1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 112 // getrusage() is prepared to handle the associated failure.
 113 #ifndef RUSAGE_THREAD
 114   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 115 #endif
 116 
 117 #define MAX_PATH    (2 * K)
 118 
 119 #define MAX_SECS 100000000
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 const int os::Linux::_vm_default_page_size = (8 * K);
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 pthread_condattr_t os::Linux::_condattr[1];
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 // Signal number used to suspend/resume a thread
 153 
 154 // do not use any signal number less than SIGSEGV, see 4355769
 155 static int SR_signum = SIGUSR2;
 156 sigset_t SR_sigset;
 157 
 158 // Declarations
 159 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 160 
 161 // utility functions
 162 
 163 static int SR_initialize();
 164 
 165 julong os::available_memory() {
 166   return Linux::available_memory();
 167 }
 168 
 169 julong os::Linux::available_memory() {
 170   // values in struct sysinfo are "unsigned long"
 171   struct sysinfo si;
 172   sysinfo(&si);
 173 
 174   return (julong)si.freeram * si.mem_unit;
 175 }
 176 
 177 julong os::physical_memory() {
 178   return Linux::physical_memory();
 179 }
 180 
 181 // Return true if user is running as root.
 182 
 183 bool os::have_special_privileges() {
 184   static bool init = false;
 185   static bool privileges = false;
 186   if (!init) {
 187     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 188     init = true;
 189   }
 190   return privileges;
 191 }
 192 
 193 
 194 #ifndef SYS_gettid
 195 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 196   #ifdef __ia64__
 197     #define SYS_gettid 1105
 198   #else
 199     #ifdef __i386__
 200       #define SYS_gettid 224
 201     #else
 202       #ifdef __amd64__
 203         #define SYS_gettid 186
 204       #else
 205         #ifdef __sparc__
 206           #define SYS_gettid 143
 207         #else
 208           #error define gettid for the arch
 209         #endif
 210       #endif
 211     #endif
 212   #endif
 213 #endif
 214 
 215 // Cpu architecture string
 216 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 217 
 218 
 219 // pid_t gettid()
 220 //
 221 // Returns the kernel thread id of the currently running thread. Kernel
 222 // thread id is used to access /proc.
 223 pid_t os::Linux::gettid() {
 224   int rslt = syscall(SYS_gettid);
 225   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 226   return (pid_t)rslt;
 227 }
 228 
 229 // Most versions of linux have a bug where the number of processors are
 230 // determined by looking at the /proc file system.  In a chroot environment,
 231 // the system call returns 1.  This causes the VM to act as if it is
 232 // a single processor and elide locking (see is_MP() call).
 233 static bool unsafe_chroot_detected = false;
 234 static const char *unstable_chroot_error = "/proc file system not found.\n"
 235                      "Java may be unstable running multithreaded in a chroot "
 236                      "environment on Linux when /proc filesystem is not mounted.";
 237 
 238 void os::Linux::initialize_system_info() {
 239   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 240   if (processor_count() == 1) {
 241     pid_t pid = os::Linux::gettid();
 242     char fname[32];
 243     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 244     FILE *fp = fopen(fname, "r");
 245     if (fp == NULL) {
 246       unsafe_chroot_detected = true;
 247     } else {
 248       fclose(fp);
 249     }
 250   }
 251   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 252   assert(processor_count() > 0, "linux error");
 253 }
 254 
 255 void os::init_system_properties_values() {
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm.so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm.so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 274   // it looks like libjvm.so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // See ld(1):
 283   //      The linker uses the following search paths to locate required
 284   //      shared libraries:
 285   //        1: ...
 286   //        ...
 287   //        7: The default directories, normally /lib and /usr/lib.
 288 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 289   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 290 #else
 291   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 292 #endif
 293 
 294 // Base path of extensions installed on the system.
 295 #define SYS_EXT_DIR     "/usr/java/packages"
 296 #define EXTENSIONS_DIR  "/lib/ext"
 297 
 298   // Buffer that fits several sprintfs.
 299   // Note that the space for the colon and the trailing null are provided
 300   // by the nulls included by the sizeof operator.
 301   const size_t bufsize =
 302     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 303          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 304   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 305 
 306   // sysclasspath, java_home, dll_dir
 307   {
 308     char *pslash;
 309     os::jvm_path(buf, bufsize);
 310 
 311     // Found the full path to libjvm.so.
 312     // Now cut the path to <java_home>/jre if we can.
 313     pslash = strrchr(buf, '/');
 314     if (pslash != NULL) {
 315       *pslash = '\0';            // Get rid of /libjvm.so.
 316     }
 317     pslash = strrchr(buf, '/');
 318     if (pslash != NULL) {
 319       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 320     }
 321     Arguments::set_dll_dir(buf);
 322 
 323     if (pslash != NULL) {
 324       pslash = strrchr(buf, '/');
 325       if (pslash != NULL) {
 326         *pslash = '\0';          // Get rid of /<arch>.
 327         pslash = strrchr(buf, '/');
 328         if (pslash != NULL) {
 329           *pslash = '\0';        // Get rid of /lib.
 330         }
 331       }
 332     }
 333     Arguments::set_java_home(buf);
 334     set_boot_path('/', ':');
 335   }
 336 
 337   // Where to look for native libraries.
 338   //
 339   // Note: Due to a legacy implementation, most of the library path
 340   // is set in the launcher. This was to accomodate linking restrictions
 341   // on legacy Linux implementations (which are no longer supported).
 342   // Eventually, all the library path setting will be done here.
 343   //
 344   // However, to prevent the proliferation of improperly built native
 345   // libraries, the new path component /usr/java/packages is added here.
 346   // Eventually, all the library path setting will be done here.
 347   {
 348     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 349     // should always exist (until the legacy problem cited above is
 350     // addressed).
 351     const char *v = ::getenv("LD_LIBRARY_PATH");
 352     const char *v_colon = ":";
 353     if (v == NULL) { v = ""; v_colon = ""; }
 354     // That's +1 for the colon and +1 for the trailing '\0'.
 355     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 356                                                      strlen(v) + 1 +
 357                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 358                                                      mtInternal);
 359     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 360     Arguments::set_library_path(ld_library_path);
 361     FREE_C_HEAP_ARRAY(char, ld_library_path);
 362   }
 363 
 364   // Extensions directories.
 365   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 366   Arguments::set_ext_dirs(buf);
 367 
 368   FREE_C_HEAP_ARRAY(char, buf);
 369 
 370 #undef DEFAULT_LIBPATH
 371 #undef SYS_EXT_DIR
 372 #undef EXTENSIONS_DIR
 373 }
 374 
 375 ////////////////////////////////////////////////////////////////////////////////
 376 // breakpoint support
 377 
 378 void os::breakpoint() {
 379   BREAKPOINT;
 380 }
 381 
 382 extern "C" void breakpoint() {
 383   // use debugger to set breakpoint here
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // signal support
 388 
 389 debug_only(static bool signal_sets_initialized = false);
 390 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 391 
 392 bool os::Linux::is_sig_ignored(int sig) {
 393   struct sigaction oact;
 394   sigaction(sig, (struct sigaction*)NULL, &oact);
 395   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 396                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 397   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 398     return true;
 399   } else {
 400     return false;
 401   }
 402 }
 403 
 404 void os::Linux::signal_sets_init() {
 405   // Should also have an assertion stating we are still single-threaded.
 406   assert(!signal_sets_initialized, "Already initialized");
 407   // Fill in signals that are necessarily unblocked for all threads in
 408   // the VM. Currently, we unblock the following signals:
 409   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 410   //                         by -Xrs (=ReduceSignalUsage));
 411   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 412   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 413   // the dispositions or masks wrt these signals.
 414   // Programs embedding the VM that want to use the above signals for their
 415   // own purposes must, at this time, use the "-Xrs" option to prevent
 416   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 417   // (See bug 4345157, and other related bugs).
 418   // In reality, though, unblocking these signals is really a nop, since
 419   // these signals are not blocked by default.
 420   sigemptyset(&unblocked_sigs);
 421   sigemptyset(&allowdebug_blocked_sigs);
 422   sigaddset(&unblocked_sigs, SIGILL);
 423   sigaddset(&unblocked_sigs, SIGSEGV);
 424   sigaddset(&unblocked_sigs, SIGBUS);
 425   sigaddset(&unblocked_sigs, SIGFPE);
 426 #if defined(PPC64)
 427   sigaddset(&unblocked_sigs, SIGTRAP);
 428 #endif
 429   sigaddset(&unblocked_sigs, SR_signum);
 430 
 431   if (!ReduceSignalUsage) {
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 434       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 435     }
 436     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 437       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 439     }
 440     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 441       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 443     }
 444   }
 445   // Fill in signals that are blocked by all but the VM thread.
 446   sigemptyset(&vm_sigs);
 447   if (!ReduceSignalUsage) {
 448     sigaddset(&vm_sigs, BREAK_SIGNAL);
 449   }
 450   debug_only(signal_sets_initialized = true);
 451 
 452 }
 453 
 454 // These are signals that are unblocked while a thread is running Java.
 455 // (For some reason, they get blocked by default.)
 456 sigset_t* os::Linux::unblocked_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &unblocked_sigs;
 459 }
 460 
 461 // These are the signals that are blocked while a (non-VM) thread is
 462 // running Java. Only the VM thread handles these signals.
 463 sigset_t* os::Linux::vm_signals() {
 464   assert(signal_sets_initialized, "Not initialized");
 465   return &vm_sigs;
 466 }
 467 
 468 // These are signals that are blocked during cond_wait to allow debugger in
 469 sigset_t* os::Linux::allowdebug_blocked_signals() {
 470   assert(signal_sets_initialized, "Not initialized");
 471   return &allowdebug_blocked_sigs;
 472 }
 473 
 474 void os::Linux::hotspot_sigmask(Thread* thread) {
 475 
 476   //Save caller's signal mask before setting VM signal mask
 477   sigset_t caller_sigmask;
 478   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 479 
 480   OSThread* osthread = thread->osthread();
 481   osthread->set_caller_sigmask(caller_sigmask);
 482 
 483   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 484 
 485   if (!ReduceSignalUsage) {
 486     if (thread->is_VM_thread()) {
 487       // Only the VM thread handles BREAK_SIGNAL ...
 488       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 489     } else {
 490       // ... all other threads block BREAK_SIGNAL
 491       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 492     }
 493   }
 494 }
 495 
 496 //////////////////////////////////////////////////////////////////////////////
 497 // detecting pthread library
 498 
 499 void os::Linux::libpthread_init() {
 500   // Save glibc and pthread version strings.
 501 #if !defined(_CS_GNU_LIBC_VERSION) || \
 502     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 503   #error "glibc too old (< 2.3.2)"
 504 #endif
 505 
 506   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 507   assert(n > 0, "cannot retrieve glibc version");
 508   char *str = (char *)malloc(n, mtInternal);
 509   confstr(_CS_GNU_LIBC_VERSION, str, n);
 510   os::Linux::set_glibc_version(str);
 511 
 512   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 513   assert(n > 0, "cannot retrieve pthread version");
 514   str = (char *)malloc(n, mtInternal);
 515   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 516   os::Linux::set_libpthread_version(str);
 517 }
 518 
 519 /////////////////////////////////////////////////////////////////////////////
 520 // thread stack expansion
 521 
 522 // os::Linux::manually_expand_stack() takes care of expanding the thread
 523 // stack. Note that this is normally not needed: pthread stacks allocate
 524 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 525 // committed. Therefore it is not necessary to expand the stack manually.
 526 //
 527 // Manually expanding the stack was historically needed on LinuxThreads
 528 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 529 // it is kept to deal with very rare corner cases:
 530 //
 531 // For one, user may run the VM on an own implementation of threads
 532 // whose stacks are - like the old LinuxThreads - implemented using
 533 // mmap(MAP_GROWSDOWN).
 534 //
 535 // Also, this coding may be needed if the VM is running on the primordial
 536 // thread. Normally we avoid running on the primordial thread; however,
 537 // user may still invoke the VM on the primordial thread.
 538 //
 539 // The following historical comment describes the details about running
 540 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 541 
 542 
 543 // Force Linux kernel to expand current thread stack. If "bottom" is close
 544 // to the stack guard, caller should block all signals.
 545 //
 546 // MAP_GROWSDOWN:
 547 //   A special mmap() flag that is used to implement thread stacks. It tells
 548 //   kernel that the memory region should extend downwards when needed. This
 549 //   allows early versions of LinuxThreads to only mmap the first few pages
 550 //   when creating a new thread. Linux kernel will automatically expand thread
 551 //   stack as needed (on page faults).
 552 //
 553 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 554 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 555 //   region, it's hard to tell if the fault is due to a legitimate stack
 556 //   access or because of reading/writing non-exist memory (e.g. buffer
 557 //   overrun). As a rule, if the fault happens below current stack pointer,
 558 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 559 //   application (see Linux kernel fault.c).
 560 //
 561 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 562 //   stack overflow detection.
 563 //
 564 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 565 //   not use MAP_GROWSDOWN.
 566 //
 567 // To get around the problem and allow stack banging on Linux, we need to
 568 // manually expand thread stack after receiving the SIGSEGV.
 569 //
 570 // There are two ways to expand thread stack to address "bottom", we used
 571 // both of them in JVM before 1.5:
 572 //   1. adjust stack pointer first so that it is below "bottom", and then
 573 //      touch "bottom"
 574 //   2. mmap() the page in question
 575 //
 576 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 577 // if current sp is already near the lower end of page 101, and we need to
 578 // call mmap() to map page 100, it is possible that part of the mmap() frame
 579 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 580 // That will destroy the mmap() frame and cause VM to crash.
 581 //
 582 // The following code works by adjusting sp first, then accessing the "bottom"
 583 // page to force a page fault. Linux kernel will then automatically expand the
 584 // stack mapping.
 585 //
 586 // _expand_stack_to() assumes its frame size is less than page size, which
 587 // should always be true if the function is not inlined.
 588 
 589 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 590   #define NOINLINE
 591 #else
 592   #define NOINLINE __attribute__ ((noinline))
 593 #endif
 594 
 595 static void _expand_stack_to(address bottom) NOINLINE;
 596 
 597 static void _expand_stack_to(address bottom) {
 598   address sp;
 599   size_t size;
 600   volatile char *p;
 601 
 602   // Adjust bottom to point to the largest address within the same page, it
 603   // gives us a one-page buffer if alloca() allocates slightly more memory.
 604   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 605   bottom += os::Linux::page_size() - 1;
 606 
 607   // sp might be slightly above current stack pointer; if that's the case, we
 608   // will alloca() a little more space than necessary, which is OK. Don't use
 609   // os::current_stack_pointer(), as its result can be slightly below current
 610   // stack pointer, causing us to not alloca enough to reach "bottom".
 611   sp = (address)&sp;
 612 
 613   if (sp > bottom) {
 614     size = sp - bottom;
 615     p = (volatile char *)alloca(size);
 616     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 617     p[0] = '\0';
 618   }
 619 }
 620 
 621 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 622   assert(t!=NULL, "just checking");
 623   assert(t->osthread()->expanding_stack(), "expand should be set");
 624   assert(t->stack_base() != NULL, "stack_base was not initialized");
 625 
 626   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 627     sigset_t mask_all, old_sigset;
 628     sigfillset(&mask_all);
 629     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 630     _expand_stack_to(addr);
 631     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 632     return true;
 633   }
 634   return false;
 635 }
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // Thread start routine for all newly created threads
 641 static void *java_start(Thread *thread) {
 642   // Try to randomize the cache line index of hot stack frames.
 643   // This helps when threads of the same stack traces evict each other's
 644   // cache lines. The threads can be either from the same JVM instance, or
 645   // from different JVM instances. The benefit is especially true for
 646   // processors with hyperthreading technology.
 647   static int counter = 0;
 648   int pid = os::current_process_id();
 649   alloca(((pid ^ counter++) & 7) * 128);
 650 
 651   ThreadLocalStorage::set_thread(thread);
 652 
 653   OSThread* osthread = thread->osthread();
 654   Monitor* sync = osthread->startThread_lock();
 655 
 656   osthread->set_thread_id(os::current_thread_id());
 657 
 658   if (UseNUMA) {
 659     int lgrp_id = os::numa_get_group_id();
 660     if (lgrp_id != -1) {
 661       thread->set_lgrp_id(lgrp_id);
 662     }
 663   }
 664   // initialize signal mask for this thread
 665   os::Linux::hotspot_sigmask(thread);
 666 
 667   // initialize floating point control register
 668   os::Linux::init_thread_fpu_state();
 669 
 670   // handshaking with parent thread
 671   {
 672     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 673 
 674     // notify parent thread
 675     osthread->set_state(INITIALIZED);
 676     sync->notify_all();
 677 
 678     // wait until os::start_thread()
 679     while (osthread->get_state() == INITIALIZED) {
 680       sync->wait(Mutex::_no_safepoint_check_flag);
 681     }
 682   }
 683 
 684   // call one more level start routine
 685   thread->run();
 686 
 687   return 0;
 688 }
 689 
 690 bool os::create_thread(Thread* thread, ThreadType thr_type,
 691                        size_t stack_size) {
 692   assert(thread->osthread() == NULL, "caller responsible");
 693 
 694   // Allocate the OSThread object
 695   OSThread* osthread = new OSThread(NULL, NULL);
 696   if (osthread == NULL) {
 697     return false;
 698   }
 699 
 700   // set the correct thread state
 701   osthread->set_thread_type(thr_type);
 702 
 703   // Initial state is ALLOCATED but not INITIALIZED
 704   osthread->set_state(ALLOCATED);
 705 
 706   thread->set_osthread(osthread);
 707 
 708   // init thread attributes
 709   pthread_attr_t attr;
 710   pthread_attr_init(&attr);
 711   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 712 
 713   // stack size
 714   if (os::Linux::supports_variable_stack_size()) {
 715     // calculate stack size if it's not specified by caller
 716     if (stack_size == 0) {
 717       stack_size = os::Linux::default_stack_size(thr_type);
 718 
 719       switch (thr_type) {
 720       case os::java_thread:
 721         // Java threads use ThreadStackSize which default value can be
 722         // changed with the flag -Xss
 723         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 724         stack_size = JavaThread::stack_size_at_create();
 725         break;
 726       case os::compiler_thread:
 727         if (CompilerThreadStackSize > 0) {
 728           stack_size = (size_t)(CompilerThreadStackSize * K);
 729           break;
 730         } // else fall through:
 731           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 732       case os::vm_thread:
 733       case os::pgc_thread:
 734       case os::cgc_thread:
 735       case os::watcher_thread:
 736         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 737         break;
 738       }
 739     }
 740 
 741     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 742     pthread_attr_setstacksize(&attr, stack_size);
 743   } else {
 744     // let pthread_create() pick the default value.
 745   }
 746 
 747   // glibc guard page
 748   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 749 
 750   ThreadState state;
 751 
 752   {
 753     pthread_t tid;
 754     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 755 
 756     pthread_attr_destroy(&attr);
 757 
 758     if (ret != 0) {
 759       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 760         perror("pthread_create()");
 761       }
 762       // Need to clean up stuff we've allocated so far
 763       thread->set_osthread(NULL);
 764       delete osthread;
 765       return false;
 766     }
 767 
 768     // Store pthread info into the OSThread
 769     osthread->set_pthread_id(tid);
 770 
 771     // Wait until child thread is either initialized or aborted
 772     {
 773       Monitor* sync_with_child = osthread->startThread_lock();
 774       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 775       while ((state = osthread->get_state()) == ALLOCATED) {
 776         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 777       }
 778     }
 779   }
 780 
 781   // Aborted due to thread limit being reached
 782   if (state == ZOMBIE) {
 783     thread->set_osthread(NULL);
 784     delete osthread;
 785     return false;
 786   }
 787 
 788   // The thread is returned suspended (in state INITIALIZED),
 789   // and is started higher up in the call chain
 790   assert(state == INITIALIZED, "race condition");
 791   return true;
 792 }
 793 
 794 /////////////////////////////////////////////////////////////////////////////
 795 // attach existing thread
 796 
 797 // bootstrap the main thread
 798 bool os::create_main_thread(JavaThread* thread) {
 799   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 800   return create_attached_thread(thread);
 801 }
 802 
 803 bool os::create_attached_thread(JavaThread* thread) {
 804 #ifdef ASSERT
 805   thread->verify_not_published();
 806 #endif
 807 
 808   // Allocate the OSThread object
 809   OSThread* osthread = new OSThread(NULL, NULL);
 810 
 811   if (osthread == NULL) {
 812     return false;
 813   }
 814 
 815   // Store pthread info into the OSThread
 816   osthread->set_thread_id(os::Linux::gettid());
 817   osthread->set_pthread_id(::pthread_self());
 818 
 819   // initialize floating point control register
 820   os::Linux::init_thread_fpu_state();
 821 
 822   // Initial thread state is RUNNABLE
 823   osthread->set_state(RUNNABLE);
 824 
 825   thread->set_osthread(osthread);
 826 
 827   if (UseNUMA) {
 828     int lgrp_id = os::numa_get_group_id();
 829     if (lgrp_id != -1) {
 830       thread->set_lgrp_id(lgrp_id);
 831     }
 832   }
 833 
 834   if (os::Linux::is_initial_thread()) {
 835     // If current thread is initial thread, its stack is mapped on demand,
 836     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 837     // the entire stack region to avoid SEGV in stack banging.
 838     // It is also useful to get around the heap-stack-gap problem on SuSE
 839     // kernel (see 4821821 for details). We first expand stack to the top
 840     // of yellow zone, then enable stack yellow zone (order is significant,
 841     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 842     // is no gap between the last two virtual memory regions.
 843 
 844     JavaThread *jt = (JavaThread *)thread;
 845     address addr = jt->stack_yellow_zone_base();
 846     assert(addr != NULL, "initialization problem?");
 847     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 848 
 849     osthread->set_expanding_stack();
 850     os::Linux::manually_expand_stack(jt, addr);
 851     osthread->clear_expanding_stack();
 852   }
 853 
 854   // initialize signal mask for this thread
 855   // and save the caller's signal mask
 856   os::Linux::hotspot_sigmask(thread);
 857 
 858   return true;
 859 }
 860 
 861 void os::pd_start_thread(Thread* thread) {
 862   OSThread * osthread = thread->osthread();
 863   assert(osthread->get_state() != INITIALIZED, "just checking");
 864   Monitor* sync_with_child = osthread->startThread_lock();
 865   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 866   sync_with_child->notify();
 867 }
 868 
 869 // Free Linux resources related to the OSThread
 870 void os::free_thread(OSThread* osthread) {
 871   assert(osthread != NULL, "osthread not set");
 872 
 873   if (Thread::current()->osthread() == osthread) {
 874     // Restore caller's signal mask
 875     sigset_t sigmask = osthread->caller_sigmask();
 876     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 877   }
 878 
 879   delete osthread;
 880 }
 881 
 882 //////////////////////////////////////////////////////////////////////////////
 883 // thread local storage
 884 
 885 // Restore the thread pointer if the destructor is called. This is in case
 886 // someone from JNI code sets up a destructor with pthread_key_create to run
 887 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 888 // will hang or crash. When detachCurrentThread is called the key will be set
 889 // to null and we will not be called again. If detachCurrentThread is never
 890 // called we could loop forever depending on the pthread implementation.
 891 static void restore_thread_pointer(void* p) {
 892   Thread* thread = (Thread*) p;
 893   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 894 }
 895 
 896 int os::allocate_thread_local_storage() {
 897   pthread_key_t key;
 898   int rslt = pthread_key_create(&key, restore_thread_pointer);
 899   assert(rslt == 0, "cannot allocate thread local storage");
 900   return (int)key;
 901 }
 902 
 903 // Note: This is currently not used by VM, as we don't destroy TLS key
 904 // on VM exit.
 905 void os::free_thread_local_storage(int index) {
 906   int rslt = pthread_key_delete((pthread_key_t)index);
 907   assert(rslt == 0, "invalid index");
 908 }
 909 
 910 void os::thread_local_storage_at_put(int index, void* value) {
 911   int rslt = pthread_setspecific((pthread_key_t)index, value);
 912   assert(rslt == 0, "pthread_setspecific failed");
 913 }
 914 
 915 extern "C" Thread* get_thread() {
 916   return ThreadLocalStorage::thread();
 917 }
 918 
 919 //////////////////////////////////////////////////////////////////////////////
 920 // initial thread
 921 
 922 // Check if current thread is the initial thread, similar to Solaris thr_main.
 923 bool os::Linux::is_initial_thread(void) {
 924   char dummy;
 925   // If called before init complete, thread stack bottom will be null.
 926   // Can be called if fatal error occurs before initialization.
 927   if (initial_thread_stack_bottom() == NULL) return false;
 928   assert(initial_thread_stack_bottom() != NULL &&
 929          initial_thread_stack_size()   != 0,
 930          "os::init did not locate initial thread's stack region");
 931   if ((address)&dummy >= initial_thread_stack_bottom() &&
 932       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 933     return true;
 934   } else {
 935     return false;
 936   }
 937 }
 938 
 939 // Find the virtual memory area that contains addr
 940 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 941   FILE *fp = fopen("/proc/self/maps", "r");
 942   if (fp) {
 943     address low, high;
 944     while (!feof(fp)) {
 945       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 946         if (low <= addr && addr < high) {
 947           if (vma_low)  *vma_low  = low;
 948           if (vma_high) *vma_high = high;
 949           fclose(fp);
 950           return true;
 951         }
 952       }
 953       for (;;) {
 954         int ch = fgetc(fp);
 955         if (ch == EOF || ch == (int)'\n') break;
 956       }
 957     }
 958     fclose(fp);
 959   }
 960   return false;
 961 }
 962 
 963 // Locate initial thread stack. This special handling of initial thread stack
 964 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 965 // bogus value for initial thread.
 966 void os::Linux::capture_initial_stack(size_t max_size) {
 967   // stack size is the easy part, get it from RLIMIT_STACK
 968   size_t stack_size;
 969   struct rlimit rlim;
 970   getrlimit(RLIMIT_STACK, &rlim);
 971   stack_size = rlim.rlim_cur;
 972 
 973   // 6308388: a bug in ld.so will relocate its own .data section to the
 974   //   lower end of primordial stack; reduce ulimit -s value a little bit
 975   //   so we won't install guard page on ld.so's data section.
 976   stack_size -= 2 * page_size();
 977 
 978   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 979   //   7.1, in both cases we will get 2G in return value.
 980   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 981   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 982   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 983   //   in case other parts in glibc still assumes 2M max stack size.
 984   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 985   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 986   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 987     stack_size = 2 * K * K IA64_ONLY(*2);
 988   }
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the initial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect initial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect initial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect initial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_size_up(stack_top, page_size());
1147 
1148   if (max_size && stack_size > max_size) {
1149     _initial_thread_stack_size = max_size;
1150   } else {
1151     _initial_thread_stack_size = stack_size;
1152   }
1153 
1154   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1155   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1156 }
1157 
1158 ////////////////////////////////////////////////////////////////////////////////
1159 // time support
1160 
1161 // Time since start-up in seconds to a fine granularity.
1162 // Used by VMSelfDestructTimer and the MemProfiler.
1163 double os::elapsedTime() {
1164 
1165   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1166 }
1167 
1168 jlong os::elapsed_counter() {
1169   return javaTimeNanos() - initial_time_count;
1170 }
1171 
1172 jlong os::elapsed_frequency() {
1173   return NANOSECS_PER_SEC; // nanosecond resolution
1174 }
1175 
1176 bool os::supports_vtime() { return true; }
1177 bool os::enable_vtime()   { return false; }
1178 bool os::vtime_enabled()  { return false; }
1179 
1180 double os::elapsedVTime() {
1181   struct rusage usage;
1182   int retval = getrusage(RUSAGE_THREAD, &usage);
1183   if (retval == 0) {
1184     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1185   } else {
1186     // better than nothing, but not much
1187     return elapsedTime();
1188   }
1189 }
1190 
1191 jlong os::javaTimeMillis() {
1192   timeval time;
1193   int status = gettimeofday(&time, NULL);
1194   assert(status != -1, "linux error");
1195   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1196 }
1197 
1198 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1199   timeval time;
1200   int status = gettimeofday(&time, NULL);
1201   assert(status != -1, "linux error");
1202   seconds = jlong(time.tv_sec);
1203   nanos = jlong(time.tv_usec) * 1000;
1204 }
1205 
1206 
1207 #ifndef CLOCK_MONOTONIC
1208   #define CLOCK_MONOTONIC (1)
1209 #endif
1210 
1211 void os::Linux::clock_init() {
1212   // we do dlopen's in this particular order due to bug in linux
1213   // dynamical loader (see 6348968) leading to crash on exit
1214   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1215   if (handle == NULL) {
1216     handle = dlopen("librt.so", RTLD_LAZY);
1217   }
1218 
1219   if (handle) {
1220     int (*clock_getres_func)(clockid_t, struct timespec*) =
1221            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1222     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1223            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1224     if (clock_getres_func && clock_gettime_func) {
1225       // See if monotonic clock is supported by the kernel. Note that some
1226       // early implementations simply return kernel jiffies (updated every
1227       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1228       // for nano time (though the monotonic property is still nice to have).
1229       // It's fixed in newer kernels, however clock_getres() still returns
1230       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1231       // resolution for now. Hopefully as people move to new kernels, this
1232       // won't be a problem.
1233       struct timespec res;
1234       struct timespec tp;
1235       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1236           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1237         // yes, monotonic clock is supported
1238         _clock_gettime = clock_gettime_func;
1239         return;
1240       } else {
1241         // close librt if there is no monotonic clock
1242         dlclose(handle);
1243       }
1244     }
1245   }
1246   warning("No monotonic clock was available - timed services may " \
1247           "be adversely affected if the time-of-day clock changes");
1248 }
1249 
1250 #ifndef SYS_clock_getres
1251   #if defined(IA32) || defined(AMD64)
1252     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1253     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1254   #else
1255     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1256     #define sys_clock_getres(x,y)  -1
1257   #endif
1258 #else
1259   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1260 #endif
1261 
1262 void os::Linux::fast_thread_clock_init() {
1263   if (!UseLinuxPosixThreadCPUClocks) {
1264     return;
1265   }
1266   clockid_t clockid;
1267   struct timespec tp;
1268   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1269       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1270 
1271   // Switch to using fast clocks for thread cpu time if
1272   // the sys_clock_getres() returns 0 error code.
1273   // Note, that some kernels may support the current thread
1274   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1275   // returned by the pthread_getcpuclockid().
1276   // If the fast Posix clocks are supported then the sys_clock_getres()
1277   // must return at least tp.tv_sec == 0 which means a resolution
1278   // better than 1 sec. This is extra check for reliability.
1279 
1280   if (pthread_getcpuclockid_func &&
1281       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1282       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1283     _supports_fast_thread_cpu_time = true;
1284     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1285   }
1286 }
1287 
1288 jlong os::javaTimeNanos() {
1289   if (os::supports_monotonic_clock()) {
1290     struct timespec tp;
1291     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1292     assert(status == 0, "gettime error");
1293     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1294     return result;
1295   } else {
1296     timeval time;
1297     int status = gettimeofday(&time, NULL);
1298     assert(status != -1, "linux error");
1299     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1300     return 1000 * usecs;
1301   }
1302 }
1303 
1304 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1305   if (os::supports_monotonic_clock()) {
1306     info_ptr->max_value = ALL_64_BITS;
1307 
1308     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1309     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1310     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1311   } else {
1312     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1313     info_ptr->max_value = ALL_64_BITS;
1314 
1315     // gettimeofday is a real time clock so it skips
1316     info_ptr->may_skip_backward = true;
1317     info_ptr->may_skip_forward = true;
1318   }
1319 
1320   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1321 }
1322 
1323 // Return the real, user, and system times in seconds from an
1324 // arbitrary fixed point in the past.
1325 bool os::getTimesSecs(double* process_real_time,
1326                       double* process_user_time,
1327                       double* process_system_time) {
1328   struct tms ticks;
1329   clock_t real_ticks = times(&ticks);
1330 
1331   if (real_ticks == (clock_t) (-1)) {
1332     return false;
1333   } else {
1334     double ticks_per_second = (double) clock_tics_per_sec;
1335     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1336     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1337     *process_real_time = ((double) real_ticks) / ticks_per_second;
1338 
1339     return true;
1340   }
1341 }
1342 
1343 
1344 char * os::local_time_string(char *buf, size_t buflen) {
1345   struct tm t;
1346   time_t long_time;
1347   time(&long_time);
1348   localtime_r(&long_time, &t);
1349   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1350                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1351                t.tm_hour, t.tm_min, t.tm_sec);
1352   return buf;
1353 }
1354 
1355 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1356   return localtime_r(clock, res);
1357 }
1358 
1359 ////////////////////////////////////////////////////////////////////////////////
1360 // runtime exit support
1361 
1362 // Note: os::shutdown() might be called very early during initialization, or
1363 // called from signal handler. Before adding something to os::shutdown(), make
1364 // sure it is async-safe and can handle partially initialized VM.
1365 void os::shutdown() {
1366 
1367   // allow PerfMemory to attempt cleanup of any persistent resources
1368   perfMemory_exit();
1369 
1370   // needs to remove object in file system
1371   AttachListener::abort();
1372 
1373   // flush buffered output, finish log files
1374   ostream_abort();
1375 
1376   // Check for abort hook
1377   abort_hook_t abort_hook = Arguments::abort_hook();
1378   if (abort_hook != NULL) {
1379     abort_hook();
1380   }
1381 
1382 }
1383 
1384 // Note: os::abort() might be called very early during initialization, or
1385 // called from signal handler. Before adding something to os::abort(), make
1386 // sure it is async-safe and can handle partially initialized VM.
1387 void os::abort(bool dump_core, void* siginfo, void* context) {
1388   os::shutdown();
1389   if (dump_core) {
1390 #ifndef PRODUCT
1391     fdStream out(defaultStream::output_fd());
1392     out.print_raw("Current thread is ");
1393     char buf[16];
1394     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1395     out.print_raw_cr(buf);
1396     out.print_raw_cr("Dumping core ...");
1397 #endif
1398     ::abort(); // dump core
1399   }
1400 
1401   ::exit(1);
1402 }
1403 
1404 // Die immediately, no exit hook, no abort hook, no cleanup.
1405 void os::die() {
1406   ::abort();
1407 }
1408 
1409 
1410 // This method is a copy of JDK's sysGetLastErrorString
1411 // from src/solaris/hpi/src/system_md.c
1412 
1413 size_t os::lasterror(char *buf, size_t len) {
1414   if (errno == 0)  return 0;
1415 
1416   const char *s = ::strerror(errno);
1417   size_t n = ::strlen(s);
1418   if (n >= len) {
1419     n = len - 1;
1420   }
1421   ::strncpy(buf, s, n);
1422   buf[n] = '\0';
1423   return n;
1424 }
1425 
1426 // thread_id is kernel thread id (similar to Solaris LWP id)
1427 intx os::current_thread_id() { return os::Linux::gettid(); }
1428 int os::current_process_id() {
1429   return ::getpid();
1430 }
1431 
1432 // DLL functions
1433 
1434 const char* os::dll_file_extension() { return ".so"; }
1435 
1436 // This must be hard coded because it's the system's temporary
1437 // directory not the java application's temp directory, ala java.io.tmpdir.
1438 const char* os::get_temp_directory() { return "/tmp"; }
1439 
1440 static bool file_exists(const char* filename) {
1441   struct stat statbuf;
1442   if (filename == NULL || strlen(filename) == 0) {
1443     return false;
1444   }
1445   return os::stat(filename, &statbuf) == 0;
1446 }
1447 
1448 bool os::dll_build_name(char* buffer, size_t buflen,
1449                         const char* pname, const char* fname) {
1450   bool retval = false;
1451   // Copied from libhpi
1452   const size_t pnamelen = pname ? strlen(pname) : 0;
1453 
1454   // Return error on buffer overflow.
1455   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1456     return retval;
1457   }
1458 
1459   if (pnamelen == 0) {
1460     snprintf(buffer, buflen, "lib%s.so", fname);
1461     retval = true;
1462   } else if (strchr(pname, *os::path_separator()) != NULL) {
1463     int n;
1464     char** pelements = split_path(pname, &n);
1465     if (pelements == NULL) {
1466       return false;
1467     }
1468     for (int i = 0; i < n; i++) {
1469       // Really shouldn't be NULL, but check can't hurt
1470       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1471         continue; // skip the empty path values
1472       }
1473       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1474       if (file_exists(buffer)) {
1475         retval = true;
1476         break;
1477       }
1478     }
1479     // release the storage
1480     for (int i = 0; i < n; i++) {
1481       if (pelements[i] != NULL) {
1482         FREE_C_HEAP_ARRAY(char, pelements[i]);
1483       }
1484     }
1485     if (pelements != NULL) {
1486       FREE_C_HEAP_ARRAY(char*, pelements);
1487     }
1488   } else {
1489     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1490     retval = true;
1491   }
1492   return retval;
1493 }
1494 
1495 // check if addr is inside libjvm.so
1496 bool os::address_is_in_vm(address addr) {
1497   static address libjvm_base_addr;
1498   Dl_info dlinfo;
1499 
1500   if (libjvm_base_addr == NULL) {
1501     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1502       libjvm_base_addr = (address)dlinfo.dli_fbase;
1503     }
1504     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1505   }
1506 
1507   if (dladdr((void *)addr, &dlinfo) != 0) {
1508     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1509   }
1510 
1511   return false;
1512 }
1513 
1514 bool os::dll_address_to_function_name(address addr, char *buf,
1515                                       int buflen, int *offset,
1516                                       bool demangle) {
1517   // buf is not optional, but offset is optional
1518   assert(buf != NULL, "sanity check");
1519 
1520   Dl_info dlinfo;
1521 
1522   if (dladdr((void*)addr, &dlinfo) != 0) {
1523     // see if we have a matching symbol
1524     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1525       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1526         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1527       }
1528       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1529       return true;
1530     }
1531     // no matching symbol so try for just file info
1532     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1533       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1534                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1535         return true;
1536       }
1537     }
1538   }
1539 
1540   buf[0] = '\0';
1541   if (offset != NULL) *offset = -1;
1542   return false;
1543 }
1544 
1545 struct _address_to_library_name {
1546   address addr;          // input : memory address
1547   size_t  buflen;        //         size of fname
1548   char*   fname;         // output: library name
1549   address base;          //         library base addr
1550 };
1551 
1552 static int address_to_library_name_callback(struct dl_phdr_info *info,
1553                                             size_t size, void *data) {
1554   int i;
1555   bool found = false;
1556   address libbase = NULL;
1557   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1558 
1559   // iterate through all loadable segments
1560   for (i = 0; i < info->dlpi_phnum; i++) {
1561     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1562     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1563       // base address of a library is the lowest address of its loaded
1564       // segments.
1565       if (libbase == NULL || libbase > segbase) {
1566         libbase = segbase;
1567       }
1568       // see if 'addr' is within current segment
1569       if (segbase <= d->addr &&
1570           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1571         found = true;
1572       }
1573     }
1574   }
1575 
1576   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1577   // so dll_address_to_library_name() can fall through to use dladdr() which
1578   // can figure out executable name from argv[0].
1579   if (found && info->dlpi_name && info->dlpi_name[0]) {
1580     d->base = libbase;
1581     if (d->fname) {
1582       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1583     }
1584     return 1;
1585   }
1586   return 0;
1587 }
1588 
1589 bool os::dll_address_to_library_name(address addr, char* buf,
1590                                      int buflen, int* offset) {
1591   // buf is not optional, but offset is optional
1592   assert(buf != NULL, "sanity check");
1593 
1594   Dl_info dlinfo;
1595   struct _address_to_library_name data;
1596 
1597   // There is a bug in old glibc dladdr() implementation that it could resolve
1598   // to wrong library name if the .so file has a base address != NULL. Here
1599   // we iterate through the program headers of all loaded libraries to find
1600   // out which library 'addr' really belongs to. This workaround can be
1601   // removed once the minimum requirement for glibc is moved to 2.3.x.
1602   data.addr = addr;
1603   data.fname = buf;
1604   data.buflen = buflen;
1605   data.base = NULL;
1606   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1607 
1608   if (rslt) {
1609     // buf already contains library name
1610     if (offset) *offset = addr - data.base;
1611     return true;
1612   }
1613   if (dladdr((void*)addr, &dlinfo) != 0) {
1614     if (dlinfo.dli_fname != NULL) {
1615       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1616     }
1617     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1618       *offset = addr - (address)dlinfo.dli_fbase;
1619     }
1620     return true;
1621   }
1622 
1623   buf[0] = '\0';
1624   if (offset) *offset = -1;
1625   return false;
1626 }
1627 
1628 // Loads .dll/.so and
1629 // in case of error it checks if .dll/.so was built for the
1630 // same architecture as Hotspot is running on
1631 
1632 
1633 // Remember the stack's state. The Linux dynamic linker will change
1634 // the stack to 'executable' at most once, so we must safepoint only once.
1635 bool os::Linux::_stack_is_executable = false;
1636 
1637 // VM operation that loads a library.  This is necessary if stack protection
1638 // of the Java stacks can be lost during loading the library.  If we
1639 // do not stop the Java threads, they can stack overflow before the stacks
1640 // are protected again.
1641 class VM_LinuxDllLoad: public VM_Operation {
1642  private:
1643   const char *_filename;
1644   char *_ebuf;
1645   int _ebuflen;
1646   void *_lib;
1647  public:
1648   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1649     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1650   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1651   void doit() {
1652     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1653     os::Linux::_stack_is_executable = true;
1654   }
1655   void* loaded_library() { return _lib; }
1656 };
1657 
1658 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1659   void * result = NULL;
1660   bool load_attempted = false;
1661 
1662   // Check whether the library to load might change execution rights
1663   // of the stack. If they are changed, the protection of the stack
1664   // guard pages will be lost. We need a safepoint to fix this.
1665   //
1666   // See Linux man page execstack(8) for more info.
1667   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1668     ElfFile ef(filename);
1669     if (!ef.specifies_noexecstack()) {
1670       if (!is_init_completed()) {
1671         os::Linux::_stack_is_executable = true;
1672         // This is OK - No Java threads have been created yet, and hence no
1673         // stack guard pages to fix.
1674         //
1675         // This should happen only when you are building JDK7 using a very
1676         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1677         //
1678         // Dynamic loader will make all stacks executable after
1679         // this function returns, and will not do that again.
1680         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1681       } else {
1682         warning("You have loaded library %s which might have disabled stack guard. "
1683                 "The VM will try to fix the stack guard now.\n"
1684                 "It's highly recommended that you fix the library with "
1685                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1686                 filename);
1687 
1688         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1689         JavaThread *jt = JavaThread::current();
1690         if (jt->thread_state() != _thread_in_native) {
1691           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1692           // that requires ExecStack. Cannot enter safe point. Let's give up.
1693           warning("Unable to fix stack guard. Giving up.");
1694         } else {
1695           if (!LoadExecStackDllInVMThread) {
1696             // This is for the case where the DLL has an static
1697             // constructor function that executes JNI code. We cannot
1698             // load such DLLs in the VMThread.
1699             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1700           }
1701 
1702           ThreadInVMfromNative tiv(jt);
1703           debug_only(VMNativeEntryWrapper vew;)
1704 
1705           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1706           VMThread::execute(&op);
1707           if (LoadExecStackDllInVMThread) {
1708             result = op.loaded_library();
1709           }
1710           load_attempted = true;
1711         }
1712       }
1713     }
1714   }
1715 
1716   if (!load_attempted) {
1717     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1718   }
1719 
1720   if (result != NULL) {
1721     // Successful loading
1722     return result;
1723   }
1724 
1725   Elf32_Ehdr elf_head;
1726   int diag_msg_max_length=ebuflen-strlen(ebuf);
1727   char* diag_msg_buf=ebuf+strlen(ebuf);
1728 
1729   if (diag_msg_max_length==0) {
1730     // No more space in ebuf for additional diagnostics message
1731     return NULL;
1732   }
1733 
1734 
1735   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1736 
1737   if (file_descriptor < 0) {
1738     // Can't open library, report dlerror() message
1739     return NULL;
1740   }
1741 
1742   bool failed_to_read_elf_head=
1743     (sizeof(elf_head)!=
1744      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1745 
1746   ::close(file_descriptor);
1747   if (failed_to_read_elf_head) {
1748     // file i/o error - report dlerror() msg
1749     return NULL;
1750   }
1751 
1752   typedef struct {
1753     Elf32_Half  code;         // Actual value as defined in elf.h
1754     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1755     char        elf_class;    // 32 or 64 bit
1756     char        endianess;    // MSB or LSB
1757     char*       name;         // String representation
1758   } arch_t;
1759 
1760 #ifndef EM_486
1761   #define EM_486          6               /* Intel 80486 */
1762 #endif
1763 #ifndef EM_AARCH64
1764   #define EM_AARCH64    183               /* ARM AARCH64 */
1765 #endif
1766 
1767   static const arch_t arch_array[]={
1768     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1769     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1770     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1771     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1772     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1773     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1774     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1775     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1776 #if defined(VM_LITTLE_ENDIAN)
1777     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1778 #else
1779     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1780 #endif
1781     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1782     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1783     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1784     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1785     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1786     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1787     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1788     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1789   };
1790 
1791 #if  (defined IA32)
1792   static  Elf32_Half running_arch_code=EM_386;
1793 #elif   (defined AMD64)
1794   static  Elf32_Half running_arch_code=EM_X86_64;
1795 #elif  (defined IA64)
1796   static  Elf32_Half running_arch_code=EM_IA_64;
1797 #elif  (defined __sparc) && (defined _LP64)
1798   static  Elf32_Half running_arch_code=EM_SPARCV9;
1799 #elif  (defined __sparc) && (!defined _LP64)
1800   static  Elf32_Half running_arch_code=EM_SPARC;
1801 #elif  (defined __powerpc64__)
1802   static  Elf32_Half running_arch_code=EM_PPC64;
1803 #elif  (defined __powerpc__)
1804   static  Elf32_Half running_arch_code=EM_PPC;
1805 #elif  (defined ARM)
1806   static  Elf32_Half running_arch_code=EM_ARM;
1807 #elif  (defined S390)
1808   static  Elf32_Half running_arch_code=EM_S390;
1809 #elif  (defined ALPHA)
1810   static  Elf32_Half running_arch_code=EM_ALPHA;
1811 #elif  (defined MIPSEL)
1812   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1813 #elif  (defined PARISC)
1814   static  Elf32_Half running_arch_code=EM_PARISC;
1815 #elif  (defined MIPS)
1816   static  Elf32_Half running_arch_code=EM_MIPS;
1817 #elif  (defined M68K)
1818   static  Elf32_Half running_arch_code=EM_68K;
1819 #elif  (defined AARCH64)
1820   static  Elf32_Half running_arch_code=EM_AARCH64;
1821 #else
1822     #error Method os::dll_load requires that one of following is defined:\
1823          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1824 #endif
1825 
1826   // Identify compatability class for VM's architecture and library's architecture
1827   // Obtain string descriptions for architectures
1828 
1829   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1830   int running_arch_index=-1;
1831 
1832   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1833     if (running_arch_code == arch_array[i].code) {
1834       running_arch_index    = i;
1835     }
1836     if (lib_arch.code == arch_array[i].code) {
1837       lib_arch.compat_class = arch_array[i].compat_class;
1838       lib_arch.name         = arch_array[i].name;
1839     }
1840   }
1841 
1842   assert(running_arch_index != -1,
1843          "Didn't find running architecture code (running_arch_code) in arch_array");
1844   if (running_arch_index == -1) {
1845     // Even though running architecture detection failed
1846     // we may still continue with reporting dlerror() message
1847     return NULL;
1848   }
1849 
1850   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1851     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1852     return NULL;
1853   }
1854 
1855 #ifndef S390
1856   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1857     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1858     return NULL;
1859   }
1860 #endif // !S390
1861 
1862   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1863     if (lib_arch.name!=NULL) {
1864       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1865                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1866                  lib_arch.name, arch_array[running_arch_index].name);
1867     } else {
1868       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1869                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1870                  lib_arch.code,
1871                  arch_array[running_arch_index].name);
1872     }
1873   }
1874 
1875   return NULL;
1876 }
1877 
1878 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1879                                 int ebuflen) {
1880   void * result = ::dlopen(filename, RTLD_LAZY);
1881   if (result == NULL) {
1882     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1883     ebuf[ebuflen-1] = '\0';
1884   }
1885   return result;
1886 }
1887 
1888 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1889                                        int ebuflen) {
1890   void * result = NULL;
1891   if (LoadExecStackDllInVMThread) {
1892     result = dlopen_helper(filename, ebuf, ebuflen);
1893   }
1894 
1895   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1896   // library that requires an executable stack, or which does not have this
1897   // stack attribute set, dlopen changes the stack attribute to executable. The
1898   // read protection of the guard pages gets lost.
1899   //
1900   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1901   // may have been queued at the same time.
1902 
1903   if (!_stack_is_executable) {
1904     JavaThread *jt = Threads::first();
1905 
1906     while (jt) {
1907       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1908           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1909         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1910                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1911           warning("Attempt to reguard stack yellow zone failed.");
1912         }
1913       }
1914       jt = jt->next();
1915     }
1916   }
1917 
1918   return result;
1919 }
1920 
1921 void* os::dll_lookup(void* handle, const char* name) {
1922   void* res = dlsym(handle, name);
1923   return res;
1924 }
1925 
1926 void* os::get_default_process_handle() {
1927   return (void*)::dlopen(NULL, RTLD_LAZY);
1928 }
1929 
1930 static bool _print_ascii_file(const char* filename, outputStream* st) {
1931   int fd = ::open(filename, O_RDONLY);
1932   if (fd == -1) {
1933     return false;
1934   }
1935 
1936   char buf[32];
1937   int bytes;
1938   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1939     st->print_raw(buf, bytes);
1940   }
1941 
1942   ::close(fd);
1943 
1944   return true;
1945 }
1946 
1947 void os::print_dll_info(outputStream *st) {
1948   st->print_cr("Dynamic libraries:");
1949 
1950   char fname[32];
1951   pid_t pid = os::Linux::gettid();
1952 
1953   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1954 
1955   if (!_print_ascii_file(fname, st)) {
1956     st->print("Can not get library information for pid = %d\n", pid);
1957   }
1958 }
1959 
1960 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1961   FILE *procmapsFile = NULL;
1962 
1963   // Open the procfs maps file for the current process
1964   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1965     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1966     char line[PATH_MAX + 100];
1967 
1968     // Read line by line from 'file'
1969     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1970       u8 base, top, offset, inode;
1971       char permissions[5];
1972       char device[6];
1973       char name[PATH_MAX + 1];
1974 
1975       // Parse fields from line
1976       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1977 
1978       // Filter by device id '00:00' so that we only get file system mapped files.
1979       if (strcmp(device, "00:00") != 0) {
1980 
1981         // Call callback with the fields of interest
1982         if(callback(name, (address)base, (address)top, param)) {
1983           // Oops abort, callback aborted
1984           fclose(procmapsFile);
1985           return 1;
1986         }
1987       }
1988     }
1989     fclose(procmapsFile);
1990   }
1991   return 0;
1992 }
1993 
1994 void os::print_os_info_brief(outputStream* st) {
1995   os::Linux::print_distro_info(st);
1996 
1997   os::Posix::print_uname_info(st);
1998 
1999   os::Linux::print_libversion_info(st);
2000 
2001 }
2002 
2003 void os::print_os_info(outputStream* st) {
2004   st->print("OS:");
2005 
2006   os::Linux::print_distro_info(st);
2007 
2008   os::Posix::print_uname_info(st);
2009 
2010   // Print warning if unsafe chroot environment detected
2011   if (unsafe_chroot_detected) {
2012     st->print("WARNING!! ");
2013     st->print_cr("%s", unstable_chroot_error);
2014   }
2015 
2016   os::Linux::print_libversion_info(st);
2017 
2018   os::Posix::print_rlimit_info(st);
2019 
2020   os::Posix::print_load_average(st);
2021 
2022   os::Linux::print_full_memory_info(st);
2023 }
2024 
2025 // Try to identify popular distros.
2026 // Most Linux distributions have a /etc/XXX-release file, which contains
2027 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2028 // file that also contains the OS version string. Some have more than one
2029 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2030 // /etc/redhat-release.), so the order is important.
2031 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2032 // their own specific XXX-release file as well as a redhat-release file.
2033 // Because of this the XXX-release file needs to be searched for before the
2034 // redhat-release file.
2035 // Since Red Hat has a lsb-release file that is not very descriptive the
2036 // search for redhat-release needs to be before lsb-release.
2037 // Since the lsb-release file is the new standard it needs to be searched
2038 // before the older style release files.
2039 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2040 // next to last resort.  The os-release file is a new standard that contains
2041 // distribution information and the system-release file seems to be an old
2042 // standard that has been replaced by the lsb-release and os-release files.
2043 // Searching for the debian_version file is the last resort.  It contains
2044 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2045 // "Debian " is printed before the contents of the debian_version file.
2046 
2047 const char* distro_files[] = {
2048   "/etc/oracle-release",
2049   "/etc/mandriva-release",
2050   "/etc/mandrake-release",
2051   "/etc/sun-release",
2052   "/etc/redhat-release",
2053   "/etc/lsb-release",
2054   "/etc/SuSE-release",
2055   "/etc/turbolinux-release",
2056   "/etc/gentoo-release",
2057   "/etc/ltib-release",
2058   "/etc/angstrom-version",
2059   "/etc/system-release",
2060   "/etc/os-release",
2061   NULL };
2062 
2063 void os::Linux::print_distro_info(outputStream* st) {
2064   for (int i = 0;; i++) {
2065     const char* file = distro_files[i];
2066     if (file == NULL) {
2067       break;  // done
2068     }
2069     // If file prints, we found it.
2070     if (_print_ascii_file(file, st)) {
2071       return;
2072     }
2073   }
2074 
2075   if (file_exists("/etc/debian_version")) {
2076     st->print("Debian ");
2077     _print_ascii_file("/etc/debian_version", st);
2078   } else {
2079     st->print("Linux");
2080   }
2081   st->cr();
2082 }
2083 
2084 static void parse_os_info(char* distro, size_t length, const char* file) {
2085   FILE* fp = fopen(file, "r");
2086   if (fp != NULL) {
2087     char buf[256];
2088     // get last line of the file.
2089     while (fgets(buf, sizeof(buf), fp)) { }
2090     // Edit out extra stuff in expected ubuntu format
2091     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2092       char* ptr = strstr(buf, "\"");  // the name is in quotes
2093       if (ptr != NULL) {
2094         ptr++; // go beyond first quote
2095         char* nl = strchr(ptr, '\"');
2096         if (nl != NULL) *nl = '\0';
2097         strncpy(distro, ptr, length);
2098       } else {
2099         ptr = strstr(buf, "=");
2100         ptr++; // go beyond equals then
2101         char* nl = strchr(ptr, '\n');
2102         if (nl != NULL) *nl = '\0';
2103         strncpy(distro, ptr, length);
2104       }
2105     } else {
2106       // if not in expected Ubuntu format, print out whole line minus \n
2107       char* nl = strchr(buf, '\n');
2108       if (nl != NULL) *nl = '\0';
2109       strncpy(distro, buf, length);
2110     }
2111     // close distro file
2112     fclose(fp);
2113   }
2114 }
2115 
2116 void os::get_summary_os_info(char* buf, size_t buflen) {
2117   for (int i = 0;; i++) {
2118     const char* file = distro_files[i];
2119     if (file == NULL) {
2120       break; // ran out of distro_files
2121     }
2122     if (file_exists(file)) {
2123       parse_os_info(buf, buflen, file);
2124       return;
2125     }
2126   }
2127   // special case for debian
2128   if (file_exists("/etc/debian_version")) {
2129     strncpy(buf, "Debian ", buflen);
2130     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2131   } else {
2132     strncpy(buf, "Linux", buflen);
2133   }
2134 }
2135 
2136 void os::Linux::print_libversion_info(outputStream* st) {
2137   // libc, pthread
2138   st->print("libc:");
2139   st->print("%s ", os::Linux::glibc_version());
2140   st->print("%s ", os::Linux::libpthread_version());
2141   st->cr();
2142 }
2143 
2144 void os::Linux::print_full_memory_info(outputStream* st) {
2145   st->print("\n/proc/meminfo:\n");
2146   _print_ascii_file("/proc/meminfo", st);
2147   st->cr();
2148 }
2149 
2150 void os::print_memory_info(outputStream* st) {
2151 
2152   st->print("Memory:");
2153   st->print(" %dk page", os::vm_page_size()>>10);
2154 
2155   // values in struct sysinfo are "unsigned long"
2156   struct sysinfo si;
2157   sysinfo(&si);
2158 
2159   st->print(", physical " UINT64_FORMAT "k",
2160             os::physical_memory() >> 10);
2161   st->print("(" UINT64_FORMAT "k free)",
2162             os::available_memory() >> 10);
2163   st->print(", swap " UINT64_FORMAT "k",
2164             ((jlong)si.totalswap * si.mem_unit) >> 10);
2165   st->print("(" UINT64_FORMAT "k free)",
2166             ((jlong)si.freeswap * si.mem_unit) >> 10);
2167   st->cr();
2168 }
2169 
2170 // Print the first "model name" line and the first "flags" line
2171 // that we find and nothing more. We assume "model name" comes
2172 // before "flags" so if we find a second "model name", then the
2173 // "flags" field is considered missing.
2174 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2175 #if defined(IA32) || defined(AMD64)
2176   // Other platforms have less repetitive cpuinfo files
2177   FILE *fp = fopen("/proc/cpuinfo", "r");
2178   if (fp) {
2179     while (!feof(fp)) {
2180       if (fgets(buf, buflen, fp)) {
2181         // Assume model name comes before flags
2182         bool model_name_printed = false;
2183         if (strstr(buf, "model name") != NULL) {
2184           if (!model_name_printed) {
2185             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2186             st->print_raw(buf);
2187             model_name_printed = true;
2188           } else {
2189             // model name printed but not flags?  Odd, just return
2190             fclose(fp);
2191             return true;
2192           }
2193         }
2194         // print the flags line too
2195         if (strstr(buf, "flags") != NULL) {
2196           st->print_raw(buf);
2197           fclose(fp);
2198           return true;
2199         }
2200       }
2201     }
2202     fclose(fp);
2203   }
2204 #endif // x86 platforms
2205   return false;
2206 }
2207 
2208 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2209   // Only print the model name if the platform provides this as a summary
2210   if (!print_model_name_and_flags(st, buf, buflen)) {
2211     st->print("\n/proc/cpuinfo:\n");
2212     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2213       st->print_cr("  <Not Available>");
2214     }
2215   }
2216 }
2217 
2218 const char* search_string = IA32_ONLY("model name") AMD64_ONLY("model name")
2219                             IA64_ONLY("") SPARC_ONLY("cpu")
2220                             ARM32_ONLY("Processor") PPC_ONLY("Processor") AARCH64_ONLY("Processor");
2221 
2222 // Parses the cpuinfo file for string representing the model name.
2223 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2224   FILE* fp = fopen("/proc/cpuinfo", "r");
2225   if (fp != NULL) {
2226     while (!feof(fp)) {
2227       char buf[256];
2228       if (fgets(buf, sizeof(buf), fp)) {
2229         char* start = strstr(buf, search_string);
2230         if (start != NULL) {
2231           char *ptr = start + strlen(search_string);
2232           char *end = buf + strlen(buf);
2233           while (ptr != end) {
2234              // skip whitespace and colon for the rest of the name.
2235              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2236                break;
2237              }
2238              ptr++;
2239           }
2240           if (ptr != end) {
2241             // reasonable string, get rid of newline and keep the rest
2242             char* nl = strchr(buf, '\n');
2243             if (nl != NULL) *nl = '\0';
2244             strncpy(cpuinfo, ptr, length);
2245             fclose(fp);
2246             return;
2247           }
2248         }
2249       }
2250     }
2251     fclose(fp);
2252   }
2253   // cpuinfo not found or parsing failed, just print generic string.  The entire
2254   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2255   strncpy(cpuinfo, IA32_ONLY("x86_32") AMD64_ONLY("x86_32")
2256                    IA64_ONLY("IA64") SPARC_ONLY("sparcv9")
2257                    ARM32_ONLY("ARM") PPC_ONLY("PPC64") AARCH64_ONLY("AArch64"), length);
2258 }
2259 
2260 void os::print_siginfo(outputStream* st, void* siginfo) {
2261   const siginfo_t* si = (const siginfo_t*)siginfo;
2262 
2263   os::Posix::print_siginfo_brief(st, si);
2264 #if INCLUDE_CDS
2265   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2266       UseSharedSpaces) {
2267     FileMapInfo* mapinfo = FileMapInfo::current_info();
2268     if (mapinfo->is_in_shared_space(si->si_addr)) {
2269       st->print("\n\nError accessing class data sharing archive."   \
2270                 " Mapped file inaccessible during execution, "      \
2271                 " possible disk/network problem.");
2272     }
2273   }
2274 #endif
2275   st->cr();
2276 }
2277 
2278 
2279 static void print_signal_handler(outputStream* st, int sig,
2280                                  char* buf, size_t buflen);
2281 
2282 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2283   st->print_cr("Signal Handlers:");
2284   print_signal_handler(st, SIGSEGV, buf, buflen);
2285   print_signal_handler(st, SIGBUS , buf, buflen);
2286   print_signal_handler(st, SIGFPE , buf, buflen);
2287   print_signal_handler(st, SIGPIPE, buf, buflen);
2288   print_signal_handler(st, SIGXFSZ, buf, buflen);
2289   print_signal_handler(st, SIGILL , buf, buflen);
2290   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2291   print_signal_handler(st, SR_signum, buf, buflen);
2292   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2293   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2294   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2295   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2296 #if defined(PPC64)
2297   print_signal_handler(st, SIGTRAP, buf, buflen);
2298 #endif
2299 }
2300 
2301 static char saved_jvm_path[MAXPATHLEN] = {0};
2302 
2303 // Find the full path to the current module, libjvm.so
2304 void os::jvm_path(char *buf, jint buflen) {
2305   // Error checking.
2306   if (buflen < MAXPATHLEN) {
2307     assert(false, "must use a large-enough buffer");
2308     buf[0] = '\0';
2309     return;
2310   }
2311   // Lazy resolve the path to current module.
2312   if (saved_jvm_path[0] != 0) {
2313     strcpy(buf, saved_jvm_path);
2314     return;
2315   }
2316 
2317   char dli_fname[MAXPATHLEN];
2318   bool ret = dll_address_to_library_name(
2319                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2320                                          dli_fname, sizeof(dli_fname), NULL);
2321   assert(ret, "cannot locate libjvm");
2322   char *rp = NULL;
2323   if (ret && dli_fname[0] != '\0') {
2324     rp = realpath(dli_fname, buf);
2325   }
2326   if (rp == NULL) {
2327     return;
2328   }
2329 
2330   if (Arguments::sun_java_launcher_is_altjvm()) {
2331     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2332     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2333     // If "/jre/lib/" appears at the right place in the string, then
2334     // assume we are installed in a JDK and we're done. Otherwise, check
2335     // for a JAVA_HOME environment variable and fix up the path so it
2336     // looks like libjvm.so is installed there (append a fake suffix
2337     // hotspot/libjvm.so).
2338     const char *p = buf + strlen(buf) - 1;
2339     for (int count = 0; p > buf && count < 5; ++count) {
2340       for (--p; p > buf && *p != '/'; --p)
2341         /* empty */ ;
2342     }
2343 
2344     if (strncmp(p, "/jre/lib/", 9) != 0) {
2345       // Look for JAVA_HOME in the environment.
2346       char* java_home_var = ::getenv("JAVA_HOME");
2347       if (java_home_var != NULL && java_home_var[0] != 0) {
2348         char* jrelib_p;
2349         int len;
2350 
2351         // Check the current module name "libjvm.so".
2352         p = strrchr(buf, '/');
2353         if (p == NULL) {
2354           return;
2355         }
2356         assert(strstr(p, "/libjvm") == p, "invalid library name");
2357 
2358         rp = realpath(java_home_var, buf);
2359         if (rp == NULL) {
2360           return;
2361         }
2362 
2363         // determine if this is a legacy image or modules image
2364         // modules image doesn't have "jre" subdirectory
2365         len = strlen(buf);
2366         assert(len < buflen, "Ran out of buffer room");
2367         jrelib_p = buf + len;
2368         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2369         if (0 != access(buf, F_OK)) {
2370           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2371         }
2372 
2373         if (0 == access(buf, F_OK)) {
2374           // Use current module name "libjvm.so"
2375           len = strlen(buf);
2376           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2377         } else {
2378           // Go back to path of .so
2379           rp = realpath(dli_fname, buf);
2380           if (rp == NULL) {
2381             return;
2382           }
2383         }
2384       }
2385     }
2386   }
2387 
2388   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2389   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2390 }
2391 
2392 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2393   // no prefix required, not even "_"
2394 }
2395 
2396 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2397   // no suffix required
2398 }
2399 
2400 ////////////////////////////////////////////////////////////////////////////////
2401 // sun.misc.Signal support
2402 
2403 static volatile jint sigint_count = 0;
2404 
2405 static void UserHandler(int sig, void *siginfo, void *context) {
2406   // 4511530 - sem_post is serialized and handled by the manager thread. When
2407   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2408   // don't want to flood the manager thread with sem_post requests.
2409   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2410     return;
2411   }
2412 
2413   // Ctrl-C is pressed during error reporting, likely because the error
2414   // handler fails to abort. Let VM die immediately.
2415   if (sig == SIGINT && is_error_reported()) {
2416     os::die();
2417   }
2418 
2419   os::signal_notify(sig);
2420 }
2421 
2422 void* os::user_handler() {
2423   return CAST_FROM_FN_PTR(void*, UserHandler);
2424 }
2425 
2426 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2427   struct timespec ts;
2428   // Semaphore's are always associated with CLOCK_REALTIME
2429   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2430   // see unpackTime for discussion on overflow checking
2431   if (sec >= MAX_SECS) {
2432     ts.tv_sec += MAX_SECS;
2433     ts.tv_nsec = 0;
2434   } else {
2435     ts.tv_sec += sec;
2436     ts.tv_nsec += nsec;
2437     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2438       ts.tv_nsec -= NANOSECS_PER_SEC;
2439       ++ts.tv_sec; // note: this must be <= max_secs
2440     }
2441   }
2442 
2443   return ts;
2444 }
2445 
2446 extern "C" {
2447   typedef void (*sa_handler_t)(int);
2448   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2449 }
2450 
2451 void* os::signal(int signal_number, void* handler) {
2452   struct sigaction sigAct, oldSigAct;
2453 
2454   sigfillset(&(sigAct.sa_mask));
2455   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2456   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2457 
2458   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2459     // -1 means registration failed
2460     return (void *)-1;
2461   }
2462 
2463   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2464 }
2465 
2466 void os::signal_raise(int signal_number) {
2467   ::raise(signal_number);
2468 }
2469 
2470 // The following code is moved from os.cpp for making this
2471 // code platform specific, which it is by its very nature.
2472 
2473 // Will be modified when max signal is changed to be dynamic
2474 int os::sigexitnum_pd() {
2475   return NSIG;
2476 }
2477 
2478 // a counter for each possible signal value
2479 static volatile jint pending_signals[NSIG+1] = { 0 };
2480 
2481 // Linux(POSIX) specific hand shaking semaphore.
2482 static sem_t sig_sem;
2483 static PosixSemaphore sr_semaphore;
2484 
2485 void os::signal_init_pd() {
2486   // Initialize signal structures
2487   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2488 
2489   // Initialize signal semaphore
2490   ::sem_init(&sig_sem, 0, 0);
2491 }
2492 
2493 void os::signal_notify(int sig) {
2494   Atomic::inc(&pending_signals[sig]);
2495   ::sem_post(&sig_sem);
2496 }
2497 
2498 static int check_pending_signals(bool wait) {
2499   Atomic::store(0, &sigint_count);
2500   for (;;) {
2501     for (int i = 0; i < NSIG + 1; i++) {
2502       jint n = pending_signals[i];
2503       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2504         return i;
2505       }
2506     }
2507     if (!wait) {
2508       return -1;
2509     }
2510     JavaThread *thread = JavaThread::current();
2511     ThreadBlockInVM tbivm(thread);
2512 
2513     bool threadIsSuspended;
2514     do {
2515       thread->set_suspend_equivalent();
2516       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2517       ::sem_wait(&sig_sem);
2518 
2519       // were we externally suspended while we were waiting?
2520       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2521       if (threadIsSuspended) {
2522         // The semaphore has been incremented, but while we were waiting
2523         // another thread suspended us. We don't want to continue running
2524         // while suspended because that would surprise the thread that
2525         // suspended us.
2526         ::sem_post(&sig_sem);
2527 
2528         thread->java_suspend_self();
2529       }
2530     } while (threadIsSuspended);
2531   }
2532 }
2533 
2534 int os::signal_lookup() {
2535   return check_pending_signals(false);
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals(true);
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2620           strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2628           alignment_hint, exec, strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673   #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678   #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   Linux::numa_interleave_memory(addr, bytes);
2728 }
2729 
2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2731 // bind policy to MPOL_PREFERRED for the current thread.
2732 #define USE_MPOL_PREFERRED 0
2733 
2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2735   // To make NUMA and large pages more robust when both enabled, we need to ease
2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
2737   // default policy and it will force memory to be allocated on the specified
2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2739   // the specified node, but will not force it. Using this policy will prevent
2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2741   // free large pages.
2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2744 }
2745 
2746 bool os::numa_topology_changed() { return false; }
2747 
2748 size_t os::numa_get_groups_num() {
2749   int max_node = Linux::numa_max_node();
2750   return max_node > 0 ? max_node + 1 : 1;
2751 }
2752 
2753 int os::numa_get_group_id() {
2754   int cpu_id = Linux::sched_getcpu();
2755   if (cpu_id != -1) {
2756     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2757     if (lgrp_id != -1) {
2758       return lgrp_id;
2759     }
2760   }
2761   return 0;
2762 }
2763 
2764 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2765   for (size_t i = 0; i < size; i++) {
2766     ids[i] = i;
2767   }
2768   return size;
2769 }
2770 
2771 bool os::get_page_info(char *start, page_info* info) {
2772   return false;
2773 }
2774 
2775 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2776                      page_info* page_found) {
2777   return end;
2778 }
2779 
2780 
2781 int os::Linux::sched_getcpu_syscall(void) {
2782   unsigned int cpu;
2783   int retval = -1;
2784 
2785 #if defined(IA32)
2786   #ifndef SYS_getcpu
2787     #define SYS_getcpu 318
2788   #endif
2789   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2790 #elif defined(AMD64)
2791 // Unfortunately we have to bring all these macros here from vsyscall.h
2792 // to be able to compile on old linuxes.
2793   #define __NR_vgetcpu 2
2794   #define VSYSCALL_START (-10UL << 20)
2795   #define VSYSCALL_SIZE 1024
2796   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2797   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2798   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2799   retval = vgetcpu(&cpu, NULL, NULL);
2800 #endif
2801 
2802   return (retval == -1) ? retval : cpu;
2803 }
2804 
2805 // Something to do with the numa-aware allocator needs these symbols
2806 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2807 extern "C" JNIEXPORT void numa_error(char *where) { }
2808 extern "C" JNIEXPORT int fork1() { return fork(); }
2809 
2810 
2811 // If we are running with libnuma version > 2, then we should
2812 // be trying to use symbols with versions 1.1
2813 // If we are running with earlier version, which did not have symbol versions,
2814 // we should use the base version.
2815 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2816   void *f = dlvsym(handle, name, "libnuma_1.1");
2817   if (f == NULL) {
2818     f = dlsym(handle, name);
2819   }
2820   return f;
2821 }
2822 
2823 bool os::Linux::libnuma_init() {
2824   // sched_getcpu() should be in libc.
2825   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2826                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2827 
2828   // If it's not, try a direct syscall.
2829   if (sched_getcpu() == -1) {
2830     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2831                                     (void*)&sched_getcpu_syscall));
2832   }
2833 
2834   if (sched_getcpu() != -1) { // Does it work?
2835     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2836     if (handle != NULL) {
2837       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2838                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2839       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2840                                        libnuma_dlsym(handle, "numa_max_node")));
2841       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2842                                         libnuma_dlsym(handle, "numa_available")));
2843       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2844                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2845       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2846                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2847       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2848                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2849 
2850 
2851       if (numa_available() != -1) {
2852         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2853         // Create a cpu -> node mapping
2854         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2855         rebuild_cpu_to_node_map();
2856         return true;
2857       }
2858     }
2859   }
2860   return false;
2861 }
2862 
2863 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2864 // The table is later used in get_node_by_cpu().
2865 void os::Linux::rebuild_cpu_to_node_map() {
2866   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2867                               // in libnuma (possible values are starting from 16,
2868                               // and continuing up with every other power of 2, but less
2869                               // than the maximum number of CPUs supported by kernel), and
2870                               // is a subject to change (in libnuma version 2 the requirements
2871                               // are more reasonable) we'll just hardcode the number they use
2872                               // in the library.
2873   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2874 
2875   size_t cpu_num = os::active_processor_count();
2876   size_t cpu_map_size = NCPUS / BitsPerCLong;
2877   size_t cpu_map_valid_size =
2878     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2879 
2880   cpu_to_node()->clear();
2881   cpu_to_node()->at_grow(cpu_num - 1);
2882   size_t node_num = numa_get_groups_num();
2883 
2884   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2885   for (size_t i = 0; i < node_num; i++) {
2886     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2887       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2888         if (cpu_map[j] != 0) {
2889           for (size_t k = 0; k < BitsPerCLong; k++) {
2890             if (cpu_map[j] & (1UL << k)) {
2891               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2892             }
2893           }
2894         }
2895       }
2896     }
2897   }
2898   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2899 }
2900 
2901 int os::Linux::get_node_by_cpu(int cpu_id) {
2902   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2903     return cpu_to_node()->at(cpu_id);
2904   }
2905   return -1;
2906 }
2907 
2908 GrowableArray<int>* os::Linux::_cpu_to_node;
2909 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2910 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2911 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2912 os::Linux::numa_available_func_t os::Linux::_numa_available;
2913 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2914 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2915 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2916 unsigned long* os::Linux::_numa_all_nodes;
2917 
2918 bool os::pd_uncommit_memory(char* addr, size_t size) {
2919   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2920                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2921   return res  != (uintptr_t) MAP_FAILED;
2922 }
2923 
2924 static address get_stack_commited_bottom(address bottom, size_t size) {
2925   address nbot = bottom;
2926   address ntop = bottom + size;
2927 
2928   size_t page_sz = os::vm_page_size();
2929   unsigned pages = size / page_sz;
2930 
2931   unsigned char vec[1];
2932   unsigned imin = 1, imax = pages + 1, imid;
2933   int mincore_return_value = 0;
2934 
2935   assert(imin <= imax, "Unexpected page size");
2936 
2937   while (imin < imax) {
2938     imid = (imax + imin) / 2;
2939     nbot = ntop - (imid * page_sz);
2940 
2941     // Use a trick with mincore to check whether the page is mapped or not.
2942     // mincore sets vec to 1 if page resides in memory and to 0 if page
2943     // is swapped output but if page we are asking for is unmapped
2944     // it returns -1,ENOMEM
2945     mincore_return_value = mincore(nbot, page_sz, vec);
2946 
2947     if (mincore_return_value == -1) {
2948       // Page is not mapped go up
2949       // to find first mapped page
2950       if (errno != EAGAIN) {
2951         assert(errno == ENOMEM, "Unexpected mincore errno");
2952         imax = imid;
2953       }
2954     } else {
2955       // Page is mapped go down
2956       // to find first not mapped page
2957       imin = imid + 1;
2958     }
2959   }
2960 
2961   nbot = nbot + page_sz;
2962 
2963   // Adjust stack bottom one page up if last checked page is not mapped
2964   if (mincore_return_value == -1) {
2965     nbot = nbot + page_sz;
2966   }
2967 
2968   return nbot;
2969 }
2970 
2971 
2972 // Linux uses a growable mapping for the stack, and if the mapping for
2973 // the stack guard pages is not removed when we detach a thread the
2974 // stack cannot grow beyond the pages where the stack guard was
2975 // mapped.  If at some point later in the process the stack expands to
2976 // that point, the Linux kernel cannot expand the stack any further
2977 // because the guard pages are in the way, and a segfault occurs.
2978 //
2979 // However, it's essential not to split the stack region by unmapping
2980 // a region (leaving a hole) that's already part of the stack mapping,
2981 // so if the stack mapping has already grown beyond the guard pages at
2982 // the time we create them, we have to truncate the stack mapping.
2983 // So, we need to know the extent of the stack mapping when
2984 // create_stack_guard_pages() is called.
2985 
2986 // We only need this for stacks that are growable: at the time of
2987 // writing thread stacks don't use growable mappings (i.e. those
2988 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2989 // only applies to the main thread.
2990 
2991 // If the (growable) stack mapping already extends beyond the point
2992 // where we're going to put our guard pages, truncate the mapping at
2993 // that point by munmap()ping it.  This ensures that when we later
2994 // munmap() the guard pages we don't leave a hole in the stack
2995 // mapping. This only affects the main/initial thread
2996 
2997 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2998   if (os::Linux::is_initial_thread()) {
2999     // As we manually grow stack up to bottom inside create_attached_thread(),
3000     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3001     // we don't need to do anything special.
3002     // Check it first, before calling heavy function.
3003     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3004     unsigned char vec[1];
3005 
3006     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3007       // Fallback to slow path on all errors, including EAGAIN
3008       stack_extent = (uintptr_t) get_stack_commited_bottom(
3009                                                            os::Linux::initial_thread_stack_bottom(),
3010                                                            (size_t)addr - stack_extent);
3011     }
3012 
3013     if (stack_extent < (uintptr_t)addr) {
3014       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3015     }
3016   }
3017 
3018   return os::commit_memory(addr, size, !ExecMem);
3019 }
3020 
3021 // If this is a growable mapping, remove the guard pages entirely by
3022 // munmap()ping them.  If not, just call uncommit_memory(). This only
3023 // affects the main/initial thread, but guard against future OS changes
3024 // It's safe to always unmap guard pages for initial thread because we
3025 // always place it right after end of the mapped region
3026 
3027 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3028   uintptr_t stack_extent, stack_base;
3029 
3030   if (os::Linux::is_initial_thread()) {
3031     return ::munmap(addr, size) == 0;
3032   }
3033 
3034   return os::uncommit_memory(addr, size);
3035 }
3036 
3037 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3038 // at 'requested_addr'. If there are existing memory mappings at the same
3039 // location, however, they will be overwritten. If 'fixed' is false,
3040 // 'requested_addr' is only treated as a hint, the return value may or
3041 // may not start from the requested address. Unlike Linux mmap(), this
3042 // function returns NULL to indicate failure.
3043 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3044   char * addr;
3045   int flags;
3046 
3047   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3048   if (fixed) {
3049     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3050     flags |= MAP_FIXED;
3051   }
3052 
3053   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3054   // touch an uncommitted page. Otherwise, the read/write might
3055   // succeed if we have enough swap space to back the physical page.
3056   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3057                        flags, -1, 0);
3058 
3059   return addr == MAP_FAILED ? NULL : addr;
3060 }
3061 
3062 static int anon_munmap(char * addr, size_t size) {
3063   return ::munmap(addr, size) == 0;
3064 }
3065 
3066 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3067                             size_t alignment_hint) {
3068   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3069 }
3070 
3071 bool os::pd_release_memory(char* addr, size_t size) {
3072   return anon_munmap(addr, size);
3073 }
3074 
3075 static bool linux_mprotect(char* addr, size_t size, int prot) {
3076   // Linux wants the mprotect address argument to be page aligned.
3077   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3078 
3079   // According to SUSv3, mprotect() should only be used with mappings
3080   // established by mmap(), and mmap() always maps whole pages. Unaligned
3081   // 'addr' likely indicates problem in the VM (e.g. trying to change
3082   // protection of malloc'ed or statically allocated memory). Check the
3083   // caller if you hit this assert.
3084   assert(addr == bottom, "sanity check");
3085 
3086   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3087   return ::mprotect(bottom, size, prot) == 0;
3088 }
3089 
3090 // Set protections specified
3091 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3092                         bool is_committed) {
3093   unsigned int p = 0;
3094   switch (prot) {
3095   case MEM_PROT_NONE: p = PROT_NONE; break;
3096   case MEM_PROT_READ: p = PROT_READ; break;
3097   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3098   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3099   default:
3100     ShouldNotReachHere();
3101   }
3102   // is_committed is unused.
3103   return linux_mprotect(addr, bytes, p);
3104 }
3105 
3106 bool os::guard_memory(char* addr, size_t size) {
3107   return linux_mprotect(addr, size, PROT_NONE);
3108 }
3109 
3110 bool os::unguard_memory(char* addr, size_t size) {
3111   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3112 }
3113 
3114 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3115                                                     size_t page_size) {
3116   bool result = false;
3117   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3118                  MAP_ANONYMOUS|MAP_PRIVATE,
3119                  -1, 0);
3120   if (p != MAP_FAILED) {
3121     void *aligned_p = align_ptr_up(p, page_size);
3122 
3123     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3124 
3125     munmap(p, page_size * 2);
3126   }
3127 
3128   if (warn && !result) {
3129     warning("TransparentHugePages is not supported by the operating system.");
3130   }
3131 
3132   return result;
3133 }
3134 
3135 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3136   bool result = false;
3137   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3138                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3139                  -1, 0);
3140 
3141   if (p != MAP_FAILED) {
3142     // We don't know if this really is a huge page or not.
3143     FILE *fp = fopen("/proc/self/maps", "r");
3144     if (fp) {
3145       while (!feof(fp)) {
3146         char chars[257];
3147         long x = 0;
3148         if (fgets(chars, sizeof(chars), fp)) {
3149           if (sscanf(chars, "%lx-%*x", &x) == 1
3150               && x == (long)p) {
3151             if (strstr (chars, "hugepage")) {
3152               result = true;
3153               break;
3154             }
3155           }
3156         }
3157       }
3158       fclose(fp);
3159     }
3160     munmap(p, page_size);
3161   }
3162 
3163   if (warn && !result) {
3164     warning("HugeTLBFS is not supported by the operating system.");
3165   }
3166 
3167   return result;
3168 }
3169 
3170 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3171 //
3172 // From the coredump_filter documentation:
3173 //
3174 // - (bit 0) anonymous private memory
3175 // - (bit 1) anonymous shared memory
3176 // - (bit 2) file-backed private memory
3177 // - (bit 3) file-backed shared memory
3178 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3179 //           effective only if the bit 2 is cleared)
3180 // - (bit 5) hugetlb private memory
3181 // - (bit 6) hugetlb shared memory
3182 //
3183 static void set_coredump_filter(void) {
3184   FILE *f;
3185   long cdm;
3186 
3187   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3188     return;
3189   }
3190 
3191   if (fscanf(f, "%lx", &cdm) != 1) {
3192     fclose(f);
3193     return;
3194   }
3195 
3196   rewind(f);
3197 
3198   if ((cdm & LARGEPAGES_BIT) == 0) {
3199     cdm |= LARGEPAGES_BIT;
3200     fprintf(f, "%#lx", cdm);
3201   }
3202 
3203   fclose(f);
3204 }
3205 
3206 // Large page support
3207 
3208 static size_t _large_page_size = 0;
3209 
3210 size_t os::Linux::find_large_page_size() {
3211   size_t large_page_size = 0;
3212 
3213   // large_page_size on Linux is used to round up heap size. x86 uses either
3214   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3215   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3216   // page as large as 256M.
3217   //
3218   // Here we try to figure out page size by parsing /proc/meminfo and looking
3219   // for a line with the following format:
3220   //    Hugepagesize:     2048 kB
3221   //
3222   // If we can't determine the value (e.g. /proc is not mounted, or the text
3223   // format has been changed), we'll use the largest page size supported by
3224   // the processor.
3225 
3226 #ifndef ZERO
3227   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3228                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3229 #endif // ZERO
3230 
3231   FILE *fp = fopen("/proc/meminfo", "r");
3232   if (fp) {
3233     while (!feof(fp)) {
3234       int x = 0;
3235       char buf[16];
3236       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3237         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3238           large_page_size = x * K;
3239           break;
3240         }
3241       } else {
3242         // skip to next line
3243         for (;;) {
3244           int ch = fgetc(fp);
3245           if (ch == EOF || ch == (int)'\n') break;
3246         }
3247       }
3248     }
3249     fclose(fp);
3250   }
3251 
3252   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3253     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3254             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3255             proper_unit_for_byte_size(large_page_size));
3256   }
3257 
3258   return large_page_size;
3259 }
3260 
3261 size_t os::Linux::setup_large_page_size() {
3262   _large_page_size = Linux::find_large_page_size();
3263   const size_t default_page_size = (size_t)Linux::page_size();
3264   if (_large_page_size > default_page_size) {
3265     _page_sizes[0] = _large_page_size;
3266     _page_sizes[1] = default_page_size;
3267     _page_sizes[2] = 0;
3268   }
3269 
3270   return _large_page_size;
3271 }
3272 
3273 bool os::Linux::setup_large_page_type(size_t page_size) {
3274   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3275       FLAG_IS_DEFAULT(UseSHM) &&
3276       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3277 
3278     // The type of large pages has not been specified by the user.
3279 
3280     // Try UseHugeTLBFS and then UseSHM.
3281     UseHugeTLBFS = UseSHM = true;
3282 
3283     // Don't try UseTransparentHugePages since there are known
3284     // performance issues with it turned on. This might change in the future.
3285     UseTransparentHugePages = false;
3286   }
3287 
3288   if (UseTransparentHugePages) {
3289     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3290     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3291       UseHugeTLBFS = false;
3292       UseSHM = false;
3293       return true;
3294     }
3295     UseTransparentHugePages = false;
3296   }
3297 
3298   if (UseHugeTLBFS) {
3299     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3300     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3301       UseSHM = false;
3302       return true;
3303     }
3304     UseHugeTLBFS = false;
3305   }
3306 
3307   return UseSHM;
3308 }
3309 
3310 void os::large_page_init() {
3311   if (!UseLargePages &&
3312       !UseTransparentHugePages &&
3313       !UseHugeTLBFS &&
3314       !UseSHM) {
3315     // Not using large pages.
3316     return;
3317   }
3318 
3319   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3320     // The user explicitly turned off large pages.
3321     // Ignore the rest of the large pages flags.
3322     UseTransparentHugePages = false;
3323     UseHugeTLBFS = false;
3324     UseSHM = false;
3325     return;
3326   }
3327 
3328   size_t large_page_size = Linux::setup_large_page_size();
3329   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3330 
3331   set_coredump_filter();
3332 }
3333 
3334 #ifndef SHM_HUGETLB
3335   #define SHM_HUGETLB 04000
3336 #endif
3337 
3338 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3339                                             char* req_addr, bool exec) {
3340   // "exec" is passed in but not used.  Creating the shared image for
3341   // the code cache doesn't have an SHM_X executable permission to check.
3342   assert(UseLargePages && UseSHM, "only for SHM large pages");
3343   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3344 
3345   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3346     return NULL; // Fallback to small pages.
3347   }
3348 
3349   key_t key = IPC_PRIVATE;
3350   char *addr;
3351 
3352   bool warn_on_failure = UseLargePages &&
3353                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3354                          !FLAG_IS_DEFAULT(UseSHM) ||
3355                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3356   char msg[128];
3357 
3358   // Create a large shared memory region to attach to based on size.
3359   // Currently, size is the total size of the heap
3360   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3361   if (shmid == -1) {
3362     // Possible reasons for shmget failure:
3363     // 1. shmmax is too small for Java heap.
3364     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3365     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3366     // 2. not enough large page memory.
3367     //    > check available large pages: cat /proc/meminfo
3368     //    > increase amount of large pages:
3369     //          echo new_value > /proc/sys/vm/nr_hugepages
3370     //      Note 1: different Linux may use different name for this property,
3371     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3372     //      Note 2: it's possible there's enough physical memory available but
3373     //            they are so fragmented after a long run that they can't
3374     //            coalesce into large pages. Try to reserve large pages when
3375     //            the system is still "fresh".
3376     if (warn_on_failure) {
3377       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3378       warning("%s", msg);
3379     }
3380     return NULL;
3381   }
3382 
3383   // attach to the region
3384   addr = (char*)shmat(shmid, req_addr, 0);
3385   int err = errno;
3386 
3387   // Remove shmid. If shmat() is successful, the actual shared memory segment
3388   // will be deleted when it's detached by shmdt() or when the process
3389   // terminates. If shmat() is not successful this will remove the shared
3390   // segment immediately.
3391   shmctl(shmid, IPC_RMID, NULL);
3392 
3393   if ((intptr_t)addr == -1) {
3394     if (warn_on_failure) {
3395       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3396       warning("%s", msg);
3397     }
3398     return NULL;
3399   }
3400 
3401   return addr;
3402 }
3403 
3404 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3405                                         int error) {
3406   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3407 
3408   bool warn_on_failure = UseLargePages &&
3409       (!FLAG_IS_DEFAULT(UseLargePages) ||
3410        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3411        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3412 
3413   if (warn_on_failure) {
3414     char msg[128];
3415     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3416                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3417     warning("%s", msg);
3418   }
3419 }
3420 
3421 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3422                                                         char* req_addr,
3423                                                         bool exec) {
3424   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3425   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3426   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3427 
3428   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3429   char* addr = (char*)::mmap(req_addr, bytes, prot,
3430                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3431                              -1, 0);
3432 
3433   if (addr == MAP_FAILED) {
3434     warn_on_large_pages_failure(req_addr, bytes, errno);
3435     return NULL;
3436   }
3437 
3438   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3439 
3440   return addr;
3441 }
3442 
3443 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3444 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3445 //   (req_addr != NULL) or with a given alignment.
3446 //  - bytes shall be a multiple of alignment.
3447 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3448 //  - alignment sets the alignment at which memory shall be allocated.
3449 //     It must be a multiple of allocation granularity.
3450 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3451 //  req_addr or NULL.
3452 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3453 
3454   size_t extra_size = bytes;
3455   if (req_addr == NULL && alignment > 0) {
3456     extra_size += alignment;
3457   }
3458 
3459   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3460     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3461     -1, 0);
3462   if (start == MAP_FAILED) {
3463     start = NULL;
3464   } else {
3465     if (req_addr != NULL) {
3466       if (start != req_addr) {
3467         ::munmap(start, extra_size);
3468         start = NULL;
3469       }
3470     } else {
3471       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3472       char* const end_aligned = start_aligned + bytes;
3473       char* const end = start + extra_size;
3474       if (start_aligned > start) {
3475         ::munmap(start, start_aligned - start);
3476       }
3477       if (end_aligned < end) {
3478         ::munmap(end_aligned, end - end_aligned);
3479       }
3480       start = start_aligned;
3481     }
3482   }
3483   return start;
3484 
3485 }
3486 
3487 // Reserve memory using mmap(MAP_HUGETLB).
3488 //  - bytes shall be a multiple of alignment.
3489 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3490 //  - alignment sets the alignment at which memory shall be allocated.
3491 //     It must be a multiple of allocation granularity.
3492 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3493 //  req_addr or NULL.
3494 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3495                                                          size_t alignment,
3496                                                          char* req_addr,
3497                                                          bool exec) {
3498   size_t large_page_size = os::large_page_size();
3499   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3500 
3501   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3502   assert(is_size_aligned(bytes, alignment), "Must be");
3503 
3504   // First reserve - but not commit - the address range in small pages.
3505   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3506 
3507   if (start == NULL) {
3508     return NULL;
3509   }
3510 
3511   assert(is_ptr_aligned(start, alignment), "Must be");
3512 
3513   char* end = start + bytes;
3514 
3515   // Find the regions of the allocated chunk that can be promoted to large pages.
3516   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3517   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3518 
3519   size_t lp_bytes = lp_end - lp_start;
3520 
3521   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3522 
3523   if (lp_bytes == 0) {
3524     // The mapped region doesn't even span the start and the end of a large page.
3525     // Fall back to allocate a non-special area.
3526     ::munmap(start, end - start);
3527     return NULL;
3528   }
3529 
3530   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3531 
3532   void* result;
3533 
3534   // Commit small-paged leading area.
3535   if (start != lp_start) {
3536     result = ::mmap(start, lp_start - start, prot,
3537                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3538                     -1, 0);
3539     if (result == MAP_FAILED) {
3540       ::munmap(lp_start, end - lp_start);
3541       return NULL;
3542     }
3543   }
3544 
3545   // Commit large-paged area.
3546   result = ::mmap(lp_start, lp_bytes, prot,
3547                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3548                   -1, 0);
3549   if (result == MAP_FAILED) {
3550     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3551     // If the mmap above fails, the large pages region will be unmapped and we
3552     // have regions before and after with small pages. Release these regions.
3553     //
3554     // |  mapped  |  unmapped  |  mapped  |
3555     // ^          ^            ^          ^
3556     // start      lp_start     lp_end     end
3557     //
3558     ::munmap(start, lp_start - start);
3559     ::munmap(lp_end, end - lp_end);
3560     return NULL;
3561   }
3562 
3563   // Commit small-paged trailing area.
3564   if (lp_end != end) {
3565     result = ::mmap(lp_end, end - lp_end, prot,
3566                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3567                     -1, 0);
3568     if (result == MAP_FAILED) {
3569       ::munmap(start, lp_end - start);
3570       return NULL;
3571     }
3572   }
3573 
3574   return start;
3575 }
3576 
3577 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3578                                                    size_t alignment,
3579                                                    char* req_addr,
3580                                                    bool exec) {
3581   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3582   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3583   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3584   assert(is_power_of_2(os::large_page_size()), "Must be");
3585   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3586 
3587   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3588     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3589   } else {
3590     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3591   }
3592 }
3593 
3594 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3595                                  char* req_addr, bool exec) {
3596   assert(UseLargePages, "only for large pages");
3597 
3598   char* addr;
3599   if (UseSHM) {
3600     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3601   } else {
3602     assert(UseHugeTLBFS, "must be");
3603     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3604   }
3605 
3606   if (addr != NULL) {
3607     if (UseNUMAInterleaving) {
3608       numa_make_global(addr, bytes);
3609     }
3610 
3611     // The memory is committed
3612     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3613   }
3614 
3615   return addr;
3616 }
3617 
3618 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3619   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3620   return shmdt(base) == 0;
3621 }
3622 
3623 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3624   return pd_release_memory(base, bytes);
3625 }
3626 
3627 bool os::release_memory_special(char* base, size_t bytes) {
3628   bool res;
3629   if (MemTracker::tracking_level() > NMT_minimal) {
3630     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3631     res = os::Linux::release_memory_special_impl(base, bytes);
3632     if (res) {
3633       tkr.record((address)base, bytes);
3634     }
3635 
3636   } else {
3637     res = os::Linux::release_memory_special_impl(base, bytes);
3638   }
3639   return res;
3640 }
3641 
3642 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3643   assert(UseLargePages, "only for large pages");
3644   bool res;
3645 
3646   if (UseSHM) {
3647     res = os::Linux::release_memory_special_shm(base, bytes);
3648   } else {
3649     assert(UseHugeTLBFS, "must be");
3650     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3651   }
3652   return res;
3653 }
3654 
3655 size_t os::large_page_size() {
3656   return _large_page_size;
3657 }
3658 
3659 // With SysV SHM the entire memory region must be allocated as shared
3660 // memory.
3661 // HugeTLBFS allows application to commit large page memory on demand.
3662 // However, when committing memory with HugeTLBFS fails, the region
3663 // that was supposed to be committed will lose the old reservation
3664 // and allow other threads to steal that memory region. Because of this
3665 // behavior we can't commit HugeTLBFS memory.
3666 bool os::can_commit_large_page_memory() {
3667   return UseTransparentHugePages;
3668 }
3669 
3670 bool os::can_execute_large_page_memory() {
3671   return UseTransparentHugePages || UseHugeTLBFS;
3672 }
3673 
3674 // Reserve memory at an arbitrary address, only if that area is
3675 // available (and not reserved for something else).
3676 
3677 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3678   const int max_tries = 10;
3679   char* base[max_tries];
3680   size_t size[max_tries];
3681   const size_t gap = 0x000000;
3682 
3683   // Assert only that the size is a multiple of the page size, since
3684   // that's all that mmap requires, and since that's all we really know
3685   // about at this low abstraction level.  If we need higher alignment,
3686   // we can either pass an alignment to this method or verify alignment
3687   // in one of the methods further up the call chain.  See bug 5044738.
3688   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3689 
3690   // Repeatedly allocate blocks until the block is allocated at the
3691   // right spot.
3692 
3693   // Linux mmap allows caller to pass an address as hint; give it a try first,
3694   // if kernel honors the hint then we can return immediately.
3695   char * addr = anon_mmap(requested_addr, bytes, false);
3696   if (addr == requested_addr) {
3697     return requested_addr;
3698   }
3699 
3700   if (addr != NULL) {
3701     // mmap() is successful but it fails to reserve at the requested address
3702     anon_munmap(addr, bytes);
3703   }
3704 
3705   int i;
3706   for (i = 0; i < max_tries; ++i) {
3707     base[i] = reserve_memory(bytes);
3708 
3709     if (base[i] != NULL) {
3710       // Is this the block we wanted?
3711       if (base[i] == requested_addr) {
3712         size[i] = bytes;
3713         break;
3714       }
3715 
3716       // Does this overlap the block we wanted? Give back the overlapped
3717       // parts and try again.
3718 
3719       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3720       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3721         unmap_memory(base[i], top_overlap);
3722         base[i] += top_overlap;
3723         size[i] = bytes - top_overlap;
3724       } else {
3725         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3726         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3727           unmap_memory(requested_addr, bottom_overlap);
3728           size[i] = bytes - bottom_overlap;
3729         } else {
3730           size[i] = bytes;
3731         }
3732       }
3733     }
3734   }
3735 
3736   // Give back the unused reserved pieces.
3737 
3738   for (int j = 0; j < i; ++j) {
3739     if (base[j] != NULL) {
3740       unmap_memory(base[j], size[j]);
3741     }
3742   }
3743 
3744   if (i < max_tries) {
3745     return requested_addr;
3746   } else {
3747     return NULL;
3748   }
3749 }
3750 
3751 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3752   return ::read(fd, buf, nBytes);
3753 }
3754 
3755 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3756   return ::pread(fd, buf, nBytes, offset);
3757 }
3758 
3759 // Short sleep, direct OS call.
3760 //
3761 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3762 // sched_yield(2) will actually give up the CPU:
3763 //
3764 //   * Alone on this pariticular CPU, keeps running.
3765 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3766 //     (pre 2.6.39).
3767 //
3768 // So calling this with 0 is an alternative.
3769 //
3770 void os::naked_short_sleep(jlong ms) {
3771   struct timespec req;
3772 
3773   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3774   req.tv_sec = 0;
3775   if (ms > 0) {
3776     req.tv_nsec = (ms % 1000) * 1000000;
3777   } else {
3778     req.tv_nsec = 1;
3779   }
3780 
3781   nanosleep(&req, NULL);
3782 
3783   return;
3784 }
3785 
3786 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3787 void os::infinite_sleep() {
3788   while (true) {    // sleep forever ...
3789     ::sleep(100);   // ... 100 seconds at a time
3790   }
3791 }
3792 
3793 // Used to convert frequent JVM_Yield() to nops
3794 bool os::dont_yield() {
3795   return DontYieldALot;
3796 }
3797 
3798 void os::naked_yield() {
3799   sched_yield();
3800 }
3801 
3802 ////////////////////////////////////////////////////////////////////////////////
3803 // thread priority support
3804 
3805 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3806 // only supports dynamic priority, static priority must be zero. For real-time
3807 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3808 // However, for large multi-threaded applications, SCHED_RR is not only slower
3809 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3810 // of 5 runs - Sep 2005).
3811 //
3812 // The following code actually changes the niceness of kernel-thread/LWP. It
3813 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3814 // not the entire user process, and user level threads are 1:1 mapped to kernel
3815 // threads. It has always been the case, but could change in the future. For
3816 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3817 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3818 
3819 int os::java_to_os_priority[CriticalPriority + 1] = {
3820   19,              // 0 Entry should never be used
3821 
3822    4,              // 1 MinPriority
3823    3,              // 2
3824    2,              // 3
3825 
3826    1,              // 4
3827    0,              // 5 NormPriority
3828   -1,              // 6
3829 
3830   -2,              // 7
3831   -3,              // 8
3832   -4,              // 9 NearMaxPriority
3833 
3834   -5,              // 10 MaxPriority
3835 
3836   -5               // 11 CriticalPriority
3837 };
3838 
3839 static int prio_init() {
3840   if (ThreadPriorityPolicy == 1) {
3841     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3842     // if effective uid is not root. Perhaps, a more elegant way of doing
3843     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3844     if (geteuid() != 0) {
3845       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3846         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3847       }
3848       ThreadPriorityPolicy = 0;
3849     }
3850   }
3851   if (UseCriticalJavaThreadPriority) {
3852     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3853   }
3854   return 0;
3855 }
3856 
3857 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3858   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3859 
3860   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3861   return (ret == 0) ? OS_OK : OS_ERR;
3862 }
3863 
3864 OSReturn os::get_native_priority(const Thread* const thread,
3865                                  int *priority_ptr) {
3866   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3867     *priority_ptr = java_to_os_priority[NormPriority];
3868     return OS_OK;
3869   }
3870 
3871   errno = 0;
3872   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3873   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3874 }
3875 
3876 // Hint to the underlying OS that a task switch would not be good.
3877 // Void return because it's a hint and can fail.
3878 void os::hint_no_preempt() {}
3879 
3880 ////////////////////////////////////////////////////////////////////////////////
3881 // suspend/resume support
3882 
3883 //  the low-level signal-based suspend/resume support is a remnant from the
3884 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3885 //  within hotspot. Now there is a single use-case for this:
3886 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3887 //      that runs in the watcher thread.
3888 //  The remaining code is greatly simplified from the more general suspension
3889 //  code that used to be used.
3890 //
3891 //  The protocol is quite simple:
3892 //  - suspend:
3893 //      - sends a signal to the target thread
3894 //      - polls the suspend state of the osthread using a yield loop
3895 //      - target thread signal handler (SR_handler) sets suspend state
3896 //        and blocks in sigsuspend until continued
3897 //  - resume:
3898 //      - sets target osthread state to continue
3899 //      - sends signal to end the sigsuspend loop in the SR_handler
3900 //
3901 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3902 
3903 static void resume_clear_context(OSThread *osthread) {
3904   osthread->set_ucontext(NULL);
3905   osthread->set_siginfo(NULL);
3906 }
3907 
3908 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3909                                  ucontext_t* context) {
3910   osthread->set_ucontext(context);
3911   osthread->set_siginfo(siginfo);
3912 }
3913 
3914 // Handler function invoked when a thread's execution is suspended or
3915 // resumed. We have to be careful that only async-safe functions are
3916 // called here (Note: most pthread functions are not async safe and
3917 // should be avoided.)
3918 //
3919 // Note: sigwait() is a more natural fit than sigsuspend() from an
3920 // interface point of view, but sigwait() prevents the signal hander
3921 // from being run. libpthread would get very confused by not having
3922 // its signal handlers run and prevents sigwait()'s use with the
3923 // mutex granting granting signal.
3924 //
3925 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3926 //
3927 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3928   // Save and restore errno to avoid confusing native code with EINTR
3929   // after sigsuspend.
3930   int old_errno = errno;
3931 
3932   Thread* thread = Thread::current();
3933   OSThread* osthread = thread->osthread();
3934   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3935 
3936   os::SuspendResume::State current = osthread->sr.state();
3937   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3938     suspend_save_context(osthread, siginfo, context);
3939 
3940     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3941     os::SuspendResume::State state = osthread->sr.suspended();
3942     if (state == os::SuspendResume::SR_SUSPENDED) {
3943       sigset_t suspend_set;  // signals for sigsuspend()
3944 
3945       // get current set of blocked signals and unblock resume signal
3946       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3947       sigdelset(&suspend_set, SR_signum);
3948 
3949       sr_semaphore.signal();
3950       // wait here until we are resumed
3951       while (1) {
3952         sigsuspend(&suspend_set);
3953 
3954         os::SuspendResume::State result = osthread->sr.running();
3955         if (result == os::SuspendResume::SR_RUNNING) {
3956           sr_semaphore.signal();
3957           break;
3958         }
3959       }
3960 
3961     } else if (state == os::SuspendResume::SR_RUNNING) {
3962       // request was cancelled, continue
3963     } else {
3964       ShouldNotReachHere();
3965     }
3966 
3967     resume_clear_context(osthread);
3968   } else if (current == os::SuspendResume::SR_RUNNING) {
3969     // request was cancelled, continue
3970   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3971     // ignore
3972   } else {
3973     // ignore
3974   }
3975 
3976   errno = old_errno;
3977 }
3978 
3979 
3980 static int SR_initialize() {
3981   struct sigaction act;
3982   char *s;
3983   // Get signal number to use for suspend/resume
3984   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3985     int sig = ::strtol(s, 0, 10);
3986     if (sig > 0 || sig < _NSIG) {
3987       SR_signum = sig;
3988     }
3989   }
3990 
3991   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3992          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3993 
3994   sigemptyset(&SR_sigset);
3995   sigaddset(&SR_sigset, SR_signum);
3996 
3997   // Set up signal handler for suspend/resume
3998   act.sa_flags = SA_RESTART|SA_SIGINFO;
3999   act.sa_handler = (void (*)(int)) SR_handler;
4000 
4001   // SR_signum is blocked by default.
4002   // 4528190 - We also need to block pthread restart signal (32 on all
4003   // supported Linux platforms). Note that LinuxThreads need to block
4004   // this signal for all threads to work properly. So we don't have
4005   // to use hard-coded signal number when setting up the mask.
4006   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4007 
4008   if (sigaction(SR_signum, &act, 0) == -1) {
4009     return -1;
4010   }
4011 
4012   // Save signal flag
4013   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4014   return 0;
4015 }
4016 
4017 static int sr_notify(OSThread* osthread) {
4018   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4019   assert_status(status == 0, status, "pthread_kill");
4020   return status;
4021 }
4022 
4023 // "Randomly" selected value for how long we want to spin
4024 // before bailing out on suspending a thread, also how often
4025 // we send a signal to a thread we want to resume
4026 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4027 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4028 
4029 // returns true on success and false on error - really an error is fatal
4030 // but this seems the normal response to library errors
4031 static bool do_suspend(OSThread* osthread) {
4032   assert(osthread->sr.is_running(), "thread should be running");
4033   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4034 
4035   // mark as suspended and send signal
4036   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4037     // failed to switch, state wasn't running?
4038     ShouldNotReachHere();
4039     return false;
4040   }
4041 
4042   if (sr_notify(osthread) != 0) {
4043     ShouldNotReachHere();
4044   }
4045 
4046   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4047   while (true) {
4048     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4049       break;
4050     } else {
4051       // timeout
4052       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4053       if (cancelled == os::SuspendResume::SR_RUNNING) {
4054         return false;
4055       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4056         // make sure that we consume the signal on the semaphore as well
4057         sr_semaphore.wait();
4058         break;
4059       } else {
4060         ShouldNotReachHere();
4061         return false;
4062       }
4063     }
4064   }
4065 
4066   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4067   return true;
4068 }
4069 
4070 static void do_resume(OSThread* osthread) {
4071   assert(osthread->sr.is_suspended(), "thread should be suspended");
4072   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4073 
4074   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4075     // failed to switch to WAKEUP_REQUEST
4076     ShouldNotReachHere();
4077     return;
4078   }
4079 
4080   while (true) {
4081     if (sr_notify(osthread) == 0) {
4082       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4083         if (osthread->sr.is_running()) {
4084           return;
4085         }
4086       }
4087     } else {
4088       ShouldNotReachHere();
4089     }
4090   }
4091 
4092   guarantee(osthread->sr.is_running(), "Must be running!");
4093 }
4094 
4095 ///////////////////////////////////////////////////////////////////////////////////
4096 // signal handling (except suspend/resume)
4097 
4098 // This routine may be used by user applications as a "hook" to catch signals.
4099 // The user-defined signal handler must pass unrecognized signals to this
4100 // routine, and if it returns true (non-zero), then the signal handler must
4101 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4102 // routine will never retun false (zero), but instead will execute a VM panic
4103 // routine kill the process.
4104 //
4105 // If this routine returns false, it is OK to call it again.  This allows
4106 // the user-defined signal handler to perform checks either before or after
4107 // the VM performs its own checks.  Naturally, the user code would be making
4108 // a serious error if it tried to handle an exception (such as a null check
4109 // or breakpoint) that the VM was generating for its own correct operation.
4110 //
4111 // This routine may recognize any of the following kinds of signals:
4112 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4113 // It should be consulted by handlers for any of those signals.
4114 //
4115 // The caller of this routine must pass in the three arguments supplied
4116 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4117 // field of the structure passed to sigaction().  This routine assumes that
4118 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4119 //
4120 // Note that the VM will print warnings if it detects conflicting signal
4121 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4122 //
4123 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4124                                                  siginfo_t* siginfo,
4125                                                  void* ucontext,
4126                                                  int abort_if_unrecognized);
4127 
4128 void signalHandler(int sig, siginfo_t* info, void* uc) {
4129   assert(info != NULL && uc != NULL, "it must be old kernel");
4130   int orig_errno = errno;  // Preserve errno value over signal handler.
4131   JVM_handle_linux_signal(sig, info, uc, true);
4132   errno = orig_errno;
4133 }
4134 
4135 
4136 // This boolean allows users to forward their own non-matching signals
4137 // to JVM_handle_linux_signal, harmlessly.
4138 bool os::Linux::signal_handlers_are_installed = false;
4139 
4140 // For signal-chaining
4141 struct sigaction os::Linux::sigact[MAXSIGNUM];
4142 unsigned int os::Linux::sigs = 0;
4143 bool os::Linux::libjsig_is_loaded = false;
4144 typedef struct sigaction *(*get_signal_t)(int);
4145 get_signal_t os::Linux::get_signal_action = NULL;
4146 
4147 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4148   struct sigaction *actp = NULL;
4149 
4150   if (libjsig_is_loaded) {
4151     // Retrieve the old signal handler from libjsig
4152     actp = (*get_signal_action)(sig);
4153   }
4154   if (actp == NULL) {
4155     // Retrieve the preinstalled signal handler from jvm
4156     actp = get_preinstalled_handler(sig);
4157   }
4158 
4159   return actp;
4160 }
4161 
4162 static bool call_chained_handler(struct sigaction *actp, int sig,
4163                                  siginfo_t *siginfo, void *context) {
4164   // Call the old signal handler
4165   if (actp->sa_handler == SIG_DFL) {
4166     // It's more reasonable to let jvm treat it as an unexpected exception
4167     // instead of taking the default action.
4168     return false;
4169   } else if (actp->sa_handler != SIG_IGN) {
4170     if ((actp->sa_flags & SA_NODEFER) == 0) {
4171       // automaticlly block the signal
4172       sigaddset(&(actp->sa_mask), sig);
4173     }
4174 
4175     sa_handler_t hand;
4176     sa_sigaction_t sa;
4177     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4178     // retrieve the chained handler
4179     if (siginfo_flag_set) {
4180       sa = actp->sa_sigaction;
4181     } else {
4182       hand = actp->sa_handler;
4183     }
4184 
4185     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4186       actp->sa_handler = SIG_DFL;
4187     }
4188 
4189     // try to honor the signal mask
4190     sigset_t oset;
4191     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4192 
4193     // call into the chained handler
4194     if (siginfo_flag_set) {
4195       (*sa)(sig, siginfo, context);
4196     } else {
4197       (*hand)(sig);
4198     }
4199 
4200     // restore the signal mask
4201     pthread_sigmask(SIG_SETMASK, &oset, 0);
4202   }
4203   // Tell jvm's signal handler the signal is taken care of.
4204   return true;
4205 }
4206 
4207 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4208   bool chained = false;
4209   // signal-chaining
4210   if (UseSignalChaining) {
4211     struct sigaction *actp = get_chained_signal_action(sig);
4212     if (actp != NULL) {
4213       chained = call_chained_handler(actp, sig, siginfo, context);
4214     }
4215   }
4216   return chained;
4217 }
4218 
4219 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4220   if ((((unsigned int)1 << sig) & sigs) != 0) {
4221     return &sigact[sig];
4222   }
4223   return NULL;
4224 }
4225 
4226 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4227   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4228   sigact[sig] = oldAct;
4229   sigs |= (unsigned int)1 << sig;
4230 }
4231 
4232 // for diagnostic
4233 int os::Linux::sigflags[MAXSIGNUM];
4234 
4235 int os::Linux::get_our_sigflags(int sig) {
4236   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4237   return sigflags[sig];
4238 }
4239 
4240 void os::Linux::set_our_sigflags(int sig, int flags) {
4241   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4242   sigflags[sig] = flags;
4243 }
4244 
4245 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4246   // Check for overwrite.
4247   struct sigaction oldAct;
4248   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4249 
4250   void* oldhand = oldAct.sa_sigaction
4251                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4252                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4253   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4254       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4255       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4256     if (AllowUserSignalHandlers || !set_installed) {
4257       // Do not overwrite; user takes responsibility to forward to us.
4258       return;
4259     } else if (UseSignalChaining) {
4260       // save the old handler in jvm
4261       save_preinstalled_handler(sig, oldAct);
4262       // libjsig also interposes the sigaction() call below and saves the
4263       // old sigaction on it own.
4264     } else {
4265       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4266                     "%#lx for signal %d.", (long)oldhand, sig));
4267     }
4268   }
4269 
4270   struct sigaction sigAct;
4271   sigfillset(&(sigAct.sa_mask));
4272   sigAct.sa_handler = SIG_DFL;
4273   if (!set_installed) {
4274     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4275   } else {
4276     sigAct.sa_sigaction = signalHandler;
4277     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4278   }
4279   // Save flags, which are set by ours
4280   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4281   sigflags[sig] = sigAct.sa_flags;
4282 
4283   int ret = sigaction(sig, &sigAct, &oldAct);
4284   assert(ret == 0, "check");
4285 
4286   void* oldhand2  = oldAct.sa_sigaction
4287                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4288                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4289   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4290 }
4291 
4292 // install signal handlers for signals that HotSpot needs to
4293 // handle in order to support Java-level exception handling.
4294 
4295 void os::Linux::install_signal_handlers() {
4296   if (!signal_handlers_are_installed) {
4297     signal_handlers_are_installed = true;
4298 
4299     // signal-chaining
4300     typedef void (*signal_setting_t)();
4301     signal_setting_t begin_signal_setting = NULL;
4302     signal_setting_t end_signal_setting = NULL;
4303     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4304                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4305     if (begin_signal_setting != NULL) {
4306       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4307                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4308       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4309                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4310       libjsig_is_loaded = true;
4311       assert(UseSignalChaining, "should enable signal-chaining");
4312     }
4313     if (libjsig_is_loaded) {
4314       // Tell libjsig jvm is setting signal handlers
4315       (*begin_signal_setting)();
4316     }
4317 
4318     set_signal_handler(SIGSEGV, true);
4319     set_signal_handler(SIGPIPE, true);
4320     set_signal_handler(SIGBUS, true);
4321     set_signal_handler(SIGILL, true);
4322     set_signal_handler(SIGFPE, true);
4323 #if defined(PPC64)
4324     set_signal_handler(SIGTRAP, true);
4325 #endif
4326     set_signal_handler(SIGXFSZ, true);
4327 
4328     if (libjsig_is_loaded) {
4329       // Tell libjsig jvm finishes setting signal handlers
4330       (*end_signal_setting)();
4331     }
4332 
4333     // We don't activate signal checker if libjsig is in place, we trust ourselves
4334     // and if UserSignalHandler is installed all bets are off.
4335     // Log that signal checking is off only if -verbose:jni is specified.
4336     if (CheckJNICalls) {
4337       if (libjsig_is_loaded) {
4338         if (PrintJNIResolving) {
4339           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4340         }
4341         check_signals = false;
4342       }
4343       if (AllowUserSignalHandlers) {
4344         if (PrintJNIResolving) {
4345           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4346         }
4347         check_signals = false;
4348       }
4349     }
4350   }
4351 }
4352 
4353 // This is the fastest way to get thread cpu time on Linux.
4354 // Returns cpu time (user+sys) for any thread, not only for current.
4355 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4356 // It might work on 2.6.10+ with a special kernel/glibc patch.
4357 // For reference, please, see IEEE Std 1003.1-2004:
4358 //   http://www.unix.org/single_unix_specification
4359 
4360 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4361   struct timespec tp;
4362   int rc = os::Linux::clock_gettime(clockid, &tp);
4363   assert(rc == 0, "clock_gettime is expected to return 0 code");
4364 
4365   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4366 }
4367 
4368 /////
4369 // glibc on Linux platform uses non-documented flag
4370 // to indicate, that some special sort of signal
4371 // trampoline is used.
4372 // We will never set this flag, and we should
4373 // ignore this flag in our diagnostic
4374 #ifdef SIGNIFICANT_SIGNAL_MASK
4375   #undef SIGNIFICANT_SIGNAL_MASK
4376 #endif
4377 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4378 
4379 static const char* get_signal_handler_name(address handler,
4380                                            char* buf, int buflen) {
4381   int offset;
4382   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4383   if (found) {
4384     // skip directory names
4385     const char *p1, *p2;
4386     p1 = buf;
4387     size_t len = strlen(os::file_separator());
4388     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4389     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4390   } else {
4391     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4392   }
4393   return buf;
4394 }
4395 
4396 static void print_signal_handler(outputStream* st, int sig,
4397                                  char* buf, size_t buflen) {
4398   struct sigaction sa;
4399 
4400   sigaction(sig, NULL, &sa);
4401 
4402   // See comment for SIGNIFICANT_SIGNAL_MASK define
4403   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4404 
4405   st->print("%s: ", os::exception_name(sig, buf, buflen));
4406 
4407   address handler = (sa.sa_flags & SA_SIGINFO)
4408     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4409     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4410 
4411   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4412     st->print("SIG_DFL");
4413   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4414     st->print("SIG_IGN");
4415   } else {
4416     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4417   }
4418 
4419   st->print(", sa_mask[0]=");
4420   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4421 
4422   address rh = VMError::get_resetted_sighandler(sig);
4423   // May be, handler was resetted by VMError?
4424   if (rh != NULL) {
4425     handler = rh;
4426     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4427   }
4428 
4429   st->print(", sa_flags=");
4430   os::Posix::print_sa_flags(st, sa.sa_flags);
4431 
4432   // Check: is it our handler?
4433   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4434       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4435     // It is our signal handler
4436     // check for flags, reset system-used one!
4437     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4438       st->print(
4439                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4440                 os::Linux::get_our_sigflags(sig));
4441     }
4442   }
4443   st->cr();
4444 }
4445 
4446 
4447 #define DO_SIGNAL_CHECK(sig)                      \
4448   do {                                            \
4449     if (!sigismember(&check_signal_done, sig)) {  \
4450       os::Linux::check_signal_handler(sig);       \
4451     }                                             \
4452   } while (0)
4453 
4454 // This method is a periodic task to check for misbehaving JNI applications
4455 // under CheckJNI, we can add any periodic checks here
4456 
4457 void os::run_periodic_checks() {
4458   if (check_signals == false) return;
4459 
4460   // SEGV and BUS if overridden could potentially prevent
4461   // generation of hs*.log in the event of a crash, debugging
4462   // such a case can be very challenging, so we absolutely
4463   // check the following for a good measure:
4464   DO_SIGNAL_CHECK(SIGSEGV);
4465   DO_SIGNAL_CHECK(SIGILL);
4466   DO_SIGNAL_CHECK(SIGFPE);
4467   DO_SIGNAL_CHECK(SIGBUS);
4468   DO_SIGNAL_CHECK(SIGPIPE);
4469   DO_SIGNAL_CHECK(SIGXFSZ);
4470 #if defined(PPC64)
4471   DO_SIGNAL_CHECK(SIGTRAP);
4472 #endif
4473 
4474   // ReduceSignalUsage allows the user to override these handlers
4475   // see comments at the very top and jvm_solaris.h
4476   if (!ReduceSignalUsage) {
4477     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4478     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4479     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4480     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4481   }
4482 
4483   DO_SIGNAL_CHECK(SR_signum);
4484   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4485 }
4486 
4487 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4488 
4489 static os_sigaction_t os_sigaction = NULL;
4490 
4491 void os::Linux::check_signal_handler(int sig) {
4492   char buf[O_BUFLEN];
4493   address jvmHandler = NULL;
4494 
4495 
4496   struct sigaction act;
4497   if (os_sigaction == NULL) {
4498     // only trust the default sigaction, in case it has been interposed
4499     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4500     if (os_sigaction == NULL) return;
4501   }
4502 
4503   os_sigaction(sig, (struct sigaction*)NULL, &act);
4504 
4505 
4506   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4507 
4508   address thisHandler = (act.sa_flags & SA_SIGINFO)
4509     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4510     : CAST_FROM_FN_PTR(address, act.sa_handler);
4511 
4512 
4513   switch (sig) {
4514   case SIGSEGV:
4515   case SIGBUS:
4516   case SIGFPE:
4517   case SIGPIPE:
4518   case SIGILL:
4519   case SIGXFSZ:
4520     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4521     break;
4522 
4523   case SHUTDOWN1_SIGNAL:
4524   case SHUTDOWN2_SIGNAL:
4525   case SHUTDOWN3_SIGNAL:
4526   case BREAK_SIGNAL:
4527     jvmHandler = (address)user_handler();
4528     break;
4529 
4530   case INTERRUPT_SIGNAL:
4531     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4532     break;
4533 
4534   default:
4535     if (sig == SR_signum) {
4536       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4537     } else {
4538       return;
4539     }
4540     break;
4541   }
4542 
4543   if (thisHandler != jvmHandler) {
4544     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4545     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4546     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4547     // No need to check this sig any longer
4548     sigaddset(&check_signal_done, sig);
4549     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4550     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4551       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4552                     exception_name(sig, buf, O_BUFLEN));
4553     }
4554   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4555     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4556     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4557     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4558     // No need to check this sig any longer
4559     sigaddset(&check_signal_done, sig);
4560   }
4561 
4562   // Dump all the signal
4563   if (sigismember(&check_signal_done, sig)) {
4564     print_signal_handlers(tty, buf, O_BUFLEN);
4565   }
4566 }
4567 
4568 extern void report_error(char* file_name, int line_no, char* title,
4569                          char* format, ...);
4570 
4571 extern bool signal_name(int signo, char* buf, size_t len);
4572 
4573 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4574   if (0 < exception_code && exception_code <= SIGRTMAX) {
4575     // signal
4576     if (!signal_name(exception_code, buf, size)) {
4577       jio_snprintf(buf, size, "SIG%d", exception_code);
4578     }
4579     return buf;
4580   } else {
4581     return NULL;
4582   }
4583 }
4584 
4585 // this is called _before_ the most of global arguments have been parsed
4586 void os::init(void) {
4587   char dummy;   // used to get a guess on initial stack address
4588 //  first_hrtime = gethrtime();
4589 
4590   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4591 
4592   init_random(1234567);
4593 
4594   ThreadCritical::initialize();
4595 
4596   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4597   if (Linux::page_size() == -1) {
4598     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4599                   strerror(errno)));
4600   }
4601   init_page_sizes((size_t) Linux::page_size());
4602 
4603   Linux::initialize_system_info();
4604 
4605   // main_thread points to the aboriginal thread
4606   Linux::_main_thread = pthread_self();
4607 
4608   Linux::clock_init();
4609   initial_time_count = javaTimeNanos();
4610 
4611   // pthread_condattr initialization for monotonic clock
4612   int status;
4613   pthread_condattr_t* _condattr = os::Linux::condAttr();
4614   if ((status = pthread_condattr_init(_condattr)) != 0) {
4615     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4616   }
4617   // Only set the clock if CLOCK_MONOTONIC is available
4618   if (os::supports_monotonic_clock()) {
4619     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4620       if (status == EINVAL) {
4621         warning("Unable to use monotonic clock with relative timed-waits" \
4622                 " - changes to the time-of-day clock may have adverse affects");
4623       } else {
4624         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4625       }
4626     }
4627   }
4628   // else it defaults to CLOCK_REALTIME
4629 
4630   // If the pagesize of the VM is greater than 8K determine the appropriate
4631   // number of initial guard pages.  The user can change this with the
4632   // command line arguments, if needed.
4633   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4634     StackYellowPages = 1;
4635     StackRedPages = 1;
4636     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4637   }
4638 
4639   // retrieve entry point for pthread_setname_np
4640   Linux::_pthread_setname_np =
4641     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4642 
4643 }
4644 
4645 // To install functions for atexit system call
4646 extern "C" {
4647   static void perfMemory_exit_helper() {
4648     perfMemory_exit();
4649   }
4650 }
4651 
4652 // this is called _after_ the global arguments have been parsed
4653 jint os::init_2(void) {
4654   Linux::fast_thread_clock_init();
4655 
4656   // Allocate a single page and mark it as readable for safepoint polling
4657   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4658   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4659 
4660   os::set_polling_page(polling_page);
4661 
4662 #ifndef PRODUCT
4663   if (Verbose && PrintMiscellaneous) {
4664     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4665                (intptr_t)polling_page);
4666   }
4667 #endif
4668 
4669   if (!UseMembar) {
4670     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4671     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4672     os::set_memory_serialize_page(mem_serialize_page);
4673 
4674 #ifndef PRODUCT
4675     if (Verbose && PrintMiscellaneous) {
4676       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4677                  (intptr_t)mem_serialize_page);
4678     }
4679 #endif
4680   }
4681 
4682   // initialize suspend/resume support - must do this before signal_sets_init()
4683   if (SR_initialize() != 0) {
4684     perror("SR_initialize failed");
4685     return JNI_ERR;
4686   }
4687 
4688   Linux::signal_sets_init();
4689   Linux::install_signal_handlers();
4690 
4691   // Check minimum allowable stack size for thread creation and to initialize
4692   // the java system classes, including StackOverflowError - depends on page
4693   // size.  Add a page for compiler2 recursion in main thread.
4694   // Add in 2*BytesPerWord times page size to account for VM stack during
4695   // class initialization depending on 32 or 64 bit VM.
4696   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4697                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4698                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4699 
4700   size_t threadStackSizeInBytes = ThreadStackSize * K;
4701   if (threadStackSizeInBytes != 0 &&
4702       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4703     tty->print_cr("\nThe stack size specified is too small, "
4704                   "Specify at least %dk",
4705                   os::Linux::min_stack_allowed/ K);
4706     return JNI_ERR;
4707   }
4708 
4709   // Make the stack size a multiple of the page size so that
4710   // the yellow/red zones can be guarded.
4711   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4712                                                 vm_page_size()));
4713 
4714   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4715 
4716 #if defined(IA32)
4717   workaround_expand_exec_shield_cs_limit();
4718 #endif
4719 
4720   Linux::libpthread_init();
4721   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4722     tty->print_cr("[HotSpot is running with %s, %s]\n",
4723                   Linux::glibc_version(), Linux::libpthread_version());
4724   }
4725 
4726   if (UseNUMA) {
4727     if (!Linux::libnuma_init()) {
4728       UseNUMA = false;
4729     } else {
4730       if ((Linux::numa_max_node() < 1)) {
4731         // There's only one node(they start from 0), disable NUMA.
4732         UseNUMA = false;
4733       }
4734     }
4735     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4736     // we can make the adaptive lgrp chunk resizing work. If the user specified
4737     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4738     // disable adaptive resizing.
4739     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4740       if (FLAG_IS_DEFAULT(UseNUMA)) {
4741         UseNUMA = false;
4742       } else {
4743         if (FLAG_IS_DEFAULT(UseLargePages) &&
4744             FLAG_IS_DEFAULT(UseSHM) &&
4745             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4746           UseLargePages = false;
4747         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4748           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4749           UseAdaptiveSizePolicy = false;
4750           UseAdaptiveNUMAChunkSizing = false;
4751         }
4752       }
4753     }
4754     if (!UseNUMA && ForceNUMA) {
4755       UseNUMA = true;
4756     }
4757   }
4758 
4759   if (MaxFDLimit) {
4760     // set the number of file descriptors to max. print out error
4761     // if getrlimit/setrlimit fails but continue regardless.
4762     struct rlimit nbr_files;
4763     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4764     if (status != 0) {
4765       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4766         perror("os::init_2 getrlimit failed");
4767       }
4768     } else {
4769       nbr_files.rlim_cur = nbr_files.rlim_max;
4770       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4771       if (status != 0) {
4772         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4773           perror("os::init_2 setrlimit failed");
4774         }
4775       }
4776     }
4777   }
4778 
4779   // Initialize lock used to serialize thread creation (see os::create_thread)
4780   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4781 
4782   // at-exit methods are called in the reverse order of their registration.
4783   // atexit functions are called on return from main or as a result of a
4784   // call to exit(3C). There can be only 32 of these functions registered
4785   // and atexit() does not set errno.
4786 
4787   if (PerfAllowAtExitRegistration) {
4788     // only register atexit functions if PerfAllowAtExitRegistration is set.
4789     // atexit functions can be delayed until process exit time, which
4790     // can be problematic for embedded VM situations. Embedded VMs should
4791     // call DestroyJavaVM() to assure that VM resources are released.
4792 
4793     // note: perfMemory_exit_helper atexit function may be removed in
4794     // the future if the appropriate cleanup code can be added to the
4795     // VM_Exit VMOperation's doit method.
4796     if (atexit(perfMemory_exit_helper) != 0) {
4797       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4798     }
4799   }
4800 
4801   // initialize thread priority policy
4802   prio_init();
4803 
4804   return JNI_OK;
4805 }
4806 
4807 // Mark the polling page as unreadable
4808 void os::make_polling_page_unreadable(void) {
4809   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4810     fatal("Could not disable polling page");
4811   }
4812 }
4813 
4814 // Mark the polling page as readable
4815 void os::make_polling_page_readable(void) {
4816   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4817     fatal("Could not enable polling page");
4818   }
4819 }
4820 
4821 int os::active_processor_count() {
4822   // Linux doesn't yet have a (official) notion of processor sets,
4823   // so just return the number of online processors.
4824   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4825   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4826   return online_cpus;
4827 }
4828 
4829 void os::set_native_thread_name(const char *name) {
4830   if (Linux::_pthread_setname_np) {
4831     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4832     snprintf(buf, sizeof(buf), "%s", name);
4833     buf[sizeof(buf) - 1] = '\0';
4834     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4835     // ERANGE should not happen; all other errors should just be ignored.
4836     assert(rc != ERANGE, "pthread_setname_np failed");
4837   }
4838 }
4839 
4840 bool os::distribute_processes(uint length, uint* distribution) {
4841   // Not yet implemented.
4842   return false;
4843 }
4844 
4845 bool os::bind_to_processor(uint processor_id) {
4846   // Not yet implemented.
4847   return false;
4848 }
4849 
4850 ///
4851 
4852 void os::SuspendedThreadTask::internal_do_task() {
4853   if (do_suspend(_thread->osthread())) {
4854     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4855     do_task(context);
4856     do_resume(_thread->osthread());
4857   }
4858 }
4859 
4860 class PcFetcher : public os::SuspendedThreadTask {
4861  public:
4862   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4863   ExtendedPC result();
4864  protected:
4865   void do_task(const os::SuspendedThreadTaskContext& context);
4866  private:
4867   ExtendedPC _epc;
4868 };
4869 
4870 ExtendedPC PcFetcher::result() {
4871   guarantee(is_done(), "task is not done yet.");
4872   return _epc;
4873 }
4874 
4875 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4876   Thread* thread = context.thread();
4877   OSThread* osthread = thread->osthread();
4878   if (osthread->ucontext() != NULL) {
4879     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4880   } else {
4881     // NULL context is unexpected, double-check this is the VMThread
4882     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4883   }
4884 }
4885 
4886 // Suspends the target using the signal mechanism and then grabs the PC before
4887 // resuming the target. Used by the flat-profiler only
4888 ExtendedPC os::get_thread_pc(Thread* thread) {
4889   // Make sure that it is called by the watcher for the VMThread
4890   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4891   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4892 
4893   PcFetcher fetcher(thread);
4894   fetcher.run();
4895   return fetcher.result();
4896 }
4897 
4898 ////////////////////////////////////////////////////////////////////////////////
4899 // debug support
4900 
4901 bool os::find(address addr, outputStream* st) {
4902   Dl_info dlinfo;
4903   memset(&dlinfo, 0, sizeof(dlinfo));
4904   if (dladdr(addr, &dlinfo) != 0) {
4905     st->print(PTR_FORMAT ": ", addr);
4906     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4907       st->print("%s+%#x", dlinfo.dli_sname,
4908                 addr - (intptr_t)dlinfo.dli_saddr);
4909     } else if (dlinfo.dli_fbase != NULL) {
4910       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4911     } else {
4912       st->print("<absolute address>");
4913     }
4914     if (dlinfo.dli_fname != NULL) {
4915       st->print(" in %s", dlinfo.dli_fname);
4916     }
4917     if (dlinfo.dli_fbase != NULL) {
4918       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4919     }
4920     st->cr();
4921 
4922     if (Verbose) {
4923       // decode some bytes around the PC
4924       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4925       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4926       address       lowest = (address) dlinfo.dli_sname;
4927       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4928       if (begin < lowest)  begin = lowest;
4929       Dl_info dlinfo2;
4930       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4931           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4932         end = (address) dlinfo2.dli_saddr;
4933       }
4934       Disassembler::decode(begin, end, st);
4935     }
4936     return true;
4937   }
4938   return false;
4939 }
4940 
4941 ////////////////////////////////////////////////////////////////////////////////
4942 // misc
4943 
4944 // This does not do anything on Linux. This is basically a hook for being
4945 // able to use structured exception handling (thread-local exception filters)
4946 // on, e.g., Win32.
4947 void
4948 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4949                          JavaCallArguments* args, Thread* thread) {
4950   f(value, method, args, thread);
4951 }
4952 
4953 void os::print_statistics() {
4954 }
4955 
4956 int os::message_box(const char* title, const char* message) {
4957   int i;
4958   fdStream err(defaultStream::error_fd());
4959   for (i = 0; i < 78; i++) err.print_raw("=");
4960   err.cr();
4961   err.print_raw_cr(title);
4962   for (i = 0; i < 78; i++) err.print_raw("-");
4963   err.cr();
4964   err.print_raw_cr(message);
4965   for (i = 0; i < 78; i++) err.print_raw("=");
4966   err.cr();
4967 
4968   char buf[16];
4969   // Prevent process from exiting upon "read error" without consuming all CPU
4970   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4971 
4972   return buf[0] == 'y' || buf[0] == 'Y';
4973 }
4974 
4975 int os::stat(const char *path, struct stat *sbuf) {
4976   char pathbuf[MAX_PATH];
4977   if (strlen(path) > MAX_PATH - 1) {
4978     errno = ENAMETOOLONG;
4979     return -1;
4980   }
4981   os::native_path(strcpy(pathbuf, path));
4982   return ::stat(pathbuf, sbuf);
4983 }
4984 
4985 bool os::check_heap(bool force) {
4986   return true;
4987 }
4988 
4989 // Is a (classpath) directory empty?
4990 bool os::dir_is_empty(const char* path) {
4991   DIR *dir = NULL;
4992   struct dirent *ptr;
4993 
4994   dir = opendir(path);
4995   if (dir == NULL) return true;
4996 
4997   // Scan the directory
4998   bool result = true;
4999   char buf[sizeof(struct dirent) + MAX_PATH];
5000   while (result && (ptr = ::readdir(dir)) != NULL) {
5001     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5002       result = false;
5003     }
5004   }
5005   closedir(dir);
5006   return result;
5007 }
5008 
5009 // This code originates from JDK's sysOpen and open64_w
5010 // from src/solaris/hpi/src/system_md.c
5011 
5012 int os::open(const char *path, int oflag, int mode) {
5013   if (strlen(path) > MAX_PATH - 1) {
5014     errno = ENAMETOOLONG;
5015     return -1;
5016   }
5017 
5018   // All file descriptors that are opened in the Java process and not
5019   // specifically destined for a subprocess should have the close-on-exec
5020   // flag set.  If we don't set it, then careless 3rd party native code
5021   // might fork and exec without closing all appropriate file descriptors
5022   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5023   // turn might:
5024   //
5025   // - cause end-of-file to fail to be detected on some file
5026   //   descriptors, resulting in mysterious hangs, or
5027   //
5028   // - might cause an fopen in the subprocess to fail on a system
5029   //   suffering from bug 1085341.
5030   //
5031   // (Yes, the default setting of the close-on-exec flag is a Unix
5032   // design flaw)
5033   //
5034   // See:
5035   // 1085341: 32-bit stdio routines should support file descriptors >255
5036   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5037   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5038   //
5039   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5040   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5041   // because it saves a system call and removes a small window where the flag
5042   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5043   // and we fall back to using FD_CLOEXEC (see below).
5044 #ifdef O_CLOEXEC
5045   oflag |= O_CLOEXEC;
5046 #endif
5047 
5048   int fd = ::open64(path, oflag, mode);
5049   if (fd == -1) return -1;
5050 
5051   //If the open succeeded, the file might still be a directory
5052   {
5053     struct stat64 buf64;
5054     int ret = ::fstat64(fd, &buf64);
5055     int st_mode = buf64.st_mode;
5056 
5057     if (ret != -1) {
5058       if ((st_mode & S_IFMT) == S_IFDIR) {
5059         errno = EISDIR;
5060         ::close(fd);
5061         return -1;
5062       }
5063     } else {
5064       ::close(fd);
5065       return -1;
5066     }
5067   }
5068 
5069 #ifdef FD_CLOEXEC
5070   // Validate that the use of the O_CLOEXEC flag on open above worked.
5071   // With recent kernels, we will perform this check exactly once.
5072   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5073   if (!O_CLOEXEC_is_known_to_work) {
5074     int flags = ::fcntl(fd, F_GETFD);
5075     if (flags != -1) {
5076       if ((flags & FD_CLOEXEC) != 0)
5077         O_CLOEXEC_is_known_to_work = 1;
5078       else
5079         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5080     }
5081   }
5082 #endif
5083 
5084   return fd;
5085 }
5086 
5087 
5088 // create binary file, rewriting existing file if required
5089 int os::create_binary_file(const char* path, bool rewrite_existing) {
5090   int oflags = O_WRONLY | O_CREAT;
5091   if (!rewrite_existing) {
5092     oflags |= O_EXCL;
5093   }
5094   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5095 }
5096 
5097 // return current position of file pointer
5098 jlong os::current_file_offset(int fd) {
5099   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5100 }
5101 
5102 // move file pointer to the specified offset
5103 jlong os::seek_to_file_offset(int fd, jlong offset) {
5104   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5105 }
5106 
5107 // This code originates from JDK's sysAvailable
5108 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5109 
5110 int os::available(int fd, jlong *bytes) {
5111   jlong cur, end;
5112   int mode;
5113   struct stat64 buf64;
5114 
5115   if (::fstat64(fd, &buf64) >= 0) {
5116     mode = buf64.st_mode;
5117     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5118       // XXX: is the following call interruptible? If so, this might
5119       // need to go through the INTERRUPT_IO() wrapper as for other
5120       // blocking, interruptible calls in this file.
5121       int n;
5122       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5123         *bytes = n;
5124         return 1;
5125       }
5126     }
5127   }
5128   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5129     return 0;
5130   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5131     return 0;
5132   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5133     return 0;
5134   }
5135   *bytes = end - cur;
5136   return 1;
5137 }
5138 
5139 // Map a block of memory.
5140 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5141                         char *addr, size_t bytes, bool read_only,
5142                         bool allow_exec) {
5143   int prot;
5144   int flags = MAP_PRIVATE;
5145 
5146   if (read_only) {
5147     prot = PROT_READ;
5148   } else {
5149     prot = PROT_READ | PROT_WRITE;
5150   }
5151 
5152   if (allow_exec) {
5153     prot |= PROT_EXEC;
5154   }
5155 
5156   if (addr != NULL) {
5157     flags |= MAP_FIXED;
5158   }
5159 
5160   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5161                                      fd, file_offset);
5162   if (mapped_address == MAP_FAILED) {
5163     return NULL;
5164   }
5165   return mapped_address;
5166 }
5167 
5168 
5169 // Remap a block of memory.
5170 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5171                           char *addr, size_t bytes, bool read_only,
5172                           bool allow_exec) {
5173   // same as map_memory() on this OS
5174   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5175                         allow_exec);
5176 }
5177 
5178 
5179 // Unmap a block of memory.
5180 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5181   return munmap(addr, bytes) == 0;
5182 }
5183 
5184 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5185 
5186 static clockid_t thread_cpu_clockid(Thread* thread) {
5187   pthread_t tid = thread->osthread()->pthread_id();
5188   clockid_t clockid;
5189 
5190   // Get thread clockid
5191   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5192   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5193   return clockid;
5194 }
5195 
5196 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5197 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5198 // of a thread.
5199 //
5200 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5201 // the fast estimate available on the platform.
5202 
5203 jlong os::current_thread_cpu_time() {
5204   if (os::Linux::supports_fast_thread_cpu_time()) {
5205     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5206   } else {
5207     // return user + sys since the cost is the same
5208     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5209   }
5210 }
5211 
5212 jlong os::thread_cpu_time(Thread* thread) {
5213   // consistent with what current_thread_cpu_time() returns
5214   if (os::Linux::supports_fast_thread_cpu_time()) {
5215     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5216   } else {
5217     return slow_thread_cpu_time(thread, true /* user + sys */);
5218   }
5219 }
5220 
5221 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5222   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5223     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5224   } else {
5225     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5226   }
5227 }
5228 
5229 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5230   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5231     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5232   } else {
5233     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5234   }
5235 }
5236 
5237 //  -1 on error.
5238 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5239   pid_t  tid = thread->osthread()->thread_id();
5240   char *s;
5241   char stat[2048];
5242   int statlen;
5243   char proc_name[64];
5244   int count;
5245   long sys_time, user_time;
5246   char cdummy;
5247   int idummy;
5248   long ldummy;
5249   FILE *fp;
5250 
5251   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5252   fp = fopen(proc_name, "r");
5253   if (fp == NULL) return -1;
5254   statlen = fread(stat, 1, 2047, fp);
5255   stat[statlen] = '\0';
5256   fclose(fp);
5257 
5258   // Skip pid and the command string. Note that we could be dealing with
5259   // weird command names, e.g. user could decide to rename java launcher
5260   // to "java 1.4.2 :)", then the stat file would look like
5261   //                1234 (java 1.4.2 :)) R ... ...
5262   // We don't really need to know the command string, just find the last
5263   // occurrence of ")" and then start parsing from there. See bug 4726580.
5264   s = strrchr(stat, ')');
5265   if (s == NULL) return -1;
5266 
5267   // Skip blank chars
5268   do { s++; } while (s && isspace(*s));
5269 
5270   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5271                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5272                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5273                  &user_time, &sys_time);
5274   if (count != 13) return -1;
5275   if (user_sys_cpu_time) {
5276     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5277   } else {
5278     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5279   }
5280 }
5281 
5282 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5283   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5284   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5285   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5286   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5287 }
5288 
5289 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5290   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5291   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5292   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5293   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5294 }
5295 
5296 bool os::is_thread_cpu_time_supported() {
5297   return true;
5298 }
5299 
5300 // System loadavg support.  Returns -1 if load average cannot be obtained.
5301 // Linux doesn't yet have a (official) notion of processor sets,
5302 // so just return the system wide load average.
5303 int os::loadavg(double loadavg[], int nelem) {
5304   return ::getloadavg(loadavg, nelem);
5305 }
5306 
5307 void os::pause() {
5308   char filename[MAX_PATH];
5309   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5310     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5311   } else {
5312     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5313   }
5314 
5315   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5316   if (fd != -1) {
5317     struct stat buf;
5318     ::close(fd);
5319     while (::stat(filename, &buf) == 0) {
5320       (void)::poll(NULL, 0, 100);
5321     }
5322   } else {
5323     jio_fprintf(stderr,
5324                 "Could not open pause file '%s', continuing immediately.\n", filename);
5325   }
5326 }
5327 
5328 
5329 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5330 // comment paragraphs are worth repeating here:
5331 //
5332 // Assumption:
5333 //    Only one parker can exist on an event, which is why we allocate
5334 //    them per-thread. Multiple unparkers can coexist.
5335 //
5336 // _Event serves as a restricted-range semaphore.
5337 //   -1 : thread is blocked, i.e. there is a waiter
5338 //    0 : neutral: thread is running or ready,
5339 //        could have been signaled after a wait started
5340 //    1 : signaled - thread is running or ready
5341 //
5342 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5343 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5344 // For specifics regarding the bug see GLIBC BUGID 261237 :
5345 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5346 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5347 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5348 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5349 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5350 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5351 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5352 // of libpthread avoids the problem, but isn't practical.
5353 //
5354 // Possible remedies:
5355 //
5356 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5357 //      This is palliative and probabilistic, however.  If the thread is preempted
5358 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5359 //      than the minimum period may have passed, and the abstime may be stale (in the
5360 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5361 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5362 //
5363 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5364 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5365 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5366 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5367 //      thread.
5368 //
5369 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5370 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5371 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5372 //      This also works well.  In fact it avoids kernel-level scalability impediments
5373 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5374 //      timers in a graceful fashion.
5375 //
5376 // 4.   When the abstime value is in the past it appears that control returns
5377 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5378 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5379 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5380 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5381 //      It may be possible to avoid reinitialization by checking the return
5382 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5383 //      condvar we must establish the invariant that cond_signal() is only called
5384 //      within critical sections protected by the adjunct mutex.  This prevents
5385 //      cond_signal() from "seeing" a condvar that's in the midst of being
5386 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5387 //      desirable signal-after-unlock optimization that avoids futile context switching.
5388 //
5389 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5390 //      structure when a condvar is used or initialized.  cond_destroy()  would
5391 //      release the helper structure.  Our reinitialize-after-timedwait fix
5392 //      put excessive stress on malloc/free and locks protecting the c-heap.
5393 //
5394 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5395 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5396 // and only enabling the work-around for vulnerable environments.
5397 
5398 // utility to compute the abstime argument to timedwait:
5399 // millis is the relative timeout time
5400 // abstime will be the absolute timeout time
5401 // TODO: replace compute_abstime() with unpackTime()
5402 
5403 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5404   if (millis < 0)  millis = 0;
5405 
5406   jlong seconds = millis / 1000;
5407   millis %= 1000;
5408   if (seconds > 50000000) { // see man cond_timedwait(3T)
5409     seconds = 50000000;
5410   }
5411 
5412   if (os::supports_monotonic_clock()) {
5413     struct timespec now;
5414     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5415     assert_status(status == 0, status, "clock_gettime");
5416     abstime->tv_sec = now.tv_sec  + seconds;
5417     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5418     if (nanos >= NANOSECS_PER_SEC) {
5419       abstime->tv_sec += 1;
5420       nanos -= NANOSECS_PER_SEC;
5421     }
5422     abstime->tv_nsec = nanos;
5423   } else {
5424     struct timeval now;
5425     int status = gettimeofday(&now, NULL);
5426     assert(status == 0, "gettimeofday");
5427     abstime->tv_sec = now.tv_sec  + seconds;
5428     long usec = now.tv_usec + millis * 1000;
5429     if (usec >= 1000000) {
5430       abstime->tv_sec += 1;
5431       usec -= 1000000;
5432     }
5433     abstime->tv_nsec = usec * 1000;
5434   }
5435   return abstime;
5436 }
5437 
5438 void os::PlatformEvent::park() {       // AKA "down()"
5439   // Transitions for _Event:
5440   //   -1 => -1 : illegal
5441   //    1 =>  0 : pass - return immediately
5442   //    0 => -1 : block; then set _Event to 0 before returning
5443 
5444   // Invariant: Only the thread associated with the Event/PlatformEvent
5445   // may call park().
5446   // TODO: assert that _Assoc != NULL or _Assoc == Self
5447   assert(_nParked == 0, "invariant");
5448 
5449   int v;
5450   for (;;) {
5451     v = _Event;
5452     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5453   }
5454   guarantee(v >= 0, "invariant");
5455   if (v == 0) {
5456     // Do this the hard way by blocking ...
5457     int status = pthread_mutex_lock(_mutex);
5458     assert_status(status == 0, status, "mutex_lock");
5459     guarantee(_nParked == 0, "invariant");
5460     ++_nParked;
5461     while (_Event < 0) {
5462       status = pthread_cond_wait(_cond, _mutex);
5463       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5464       // Treat this the same as if the wait was interrupted
5465       if (status == ETIME) { status = EINTR; }
5466       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5467     }
5468     --_nParked;
5469 
5470     _Event = 0;
5471     status = pthread_mutex_unlock(_mutex);
5472     assert_status(status == 0, status, "mutex_unlock");
5473     // Paranoia to ensure our locked and lock-free paths interact
5474     // correctly with each other.
5475     OrderAccess::fence();
5476   }
5477   guarantee(_Event >= 0, "invariant");
5478 }
5479 
5480 int os::PlatformEvent::park(jlong millis) {
5481   // Transitions for _Event:
5482   //   -1 => -1 : illegal
5483   //    1 =>  0 : pass - return immediately
5484   //    0 => -1 : block; then set _Event to 0 before returning
5485 
5486   guarantee(_nParked == 0, "invariant");
5487 
5488   int v;
5489   for (;;) {
5490     v = _Event;
5491     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5492   }
5493   guarantee(v >= 0, "invariant");
5494   if (v != 0) return OS_OK;
5495 
5496   // We do this the hard way, by blocking the thread.
5497   // Consider enforcing a minimum timeout value.
5498   struct timespec abst;
5499   compute_abstime(&abst, millis);
5500 
5501   int ret = OS_TIMEOUT;
5502   int status = pthread_mutex_lock(_mutex);
5503   assert_status(status == 0, status, "mutex_lock");
5504   guarantee(_nParked == 0, "invariant");
5505   ++_nParked;
5506 
5507   // Object.wait(timo) will return because of
5508   // (a) notification
5509   // (b) timeout
5510   // (c) thread.interrupt
5511   //
5512   // Thread.interrupt and object.notify{All} both call Event::set.
5513   // That is, we treat thread.interrupt as a special case of notification.
5514   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5515   // We assume all ETIME returns are valid.
5516   //
5517   // TODO: properly differentiate simultaneous notify+interrupt.
5518   // In that case, we should propagate the notify to another waiter.
5519 
5520   while (_Event < 0) {
5521     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5522     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5523       pthread_cond_destroy(_cond);
5524       pthread_cond_init(_cond, os::Linux::condAttr());
5525     }
5526     assert_status(status == 0 || status == EINTR ||
5527                   status == ETIME || status == ETIMEDOUT,
5528                   status, "cond_timedwait");
5529     if (!FilterSpuriousWakeups) break;                 // previous semantics
5530     if (status == ETIME || status == ETIMEDOUT) break;
5531     // We consume and ignore EINTR and spurious wakeups.
5532   }
5533   --_nParked;
5534   if (_Event >= 0) {
5535     ret = OS_OK;
5536   }
5537   _Event = 0;
5538   status = pthread_mutex_unlock(_mutex);
5539   assert_status(status == 0, status, "mutex_unlock");
5540   assert(_nParked == 0, "invariant");
5541   // Paranoia to ensure our locked and lock-free paths interact
5542   // correctly with each other.
5543   OrderAccess::fence();
5544   return ret;
5545 }
5546 
5547 void os::PlatformEvent::unpark() {
5548   // Transitions for _Event:
5549   //    0 => 1 : just return
5550   //    1 => 1 : just return
5551   //   -1 => either 0 or 1; must signal target thread
5552   //         That is, we can safely transition _Event from -1 to either
5553   //         0 or 1.
5554   // See also: "Semaphores in Plan 9" by Mullender & Cox
5555   //
5556   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5557   // that it will take two back-to-back park() calls for the owning
5558   // thread to block. This has the benefit of forcing a spurious return
5559   // from the first park() call after an unpark() call which will help
5560   // shake out uses of park() and unpark() without condition variables.
5561 
5562   if (Atomic::xchg(1, &_Event) >= 0) return;
5563 
5564   // Wait for the thread associated with the event to vacate
5565   int status = pthread_mutex_lock(_mutex);
5566   assert_status(status == 0, status, "mutex_lock");
5567   int AnyWaiters = _nParked;
5568   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5569   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5570     AnyWaiters = 0;
5571     pthread_cond_signal(_cond);
5572   }
5573   status = pthread_mutex_unlock(_mutex);
5574   assert_status(status == 0, status, "mutex_unlock");
5575   if (AnyWaiters != 0) {
5576     // Note that we signal() *after* dropping the lock for "immortal" Events.
5577     // This is safe and avoids a common class of  futile wakeups.  In rare
5578     // circumstances this can cause a thread to return prematurely from
5579     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5580     // will simply re-test the condition and re-park itself.
5581     // This provides particular benefit if the underlying platform does not
5582     // provide wait morphing.
5583     status = pthread_cond_signal(_cond);
5584     assert_status(status == 0, status, "cond_signal");
5585   }
5586 }
5587 
5588 
5589 // JSR166
5590 // -------------------------------------------------------
5591 
5592 // The solaris and linux implementations of park/unpark are fairly
5593 // conservative for now, but can be improved. They currently use a
5594 // mutex/condvar pair, plus a a count.
5595 // Park decrements count if > 0, else does a condvar wait.  Unpark
5596 // sets count to 1 and signals condvar.  Only one thread ever waits
5597 // on the condvar. Contention seen when trying to park implies that someone
5598 // is unparking you, so don't wait. And spurious returns are fine, so there
5599 // is no need to track notifications.
5600 
5601 // This code is common to linux and solaris and will be moved to a
5602 // common place in dolphin.
5603 //
5604 // The passed in time value is either a relative time in nanoseconds
5605 // or an absolute time in milliseconds. Either way it has to be unpacked
5606 // into suitable seconds and nanoseconds components and stored in the
5607 // given timespec structure.
5608 // Given time is a 64-bit value and the time_t used in the timespec is only
5609 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5610 // overflow if times way in the future are given. Further on Solaris versions
5611 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5612 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5613 // As it will be 28 years before "now + 100000000" will overflow we can
5614 // ignore overflow and just impose a hard-limit on seconds using the value
5615 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5616 // years from "now".
5617 
5618 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5619   assert(time > 0, "convertTime");
5620   time_t max_secs = 0;
5621 
5622   if (!os::supports_monotonic_clock() || isAbsolute) {
5623     struct timeval now;
5624     int status = gettimeofday(&now, NULL);
5625     assert(status == 0, "gettimeofday");
5626 
5627     max_secs = now.tv_sec + MAX_SECS;
5628 
5629     if (isAbsolute) {
5630       jlong secs = time / 1000;
5631       if (secs > max_secs) {
5632         absTime->tv_sec = max_secs;
5633       } else {
5634         absTime->tv_sec = secs;
5635       }
5636       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5637     } else {
5638       jlong secs = time / NANOSECS_PER_SEC;
5639       if (secs >= MAX_SECS) {
5640         absTime->tv_sec = max_secs;
5641         absTime->tv_nsec = 0;
5642       } else {
5643         absTime->tv_sec = now.tv_sec + secs;
5644         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5645         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5646           absTime->tv_nsec -= NANOSECS_PER_SEC;
5647           ++absTime->tv_sec; // note: this must be <= max_secs
5648         }
5649       }
5650     }
5651   } else {
5652     // must be relative using monotonic clock
5653     struct timespec now;
5654     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5655     assert_status(status == 0, status, "clock_gettime");
5656     max_secs = now.tv_sec + MAX_SECS;
5657     jlong secs = time / NANOSECS_PER_SEC;
5658     if (secs >= MAX_SECS) {
5659       absTime->tv_sec = max_secs;
5660       absTime->tv_nsec = 0;
5661     } else {
5662       absTime->tv_sec = now.tv_sec + secs;
5663       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5664       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5665         absTime->tv_nsec -= NANOSECS_PER_SEC;
5666         ++absTime->tv_sec; // note: this must be <= max_secs
5667       }
5668     }
5669   }
5670   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5671   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5672   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5673   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5674 }
5675 
5676 void Parker::park(bool isAbsolute, jlong time) {
5677   // Ideally we'd do something useful while spinning, such
5678   // as calling unpackTime().
5679 
5680   // Optional fast-path check:
5681   // Return immediately if a permit is available.
5682   // We depend on Atomic::xchg() having full barrier semantics
5683   // since we are doing a lock-free update to _counter.
5684   if (Atomic::xchg(0, &_counter) > 0) return;
5685 
5686   Thread* thread = Thread::current();
5687   assert(thread->is_Java_thread(), "Must be JavaThread");
5688   JavaThread *jt = (JavaThread *)thread;
5689 
5690   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5691   // Check interrupt before trying to wait
5692   if (Thread::is_interrupted(thread, false)) {
5693     return;
5694   }
5695 
5696   // Next, demultiplex/decode time arguments
5697   timespec absTime;
5698   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5699     return;
5700   }
5701   if (time > 0) {
5702     unpackTime(&absTime, isAbsolute, time);
5703   }
5704 
5705 
5706   // Enter safepoint region
5707   // Beware of deadlocks such as 6317397.
5708   // The per-thread Parker:: mutex is a classic leaf-lock.
5709   // In particular a thread must never block on the Threads_lock while
5710   // holding the Parker:: mutex.  If safepoints are pending both the
5711   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5712   ThreadBlockInVM tbivm(jt);
5713 
5714   // Don't wait if cannot get lock since interference arises from
5715   // unblocking.  Also. check interrupt before trying wait
5716   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5717     return;
5718   }
5719 
5720   int status;
5721   if (_counter > 0)  { // no wait needed
5722     _counter = 0;
5723     status = pthread_mutex_unlock(_mutex);
5724     assert(status == 0, "invariant");
5725     // Paranoia to ensure our locked and lock-free paths interact
5726     // correctly with each other and Java-level accesses.
5727     OrderAccess::fence();
5728     return;
5729   }
5730 
5731 #ifdef ASSERT
5732   // Don't catch signals while blocked; let the running threads have the signals.
5733   // (This allows a debugger to break into the running thread.)
5734   sigset_t oldsigs;
5735   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5736   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5737 #endif
5738 
5739   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5740   jt->set_suspend_equivalent();
5741   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5742 
5743   assert(_cur_index == -1, "invariant");
5744   if (time == 0) {
5745     _cur_index = REL_INDEX; // arbitrary choice when not timed
5746     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5747   } else {
5748     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5749     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5750     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5751       pthread_cond_destroy(&_cond[_cur_index]);
5752       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5753     }
5754   }
5755   _cur_index = -1;
5756   assert_status(status == 0 || status == EINTR ||
5757                 status == ETIME || status == ETIMEDOUT,
5758                 status, "cond_timedwait");
5759 
5760 #ifdef ASSERT
5761   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5762 #endif
5763 
5764   _counter = 0;
5765   status = pthread_mutex_unlock(_mutex);
5766   assert_status(status == 0, status, "invariant");
5767   // Paranoia to ensure our locked and lock-free paths interact
5768   // correctly with each other and Java-level accesses.
5769   OrderAccess::fence();
5770 
5771   // If externally suspended while waiting, re-suspend
5772   if (jt->handle_special_suspend_equivalent_condition()) {
5773     jt->java_suspend_self();
5774   }
5775 }
5776 
5777 void Parker::unpark() {
5778   int status = pthread_mutex_lock(_mutex);
5779   assert(status == 0, "invariant");
5780   const int s = _counter;
5781   _counter = 1;
5782   if (s < 1) {
5783     // thread might be parked
5784     if (_cur_index != -1) {
5785       // thread is definitely parked
5786       if (WorkAroundNPTLTimedWaitHang) {
5787         status = pthread_cond_signal(&_cond[_cur_index]);
5788         assert(status == 0, "invariant");
5789         status = pthread_mutex_unlock(_mutex);
5790         assert(status == 0, "invariant");
5791       } else {
5792         status = pthread_mutex_unlock(_mutex);
5793         assert(status == 0, "invariant");
5794         status = pthread_cond_signal(&_cond[_cur_index]);
5795         assert(status == 0, "invariant");
5796       }
5797     } else {
5798       pthread_mutex_unlock(_mutex);
5799       assert(status == 0, "invariant");
5800     }
5801   } else {
5802     pthread_mutex_unlock(_mutex);
5803     assert(status == 0, "invariant");
5804   }
5805 }
5806 
5807 
5808 extern char** environ;
5809 
5810 // Run the specified command in a separate process. Return its exit value,
5811 // or -1 on failure (e.g. can't fork a new process).
5812 // Unlike system(), this function can be called from signal handler. It
5813 // doesn't block SIGINT et al.
5814 int os::fork_and_exec(char* cmd) {
5815   const char * argv[4] = {"sh", "-c", cmd, NULL};
5816 
5817   pid_t pid = fork();
5818 
5819   if (pid < 0) {
5820     // fork failed
5821     return -1;
5822 
5823   } else if (pid == 0) {
5824     // child process
5825 
5826     execve("/bin/sh", (char* const*)argv, environ);
5827 
5828     // execve failed
5829     _exit(-1);
5830 
5831   } else  {
5832     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5833     // care about the actual exit code, for now.
5834 
5835     int status;
5836 
5837     // Wait for the child process to exit.  This returns immediately if
5838     // the child has already exited. */
5839     while (waitpid(pid, &status, 0) < 0) {
5840       switch (errno) {
5841       case ECHILD: return 0;
5842       case EINTR: break;
5843       default: return -1;
5844       }
5845     }
5846 
5847     if (WIFEXITED(status)) {
5848       // The child exited normally; get its exit code.
5849       return WEXITSTATUS(status);
5850     } else if (WIFSIGNALED(status)) {
5851       // The child exited because of a signal
5852       // The best value to return is 0x80 + signal number,
5853       // because that is what all Unix shells do, and because
5854       // it allows callers to distinguish between process exit and
5855       // process death by signal.
5856       return 0x80 + WTERMSIG(status);
5857     } else {
5858       // Unknown exit code; pass it through
5859       return status;
5860     }
5861   }
5862 }
5863 
5864 // is_headless_jre()
5865 //
5866 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5867 // in order to report if we are running in a headless jre
5868 //
5869 // Since JDK8 xawt/libmawt.so was moved into the same directory
5870 // as libawt.so, and renamed libawt_xawt.so
5871 //
5872 bool os::is_headless_jre() {
5873   struct stat statbuf;
5874   char buf[MAXPATHLEN];
5875   char libmawtpath[MAXPATHLEN];
5876   const char *xawtstr  = "/xawt/libmawt.so";
5877   const char *new_xawtstr = "/libawt_xawt.so";
5878   char *p;
5879 
5880   // Get path to libjvm.so
5881   os::jvm_path(buf, sizeof(buf));
5882 
5883   // Get rid of libjvm.so
5884   p = strrchr(buf, '/');
5885   if (p == NULL) {
5886     return false;
5887   } else {
5888     *p = '\0';
5889   }
5890 
5891   // Get rid of client or server
5892   p = strrchr(buf, '/');
5893   if (p == NULL) {
5894     return false;
5895   } else {
5896     *p = '\0';
5897   }
5898 
5899   // check xawt/libmawt.so
5900   strcpy(libmawtpath, buf);
5901   strcat(libmawtpath, xawtstr);
5902   if (::stat(libmawtpath, &statbuf) == 0) return false;
5903 
5904   // check libawt_xawt.so
5905   strcpy(libmawtpath, buf);
5906   strcat(libmawtpath, new_xawtstr);
5907   if (::stat(libmawtpath, &statbuf) == 0) return false;
5908 
5909   return true;
5910 }
5911 
5912 // Get the default path to the core file
5913 // Returns the length of the string
5914 int os::get_core_path(char* buffer, size_t bufferSize) {
5915   /*
5916    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5917    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5918    */
5919   const int core_pattern_len = 129;
5920   char core_pattern[core_pattern_len] = {0};
5921 
5922   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5923   if (core_pattern_file != -1) {
5924     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5925     ::close(core_pattern_file);
5926 
5927     if (ret > 0) {
5928       char *last_char = core_pattern + strlen(core_pattern) - 1;
5929 
5930       if (*last_char == '\n') {
5931         *last_char = '\0';
5932       }
5933     }
5934   }
5935 
5936   if (strlen(core_pattern) == 0) {
5937     return -1;
5938   }
5939 
5940   char *pid_pos = strstr(core_pattern, "%p");
5941   int written;
5942 
5943   if (core_pattern[0] == '/') {
5944     written = jio_snprintf(buffer, bufferSize, core_pattern);
5945   } else {
5946     char cwd[PATH_MAX];
5947 
5948     const char* p = get_current_directory(cwd, PATH_MAX);
5949     if (p == NULL) {
5950       return -1;
5951     }
5952 
5953     if (core_pattern[0] == '|') {
5954       written = jio_snprintf(buffer, bufferSize,
5955                         "\"%s\" (or dumping to %s/core.%d)",
5956                                      &core_pattern[1], p, current_process_id());
5957     } else {
5958       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5959     }
5960   }
5961 
5962   if (written < 0) {
5963     return -1;
5964   }
5965 
5966   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5967     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5968 
5969     if (core_uses_pid_file != -1) {
5970       char core_uses_pid = 0;
5971       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5972       ::close(core_uses_pid_file);
5973 
5974       if (core_uses_pid == '1') {
5975         jio_snprintf(buffer + written, bufferSize - written,
5976                                           ".%d", current_process_id());
5977       }
5978     }
5979   }
5980 
5981   return strlen(buffer);
5982 }
5983 
5984 /////////////// Unit tests ///////////////
5985 
5986 #ifndef PRODUCT
5987 
5988 #define test_log(...)              \
5989   do {                             \
5990     if (VerboseInternalVMTests) {  \
5991       tty->print_cr(__VA_ARGS__);  \
5992       tty->flush();                \
5993     }                              \
5994   } while (false)
5995 
5996 class TestReserveMemorySpecial : AllStatic {
5997  public:
5998   static void small_page_write(void* addr, size_t size) {
5999     size_t page_size = os::vm_page_size();
6000 
6001     char* end = (char*)addr + size;
6002     for (char* p = (char*)addr; p < end; p += page_size) {
6003       *p = 1;
6004     }
6005   }
6006 
6007   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6008     if (!UseHugeTLBFS) {
6009       return;
6010     }
6011 
6012     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6013 
6014     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6015 
6016     if (addr != NULL) {
6017       small_page_write(addr, size);
6018 
6019       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6020     }
6021   }
6022 
6023   static void test_reserve_memory_special_huge_tlbfs_only() {
6024     if (!UseHugeTLBFS) {
6025       return;
6026     }
6027 
6028     size_t lp = os::large_page_size();
6029 
6030     for (size_t size = lp; size <= lp * 10; size += lp) {
6031       test_reserve_memory_special_huge_tlbfs_only(size);
6032     }
6033   }
6034 
6035   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6036     size_t lp = os::large_page_size();
6037     size_t ag = os::vm_allocation_granularity();
6038 
6039     // sizes to test
6040     const size_t sizes[] = {
6041       lp, lp + ag, lp + lp / 2, lp * 2,
6042       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6043       lp * 10, lp * 10 + lp / 2
6044     };
6045     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6046 
6047     // For each size/alignment combination, we test three scenarios:
6048     // 1) with req_addr == NULL
6049     // 2) with a non-null req_addr at which we expect to successfully allocate
6050     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6051     //    expect the allocation to either fail or to ignore req_addr
6052 
6053     // Pre-allocate two areas; they shall be as large as the largest allocation
6054     //  and aligned to the largest alignment we will be testing.
6055     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6056     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6057       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6058       -1, 0);
6059     assert(mapping1 != MAP_FAILED, "should work");
6060 
6061     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6062       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6063       -1, 0);
6064     assert(mapping2 != MAP_FAILED, "should work");
6065 
6066     // Unmap the first mapping, but leave the second mapping intact: the first
6067     // mapping will serve as a value for a "good" req_addr (case 2). The second
6068     // mapping, still intact, as "bad" req_addr (case 3).
6069     ::munmap(mapping1, mapping_size);
6070 
6071     // Case 1
6072     test_log("%s, req_addr NULL:", __FUNCTION__);
6073     test_log("size            align           result");
6074 
6075     for (int i = 0; i < num_sizes; i++) {
6076       const size_t size = sizes[i];
6077       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6078         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6079         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6080             size, alignment, p, (p != NULL ? "" : "(failed)"));
6081         if (p != NULL) {
6082           assert(is_ptr_aligned(p, alignment), "must be");
6083           small_page_write(p, size);
6084           os::Linux::release_memory_special_huge_tlbfs(p, size);
6085         }
6086       }
6087     }
6088 
6089     // Case 2
6090     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6091     test_log("size            align           req_addr         result");
6092 
6093     for (int i = 0; i < num_sizes; i++) {
6094       const size_t size = sizes[i];
6095       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6096         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6097         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6098         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6099             size, alignment, req_addr, p,
6100             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6101         if (p != NULL) {
6102           assert(p == req_addr, "must be");
6103           small_page_write(p, size);
6104           os::Linux::release_memory_special_huge_tlbfs(p, size);
6105         }
6106       }
6107     }
6108 
6109     // Case 3
6110     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6111     test_log("size            align           req_addr         result");
6112 
6113     for (int i = 0; i < num_sizes; i++) {
6114       const size_t size = sizes[i];
6115       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6116         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6117         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6118         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6119             size, alignment, req_addr, p,
6120             ((p != NULL ? "" : "(failed)")));
6121         // as the area around req_addr contains already existing mappings, the API should always
6122         // return NULL (as per contract, it cannot return another address)
6123         assert(p == NULL, "must be");
6124       }
6125     }
6126 
6127     ::munmap(mapping2, mapping_size);
6128 
6129   }
6130 
6131   static void test_reserve_memory_special_huge_tlbfs() {
6132     if (!UseHugeTLBFS) {
6133       return;
6134     }
6135 
6136     test_reserve_memory_special_huge_tlbfs_only();
6137     test_reserve_memory_special_huge_tlbfs_mixed();
6138   }
6139 
6140   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6141     if (!UseSHM) {
6142       return;
6143     }
6144 
6145     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6146 
6147     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6148 
6149     if (addr != NULL) {
6150       assert(is_ptr_aligned(addr, alignment), "Check");
6151       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6152 
6153       small_page_write(addr, size);
6154 
6155       os::Linux::release_memory_special_shm(addr, size);
6156     }
6157   }
6158 
6159   static void test_reserve_memory_special_shm() {
6160     size_t lp = os::large_page_size();
6161     size_t ag = os::vm_allocation_granularity();
6162 
6163     for (size_t size = ag; size < lp * 3; size += ag) {
6164       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6165         test_reserve_memory_special_shm(size, alignment);
6166       }
6167     }
6168   }
6169 
6170   static void test() {
6171     test_reserve_memory_special_huge_tlbfs();
6172     test_reserve_memory_special_shm();
6173   }
6174 };
6175 
6176 void TestReserveMemorySpecial_test() {
6177   TestReserveMemorySpecial::test();
6178 }
6179 
6180 #endif