DEFAULT_LIBPATH "/usr/lib:/lib"
 576 #define EXTENSIONS_DIR  "/lib/ext"
 577 
 578   // Buffer that fits several sprintfs.
 579   // Note that the space for the trailing null is provided
 580   // by the nulls included by the sizeof operator.
 581   const size_t bufsize =
 582     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 583          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 584   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 585 
 586   // sysclasspath, java_home, dll_dir
 587   {
 588     char *pslash;
 589     os::jvm_path(buf, bufsize);
 590 
 591     // Found the full path to libjvm.so.
 592     // Now cut the path to <java_home>/jre if we can.
 593     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 594     pslash = strrchr(buf, '/');
 595     if (pslash != NULL) {
 596       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 597     }
 598     Arguments::set_dll_dir(buf);
 599 
 600     if (pslash != NULL) {
 601       pslash = strrchr(buf, '/');
 602       if (pslash != NULL) {
 603         *pslash = '\0';          // Get rid of /<arch>.
 604         pslash = strrchr(buf, '/');
 605         if (pslash != NULL) {
 606           *pslash = '\0';        // Get rid of /lib.
 607         }
 608       }
 609     }
 610     Arguments::set_java_home(buf);
 611     set_boot_path('/', ':');
 612   }
 613 
 614   // Where to look for native libraries.
 615 
 616   // On Aix we get the user setting of LIBPATH.
 617   // Eventually, all the library path setting will be done here.
 618   // Get the user setting of LIBPATH.
 619   const char *v = ::getenv("LIBPATH");
 620   const char *v_colon = ":";
 621   if (v == NULL) { v = ""; v_colon = ""; }
 622 
 623   // Concatenate user and invariant part of ld_library_path.
 624   // That's +1 for the colon and +1 for the trailing '\0'.
 625   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 626   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 627   Arguments::set_library_path(ld_library_path);
 628   FREE_C_HEAP_ARRAY(char, ld_library_path);
 629 
 630   // Extensions directories.
 631   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 632   Arguments::set_ext_dirs(buf);
 633 
 634   FREE_C_HEAP_ARRAY(char, buf);
 635 
 636 #undef DEFAULT_LIBPATH
 637 #undef EXTENSIONS_DIR
 638 }
 639 
 640 ////////////////////////////////////////////////////////////////////////////////
 641 // breakpoint support
 642 
 643 void os::breakpoint() {
 644   BREAKPOINT;
 645 }
 646 
 647 extern "C" void breakpoint() {
 648   // use debugger to set breakpoint here
 649 }
 650 
 651 ////////////////////////////////////////////////////////////////////////////////
 652 // signal support
 653 
 654 debug_only(static bool signal_sets_initialized = false);
 655 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 656 
 657 bool os::Aix::is_sig_ignored(int sig) {
 658   struct sigaction oact;
 659   sigaction(sig, (struct sigaction*)NULL, &oact);
 660   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 661     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 662   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 663     return true;
 664   } else {
 665     return false;
 666   }
 667 }
 668 
 669 void os::Aix::signal_sets_init() {
 670   // Should also have an assertion stating we are still single-threaded.
 671   assert(!signal_sets_initialized, "Already initialized");
 672   // Fill in signals that are necessarily unblocked for all threads in
 673   // the VM. Currently, we unblock the following signals:
 674   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 675   //                         by -Xrs (=ReduceSignalUsage));
 676   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 677   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 678   // the dispositions or masks wrt these signals.
 679   // Programs embedding the VM that want to use the above signals for their
 680   // own purposes must, at this time, use the "-Xrs" option to prevent
 681   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 682   // (See bug 4345157, and other related bugs).
 683   // In reality, though, unblocking these signals is really a nop, since
 684   // these signals are not blocked by default.
 685   sigemptyset(&unblocked_sigs);
 686   sigemptyset(&allowdebug_blocked_sigs);
 687   sigaddset(&unblocked_sigs, SIGILL);
 688   sigaddset(&unblocked_sigs, SIGSEGV);
 689   sigaddset(&unblocked_sigs, SIGBUS);
 690   sigaddset(&unblocked_sigs, SIGFPE);
 691   sigaddset(&unblocked_sigs, SIGTRAP);
 692   sigaddset(&unblocked_sigs, SIGDANGER);
 693   sigaddset(&unblocked_sigs, SR_signum);
 694 
 695   if (!ReduceSignalUsage) {
 696    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 697      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 698      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 699    }
 700    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 701      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 702      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 703    }
 704    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 705      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 706      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 707    }
 708   }
 709   // Fill in signals that are blocked by all but the VM thread.
 710   sigemptyset(&vm_sigs);
 711   if (!ReduceSignalUsage)
 712     sigaddset(&vm_sigs, BREAK_SIGNAL);
 713   debug_only(signal_sets_initialized = true);
 714 }
 715 
 716 // These are signals that are unblocked while a thread is running Java.
 717 // (For some reason, they get blocked by default.)
 718 sigset_t* os::Aix::unblocked_signals() {
 719   assert(signal_sets_initialized, "Not initialized");
 720   return &unblocked_sigs;
 721 }
 722 
 723 // These are the signals that are blocked while a (non-VM) thread is
 724 // running Java. Only the VM thread handles these signals.
 725 sigset_t* os::Aix::vm_signals() {
 726   assert(signal_sets_initialized, "Not initialized");
 727   return &vm_sigs;
 728 }
 729 
 730 // These are signals that are blocked during cond_wait to allow debugger in
 731 sigset_t* os::Aix::allowdebug_blocked_signals() {
 732   assert(signal_sets_initialized, "Not initialized");
 733   return &allowdebug_blocked_sigs;
 734 }
 735 
 736 void os::Aix::hotspot_sigmask(Thread* thread) {
 737 
 738   //Save caller's signal mask before setting VM signal mask
 739   sigset_t caller_sigmask;
 740   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 741 
 742   OSThread* osthread = thread->osthread();
 743   osthread->set_caller_sigmask(caller_sigmask);
 744 
 745   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 746 
 747   if (!ReduceSignalUsage) {
 748     if (thread->is_VM_thread()) {
 749       // Only the VM thread handles BREAK_SIGNAL ...
 750       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 751     } else {
 752       // ... all other threads block BREAK_SIGNAL
 753       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 754     }
 755   }
 756 }
 757 
 758 // retrieve memory information.
 759 // Returns false if something went wrong;
 760 // content of pmi undefined in this case.
 761 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 762 
 763   assert(pmi, "get_meminfo: invalid parameter");
 764 
 765   memset(pmi, 0, sizeof(meminfo_t));
 766 
 767   if (os::Aix::on_pase()) {
 768 
 769     Unimplemented();
 770     return false;
 771 
 772   } else {
 773 
 774     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 775     // See:
 776     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 777     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 778     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 779     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 780 
 781     perfstat_memory_total_t psmt;
 782     memset (&psmt, '\0', sizeof(psmt));
 783     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 784     if (rc == -1) {
 785       fprintf(stderr, "perfstat_memory_total() failed (errno=%d)\n", errno);
 786       assert(0, "perfstat_memory_total() failed");
 787       return false;
 788     }
 789 
 790     assert(rc == 1, "perfstat_memory_total() - weird return code");
 791 
 792     // excerpt from
 793     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 794     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 795     // The fields of perfstat_memory_total_t:
 796     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 797     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 798     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 799     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 800     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 801 
 802     pmi->virt_total = psmt.virt_total * 4096;
 803     pmi->real_total = psmt.real_total * 4096;
 804     pmi->real_free = psmt.real_free * 4096;
 805     pmi->pgsp_total = psmt.pgsp_total * 4096;
 806     pmi->pgsp_free = psmt.pgsp_free * 4096;
 807 
 808     return true;
 809 
 810   }
 811 } // end os::Aix::get_meminfo
 812 
 813 // Retrieve global cpu information.
 814 // Returns false if something went wrong;
 815 // the content of pci is undefined in this case.
 816 bool os::Aix::get_cpuinfo(cpuinfo_t* pci) {
 817   assert(pci, "get_cpuinfo: invalid parameter");
 818   memset(pci, 0, sizeof(cpuinfo_t));
 819 
 820   perfstat_cpu_total_t psct;
 821   memset (&psct, '\0', sizeof(psct));
 822 
 823   if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t), 1)) {
 824     fprintf(stderr, "perfstat_cpu_total() failed (errno=%d)\n", errno);
 825     assert(0, "perfstat_cpu_total() failed");
 826     return false;
 827   }
 828 
 829   // global cpu information
 830   strcpy (pci->description, psct.description);
 831   pci->processorHZ = psct.processorHZ;
 832   pci->ncpus = psct.ncpus;
 833   os::Aix::_logical_cpus = psct.ncpus;
 834   for (int i = 0; i < 3; i++) {
 835     pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS);
 836   }
 837 
 838   // get the processor version from _system_configuration
 839   switch (_system_configuration.version) {
 840   case PV_8:
 841     strcpy(pci->version, "Power PC 8");
 842     break;
 843   case PV_7:
 844     strcpy(pci->version, "Power PC 7");
 845     break;
 846   case PV_6_1:
 847     strcpy(pci->version, "Power PC 6 DD1.x");
 848     break;
 849   case PV_6:
 850     strcpy(pci->version, "Power PC 6");
 851     break;
 852   case PV_5:
 853     strcpy(pci->version, "Power PC 5");
 854     break;
 855   case PV_5_2:
 856     strcpy(pci->version, "Power PC 5_2");
 857     break;
 858   case PV_5_3:
 859     strcpy(pci->version, "Power PC 5_3");
 860     break;
 861   case PV_5_Compat:
 862     strcpy(pci->version, "PV_5_Compat");
 863     break;
 864   case PV_6_Compat:
 865     strcpy(pci->version, "PV_6_Compat");
 866     break;
 867   case PV_7_Compat:
 868     strcpy(pci->version, "PV_7_Compat");
 869     break;
 870   case PV_8_Compat:
 871     strcpy(pci->version, "PV_8_Compat");
 872     break;
 873   default:
 874     strcpy(pci->version, "unknown");
 875   }
 876 
 877   return true;
 878 
 879 } //end os::Aix::get_cpuinfo
 880 
 881 //////////////////////////////////////////////////////////////////////////////
 882 // detecting pthread library
 883 
 884 void os::Aix::libpthread_init() {
 885   return;
 886 }
 887 
 888 //////////////////////////////////////////////////////////////////////////////
 889 // create new thread
 890 
 891 // Thread start routine for all newly created threads
 892 static void *java_start(Thread *thread) {
 893 
 894   // find out my own stack dimensions
 895   {
 896     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 897     address base = 0;
 898     size_t size = 0;
 899     query_stack_dimensions(&base, &size);
 900     thread->set_stack_base(base);
 901     thread->set_stack_size(size);
 902   }
 903 
 904   // Do some sanity checks.
 905   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
 906 
 907   // Try to randomize the cache line index of hot stack frames.
 908   // This helps when threads of the same stack traces evict each other's
 909   // cache lines. The threads can be either from the same JVM instance, or
 910   // from different JVM instances. The benefit is especially true for
 911   // processors with hyperthreading technology.
 912 
 913   static int counter = 0;
 914   int pid = os::current_process_id();
 915   alloca(((pid ^ counter++) & 7) * 128);
 916 
 917   ThreadLocalStorage::set_thread(thread);
 918 
 919   OSThread* osthread = thread->osthread();
 920 
 921   // thread_id is kernel thread id (similar to Solaris LWP id)
 922   osthread->set_thread_id(os::Aix::gettid());
 923 
 924   // initialize signal mask for this thread
 925   os::Aix::hotspot_sigmask(thread);
 926 
 927   // initialize floating point control register
 928   os::Aix::init_thread_fpu_state();
 929 
 930   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 931 
 932   // call one more level start routine
 933   thread->run();
 934 
 935   return 0;
 936 }
 937 
 938 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 939 
 940   // We want the whole function to be synchronized.
 941   ThreadCritical cs;
 942 
 943   assert(thread->osthread() == NULL, "caller responsible");
 944 
 945   // Allocate the OSThread object
 946   OSThread* osthread = new OSThread(NULL, NULL);
 947   if (osthread == NULL) {
 948     return false;
 949   }
 950 
 951   // set the correct thread state
 952   osthread->set_thread_type(thr_type);
 953 
 954   // Initial state is ALLOCATED but not INITIALIZED
 955   osthread->set_state(ALLOCATED);
 956 
 957   thread->set_osthread(osthread);
 958 
 959   // init thread attributes
 960   pthread_attr_t attr;
 961   pthread_attr_init(&attr);
 962   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 963 
 964   // Make sure we run in 1:1 kernel-user-thread mode.
 965   if (os::Aix::on_aix()) {
 966     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 967     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 968   } // end: aix
 969 
 970   // Start in suspended state, and in os::thread_start, wake the thread up.
 971   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 972 
 973   // calculate stack size if it's not specified by caller
 974   if (os::Aix::supports_variable_stack_size()) {
 975     if (stack_size == 0) {
 976       stack_size = os::Aix::default_stack_size(thr_type);
 977 
 978       switch (thr_type) {
 979       case os::java_thread:
 980         // Java threads use ThreadStackSize whose default value can be changed with the flag -Xss.
 981         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 982         stack_size = JavaThread::stack_size_at_create();
 983         break;
 984       case os::compiler_thread:
 985         if (CompilerThreadStackSize > 0) {
 986           stack_size = (size_t)(CompilerThreadStackSize * K);
 987           break;
 988         } // else fall through:
 989           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 990       case os::vm_thread:
 991       case os::pgc_thread:
 992       case os::cgc_thread:
 993       case os::watcher_thread:
 994         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 995         break;
 996       }
 997     }
 998 
 999     stack_size = MAX2(stack_size, os::Aix::min_stack_allowed);
1000     pthread_attr_setstacksize(&attr, stack_size);
1001   } //else let thread_create() pick the default value (96 K on AIX)
1002 
1003   pthread_t tid;
1004   int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1005 
1006   pthread_attr_destroy(&attr);
1007 
1008   if (ret == 0) {
1009     // PPC port traceOsMisc(("Created New Thread : pthread-id %u", tid));
1010   } else {
1011     if (PrintMiscellaneous && (Verbose || WizardMode)) {
1012       perror("pthread_create()");
1013     }
1014     // Need to clean up stuff we've allocated so far
1015     thread->set_osthread(NULL);
1016     delete osthread;
1017     return false;
1018   }
1019 
1020   // Store pthread info into the OSThread
1021   osthread->set_pthread_id(tid);
1022 
1023   return true;
1024 }
1025 
1026 /////////////////////////////////////////////////////////////////////////////
1027 // attach existing thread
1028 
1029 // bootstrap the main thread
1030 bool os::create_main_thread(JavaThread* thread) {
1031   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
1032   return create_attached_thread(thread);
1033 }
1034 
1035 bool os::create_attached_thread(JavaThread* thread) {
1036 #ifdef ASSERT
1037     thread->verify_not_published();
1038 #endif
1039 
1040   // Allocate the OSThread object
1041   OSThread* osthread = new OSThread(NULL, NULL);
1042 
1043   if (osthread == NULL) {
1044     return false;
1045   }
1046 
1047   // Store pthread info into the OSThread
1048   osthread->set_thread_id(os::Aix::gettid());
1049   osthread->set_pthread_id(::pthread_self());
1050 
1051   // initialize floating point control register
1052   os::Aix::init_thread_fpu_state();
1053 
1054   // some sanity checks
1055   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
1056 
1057   // Initial thread state is RUNNABLE
1058   osthread->set_state(RUNNABLE);
1059 
1060   thread->set_osthread(osthread);
1061 
1062   if (UseNUMA) {
1063     int lgrp_id = os::numa_get_group_id();
1064     if (lgrp_id != -1) {
1065       thread->set_lgrp_id(lgrp_id);
1066     }
1067   }
1068 
1069   // initialize signal mask for this thread
1070   // and save the caller's signal mask
1071   os::Aix::hotspot_sigmask(thread);
1072 
1073   return true;
1074 }
1075 
1076 void os::pd_start_thread(Thread* thread) {
1077   int status = pthread_continue_np(thread->osthread()->pthread_id());
1078   assert(status == 0, "thr_continue failed");
1079 }
1080 
1081 // Free OS resources related to the OSThread
1082 void os::free_thread(OSThread* osthread) {
1083   assert(osthread != NULL, "osthread not set");
1084 
1085   if (Thread::current()->osthread() == osthread) {
1086     // Restore caller's signal mask
1087     sigset_t sigmask = osthread->caller_sigmask();
1088     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1089    }
1090 
1091   delete osthread;
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // thread local storage
1096 
1097 int os::allocate_thread_local_storage() {
1098   pthread_key_t key;
1099   int rslt = pthread_key_create(&key, NULL);
1100   assert(rslt == 0, "cannot allocate thread local storage");
1101   return (int)key;
1102 }
1103 
1104 // Note: This is currently not used by VM, as we don't destroy TLS key
1105 // on VM exit.
1106 void os::free_thread_local_storage(int index) {
1107   int rslt = pthread_key_delete((pthread_key_t)index);
1108   assert(rslt == 0, "invalid index");
1109 }
1110 
1111 void os::thread_local_storage_at_put(int index, void* value) {
1112   int rslt = pthread_setspecific((pthread_key_t)index, value);
1113   assert(rslt == 0, "pthread_setspecific failed");
1114 }
1115 
1116 extern "C" Thread* get_thread() {
1117   return ThreadLocalStorage::thread();
1118 }
1119 
1120 ////////////////////////////////////////////////////////////////////////////////
1121 // time support
1122 
1123 // Time since start-up in seconds to a fine granularity.
1124 // Used by VMSelfDestructTimer and the MemProfiler.
1125 double os::elapsedTime() {
1126   return (double)(os::elapsed_counter()) * 0.000001;
1127 }
1128 
1129 jlong os::elapsed_counter() {
1130   timeval time;
1131   int status = gettimeofday(&time, NULL);
1132   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1133 }
1134 
1135 jlong os::elapsed_frequency() {
1136   return (1000 * 1000);
1137 }
1138 
1139 bool os::supports_vtime() { return true; }
1140 bool os::enable_vtime()   { return false; }
1141 bool os::vtime_enabled()  { return false; }
1142 
1143 double os::elapsedVTime() {
1144   struct rusage usage;
1145   int retval = getrusage(RUSAGE_THREAD, &usage);
1146   if (retval == 0) {
1147     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1148   } else {
1149     // better than nothing, but not much
1150     return elapsedTime();
1151   }
1152 }
1153 
1154 jlong os::javaTimeMillis() {
1155   timeval time;
1156   int status = gettimeofday(&time, NULL);
1157   assert(status != -1, "aix error at gettimeofday()");
1158   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1159 }
1160 
1161 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1162   timeval time;
1163   int status = gettimeofday(&time, NULL);
1164   assert(status != -1, "aix error at gettimeofday()");
1165   seconds = jlong(time.tv_sec);
1166   nanos = jlong(time.tv_usec) * 1000;
1167 }
1168 
1169 
1170 // We need to manually declare mread_real_time,
1171 // because IBM didn't provide a prototype in time.h.
1172 // (they probably only ever tested in C, not C++)
1173 extern "C"
1174 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
1175 
1176 jlong os::javaTimeNanos() {
1177   if (os::Aix::on_pase()) {
1178     Unimplemented();
1179     return 0;
1180   } else {
1181     // On AIX use the precision of processors real time clock
1182     // or time base registers.
1183     timebasestruct_t time;
1184     int rc;
1185 
1186     // If the CPU has a time register, it will be used and
1187     // we have to convert to real time first. After convertion we have following data:
1188     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1189     // time.tb_low  [nanoseconds after the last full second above]
1190     // We better use mread_real_time here instead of read_real_time
1191     // to ensure that we will get a monotonic increasing time.
1192     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1193       rc = time_base_to_time(&time, TIMEBASE_SZ);
1194       assert(rc != -1, "aix error at time_base_to_time()");
1195     }
1196     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1197   }
1198 }
1199 
1200 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1201   info_ptr->max_value = ALL_64_BITS;
1202   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1203   info_ptr->may_skip_backward = false;
1204   info_ptr->may_skip_forward = false;
1205   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1206 }
1207 
1208 // Return the real, user, and system times in seconds from an
1209 // arbitrary fixed point in the past.
1210 bool os::getTimesSecs(double* process_real_time,
1211                       double* process_user_time,
1212                       double* process_system_time) {
1213   struct tms ticks;
1214   clock_t real_ticks = times(&ticks);
1215 
1216   if (real_ticks == (clock_t) (-1)) {
1217     return false;
1218   } else {
1219     double ticks_per_second = (double) clock_tics_per_sec;
1220     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1221     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1222     *process_real_time = ((double) real_ticks) / ticks_per_second;
1223 
1224     return true;
1225   }
1226 }
1227 
1228 char * os::local_time_string(char *buf, size_t buflen) {
1229   struct tm t;
1230   time_t long_time;
1231   time(&long_time);
1232   localtime_r(&long_time, &t);
1233   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1234                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1235                t.tm_hour, t.tm_min, t.tm_sec);
1236   return buf;
1237 }
1238 
1239 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1240   return localtime_r(clock, res);
1241 }
1242 
1243 ////////////////////////////////////////////////////////////////////////////////
1244 // runtime exit support
1245 
1246 // Note: os::shutdown() might be called very early during initialization, or
1247 // called from signal handler. Before adding something to os::shutdown(), make
1248 // sure it is async-safe and can handle partially initialized VM.
1249 void os::shutdown() {
1250 
1251   // allow PerfMemory to attempt cleanup of any persistent resources
1252   perfMemory_exit();
1253 
1254   // needs to remove object in file system
1255   AttachListener::abort();
1256 
1257   // flush buffered output, finish log files
1258   ostream_abort();
1259 
1260   // Check for abort hook
1261   abort_hook_t abort_hook = Arguments::abort_hook();
1262   if (abort_hook != NULL) {
1263     abort_hook();
1264   }
1265 }
1266 
1267 // Note: os::abort() might be called very early during initialization, or
1268 // called from signal handler. Before adding something to os::abort(), make
1269 // sure it is async-safe and can handle partially initialized VM.
1270 void os::abort(bool dump_core, void* siginfo, void* context) {
1271   os::shutdown();
1272   if (dump_core) {
1273 #ifndef PRODUCT
1274     fdStream out(defaultStream::output_fd());
1275     out.print_raw("Current thread is ");
1276     char buf[16];
1277     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1278     out.print_raw_cr(buf);
1279     out.print_raw_cr("Dumping core ...");
1280 #endif
1281     ::abort(); // dump core
1282   }
1283 
1284   ::exit(1);
1285 }
1286 
1287 // Die immediately, no exit hook, no abort hook, no cleanup.
1288 void os::die() {
1289   ::abort();
1290 }
1291 
1292 // This method is a copy of JDK's sysGetLastErrorString
1293 // from src/solaris/hpi/src/system_md.c
1294 
1295 size_t os::lasterror(char *buf, size_t len) {
1296   if (errno == 0) return 0;
1297 
1298   const char *s = ::strerror(errno);
1299   size_t n = ::strlen(s);
1300   if (n >= len) {
1301     n = len - 1;
1302   }
1303   ::strncpy(buf, s, n);
1304   buf[n] = '\0';
1305   return n;
1306 }
1307 
1308 intx os::current_thread_id() { return (intx)pthread_self(); }
1309 
1310 int os::current_process_id() {
1311 
1312   // This implementation returns a unique pid, the pid of the
1313   // launcher thread that starts the vm 'process'.
1314 
1315   // Under POSIX, getpid() returns the same pid as the
1316   // launcher thread rather than a unique pid per thread.
1317   // Use gettid() if you want the old pre NPTL behaviour.
1318 
1319   // if you are looking for the result of a call to getpid() that
1320   // returns a unique pid for the calling thread, then look at the
1321   // OSThread::thread_id() method in osThread_linux.hpp file
1322 
1323   return (int)(_initial_pid ? _initial_pid : getpid());
1324 }
1325 
1326 // DLL functions
1327 
1328 const char* os::dll_file_extension() { return ".so"; }
1329 
1330 // This must be hard coded because it's the system's temporary
1331 // directory not the java application's temp directory, ala java.io.tmpdir.
1332 const char* os::get_temp_directory() { return "/tmp"; }
1333 
1334 static bool file_exists(const char* filename) {
1335   struct stat statbuf;
1336   if (filename == NULL || strlen(filename) == 0) {
1337     return false;
1338   }
1339   return os::stat(filename, &statbuf) == 0;
1340 }
1341 
1342 bool os::dll_build_name(char* buffer, size_t buflen,
1343                         const char* pname, const char* fname) {
1344   bool retval = false;
1345   // Copied from libhpi
1346   const size_t pnamelen = pname ? strlen(pname) : 0;
1347 
1348   // Return error on buffer overflow.
1349   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1350     *buffer = '\0';
1351     return retval;
1352   }
1353 
1354   if (pnamelen == 0) {
1355     snprintf(buffer, buflen, "lib%s.so", fname);
1356     retval = true;
1357   } else if (strchr(pname, *os::path_separator()) != NULL) {
1358     int n;
1359     char** pelements = split_path(pname, &n);
1360     for (int i = 0; i < n; i++) {
1361       // Really shouldn't be NULL, but check can't hurt
1362       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1363         continue; // skip the empty path values
1364       }
1365       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1366       if (file_exists(buffer)) {
1367         retval = true;
1368         break;
1369       }
1370     }
1371     // release the storage
1372     for (int i = 0; i < n; i++) {
1373       if (pelements[i] != NULL) {
1374         FREE_C_HEAP_ARRAY(char, pelements[i]);
1375       }
1376     }
1377     if (pelements != NULL) {
1378       FREE_C_HEAP_ARRAY(char*, pelements);
1379     }
1380   } else {
1381     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1382     retval = true;
1383   }
1384   return retval;
1385 }
1386 
1387 // Check if addr is inside libjvm.so.
1388 bool os::address_is_in_vm(address addr) {
1389 
1390   // Input could be a real pc or a function pointer literal. The latter
1391   // would be a function descriptor residing in the data segment of a module.
1392 
1393   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
1394   if (lib) {
1395     if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1396       return true;
1397     } else {
1398       return false;
1399     }
1400   } else {
1401     lib = LoadedLibraries::find_for_data_address(addr);
1402     if (lib) {
1403       if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1404         return true;
1405       } else {
1406         return false;
1407       }
1408     } else {
1409       return false;
1410     }
1411   }
1412 }
1413 
1414 // Resolve an AIX function descriptor literal to a code pointer.
1415 // If the input is a valid code pointer to a text segment of a loaded module,
1416 //   it is returned unchanged.
1417 // If the input is a valid AIX function descriptor, it is resolved to the
1418 //   code entry point.
1419 // If the input is neither a valid function descriptor nor a valid code pointer,
1420 //   NULL is returned.
1421 static address resolve_function_descriptor_to_code_pointer(address p) {
1422 
1423   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(p);
1424   if (lib) {
1425     // its a real code pointer
1426     return p;
1427   } else {
1428     lib = LoadedLibraries::find_for_data_address(p);
1429     if (lib) {
1430       // pointer to data segment, potential function descriptor
1431       address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1432       if (LoadedLibraries::find_for_text_address(code_entry)) {
1433         // Its a function descriptor
1434         return code_entry;
1435       }
1436     }
1437   }
1438   return NULL;
1439 }
1440 
1441 bool os::dll_address_to_function_name(address addr, char *buf,
1442                                       int buflen, int *offset,
1443                                       bool demangle) {
1444   if (offset) {
1445     *offset = -1;
1446   }
1447   // Buf is not optional, but offset is optional.
1448   assert(buf != NULL, "sanity check");
1449   buf[0] = '\0';
1450 
1451   // Resolve function ptr literals first.
1452   addr = resolve_function_descriptor_to_code_pointer(addr);
1453   if (!addr) {
1454     return false;
1455   }
1456 
1457   // Go through Decoder::decode to call getFuncName which reads the name from the traceback table.
1458   return Decoder::decode(addr, buf, buflen, offset, demangle);
1459 }
1460 
1461 static int getModuleName(codeptr_t pc,                    // [in] program counter
1462                          char* p_name, size_t namelen,    // [out] optional: function name
1463                          char* p_errmsg, size_t errmsglen // [out] optional: user provided buffer for error messages
1464                          ) {
1465 
1466   // initialize output parameters
1467   if (p_name && namelen > 0) {
1468     *p_name = '\0';
1469   }
1470   if (p_errmsg && errmsglen > 0) {
1471     *p_errmsg = '\0';
1472   }
1473 
1474   const LoadedLibraryModule* const lib = LoadedLibraries::find_for_text_address((address)pc);
1475   if (lib) {
1476     if (p_name && namelen > 0) {
1477       sprintf(p_name, "%.*s", namelen, lib->get_shortname());
1478     }
1479     return 0;
1480   }
1481 
1482   trcVerbose("pc outside any module");
1483 
1484   return -1;
1485 }
1486 
1487 bool os::dll_address_to_library_name(address addr, char* buf,
1488                                      int buflen, int* offset) {
1489   if (offset) {
1490     *offset = -1;
1491   }
1492   // Buf is not optional, but offset is optional.
1493   assert(buf != NULL, "sanity check");
1494   buf[0] = '\0';
1495 
1496   // Resolve function ptr literals first.
1497   addr = resolve_function_descriptor_to_code_pointer(addr);
1498   if (!addr) {
1499     return false;
1500   }
1501 
1502   if (::getModuleName((codeptr_t) addr, buf, buflen, 0, 0) == 0) {
1503     return true;
1504   }
1505   return false;
1506 }
1507 
1508 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1509 // for the same architecture as Hotspot is running on.
1510 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1511 
1512   if (ebuf && ebuflen > 0) {
1513     ebuf[0] = '\0';
1514     ebuf[ebuflen - 1] = '\0';
1515   }
1516 
1517   if (!filename || strlen(filename) == 0) {
1518     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1519     return NULL;
1520   }
1521 
1522   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1523   void * result= ::dlopen(filename, RTLD_LAZY);
1524   if (result != NULL) {
1525     // Reload dll cache. Don't do this in signal handling.
1526     LoadedLibraries::reload();
1527     return result;
1528   } else {
1529     // error analysis when dlopen fails
1530     const char* const error_report = ::dlerror();
1531     if (error_report && ebuf && ebuflen > 0) {
1532       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1533                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1534     }
1535   }
1536   return NULL;
1537 }
1538 
1539 void* os::dll_lookup(void* handle, const char* name) {
1540   void* res = dlsym(handle, name);
1541   return res;
1542 }
1543 
1544 void* os::get_default_process_handle() {
1545   return (void*)::dlopen(NULL, RTLD_LAZY);
1546 }
1547 
1548 void os::print_dll_info(outputStream *st) {
1549   st->print_cr("Dynamic libraries:");
1550   LoadedLibraries::print(st);
1551 }
1552 
1553 void os::get_summary_os_info(char* buf, size_t buflen) {
1554   // There might be something more readable than uname results for AIX.
1555   struct utsname name;
1556   uname(&name);
1557   snprintf(buf, buflen, "%s %s", name.release, name.version);
1558 }
1559 
1560 void os::print_os_info(outputStream* st) {
1561   st->print("OS:");
1562 
1563   st->print("uname:");
1564   struct utsname name;
1565   uname(&name);
1566   st->print(name.sysname); st->print(" ");
1567   st->print(name.nodename); st->print(" ");
1568   st->print(name.release); st->print(" ");
1569   st->print(name.version); st->print(" ");
1570   st->print(name.machine);
1571   st->cr();
1572 
1573   // rlimit
1574   st->print("rlimit:");
1575   struct rlimit rlim;
1576 
1577   st->print(" STACK ");
1578   getrlimit(RLIMIT_STACK, &rlim);
1579   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1580   else st->print("%uk", rlim.rlim_cur >> 10);
1581 
1582   st->print(", CORE ");
1583   getrlimit(RLIMIT_CORE, &rlim);
1584   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1585   else st->print("%uk", rlim.rlim_cur >> 10);
1586 
1587   st->print(", NPROC ");
1588   st->print("%d", sysconf(_SC_CHILD_MAX));
1589 
1590   st->print(", NOFILE ");
1591   getrlimit(RLIMIT_NOFILE, &rlim);
1592   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1593   else st->print("%d", rlim.rlim_cur);
1594 
1595   st->print(", AS ");
1596   getrlimit(RLIMIT_AS, &rlim);
1597   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1598   else st->print("%uk", rlim.rlim_cur >> 10);
1599 
1600   // Print limits on DATA, because it limits the C-heap.
1601   st->print(", DATA ");
1602   getrlimit(RLIMIT_DATA, &rlim);
1603   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1604   else st->print("%uk", rlim.rlim_cur >> 10);
1605   st->cr();
1606 
1607   // load average
1608   st->print("load average:");
1609   double loadavg[3] = {-1.L, -1.L, -1.L};
1610   os::loadavg(loadavg, 3);
1611   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1612   st->cr();
1613 }
1614 
1615 void os::print_memory_info(outputStream* st) {
1616 
1617   st->print_cr("Memory:");
1618 
1619   st->print_cr("  default page size: %s", describe_pagesize(os::vm_page_size()));
1620   st->print_cr("  default stack page size: %s", describe_pagesize(os::vm_page_size()));
1621   st->print_cr("  Default shared memory page size:        %s",
1622     describe_pagesize(g_multipage_support.shmpsize));
1623   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1624     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1625   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1626     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1627   if (g_multipage_error != 0) {
1628     st->print_cr("  multipage error: %d", g_multipage_error);
1629   }
1630 
1631   // print out LDR_CNTRL because it affects the default page sizes
1632   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1633   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1634 
1635   const char* const extshm = ::getenv("EXTSHM");
1636   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1637   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1638     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1639   }
1640 
1641   // Call os::Aix::get_meminfo() to retrieve memory statistics.
1642   os::Aix::meminfo_t mi;
1643   if (os::Aix::get_meminfo(&mi)) {
1644     char buffer[256];
1645     if (os::Aix::on_aix()) {
1646       jio_snprintf(buffer, sizeof(buffer),
1647                    "  physical total : %llu\n"
1648                    "  physical free  : %llu\n"
1649                    "  swap total     : %llu\n"
1650                    "  swap free      : %llu\n",
1651                    mi.real_total,
1652                    mi.real_free,
1653                    mi.pgsp_total,
1654                    mi.pgsp_free);
1655     } else {
1656       Unimplemented();
1657     }
1658     st->print_raw(buffer);
1659   } else {
1660     st->print_cr("  (no more information available)");
1661   }
1662 }
1663 
1664 // Get a string for the cpuinfo that is a summary of the cpu type
1665 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1666   // This looks good
1667   os::Aix::cpuinfo_t ci;
1668   if (os::Aix::get_cpuinfo(&ci)) {
1669     strncpy(buf, ci.version, buflen);
1670   } else {
1671     strncpy(buf, "AIX", buflen);
1672   }
1673 }
1674 
1675 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1676 }
1677 
1678 void os::print_siginfo(outputStream* st, void* siginfo) {
1679   // Use common posix version.
1680   os::Posix::print_siginfo_brief(st, (const siginfo_t*) siginfo);
1681   st->cr();
1682 }
1683 
1684 static void print_signal_handler(outputStream* st, int sig,
1685                                  char* buf, size_t buflen);
1686 
1687 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1688   st->print_cr("Signal Handlers:");
1689   print_signal_handler(st, SIGSEGV, buf, buflen);
1690   print_signal_handler(st, SIGBUS , buf, buflen);
1691   print_signal_handler(st, SIGFPE , buf, buflen);
1692   print_signal_handler(st, SIGPIPE, buf, buflen);
1693   print_signal_handler(st, SIGXFSZ, buf, buflen);
1694   print_signal_handler(st, SIGILL , buf, buflen);
1695   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1696   print_signal_handler(st, SR_signum, buf, buflen);
1697   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1698   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1699   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1700   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1701   print_signal_handler(st, SIGTRAP, buf, buflen);
1702   print_signal_handler(st, SIGDANGER, buf, buflen);
1703 }
1704 
1705 static char saved_jvm_path[MAXPATHLEN] = {0};
1706 
1707 // Find the full path to the current module, libjvm.so.
1708 void os::jvm_path(char *buf, jint buflen) {
1709   // Error checking.
1710   if (buflen < MAXPATHLEN) {
1711     assert(false, "must use a large-enough buffer");
1712     buf[0] = '\0';
1713     return;
1714   }
1715   // Lazy resolve the path to current module.
1716   if (saved_jvm_path[0] != 0) {
1717     strcpy(buf, saved_jvm_path);
1718     return;
1719   }
1720 
1721   Dl_info dlinfo;
1722   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1723   assert(ret != 0, "cannot locate libjvm");
1724   char* rp = realpath((char *)dlinfo.dli_fname, buf);
1725   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1726 
1727   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1728   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1729 }
1730 
1731 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1732   // no prefix required, not even "_"
1733 }
1734 
1735 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1736   // no suffix required
1737 }
1738 
1739 ////////////////////////////////////////////////////////////////////////////////
1740 // sun.misc.Signal support
1741 
1742 static volatile jint sigint_count = 0;
1743 
1744 static void
1745 UserHandler(int sig, void *siginfo, void *context) {
1746   // 4511530 - sem_post is serialized and handled by the manager thread. When
1747   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1748   // don't want to flood the manager thread with sem_post requests.
1749   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1750     return;
1751 
1752   // Ctrl-C is pressed during error reporting, likely because the error
1753   // handler fails to abort. Let VM die immediately.
1754   if (sig == SIGINT && is_error_reported()) {
1755     os::die();
1756   }
1757 
1758   os::signal_notify(sig);
1759 }
1760 
1761 void* os::user_handler() {
1762   return CAST_FROM_FN_PTR(void*, UserHandler);
1763 }
1764 
1765 extern "C" {
1766   typedef void (*sa_handler_t)(int);
1767   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1768 }
1769 
1770 void* os::signal(int signal_number, void* handler) {
1771   struct sigaction sigAct, oldSigAct;
1772 
1773   sigfillset(&(sigAct.sa_mask));
1774 
1775   // Do not block out synchronous signals in the signal handler.
1776   // Blocking synchronous signals only makes sense if you can really
1777   // be sure that those signals won't happen during signal handling,
1778   // when the blocking applies. Normal signal handlers are lean and
1779   // do not cause signals. But our signal handlers tend to be "risky"
1780   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1781   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1782   // by a SIGILL, which was blocked due to the signal mask. The process
1783   // just hung forever. Better to crash from a secondary signal than to hang.
1784   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1785   sigdelset(&(sigAct.sa_mask), SIGBUS);
1786   sigdelset(&(sigAct.sa_mask), SIGILL);
1787   sigdelset(&(sigAct.sa_mask), SIGFPE);
1788   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1789 
1790   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1791 
1792   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1793 
1794   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1795     // -1 means registration failed
1796     return (void *)-1;
1797   }
1798 
1799   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1800 }
1801 
1802 void os::signal_raise(int signal_number) {
1803   ::raise(signal_number);
1804 }
1805 
1806 //
1807 // The following code is moved from os.cpp for making this
1808 // code platform specific, which it is by its very nature.
1809 //
1810 
1811 // Will be modified when max signal is changed to be dynamic
1812 int os::sigexitnum_pd() {
1813   return NSIG;
1814 }
1815 
1816 // a counter for each possible signal value
1817 static volatile jint pending_signals[NSIG+1] = { 0 };
1818 
1819 // Linux(POSIX) specific hand shaking semaphore.
1820 static sem_t sig_sem;
1821 
1822 void os::signal_init_pd() {
1823   // Initialize signal structures
1824   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1825 
1826   // Initialize signal semaphore
1827   int rc = ::sem_init(&sig_sem, 0, 0);
1828   guarantee(rc != -1, "sem_init failed");
1829 }
1830 
1831 void os::signal_notify(int sig) {
1832   Atomic::inc(&pending_signals[sig]);
1833   ::sem_post(&sig_sem);
1834 }
1835 
1836 static int check_pending_signals(bool wait) {
1837   Atomic::store(0, &sigint_count);
1838   for (;;) {
1839     for (int i = 0; i < NSIG + 1; i++) {
1840       jint n = pending_signals[i];
1841       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1842         return i;
1843       }
1844     }
1845     if (!wait) {
1846       return -1;
1847     }
1848     JavaThread *thread = JavaThread::current();
1849     ThreadBlockInVM tbivm(thread);
1850 
1851     bool threadIsSuspended;
1852     do {
1853       thread->set_suspend_equivalent();
1854       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1855 
1856       ::sem_wait(&sig_sem);
1857 
1858       // were we externally suspended while we were waiting?
1859       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1860       if (threadIsSuspended) {
1861         //
1862         // The semaphore has been incremented, but while we were waiting
1863         // another thread suspended us. We don't want to continue running
1864         // while suspended because that would surprise the thread that
1865         // suspended us.
1866         //
1867         ::sem_post(&sig_sem);
1868 
1869         thread->java_suspend_self();
1870       }
1871     } while (threadIsSuspended);
1872   }
1873 }
1874 
1875 int os::signal_lookup() {
1876   return check_pending_signals(false);
1877 }
1878 
1879 int os::signal_wait() {
1880   return check_pending_signals(true);
1881 }
1882 
1883 ////////////////////////////////////////////////////////////////////////////////
1884 // Virtual Memory
1885 
1886 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1887 
1888 #define VMEM_MAPPED  1
1889 #define VMEM_SHMATED 2
1890 
1891 struct vmembk_t {
1892   int type;         // 1 - mmap, 2 - shmat
1893   char* addr;
1894   size_t size;      // Real size, may be larger than usersize.
1895   size_t pagesize;  // page size of area
1896   vmembk_t* next;
1897 
1898   bool contains_addr(char* p) const {
1899     return p >= addr && p < (addr + size);
1900   }
1901 
1902   bool contains_range(char* p, size_t s) const {
1903     return contains_addr(p) && contains_addr(p + s - 1);
1904   }
1905 
1906   void print_on(outputStream* os) const {
1907     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1908       " bytes, %d %s pages), %s",
1909       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1910       (type == VMEM_SHMATED ? "shmat" : "mmap")
1911     );
1912   }
1913 
1914   // Check that range is a sub range of memory block (or equal to memory block);
1915   // also check that range is fully page aligned to the page size if the block.
1916   void assert_is_valid_subrange(char* p, size_t s) const {
1917     if (!contains_range(p, s)) {
1918       fprintf(stderr, "[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1919               "range of [" PTR_FORMAT " - " PTR_FORMAT "].\n",
1920               p, p + s - 1, addr, addr + size - 1);
1921       guarantee0(false);
1922     }
1923     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1924       fprintf(stderr, "range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1925               " aligned to pagesize (%s)\n", p, p + s);
1926       guarantee0(false);
1927     }
1928   }
1929 };
1930 
1931 static struct {
1932   vmembk_t* first;
1933   MiscUtils::CritSect cs;
1934 } vmem;
1935 
1936 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1937   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1938   assert0(p);
1939   if (p) {
1940     MiscUtils::AutoCritSect lck(&vmem.cs);
1941     p->addr = addr; p->size = size;
1942     p->pagesize = pagesize;
1943     p->type = type;
1944     p->next = vmem.first;
1945     vmem.first = p;
1946   }
1947 }
1948 
1949 static vmembk_t* vmembk_find(char* addr) {
1950   MiscUtils::AutoCritSect lck(&vmem.cs);
1951   for (vmembk_t* p = vmem.first; p; p = p->next) {
1952     if (p->addr <= addr && (p->addr + p->size) > addr) {
1953       return p;
1954     }
1955   }
1956   return NULL;
1957 }
1958 
1959 static void vmembk_remove(vmembk_t* p0) {
1960   MiscUtils::AutoCritSect lck(&vmem.cs);
1961   assert0(p0);
1962   assert0(vmem.first); // List should not be empty.
1963   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1964     if (*pp == p0) {
1965       *pp = p0->next;
1966       ::free(p0);
1967       return;
1968     }
1969   }
1970   assert0(false); // Not found?
1971 }
1972 
1973 static void vmembk_print_on(outputStream* os) {
1974   MiscUtils::AutoCritSect lck(&vmem.cs);
1975   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1976     vmi->print_on(os);
1977     os->cr();
1978   }
1979 }
1980 
1981 // Reserve and attach a section of System V memory.
1982 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1983 // address. Failing that, it will attach the memory anywhere.
1984 // If <requested_addr> is NULL, function will attach the memory anywhere.
1985 //
1986 // <alignment_hint> is being ignored by this function. It is very probable however that the
1987 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1988 // Should this be not enogh, we can put more work into it.
1989 static char* reserve_shmated_memory (
1990   size_t bytes,
1991   char* requested_addr,
1992   size_t alignment_hint) {
1993 
1994   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1995     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1996     bytes, requested_addr, alignment_hint);
1997 
1998   // Either give me wish address or wish alignment but not both.
1999   assert0(!(requested_addr != NULL && alignment_hint != 0));
2000 
2001   // We must prevent anyone from attaching too close to the
2002   // BRK because that may cause malloc OOM.
2003   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2004     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2005       "Will attach anywhere.", requested_addr);
2006     // Act like the OS refused to attach there.
2007     requested_addr = NULL;
2008   }
2009 
2010   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
2011   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
2012   if (os::Aix::on_pase_V5R4_or_older()) {
2013     ShouldNotReachHere();
2014   }
2015 
2016   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
2017   const size_t size = align_size_up(bytes, SIZE_64K);
2018 
2019   // Reserve the shared segment.
2020   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
2021   if (shmid == -1) {
2022     trc("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
2023     return NULL;
2024   }
2025 
2026   // Important note:
2027   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
2028   // We must right after attaching it remove it from the system. System V shm segments are global and
2029   // survive the process.
2030   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2031 
2032   struct shmid_ds shmbuf;
2033   memset(&shmbuf, 0, sizeof(shmbuf));
2034   shmbuf.shm_pagesize = SIZE_64K;
2035   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2036     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2037                size / SIZE_64K, errno);
2038     // I want to know if this ever happens.
2039     assert(false, "failed to set page size for shmat");
2040   }
2041 
2042   // Now attach the shared segment.
2043   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2044   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2045   // were not a segment boundary.
2046   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2047   const int errno_shmat = errno;
2048 
2049   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2050   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2051     trc("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2052     assert(false, "failed to remove shared memory segment!");
2053   }
2054 
2055   // Handle shmat error. If we failed to attach, just return.
2056   if (addr == (char*)-1) {
2057     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2058     return NULL;
2059   }
2060 
2061   // Just for info: query the real page size. In case setting the page size did not
2062   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2063   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2064   if (real_pagesize != shmbuf.shm_pagesize) {
2065     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2066   }
2067 
2068   if (addr) {
2069     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2070       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2071   } else {
2072     if (requested_addr != NULL) {
2073       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2074     } else {
2075       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2076     }
2077   }
2078 
2079   // book-keeping
2080   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2081   assert0(is_aligned_to(addr, os::vm_page_size()));
2082 
2083   return addr;
2084 }
2085 
2086 static bool release_shmated_memory(char* addr, size_t size) {
2087 
2088   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2089     addr, addr + size - 1);
2090 
2091   bool rc = false;
2092 
2093   // TODO: is there a way to verify shm size without doing bookkeeping?
2094   if (::shmdt(addr) != 0) {
2095     trcVerbose("error (%d).", errno);
2096   } else {
2097     trcVerbose("ok.");
2098     rc = true;
2099   }
2100   return rc;
2101 }
2102 
2103 static bool uncommit_shmated_memory(char* addr, size_t size) {
2104   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2105     addr, addr + size - 1);
2106 
2107   const bool rc = my_disclaim64(addr, size);
2108 
2109   if (!rc) {
2110     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2111     return false;
2112   }
2113   return true;
2114 }
2115 
2116 // Reserve memory via mmap.
2117 // If <requested_addr> is given, an attempt is made to attach at the given address.
2118 // Failing that, memory is allocated at any address.
2119 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2120 // allocate at an address aligned with the given alignment. Failing that, memory
2121 // is aligned anywhere.
2122 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2123   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2124     "alignment_hint " UINTX_FORMAT "...",
2125     bytes, requested_addr, alignment_hint);
2126 
2127   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2128   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2129     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2130     return NULL;
2131   }
2132 
2133   // We must prevent anyone from attaching too close to the
2134   // BRK because that may cause malloc OOM.
2135   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2136     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2137       "Will attach anywhere.", requested_addr);
2138     // Act like the OS refused to attach there.
2139     requested_addr = NULL;
2140   }
2141 
2142   // Specify one or the other but not both.
2143   assert0(!(requested_addr != NULL && alignment_hint > 0));
2144 
2145   // In 64K mode, we claim the global page size (os::vm_page_size())
2146   // is 64K. This is one of the few points where that illusion may
2147   // break, because mmap() will always return memory aligned to 4K. So
2148   // we must ensure we only ever return memory aligned to 64k.
2149   if (alignment_hint) {
2150     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2151   } else {
2152     alignment_hint = os::vm_page_size();
2153   }
2154 
2155   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2156   const size_t size = align_size_up(bytes, os::vm_page_size());
2157 
2158   // alignment: Allocate memory large enough to include an aligned range of the right size and
2159   // cut off the leading and trailing waste pages.
2160   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2161   const size_t extra_size = size + alignment_hint;
2162 
2163   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2164   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2165   int flags = MAP_ANONYMOUS | MAP_SHARED;
2166 
2167   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2168   // it means if wishaddress is given but MAP_FIXED is not set.
2169   //
2170   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2171   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2172   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2173   // get clobbered.
2174   if (requested_addr != NULL) {
2175     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2176       flags |= MAP_FIXED;
2177     }
2178   }
2179 
2180   char* addr = (char*)::mmap(requested_addr, extra_size,
2181       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2182 
2183   if (addr == MAP_FAILED) {
2184     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2185     return NULL;
2186   }
2187 
2188   // Handle alignment.
2189   char* const addr_aligned = (char *)align_ptr_up(addr, alignment_hint);
2190   const size_t waste_pre = addr_aligned - addr;
2191   char* const addr_aligned_end = addr_aligned + size;
2192   const size_t waste_post = extra_size - waste_pre - size;
2193   if (waste_pre > 0) {
2194     ::munmap(addr, waste_pre);
2195   }
2196   if (waste_post > 0) {
2197     ::munmap(addr_aligned_end, waste_post);
2198   }
2199   addr = addr_aligned;
2200 
2201   if (addr) {
2202     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2203       addr, addr + bytes, bytes);
2204   } else {
2205     if (requested_addr != NULL) {
2206       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2207     } else {
2208       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2209     }
2210   }
2211 
2212   // bookkeeping
2213   vmembk_add(addr, size, SIZE_4K, VMEM_MAPPED);
2214 
2215   // Test alignment, see above.
2216   assert0(is_aligned_to(addr, os::vm_page_size()));
2217 
2218   return addr;
2219 }
2220 
2221 static bool release_mmaped_memory(char* addr, size_t size) {
2222   assert0(is_aligned_to(addr, os::vm_page_size()));
2223   assert0(is_aligned_to(size, os::vm_page_size()));
2224 
2225   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2226     addr, addr + size - 1);
2227   bool rc = false;
2228 
2229   if (::munmap(addr, size) != 0) {
2230     trcVerbose("failed (%d)\n", errno);
2231     rc = false;
2232   } else {
2233     trcVerbose("ok.");
2234     rc = true;
2235   }
2236 
2237   return rc;
2238 }
2239 
2240 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2241 
2242   assert0(is_aligned_to(addr, os::vm_page_size()));
2243   assert0(is_aligned_to(size, os::vm_page_size()));
2244 
2245   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2246     addr, addr + size - 1);
2247   bool rc = false;
2248 
2249   // Uncommit mmap memory with msync MS_INVALIDATE.
2250   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2251     trcVerbose("failed (%d)\n", errno);
2252     rc = false;
2253   } else {
2254     trcVerbose("ok.");
2255     rc = true;
2256   }
2257 
2258   return rc;
2259 }
2260 
2261 // End: shared memory bookkeeping
2262 ////////////////////////////////////////////////////////////////////////////////////////////////////
2263 
2264 int os::vm_page_size() {
2265   // Seems redundant as all get out.
2266   assert(os::Aix::page_size() != -1, "must call os::init");
2267   return os::Aix::page_size();
2268 }
2269 
2270 // Aix allocates memory by pages.
2271 int os::vm_allocation_granularity() {
2272   assert(os::Aix::page_size() != -1, "must call os::init");
2273   return os::Aix::page_size();
2274 }
2275 
2276 #ifdef PRODUCT
2277 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2278                                     int err) {
2279   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2280           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2281           strerror(err), err);
2282 }
2283 #endif
2284 
2285 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2286                                   const char* mesg) {
2287   assert(mesg != NULL, "mesg must be specified");
2288   if (!pd_commit_memory(addr, size, exec)) {
2289     // Add extra info in product mode for vm_exit_out_of_memory():
2290     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2291     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2292   }
2293 }
2294 
2295 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2296 
2297   assert0(is_aligned_to(addr, os::vm_page_size()));
2298   assert0(is_aligned_to(size, os::vm_page_size()));
2299 
2300   vmembk_t* const vmi = vmembk_find(addr);
2301   assert0(vmi);
2302   vmi->assert_is_valid_subrange(addr, size);
2303 
2304   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2305 
2306   return true;
2307 }
2308 
2309 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2310   return pd_commit_memory(addr, size, exec);
2311 }
2312 
2313 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2314                                   size_t alignment_hint, bool exec,
2315                                   const char* mesg) {
2316   // Alignment_hint is ignored on this OS.
2317   pd_commit_memory_or_exit(addr, size, exec, mesg);
2318 }
2319 
2320 bool os::pd_uncommit_memory(char* addr, size_t size) {
2321   assert0(is_aligned_to(addr, os::vm_page_size()));
2322   assert0(is_aligned_to(size, os::vm_page_size()));
2323 
2324   // Dynamically do different things for mmap/shmat.
2325   const vmembk_t* const vmi = vmembk_find(addr);
2326   assert0(vmi);
2327   vmi->assert_is_valid_subrange(addr, size);
2328 
2329   if (vmi->type == VMEM_SHMATED) {
2330     return uncommit_shmated_memory(addr, size);
2331   } else {
2332     return uncommit_mmaped_memory(addr, size);
2333   }
2334 }
2335 
2336 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2337   // Do not call this; no need to commit stack pages on AIX.
2338   ShouldNotReachHere();
2339   return true;
2340 }
2341 
2342 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2343   // Do not call this; no need to commit stack pages on AIX.
2344   ShouldNotReachHere();
2345   return true;
2346 }
2347 
2348 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2349 }
2350 
2351 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2352 }
2353 
2354 void os::numa_make_global(char *addr, size_t bytes) {
2355 }
2356 
2357 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2358 }
2359 
2360 bool os::numa_topology_changed() {
2361   return false;
2362 }
2363 
2364 size_t os::numa_get_groups_num() {
2365   return 1;
2366 }
2367 
2368 int os::numa_get_group_id() {
2369   return 0;
2370 }
2371 
2372 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2373   if (size > 0) {
2374     ids[0] = 0;
2375     return 1;
2376   }
2377   return 0;
2378 }
2379 
2380 bool os::get_page_info(char *start, page_info* info) {
2381   return false;
2382 }
2383 
2384 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2385   return end;
2386 }
2387 
2388 // Reserves and attaches a shared memory segment.
2389 // Will assert if a wish address is given and could not be obtained.
2390 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2391 
2392   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2393   // thereby clobbering old mappings at that place. That is probably
2394   // not intended, never used and almost certainly an error were it
2395   // ever be used this way (to try attaching at a specified address
2396   // without clobbering old mappings an alternate API exists,
2397   // os::attempt_reserve_memory_at()).
2398   // Instead of mimicking the dangerous coding of the other platforms, here I
2399   // just ignore the request address (release) or assert(debug).
2400   assert0(requested_addr == NULL);
2401 
2402   // Always round to os::vm_page_size(), which may be larger than 4K.
2403   bytes = align_size_up(bytes, os::vm_page_size());
2404   const size_t alignment_hint0 =
2405     alignment_hint ? align_size_up(alignment_hint, os::vm_page_size()) : 0;
2406 
2407   // In 4K mode always use mmap.
2408   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2409   if (os::vm_page_size() == SIZE_4K) {
2410     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2411   } else {
2412     if (bytes >= Use64KPagesThreshold) {
2413       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2414     } else {
2415       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2416     }
2417   }
2418 }
2419 
2420 bool os::pd_release_memory(char* addr, size_t size) {
2421 
2422   // Dynamically do different things for mmap/shmat.
2423   vmembk_t* const vmi = vmembk_find(addr);
2424   assert0(vmi);
2425 
2426   // Always round to os::vm_page_size(), which may be larger than 4K.
2427   size = align_size_up(size, os::vm_page_size());
2428   addr = (char *)align_ptr_up(addr, os::vm_page_size());
2429 
2430   bool rc = false;
2431   bool remove_bookkeeping = false;
2432   if (vmi->type == VMEM_SHMATED) {
2433     // For shmatted memory, we do:
2434     // - If user wants to release the whole range, release the memory (shmdt).
2435     // - If user only wants to release a partial range, uncommit (disclaim) that
2436     //   range. That way, at least, we do not use memory anymore (bust still page
2437     //   table space).
2438     vmi->assert_is_valid_subrange(addr, size);
2439     if (addr == vmi->addr && size == vmi->size) {
2440       rc = release_shmated_memory(addr, size);
2441       remove_bookkeeping = true;
2442     } else {
2443       rc = uncommit_shmated_memory(addr, size);
2444     }
2445   } else {
2446     // User may unmap partial regions but region has to be fully contained.
2447 #ifdef ASSERT
2448     vmi->assert_is_valid_subrange(addr, size);
2449 #endif
2450     rc = release_mmaped_memory(addr, size);
2451     remove_bookkeeping = true;
2452   }
2453 
2454   // update bookkeeping
2455   if (rc && remove_bookkeeping) {
2456     vmembk_remove(vmi);
2457   }
2458 
2459   return rc;
2460 }
2461 
2462 static bool checked_mprotect(char* addr, size_t size, int prot) {
2463 
2464   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2465   // not tell me if protection failed when trying to protect an un-protectable range.
2466   //
2467   // This means if the memory was allocated using shmget/shmat, protection wont work
2468   // but mprotect will still return 0:
2469   //
2470   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2471 
2472   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2473 
2474   if (!rc) {
2475     const char* const s_errno = strerror(errno);
2476     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2477     return false;
2478   }
2479 
2480   // mprotect success check
2481   //
2482   // Mprotect said it changed the protection but can I believe it?
2483   //
2484   // To be sure I need to check the protection afterwards. Try to
2485   // read from protected memory and check whether that causes a segfault.
2486   //
2487   if (!os::Aix::xpg_sus_mode()) {
2488 
2489     if (CanUseSafeFetch32()) {
2490 
2491       const bool read_protected =
2492         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2493          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2494 
2495       if (prot & PROT_READ) {
2496         rc = !read_protected;
2497       } else {
2498         rc = read_protected;
2499       }
2500     }
2501   }
2502   if (!rc) {
2503     assert(false, "mprotect failed.");
2504   }
2505   return rc;
2506 }
2507 
2508 // Set protections specified
2509 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2510   unsigned int p = 0;
2511   switch (prot) {
2512   case MEM_PROT_NONE: p = PROT_NONE; break;
2513   case MEM_PROT_READ: p = PROT_READ; break;
2514   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2515   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2516   default:
2517     ShouldNotReachHere();
2518   }
2519   // is_committed is unused.
2520   return checked_mprotect(addr, size, p);
2521 }
2522 
2523 bool os::guard_memory(char* addr, size_t size) {
2524   return checked_mprotect(addr, size, PROT_NONE);
2525 }
2526 
2527 bool os::unguard_memory(char* addr, size_t size) {
2528   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2529 }
2530 
2531 // Large page support
2532 
2533 static size_t _large_page_size = 0;
2534 
2535 // Enable large page support if OS allows that.
2536 void os::large_page_init() {
2537   return; // Nothing to do. See query_multipage_support and friends.
2538 }
2539 
2540 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2541   // "exec" is passed in but not used. Creating the shared image for
2542   // the code cache doesn't have an SHM_X executable permission to check.
2543   Unimplemented();
2544   return 0;
2545 }
2546 
2547 bool os::release_memory_special(char* base, size_t bytes) {
2548   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2549   Unimplemented();
2550   return false;
2551 }
2552 
2553 size_t os::large_page_size() {
2554   return _large_page_size;
2555 }
2556 
2557 bool os::can_commit_large_page_memory() {
2558   // Does not matter, we do not support huge pages.
2559   return false;
2560 }
2561 
2562 bool os::can_execute_large_page_memory() {
2563   // Does not matter, we do not support huge pages.
2564   return false;
2565 }
2566 
2567 // Reserve memory at an arbitrary address, only if that area is
2568 // available (and not reserved for something else).
2569 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2570   char* addr = NULL;
2571 
2572   // Always round to os::vm_page_size(), which may be larger than 4K.
2573   bytes = align_size_up(bytes, os::vm_page_size());
2574 
2575   // In 4K mode always use mmap.
2576   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2577   if (os::vm_page_size() == SIZE_4K) {
2578     return reserve_mmaped_memory(bytes, requested_addr, 0);
2579   } else {
2580     if (bytes >= Use64KPagesThreshold) {
2581       return reserve_shmated_memory(bytes, requested_addr, 0);
2582     } else {
2583       return reserve_mmaped_memory(bytes, requested_addr, 0);
2584     }
2585   }
2586 
2587   return addr;
2588 }
2589 
2590 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2591   return ::read(fd, buf, nBytes);
2592 }
2593 
2594 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2595   return ::pread(fd, buf, nBytes, offset);
2596 }
2597 
2598 void os::naked_short_sleep(jlong ms) {
2599   struct timespec req;
2600 
2601   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2602   req.tv_sec = 0;
2603   if (ms > 0) {
2604     req.tv_nsec = (ms % 1000) * 1000000;
2605   }
2606   else {
2607     req.tv_nsec = 1;
2608   }
2609 
2610   nanosleep(&req, NULL);
2611 
2612   return;
2613 }
2614 
2615 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2616 void os::infinite_sleep() {
2617   while (true) {    // sleep forever ...
2618     ::sleep(100);   // ... 100 seconds at a time
2619   }
2620 }
2621 
2622 // Used to convert frequent JVM_Yield() to nops
2623 bool os::dont_yield() {
2624   return DontYieldALot;
2625 }
2626 
2627 void os::naked_yield() {
2628   sched_yield();
2629 }
2630 
2631 ////////////////////////////////////////////////////////////////////////////////
2632 // thread priority support
2633 
2634 // From AIX manpage to pthread_setschedparam
2635 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2636 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2637 //
2638 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2639 // range from 40 to 80, where 40 is the least favored priority and 80
2640 // is the most favored."
2641 //
2642 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2643 // scheduling there; however, this still leaves iSeries.)
2644 //
2645 // We use the same values for AIX and PASE.
2646 int os::java_to_os_priority[CriticalPriority + 1] = {
2647   54,             // 0 Entry should never be used
2648 
2649   55,             // 1 MinPriority
2650   55,             // 2
2651   56,             // 3
2652 
2653   56,             // 4
2654   57,             // 5 NormPriority
2655   57,             // 6
2656 
2657   58,             // 7
2658   58,             // 8
2659   59,             // 9 NearMaxPriority
2660 
2661   60,             // 10 MaxPriority
2662 
2663   60              // 11 CriticalPriority
2664 };
2665 
2666 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2667   if (!UseThreadPriorities) return OS_OK;
2668   pthread_t thr = thread->osthread()->pthread_id();
2669   int policy = SCHED_OTHER;
2670   struct sched_param param;
2671   param.sched_priority = newpri;
2672   int ret = pthread_setschedparam(thr, policy, &param);
2673 
2674   if (ret != 0) {
2675     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2676         (int)thr, newpri, ret, strerror(ret));
2677   }
2678   return (ret == 0) ? OS_OK : OS_ERR;
2679 }
2680 
2681 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2682   if (!UseThreadPriorities) {
2683     *priority_ptr = java_to_os_priority[NormPriority];
2684     return OS_OK;
2685   }
2686   pthread_t thr = thread->osthread()->pthread_id();
2687   int policy = SCHED_OTHER;
2688   struct sched_param param;
2689   int ret = pthread_getschedparam(thr, &policy, &param);
2690   *priority_ptr = param.sched_priority;
2691 
2692   return (ret == 0) ? OS_OK : OS_ERR;
2693 }
2694 
2695 // Hint to the underlying OS that a task switch would not be good.
2696 // Void return because it's a hint and can fail.
2697 void os::hint_no_preempt() {}
2698 
2699 ////////////////////////////////////////////////////////////////////////////////
2700 // suspend/resume support
2701 
2702 //  the low-level signal-based suspend/resume support is a remnant from the
2703 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2704 //  within hotspot. Now there is a single use-case for this:
2705 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2706 //      that runs in the watcher thread.
2707 //  The remaining code is greatly simplified from the more general suspension
2708 //  code that used to be used.
2709 //
2710 //  The protocol is quite simple:
2711 //  - suspend:
2712 //      - sends a signal to the target thread
2713 //      - polls the suspend state of the osthread using a yield loop
2714 //      - target thread signal handler (SR_handler) sets suspend state
2715 //        and blocks in sigsuspend until continued
2716 //  - resume:
2717 //      - sets target osthread state to continue
2718 //      - sends signal to end the sigsuspend loop in the SR_handler
2719 //
2720 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2721 //
2722 
2723 static void resume_clear_context(OSThread *osthread) {
2724   osthread->set_ucontext(NULL);
2725   osthread->set_siginfo(NULL);
2726 }
2727 
2728 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2729   osthread->set_ucontext(context);
2730   osthread->set_siginfo(siginfo);
2731 }
2732 
2733 //
2734 // Handler function invoked when a thread's execution is suspended or
2735 // resumed. We have to be careful that only async-safe functions are
2736 // called here (Note: most pthread functions are not async safe and
2737 // should be avoided.)
2738 //
2739 // Note: sigwait() is a more natural fit than sigsuspend() from an
2740 // interface point of view, but sigwait() prevents the signal hander
2741 // from being run. libpthread would get very confused by not having
2742 // its signal handlers run and prevents sigwait()'s use with the
2743 // mutex granting granting signal.
2744 //
2745 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2746 //
2747 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2748   // Save and restore errno to avoid confusing native code with EINTR
2749   // after sigsuspend.
2750   int old_errno = errno;
2751 
2752   Thread* thread = Thread::current();
2753   OSThread* osthread = thread->osthread();
2754   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2755 
2756   os::SuspendResume::State current = osthread->sr.state();
2757   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2758     suspend_save_context(osthread, siginfo, context);
2759 
2760     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2761     os::SuspendResume::State state = osthread->sr.suspended();
2762     if (state == os::SuspendResume::SR_SUSPENDED) {
2763       sigset_t suspend_set;  // signals for sigsuspend()
2764 
2765       // get current set of blocked signals and unblock resume signal
2766       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2767       sigdelset(&suspend_set, SR_signum);
2768 
2769       // wait here until we are resumed
2770       while (1) {
2771         sigsuspend(&suspend_set);
2772 
2773         os::SuspendResume::State result = osthread->sr.running();
2774         if (result == os::SuspendResume::SR_RUNNING) {
2775           break;
2776         }
2777       }
2778 
2779     } else if (state == os::SuspendResume::SR_RUNNING) {
2780       // request was cancelled, continue
2781     } else {
2782       ShouldNotReachHere();
2783     }
2784 
2785     resume_clear_context(osthread);
2786   } else if (current == os::SuspendResume::SR_RUNNING) {
2787     // request was cancelled, continue
2788   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2789     // ignore
2790   } else {
2791     ShouldNotReachHere();
2792   }
2793 
2794   errno = old_errno;
2795 }
2796 
2797 static int SR_initialize() {
2798   struct sigaction act;
2799   char *s;
2800   // Get signal number to use for suspend/resume
2801   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2802     int sig = ::strtol(s, 0, 10);
2803     if (sig > 0 || sig < NSIG) {
2804       SR_signum = sig;
2805     }
2806   }
2807 
2808   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2809         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2810 
2811   sigemptyset(&SR_sigset);
2812   sigaddset(&SR_sigset, SR_signum);
2813 
2814   // Set up signal handler for suspend/resume.
2815   act.sa_flags = SA_RESTART|SA_SIGINFO;
2816   act.sa_handler = (void (*)(int)) SR_handler;
2817 
2818   // SR_signum is blocked by default.
2819   // 4528190 - We also need to block pthread restart signal (32 on all
2820   // supported Linux platforms). Note that LinuxThreads need to block
2821   // this signal for all threads to work properly. So we don't have
2822   // to use hard-coded signal number when setting up the mask.
2823   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2824 
2825   if (sigaction(SR_signum, &act, 0) == -1) {
2826     return -1;
2827   }
2828 
2829   // Save signal flag
2830   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2831   return 0;
2832 }
2833 
2834 static int SR_finalize() {
2835   return 0;
2836 }
2837 
2838 static int sr_notify(OSThread* osthread) {
2839   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2840   assert_status(status == 0, status, "pthread_kill");
2841   return status;
2842 }
2843 
2844 // "Randomly" selected value for how long we want to spin
2845 // before bailing out on suspending a thread, also how often
2846 // we send a signal to a thread we want to resume
2847 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2848 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2849 
2850 // returns true on success and false on error - really an error is fatal
2851 // but this seems the normal response to library errors
2852 static bool do_suspend(OSThread* osthread) {
2853   assert(osthread->sr.is_running(), "thread should be running");
2854   // mark as suspended and send signal
2855 
2856   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2857     // failed to switch, state wasn't running?
2858     ShouldNotReachHere();
2859     return false;
2860   }
2861 
2862   if (sr_notify(osthread) != 0) {
2863     // try to cancel, switch to running
2864 
2865     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2866     if (result == os::SuspendResume::SR_RUNNING) {
2867       // cancelled
2868       return false;
2869     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2870       // somehow managed to suspend
2871       return true;
2872     } else {
2873       ShouldNotReachHere();
2874       return false;
2875     }
2876   }
2877 
2878   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2879 
2880   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2881     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2882       os::naked_yield();
2883     }
2884 
2885     // timeout, try to cancel the request
2886     if (n >= RANDOMLY_LARGE_INTEGER) {
2887       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2888       if (cancelled == os::SuspendResume::SR_RUNNING) {
2889         return false;
2890       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2891         return true;
2892       } else {
2893         ShouldNotReachHere();
2894         return false;
2895       }
2896     }
2897   }
2898 
2899   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2900   return true;
2901 }
2902 
2903 static void do_resume(OSThread* osthread) {
2904   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2905 
2906   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2907     // failed to switch to WAKEUP_REQUEST
2908     ShouldNotReachHere();
2909     return;
2910   }
2911 
2912   while (!osthread->sr.is_running()) {
2913     if (sr_notify(osthread) == 0) {
2914       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2915         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2916           os::naked_yield();
2917         }
2918       }
2919     } else {
2920       ShouldNotReachHere();
2921     }
2922   }
2923 
2924   guarantee(osthread->sr.is_running(), "Must be running!");
2925 }
2926 
2927 ///////////////////////////////////////////////////////////////////////////////////
2928 // signal handling (except suspend/resume)
2929 
2930 // This routine may be used by user applications as a "hook" to catch signals.
2931 // The user-defined signal handler must pass unrecognized signals to this
2932 // routine, and if it returns true (non-zero), then the signal handler must
2933 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2934 // routine will never retun false (zero), but instead will execute a VM panic
2935 // routine kill the process.
2936 //
2937 // If this routine returns false, it is OK to call it again. This allows
2938 // the user-defined signal handler to perform checks either before or after
2939 // the VM performs its own checks. Naturally, the user code would be making
2940 // a serious error if it tried to handle an exception (such as a null check
2941 // or breakpoint) that the VM was generating for its own correct operation.
2942 //
2943 // This routine may recognize any of the following kinds of signals:
2944 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2945 // It should be consulted by handlers for any of those signals.
2946 //
2947 // The caller of this routine must pass in the three arguments supplied
2948 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2949 // field of the structure passed to sigaction(). This routine assumes that
2950 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2951 //
2952 // Note that the VM will print warnings if it detects conflicting signal
2953 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2954 //
2955 extern "C" JNIEXPORT int
2956 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2957 
2958 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2959 // to be the thing to call; documentation is not terribly clear about whether
2960 // pthread_sigmask also works, and if it does, whether it does the same.
2961 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2962   const int rc = ::pthread_sigmask(how, set, oset);
2963   // return value semantics differ slightly for error case:
2964   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2965   // (so, pthread_sigmask is more theadsafe for error handling)
2966   // But success is always 0.
2967   return rc == 0 ? true : false;
2968 }
2969 
2970 // Function to unblock all signals which are, according
2971 // to POSIX, typical program error signals. If they happen while being blocked,
2972 // they typically will bring down the process immediately.
2973 bool unblock_program_error_signals() {
2974   sigset_t set;
2975   ::sigemptyset(&set);
2976   ::sigaddset(&set, SIGILL);
2977   ::sigaddset(&set, SIGBUS);
2978   ::sigaddset(&set, SIGFPE);
2979   ::sigaddset(&set, SIGSEGV);
2980   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2981 }
2982 
2983 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2984 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2985   assert(info != NULL && uc != NULL, "it must be old kernel");
2986 
2987   // Never leave program error signals blocked;
2988   // on all our platforms they would bring down the process immediately when
2989   // getting raised while being blocked.
2990   unblock_program_error_signals();
2991 
2992   JVM_handle_aix_signal(sig, info, uc, true);
2993 }
2994 
2995 // This boolean allows users to forward their own non-matching signals
2996 // to JVM_handle_aix_signal, harmlessly.
2997 bool os::Aix::signal_handlers_are_installed = false;
2998 
2999 // For signal-chaining
3000 struct sigaction os::Aix::sigact[MAXSIGNUM];
3001 unsigned int os::Aix::sigs = 0;
3002 bool os::Aix::libjsig_is_loaded = false;
3003 typedef struct sigaction *(*get_signal_t)(int);
3004 get_signal_t os::Aix::get_signal_action = NULL;
3005 
3006 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3007   struct sigaction *actp = NULL;
3008 
3009   if (libjsig_is_loaded) {
3010     // Retrieve the old signal handler from libjsig
3011     actp = (*get_signal_action)(sig);
3012   }
3013   if (actp == NULL) {
3014     // Retrieve the preinstalled signal handler from jvm
3015     actp = get_preinstalled_handler(sig);
3016   }
3017 
3018   return actp;
3019 }
3020 
3021 static bool call_chained_handler(struct sigaction *actp, int sig,
3022                                  siginfo_t *siginfo, void *context) {
3023   // Call the old signal handler
3024   if (actp->sa_handler == SIG_DFL) {
3025     // It's more reasonable to let jvm treat it as an unexpected exception
3026     // instead of taking the default action.
3027     return false;
3028   } else if (actp->sa_handler != SIG_IGN) {
3029     if ((actp->sa_flags & SA_NODEFER) == 0) {
3030       // automaticlly block the signal
3031       sigaddset(&(actp->sa_mask), sig);
3032     }
3033 
3034     sa_handler_t hand = NULL;
3035     sa_sigaction_t sa = NULL;
3036     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3037     // retrieve the chained handler
3038     if (siginfo_flag_set) {
3039       sa = actp->sa_sigaction;
3040     } else {
3041       hand = actp->sa_handler;
3042     }
3043 
3044     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3045       actp->sa_handler = SIG_DFL;
3046     }
3047 
3048     // try to honor the signal mask
3049     sigset_t oset;
3050     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3051 
3052     // call into the chained handler
3053     if (siginfo_flag_set) {
3054       (*sa)(sig, siginfo, context);
3055     } else {
3056       (*hand)(sig);
3057     }
3058 
3059     // restore the signal mask
3060     pthread_sigmask(SIG_SETMASK, &oset, 0);
3061   }
3062   // Tell jvm's signal handler the signal is taken care of.
3063   return true;
3064 }
3065 
3066 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3067   bool chained = false;
3068   // signal-chaining
3069   if (UseSignalChaining) {
3070     struct sigaction *actp = get_chained_signal_action(sig);
3071     if (actp != NULL) {
3072       chained = call_chained_handler(actp, sig, siginfo, context);
3073     }
3074   }
3075   return chained;
3076 }
3077 
3078 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3079   if ((((unsigned int)1 << sig) & sigs) != 0) {
3080     return &sigact[sig];
3081   }
3082   return NULL;
3083 }
3084 
3085 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3086   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3087   sigact[sig] = oldAct;
3088   sigs |= (unsigned int)1 << sig;
3089 }
3090 
3091 // for diagnostic
3092 int os::Aix::sigflags[MAXSIGNUM];
3093 
3094 int os::Aix::get_our_sigflags(int sig) {
3095   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3096   return sigflags[sig];
3097 }
3098 
3099 void os::Aix::set_our_sigflags(int sig, int flags) {
3100   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3101   sigflags[sig] = flags;
3102 }
3103 
3104 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3105   // Check for overwrite.
3106   struct sigaction oldAct;
3107   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3108 
3109   void* oldhand = oldAct.sa_sigaction
3110     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3111     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3112   // Renamed 'signalHandler' to avoid collision with other shared libs.
3113   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3114       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3115       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3116     if (AllowUserSignalHandlers || !set_installed) {
3117       // Do not overwrite; user takes responsibility to forward to us.
3118       return;
3119     } else if (UseSignalChaining) {
3120       // save the old handler in jvm
3121       save_preinstalled_handler(sig, oldAct);
3122       // libjsig also interposes the sigaction() call below and saves the
3123       // old sigaction on it own.
3124     } else {
3125       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3126                     "%#lx for signal %d.", (long)oldhand, sig));
3127     }
3128   }
3129 
3130   struct sigaction sigAct;
3131   sigfillset(&(sigAct.sa_mask));
3132   if (!set_installed) {
3133     sigAct.sa_handler = SIG_DFL;
3134     sigAct.sa_flags = SA_RESTART;
3135   } else {
3136     // Renamed 'signalHandler' to avoid collision with other shared libs.
3137     sigAct.sa_sigaction = javaSignalHandler;
3138     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3139   }
3140   // Save flags, which are set by ours
3141   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3142   sigflags[sig] = sigAct.sa_flags;
3143 
3144   int ret = sigaction(sig, &sigAct, &oldAct);
3145   assert(ret == 0, "check");
3146 
3147   void* oldhand2 = oldAct.sa_sigaction
3148                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3149                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3150   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3151 }
3152 
3153 // install signal handlers for signals that HotSpot needs to
3154 // handle in order to support Java-level exception handling.
3155 void os::Aix::install_signal_handlers() {
3156   if (!signal_handlers_are_installed) {
3157     signal_handlers_are_installed = true;
3158 
3159     // signal-chaining
3160     typedef void (*signal_setting_t)();
3161     signal_setting_t begin_signal_setting = NULL;
3162     signal_setting_t end_signal_setting = NULL;
3163     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3164                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3165     if (begin_signal_setting != NULL) {
3166       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3167                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3168       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3169                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3170       libjsig_is_loaded = true;
3171       assert(UseSignalChaining, "should enable signal-chaining");
3172     }
3173     if (libjsig_is_loaded) {
3174       // Tell libjsig jvm is setting signal handlers
3175       (*begin_signal_setting)();
3176     }
3177 
3178     set_signal_handler(SIGSEGV, true);
3179     set_signal_handler(SIGPIPE, true);
3180     set_signal_handler(SIGBUS, true);
3181     set_signal_handler(SIGILL, true);
3182     set_signal_handler(SIGFPE, true);
3183     set_signal_handler(SIGTRAP, true);
3184     set_signal_handler(SIGXFSZ, true);
3185     set_signal_handler(SIGDANGER, true);
3186 
3187     if (libjsig_is_loaded) {
3188       // Tell libjsig jvm finishes setting signal handlers.
3189       (*end_signal_setting)();
3190     }
3191 
3192     // We don't activate signal checker if libjsig is in place, we trust ourselves
3193     // and if UserSignalHandler is installed all bets are off.
3194     // Log that signal checking is off only if -verbose:jni is specified.
3195     if (CheckJNICalls) {
3196       if (libjsig_is_loaded) {
3197         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3198         check_signals = false;
3199       }
3200       if (AllowUserSignalHandlers) {
3201         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3202         check_signals = false;
3203       }
3204       // Need to initialize check_signal_done.
3205       ::sigemptyset(&check_signal_done);
3206     }
3207   }
3208 }
3209 
3210 static const char* get_signal_handler_name(address handler,
3211                                            char* buf, int buflen) {
3212   int offset;
3213   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3214   if (found) {
3215     // skip directory names
3216     const char *p1, *p2;
3217     p1 = buf;
3218     size_t len = strlen(os::file_separator());
3219     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3220     // The way os::dll_address_to_library_name is implemented on Aix
3221     // right now, it always returns -1 for the offset which is not
3222     // terribly informative.
3223     // Will fix that. For now, omit the offset.
3224     jio_snprintf(buf, buflen, "%s", p1);
3225   } else {
3226     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3227   }
3228   return buf;
3229 }
3230 
3231 static void print_signal_handler(outputStream* st, int sig,
3232                                  char* buf, size_t buflen) {
3233   struct sigaction sa;
3234   sigaction(sig, NULL, &sa);
3235 
3236   st->print("%s: ", os::exception_name(sig, buf, buflen));
3237 
3238   address handler = (sa.sa_flags & SA_SIGINFO)
3239     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3240     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3241 
3242   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3243     st->print("SIG_DFL");
3244   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3245     st->print("SIG_IGN");
3246   } else {
3247     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3248   }
3249 
3250   // Print readable mask.
3251   st->print(", sa_mask[0]=");
3252   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3253 
3254   address rh = VMError::get_resetted_sighandler(sig);
3255   // May be, handler was resetted by VMError?
3256   if (rh != NULL) {
3257     handler = rh;
3258     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3259   }
3260 
3261   // Print textual representation of sa_flags.
3262   st->print(", sa_flags=");
3263   os::Posix::print_sa_flags(st, sa.sa_flags);
3264 
3265   // Check: is it our handler?
3266   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3267       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3268     // It is our signal handler.
3269     // Check for flags, reset system-used one!
3270     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3271       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3272                 os::Aix::get_our_sigflags(sig));
3273     }
3274   }
3275   st->cr();
3276 }
3277 
3278 #define DO_SIGNAL_CHECK(sig) \
3279   if (!sigismember(&check_signal_done, sig)) \
3280     os::Aix::check_signal_handler(sig)
3281 
3282 // This method is a periodic task to check for misbehaving JNI applications
3283 // under CheckJNI, we can add any periodic checks here
3284 
3285 void os::run_periodic_checks() {
3286 
3287   if (check_signals == false) return;
3288 
3289   // SEGV and BUS if overridden could potentially prevent
3290   // generation of hs*.log in the event of a crash, debugging
3291   // such a case can be very challenging, so we absolutely
3292   // check the following for a good measure:
3293   DO_SIGNAL_CHECK(SIGSEGV);
3294   DO_SIGNAL_CHECK(SIGILL);
3295   DO_SIGNAL_CHECK(SIGFPE);
3296   DO_SIGNAL_CHECK(SIGBUS);
3297   DO_SIGNAL_CHECK(SIGPIPE);
3298   DO_SIGNAL_CHECK(SIGXFSZ);
3299   if (UseSIGTRAP) {
3300     DO_SIGNAL_CHECK(SIGTRAP);
3301   }
3302   DO_SIGNAL_CHECK(SIGDANGER);
3303 
3304   // ReduceSignalUsage allows the user to override these handlers
3305   // see comments at the very top and jvm_solaris.h
3306   if (!ReduceSignalUsage) {
3307     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3308     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3309     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3310     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3311   }
3312 
3313   DO_SIGNAL_CHECK(SR_signum);
3314   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3315 }
3316 
3317 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3318 
3319 static os_sigaction_t os_sigaction = NULL;
3320 
3321 void os::Aix::check_signal_handler(int sig) {
3322   char buf[O_BUFLEN];
3323   address jvmHandler = NULL;
3324 
3325   struct sigaction act;
3326   if (os_sigaction == NULL) {
3327     // only trust the default sigaction, in case it has been interposed
3328     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3329     if (os_sigaction == NULL) return;
3330   }
3331 
3332   os_sigaction(sig, (struct sigaction*)NULL, &act);
3333 
3334   address thisHandler = (act.sa_flags & SA_SIGINFO)
3335     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3336     : CAST_FROM_FN_PTR(address, act.sa_handler);
3337 
3338   switch(sig) {
3339   case SIGSEGV:
3340   case SIGBUS:
3341   case SIGFPE:
3342   case SIGPIPE:
3343   case SIGILL:
3344   case SIGXFSZ:
3345     // Renamed 'signalHandler' to avoid collision with other shared libs.
3346     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3347     break;
3348 
3349   case SHUTDOWN1_SIGNAL:
3350   case SHUTDOWN2_SIGNAL:
3351   case SHUTDOWN3_SIGNAL:
3352   case BREAK_SIGNAL:
3353     jvmHandler = (address)user_handler();
3354     break;
3355 
3356   case INTERRUPT_SIGNAL:
3357     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3358     break;
3359 
3360   default:
3361     if (sig == SR_signum) {
3362       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3363     } else {
3364       return;
3365     }
3366     break;
3367   }
3368 
3369   if (thisHandler != jvmHandler) {
3370     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3371     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3372     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3373     // No need to check this sig any longer
3374     sigaddset(&check_signal_done, sig);
3375     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3376     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3377       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3378                     exception_name(sig, buf, O_BUFLEN));
3379     }
3380   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3381     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3382     tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));
3383     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3384     // No need to check this sig any longer
3385     sigaddset(&check_signal_done, sig);
3386   }
3387 
3388   // Dump all the signal
3389   if (sigismember(&check_signal_done, sig)) {
3390     print_signal_handlers(tty, buf, O_BUFLEN);
3391   }
3392 }
3393 
3394 extern bool signal_name(int signo, char* buf, size_t len);
3395 
3396 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3397   if (0 < exception_code && exception_code <= SIGRTMAX) {
3398     // signal
3399     if (!signal_name(exception_code, buf, size)) {
3400       jio_snprintf(buf, size, "SIG%d", exception_code);
3401     }
3402     return buf;
3403   } else {
3404     return NULL;
3405   }
3406 }
3407 
3408 // To install functions for atexit system call
3409 extern "C" {
3410   static void perfMemory_exit_helper() {
3411     perfMemory_exit();
3412   }
3413 }
3414 
3415 // This is called _before_ the most of global arguments have been parsed.
3416 void os::init(void) {
3417   // This is basic, we want to know if that ever changes.
3418   // (Shared memory boundary is supposed to be a 256M aligned.)
3419   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3420 
3421   // First off, we need to know whether we run on AIX or PASE, and
3422   // the OS level we run on.
3423   os::Aix::initialize_os_info();
3424 
3425   // Scan environment (SPEC1170 behaviour, etc).
3426   os::Aix::scan_environment();
3427 
3428   // Check which pages are supported by AIX.
3429   query_multipage_support();
3430 
3431   // Act like we only have one page size by eliminating corner cases which
3432   // we did not support very well anyway.
3433   // We have two input conditions:
3434   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3435   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3436   //    setting.
3437   //    Data segment page size is important for us because it defines the thread stack page
3438   //    size, which is needed for guard page handling, stack banging etc.
3439   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3440   //    and should be allocated with 64k pages.
3441   //
3442   // So, we do the following:
3443   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3444   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3445   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3446   // 64k          no              --- AIX 5.2 ? ---
3447   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3448 
3449   // We explicitly leave no option to change page size, because only upgrading would work,
3450   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3451 
3452   if (g_multipage_support.datapsize == SIZE_4K) {
3453     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3454     if (g_multipage_support.can_use_64K_pages) {
3455       // .. but we are able to use 64K pages dynamically.
3456       // This would be typical for java launchers which are not linked
3457       // with datapsize=64K (like, any other launcher but our own).
3458       //
3459       // In this case it would be smart to allocate the java heap with 64K
3460       // to get the performance benefit, and to fake 64k pages for the
3461       // data segment (when dealing with thread stacks).
3462       //
3463       // However, leave a possibility to downgrade to 4K, using
3464       // -XX:-Use64KPages.
3465       if (Use64KPages) {
3466         trcVerbose("64K page mode (faked for data segment)");
3467         Aix::_page_size = SIZE_64K;
3468       } else {
3469         trcVerbose("4K page mode (Use64KPages=off)");
3470         Aix::_page_size = SIZE_4K;
3471       }
3472     } else {
3473       // .. and not able to allocate 64k pages dynamically. Here, just
3474       // fall back to 4K paged mode and use mmap for everything.
3475       trcVerbose("4K page mode");
3476       Aix::_page_size = SIZE_4K;
3477       FLAG_SET_ERGO(bool, Use64KPages, false);
3478     }
3479   } else {
3480     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3481     //   This normally means that we can allocate 64k pages dynamically.
3482     //   (There is one special case where this may be false: EXTSHM=on.
3483     //    but we decided to not support that mode).
3484     assert0(g_multipage_support.can_use_64K_pages);
3485     Aix::_page_size = SIZE_64K;
3486     trcVerbose("64K page mode");
3487     FLAG_SET_ERGO(bool, Use64KPages, true);
3488   }
3489 
3490   // Short-wire stack page size to base page size; if that works, we just remove
3491   // that stack page size altogether.
3492   Aix::_stack_page_size = Aix::_page_size;
3493 
3494   // For now UseLargePages is just ignored.
3495   FLAG_SET_ERGO(bool, UseLargePages, false);
3496   _page_sizes[0] = 0;
3497 
3498   // debug trace
3499   trcVerbose("os::vm_page_size %s\n", describe_pagesize(os::vm_page_size()));
3500 
3501   // Next, we need to initialize libo4 and libperfstat libraries.
3502   if (os::Aix::on_pase()) {
3503     os::Aix::initialize_libo4();
3504   } else {
3505     os::Aix::initialize_libperfstat();
3506   }
3507 
3508   // Reset the perfstat information provided by ODM.
3509   if (os::Aix::on_aix()) {
3510     libperfstat::perfstat_reset();
3511   }
3512 
3513   // Now initialze basic system properties. Note that for some of the values we
3514   // need libperfstat etc.
3515   os::Aix::initialize_system_info();
3516 
3517   _initial_pid = getpid();
3518 
3519   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3520 
3521   init_random(1234567);
3522 
3523   ThreadCritical::initialize();
3524 
3525   // Main_thread points to the aboriginal thread.
3526   Aix::_main_thread = pthread_self();
3527 
3528   initial_time_count = os::elapsed_counter();
3529 
3530   // If the pagesize of the VM is greater than 8K determine the appropriate
3531   // number of initial guard pages. The user can change this with the
3532   // command line arguments, if needed.
3533   if (vm_page_size() > (int)Aix::vm_default_page_size()) {
3534     StackYellowPages = 1;
3535     StackRedPages = 1;
3536     StackShadowPages = round_to((StackShadowPages*Aix::vm_default_page_size()), vm_page_size()) / vm_page_size();
3537   }
3538 }
3539 
3540 // This is called _after_ the global arguments have been parsed.
3541 jint os::init_2(void) {
3542 
3543   trcVerbose("processor count: %d", os::_processor_count);
3544   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3545 
3546   // Initially build up the loaded dll map.
3547   LoadedLibraries::reload();
3548 
3549   const int page_size = Aix::page_size();
3550   const int map_size = page_size;
3551 
3552   address map_address = (address) MAP_FAILED;
3553   const int prot  = PROT_READ;
3554   const int flags = MAP_PRIVATE|MAP_ANONYMOUS;
3555 
3556   // Use optimized addresses for the polling page,
3557   // e.g. map it to a special 32-bit address.
3558   if (OptimizePollingPageLocation) {
3559     // architecture-specific list of address wishes:
3560     address address_wishes[] = {
3561       // AIX: addresses lower than 0x30000000 don't seem to work on AIX.
3562       // PPC64: all address wishes are non-negative 32 bit values where
3563       // the lower 16 bits are all zero. we can load these addresses
3564       // with a single ppc_lis instruction.
3565       (address) 0x30000000, (address) 0x31000000,
3566       (address) 0x32000000, (address) 0x33000000,
3567       (address) 0x40000000, (address) 0x41000000,
3568       (address) 0x42000000, (address) 0x43000000,
3569       (address) 0x50000000, (address) 0x51000000,
3570       (address) 0x52000000, (address) 0x53000000,
3571       (address) 0x60000000, (address) 0x61000000,
3572       (address) 0x62000000, (address) 0x63000000
3573     };
3574     int address_wishes_length = sizeof(address_wishes)/sizeof(address);
3575 
3576     // iterate over the list of address wishes:
3577     for (int i=0; i<address_wishes_length; i++) {
3578       // Try to map with current address wish.
3579       // AIX: AIX needs MAP_FIXED if we provide an address and mmap will
3580       // fail if the address is already mapped.
3581       map_address = (address) ::mmap(address_wishes[i] - (ssize_t)page_size,
3582                                      map_size, prot,
3583                                      flags | MAP_FIXED,
3584                                      -1, 0);
3585       if (Verbose) {
3586         fprintf(stderr, "SafePoint Polling Page address: %p (wish) => %p\n",
3587                 address_wishes[i], map_address + (ssize_t)page_size);
3588       }
3589 
3590       if (map_address + (ssize_t)page_size == address_wishes[i]) {
3591         // Map succeeded and map_address is at wished address, exit loop.
3592         break;
3593       }
3594 
3595       if (map_address != (address) MAP_FAILED) {
3596         // Map succeeded, but polling_page is not at wished address, unmap and continue.
3597         ::munmap(map_address, map_size);
3598         map_address = (address) MAP_FAILED;
3599       }
3600       // Map failed, continue loop.
3601     }
3602   } // end OptimizePollingPageLocation
3603 
3604   if (map_address == (address) MAP_FAILED) {
3605     map_address = (address) ::mmap(NULL, map_size, prot, flags, -1, 0);
3606   }
3607   guarantee(map_address != MAP_FAILED, "os::init_2: failed to allocate polling page");
3608   os::set_polling_page(map_address);
3609 
3610   if (!UseMembar) {
3611     address mem_serialize_page = (address) ::mmap(NULL, Aix::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3612     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3613     os::set_memory_serialize_page(mem_serialize_page);
3614 
3615 #ifndef PRODUCT
3616     if (Verbose && PrintMiscellaneous) {
3617       tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3618     }
3619 #endif
3620   }
3621 
3622   // initialize suspend/resume support - must do this before signal_sets_init()
3623   if (SR_initialize() != 0) {
3624     perror("SR_initialize failed");
3625     return JNI_ERR;
3626   }
3627 
3628   Aix::signal_sets_init();
3629   Aix::install_signal_handlers();
3630 
3631   // Check minimum allowable stack size for thread creation and to initialize
3632   // the java system classes, including StackOverflowError - depends on page
3633   // size. Add a page for compiler2 recursion in main thread.
3634   // Add in 2*BytesPerWord times page size to account for VM stack during
3635   // class initialization depending on 32 or 64 bit VM.
3636   os::Aix::min_stack_allowed = MAX2(os::Aix::min_stack_allowed,
3637             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Aix::page_size() +
3638                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Aix::vm_default_page_size());
3639 
3640   os::Aix::min_stack_allowed = align_size_up(os::Aix::min_stack_allowed, os::Aix::page_size());
3641 
3642   size_t threadStackSizeInBytes = ThreadStackSize * K;
3643   if (threadStackSizeInBytes != 0 &&
3644       threadStackSizeInBytes < os::Aix::min_stack_allowed) {
3645     tty->print_cr("\nThe stack size specified is too small, "
3646                   "Specify at least %dk",
3647                   os::Aix::min_stack_allowed / K);
3648     return JNI_ERR;
3649   }
3650 
3651   // Make the stack size a multiple of the page size so that
3652   // the yellow/red zones can be guarded.
3653   // Note that this can be 0, if no default stacksize was set.
3654   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size()));
3655 
3656   Aix::libpthread_init();
3657 
3658   if (MaxFDLimit) {
3659     // Set the number of file descriptors to max. print out error
3660     // if getrlimit/setrlimit fails but continue regardless.
3661     struct rlimit nbr_files;
3662     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3663     if (status != 0) {
3664       if (PrintMiscellaneous && (Verbose || WizardMode))
3665         perror("os::init_2 getrlimit failed");
3666     } else {
3667       nbr_files.rlim_cur = nbr_files.rlim_max;
3668       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3669       if (status != 0) {
3670         if (PrintMiscellaneous && (Verbose || WizardMode))
3671           perror("os::init_2 setrlimit failed");
3672       }
3673     }
3674   }
3675 
3676   if (PerfAllowAtExitRegistration) {
3677     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3678     // Atexit functions can be delayed until process exit time, which
3679     // can be problematic for embedded VM situations. Embedded VMs should
3680     // call DestroyJavaVM() to assure that VM resources are released.
3681 
3682     // Note: perfMemory_exit_helper atexit function may be removed in
3683     // the future if the appropriate cleanup code can be added to the
3684     // VM_Exit VMOperation's doit method.
3685     if (atexit(perfMemory_exit_helper) != 0) {
3686       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3687     }
3688   }
3689 
3690   return JNI_OK;
3691 }
3692 
3693 // Mark the polling page as unreadable
3694 void os::make_polling_page_unreadable(void) {
3695   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3696     fatal("Could not disable polling page");
3697   }
3698 };
3699 
3700 // Mark the polling page as readable
3701 void os::make_polling_page_readable(void) {
3702   // Changed according to os_linux.cpp.
3703   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3704     fatal(err_msg("Could not enable polling page at " PTR_FORMAT, _polling_page));
3705   }
3706 };
3707 
3708 int os::active_processor_count() {
3709   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3710   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3711   return online_cpus;
3712 }
3713 
3714 void os::set_native_thread_name(const char *name) {
3715   // Not yet implemented.
3716   return;
3717 }
3718 
3719 bool os::distribute_processes(uint length, uint* distribution) {
3720   // Not yet implemented.
3721   return false;
3722 }
3723 
3724 bool os::bind_to_processor(uint processor_id) {
3725   // Not yet implemented.
3726   return false;
3727 }
3728 
3729 void os::SuspendedThreadTask::internal_do_task() {
3730   if (do_suspend(_thread->osthread())) {
3731     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3732     do_task(context);
3733     do_resume(_thread->osthread());
3734   }
3735 }
3736 
3737 class PcFetcher : public os::SuspendedThreadTask {
3738 public:
3739   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3740   ExtendedPC result();
3741 protected:
3742   void do_task(const os::SuspendedThreadTaskContext& context);
3743 private:
3744   ExtendedPC _epc;
3745 };
3746 
3747 ExtendedPC PcFetcher::result() {
3748   guarantee(is_done(), "task is not done yet.");
3749   return _epc;
3750 }
3751 
3752 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3753   Thread* thread = context.thread();
3754   OSThread* osthread = thread->osthread();
3755   if (osthread->ucontext() != NULL) {
3756     _epc = os::Aix::ucontext_get_pc((ucontext_t *) context.ucontext());
3757   } else {
3758     // NULL context is unexpected, double-check this is the VMThread.
3759     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3760   }
3761 }
3762 
3763 // Suspends the target using the signal mechanism and then grabs the PC before
3764 // resuming the target. Used by the flat-profiler only
3765 ExtendedPC os::get_thread_pc(Thread* thread) {
3766   // Make sure that it is called by the watcher for the VMThread.
3767   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3768   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3769 
3770   PcFetcher fetcher(thread);
3771   fetcher.run();
3772   return fetcher.result();
3773 }
3774 
3775 ////////////////////////////////////////////////////////////////////////////////
3776 // debug support
3777 
3778 static address same_page(address x, address y) {
3779   intptr_t page_bits = -os::vm_page_size();
3780   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3781     return x;
3782   else if (x > y)
3783     return (address)(intptr_t(y) | ~page_bits) + 1;
3784   else
3785     return (address)(intptr_t(y) & page_bits);
3786 }
3787 
3788 bool os::find(address addr, outputStream* st) {
3789 
3790   st->print(PTR_FORMAT ": ", addr);
3791 
3792   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
3793   if (lib) {
3794     lib->print(st);
3795     return true;
3796   } else {
3797     lib = LoadedLibraries::find_for_data_address(addr);
3798     if (lib) {
3799       lib->print(st);
3800       return true;
3801     } else {
3802       st->print_cr("(outside any module)");
3803     }
3804   }
3805 
3806   return false;
3807 }
3808 
3809 ////////////////////////////////////////////////////////////////////////////////
3810 // misc
3811 
3812 // This does not do anything on Aix. This is basically a hook for being
3813 // able to use structured exception handling (thread-local exception filters)
3814 // on, e.g., Win32.
3815 void
3816 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3817                          JavaCallArguments* args, Thread* thread) {
3818   f(value, method, args, thread);
3819 }
3820 
3821 void os::print_statistics() {
3822 }
3823 
3824 int os::message_box(const char* title, const char* message) {
3825   int i;
3826   fdStream err(defaultStream::error_fd());
3827   for (i = 0; i < 78; i++) err.print_raw("=");
3828   err.cr();
3829   err.print_raw_cr(title);
3830   for (i = 0; i < 78; i++) err.print_raw("-");
3831   err.cr();
3832   err.print_raw_cr(message);
3833   for (i = 0; i < 78; i++) err.print_raw("=");
3834   err.cr();
3835 
3836   char buf[16];
3837   // Prevent process from exiting upon "read error" without consuming all CPU
3838   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3839 
3840   return buf[0] == 'y' || buf[0] == 'Y';
3841 }
3842 
3843 int os::stat(const char *path, struct stat *sbuf) {
3844   char pathbuf[MAX_PATH];
3845   if (strlen(path) > MAX_PATH - 1) {
3846     errno = ENAMETOOLONG;
3847     return -1;
3848   }
3849   os::native_path(strcpy(pathbuf, path));
3850   return ::stat(pathbuf, sbuf);
3851 }
3852 
3853 bool os::check_heap(bool force) {
3854   return true;
3855 }
3856 
3857 // Is a (classpath) directory empty?
3858 bool os::dir_is_empty(const char* path) {
3859   DIR *dir = NULL;
3860   struct dirent *ptr;
3861 
3862   dir = opendir(path);
3863   if (dir == NULL) return true;
3864 
3865   /* Scan the directory */
3866   bool result = true;
3867   char buf[sizeof(struct dirent) + MAX_PATH];
3868   while (result && (ptr = ::readdir(dir)) != NULL) {
3869     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3870       result = false;
3871     }
3872   }
3873   closedir(dir);
3874   return result;
3875 }
3876 
3877 // This code originates from JDK's sysOpen and open64_w
3878 // from src/solaris/hpi/src/system_md.c
3879 
3880 int os::open(const char *path, int oflag, int mode) {
3881 
3882   if (strlen(path) > MAX_PATH - 1) {
3883     errno = ENAMETOOLONG;
3884     return -1;
3885   }
3886   int fd;
3887 
3888   fd = ::open64(path, oflag, mode);
3889   if (fd == -1) return -1;
3890 
3891   // If the open succeeded, the file might still be a directory.
3892   {
3893     struct stat64 buf64;
3894     int ret = ::fstat64(fd, &buf64);
3895     int st_mode = buf64.st_mode;
3896 
3897     if (ret != -1) {
3898       if ((st_mode & S_IFMT) == S_IFDIR) {
3899         errno = EISDIR;
3900         ::close(fd);
3901         return -1;
3902       }
3903     } else {
3904       ::close(fd);
3905       return -1;
3906     }
3907   }
3908 
3909   // All file descriptors that are opened in the JVM and not
3910   // specifically destined for a subprocess should have the
3911   // close-on-exec flag set. If we don't set it, then careless 3rd
3912   // party native code might fork and exec without closing all
3913   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3914   // UNIXProcess.c), and this in turn might:
3915   //
3916   // - cause end-of-file to fail to be detected on some file
3917   //   descriptors, resulting in mysterious hangs, or
3918   //
3919   // - might cause an fopen in the subprocess to fail on a system
3920   //   suffering from bug 1085341.
3921   //
3922   // (Yes, the default setting of the close-on-exec flag is a Unix
3923   // design flaw.)
3924   //
3925   // See:
3926   // 1085341: 32-bit stdio routines should support file descriptors >255
3927   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3928   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3929 #ifdef FD_CLOEXEC
3930   {
3931     int flags = ::fcntl(fd, F_GETFD);
3932     if (flags != -1)
3933       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3934   }
3935 #endif
3936 
3937   return fd;
3938 }
3939 
3940 // create binary file, rewriting existing file if required
3941 int os::create_binary_file(const char* path, bool rewrite_existing) {
3942   int oflags = O_WRONLY | O_CREAT;
3943   if (!rewrite_existing) {
3944     oflags |= O_EXCL;
3945   }
3946   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3947 }
3948 
3949 // return current position of file pointer
3950 jlong os::current_file_offset(int fd) {
3951   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3952 }
3953 
3954 // move file pointer to the specified offset
3955 jlong os::seek_to_file_offset(int fd, jlong offset) {
3956   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3957 }
3958 
3959 // This code originates from JDK's sysAvailable
3960 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3961 
3962 int os::available(int fd, jlong *bytes) {
3963   jlong cur, end;
3964   int mode;
3965   struct stat64 buf64;
3966 
3967   if (::fstat64(fd, &buf64) >= 0) {
3968     mode = buf64.st_mode;
3969     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3970       // XXX: is the following call interruptible? If so, this might
3971       // need to go through the INTERRUPT_IO() wrapper as for other
3972       // blocking, interruptible calls in this file.
3973       int n;
3974       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3975         *bytes = n;
3976         return 1;
3977       }
3978     }
3979   }
3980   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3981     return 0;
3982   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3983     return 0;
3984   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3985     return 0;
3986   }
3987   *bytes = end - cur;
3988   return 1;
3989 }
3990 
3991 // Map a block of memory.
3992 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3993                         char *addr, size_t bytes, bool read_only,
3994                         bool allow_exec) {
3995   int prot;
3996   int flags = MAP_PRIVATE;
3997 
3998   if (read_only) {
3999     prot = PROT_READ;
4000     flags = MAP_SHARED;
4001   } else {
4002     prot = PROT_READ | PROT_WRITE;
4003     flags = MAP_PRIVATE;
4004   }
4005 
4006   if (allow_exec) {
4007     prot |= PROT_EXEC;
4008   }
4009 
4010   if (addr != NULL) {
4011     flags |= MAP_FIXED;
4012   }
4013 
4014   // Allow anonymous mappings if 'fd' is -1.
4015   if (fd == -1) {
4016     flags |= MAP_ANONYMOUS;
4017   }
4018 
4019   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
4020                                      fd, file_offset);
4021   if (mapped_address == MAP_FAILED) {
4022     return NULL;
4023   }
4024   return mapped_address;
4025 }
4026 
4027 // Remap a block of memory.
4028 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4029                           char *addr, size_t bytes, bool read_only,
4030                           bool allow_exec) {
4031   // same as map_memory() on this OS
4032   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4033                         allow_exec);
4034 }
4035 
4036 // Unmap a block of memory.
4037 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4038   return munmap(addr, bytes) == 0;
4039 }
4040 
4041 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4042 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4043 // of a thread.
4044 //
4045 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4046 // the fast estimate available on the platform.
4047 
4048 jlong os::current_thread_cpu_time() {
4049   // return user + sys since the cost is the same
4050   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
4051   assert(n >= 0, "negative CPU time");
4052   return n;
4053 }
4054 
4055 jlong os::thread_cpu_time(Thread* thread) {
4056   // consistent with what current_thread_cpu_time() returns
4057   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
4058   assert(n >= 0, "negative CPU time");
4059   return n;
4060 }
4061 
4062 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4063   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4064   assert(n >= 0, "negative CPU time");
4065   return n;
4066 }
4067 
4068 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
4069   bool error = false;
4070 
4071   jlong sys_time = 0;
4072   jlong user_time = 0;
4073 
4074   // Reimplemented using getthrds64().
4075   //
4076   // Works like this:
4077   // For the thread in question, get the kernel thread id. Then get the
4078   // kernel thread statistics using that id.
4079   //
4080   // This only works of course when no pthread scheduling is used,
4081   // i.e. there is a 1:1 relationship to kernel threads.
4082   // On AIX, see AIXTHREAD_SCOPE variable.
4083 
4084   pthread_t pthtid = thread->osthread()->pthread_id();
4085 
4086   // retrieve kernel thread id for the pthread:
4087   tid64_t tid = 0;
4088   struct __pthrdsinfo pinfo;
4089   // I just love those otherworldly IBM APIs which force me to hand down
4090   // dummy buffers for stuff I dont care for...
4091   char dummy[1];
4092   int dummy_size = sizeof(dummy);
4093   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
4094                           dummy, &dummy_size) == 0) {
4095     tid = pinfo.__pi_tid;
4096   } else {
4097     tty->print_cr("pthread_getthrds_np failed.");
4098     error = true;
4099   }
4100 
4101   // retrieve kernel timing info for that kernel thread
4102   if (!error) {
4103     struct thrdentry64 thrdentry;
4104     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
4105       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
4106       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
4107     } else {
4108       tty->print_cr("pthread_getthrds_np failed.");
4109       error = true;
4110     }
4111   }
4112 
4113   if (p_sys_time) {
4114     *p_sys_time = sys_time;
4115   }
4116 
4117   if (p_user_time) {
4118     *p_user_time = user_time;
4119   }
4120 
4121   if (error) {
4122     return false;
4123   }
4124 
4125   return true;
4126 }
4127 
4128 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4129   jlong sys_time;
4130   jlong user_time;
4131 
4132   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
4133     return -1;
4134   }
4135 
4136   return user_sys_cpu_time ? sys_time + user_time : user_time;
4137 }
4138 
4139 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4140   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4141   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4142   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4143   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4144 }
4145 
4146 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4147   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4148   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4149   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4150   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4151 }
4152 
4153 bool os::is_thread_cpu_time_supported() {
4154   return true;
4155 }
4156 
4157 // System loadavg support. Returns -1 if load average cannot be obtained.
4158 // For now just return the system wide load average (no processor sets).
4159 int os::loadavg(double values[], int nelem) {
4160 
4161   // Implemented using libperfstat on AIX.
4162 
4163   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4164   guarantee(values, "argument error");
4165 
4166   if (os::Aix::on_pase()) {
4167     Unimplemented();
4168     return -1;
4169   } else {
4170     // AIX: use libperfstat
4171     //
4172     // See also:
4173     // http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_cputot.htm
4174     // /usr/include/libperfstat.h:
4175 
4176     // Use the already AIX version independent get_cpuinfo.
4177     os::Aix::cpuinfo_t ci;
4178     if (os::Aix::get_cpuinfo(&ci)) {
4179       for (int i = 0; i < nelem; i++) {
4180         values[i] = ci.loadavg[i];
4181       }
4182     } else {
4183       return -1;
4184     }
4185     return nelem;
4186   }
4187 }
4188 
4189 void os::pause() {
4190   char filename[MAX_PATH];
4191   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4192     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4193   } else {
4194     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4195   }
4196 
4197   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4198   if (fd != -1) {
4199     struct stat buf;
4200     ::close(fd);
4201     while (::stat(filename, &buf) == 0) {
4202       (void)::poll(NULL, 0, 100);
4203     }
4204   } else {
4205     jio_fprintf(stderr,
4206       "Could not open pause file '%s', continuing immediately.\n", filename);
4207   }
4208 }
4209 
4210 bool os::Aix::is_primordial_thread() {
4211   if (pthread_self() == (pthread_t)1) {
4212     return true;
4213   } else {
4214     return false;
4215   }
4216 }
4217 
4218 // OS recognitions (PASE/AIX, OS level) call this before calling any
4219 // one of Aix::on_pase(), Aix::os_version() static
4220 void os::Aix::initialize_os_info() {
4221 
4222   assert(_on_pase == -1 && _os_version == -1, "already called.");
4223 
4224   struct utsname uts;
4225   memset(&uts, 0, sizeof(uts));
4226   strcpy(uts.sysname, "?");
4227   if (::uname(&uts) == -1) {
4228     trc("uname failed (%d)", errno);
4229     guarantee(0, "Could not determine whether we run on AIX or PASE");
4230   } else {
4231     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4232                "node \"%s\" machine \"%s\"\n",
4233                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4234     const int major = atoi(uts.version);
4235     assert(major > 0, "invalid OS version");
4236     const int minor = atoi(uts.release);
4237     assert(minor > 0, "invalid OS release");
4238     _os_version = (major << 8) | minor;
4239     if (strcmp(uts.sysname, "OS400") == 0) {
4240       Unimplemented();
4241     } else if (strcmp(uts.sysname, "AIX") == 0) {
4242       // We run on AIX. We do not support versions older than AIX 5.3.
4243       _on_pase = 0;
4244       if (_os_version < 0x0503) {
4245         trc("AIX release older than AIX 5.3 not supported.");
4246         assert(false, "AIX release too old.");
4247       } else {
4248         trcVerbose("We run on AIX %d.%d\n", major, minor);
4249       }
4250     } else {
4251       assert(false, "unknown OS");
4252     }
4253   }
4254 
4255   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4256 } // end: os::Aix::initialize_os_info()
4257 
4258 // Scan environment for important settings which might effect the VM.
4259 // Trace out settings. Warn about invalid settings and/or correct them.
4260 //
4261 // Must run after os::Aix::initialue_os_info().
4262 void os::Aix::scan_environment() {
4263 
4264   char* p;
4265   int rc;
4266 
4267   // Warn explicity if EXTSHM=ON is used. That switch changes how
4268   // System V shared memory behaves. One effect is that page size of
4269   // shared memory cannot be change dynamically, effectivly preventing
4270   // large pages from working.
4271   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4272   // recommendation is (in OSS notes) to switch it off.
4273   p = ::getenv("EXTSHM");
4274   if (Verbose) {
4275     fprintf(stderr, "EXTSHM=%s.\n", p ? p : "<unset>");
4276   }
4277   if (p && strcasecmp(p, "ON") == 0) {
4278     fprintf(stderr, "Unsupported setting: EXTSHM=ON. Large Page support will be disabled.\n");
4279     _extshm = 1;
4280   } else {
4281     _extshm = 0;
4282   }
4283 
4284   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4285   // Not tested, not supported.
4286   //
4287   // Note that it might be worth the trouble to test and to require it, if only to
4288   // get useful return codes for mprotect.
4289   //
4290   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4291   // exec() ? before loading the libjvm ? ....)
4292   p = ::getenv("XPG_SUS_ENV");
4293   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4294   if (p && strcmp(p, "ON") == 0) {
4295     _xpg_sus_mode = 1;
4296     trc("Unsupported setting: XPG_SUS_ENV=ON");
4297     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4298     // clobber address ranges. If we ever want to support that, we have to do some
4299     // testing first.
4300     guarantee(false, "XPG_SUS_ENV=ON not supported");
4301   } else {
4302     _xpg_sus_mode = 0;
4303   }
4304 
4305   // Switch off AIX internal (pthread) guard pages. This has
4306   // immediate effect for any pthread_create calls which follow.
4307   p = ::getenv("AIXTHREAD_GUARDPAGES");
4308   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4309   rc = ::putenv("AIXTHREAD_GUARDPAGES=0");
4310   guarantee(rc == 0, "");
4311 
4312 } // end: os::Aix::scan_environment()
4313 
4314 // PASE: initialize the libo4 library (AS400 PASE porting library).
4315 void os::Aix::initialize_libo4() {
4316   Unimplemented();
4317 }
4318 
4319 // AIX: initialize the libperfstat library (we load this dynamically
4320 // because it is only available on AIX.
4321 void os::Aix::initialize_libperfstat() {
4322 
4323   assert(os::Aix::on_aix(), "AIX only");
4324 
4325   if (!libperfstat::init()) {
4326     trc("libperfstat initialization failed.");
4327     assert(false, "libperfstat initialization failed");
4328   } else {
4329     if (Verbose) {
4330       fprintf(stderr, "libperfstat initialized.\n");
4331     }
4332   }
4333 } // end: os::Aix::initialize_libperfstat
4334 
4335 /////////////////////////////////////////////////////////////////////////////
4336 // thread stack
4337 
4338 // Function to query the current stack size using pthread_getthrds_np.
4339 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size) {
4340   // This only works when invoked on a pthread. As we agreed not to use
4341   // primordial threads anyway, I assert here.
4342   guarantee(!os::Aix::is_primordial_thread(), "not allowed on the primordial thread");
4343 
4344   // Information about this api can be found (a) in the pthread.h header and
4345   // (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm
4346   //
4347   // The use of this API to find out the current stack is kind of undefined.
4348   // But after a lot of tries and asking IBM about it, I concluded that it is safe
4349   // enough for cases where I let the pthread library create its stacks. For cases
4350   // where I create an own stack and pass this to pthread_create, it seems not to
4351   // work (the returned stack size in that case is 0).
4352 
4353   pthread_t tid = pthread_self();
4354   struct __pthrdsinfo pinfo;
4355   char dummy[1]; // We only need this to satisfy the api and to not get E.
4356   int dummy_size = sizeof(dummy);
4357 
4358   memset(&pinfo, 0, sizeof(pinfo));
4359 
4360   const int rc = pthread_getthrds_np(&tid, PTHRDSINFO_QUERY_ALL, &pinfo,
4361                                      sizeof(pinfo), dummy, &dummy_size);
4362 
4363   if (rc != 0) {
4364     assert0(false);
4365     trcVerbose("pthread_getthrds_np failed (%d)", rc);
4366     return false;
4367   }
4368   guarantee0(pinfo.__pi_stackend);
4369 
4370   // The following can happen when invoking pthread_getthrds_np on a pthread running
4371   // on a user provided stack (when handing down a stack to pthread create, see
4372   // pthread_attr_setstackaddr).
4373   // Not sure what to do here - I feel inclined to forbid this use case completely.
4374   guarantee0(pinfo.__pi_stacksize);
4375 
4376   // Note: the pthread stack on AIX seems to look like this:
4377   //
4378   // ---------------------   real base ? at page border ?
4379   //
4380   //     pthread internal data, like ~2K, see also
4381   //     http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/thread_supp_tun_params.htm
4382   //
4383   // ---------------------   __pi_stackend - not page aligned, (xxxxF890)
4384   //
4385   //     stack
4386   //      ....
4387   //
4388   //     stack
4389   //
4390   // ---------------------   __pi_stackend  - __pi_stacksize
4391   //
4392   //     padding due to AIX guard pages (?) see AIXTHREAD_GUARDPAGES
4393   // ---------------------   __pi_stackaddr  (page aligned if AIXTHREAD_GUARDPAGES > 0)
4394   //
4395   //   AIX guard pages (?)
4396   //
4397 
4398   // So, the safe thing to do is to use the area from __pi_stackend to __pi_stackaddr;
4399   // __pi_stackend however is almost never page aligned.
4400   //
4401 
4402   if (p_stack_base) {
4403     (*p_stack_base) = (address) (pinfo.__pi_stackend);
4404   }
4405 
4406   if (p_stack_size) {
4407     (*p_stack_size) = pinfo.__pi_stackend - pinfo.__pi_stackaddr;
4408   }
4409 
4410   return true;
4411 }
4412 
4413 // Get the current stack base from the OS (actually, the pthread library).
4414 address os::current_stack_base() {
4415   address p;
4416   query_stack_dimensions(&p, 0);
4417   return p;
4418 }
4419 
4420 // Get the current stack size from the OS (actually, the pthread library).
4421 size_t os::current_stack_size() {
4422   size_t s;
4423   query_stack_dimensions(0, &s);
4424   return s;
4425 }
4426 
4427 // Refer to the comments in os_solaris.cpp park-unpark.
4428 //
4429 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4430 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4431 // For specifics regarding the bug see GLIBC BUGID 261237 :
4432 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4433 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4434 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4435 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
4436 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4437 // and monitorenter when we're using 1-0 locking. All those operations may result in
4438 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
4439 // of libpthread avoids the problem, but isn't practical.
4440 //
4441 // Possible remedies:
4442 //
4443 // 1.   Establish a minimum relative wait time. 50 to 100 msecs seems to work.
4444 //      This is palliative and probabilistic, however. If the thread is preempted
4445 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4446 //      than the minimum period may have passed, and the abstime may be stale (in the
4447 //      past) resultin in a hang. Using this technique reduces the odds of a hang
4448 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4449 //
4450 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4451 //      of the usual flag-condvar-mutex idiom. The write side of the pipe is set
4452 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4453 //      reduces to poll()+read(). This works well, but consumes 2 FDs per extant
4454 //      thread.
4455 //
4456 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4457 //      that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
4458 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4459 //      This also works well. In fact it avoids kernel-level scalability impediments
4460 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4461 //      timers in a graceful fashion.
4462 //
4463 // 4.   When the abstime value is in the past it appears that control returns
4464 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4465 //      Subsequent timedwait/wait calls may hang indefinitely. Given that, we
4466 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4467 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4468 //      It may be possible to avoid reinitialization by checking the return
4469 //      value from pthread_cond_timedwait(). In addition to reinitializing the
4470 //      condvar we must establish the invariant that cond_signal() is only called
4471 //      within critical sections protected by the adjunct mutex. This prevents
4472 //      cond_signal() from "seeing" a condvar that's in the midst of being
4473 //      reinitialized or that is corrupt. Sadly, this invariant obviates the
4474 //      desirable signal-after-unlock optimization that avoids futile context switching.
4475 //
4476 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4477 //      structure when a condvar is used or initialized. cond_destroy() would
4478 //      release the helper structure. Our reinitialize-after-timedwait fix
4479 //      put excessive stress on malloc/free and locks protecting the c-heap.
4480 //
4481 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
4482 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4483 // and only enabling the work-around for vulnerable environments.
4484 
4485 // utility to compute the abstime argument to timedwait:
4486 // millis is the relative timeout time
4487 // abstime will be the absolute timeout time
4488 // TODO: replace compute_abstime() with unpackTime()
4489 
4490 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4491   if (millis < 0) millis = 0;
4492   struct timeval now;
4493   int status = gettimeofday(&now, NULL);
4494   assert(status == 0, "gettimeofday");
4495   jlong seconds = millis / 1000;
4496   millis %= 1000;
4497   if (seconds > 50000000) { // see man cond_timedwait(3T)
4498     seconds = 50000000;
4499   }
4500   abstime->tv_sec = now.tv_sec  + seconds;
4501   long       usec = now.tv_usec + millis * 1000;
4502   if (usec >= 1000000) {
4503     abstime->tv_sec += 1;
4504     usec -= 1000000;
4505   }
4506   abstime->tv_nsec = usec * 1000;
4507   return abstime;
4508 }
4509 
4510 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4511 // Conceptually TryPark() should be equivalent to park(0).
4512 
4513 int os::PlatformEvent::TryPark() {
4514   for (;;) {
4515     const int v = _Event;
4516     guarantee ((v == 0) || (v == 1), "invariant");
4517     if (Atomic::cmpxchg (0, &_Event, v) == v) return v;
4518   }
4519 }
4520 
4521 void os::PlatformEvent::park() {       // AKA "down()"
4522   // Invariant: Only the thread associated with the Event/PlatformEvent
4523   // may call park().
4524   // TODO: assert that _Assoc != NULL or _Assoc == Self
4525   int v;
4526   for (;;) {
4527     v = _Event;
4528     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4529   }
4530   guarantee (v >= 0, "invariant");
4531   if (v == 0) {
4532     // Do this the hard way by blocking ...
4533     int status = pthread_mutex_lock(_mutex);
4534     assert_status(status == 0, status, "mutex_lock");
4535     guarantee (_nParked == 0, "invariant");
4536     ++ _nParked;
4537     while (_Event < 0) {
4538       status = pthread_cond_wait(_cond, _mutex);
4539       assert_status(status == 0 || status == ETIMEDOUT, status, "cond_timedwait");
4540     }
4541     -- _nParked;
4542 
4543     // In theory we could move the ST of 0 into _Event past the unlock(),
4544     // but then we'd need a MEMBAR after the ST.
4545     _Event = 0;
4546     status = pthread_mutex_unlock(_mutex);
4547     assert_status(status == 0, status, "mutex_unlock");
4548   }
4549   guarantee (_Event >= 0, "invariant");
4550 }
4551 
4552 int os::PlatformEvent::park(jlong millis) {
4553   guarantee (_nParked == 0, "invariant");
4554 
4555   int v;
4556   for (;;) {
4557     v = _Event;
4558     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4559   }
4560   guarantee (v >= 0, "invariant");
4561   if (v != 0) return OS_OK;
4562 
4563   // We do this the hard way, by blocking the thread.
4564   // Consider enforcing a minimum timeout value.
4565   struct timespec abst;
4566   compute_abstime(&abst, millis);
4567 
4568   int ret = OS_TIMEOUT;
4569   int status = pthread_mutex_lock(_mutex);
4570   assert_status(status == 0, status, "mutex_lock");
4571   guarantee (_nParked == 0, "invariant");
4572   ++_nParked;
4573 
4574   // Object.wait(timo) will return because of
4575   // (a) notification
4576   // (b) timeout
4577   // (c) thread.interrupt
4578   //
4579   // Thread.interrupt and object.notify{All} both call Event::set.
4580   // That is, we treat thread.interrupt as a special case of notification.
4581   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4582   // We assume all ETIME returns are valid.
4583   //
4584   // TODO: properly differentiate simultaneous notify+interrupt.
4585   // In that case, we should propagate the notify to another waiter.
4586 
4587   while (_Event < 0) {
4588     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4589     assert_status(status == 0 || status == ETIMEDOUT,
4590                   status, "cond_timedwait");
4591     if (!FilterSpuriousWakeups) break;         // previous semantics
4592     if (status == ETIMEDOUT) break;
4593     // We consume and ignore EINTR and spurious wakeups.
4594   }
4595   --_nParked;
4596   if (_Event >= 0) {
4597      ret = OS_OK;
4598   }
4599   _Event = 0;
4600   status = pthread_mutex_unlock(_mutex);
4601   assert_status(status == 0, status, "mutex_unlock");
4602   assert (_nParked == 0, "invariant");
4603   return ret;
4604 }
4605 
4606 void os::PlatformEvent::unpark() {
4607   int v, AnyWaiters;
4608   for (;;) {
4609     v = _Event;
4610     if (v > 0) {
4611       // The LD of _Event could have reordered or be satisfied
4612       // by a read-aside from this processor's write buffer.
4613       // To avoid problems execute a barrier and then
4614       // ratify the value.
4615       OrderAccess::fence();
4616       if (_Event == v) return;
4617       continue;
4618     }
4619     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break;
4620   }
4621   if (v < 0) {
4622     // Wait for the thread associated with the event to vacate
4623     int status = pthread_mutex_lock(_mutex);
4624     assert_status(status == 0, status, "mutex_lock");
4625     AnyWaiters = _nParked;
4626 
4627     if (AnyWaiters != 0) {
4628       // We intentional signal *after* dropping the lock
4629       // to avoid a common class of futile wakeups.
4630       status = pthread_cond_signal(_cond);
4631       assert_status(status == 0, status, "cond_signal");
4632     }
4633     // Mutex should be locked for pthread_cond_signal(_cond).
4634     status = pthread_mutex_unlock(_mutex);
4635     assert_status(status == 0, status, "mutex_unlock");
4636   }
4637 
4638   // Note that we signal() _after dropping the lock for "immortal" Events.
4639   // This is safe and avoids a common class of futile wakeups. In rare
4640   // circumstances this can cause a thread to return prematurely from
4641   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4642   // simply re-test the condition and re-park itself.
4643 }
4644 
4645 
4646 // JSR166
4647 // -------------------------------------------------------
4648 
4649 //
4650 // The solaris and linux implementations of park/unpark are fairly
4651 // conservative for now, but can be improved. They currently use a
4652 // mutex/condvar pair, plus a a count.
4653 // Park decrements count if > 0, else does a condvar wait. Unpark
4654 // sets count to 1 and signals condvar. Only one thread ever waits
4655 // on the condvar. Contention seen when trying to park implies that someone
4656 // is unparking you, so don't wait. And spurious returns are fine, so there
4657 // is no need to track notifications.
4658 //
4659 
4660 #define MAX_SECS 100000000
4661 //
4662 // This code is common to linux and solaris and will be moved to a
4663 // common place in dolphin.
4664 //
4665 // The passed in time value is either a relative time in nanoseconds
4666 // or an absolute time in milliseconds. Either way it has to be unpacked
4667 // into suitable seconds and nanoseconds components and stored in the
4668 // given timespec structure.
4669 // Given time is a 64-bit value and the time_t used in the timespec is only
4670 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4671 // overflow if times way in the future are given. Further on Solaris versions
4672 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4673 // number of seconds, in abstime, is less than current_time + 100,000,000.
4674 // As it will be 28 years before "now + 100000000" will overflow we can
4675 // ignore overflow and just impose a hard-limit on seconds using the value
4676 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4677 // years from "now".
4678 //
4679 
4680 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4681   assert (time > 0, "convertTime");
4682 
4683   struct timeval now;
4684   int status = gettimeofday(&now, NULL);
4685   assert(status == 0, "gettimeofday");
4686 
4687   time_t max_secs = now.tv_sec + MAX_SECS;
4688 
4689   if (isAbsolute) {
4690     jlong secs = time / 1000;
4691     if (secs > max_secs) {
4692       absTime->tv_sec = max_secs;
4693     }
4694     else {
4695       absTime->tv_sec = secs;
4696     }
4697     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4698   }
4699   else {
4700     jlong secs = time / NANOSECS_PER_SEC;
4701     if (secs >= MAX_SECS) {
4702       absTime->tv_sec = max_secs;
4703       absTime->tv_nsec = 0;
4704     }
4705     else {
4706       absTime->tv_sec = now.tv_sec + secs;
4707       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4708       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4709         absTime->tv_nsec -= NANOSECS_PER_SEC;
4710         ++absTime->tv_sec; // note: this must be <= max_secs
4711       }
4712     }
4713   }
4714   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4715   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4716   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4717   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4718 }
4719 
4720 void Parker::park(bool isAbsolute, jlong time) {
4721   // Optional fast-path check:
4722   // Return immediately if a permit is available.
4723   if (_counter > 0) {
4724     _counter = 0;
4725     OrderAccess::fence();
4726     return;
4727   }
4728 
4729   Thread* thread = Thread::current();
4730   assert(thread->is_Java_thread(), "Must be JavaThread");
4731   JavaThread *jt = (JavaThread *)thread;
4732 
4733   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4734   // Check interrupt before trying to wait
4735   if (Thread::is_interrupted(thread, false)) {
4736     return;
4737   }
4738 
4739   // Next, demultiplex/decode time arguments
4740   timespec absTime;
4741   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4742     return;
4743   }
4744   if (time > 0) {
4745     unpackTime(&absTime, isAbsolute, time);
4746   }
4747 
4748   // Enter safepoint region
4749   // Beware of deadlocks such as 6317397.
4750   // The per-thread Parker:: mutex is a classic leaf-lock.
4751   // In particular a thread must never block on the Threads_lock while
4752   // holding the Parker:: mutex. If safepoints are pending both the
4753   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4754   ThreadBlockInVM tbivm(jt);
4755 
4756   // Don't wait if cannot get lock since interference arises from
4757   // unblocking. Also. check interrupt before trying wait
4758   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4759     return;
4760   }
4761 
4762   int status;
4763   if (_counter > 0) { // no wait needed
4764     _counter = 0;
4765     status = pthread_mutex_unlock(_mutex);
4766     assert (status == 0, "invariant");
4767     OrderAccess::fence();
4768     return;
4769   }
4770 
4771 #ifdef ASSERT
4772   // Don't catch signals while blocked; let the running threads have the signals.
4773   // (This allows a debugger to break into the running thread.)
4774   sigset_t oldsigs;
4775   sigset_t* allowdebug_blocked = os::Aix::allowdebug_blocked_signals();
4776   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4777 #endif
4778 
4779   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4780   jt->set_suspend_equivalent();
4781   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4782 
4783   if (time == 0) {
4784     status = pthread_cond_wait (_cond, _mutex);
4785   } else {
4786     status = pthread_cond_timedwait (_cond, _mutex, &absTime);
4787     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4788       pthread_cond_destroy (_cond);
4789       pthread_cond_init    (_cond, NULL);
4790     }
4791   }
4792   assert_status(status == 0 || status == EINTR ||
4793                 status == ETIME || status == ETIMEDOUT,
4794                 status, "cond_timedwait");
4795 
4796 #ifdef ASSERT
4797   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4798 #endif
4799 
4800   _counter = 0;
4801   status = pthread_mutex_unlock(_mutex);
4802   assert_status(status == 0, status, "invariant");
4803   // If externally suspended while waiting, re-suspend
4804   if (jt->handle_special_suspend_equivalent_condition()) {
4805     jt->java_suspend_self();
4806   }
4807 
4808   OrderAccess::fence();
4809 }
4810 
4811 void Parker::unpark() {
4812   int s, status;
4813   status = pthread_mutex_lock(_mutex);
4814   assert (status == 0, "invariant");
4815   s = _counter;
4816   _counter = 1;
4817   if (s < 1) {
4818     if (WorkAroundNPTLTimedWaitHang) {
4819       status = pthread_cond_signal (_cond);
4820       assert (status == 0, "invariant");
4821       status = pthread_mutex_unlock(_mutex);
4822       assert (status == 0, "invariant");
4823     } else {
4824       status = pthread_mutex_unlock(_mutex);
4825       assert (status == 0, "invariant");
4826       status = pthread_cond_signal (_cond);
4827       assert (status == 0, "invariant");
4828     }
4829   } else {
4830     pthread_mutex_unlock(_mutex);
4831     assert (status == 0, "invariant");
4832   }
4833 }
4834 
4835 extern char** environ;
4836 
4837 // Run the specified command in a separate process. Return its exit value,
4838 // or -1 on failure (e.g. can't fork a new process).
4839 // Unlike system(), this function can be called from signal handler. It
4840 // doesn't block SIGINT et al.
4841 int os::fork_and_exec(char* cmd) {
4842   char * argv[4] = {"sh", "-c", cmd, NULL};
4843 
4844   pid_t pid = fork();
4845 
4846   if (pid < 0) {
4847     // fork failed
4848     return -1;
4849 
4850   } else if (pid == 0) {
4851     // child process
4852 
4853     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4854     execve("/usr/bin/sh", argv, environ);
4855 
4856     // execve failed
4857     _exit(-1);
4858 
4859   } else {
4860     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4861     // care about the actual exit code, for now.
4862 
4863     int status;
4864 
4865     // Wait for the child process to exit. This returns immediately if
4866     // the child has already exited. */
4867     while (waitpid(pid, &status, 0) < 0) {
4868       switch (errno) {
4869         case ECHILD: return 0;
4870         case EINTR: break;
4871         default: return -1;
4872       }
4873     }
4874 
4875     if (WIFEXITED(status)) {
4876       // The child exited normally; get its exit code.
4877       return WEXITSTATUS(status);
4878     } else if (WIFSIGNALED(status)) {
4879       // The child exited because of a signal.
4880       // The best value to return is 0x80 + signal number,
4881       // because that is what all Unix shells do, and because
4882       // it allows callers to distinguish between process exit and
4883       // process death by signal.
4884       return 0x80 + WTERMSIG(status);
4885     } else {
4886       // Unknown exit code; pass it through.
4887       return status;
4888     }
4889   }
4890   return -1;
4891 }
4892 
4893 // is_headless_jre()
4894 //
4895 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4896 // in order to report if we are running in a headless jre.
4897 //
4898 // Since JDK8 xawt/libmawt.so is moved into the same directory
4899 // as libawt.so, and renamed libawt_xawt.so
4900 bool os::is_headless_jre() {
4901   struct stat statbuf;
4902   char buf[MAXPATHLEN];
4903   char libmawtpath[MAXPATHLEN];
4904   const char *xawtstr = "/xawt/libmawt.so";
4905   const char *new_xawtstr = "/libawt_xawt.so";
4906 
4907   char *p;
4908 
4909   // Get path to libjvm.so
4910   os::jvm_path(buf, sizeof(buf));
4911 
4912   // Get rid of libjvm.so
4913   p = strrchr(buf, '/');
4914   if (p == NULL) return false;
4915   else *p = '\0';
4916 
4917   // Get rid of client or server
4918   p = strrchr(buf, '/');
4919   if (p == NULL) return false;
4920   else *p = '\0';
4921 
4922   // check xawt/libmawt.so
4923   strcpy(libmawtpath, buf);
4924   strcat(libmawtpath, xawtstr);
4925   if (::stat(libmawtpath, &statbuf) == 0) return false;
4926 
4927   // check libawt_xawt.so
4928   strcpy(libmawtpath, buf);
4929   strcat(libmawtpath, new_xawtstr);
4930   if (::stat(libmawtpath, &statbuf) == 0) return false;
4931 
4932   return true;
4933 }
4934 
4935 // Get the default path to the core file
4936 // Returns the length of the string
4937 int os::get_core_path(char* buffer, size_t bufferSize) {
4938   const char* p = get_current_directory(buffer, bufferSize);
4939 
4940   if (p == NULL) {
4941     assert(p != NULL, "failed to get current directory");
4942     return 0;
4943   }
4944 
4945   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4946                                                p, current_process_id());
4947 
4948   return strlen(buffer);
4949 }
4950 
4951 #ifndef PRODUCT
4952 void TestReserveMemorySpecial_test() {
4953   // No tests available for this platform
4954 }
4955 #endif