1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/logConfiguration.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/instanceKlass.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvm_misc.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "prims/privilegedStack.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/commandLineFlagConstraintList.hpp"
  58 #include "runtime/commandLineFlagRangeList.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/globals.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniPeriodicChecker.hpp"
  68 #include "runtime/memprofiler.hpp"
  69 #include "runtime/mutexLocker.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/osThread.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/statSampler.hpp"
  76 #include "runtime/stubRoutines.hpp"
  77 #include "runtime/sweeper.hpp"
  78 #include "runtime/task.hpp"
  79 #include "runtime/thread.inline.hpp"
  80 #include "runtime/threadCritical.hpp"
  81 #include "runtime/threadLocalStorage.hpp"
  82 #include "runtime/vframe.hpp"
  83 #include "runtime/vframeArray.hpp"
  84 #include "runtime/vframe_hp.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "runtime/vm_operations.hpp"
  87 #include "runtime/vm_version.hpp"
  88 #include "services/attachListener.hpp"
  89 #include "services/management.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "services/threadService.hpp"
  92 #include "trace/traceMacros.hpp"
  93 #include "trace/tracing.hpp"
  94 #include "utilities/defaultStream.hpp"
  95 #include "utilities/dtrace.hpp"
  96 #include "utilities/events.hpp"
  97 #include "utilities/macros.hpp"
  98 #include "utilities/preserveException.hpp"
  99 #if INCLUDE_ALL_GCS
 100 #include "gc/cms/concurrentMarkSweepThread.hpp"
 101 #include "gc/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc/parallel/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #if INCLUDE_JVMCI
 105 #include "jvmci/jvmciCompiler.hpp"
 106 #include "jvmci/jvmciRuntime.hpp"
 107 #endif
 108 #ifdef COMPILER1
 109 #include "c1/c1_Compiler.hpp"
 110 #endif
 111 #ifdef COMPILER2
 112 #include "opto/c2compiler.hpp"
 113 #include "opto/idealGraphPrinter.hpp"
 114 #endif
 115 #if INCLUDE_RTM_OPT
 116 #include "runtime/rtmLocking.hpp"
 117 #endif
 118 
 119 #ifdef DTRACE_ENABLED
 120 
 121 // Only bother with this argument setup if dtrace is available
 122 
 123   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 124   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 125 
 126   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 127     {                                                                      \
 128       ResourceMark rm(this);                                               \
 129       int len = 0;                                                         \
 130       const char* name = (javathread)->get_thread_name();                  \
 131       len = strlen(name);                                                  \
 132       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 133         (char *) name, len,                                                \
 134         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 135         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 136         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 137     }
 138 
 139 #else //  ndef DTRACE_ENABLED
 140 
 141   #define DTRACE_THREAD_PROBE(probe, javathread)
 142 
 143 #endif // ndef DTRACE_ENABLED
 144 
 145 
 146 // Class hierarchy
 147 // - Thread
 148 //   - VMThread
 149 //   - WatcherThread
 150 //   - ConcurrentMarkSweepThread
 151 //   - JavaThread
 152 //     - CompilerThread
 153 
 154 // ======= Thread ========
 155 // Support for forcing alignment of thread objects for biased locking
 156 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 157   if (UseBiasedLocking) {
 158     const int alignment = markOopDesc::biased_lock_alignment;
 159     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 160     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 161                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 162                                                          AllocFailStrategy::RETURN_NULL);
 163     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 164     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 165            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 166            "JavaThread alignment code overflowed allocated storage");
 167     if (TraceBiasedLocking) {
 168       if (aligned_addr != real_malloc_addr) {
 169         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 170                       p2i(real_malloc_addr), p2i(aligned_addr));
 171       }
 172     }
 173     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 174     return aligned_addr;
 175   } else {
 176     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 177                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 178   }
 179 }
 180 
 181 void Thread::operator delete(void* p) {
 182   if (UseBiasedLocking) {
 183     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 184     FreeHeap(real_malloc_addr);
 185   } else {
 186     FreeHeap(p);
 187   }
 188 }
 189 
 190 
 191 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 192 // JavaThread
 193 
 194 
 195 Thread::Thread() {
 196   // stack and get_thread
 197   set_stack_base(NULL);
 198   set_stack_size(0);
 199   set_self_raw_id(0);
 200   set_lgrp_id(-1);
 201   DEBUG_ONLY(clear_suspendible_thread();)
 202 
 203   // allocated data structures
 204   set_osthread(NULL);
 205   set_resource_area(new (mtThread)ResourceArea());
 206   DEBUG_ONLY(_current_resource_mark = NULL;)
 207   set_handle_area(new (mtThread) HandleArea(NULL));
 208   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 209   set_active_handles(NULL);
 210   set_free_handle_block(NULL);
 211   set_last_handle_mark(NULL);
 212 
 213   // This initial value ==> never claimed.
 214   _oops_do_parity = 0;
 215 
 216   // the handle mark links itself to last_handle_mark
 217   new HandleMark(this);
 218 
 219   // plain initialization
 220   debug_only(_owned_locks = NULL;)
 221   debug_only(_allow_allocation_count = 0;)
 222   NOT_PRODUCT(_allow_safepoint_count = 0;)
 223   NOT_PRODUCT(_skip_gcalot = false;)
 224   _jvmti_env_iteration_count = 0;
 225   set_allocated_bytes(0);
 226   _vm_operation_started_count = 0;
 227   _vm_operation_completed_count = 0;
 228   _current_pending_monitor = NULL;
 229   _current_pending_monitor_is_from_java = true;
 230   _current_waiting_monitor = NULL;
 231   _num_nested_signal = 0;
 232   omFreeList = NULL;
 233   omFreeCount = 0;
 234   omFreeProvision = 32;
 235   omInUseList = NULL;
 236   omInUseCount = 0;
 237 
 238 #ifdef ASSERT
 239   _visited_for_critical_count = false;
 240 #endif
 241 
 242   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 243                          Monitor::_safepoint_check_sometimes);
 244   _suspend_flags = 0;
 245 
 246   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 247   _hashStateX = os::random();
 248   _hashStateY = 842502087;
 249   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 250   _hashStateW = 273326509;
 251 
 252   _OnTrap   = 0;
 253   _schedctl = NULL;
 254   _Stalled  = 0;
 255   _TypeTag  = 0x2BAD;
 256 
 257   // Many of the following fields are effectively final - immutable
 258   // Note that nascent threads can't use the Native Monitor-Mutex
 259   // construct until the _MutexEvent is initialized ...
 260   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 261   // we might instead use a stack of ParkEvents that we could provision on-demand.
 262   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 263   // and ::Release()
 264   _ParkEvent   = ParkEvent::Allocate(this);
 265   _SleepEvent  = ParkEvent::Allocate(this);
 266   _MutexEvent  = ParkEvent::Allocate(this);
 267   _MuxEvent    = ParkEvent::Allocate(this);
 268 
 269 #ifdef CHECK_UNHANDLED_OOPS
 270   if (CheckUnhandledOops) {
 271     _unhandled_oops = new UnhandledOops(this);
 272   }
 273 #endif // CHECK_UNHANDLED_OOPS
 274 #ifdef ASSERT
 275   if (UseBiasedLocking) {
 276     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 277     assert(this == _real_malloc_address ||
 278            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 279            "bug in forced alignment of thread objects");
 280   }
 281 #endif // ASSERT
 282 }
 283 
 284 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 285 Thread* Thread::current_noinline() {
 286   return Thread::current();
 287 }
 288 
 289 void Thread::initialize_thread_local_storage() {
 290   // Note: Make sure this method only calls
 291   // non-blocking operations. Otherwise, it might not work
 292   // with the thread-startup/safepoint interaction.
 293 
 294   // During Java thread startup, safepoint code should allow this
 295   // method to complete because it may need to allocate memory to
 296   // store information for the new thread.
 297 
 298   // initialize structure dependent on thread local storage
 299   ThreadLocalStorage::set_thread(this);
 300 }
 301 
 302 void Thread::record_stack_base_and_size() {
 303   set_stack_base(os::current_stack_base());
 304   set_stack_size(os::current_stack_size());
 305   if (is_Java_thread()) {
 306     ((JavaThread*) this)->set_stack_overflow_limit();
 307   }
 308   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 309   // in initialize_thread(). Without the adjustment, stack size is
 310   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 311   // So far, only Solaris has real implementation of initialize_thread().
 312   //
 313   // set up any platform-specific state.
 314   os::initialize_thread(this);
 315 
 316 #if INCLUDE_NMT
 317   // record thread's native stack, stack grows downward
 318   address stack_low_addr = stack_base() - stack_size();
 319   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 320 #endif // INCLUDE_NMT
 321 }
 322 
 323 
 324 Thread::~Thread() {
 325   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 326   ObjectSynchronizer::omFlush(this);
 327 
 328   EVENT_THREAD_DESTRUCT(this);
 329 
 330   // stack_base can be NULL if the thread is never started or exited before
 331   // record_stack_base_and_size called. Although, we would like to ensure
 332   // that all started threads do call record_stack_base_and_size(), there is
 333   // not proper way to enforce that.
 334 #if INCLUDE_NMT
 335   if (_stack_base != NULL) {
 336     address low_stack_addr = stack_base() - stack_size();
 337     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 338 #ifdef ASSERT
 339     set_stack_base(NULL);
 340 #endif
 341   }
 342 #endif // INCLUDE_NMT
 343 
 344   // deallocate data structures
 345   delete resource_area();
 346   // since the handle marks are using the handle area, we have to deallocated the root
 347   // handle mark before deallocating the thread's handle area,
 348   assert(last_handle_mark() != NULL, "check we have an element");
 349   delete last_handle_mark();
 350   assert(last_handle_mark() == NULL, "check we have reached the end");
 351 
 352   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 353   // We NULL out the fields for good hygiene.
 354   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 355   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 356   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 357   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 358 
 359   delete handle_area();
 360   delete metadata_handles();
 361 
 362   // osthread() can be NULL, if creation of thread failed.
 363   if (osthread() != NULL) os::free_thread(osthread());
 364 
 365   delete _SR_lock;
 366 
 367   // clear thread local storage if the Thread is deleting itself
 368   if (this == Thread::current()) {
 369     ThreadLocalStorage::set_thread(NULL);
 370   } else {
 371     // In the case where we're not the current thread, invalidate all the
 372     // caches in case some code tries to get the current thread or the
 373     // thread that was destroyed, and gets stale information.
 374     ThreadLocalStorage::invalidate_all();
 375   }
 376   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 377 }
 378 
 379 // NOTE: dummy function for assertion purpose.
 380 void Thread::run() {
 381   ShouldNotReachHere();
 382 }
 383 
 384 #ifdef ASSERT
 385 // Private method to check for dangling thread pointer
 386 void check_for_dangling_thread_pointer(Thread *thread) {
 387   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 388          "possibility of dangling Thread pointer");
 389 }
 390 #endif
 391 
 392 ThreadPriority Thread::get_priority(const Thread* const thread) {
 393   ThreadPriority priority;
 394   // Can return an error!
 395   (void)os::get_priority(thread, priority);
 396   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 397   return priority;
 398 }
 399 
 400 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 401   debug_only(check_for_dangling_thread_pointer(thread);)
 402   // Can return an error!
 403   (void)os::set_priority(thread, priority);
 404 }
 405 
 406 
 407 void Thread::start(Thread* thread) {
 408   // Start is different from resume in that its safety is guaranteed by context or
 409   // being called from a Java method synchronized on the Thread object.
 410   if (!DisableStartThread) {
 411     if (thread->is_Java_thread()) {
 412       // Initialize the thread state to RUNNABLE before starting this thread.
 413       // Can not set it after the thread started because we do not know the
 414       // exact thread state at that time. It could be in MONITOR_WAIT or
 415       // in SLEEPING or some other state.
 416       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 417                                           java_lang_Thread::RUNNABLE);
 418     }
 419     os::start_thread(thread);
 420   }
 421 }
 422 
 423 // Enqueue a VM_Operation to do the job for us - sometime later
 424 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 425   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 426   VMThread::execute(vm_stop);
 427 }
 428 
 429 
 430 // Check if an external suspend request has completed (or has been
 431 // cancelled). Returns true if the thread is externally suspended and
 432 // false otherwise.
 433 //
 434 // The bits parameter returns information about the code path through
 435 // the routine. Useful for debugging:
 436 //
 437 // set in is_ext_suspend_completed():
 438 // 0x00000001 - routine was entered
 439 // 0x00000010 - routine return false at end
 440 // 0x00000100 - thread exited (return false)
 441 // 0x00000200 - suspend request cancelled (return false)
 442 // 0x00000400 - thread suspended (return true)
 443 // 0x00001000 - thread is in a suspend equivalent state (return true)
 444 // 0x00002000 - thread is native and walkable (return true)
 445 // 0x00004000 - thread is native_trans and walkable (needed retry)
 446 //
 447 // set in wait_for_ext_suspend_completion():
 448 // 0x00010000 - routine was entered
 449 // 0x00020000 - suspend request cancelled before loop (return false)
 450 // 0x00040000 - thread suspended before loop (return true)
 451 // 0x00080000 - suspend request cancelled in loop (return false)
 452 // 0x00100000 - thread suspended in loop (return true)
 453 // 0x00200000 - suspend not completed during retry loop (return false)
 454 
 455 // Helper class for tracing suspend wait debug bits.
 456 //
 457 // 0x00000100 indicates that the target thread exited before it could
 458 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 459 // 0x00080000 each indicate a cancelled suspend request so they don't
 460 // count as wait failures either.
 461 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 462 
 463 class TraceSuspendDebugBits : public StackObj {
 464  private:
 465   JavaThread * jt;
 466   bool         is_wait;
 467   bool         called_by_wait;  // meaningful when !is_wait
 468   uint32_t *   bits;
 469 
 470  public:
 471   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 472                         uint32_t *_bits) {
 473     jt             = _jt;
 474     is_wait        = _is_wait;
 475     called_by_wait = _called_by_wait;
 476     bits           = _bits;
 477   }
 478 
 479   ~TraceSuspendDebugBits() {
 480     if (!is_wait) {
 481 #if 1
 482       // By default, don't trace bits for is_ext_suspend_completed() calls.
 483       // That trace is very chatty.
 484       return;
 485 #else
 486       if (!called_by_wait) {
 487         // If tracing for is_ext_suspend_completed() is enabled, then only
 488         // trace calls to it from wait_for_ext_suspend_completion()
 489         return;
 490       }
 491 #endif
 492     }
 493 
 494     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 495       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 496         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 497         ResourceMark rm;
 498 
 499         tty->print_cr(
 500                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 501                       jt->get_thread_name(), *bits);
 502 
 503         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 504       }
 505     }
 506   }
 507 };
 508 #undef DEBUG_FALSE_BITS
 509 
 510 
 511 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 512                                           uint32_t *bits) {
 513   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 514 
 515   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 516   bool do_trans_retry;           // flag to force the retry
 517 
 518   *bits |= 0x00000001;
 519 
 520   do {
 521     do_trans_retry = false;
 522 
 523     if (is_exiting()) {
 524       // Thread is in the process of exiting. This is always checked
 525       // first to reduce the risk of dereferencing a freed JavaThread.
 526       *bits |= 0x00000100;
 527       return false;
 528     }
 529 
 530     if (!is_external_suspend()) {
 531       // Suspend request is cancelled. This is always checked before
 532       // is_ext_suspended() to reduce the risk of a rogue resume
 533       // confusing the thread that made the suspend request.
 534       *bits |= 0x00000200;
 535       return false;
 536     }
 537 
 538     if (is_ext_suspended()) {
 539       // thread is suspended
 540       *bits |= 0x00000400;
 541       return true;
 542     }
 543 
 544     // Now that we no longer do hard suspends of threads running
 545     // native code, the target thread can be changing thread state
 546     // while we are in this routine:
 547     //
 548     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 549     //
 550     // We save a copy of the thread state as observed at this moment
 551     // and make our decision about suspend completeness based on the
 552     // copy. This closes the race where the thread state is seen as
 553     // _thread_in_native_trans in the if-thread_blocked check, but is
 554     // seen as _thread_blocked in if-thread_in_native_trans check.
 555     JavaThreadState save_state = thread_state();
 556 
 557     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 558       // If the thread's state is _thread_blocked and this blocking
 559       // condition is known to be equivalent to a suspend, then we can
 560       // consider the thread to be externally suspended. This means that
 561       // the code that sets _thread_blocked has been modified to do
 562       // self-suspension if the blocking condition releases. We also
 563       // used to check for CONDVAR_WAIT here, but that is now covered by
 564       // the _thread_blocked with self-suspension check.
 565       //
 566       // Return true since we wouldn't be here unless there was still an
 567       // external suspend request.
 568       *bits |= 0x00001000;
 569       return true;
 570     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 571       // Threads running native code will self-suspend on native==>VM/Java
 572       // transitions. If its stack is walkable (should always be the case
 573       // unless this function is called before the actual java_suspend()
 574       // call), then the wait is done.
 575       *bits |= 0x00002000;
 576       return true;
 577     } else if (!called_by_wait && !did_trans_retry &&
 578                save_state == _thread_in_native_trans &&
 579                frame_anchor()->walkable()) {
 580       // The thread is transitioning from thread_in_native to another
 581       // thread state. check_safepoint_and_suspend_for_native_trans()
 582       // will force the thread to self-suspend. If it hasn't gotten
 583       // there yet we may have caught the thread in-between the native
 584       // code check above and the self-suspend. Lucky us. If we were
 585       // called by wait_for_ext_suspend_completion(), then it
 586       // will be doing the retries so we don't have to.
 587       //
 588       // Since we use the saved thread state in the if-statement above,
 589       // there is a chance that the thread has already transitioned to
 590       // _thread_blocked by the time we get here. In that case, we will
 591       // make a single unnecessary pass through the logic below. This
 592       // doesn't hurt anything since we still do the trans retry.
 593 
 594       *bits |= 0x00004000;
 595 
 596       // Once the thread leaves thread_in_native_trans for another
 597       // thread state, we break out of this retry loop. We shouldn't
 598       // need this flag to prevent us from getting back here, but
 599       // sometimes paranoia is good.
 600       did_trans_retry = true;
 601 
 602       // We wait for the thread to transition to a more usable state.
 603       for (int i = 1; i <= SuspendRetryCount; i++) {
 604         // We used to do an "os::yield_all(i)" call here with the intention
 605         // that yielding would increase on each retry. However, the parameter
 606         // is ignored on Linux which means the yield didn't scale up. Waiting
 607         // on the SR_lock below provides a much more predictable scale up for
 608         // the delay. It also provides a simple/direct point to check for any
 609         // safepoint requests from the VMThread
 610 
 611         // temporarily drops SR_lock while doing wait with safepoint check
 612         // (if we're a JavaThread - the WatcherThread can also call this)
 613         // and increase delay with each retry
 614         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 615 
 616         // check the actual thread state instead of what we saved above
 617         if (thread_state() != _thread_in_native_trans) {
 618           // the thread has transitioned to another thread state so
 619           // try all the checks (except this one) one more time.
 620           do_trans_retry = true;
 621           break;
 622         }
 623       } // end retry loop
 624 
 625 
 626     }
 627   } while (do_trans_retry);
 628 
 629   *bits |= 0x00000010;
 630   return false;
 631 }
 632 
 633 // Wait for an external suspend request to complete (or be cancelled).
 634 // Returns true if the thread is externally suspended and false otherwise.
 635 //
 636 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 637                                                  uint32_t *bits) {
 638   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 639                              false /* !called_by_wait */, bits);
 640 
 641   // local flag copies to minimize SR_lock hold time
 642   bool is_suspended;
 643   bool pending;
 644   uint32_t reset_bits;
 645 
 646   // set a marker so is_ext_suspend_completed() knows we are the caller
 647   *bits |= 0x00010000;
 648 
 649   // We use reset_bits to reinitialize the bits value at the top of
 650   // each retry loop. This allows the caller to make use of any
 651   // unused bits for their own marking purposes.
 652   reset_bits = *bits;
 653 
 654   {
 655     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 656     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 657                                             delay, bits);
 658     pending = is_external_suspend();
 659   }
 660   // must release SR_lock to allow suspension to complete
 661 
 662   if (!pending) {
 663     // A cancelled suspend request is the only false return from
 664     // is_ext_suspend_completed() that keeps us from entering the
 665     // retry loop.
 666     *bits |= 0x00020000;
 667     return false;
 668   }
 669 
 670   if (is_suspended) {
 671     *bits |= 0x00040000;
 672     return true;
 673   }
 674 
 675   for (int i = 1; i <= retries; i++) {
 676     *bits = reset_bits;  // reinit to only track last retry
 677 
 678     // We used to do an "os::yield_all(i)" call here with the intention
 679     // that yielding would increase on each retry. However, the parameter
 680     // is ignored on Linux which means the yield didn't scale up. Waiting
 681     // on the SR_lock below provides a much more predictable scale up for
 682     // the delay. It also provides a simple/direct point to check for any
 683     // safepoint requests from the VMThread
 684 
 685     {
 686       MutexLocker ml(SR_lock());
 687       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 688       // can also call this)  and increase delay with each retry
 689       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 690 
 691       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                               delay, bits);
 693 
 694       // It is possible for the external suspend request to be cancelled
 695       // (by a resume) before the actual suspend operation is completed.
 696       // Refresh our local copy to see if we still need to wait.
 697       pending = is_external_suspend();
 698     }
 699 
 700     if (!pending) {
 701       // A cancelled suspend request is the only false return from
 702       // is_ext_suspend_completed() that keeps us from staying in the
 703       // retry loop.
 704       *bits |= 0x00080000;
 705       return false;
 706     }
 707 
 708     if (is_suspended) {
 709       *bits |= 0x00100000;
 710       return true;
 711     }
 712   } // end retry loop
 713 
 714   // thread did not suspend after all our retries
 715   *bits |= 0x00200000;
 716   return false;
 717 }
 718 
 719 #ifndef PRODUCT
 720 void JavaThread::record_jump(address target, address instr, const char* file,
 721                              int line) {
 722 
 723   // This should not need to be atomic as the only way for simultaneous
 724   // updates is via interrupts. Even then this should be rare or non-existent
 725   // and we don't care that much anyway.
 726 
 727   int index = _jmp_ring_index;
 728   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 729   _jmp_ring[index]._target = (intptr_t) target;
 730   _jmp_ring[index]._instruction = (intptr_t) instr;
 731   _jmp_ring[index]._file = file;
 732   _jmp_ring[index]._line = line;
 733 }
 734 #endif // PRODUCT
 735 
 736 // Called by flat profiler
 737 // Callers have already called wait_for_ext_suspend_completion
 738 // The assertion for that is currently too complex to put here:
 739 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 740   bool gotframe = false;
 741   // self suspension saves needed state.
 742   if (has_last_Java_frame() && _anchor.walkable()) {
 743     *_fr = pd_last_frame();
 744     gotframe = true;
 745   }
 746   return gotframe;
 747 }
 748 
 749 void Thread::interrupt(Thread* thread) {
 750   debug_only(check_for_dangling_thread_pointer(thread);)
 751   os::interrupt(thread);
 752 }
 753 
 754 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 755   debug_only(check_for_dangling_thread_pointer(thread);)
 756   // Note:  If clear_interrupted==false, this simply fetches and
 757   // returns the value of the field osthread()->interrupted().
 758   return os::is_interrupted(thread, clear_interrupted);
 759 }
 760 
 761 
 762 // GC Support
 763 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 764   jint thread_parity = _oops_do_parity;
 765   if (thread_parity != strong_roots_parity) {
 766     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 767     if (res == thread_parity) {
 768       return true;
 769     } else {
 770       guarantee(res == strong_roots_parity, "Or else what?");
 771       return false;
 772     }
 773   }
 774   return false;
 775 }
 776 
 777 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 778   active_handles()->oops_do(f);
 779   // Do oop for ThreadShadow
 780   f->do_oop((oop*)&_pending_exception);
 781   handle_area()->oops_do(f);
 782 }
 783 
 784 void Thread::nmethods_do(CodeBlobClosure* cf) {
 785   // no nmethods in a generic thread...
 786 }
 787 
 788 void Thread::metadata_handles_do(void f(Metadata*)) {
 789   // Only walk the Handles in Thread.
 790   if (metadata_handles() != NULL) {
 791     for (int i = 0; i< metadata_handles()->length(); i++) {
 792       f(metadata_handles()->at(i));
 793     }
 794   }
 795 }
 796 
 797 void Thread::print_on(outputStream* st) const {
 798   // get_priority assumes osthread initialized
 799   if (osthread() != NULL) {
 800     int os_prio;
 801     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 802       st->print("os_prio=%d ", os_prio);
 803     }
 804     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 805     ext().print_on(st);
 806     osthread()->print_on(st);
 807   }
 808   debug_only(if (WizardMode) print_owned_locks_on(st);)
 809 }
 810 
 811 // Thread::print_on_error() is called by fatal error handler. Don't use
 812 // any lock or allocate memory.
 813 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 814   if (is_VM_thread())                 st->print("VMThread");
 815   else if (is_Compiler_thread())      st->print("CompilerThread");
 816   else if (is_Java_thread())          st->print("JavaThread");
 817   else if (is_GC_task_thread())       st->print("GCTaskThread");
 818   else if (is_Watcher_thread())       st->print("WatcherThread");
 819   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 820   else                                st->print("Thread");
 821 
 822   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 823             p2i(_stack_base - _stack_size), p2i(_stack_base));
 824 
 825   if (osthread()) {
 826     st->print(" [id=%d]", osthread()->thread_id());
 827   }
 828 }
 829 
 830 #ifdef ASSERT
 831 void Thread::print_owned_locks_on(outputStream* st) const {
 832   Monitor *cur = _owned_locks;
 833   if (cur == NULL) {
 834     st->print(" (no locks) ");
 835   } else {
 836     st->print_cr(" Locks owned:");
 837     while (cur) {
 838       cur->print_on(st);
 839       cur = cur->next();
 840     }
 841   }
 842 }
 843 
 844 static int ref_use_count  = 0;
 845 
 846 bool Thread::owns_locks_but_compiled_lock() const {
 847   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 848     if (cur != Compile_lock) return true;
 849   }
 850   return false;
 851 }
 852 
 853 
 854 #endif
 855 
 856 #ifndef PRODUCT
 857 
 858 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 859 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 860 // no threads which allow_vm_block's are held
 861 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 862   // Check if current thread is allowed to block at a safepoint
 863   if (!(_allow_safepoint_count == 0)) {
 864     fatal("Possible safepoint reached by thread that does not allow it");
 865   }
 866   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 867     fatal("LEAF method calling lock?");
 868   }
 869 
 870 #ifdef ASSERT
 871   if (potential_vm_operation && is_Java_thread()
 872       && !Universe::is_bootstrapping()) {
 873     // Make sure we do not hold any locks that the VM thread also uses.
 874     // This could potentially lead to deadlocks
 875     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 876       // Threads_lock is special, since the safepoint synchronization will not start before this is
 877       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 878       // since it is used to transfer control between JavaThreads and the VMThread
 879       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 880       if ((cur->allow_vm_block() &&
 881            cur != Threads_lock &&
 882            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 883            cur != VMOperationRequest_lock &&
 884            cur != VMOperationQueue_lock) ||
 885            cur->rank() == Mutex::special) {
 886         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 887       }
 888     }
 889   }
 890 
 891   if (GCALotAtAllSafepoints) {
 892     // We could enter a safepoint here and thus have a gc
 893     InterfaceSupport::check_gc_alot();
 894   }
 895 #endif
 896 }
 897 #endif
 898 
 899 bool Thread::is_in_stack(address adr) const {
 900   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 901   address end = os::current_stack_pointer();
 902   // Allow non Java threads to call this without stack_base
 903   if (_stack_base == NULL) return true;
 904   if (stack_base() >= adr && adr >= end) return true;
 905 
 906   return false;
 907 }
 908 
 909 
 910 bool Thread::is_in_usable_stack(address adr) const {
 911   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 912   size_t usable_stack_size = _stack_size - stack_guard_size;
 913 
 914   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 915 }
 916 
 917 
 918 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 919 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 920 // used for compilation in the future. If that change is made, the need for these methods
 921 // should be revisited, and they should be removed if possible.
 922 
 923 bool Thread::is_lock_owned(address adr) const {
 924   return on_local_stack(adr);
 925 }
 926 
 927 bool Thread::set_as_starting_thread() {
 928   // NOTE: this must be called inside the main thread.
 929   return os::create_main_thread((JavaThread*)this);
 930 }
 931 
 932 static void initialize_class(Symbol* class_name, TRAPS) {
 933   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 934   InstanceKlass::cast(klass)->initialize(CHECK);
 935 }
 936 
 937 
 938 // Creates the initial ThreadGroup
 939 static Handle create_initial_thread_group(TRAPS) {
 940   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 941   instanceKlassHandle klass (THREAD, k);
 942 
 943   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 944   {
 945     JavaValue result(T_VOID);
 946     JavaCalls::call_special(&result,
 947                             system_instance,
 948                             klass,
 949                             vmSymbols::object_initializer_name(),
 950                             vmSymbols::void_method_signature(),
 951                             CHECK_NH);
 952   }
 953   Universe::set_system_thread_group(system_instance());
 954 
 955   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 959     JavaCalls::call_special(&result,
 960                             main_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::threadgroup_string_void_signature(),
 964                             system_instance,
 965                             string,
 966                             CHECK_NH);
 967   }
 968   return main_instance;
 969 }
 970 
 971 // Creates the initial Thread
 972 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 973                                  TRAPS) {
 974   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 975   instanceKlassHandle klass (THREAD, k);
 976   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 977 
 978   java_lang_Thread::set_thread(thread_oop(), thread);
 979   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 980   thread->set_threadObj(thread_oop());
 981 
 982   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 983 
 984   JavaValue result(T_VOID);
 985   JavaCalls::call_special(&result, thread_oop,
 986                           klass,
 987                           vmSymbols::object_initializer_name(),
 988                           vmSymbols::threadgroup_string_void_signature(),
 989                           thread_group,
 990                           string,
 991                           CHECK_NULL);
 992   return thread_oop();
 993 }
 994 
 995 static void call_initializeSystemClass(TRAPS) {
 996   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 997   instanceKlassHandle klass (THREAD, k);
 998 
 999   JavaValue result(T_VOID);
1000   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                          vmSymbols::void_method_signature(), CHECK);
1002 }
1003 
1004 char java_runtime_name[128] = "";
1005 char java_runtime_version[128] = "";
1006 
1007 // extract the JRE name from sun.misc.Version.java_runtime_name
1008 static const char* get_java_runtime_name(TRAPS) {
1009   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011   fieldDescriptor fd;
1012   bool found = k != NULL &&
1013                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                         vmSymbols::string_signature(), &fd);
1015   if (found) {
1016     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017     if (name_oop == NULL) {
1018       return NULL;
1019     }
1020     const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                         java_runtime_name,
1022                                                         sizeof(java_runtime_name));
1023     return name;
1024   } else {
1025     return NULL;
1026   }
1027 }
1028 
1029 // extract the JRE version from sun.misc.Version.java_runtime_version
1030 static const char* get_java_runtime_version(TRAPS) {
1031   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033   fieldDescriptor fd;
1034   bool found = k != NULL &&
1035                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                         vmSymbols::string_signature(), &fd);
1037   if (found) {
1038     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039     if (name_oop == NULL) {
1040       return NULL;
1041     }
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_version,
1044                                                         sizeof(java_runtime_version));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                            vmSymbols::void_method_signature(),
1060                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                     bool daemon, TRAPS) {
1093   assert(thread_group.not_null(), "thread group should be specified");
1094   assert(threadObj() == NULL, "should only create Java thread object once");
1095 
1096   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097   instanceKlassHandle klass (THREAD, k);
1098   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099 
1100   java_lang_Thread::set_thread(thread_oop(), this);
1101   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102   set_threadObj(thread_oop());
1103 
1104   JavaValue result(T_VOID);
1105   if (thread_name != NULL) {
1106     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107     // Thread gets assigned specified name and null target
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_string_void_signature(),
1113                             thread_group, // Argument 1
1114                             name,         // Argument 2
1115                             THREAD);
1116   } else {
1117     // Thread gets assigned name "Thread-nnn" and null target
1118     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_runnable_void_signature(),
1124                             thread_group, // Argument 1
1125                             Handle(),     // Argument 2
1126                             THREAD);
1127   }
1128 
1129 
1130   if (daemon) {
1131     java_lang_Thread::set_daemon(thread_oop());
1132   }
1133 
1134   if (HAS_PENDING_EXCEPTION) {
1135     return;
1136   }
1137 
1138   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139   Handle threadObj(THREAD, this->threadObj());
1140 
1141   JavaCalls::call_special(&result,
1142                           thread_group,
1143                           group,
1144                           vmSymbols::add_method_name(),
1145                           vmSymbols::thread_void_signature(),
1146                           threadObj,          // Arg 1
1147                           THREAD);
1148 }
1149 
1150 // NamedThread --  non-JavaThread subclasses with multiple
1151 // uniquely named instances should derive from this.
1152 NamedThread::NamedThread() : Thread() {
1153   _name = NULL;
1154   _processed_thread = NULL;
1155   _gc_id = GCId::undefined();
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 void NamedThread::initialize_named_thread() {
1176   set_native_thread_name(name());
1177 }
1178 
1179 void NamedThread::print_on(outputStream* st) const {
1180   st->print("\"%s\" ", name());
1181   Thread::print_on(st);
1182   st->cr();
1183 }
1184 
1185 
1186 // ======= WatcherThread ========
1187 
1188 // The watcher thread exists to simulate timer interrupts.  It should
1189 // be replaced by an abstraction over whatever native support for
1190 // timer interrupts exists on the platform.
1191 
1192 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193 bool WatcherThread::_startable = false;
1194 volatile bool  WatcherThread::_should_terminate = false;
1195 
1196 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198   if (os::create_thread(this, os::watcher_thread)) {
1199     _watcher_thread = this;
1200 
1201     // Set the watcher thread to the highest OS priority which should not be
1202     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203     // is created. The only normal thread using this priority is the reference
1204     // handler thread, which runs for very short intervals only.
1205     // If the VMThread's priority is not lower than the WatcherThread profiling
1206     // will be inaccurate.
1207     os::set_priority(this, MaxPriority);
1208     if (!DisableStartThread) {
1209       os::start_thread(this);
1210     }
1211   }
1212 }
1213 
1214 int WatcherThread::sleep() const {
1215   // The WatcherThread does not participate in the safepoint protocol
1216   // for the PeriodicTask_lock because it is not a JavaThread.
1217   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218 
1219   if (_should_terminate) {
1220     // check for termination before we do any housekeeping or wait
1221     return 0;  // we did not sleep.
1222   }
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   while (true) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                             remaining);
1239     jlong now = os::javaTimeNanos();
1240 
1241     if (remaining == 0) {
1242       // if we didn't have any tasks we could have waited for a long time
1243       // consider the time_slept zero and reset time_before_loop
1244       time_slept = 0;
1245       time_before_loop = now;
1246     } else {
1247       // need to recalculate since we might have new tasks in _tasks
1248       time_slept = (int) ((now - time_before_loop) / 1000000);
1249     }
1250 
1251     // Change to task list or spurious wakeup of some kind
1252     if (timedout || _should_terminate) {
1253       break;
1254     }
1255 
1256     remaining = PeriodicTask::time_to_wait();
1257     if (remaining == 0) {
1258       // Last task was just disenrolled so loop around and wait until
1259       // another task gets enrolled
1260       continue;
1261     }
1262 
1263     remaining -= time_slept;
1264     if (remaining <= 0) {
1265       break;
1266     }
1267   }
1268 
1269   return time_slept;
1270 }
1271 
1272 void WatcherThread::run() {
1273   assert(this == watcher_thread(), "just checking");
1274 
1275   this->record_stack_base_and_size();
1276   this->initialize_thread_local_storage();
1277   this->set_native_thread_name(this->name());
1278   this->set_active_handles(JNIHandleBlock::allocate_block());
1279   while (true) {
1280     assert(watcher_thread() == Thread::current(), "thread consistency check");
1281     assert(watcher_thread() == this, "thread consistency check");
1282 
1283     // Calculate how long it'll be until the next PeriodicTask work
1284     // should be done, and sleep that amount of time.
1285     int time_waited = sleep();
1286 
1287     if (is_error_reported()) {
1288       // A fatal error has happened, the error handler(VMError::report_and_die)
1289       // should abort JVM after creating an error log file. However in some
1290       // rare cases, the error handler itself might deadlock. Here we try to
1291       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292       //
1293       // This code is in WatcherThread because WatcherThread wakes up
1294       // periodically so the fatal error handler doesn't need to do anything;
1295       // also because the WatcherThread is less likely to crash than other
1296       // threads.
1297 
1298       for (;;) {
1299         if (!ShowMessageBoxOnError
1300             && (OnError == NULL || OnError[0] == '\0')
1301             && Arguments::abort_hook() == NULL) {
1302           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1303           fdStream err(defaultStream::output_fd());
1304           err.print_raw_cr("# [ timer expired, abort... ]");
1305           // skip atexit/vm_exit/vm_abort hooks
1306           os::die();
1307         }
1308 
1309         // Wake up 5 seconds later, the fatal handler may reset OnError or
1310         // ShowMessageBoxOnError when it is ready to abort.
1311         os::sleep(this, 5 * 1000, false);
1312       }
1313     }
1314 
1315     if (_should_terminate) {
1316       // check for termination before posting the next tick
1317       break;
1318     }
1319 
1320     PeriodicTask::real_time_tick(time_waited);
1321   }
1322 
1323   // Signal that it is terminated
1324   {
1325     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326     _watcher_thread = NULL;
1327     Terminator_lock->notify();
1328   }
1329 
1330   // Thread destructor usually does this..
1331   ThreadLocalStorage::set_thread(NULL);
1332 }
1333 
1334 void WatcherThread::start() {
1335   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1336 
1337   if (watcher_thread() == NULL && _startable) {
1338     _should_terminate = false;
1339     // Create the single instance of WatcherThread
1340     new WatcherThread();
1341   }
1342 }
1343 
1344 void WatcherThread::make_startable() {
1345   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1346   _startable = true;
1347 }
1348 
1349 void WatcherThread::stop() {
1350   {
1351     // Follow normal safepoint aware lock enter protocol since the
1352     // WatcherThread is stopped by another JavaThread.
1353     MutexLocker ml(PeriodicTask_lock);
1354     _should_terminate = true;
1355 
1356     WatcherThread* watcher = watcher_thread();
1357     if (watcher != NULL) {
1358       // unpark the WatcherThread so it can see that it should terminate
1359       watcher->unpark();
1360     }
1361   }
1362 
1363   MutexLocker mu(Terminator_lock);
1364 
1365   while (watcher_thread() != NULL) {
1366     // This wait should make safepoint checks, wait without a timeout,
1367     // and wait as a suspend-equivalent condition.
1368     //
1369     // Note: If the FlatProfiler is running, then this thread is waiting
1370     // for the WatcherThread to terminate and the WatcherThread, via the
1371     // FlatProfiler task, is waiting for the external suspend request on
1372     // this thread to complete. wait_for_ext_suspend_completion() will
1373     // eventually timeout, but that takes time. Making this wait a
1374     // suspend-equivalent condition solves that timeout problem.
1375     //
1376     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1377                           Mutex::_as_suspend_equivalent_flag);
1378   }
1379 }
1380 
1381 void WatcherThread::unpark() {
1382   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1383   PeriodicTask_lock->notify();
1384 }
1385 
1386 void WatcherThread::print_on(outputStream* st) const {
1387   st->print("\"%s\" ", name());
1388   Thread::print_on(st);
1389   st->cr();
1390 }
1391 
1392 // ======= JavaThread ========
1393 
1394 #if INCLUDE_JVMCI
1395 
1396 jlong* JavaThread::_jvmci_old_thread_counters;
1397 
1398 bool jvmci_counters_include(JavaThread* thread) {
1399   oop threadObj = thread->threadObj();
1400   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1401 }
1402 
1403 void JavaThread::collect_counters(typeArrayOop array) {
1404   if (JVMCICounterSize > 0) {
1405     MutexLocker tl(Threads_lock);
1406     for (int i = 0; i < array->length(); i++) {
1407       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1408     }
1409     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1410       if (jvmci_counters_include(tp)) {
1411         for (int i = 0; i < array->length(); i++) {
1412           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1413         }
1414       }
1415     }
1416   }
1417 }
1418 
1419 #endif // INCLUDE_JVMCI
1420 
1421 // A JavaThread is a normal Java thread
1422 
1423 void JavaThread::initialize() {
1424   // Initialize fields
1425 
1426   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1427   set_claimed_par_id(UINT_MAX);
1428 
1429   set_saved_exception_pc(NULL);
1430   set_threadObj(NULL);
1431   _anchor.clear();
1432   set_entry_point(NULL);
1433   set_jni_functions(jni_functions());
1434   set_callee_target(NULL);
1435   set_vm_result(NULL);
1436   set_vm_result_2(NULL);
1437   set_vframe_array_head(NULL);
1438   set_vframe_array_last(NULL);
1439   set_deferred_locals(NULL);
1440   set_deopt_mark(NULL);
1441   set_deopt_nmethod(NULL);
1442   clear_must_deopt_id();
1443   set_monitor_chunks(NULL);
1444   set_next(NULL);
1445   set_thread_state(_thread_new);
1446   _terminated = _not_terminated;
1447   _privileged_stack_top = NULL;
1448   _array_for_gc = NULL;
1449   _suspend_equivalent = false;
1450   _in_deopt_handler = 0;
1451   _doing_unsafe_access = false;
1452   _stack_guard_state = stack_guard_unused;
1453 #if INCLUDE_JVMCI
1454   _pending_monitorenter = false;
1455   _pending_deoptimization = -1;
1456   _pending_failed_speculation = NULL;
1457   _pending_transfer_to_interpreter = false;
1458   _jvmci._alternate_call_target = NULL;
1459   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1460   if (JVMCICounterSize > 0) {
1461     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1462     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1463   } else {
1464     _jvmci_counters = NULL;
1465   }
1466 #endif // INCLUDE_JVMCI
1467   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1468   _exception_pc  = 0;
1469   _exception_handler_pc = 0;
1470   _is_method_handle_return = 0;
1471   _jvmti_thread_state= NULL;
1472   _should_post_on_exceptions_flag = JNI_FALSE;
1473   _jvmti_get_loaded_classes_closure = NULL;
1474   _interp_only_mode    = 0;
1475   _special_runtime_exit_condition = _no_async_condition;
1476   _pending_async_exception = NULL;
1477   _thread_stat = NULL;
1478   _thread_stat = new ThreadStatistics();
1479   _blocked_on_compilation = false;
1480   _jni_active_critical = 0;
1481   _pending_jni_exception_check_fn = NULL;
1482   _do_not_unlock_if_synchronized = false;
1483   _cached_monitor_info = NULL;
1484   _parker = Parker::Allocate(this);
1485 
1486 #ifndef PRODUCT
1487   _jmp_ring_index = 0;
1488   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1489     record_jump(NULL, NULL, NULL, 0);
1490   }
1491 #endif // PRODUCT
1492 
1493   set_thread_profiler(NULL);
1494   if (FlatProfiler::is_active()) {
1495     // This is where we would decide to either give each thread it's own profiler
1496     // or use one global one from FlatProfiler,
1497     // or up to some count of the number of profiled threads, etc.
1498     ThreadProfiler* pp = new ThreadProfiler();
1499     pp->engage();
1500     set_thread_profiler(pp);
1501   }
1502 
1503   // Setup safepoint state info for this thread
1504   ThreadSafepointState::create(this);
1505 
1506   debug_only(_java_call_counter = 0);
1507 
1508   // JVMTI PopFrame support
1509   _popframe_condition = popframe_inactive;
1510   _popframe_preserved_args = NULL;
1511   _popframe_preserved_args_size = 0;
1512   _frames_to_pop_failed_realloc = 0;
1513 
1514   pd_initialize();
1515 }
1516 
1517 #if INCLUDE_ALL_GCS
1518 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1519 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1520 #endif // INCLUDE_ALL_GCS
1521 
1522 JavaThread::JavaThread(bool is_attaching_via_jni) :
1523                        Thread()
1524 #if INCLUDE_ALL_GCS
1525                        , _satb_mark_queue(&_satb_mark_queue_set),
1526                        _dirty_card_queue(&_dirty_card_queue_set)
1527 #endif // INCLUDE_ALL_GCS
1528 {
1529   initialize();
1530   if (is_attaching_via_jni) {
1531     _jni_attach_state = _attaching_via_jni;
1532   } else {
1533     _jni_attach_state = _not_attaching_via_jni;
1534   }
1535   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1536 }
1537 
1538 bool JavaThread::reguard_stack(address cur_sp) {
1539   if (_stack_guard_state != stack_guard_yellow_disabled) {
1540     return true; // Stack already guarded or guard pages not needed.
1541   }
1542 
1543   if (register_stack_overflow()) {
1544     // For those architectures which have separate register and
1545     // memory stacks, we must check the register stack to see if
1546     // it has overflowed.
1547     return false;
1548   }
1549 
1550   // Java code never executes within the yellow zone: the latter is only
1551   // there to provoke an exception during stack banging.  If java code
1552   // is executing there, either StackShadowPages should be larger, or
1553   // some exception code in c1, c2 or the interpreter isn't unwinding
1554   // when it should.
1555   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1556 
1557   enable_stack_yellow_zone();
1558   return true;
1559 }
1560 
1561 bool JavaThread::reguard_stack(void) {
1562   return reguard_stack(os::current_stack_pointer());
1563 }
1564 
1565 
1566 void JavaThread::block_if_vm_exited() {
1567   if (_terminated == _vm_exited) {
1568     // _vm_exited is set at safepoint, and Threads_lock is never released
1569     // we will block here forever
1570     Threads_lock->lock_without_safepoint_check();
1571     ShouldNotReachHere();
1572   }
1573 }
1574 
1575 
1576 // Remove this ifdef when C1 is ported to the compiler interface.
1577 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1578 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1579 
1580 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1581                        Thread()
1582 #if INCLUDE_ALL_GCS
1583                        , _satb_mark_queue(&_satb_mark_queue_set),
1584                        _dirty_card_queue(&_dirty_card_queue_set)
1585 #endif // INCLUDE_ALL_GCS
1586 {
1587   initialize();
1588   _jni_attach_state = _not_attaching_via_jni;
1589   set_entry_point(entry_point);
1590   // Create the native thread itself.
1591   // %note runtime_23
1592   os::ThreadType thr_type = os::java_thread;
1593   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1594                                                      os::java_thread;
1595   os::create_thread(this, thr_type, stack_sz);
1596   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1597   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1598   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1599   // the exception consists of creating the exception object & initializing it, initialization
1600   // will leave the VM via a JavaCall and then all locks must be unlocked).
1601   //
1602   // The thread is still suspended when we reach here. Thread must be explicit started
1603   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1604   // by calling Threads:add. The reason why this is not done here, is because the thread
1605   // object must be fully initialized (take a look at JVM_Start)
1606 }
1607 
1608 JavaThread::~JavaThread() {
1609 
1610   // JSR166 -- return the parker to the free list
1611   Parker::Release(_parker);
1612   _parker = NULL;
1613 
1614   // Free any remaining  previous UnrollBlock
1615   vframeArray* old_array = vframe_array_last();
1616 
1617   if (old_array != NULL) {
1618     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1619     old_array->set_unroll_block(NULL);
1620     delete old_info;
1621     delete old_array;
1622   }
1623 
1624   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1625   if (deferred != NULL) {
1626     // This can only happen if thread is destroyed before deoptimization occurs.
1627     assert(deferred->length() != 0, "empty array!");
1628     do {
1629       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1630       deferred->remove_at(0);
1631       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1632       delete dlv;
1633     } while (deferred->length() != 0);
1634     delete deferred;
1635   }
1636 
1637   // All Java related clean up happens in exit
1638   ThreadSafepointState::destroy(this);
1639   if (_thread_profiler != NULL) delete _thread_profiler;
1640   if (_thread_stat != NULL) delete _thread_stat;
1641 
1642 #if INCLUDE_JVMCI
1643   if (JVMCICounterSize > 0) {
1644     if (jvmci_counters_include(this)) {
1645       for (int i = 0; i < JVMCICounterSize; i++) {
1646         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1647       }
1648     }
1649     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1650   }
1651 #endif // INCLUDE_JVMCI
1652 }
1653 
1654 
1655 // The first routine called by a new Java thread
1656 void JavaThread::run() {
1657   // initialize thread-local alloc buffer related fields
1658   this->initialize_tlab();
1659 
1660   // used to test validity of stack trace backs
1661   this->record_base_of_stack_pointer();
1662 
1663   // Record real stack base and size.
1664   this->record_stack_base_and_size();
1665 
1666   // Initialize thread local storage; set before calling MutexLocker
1667   this->initialize_thread_local_storage();
1668 
1669   this->create_stack_guard_pages();
1670 
1671   this->cache_global_variables();
1672 
1673   // Thread is now sufficient initialized to be handled by the safepoint code as being
1674   // in the VM. Change thread state from _thread_new to _thread_in_vm
1675   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1676 
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(!Thread::current()->owns_locks(), "sanity check");
1679 
1680   DTRACE_THREAD_PROBE(start, this);
1681 
1682   // This operation might block. We call that after all safepoint checks for a new thread has
1683   // been completed.
1684   this->set_active_handles(JNIHandleBlock::allocate_block());
1685 
1686   if (JvmtiExport::should_post_thread_life()) {
1687     JvmtiExport::post_thread_start(this);
1688   }
1689 
1690   EventThreadStart event;
1691   if (event.should_commit()) {
1692     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1693     event.commit();
1694   }
1695 
1696   // We call another function to do the rest so we are sure that the stack addresses used
1697   // from there will be lower than the stack base just computed
1698   thread_main_inner();
1699 
1700   // Note, thread is no longer valid at this point!
1701 }
1702 
1703 
1704 void JavaThread::thread_main_inner() {
1705   assert(JavaThread::current() == this, "sanity check");
1706   assert(this->threadObj() != NULL, "just checking");
1707 
1708   // Execute thread entry point unless this thread has a pending exception
1709   // or has been stopped before starting.
1710   // Note: Due to JVM_StopThread we can have pending exceptions already!
1711   if (!this->has_pending_exception() &&
1712       !java_lang_Thread::is_stillborn(this->threadObj())) {
1713     {
1714       ResourceMark rm(this);
1715       this->set_native_thread_name(this->get_thread_name());
1716     }
1717     HandleMark hm(this);
1718     this->entry_point()(this, this);
1719   }
1720 
1721   DTRACE_THREAD_PROBE(stop, this);
1722 
1723   this->exit(false);
1724   delete this;
1725 }
1726 
1727 
1728 static void ensure_join(JavaThread* thread) {
1729   // We do not need to grap the Threads_lock, since we are operating on ourself.
1730   Handle threadObj(thread, thread->threadObj());
1731   assert(threadObj.not_null(), "java thread object must exist");
1732   ObjectLocker lock(threadObj, thread);
1733   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734   thread->clear_pending_exception();
1735   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1736   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1737   // Clear the native thread instance - this makes isAlive return false and allows the join()
1738   // to complete once we've done the notify_all below
1739   java_lang_Thread::set_thread(threadObj(), NULL);
1740   lock.notify_all(thread);
1741   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742   thread->clear_pending_exception();
1743 }
1744 
1745 
1746 // For any new cleanup additions, please check to see if they need to be applied to
1747 // cleanup_failed_attach_current_thread as well.
1748 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1749   assert(this == JavaThread::current(), "thread consistency check");
1750 
1751   HandleMark hm(this);
1752   Handle uncaught_exception(this, this->pending_exception());
1753   this->clear_pending_exception();
1754   Handle threadObj(this, this->threadObj());
1755   assert(threadObj.not_null(), "Java thread object should be created");
1756 
1757   if (get_thread_profiler() != NULL) {
1758     get_thread_profiler()->disengage();
1759     ResourceMark rm;
1760     get_thread_profiler()->print(get_thread_name());
1761   }
1762 
1763 
1764   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1765   {
1766     EXCEPTION_MARK;
1767 
1768     CLEAR_PENDING_EXCEPTION;
1769   }
1770   if (!destroy_vm) {
1771     if (uncaught_exception.not_null()) {
1772       EXCEPTION_MARK;
1773       // Call method Thread.dispatchUncaughtException().
1774       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1775       JavaValue result(T_VOID);
1776       JavaCalls::call_virtual(&result,
1777                               threadObj, thread_klass,
1778                               vmSymbols::dispatchUncaughtException_name(),
1779                               vmSymbols::throwable_void_signature(),
1780                               uncaught_exception,
1781                               THREAD);
1782       if (HAS_PENDING_EXCEPTION) {
1783         ResourceMark rm(this);
1784         jio_fprintf(defaultStream::error_stream(),
1785                     "\nException: %s thrown from the UncaughtExceptionHandler"
1786                     " in thread \"%s\"\n",
1787                     pending_exception()->klass()->external_name(),
1788                     get_thread_name());
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792 
1793     // Called before the java thread exit since we want to read info
1794     // from java_lang_Thread object
1795     EventThreadEnd event;
1796     if (event.should_commit()) {
1797       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1798       event.commit();
1799     }
1800 
1801     // Call after last event on thread
1802     EVENT_THREAD_EXIT(this);
1803 
1804     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1805     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1806     // is deprecated anyhow.
1807     if (!is_Compiler_thread()) {
1808       int count = 3;
1809       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810         EXCEPTION_MARK;
1811         JavaValue result(T_VOID);
1812         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813         JavaCalls::call_virtual(&result,
1814                                 threadObj, thread_klass,
1815                                 vmSymbols::exit_method_name(),
1816                                 vmSymbols::void_method_signature(),
1817                                 THREAD);
1818         CLEAR_PENDING_EXCEPTION;
1819       }
1820     }
1821     // notify JVMTI
1822     if (JvmtiExport::should_post_thread_life()) {
1823       JvmtiExport::post_thread_end(this);
1824     }
1825 
1826     // We have notified the agents that we are exiting, before we go on,
1827     // we must check for a pending external suspend request and honor it
1828     // in order to not surprise the thread that made the suspend request.
1829     while (true) {
1830       {
1831         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1832         if (!is_external_suspend()) {
1833           set_terminated(_thread_exiting);
1834           ThreadService::current_thread_exiting(this);
1835           break;
1836         }
1837         // Implied else:
1838         // Things get a little tricky here. We have a pending external
1839         // suspend request, but we are holding the SR_lock so we
1840         // can't just self-suspend. So we temporarily drop the lock
1841         // and then self-suspend.
1842       }
1843 
1844       ThreadBlockInVM tbivm(this);
1845       java_suspend_self();
1846 
1847       // We're done with this suspend request, but we have to loop around
1848       // and check again. Eventually we will get SR_lock without a pending
1849       // external suspend request and will be able to mark ourselves as
1850       // exiting.
1851     }
1852     // no more external suspends are allowed at this point
1853   } else {
1854     // before_exit() has already posted JVMTI THREAD_END events
1855   }
1856 
1857   // Notify waiters on thread object. This has to be done after exit() is called
1858   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1859   // group should have the destroyed bit set before waiters are notified).
1860   ensure_join(this);
1861   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1862 
1863   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1864   // held by this thread must be released. The spec does not distinguish
1865   // between JNI-acquired and regular Java monitors. We can only see
1866   // regular Java monitors here if monitor enter-exit matching is broken.
1867   //
1868   // Optionally release any monitors for regular JavaThread exits. This
1869   // is provided as a work around for any bugs in monitor enter-exit
1870   // matching. This can be expensive so it is not enabled by default.
1871   //
1872   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1873   // ObjectSynchronizer::release_monitors_owned_by_thread().
1874   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1875     // Sanity check even though JNI DetachCurrentThread() would have
1876     // returned JNI_ERR if there was a Java frame. JavaThread exit
1877     // should be done executing Java code by the time we get here.
1878     assert(!this->has_last_Java_frame(),
1879            "should not have a Java frame when detaching or exiting");
1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1882   }
1883 
1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
1885   // is in a consistent state, in case GC happens
1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1887 
1888   if (active_handles() != NULL) {
1889     JNIHandleBlock* block = active_handles();
1890     set_active_handles(NULL);
1891     JNIHandleBlock::release_block(block);
1892   }
1893 
1894   if (free_handle_block() != NULL) {
1895     JNIHandleBlock* block = free_handle_block();
1896     set_free_handle_block(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   // These have to be removed while this is still a valid thread.
1901   remove_stack_guard_pages();
1902 
1903   if (UseTLAB) {
1904     tlab().make_parsable(true);  // retire TLAB
1905   }
1906 
1907   if (JvmtiEnv::environments_might_exist()) {
1908     JvmtiExport::cleanup_thread(this);
1909   }
1910 
1911   // We must flush any deferred card marks before removing a thread from
1912   // the list of active threads.
1913   Universe::heap()->flush_deferred_store_barrier(this);
1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1915 
1916 #if INCLUDE_ALL_GCS
1917   // We must flush the G1-related buffers before removing a thread
1918   // from the list of active threads. We must do this after any deferred
1919   // card marks have been flushed (above) so that any entries that are
1920   // added to the thread's dirty card queue as a result are not lost.
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1927   Threads::remove(this);
1928 }
1929 
1930 #if INCLUDE_ALL_GCS
1931 // Flush G1-related queues.
1932 void JavaThread::flush_barrier_queues() {
1933   satb_mark_queue().flush();
1934   dirty_card_queue().flush();
1935 }
1936 
1937 void JavaThread::initialize_queues() {
1938   assert(!SafepointSynchronize::is_at_safepoint(),
1939          "we should not be at a safepoint");
1940 
1941   SATBMarkQueue& satb_queue = satb_mark_queue();
1942   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1943   // The SATB queue should have been constructed with its active
1944   // field set to false.
1945   assert(!satb_queue.is_active(), "SATB queue should not be active");
1946   assert(satb_queue.is_empty(), "SATB queue should be empty");
1947   // If we are creating the thread during a marking cycle, we should
1948   // set the active field of the SATB queue to true.
1949   if (satb_queue_set.is_active()) {
1950     satb_queue.set_active(true);
1951   }
1952 
1953   DirtyCardQueue& dirty_queue = dirty_card_queue();
1954   // The dirty card queue should have been constructed with its
1955   // active field set to true.
1956   assert(dirty_queue.is_active(), "dirty card queue should be active");
1957 }
1958 #endif // INCLUDE_ALL_GCS
1959 
1960 void JavaThread::cleanup_failed_attach_current_thread() {
1961   if (get_thread_profiler() != NULL) {
1962     get_thread_profiler()->disengage();
1963     ResourceMark rm;
1964     get_thread_profiler()->print(get_thread_name());
1965   }
1966 
1967   if (active_handles() != NULL) {
1968     JNIHandleBlock* block = active_handles();
1969     set_active_handles(NULL);
1970     JNIHandleBlock::release_block(block);
1971   }
1972 
1973   if (free_handle_block() != NULL) {
1974     JNIHandleBlock* block = free_handle_block();
1975     set_free_handle_block(NULL);
1976     JNIHandleBlock::release_block(block);
1977   }
1978 
1979   // These have to be removed while this is still a valid thread.
1980   remove_stack_guard_pages();
1981 
1982   if (UseTLAB) {
1983     tlab().make_parsable(true);  // retire TLAB, if any
1984   }
1985 
1986 #if INCLUDE_ALL_GCS
1987   if (UseG1GC) {
1988     flush_barrier_queues();
1989   }
1990 #endif // INCLUDE_ALL_GCS
1991 
1992   Threads::remove(this);
1993   delete this;
1994 }
1995 
1996 
1997 
1998 
1999 JavaThread* JavaThread::active() {
2000   Thread* thread = ThreadLocalStorage::thread();
2001   assert(thread != NULL, "just checking");
2002   if (thread->is_Java_thread()) {
2003     return (JavaThread*) thread;
2004   } else {
2005     assert(thread->is_VM_thread(), "this must be a vm thread");
2006     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2007     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2008     assert(ret->is_Java_thread(), "must be a Java thread");
2009     return ret;
2010   }
2011 }
2012 
2013 bool JavaThread::is_lock_owned(address adr) const {
2014   if (Thread::is_lock_owned(adr)) return true;
2015 
2016   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2017     if (chunk->contains(adr)) return true;
2018   }
2019 
2020   return false;
2021 }
2022 
2023 
2024 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2025   chunk->set_next(monitor_chunks());
2026   set_monitor_chunks(chunk);
2027 }
2028 
2029 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2030   guarantee(monitor_chunks() != NULL, "must be non empty");
2031   if (monitor_chunks() == chunk) {
2032     set_monitor_chunks(chunk->next());
2033   } else {
2034     MonitorChunk* prev = monitor_chunks();
2035     while (prev->next() != chunk) prev = prev->next();
2036     prev->set_next(chunk->next());
2037   }
2038 }
2039 
2040 // JVM support.
2041 
2042 // Note: this function shouldn't block if it's called in
2043 // _thread_in_native_trans state (such as from
2044 // check_special_condition_for_native_trans()).
2045 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2046 
2047   if (has_last_Java_frame() && has_async_condition()) {
2048     // If we are at a polling page safepoint (not a poll return)
2049     // then we must defer async exception because live registers
2050     // will be clobbered by the exception path. Poll return is
2051     // ok because the call we a returning from already collides
2052     // with exception handling registers and so there is no issue.
2053     // (The exception handling path kills call result registers but
2054     //  this is ok since the exception kills the result anyway).
2055 
2056     if (is_at_poll_safepoint()) {
2057       // if the code we are returning to has deoptimized we must defer
2058       // the exception otherwise live registers get clobbered on the
2059       // exception path before deoptimization is able to retrieve them.
2060       //
2061       RegisterMap map(this, false);
2062       frame caller_fr = last_frame().sender(&map);
2063       assert(caller_fr.is_compiled_frame(), "what?");
2064       if (caller_fr.is_deoptimized_frame()) {
2065         if (TraceExceptions) {
2066           ResourceMark rm;
2067           tty->print_cr("deferred async exception at compiled safepoint");
2068         }
2069         return;
2070       }
2071     }
2072   }
2073 
2074   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2075   if (condition == _no_async_condition) {
2076     // Conditions have changed since has_special_runtime_exit_condition()
2077     // was called:
2078     // - if we were here only because of an external suspend request,
2079     //   then that was taken care of above (or cancelled) so we are done
2080     // - if we were here because of another async request, then it has
2081     //   been cleared between the has_special_runtime_exit_condition()
2082     //   and now so again we are done
2083     return;
2084   }
2085 
2086   // Check for pending async. exception
2087   if (_pending_async_exception != NULL) {
2088     // Only overwrite an already pending exception, if it is not a threadDeath.
2089     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2090 
2091       // We cannot call Exceptions::_throw(...) here because we cannot block
2092       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2093 
2094       if (TraceExceptions) {
2095         ResourceMark rm;
2096         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2097         if (has_last_Java_frame()) {
2098           frame f = last_frame();
2099           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2100         }
2101         tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2102       }
2103       _pending_async_exception = NULL;
2104       clear_has_async_exception();
2105     }
2106   }
2107 
2108   if (check_unsafe_error &&
2109       condition == _async_unsafe_access_error && !has_pending_exception()) {
2110     condition = _no_async_condition;  // done
2111     switch (thread_state()) {
2112     case _thread_in_vm: {
2113       JavaThread* THREAD = this;
2114       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115     }
2116     case _thread_in_native: {
2117       ThreadInVMfromNative tiv(this);
2118       JavaThread* THREAD = this;
2119       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120     }
2121     case _thread_in_Java: {
2122       ThreadInVMfromJava tiv(this);
2123       JavaThread* THREAD = this;
2124       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2125     }
2126     default:
2127       ShouldNotReachHere();
2128     }
2129   }
2130 
2131   assert(condition == _no_async_condition || has_pending_exception() ||
2132          (!check_unsafe_error && condition == _async_unsafe_access_error),
2133          "must have handled the async condition, if no exception");
2134 }
2135 
2136 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2137   //
2138   // Check for pending external suspend. Internal suspend requests do
2139   // not use handle_special_runtime_exit_condition().
2140   // If JNIEnv proxies are allowed, don't self-suspend if the target
2141   // thread is not the current thread. In older versions of jdbx, jdbx
2142   // threads could call into the VM with another thread's JNIEnv so we
2143   // can be here operating on behalf of a suspended thread (4432884).
2144   bool do_self_suspend = is_external_suspend_with_lock();
2145   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2146     //
2147     // Because thread is external suspended the safepoint code will count
2148     // thread as at a safepoint. This can be odd because we can be here
2149     // as _thread_in_Java which would normally transition to _thread_blocked
2150     // at a safepoint. We would like to mark the thread as _thread_blocked
2151     // before calling java_suspend_self like all other callers of it but
2152     // we must then observe proper safepoint protocol. (We can't leave
2153     // _thread_blocked with a safepoint in progress). However we can be
2154     // here as _thread_in_native_trans so we can't use a normal transition
2155     // constructor/destructor pair because they assert on that type of
2156     // transition. We could do something like:
2157     //
2158     // JavaThreadState state = thread_state();
2159     // set_thread_state(_thread_in_vm);
2160     // {
2161     //   ThreadBlockInVM tbivm(this);
2162     //   java_suspend_self()
2163     // }
2164     // set_thread_state(_thread_in_vm_trans);
2165     // if (safepoint) block;
2166     // set_thread_state(state);
2167     //
2168     // but that is pretty messy. Instead we just go with the way the
2169     // code has worked before and note that this is the only path to
2170     // java_suspend_self that doesn't put the thread in _thread_blocked
2171     // mode.
2172 
2173     frame_anchor()->make_walkable(this);
2174     java_suspend_self();
2175 
2176     // We might be here for reasons in addition to the self-suspend request
2177     // so check for other async requests.
2178   }
2179 
2180   if (check_asyncs) {
2181     check_and_handle_async_exceptions();
2182   }
2183 }
2184 
2185 void JavaThread::send_thread_stop(oop java_throwable)  {
2186   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2187   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2188   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2189 
2190   // Do not throw asynchronous exceptions against the compiler thread
2191   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2192   if (!can_call_java()) return;
2193 
2194   {
2195     // Actually throw the Throwable against the target Thread - however
2196     // only if there is no thread death exception installed already.
2197     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2198       // If the topmost frame is a runtime stub, then we are calling into
2199       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2200       // must deoptimize the caller before continuing, as the compiled  exception handler table
2201       // may not be valid
2202       if (has_last_Java_frame()) {
2203         frame f = last_frame();
2204         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2205           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2206           RegisterMap reg_map(this, UseBiasedLocking);
2207           frame compiled_frame = f.sender(&reg_map);
2208           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2209             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2210           }
2211         }
2212       }
2213 
2214       // Set async. pending exception in thread.
2215       set_pending_async_exception(java_throwable);
2216 
2217       if (TraceExceptions) {
2218         ResourceMark rm;
2219         tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2220       }
2221       // for AbortVMOnException flag
2222       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2223     }
2224   }
2225 
2226 
2227   // Interrupt thread so it will wake up from a potential wait()
2228   Thread::interrupt(this);
2229 }
2230 
2231 // External suspension mechanism.
2232 //
2233 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2234 // to any VM_locks and it is at a transition
2235 // Self-suspension will happen on the transition out of the vm.
2236 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2237 //
2238 // Guarantees on return:
2239 //   + Target thread will not execute any new bytecode (that's why we need to
2240 //     force a safepoint)
2241 //   + Target thread will not enter any new monitors
2242 //
2243 void JavaThread::java_suspend() {
2244   { MutexLocker mu(Threads_lock);
2245     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2246       return;
2247     }
2248   }
2249 
2250   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2251     if (!is_external_suspend()) {
2252       // a racing resume has cancelled us; bail out now
2253       return;
2254     }
2255 
2256     // suspend is done
2257     uint32_t debug_bits = 0;
2258     // Warning: is_ext_suspend_completed() may temporarily drop the
2259     // SR_lock to allow the thread to reach a stable thread state if
2260     // it is currently in a transient thread state.
2261     if (is_ext_suspend_completed(false /* !called_by_wait */,
2262                                  SuspendRetryDelay, &debug_bits)) {
2263       return;
2264     }
2265   }
2266 
2267   VM_ForceSafepoint vm_suspend;
2268   VMThread::execute(&vm_suspend);
2269 }
2270 
2271 // Part II of external suspension.
2272 // A JavaThread self suspends when it detects a pending external suspend
2273 // request. This is usually on transitions. It is also done in places
2274 // where continuing to the next transition would surprise the caller,
2275 // e.g., monitor entry.
2276 //
2277 // Returns the number of times that the thread self-suspended.
2278 //
2279 // Note: DO NOT call java_suspend_self() when you just want to block current
2280 //       thread. java_suspend_self() is the second stage of cooperative
2281 //       suspension for external suspend requests and should only be used
2282 //       to complete an external suspend request.
2283 //
2284 int JavaThread::java_suspend_self() {
2285   int ret = 0;
2286 
2287   // we are in the process of exiting so don't suspend
2288   if (is_exiting()) {
2289     clear_external_suspend();
2290     return ret;
2291   }
2292 
2293   assert(_anchor.walkable() ||
2294          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2295          "must have walkable stack");
2296 
2297   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2298 
2299   assert(!this->is_ext_suspended(),
2300          "a thread trying to self-suspend should not already be suspended");
2301 
2302   if (this->is_suspend_equivalent()) {
2303     // If we are self-suspending as a result of the lifting of a
2304     // suspend equivalent condition, then the suspend_equivalent
2305     // flag is not cleared until we set the ext_suspended flag so
2306     // that wait_for_ext_suspend_completion() returns consistent
2307     // results.
2308     this->clear_suspend_equivalent();
2309   }
2310 
2311   // A racing resume may have cancelled us before we grabbed SR_lock
2312   // above. Or another external suspend request could be waiting for us
2313   // by the time we return from SR_lock()->wait(). The thread
2314   // that requested the suspension may already be trying to walk our
2315   // stack and if we return now, we can change the stack out from under
2316   // it. This would be a "bad thing (TM)" and cause the stack walker
2317   // to crash. We stay self-suspended until there are no more pending
2318   // external suspend requests.
2319   while (is_external_suspend()) {
2320     ret++;
2321     this->set_ext_suspended();
2322 
2323     // _ext_suspended flag is cleared by java_resume()
2324     while (is_ext_suspended()) {
2325       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2326     }
2327   }
2328 
2329   return ret;
2330 }
2331 
2332 #ifdef ASSERT
2333 // verify the JavaThread has not yet been published in the Threads::list, and
2334 // hence doesn't need protection from concurrent access at this stage
2335 void JavaThread::verify_not_published() {
2336   if (!Threads_lock->owned_by_self()) {
2337     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2338     assert(!Threads::includes(this),
2339            "java thread shouldn't have been published yet!");
2340   } else {
2341     assert(!Threads::includes(this),
2342            "java thread shouldn't have been published yet!");
2343   }
2344 }
2345 #endif
2346 
2347 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2348 // progress or when _suspend_flags is non-zero.
2349 // Current thread needs to self-suspend if there is a suspend request and/or
2350 // block if a safepoint is in progress.
2351 // Async exception ISN'T checked.
2352 // Note only the ThreadInVMfromNative transition can call this function
2353 // directly and when thread state is _thread_in_native_trans
2354 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2355   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2356 
2357   JavaThread *curJT = JavaThread::current();
2358   bool do_self_suspend = thread->is_external_suspend();
2359 
2360   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2361 
2362   // If JNIEnv proxies are allowed, don't self-suspend if the target
2363   // thread is not the current thread. In older versions of jdbx, jdbx
2364   // threads could call into the VM with another thread's JNIEnv so we
2365   // can be here operating on behalf of a suspended thread (4432884).
2366   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2367     JavaThreadState state = thread->thread_state();
2368 
2369     // We mark this thread_blocked state as a suspend-equivalent so
2370     // that a caller to is_ext_suspend_completed() won't be confused.
2371     // The suspend-equivalent state is cleared by java_suspend_self().
2372     thread->set_suspend_equivalent();
2373 
2374     // If the safepoint code sees the _thread_in_native_trans state, it will
2375     // wait until the thread changes to other thread state. There is no
2376     // guarantee on how soon we can obtain the SR_lock and complete the
2377     // self-suspend request. It would be a bad idea to let safepoint wait for
2378     // too long. Temporarily change the state to _thread_blocked to
2379     // let the VM thread know that this thread is ready for GC. The problem
2380     // of changing thread state is that safepoint could happen just after
2381     // java_suspend_self() returns after being resumed, and VM thread will
2382     // see the _thread_blocked state. We must check for safepoint
2383     // after restoring the state and make sure we won't leave while a safepoint
2384     // is in progress.
2385     thread->set_thread_state(_thread_blocked);
2386     thread->java_suspend_self();
2387     thread->set_thread_state(state);
2388     // Make sure new state is seen by VM thread
2389     if (os::is_MP()) {
2390       if (UseMembar) {
2391         // Force a fence between the write above and read below
2392         OrderAccess::fence();
2393       } else {
2394         // Must use this rather than serialization page in particular on Windows
2395         InterfaceSupport::serialize_memory(thread);
2396       }
2397     }
2398   }
2399 
2400   if (SafepointSynchronize::do_call_back()) {
2401     // If we are safepointing, then block the caller which may not be
2402     // the same as the target thread (see above).
2403     SafepointSynchronize::block(curJT);
2404   }
2405 
2406   if (thread->is_deopt_suspend()) {
2407     thread->clear_deopt_suspend();
2408     RegisterMap map(thread, false);
2409     frame f = thread->last_frame();
2410     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2411       f = f.sender(&map);
2412     }
2413     if (f.id() == thread->must_deopt_id()) {
2414       thread->clear_must_deopt_id();
2415       f.deoptimize(thread);
2416     } else {
2417       fatal("missed deoptimization!");
2418     }
2419   }
2420 }
2421 
2422 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2423 // progress or when _suspend_flags is non-zero.
2424 // Current thread needs to self-suspend if there is a suspend request and/or
2425 // block if a safepoint is in progress.
2426 // Also check for pending async exception (not including unsafe access error).
2427 // Note only the native==>VM/Java barriers can call this function and when
2428 // thread state is _thread_in_native_trans.
2429 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2430   check_safepoint_and_suspend_for_native_trans(thread);
2431 
2432   if (thread->has_async_exception()) {
2433     // We are in _thread_in_native_trans state, don't handle unsafe
2434     // access error since that may block.
2435     thread->check_and_handle_async_exceptions(false);
2436   }
2437 }
2438 
2439 // This is a variant of the normal
2440 // check_special_condition_for_native_trans with slightly different
2441 // semantics for use by critical native wrappers.  It does all the
2442 // normal checks but also performs the transition back into
2443 // thread_in_Java state.  This is required so that critical natives
2444 // can potentially block and perform a GC if they are the last thread
2445 // exiting the GC_locker.
2446 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2447   check_special_condition_for_native_trans(thread);
2448 
2449   // Finish the transition
2450   thread->set_thread_state(_thread_in_Java);
2451 
2452   if (thread->do_critical_native_unlock()) {
2453     ThreadInVMfromJavaNoAsyncException tiv(thread);
2454     GC_locker::unlock_critical(thread);
2455     thread->clear_critical_native_unlock();
2456   }
2457 }
2458 
2459 // We need to guarantee the Threads_lock here, since resumes are not
2460 // allowed during safepoint synchronization
2461 // Can only resume from an external suspension
2462 void JavaThread::java_resume() {
2463   assert_locked_or_safepoint(Threads_lock);
2464 
2465   // Sanity check: thread is gone, has started exiting or the thread
2466   // was not externally suspended.
2467   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2468     return;
2469   }
2470 
2471   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2472 
2473   clear_external_suspend();
2474 
2475   if (is_ext_suspended()) {
2476     clear_ext_suspended();
2477     SR_lock()->notify_all();
2478   }
2479 }
2480 
2481 void JavaThread::create_stack_guard_pages() {
2482   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2483   address low_addr = stack_base() - stack_size();
2484   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2485 
2486   int allocate = os::allocate_stack_guard_pages();
2487   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2488 
2489   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2490     warning("Attempt to allocate stack guard pages failed.");
2491     return;
2492   }
2493 
2494   if (os::guard_memory((char *) low_addr, len)) {
2495     _stack_guard_state = stack_guard_enabled;
2496   } else {
2497     warning("Attempt to protect stack guard pages failed.");
2498     if (os::uncommit_memory((char *) low_addr, len)) {
2499       warning("Attempt to deallocate stack guard pages failed.");
2500     }
2501   }
2502 }
2503 
2504 void JavaThread::remove_stack_guard_pages() {
2505   assert(Thread::current() == this, "from different thread");
2506   if (_stack_guard_state == stack_guard_unused) return;
2507   address low_addr = stack_base() - stack_size();
2508   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2509 
2510   if (os::allocate_stack_guard_pages()) {
2511     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2512       _stack_guard_state = stack_guard_unused;
2513     } else {
2514       warning("Attempt to deallocate stack guard pages failed.");
2515     }
2516   } else {
2517     if (_stack_guard_state == stack_guard_unused) return;
2518     if (os::unguard_memory((char *) low_addr, len)) {
2519       _stack_guard_state = stack_guard_unused;
2520     } else {
2521       warning("Attempt to unprotect stack guard pages failed.");
2522     }
2523   }
2524 }
2525 
2526 void JavaThread::enable_stack_yellow_zone() {
2527   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2528   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2529 
2530   // The base notation is from the stacks point of view, growing downward.
2531   // We need to adjust it to work correctly with guard_memory()
2532   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2533 
2534   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2535   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2536 
2537   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2538     _stack_guard_state = stack_guard_enabled;
2539   } else {
2540     warning("Attempt to guard stack yellow zone failed.");
2541   }
2542   enable_register_stack_guard();
2543 }
2544 
2545 void JavaThread::disable_stack_yellow_zone() {
2546   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2547   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2548 
2549   // Simply return if called for a thread that does not use guard pages.
2550   if (_stack_guard_state == stack_guard_unused) return;
2551 
2552   // The base notation is from the stacks point of view, growing downward.
2553   // We need to adjust it to work correctly with guard_memory()
2554   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2555 
2556   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2557     _stack_guard_state = stack_guard_yellow_disabled;
2558   } else {
2559     warning("Attempt to unguard stack yellow zone failed.");
2560   }
2561   disable_register_stack_guard();
2562 }
2563 
2564 void JavaThread::enable_stack_red_zone() {
2565   // The base notation is from the stacks point of view, growing downward.
2566   // We need to adjust it to work correctly with guard_memory()
2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568   address base = stack_red_zone_base() - stack_red_zone_size();
2569 
2570   guarantee(base < stack_base(), "Error calculating stack red zone");
2571   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2572 
2573   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2574     warning("Attempt to guard stack red zone failed.");
2575   }
2576 }
2577 
2578 void JavaThread::disable_stack_red_zone() {
2579   // The base notation is from the stacks point of view, growing downward.
2580   // We need to adjust it to work correctly with guard_memory()
2581   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2582   address base = stack_red_zone_base() - stack_red_zone_size();
2583   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2584     warning("Attempt to unguard stack red zone failed.");
2585   }
2586 }
2587 
2588 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2589   // ignore is there is no stack
2590   if (!has_last_Java_frame()) return;
2591   // traverse the stack frames. Starts from top frame.
2592   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2593     frame* fr = fst.current();
2594     f(fr, fst.register_map());
2595   }
2596 }
2597 
2598 
2599 #ifndef PRODUCT
2600 // Deoptimization
2601 // Function for testing deoptimization
2602 void JavaThread::deoptimize() {
2603   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2604   StackFrameStream fst(this, UseBiasedLocking);
2605   bool deopt = false;           // Dump stack only if a deopt actually happens.
2606   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2607   // Iterate over all frames in the thread and deoptimize
2608   for (; !fst.is_done(); fst.next()) {
2609     if (fst.current()->can_be_deoptimized()) {
2610 
2611       if (only_at) {
2612         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2613         // consists of comma or carriage return separated numbers so
2614         // search for the current bci in that string.
2615         address pc = fst.current()->pc();
2616         nmethod* nm =  (nmethod*) fst.current()->cb();
2617         ScopeDesc* sd = nm->scope_desc_at(pc);
2618         char buffer[8];
2619         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2620         size_t len = strlen(buffer);
2621         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2622         while (found != NULL) {
2623           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2624               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2625             // Check that the bci found is bracketed by terminators.
2626             break;
2627           }
2628           found = strstr(found + 1, buffer);
2629         }
2630         if (!found) {
2631           continue;
2632         }
2633       }
2634 
2635       if (DebugDeoptimization && !deopt) {
2636         deopt = true; // One-time only print before deopt
2637         tty->print_cr("[BEFORE Deoptimization]");
2638         trace_frames();
2639         trace_stack();
2640       }
2641       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2642     }
2643   }
2644 
2645   if (DebugDeoptimization && deopt) {
2646     tty->print_cr("[AFTER Deoptimization]");
2647     trace_frames();
2648   }
2649 }
2650 
2651 
2652 // Make zombies
2653 void JavaThread::make_zombies() {
2654   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2655     if (fst.current()->can_be_deoptimized()) {
2656       // it is a Java nmethod
2657       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2658       nm->make_not_entrant();
2659     }
2660   }
2661 }
2662 #endif // PRODUCT
2663 
2664 
2665 void JavaThread::deoptimized_wrt_marked_nmethods() {
2666   if (!has_last_Java_frame()) return;
2667   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2668   StackFrameStream fst(this, UseBiasedLocking);
2669   for (; !fst.is_done(); fst.next()) {
2670     if (fst.current()->should_be_deoptimized()) {
2671       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2672     }
2673   }
2674 }
2675 
2676 
2677 // If the caller is a NamedThread, then remember, in the current scope,
2678 // the given JavaThread in its _processed_thread field.
2679 class RememberProcessedThread: public StackObj {
2680   NamedThread* _cur_thr;
2681  public:
2682   RememberProcessedThread(JavaThread* jthr) {
2683     Thread* thread = Thread::current();
2684     if (thread->is_Named_thread()) {
2685       _cur_thr = (NamedThread *)thread;
2686       _cur_thr->set_processed_thread(jthr);
2687     } else {
2688       _cur_thr = NULL;
2689     }
2690   }
2691 
2692   ~RememberProcessedThread() {
2693     if (_cur_thr) {
2694       _cur_thr->set_processed_thread(NULL);
2695     }
2696   }
2697 };
2698 
2699 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2700   // Verify that the deferred card marks have been flushed.
2701   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2702 
2703   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2704   // since there may be more than one thread using each ThreadProfiler.
2705 
2706   // Traverse the GCHandles
2707   Thread::oops_do(f, cld_f, cf);
2708 
2709   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2710 
2711   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2712          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2713 
2714   if (has_last_Java_frame()) {
2715     // Record JavaThread to GC thread
2716     RememberProcessedThread rpt(this);
2717 
2718     // Traverse the privileged stack
2719     if (_privileged_stack_top != NULL) {
2720       _privileged_stack_top->oops_do(f);
2721     }
2722 
2723     // traverse the registered growable array
2724     if (_array_for_gc != NULL) {
2725       for (int index = 0; index < _array_for_gc->length(); index++) {
2726         f->do_oop(_array_for_gc->adr_at(index));
2727       }
2728     }
2729 
2730     // Traverse the monitor chunks
2731     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2732       chunk->oops_do(f);
2733     }
2734 
2735     // Traverse the execution stack
2736     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2737       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2738     }
2739   }
2740 
2741   // callee_target is never live across a gc point so NULL it here should
2742   // it still contain a methdOop.
2743 
2744   set_callee_target(NULL);
2745 
2746   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2747   // If we have deferred set_locals there might be oops waiting to be
2748   // written
2749   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2750   if (list != NULL) {
2751     for (int i = 0; i < list->length(); i++) {
2752       list->at(i)->oops_do(f);
2753     }
2754   }
2755 
2756   // Traverse instance variables at the end since the GC may be moving things
2757   // around using this function
2758   f->do_oop((oop*) &_threadObj);
2759   f->do_oop((oop*) &_vm_result);
2760   f->do_oop((oop*) &_exception_oop);
2761   f->do_oop((oop*) &_pending_async_exception);
2762 
2763   if (jvmti_thread_state() != NULL) {
2764     jvmti_thread_state()->oops_do(f);
2765   }
2766 }
2767 
2768 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2769   Thread::nmethods_do(cf);  // (super method is a no-op)
2770 
2771   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2772          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2773 
2774   if (has_last_Java_frame()) {
2775     // Traverse the execution stack
2776     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2777       fst.current()->nmethods_do(cf);
2778     }
2779   }
2780 }
2781 
2782 void JavaThread::metadata_do(void f(Metadata*)) {
2783   if (has_last_Java_frame()) {
2784     // Traverse the execution stack to call f() on the methods in the stack
2785     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2786       fst.current()->metadata_do(f);
2787     }
2788   } else if (is_Compiler_thread()) {
2789     // need to walk ciMetadata in current compile tasks to keep alive.
2790     CompilerThread* ct = (CompilerThread*)this;
2791     if (ct->env() != NULL) {
2792       ct->env()->metadata_do(f);
2793     }
2794     if (ct->task() != NULL) {
2795       ct->task()->metadata_do(f);
2796     }
2797   }
2798 }
2799 
2800 // Printing
2801 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2802   switch (_thread_state) {
2803   case _thread_uninitialized:     return "_thread_uninitialized";
2804   case _thread_new:               return "_thread_new";
2805   case _thread_new_trans:         return "_thread_new_trans";
2806   case _thread_in_native:         return "_thread_in_native";
2807   case _thread_in_native_trans:   return "_thread_in_native_trans";
2808   case _thread_in_vm:             return "_thread_in_vm";
2809   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2810   case _thread_in_Java:           return "_thread_in_Java";
2811   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2812   case _thread_blocked:           return "_thread_blocked";
2813   case _thread_blocked_trans:     return "_thread_blocked_trans";
2814   default:                        return "unknown thread state";
2815   }
2816 }
2817 
2818 #ifndef PRODUCT
2819 void JavaThread::print_thread_state_on(outputStream *st) const {
2820   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2821 };
2822 void JavaThread::print_thread_state() const {
2823   print_thread_state_on(tty);
2824 }
2825 #endif // PRODUCT
2826 
2827 // Called by Threads::print() for VM_PrintThreads operation
2828 void JavaThread::print_on(outputStream *st) const {
2829   st->print("\"%s\" ", get_thread_name());
2830   oop thread_oop = threadObj();
2831   if (thread_oop != NULL) {
2832     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2833     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2834     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2835   }
2836   Thread::print_on(st);
2837   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2838   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2839   if (thread_oop != NULL) {
2840     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2841   }
2842 #ifndef PRODUCT
2843   print_thread_state_on(st);
2844   _safepoint_state->print_on(st);
2845 #endif // PRODUCT
2846 }
2847 
2848 // Called by fatal error handler. The difference between this and
2849 // JavaThread::print() is that we can't grab lock or allocate memory.
2850 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2851   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2852   oop thread_obj = threadObj();
2853   if (thread_obj != NULL) {
2854     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2855   }
2856   st->print(" [");
2857   st->print("%s", _get_thread_state_name(_thread_state));
2858   if (osthread()) {
2859     st->print(", id=%d", osthread()->thread_id());
2860   }
2861   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2862             p2i(_stack_base - _stack_size), p2i(_stack_base));
2863   st->print("]");
2864   return;
2865 }
2866 
2867 // Verification
2868 
2869 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2870 
2871 void JavaThread::verify() {
2872   // Verify oops in the thread.
2873   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2874 
2875   // Verify the stack frames.
2876   frames_do(frame_verify);
2877 }
2878 
2879 // CR 6300358 (sub-CR 2137150)
2880 // Most callers of this method assume that it can't return NULL but a
2881 // thread may not have a name whilst it is in the process of attaching to
2882 // the VM - see CR 6412693, and there are places where a JavaThread can be
2883 // seen prior to having it's threadObj set (eg JNI attaching threads and
2884 // if vm exit occurs during initialization). These cases can all be accounted
2885 // for such that this method never returns NULL.
2886 const char* JavaThread::get_thread_name() const {
2887 #ifdef ASSERT
2888   // early safepoints can hit while current thread does not yet have TLS
2889   if (!SafepointSynchronize::is_at_safepoint()) {
2890     Thread *cur = Thread::current();
2891     if (!(cur->is_Java_thread() && cur == this)) {
2892       // Current JavaThreads are allowed to get their own name without
2893       // the Threads_lock.
2894       assert_locked_or_safepoint(Threads_lock);
2895     }
2896   }
2897 #endif // ASSERT
2898   return get_thread_name_string();
2899 }
2900 
2901 // Returns a non-NULL representation of this thread's name, or a suitable
2902 // descriptive string if there is no set name
2903 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2904   const char* name_str;
2905   oop thread_obj = threadObj();
2906   if (thread_obj != NULL) {
2907     oop name = java_lang_Thread::name(thread_obj);
2908     if (name != NULL) {
2909       if (buf == NULL) {
2910         name_str = java_lang_String::as_utf8_string(name);
2911       } else {
2912         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2913       }
2914     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2915       name_str = "<no-name - thread is attaching>";
2916     } else {
2917       name_str = Thread::name();
2918     }
2919   } else {
2920     name_str = Thread::name();
2921   }
2922   assert(name_str != NULL, "unexpected NULL thread name");
2923   return name_str;
2924 }
2925 
2926 
2927 const char* JavaThread::get_threadgroup_name() const {
2928   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2929   oop thread_obj = threadObj();
2930   if (thread_obj != NULL) {
2931     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2932     if (thread_group != NULL) {
2933       // ThreadGroup.name can be null
2934       return java_lang_ThreadGroup::name(thread_group);
2935     }
2936   }
2937   return NULL;
2938 }
2939 
2940 const char* JavaThread::get_parent_name() const {
2941   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2942   oop thread_obj = threadObj();
2943   if (thread_obj != NULL) {
2944     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2945     if (thread_group != NULL) {
2946       oop parent = java_lang_ThreadGroup::parent(thread_group);
2947       if (parent != NULL) {
2948         // ThreadGroup.name can be null
2949         return java_lang_ThreadGroup::name(parent);
2950       }
2951     }
2952   }
2953   return NULL;
2954 }
2955 
2956 ThreadPriority JavaThread::java_priority() const {
2957   oop thr_oop = threadObj();
2958   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2959   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2960   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2961   return priority;
2962 }
2963 
2964 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2965 
2966   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2967   // Link Java Thread object <-> C++ Thread
2968 
2969   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2970   // and put it into a new Handle.  The Handle "thread_oop" can then
2971   // be used to pass the C++ thread object to other methods.
2972 
2973   // Set the Java level thread object (jthread) field of the
2974   // new thread (a JavaThread *) to C++ thread object using the
2975   // "thread_oop" handle.
2976 
2977   // Set the thread field (a JavaThread *) of the
2978   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2979 
2980   Handle thread_oop(Thread::current(),
2981                     JNIHandles::resolve_non_null(jni_thread));
2982   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2983          "must be initialized");
2984   set_threadObj(thread_oop());
2985   java_lang_Thread::set_thread(thread_oop(), this);
2986 
2987   if (prio == NoPriority) {
2988     prio = java_lang_Thread::priority(thread_oop());
2989     assert(prio != NoPriority, "A valid priority should be present");
2990   }
2991 
2992   // Push the Java priority down to the native thread; needs Threads_lock
2993   Thread::set_priority(this, prio);
2994 
2995   prepare_ext();
2996 
2997   // Add the new thread to the Threads list and set it in motion.
2998   // We must have threads lock in order to call Threads::add.
2999   // It is crucial that we do not block before the thread is
3000   // added to the Threads list for if a GC happens, then the java_thread oop
3001   // will not be visited by GC.
3002   Threads::add(this);
3003 }
3004 
3005 oop JavaThread::current_park_blocker() {
3006   // Support for JSR-166 locks
3007   oop thread_oop = threadObj();
3008   if (thread_oop != NULL &&
3009       JDK_Version::current().supports_thread_park_blocker()) {
3010     return java_lang_Thread::park_blocker(thread_oop);
3011   }
3012   return NULL;
3013 }
3014 
3015 
3016 void JavaThread::print_stack_on(outputStream* st) {
3017   if (!has_last_Java_frame()) return;
3018   ResourceMark rm;
3019   HandleMark   hm;
3020 
3021   RegisterMap reg_map(this);
3022   vframe* start_vf = last_java_vframe(&reg_map);
3023   int count = 0;
3024   for (vframe* f = start_vf; f; f = f->sender()) {
3025     if (f->is_java_frame()) {
3026       javaVFrame* jvf = javaVFrame::cast(f);
3027       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3028 
3029       // Print out lock information
3030       if (JavaMonitorsInStackTrace) {
3031         jvf->print_lock_info_on(st, count);
3032       }
3033     } else {
3034       // Ignore non-Java frames
3035     }
3036 
3037     // Bail-out case for too deep stacks
3038     count++;
3039     if (MaxJavaStackTraceDepth == count) return;
3040   }
3041 }
3042 
3043 
3044 // JVMTI PopFrame support
3045 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3046   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3047   if (in_bytes(size_in_bytes) != 0) {
3048     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3049     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3050     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3051   }
3052 }
3053 
3054 void* JavaThread::popframe_preserved_args() {
3055   return _popframe_preserved_args;
3056 }
3057 
3058 ByteSize JavaThread::popframe_preserved_args_size() {
3059   return in_ByteSize(_popframe_preserved_args_size);
3060 }
3061 
3062 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3063   int sz = in_bytes(popframe_preserved_args_size());
3064   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3065   return in_WordSize(sz / wordSize);
3066 }
3067 
3068 void JavaThread::popframe_free_preserved_args() {
3069   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3070   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3071   _popframe_preserved_args = NULL;
3072   _popframe_preserved_args_size = 0;
3073 }
3074 
3075 #ifndef PRODUCT
3076 
3077 void JavaThread::trace_frames() {
3078   tty->print_cr("[Describe stack]");
3079   int frame_no = 1;
3080   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3081     tty->print("  %d. ", frame_no++);
3082     fst.current()->print_value_on(tty, this);
3083     tty->cr();
3084   }
3085 }
3086 
3087 class PrintAndVerifyOopClosure: public OopClosure {
3088  protected:
3089   template <class T> inline void do_oop_work(T* p) {
3090     oop obj = oopDesc::load_decode_heap_oop(p);
3091     if (obj == NULL) return;
3092     tty->print(INTPTR_FORMAT ": ", p2i(p));
3093     if (obj->is_oop_or_null()) {
3094       if (obj->is_objArray()) {
3095         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3096       } else {
3097         obj->print();
3098       }
3099     } else {
3100       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3101     }
3102     tty->cr();
3103   }
3104  public:
3105   virtual void do_oop(oop* p) { do_oop_work(p); }
3106   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3107 };
3108 
3109 
3110 static void oops_print(frame* f, const RegisterMap *map) {
3111   PrintAndVerifyOopClosure print;
3112   f->print_value();
3113   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3114 }
3115 
3116 // Print our all the locations that contain oops and whether they are
3117 // valid or not.  This useful when trying to find the oldest frame
3118 // where an oop has gone bad since the frame walk is from youngest to
3119 // oldest.
3120 void JavaThread::trace_oops() {
3121   tty->print_cr("[Trace oops]");
3122   frames_do(oops_print);
3123 }
3124 
3125 
3126 #ifdef ASSERT
3127 // Print or validate the layout of stack frames
3128 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3129   ResourceMark rm;
3130   PRESERVE_EXCEPTION_MARK;
3131   FrameValues values;
3132   int frame_no = 0;
3133   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3134     fst.current()->describe(values, ++frame_no);
3135     if (depth == frame_no) break;
3136   }
3137   if (validate_only) {
3138     values.validate();
3139   } else {
3140     tty->print_cr("[Describe stack layout]");
3141     values.print(this);
3142   }
3143 }
3144 #endif
3145 
3146 void JavaThread::trace_stack_from(vframe* start_vf) {
3147   ResourceMark rm;
3148   int vframe_no = 1;
3149   for (vframe* f = start_vf; f; f = f->sender()) {
3150     if (f->is_java_frame()) {
3151       javaVFrame::cast(f)->print_activation(vframe_no++);
3152     } else {
3153       f->print();
3154     }
3155     if (vframe_no > StackPrintLimit) {
3156       tty->print_cr("...<more frames>...");
3157       return;
3158     }
3159   }
3160 }
3161 
3162 
3163 void JavaThread::trace_stack() {
3164   if (!has_last_Java_frame()) return;
3165   ResourceMark rm;
3166   HandleMark   hm;
3167   RegisterMap reg_map(this);
3168   trace_stack_from(last_java_vframe(&reg_map));
3169 }
3170 
3171 
3172 #endif // PRODUCT
3173 
3174 
3175 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3176   assert(reg_map != NULL, "a map must be given");
3177   frame f = last_frame();
3178   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3179     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3180   }
3181   return NULL;
3182 }
3183 
3184 
3185 Klass* JavaThread::security_get_caller_class(int depth) {
3186   vframeStream vfst(this);
3187   vfst.security_get_caller_frame(depth);
3188   if (!vfst.at_end()) {
3189     return vfst.method()->method_holder();
3190   }
3191   return NULL;
3192 }
3193 
3194 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3195   assert(thread->is_Compiler_thread(), "must be compiler thread");
3196   CompileBroker::compiler_thread_loop();
3197 }
3198 
3199 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3200   NMethodSweeper::sweeper_loop();
3201 }
3202 
3203 // Create a CompilerThread
3204 CompilerThread::CompilerThread(CompileQueue* queue,
3205                                CompilerCounters* counters)
3206                                : JavaThread(&compiler_thread_entry) {
3207   _env   = NULL;
3208   _log   = NULL;
3209   _task  = NULL;
3210   _queue = queue;
3211   _counters = counters;
3212   _buffer_blob = NULL;
3213   _compiler = NULL;
3214 
3215 #ifndef PRODUCT
3216   _ideal_graph_printer = NULL;
3217 #endif
3218 }
3219 
3220 bool CompilerThread::can_call_java() const {
3221   return _compiler != NULL && _compiler->is_jvmci();
3222 }
3223 
3224 // Create sweeper thread
3225 CodeCacheSweeperThread::CodeCacheSweeperThread()
3226 : JavaThread(&sweeper_thread_entry) {
3227   _scanned_nmethod = NULL;
3228 }
3229 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3230   JavaThread::oops_do(f, cld_f, cf);
3231   if (_scanned_nmethod != NULL && cf != NULL) {
3232     // Safepoints can occur when the sweeper is scanning an nmethod so
3233     // process it here to make sure it isn't unloaded in the middle of
3234     // a scan.
3235     cf->do_code_blob(_scanned_nmethod);
3236   }
3237 }
3238 
3239 
3240 // ======= Threads ========
3241 
3242 // The Threads class links together all active threads, and provides
3243 // operations over all threads.  It is protected by its own Mutex
3244 // lock, which is also used in other contexts to protect thread
3245 // operations from having the thread being operated on from exiting
3246 // and going away unexpectedly (e.g., safepoint synchronization)
3247 
3248 JavaThread* Threads::_thread_list = NULL;
3249 int         Threads::_number_of_threads = 0;
3250 int         Threads::_number_of_non_daemon_threads = 0;
3251 int         Threads::_return_code = 0;
3252 int         Threads::_thread_claim_parity = 0;
3253 size_t      JavaThread::_stack_size_at_create = 0;
3254 #ifdef ASSERT
3255 bool        Threads::_vm_complete = false;
3256 #endif
3257 
3258 // All JavaThreads
3259 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3260 
3261 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3262 void Threads::threads_do(ThreadClosure* tc) {
3263   assert_locked_or_safepoint(Threads_lock);
3264   // ALL_JAVA_THREADS iterates through all JavaThreads
3265   ALL_JAVA_THREADS(p) {
3266     tc->do_thread(p);
3267   }
3268   // Someday we could have a table or list of all non-JavaThreads.
3269   // For now, just manually iterate through them.
3270   tc->do_thread(VMThread::vm_thread());
3271   Universe::heap()->gc_threads_do(tc);
3272   WatcherThread *wt = WatcherThread::watcher_thread();
3273   // Strictly speaking, the following NULL check isn't sufficient to make sure
3274   // the data for WatcherThread is still valid upon being examined. However,
3275   // considering that WatchThread terminates when the VM is on the way to
3276   // exit at safepoint, the chance of the above is extremely small. The right
3277   // way to prevent termination of WatcherThread would be to acquire
3278   // Terminator_lock, but we can't do that without violating the lock rank
3279   // checking in some cases.
3280   if (wt != NULL) {
3281     tc->do_thread(wt);
3282   }
3283 
3284   // If CompilerThreads ever become non-JavaThreads, add them here
3285 }
3286 
3287 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3288   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3289 
3290   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3291     create_vm_init_libraries();
3292   }
3293 
3294   initialize_class(vmSymbols::java_lang_String(), CHECK);
3295 
3296   // Inject CompactStrings value after the static initializers for String ran.
3297   java_lang_String::set_compact_strings(CompactStrings);
3298 
3299   // Initialize java_lang.System (needed before creating the thread)
3300   initialize_class(vmSymbols::java_lang_System(), CHECK);
3301   // The VM creates & returns objects of this class. Make sure it's initialized.
3302   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3303   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3304   Handle thread_group = create_initial_thread_group(CHECK);
3305   Universe::set_main_thread_group(thread_group());
3306   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3307   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3308   main_thread->set_threadObj(thread_object);
3309   // Set thread status to running since main thread has
3310   // been started and running.
3311   java_lang_Thread::set_thread_status(thread_object,
3312                                       java_lang_Thread::RUNNABLE);
3313 
3314   // The VM preresolves methods to these classes. Make sure that they get initialized
3315   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3316   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3317   call_initializeSystemClass(CHECK);
3318 
3319   // get the Java runtime name after java.lang.System is initialized
3320   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3321   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3322 
3323   // an instance of OutOfMemory exception has been allocated earlier
3324   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3325   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3326   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3327   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3328   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3329   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3330   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3331   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3332 }
3333 
3334 void Threads::initialize_jsr292_core_classes(TRAPS) {
3335   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3336   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3337   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3338 }
3339 
3340 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3341   extern void JDK_Version_init();
3342 
3343   // Preinitialize version info.
3344   VM_Version::early_initialize();
3345 
3346   // Check version
3347   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3348 
3349   // Initialize the output stream module
3350   ostream_init();
3351 
3352   // Process java launcher properties.
3353   Arguments::process_sun_java_launcher_properties(args);
3354 
3355   // Initialize the os module before using TLS
3356   os::init();
3357 
3358   // Record VM creation timing statistics
3359   TraceVmCreationTime create_vm_timer;
3360   create_vm_timer.start();
3361 
3362   // Initialize system properties.
3363   Arguments::init_system_properties();
3364 
3365   // So that JDK version can be used as a discriminator when parsing arguments
3366   JDK_Version_init();
3367 
3368   // Update/Initialize System properties after JDK version number is known
3369   Arguments::init_version_specific_system_properties();
3370 
3371   // Make sure to initialize log configuration *before* parsing arguments
3372   LogConfiguration::initialize(create_vm_timer.begin_time());
3373 
3374   // Parse arguments
3375   jint parse_result = Arguments::parse(args);
3376   if (parse_result != JNI_OK) return parse_result;
3377 
3378   os::init_before_ergo();
3379 
3380   jint ergo_result = Arguments::apply_ergo();
3381   if (ergo_result != JNI_OK) return ergo_result;
3382 
3383   // Final check of all ranges after ergonomics which may change values.
3384   if (!CommandLineFlagRangeList::check_ranges()) {
3385     return JNI_EINVAL;
3386   }
3387 
3388   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3389   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3390   if (!constraint_result) {
3391     return JNI_EINVAL;
3392   }
3393 
3394   if (PauseAtStartup) {
3395     os::pause();
3396   }
3397 
3398   HOTSPOT_VM_INIT_BEGIN();
3399 
3400   // Timing (must come after argument parsing)
3401   TraceTime timer("Create VM", TraceStartupTime);
3402 
3403   // Initialize the os module after parsing the args
3404   jint os_init_2_result = os::init_2();
3405   if (os_init_2_result != JNI_OK) return os_init_2_result;
3406 
3407   jint adjust_after_os_result = Arguments::adjust_after_os();
3408   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3409 
3410   // initialize TLS
3411   ThreadLocalStorage::init();
3412 
3413   // Initialize output stream logging
3414   ostream_init_log();
3415 
3416   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3417   // Must be before create_vm_init_agents()
3418   if (Arguments::init_libraries_at_startup()) {
3419     convert_vm_init_libraries_to_agents();
3420   }
3421 
3422   // Launch -agentlib/-agentpath and converted -Xrun agents
3423   if (Arguments::init_agents_at_startup()) {
3424     create_vm_init_agents();
3425   }
3426 
3427   // Initialize Threads state
3428   _thread_list = NULL;
3429   _number_of_threads = 0;
3430   _number_of_non_daemon_threads = 0;
3431 
3432   // Initialize global data structures and create system classes in heap
3433   vm_init_globals();
3434 
3435 #if INCLUDE_JVMCI
3436   if (JVMCICounterSize > 0) {
3437     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3438     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3439   } else {
3440     JavaThread::_jvmci_old_thread_counters = NULL;
3441   }
3442 #endif // INCLUDE_JVMCI
3443 
3444   // Attach the main thread to this os thread
3445   JavaThread* main_thread = new JavaThread();
3446   main_thread->set_thread_state(_thread_in_vm);
3447   // must do this before set_active_handles and initialize_thread_local_storage
3448   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3449   // change the stack size recorded here to one based on the java thread
3450   // stacksize. This adjusted size is what is used to figure the placement
3451   // of the guard pages.
3452   main_thread->record_stack_base_and_size();
3453   main_thread->initialize_thread_local_storage();
3454 
3455   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3456 
3457   if (!main_thread->set_as_starting_thread()) {
3458     vm_shutdown_during_initialization(
3459                                       "Failed necessary internal allocation. Out of swap space");
3460     delete main_thread;
3461     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3462     return JNI_ENOMEM;
3463   }
3464 
3465   // Enable guard page *after* os::create_main_thread(), otherwise it would
3466   // crash Linux VM, see notes in os_linux.cpp.
3467   main_thread->create_stack_guard_pages();
3468 
3469   // Initialize Java-Level synchronization subsystem
3470   ObjectMonitor::Initialize();
3471 
3472   // Initialize global modules
3473   jint status = init_globals();
3474   if (status != JNI_OK) {
3475     delete main_thread;
3476     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3477     return status;
3478   }
3479 
3480   // Should be done after the heap is fully created
3481   main_thread->cache_global_variables();
3482 
3483   HandleMark hm;
3484 
3485   { MutexLocker mu(Threads_lock);
3486     Threads::add(main_thread);
3487   }
3488 
3489   // Any JVMTI raw monitors entered in onload will transition into
3490   // real raw monitor. VM is setup enough here for raw monitor enter.
3491   JvmtiExport::transition_pending_onload_raw_monitors();
3492 
3493   // Create the VMThread
3494   { TraceTime timer("Start VMThread", TraceStartupTime);
3495     VMThread::create();
3496     Thread* vmthread = VMThread::vm_thread();
3497 
3498     if (!os::create_thread(vmthread, os::vm_thread)) {
3499       vm_exit_during_initialization("Cannot create VM thread. "
3500                                     "Out of system resources.");
3501     }
3502 
3503     // Wait for the VM thread to become ready, and VMThread::run to initialize
3504     // Monitors can have spurious returns, must always check another state flag
3505     {
3506       MutexLocker ml(Notify_lock);
3507       os::start_thread(vmthread);
3508       while (vmthread->active_handles() == NULL) {
3509         Notify_lock->wait();
3510       }
3511     }
3512   }
3513 
3514   assert(Universe::is_fully_initialized(), "not initialized");
3515   if (VerifyDuringStartup) {
3516     // Make sure we're starting with a clean slate.
3517     VM_Verify verify_op;
3518     VMThread::execute(&verify_op);
3519   }
3520 
3521   Thread* THREAD = Thread::current();
3522 
3523   // At this point, the Universe is initialized, but we have not executed
3524   // any byte code.  Now is a good time (the only time) to dump out the
3525   // internal state of the JVM for sharing.
3526   if (DumpSharedSpaces) {
3527     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3528     ShouldNotReachHere();
3529   }
3530 
3531   // Always call even when there are not JVMTI environments yet, since environments
3532   // may be attached late and JVMTI must track phases of VM execution
3533   JvmtiExport::enter_start_phase();
3534 
3535   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3536   JvmtiExport::post_vm_start();
3537 
3538   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3539 
3540   // We need this for ClassDataSharing - the initial vm.info property is set
3541   // with the default value of CDS "sharing" which may be reset through
3542   // command line options.
3543   reset_vm_info_property(CHECK_JNI_ERR);
3544 
3545   quicken_jni_functions();
3546 
3547   // Must be run after init_ft which initializes ft_enabled
3548   if (TRACE_INITIALIZE() != JNI_OK) {
3549     vm_exit_during_initialization("Failed to initialize tracing backend");
3550   }
3551 
3552   // Set flag that basic initialization has completed. Used by exceptions and various
3553   // debug stuff, that does not work until all basic classes have been initialized.
3554   set_init_completed();
3555 
3556   LogConfiguration::post_initialize();
3557   Metaspace::post_initialize();
3558 
3559   HOTSPOT_VM_INIT_END();
3560 
3561   // record VM initialization completion time
3562 #if INCLUDE_MANAGEMENT
3563   Management::record_vm_init_completed();
3564 #endif // INCLUDE_MANAGEMENT
3565 
3566   // Compute system loader. Note that this has to occur after set_init_completed, since
3567   // valid exceptions may be thrown in the process.
3568   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3569   // set_init_completed has just been called, causing exceptions not to be shortcut
3570   // anymore. We call vm_exit_during_initialization directly instead.
3571   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3572 
3573 #if INCLUDE_ALL_GCS
3574   // Support for ConcurrentMarkSweep. This should be cleaned up
3575   // and better encapsulated. The ugly nested if test would go away
3576   // once things are properly refactored. XXX YSR
3577   if (UseConcMarkSweepGC || UseG1GC) {
3578     if (UseConcMarkSweepGC) {
3579       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3580     } else {
3581       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3582     }
3583   }
3584 #endif // INCLUDE_ALL_GCS
3585 
3586   // Always call even when there are not JVMTI environments yet, since environments
3587   // may be attached late and JVMTI must track phases of VM execution
3588   JvmtiExport::enter_live_phase();
3589 
3590   // Signal Dispatcher needs to be started before VMInit event is posted
3591   os::signal_init();
3592 
3593   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3594   if (!DisableAttachMechanism) {
3595     AttachListener::vm_start();
3596     if (StartAttachListener || AttachListener::init_at_startup()) {
3597       AttachListener::init();
3598     }
3599   }
3600 
3601   // Launch -Xrun agents
3602   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3603   // back-end can launch with -Xdebug -Xrunjdwp.
3604   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3605     create_vm_init_libraries();
3606   }
3607 
3608   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3609   JvmtiExport::post_vm_initialized();
3610 
3611   if (TRACE_START() != JNI_OK) {
3612     vm_exit_during_initialization("Failed to start tracing backend.");
3613   }
3614 
3615   if (CleanChunkPoolAsync) {
3616     Chunk::start_chunk_pool_cleaner_task();
3617   }
3618 
3619 #if INCLUDE_JVMCI
3620   if (EnableJVMCI) {
3621     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3622     if (jvmciCompiler != NULL) {
3623       JVMCIRuntime::save_compiler(jvmciCompiler);
3624     }
3625     JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3626   }
3627 #endif // INCLUDE_JVMCI
3628 
3629   // initialize compiler(s)
3630 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3631   CompileBroker::compilation_init();
3632 #endif
3633 
3634   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3635   // It is done after compilers are initialized, because otherwise compilations of
3636   // signature polymorphic MH intrinsics can be missed
3637   // (see SystemDictionary::find_method_handle_intrinsic).
3638   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3639 
3640 #if INCLUDE_MANAGEMENT
3641   Management::initialize(THREAD);
3642 
3643   if (HAS_PENDING_EXCEPTION) {
3644     // management agent fails to start possibly due to
3645     // configuration problem and is responsible for printing
3646     // stack trace if appropriate. Simply exit VM.
3647     vm_exit(1);
3648   }
3649 #endif // INCLUDE_MANAGEMENT
3650 
3651   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3652   if (MemProfiling)                   MemProfiler::engage();
3653   StatSampler::engage();
3654   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3655 
3656   BiasedLocking::init();
3657 
3658 #if INCLUDE_RTM_OPT
3659   RTMLockingCounters::init();
3660 #endif
3661 
3662   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3663     call_postVMInitHook(THREAD);
3664     // The Java side of PostVMInitHook.run must deal with all
3665     // exceptions and provide means of diagnosis.
3666     if (HAS_PENDING_EXCEPTION) {
3667       CLEAR_PENDING_EXCEPTION;
3668     }
3669   }
3670 
3671   {
3672     MutexLocker ml(PeriodicTask_lock);
3673     // Make sure the WatcherThread can be started by WatcherThread::start()
3674     // or by dynamic enrollment.
3675     WatcherThread::make_startable();
3676     // Start up the WatcherThread if there are any periodic tasks
3677     // NOTE:  All PeriodicTasks should be registered by now. If they
3678     //   aren't, late joiners might appear to start slowly (we might
3679     //   take a while to process their first tick).
3680     if (PeriodicTask::num_tasks() > 0) {
3681       WatcherThread::start();
3682     }
3683   }
3684 
3685   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3686 
3687   create_vm_timer.end();
3688 #ifdef ASSERT
3689   _vm_complete = true;
3690 #endif
3691   return JNI_OK;
3692 }
3693 
3694 // type for the Agent_OnLoad and JVM_OnLoad entry points
3695 extern "C" {
3696   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3697 }
3698 // Find a command line agent library and return its entry point for
3699 //         -agentlib:  -agentpath:   -Xrun
3700 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3701 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3702                                     const char *on_load_symbols[],
3703                                     size_t num_symbol_entries) {
3704   OnLoadEntry_t on_load_entry = NULL;
3705   void *library = NULL;
3706 
3707   if (!agent->valid()) {
3708     char buffer[JVM_MAXPATHLEN];
3709     char ebuf[1024] = "";
3710     const char *name = agent->name();
3711     const char *msg = "Could not find agent library ";
3712 
3713     // First check to see if agent is statically linked into executable
3714     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3715       library = agent->os_lib();
3716     } else if (agent->is_absolute_path()) {
3717       library = os::dll_load(name, ebuf, sizeof ebuf);
3718       if (library == NULL) {
3719         const char *sub_msg = " in absolute path, with error: ";
3720         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3721         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3722         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3723         // If we can't find the agent, exit.
3724         vm_exit_during_initialization(buf, NULL);
3725         FREE_C_HEAP_ARRAY(char, buf);
3726       }
3727     } else {
3728       // Try to load the agent from the standard dll directory
3729       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3730                              name)) {
3731         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3732       }
3733       if (library == NULL) { // Try the local directory
3734         char ns[1] = {0};
3735         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3736           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3737         }
3738         if (library == NULL) {
3739           const char *sub_msg = " on the library path, with error: ";
3740           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3741           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3742           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3743           // If we can't find the agent, exit.
3744           vm_exit_during_initialization(buf, NULL);
3745           FREE_C_HEAP_ARRAY(char, buf);
3746         }
3747       }
3748     }
3749     agent->set_os_lib(library);
3750     agent->set_valid();
3751   }
3752 
3753   // Find the OnLoad function.
3754   on_load_entry =
3755     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3756                                                           false,
3757                                                           on_load_symbols,
3758                                                           num_symbol_entries));
3759   return on_load_entry;
3760 }
3761 
3762 // Find the JVM_OnLoad entry point
3763 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3764   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3765   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3766 }
3767 
3768 // Find the Agent_OnLoad entry point
3769 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3770   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3771   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3772 }
3773 
3774 // For backwards compatibility with -Xrun
3775 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3776 // treated like -agentpath:
3777 // Must be called before agent libraries are created
3778 void Threads::convert_vm_init_libraries_to_agents() {
3779   AgentLibrary* agent;
3780   AgentLibrary* next;
3781 
3782   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3783     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3784     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3785 
3786     // If there is an JVM_OnLoad function it will get called later,
3787     // otherwise see if there is an Agent_OnLoad
3788     if (on_load_entry == NULL) {
3789       on_load_entry = lookup_agent_on_load(agent);
3790       if (on_load_entry != NULL) {
3791         // switch it to the agent list -- so that Agent_OnLoad will be called,
3792         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3793         Arguments::convert_library_to_agent(agent);
3794       } else {
3795         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3796       }
3797     }
3798   }
3799 }
3800 
3801 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3802 // Invokes Agent_OnLoad
3803 // Called very early -- before JavaThreads exist
3804 void Threads::create_vm_init_agents() {
3805   extern struct JavaVM_ main_vm;
3806   AgentLibrary* agent;
3807 
3808   JvmtiExport::enter_onload_phase();
3809 
3810   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3811     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3812 
3813     if (on_load_entry != NULL) {
3814       // Invoke the Agent_OnLoad function
3815       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3816       if (err != JNI_OK) {
3817         vm_exit_during_initialization("agent library failed to init", agent->name());
3818       }
3819     } else {
3820       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3821     }
3822   }
3823   JvmtiExport::enter_primordial_phase();
3824 }
3825 
3826 extern "C" {
3827   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3828 }
3829 
3830 void Threads::shutdown_vm_agents() {
3831   // Send any Agent_OnUnload notifications
3832   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3833   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3834   extern struct JavaVM_ main_vm;
3835   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3836 
3837     // Find the Agent_OnUnload function.
3838     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3839                                                    os::find_agent_function(agent,
3840                                                    false,
3841                                                    on_unload_symbols,
3842                                                    num_symbol_entries));
3843 
3844     // Invoke the Agent_OnUnload function
3845     if (unload_entry != NULL) {
3846       JavaThread* thread = JavaThread::current();
3847       ThreadToNativeFromVM ttn(thread);
3848       HandleMark hm(thread);
3849       (*unload_entry)(&main_vm);
3850     }
3851   }
3852 }
3853 
3854 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3855 // Invokes JVM_OnLoad
3856 void Threads::create_vm_init_libraries() {
3857   extern struct JavaVM_ main_vm;
3858   AgentLibrary* agent;
3859 
3860   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3861     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3862 
3863     if (on_load_entry != NULL) {
3864       // Invoke the JVM_OnLoad function
3865       JavaThread* thread = JavaThread::current();
3866       ThreadToNativeFromVM ttn(thread);
3867       HandleMark hm(thread);
3868       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3869       if (err != JNI_OK) {
3870         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3871       }
3872     } else {
3873       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3874     }
3875   }
3876 }
3877 
3878 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3879   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3880 
3881   JavaThread* java_thread = NULL;
3882   // Sequential search for now.  Need to do better optimization later.
3883   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3884     oop tobj = thread->threadObj();
3885     if (!thread->is_exiting() &&
3886         tobj != NULL &&
3887         java_tid == java_lang_Thread::thread_id(tobj)) {
3888       java_thread = thread;
3889       break;
3890     }
3891   }
3892   return java_thread;
3893 }
3894 
3895 
3896 // Last thread running calls java.lang.Shutdown.shutdown()
3897 void JavaThread::invoke_shutdown_hooks() {
3898   HandleMark hm(this);
3899 
3900   // We could get here with a pending exception, if so clear it now.
3901   if (this->has_pending_exception()) {
3902     this->clear_pending_exception();
3903   }
3904 
3905   EXCEPTION_MARK;
3906   Klass* k =
3907     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3908                                       THREAD);
3909   if (k != NULL) {
3910     // SystemDictionary::resolve_or_null will return null if there was
3911     // an exception.  If we cannot load the Shutdown class, just don't
3912     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3913     // and finalizers (if runFinalizersOnExit is set) won't be run.
3914     // Note that if a shutdown hook was registered or runFinalizersOnExit
3915     // was called, the Shutdown class would have already been loaded
3916     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3917     instanceKlassHandle shutdown_klass (THREAD, k);
3918     JavaValue result(T_VOID);
3919     JavaCalls::call_static(&result,
3920                            shutdown_klass,
3921                            vmSymbols::shutdown_method_name(),
3922                            vmSymbols::void_method_signature(),
3923                            THREAD);
3924   }
3925   CLEAR_PENDING_EXCEPTION;
3926 }
3927 
3928 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3929 // the program falls off the end of main(). Another VM exit path is through
3930 // vm_exit() when the program calls System.exit() to return a value or when
3931 // there is a serious error in VM. The two shutdown paths are not exactly
3932 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3933 // and VM_Exit op at VM level.
3934 //
3935 // Shutdown sequence:
3936 //   + Shutdown native memory tracking if it is on
3937 //   + Wait until we are the last non-daemon thread to execute
3938 //     <-- every thing is still working at this moment -->
3939 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3940 //        shutdown hooks, run finalizers if finalization-on-exit
3941 //   + Call before_exit(), prepare for VM exit
3942 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3943 //        currently the only user of this mechanism is File.deleteOnExit())
3944 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3945 //        post thread end and vm death events to JVMTI,
3946 //        stop signal thread
3947 //   + Call JavaThread::exit(), it will:
3948 //      > release JNI handle blocks, remove stack guard pages
3949 //      > remove this thread from Threads list
3950 //     <-- no more Java code from this thread after this point -->
3951 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3952 //     the compiler threads at safepoint
3953 //     <-- do not use anything that could get blocked by Safepoint -->
3954 //   + Disable tracing at JNI/JVM barriers
3955 //   + Set _vm_exited flag for threads that are still running native code
3956 //   + Delete this thread
3957 //   + Call exit_globals()
3958 //      > deletes tty
3959 //      > deletes PerfMemory resources
3960 //   + Return to caller
3961 
3962 bool Threads::destroy_vm() {
3963   JavaThread* thread = JavaThread::current();
3964 
3965 #ifdef ASSERT
3966   _vm_complete = false;
3967 #endif
3968   // Wait until we are the last non-daemon thread to execute
3969   { MutexLocker nu(Threads_lock);
3970     while (Threads::number_of_non_daemon_threads() > 1)
3971       // This wait should make safepoint checks, wait without a timeout,
3972       // and wait as a suspend-equivalent condition.
3973       //
3974       // Note: If the FlatProfiler is running and this thread is waiting
3975       // for another non-daemon thread to finish, then the FlatProfiler
3976       // is waiting for the external suspend request on this thread to
3977       // complete. wait_for_ext_suspend_completion() will eventually
3978       // timeout, but that takes time. Making this wait a suspend-
3979       // equivalent condition solves that timeout problem.
3980       //
3981       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3982                          Mutex::_as_suspend_equivalent_flag);
3983   }
3984 
3985   // Hang forever on exit if we are reporting an error.
3986   if (ShowMessageBoxOnError && is_error_reported()) {
3987     os::infinite_sleep();
3988   }
3989   os::wait_for_keypress_at_exit();
3990 
3991   // run Java level shutdown hooks
3992   thread->invoke_shutdown_hooks();
3993 
3994   before_exit(thread);
3995 
3996   thread->exit(true);
3997 
3998   // Stop VM thread.
3999   {
4000     // 4945125 The vm thread comes to a safepoint during exit.
4001     // GC vm_operations can get caught at the safepoint, and the
4002     // heap is unparseable if they are caught. Grab the Heap_lock
4003     // to prevent this. The GC vm_operations will not be able to
4004     // queue until after the vm thread is dead. After this point,
4005     // we'll never emerge out of the safepoint before the VM exits.
4006 
4007     MutexLocker ml(Heap_lock);
4008 
4009     VMThread::wait_for_vm_thread_exit();
4010     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4011     VMThread::destroy();
4012   }
4013 
4014   // clean up ideal graph printers
4015 #if defined(COMPILER2) && !defined(PRODUCT)
4016   IdealGraphPrinter::clean_up();
4017 #endif
4018 
4019   // Now, all Java threads are gone except daemon threads. Daemon threads
4020   // running Java code or in VM are stopped by the Safepoint. However,
4021   // daemon threads executing native code are still running.  But they
4022   // will be stopped at native=>Java/VM barriers. Note that we can't
4023   // simply kill or suspend them, as it is inherently deadlock-prone.
4024 
4025 #ifndef PRODUCT
4026   // disable function tracing at JNI/JVM barriers
4027   TraceJNICalls = false;
4028   TraceJVMCalls = false;
4029   TraceRuntimeCalls = false;
4030 #endif
4031 
4032   VM_Exit::set_vm_exited();
4033 
4034   notify_vm_shutdown();
4035 
4036   delete thread;
4037 
4038 #if INCLUDE_JVMCI
4039   if (JVMCICounterSize > 0) {
4040     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4041   }
4042 #endif
4043 
4044   // exit_globals() will delete tty
4045   exit_globals();
4046 
4047   LogConfiguration::finalize();
4048 
4049   return true;
4050 }
4051 
4052 
4053 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4054   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4055   return is_supported_jni_version(version);
4056 }
4057 
4058 
4059 jboolean Threads::is_supported_jni_version(jint version) {
4060   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4061   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4062   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4063   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4064   return JNI_FALSE;
4065 }
4066 
4067 
4068 void Threads::add(JavaThread* p, bool force_daemon) {
4069   // The threads lock must be owned at this point
4070   assert_locked_or_safepoint(Threads_lock);
4071 
4072   // See the comment for this method in thread.hpp for its purpose and
4073   // why it is called here.
4074   p->initialize_queues();
4075   p->set_next(_thread_list);
4076   _thread_list = p;
4077   _number_of_threads++;
4078   oop threadObj = p->threadObj();
4079   bool daemon = true;
4080   // Bootstrapping problem: threadObj can be null for initial
4081   // JavaThread (or for threads attached via JNI)
4082   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4083     _number_of_non_daemon_threads++;
4084     daemon = false;
4085   }
4086 
4087   ThreadService::add_thread(p, daemon);
4088 
4089   // Possible GC point.
4090   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4091 }
4092 
4093 void Threads::remove(JavaThread* p) {
4094   // Extra scope needed for Thread_lock, so we can check
4095   // that we do not remove thread without safepoint code notice
4096   { MutexLocker ml(Threads_lock);
4097 
4098     assert(includes(p), "p must be present");
4099 
4100     JavaThread* current = _thread_list;
4101     JavaThread* prev    = NULL;
4102 
4103     while (current != p) {
4104       prev    = current;
4105       current = current->next();
4106     }
4107 
4108     if (prev) {
4109       prev->set_next(current->next());
4110     } else {
4111       _thread_list = p->next();
4112     }
4113     _number_of_threads--;
4114     oop threadObj = p->threadObj();
4115     bool daemon = true;
4116     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4117       _number_of_non_daemon_threads--;
4118       daemon = false;
4119 
4120       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4121       // on destroy_vm will wake up.
4122       if (number_of_non_daemon_threads() == 1) {
4123         Threads_lock->notify_all();
4124       }
4125     }
4126     ThreadService::remove_thread(p, daemon);
4127 
4128     // Make sure that safepoint code disregard this thread. This is needed since
4129     // the thread might mess around with locks after this point. This can cause it
4130     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4131     // of this thread since it is removed from the queue.
4132     p->set_terminated_value();
4133   } // unlock Threads_lock
4134 
4135   // Since Events::log uses a lock, we grab it outside the Threads_lock
4136   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4137 }
4138 
4139 // Threads_lock must be held when this is called (or must be called during a safepoint)
4140 bool Threads::includes(JavaThread* p) {
4141   assert(Threads_lock->is_locked(), "sanity check");
4142   ALL_JAVA_THREADS(q) {
4143     if (q == p) {
4144       return true;
4145     }
4146   }
4147   return false;
4148 }
4149 
4150 // Operations on the Threads list for GC.  These are not explicitly locked,
4151 // but the garbage collector must provide a safe context for them to run.
4152 // In particular, these things should never be called when the Threads_lock
4153 // is held by some other thread. (Note: the Safepoint abstraction also
4154 // uses the Threads_lock to guarantee this property. It also makes sure that
4155 // all threads gets blocked when exiting or starting).
4156 
4157 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4158   ALL_JAVA_THREADS(p) {
4159     p->oops_do(f, cld_f, cf);
4160   }
4161   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4162 }
4163 
4164 void Threads::change_thread_claim_parity() {
4165   // Set the new claim parity.
4166   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4167          "Not in range.");
4168   _thread_claim_parity++;
4169   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4170   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4171          "Not in range.");
4172 }
4173 
4174 #ifdef ASSERT
4175 void Threads::assert_all_threads_claimed() {
4176   ALL_JAVA_THREADS(p) {
4177     const int thread_parity = p->oops_do_parity();
4178     assert((thread_parity == _thread_claim_parity),
4179            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4180   }
4181 }
4182 #endif // ASSERT
4183 
4184 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4185   int cp = Threads::thread_claim_parity();
4186   ALL_JAVA_THREADS(p) {
4187     if (p->claim_oops_do(is_par, cp)) {
4188       p->oops_do(f, cld_f, cf);
4189     }
4190   }
4191   VMThread* vmt = VMThread::vm_thread();
4192   if (vmt->claim_oops_do(is_par, cp)) {
4193     vmt->oops_do(f, cld_f, cf);
4194   }
4195 }
4196 
4197 #if INCLUDE_ALL_GCS
4198 // Used by ParallelScavenge
4199 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4200   ALL_JAVA_THREADS(p) {
4201     q->enqueue(new ThreadRootsTask(p));
4202   }
4203   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4204 }
4205 
4206 // Used by Parallel Old
4207 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4208   ALL_JAVA_THREADS(p) {
4209     q->enqueue(new ThreadRootsMarkingTask(p));
4210   }
4211   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4212 }
4213 #endif // INCLUDE_ALL_GCS
4214 
4215 void Threads::nmethods_do(CodeBlobClosure* cf) {
4216   ALL_JAVA_THREADS(p) {
4217     p->nmethods_do(cf);
4218   }
4219   VMThread::vm_thread()->nmethods_do(cf);
4220 }
4221 
4222 void Threads::metadata_do(void f(Metadata*)) {
4223   ALL_JAVA_THREADS(p) {
4224     p->metadata_do(f);
4225   }
4226 }
4227 
4228 class ThreadHandlesClosure : public ThreadClosure {
4229   void (*_f)(Metadata*);
4230  public:
4231   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4232   virtual void do_thread(Thread* thread) {
4233     thread->metadata_handles_do(_f);
4234   }
4235 };
4236 
4237 void Threads::metadata_handles_do(void f(Metadata*)) {
4238   // Only walk the Handles in Thread.
4239   ThreadHandlesClosure handles_closure(f);
4240   threads_do(&handles_closure);
4241 }
4242 
4243 void Threads::deoptimized_wrt_marked_nmethods() {
4244   ALL_JAVA_THREADS(p) {
4245     p->deoptimized_wrt_marked_nmethods();
4246   }
4247 }
4248 
4249 
4250 // Get count Java threads that are waiting to enter the specified monitor.
4251 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4252                                                          address monitor,
4253                                                          bool doLock) {
4254   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4255          "must grab Threads_lock or be at safepoint");
4256   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4257 
4258   int i = 0;
4259   {
4260     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4261     ALL_JAVA_THREADS(p) {
4262       if (!p->can_call_java()) continue;
4263 
4264       address pending = (address)p->current_pending_monitor();
4265       if (pending == monitor) {             // found a match
4266         if (i < count) result->append(p);   // save the first count matches
4267         i++;
4268       }
4269     }
4270   }
4271   return result;
4272 }
4273 
4274 
4275 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4276                                                       bool doLock) {
4277   assert(doLock ||
4278          Threads_lock->owned_by_self() ||
4279          SafepointSynchronize::is_at_safepoint(),
4280          "must grab Threads_lock or be at safepoint");
4281 
4282   // NULL owner means not locked so we can skip the search
4283   if (owner == NULL) return NULL;
4284 
4285   {
4286     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4287     ALL_JAVA_THREADS(p) {
4288       // first, see if owner is the address of a Java thread
4289       if (owner == (address)p) return p;
4290     }
4291   }
4292   // Cannot assert on lack of success here since this function may be
4293   // used by code that is trying to report useful problem information
4294   // like deadlock detection.
4295   if (UseHeavyMonitors) return NULL;
4296 
4297   // If we didn't find a matching Java thread and we didn't force use of
4298   // heavyweight monitors, then the owner is the stack address of the
4299   // Lock Word in the owning Java thread's stack.
4300   //
4301   JavaThread* the_owner = NULL;
4302   {
4303     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4304     ALL_JAVA_THREADS(q) {
4305       if (q->is_lock_owned(owner)) {
4306         the_owner = q;
4307         break;
4308       }
4309     }
4310   }
4311   // cannot assert on lack of success here; see above comment
4312   return the_owner;
4313 }
4314 
4315 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4316 void Threads::print_on(outputStream* st, bool print_stacks,
4317                        bool internal_format, bool print_concurrent_locks) {
4318   char buf[32];
4319   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4320 
4321   st->print_cr("Full thread dump %s (%s %s):",
4322                Abstract_VM_Version::vm_name(),
4323                Abstract_VM_Version::vm_release(),
4324                Abstract_VM_Version::vm_info_string());
4325   st->cr();
4326 
4327 #if INCLUDE_SERVICES
4328   // Dump concurrent locks
4329   ConcurrentLocksDump concurrent_locks;
4330   if (print_concurrent_locks) {
4331     concurrent_locks.dump_at_safepoint();
4332   }
4333 #endif // INCLUDE_SERVICES
4334 
4335   ALL_JAVA_THREADS(p) {
4336     ResourceMark rm;
4337     p->print_on(st);
4338     if (print_stacks) {
4339       if (internal_format) {
4340         p->trace_stack();
4341       } else {
4342         p->print_stack_on(st);
4343       }
4344     }
4345     st->cr();
4346 #if INCLUDE_SERVICES
4347     if (print_concurrent_locks) {
4348       concurrent_locks.print_locks_on(p, st);
4349     }
4350 #endif // INCLUDE_SERVICES
4351   }
4352 
4353   VMThread::vm_thread()->print_on(st);
4354   st->cr();
4355   Universe::heap()->print_gc_threads_on(st);
4356   WatcherThread* wt = WatcherThread::watcher_thread();
4357   if (wt != NULL) {
4358     wt->print_on(st);
4359     st->cr();
4360   }
4361   CompileBroker::print_compiler_threads_on(st);
4362   st->flush();
4363 }
4364 
4365 // Threads::print_on_error() is called by fatal error handler. It's possible
4366 // that VM is not at safepoint and/or current thread is inside signal handler.
4367 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4368 // memory (even in resource area), it might deadlock the error handler.
4369 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4370                              int buflen) {
4371   bool found_current = false;
4372   st->print_cr("Java Threads: ( => current thread )");
4373   ALL_JAVA_THREADS(thread) {
4374     bool is_current = (current == thread);
4375     found_current = found_current || is_current;
4376 
4377     st->print("%s", is_current ? "=>" : "  ");
4378 
4379     st->print(PTR_FORMAT, p2i(thread));
4380     st->print(" ");
4381     thread->print_on_error(st, buf, buflen);
4382     st->cr();
4383   }
4384   st->cr();
4385 
4386   st->print_cr("Other Threads:");
4387   if (VMThread::vm_thread()) {
4388     bool is_current = (current == VMThread::vm_thread());
4389     found_current = found_current || is_current;
4390     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4391 
4392     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4393     st->print(" ");
4394     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4395     st->cr();
4396   }
4397   WatcherThread* wt = WatcherThread::watcher_thread();
4398   if (wt != NULL) {
4399     bool is_current = (current == wt);
4400     found_current = found_current || is_current;
4401     st->print("%s", is_current ? "=>" : "  ");
4402 
4403     st->print(PTR_FORMAT, p2i(wt));
4404     st->print(" ");
4405     wt->print_on_error(st, buf, buflen);
4406     st->cr();
4407   }
4408   if (!found_current) {
4409     st->cr();
4410     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4411     current->print_on_error(st, buf, buflen);
4412     st->cr();
4413   }
4414 }
4415 
4416 // Internal SpinLock and Mutex
4417 // Based on ParkEvent
4418 
4419 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4420 //
4421 // We employ SpinLocks _only for low-contention, fixed-length
4422 // short-duration critical sections where we're concerned
4423 // about native mutex_t or HotSpot Mutex:: latency.
4424 // The mux construct provides a spin-then-block mutual exclusion
4425 // mechanism.
4426 //
4427 // Testing has shown that contention on the ListLock guarding gFreeList
4428 // is common.  If we implement ListLock as a simple SpinLock it's common
4429 // for the JVM to devolve to yielding with little progress.  This is true
4430 // despite the fact that the critical sections protected by ListLock are
4431 // extremely short.
4432 //
4433 // TODO-FIXME: ListLock should be of type SpinLock.
4434 // We should make this a 1st-class type, integrated into the lock
4435 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4436 // should have sufficient padding to avoid false-sharing and excessive
4437 // cache-coherency traffic.
4438 
4439 
4440 typedef volatile int SpinLockT;
4441 
4442 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4443   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4444     return;   // normal fast-path return
4445   }
4446 
4447   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4448   TEVENT(SpinAcquire - ctx);
4449   int ctr = 0;
4450   int Yields = 0;
4451   for (;;) {
4452     while (*adr != 0) {
4453       ++ctr;
4454       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4455         if (Yields > 5) {
4456           os::naked_short_sleep(1);
4457         } else {
4458           os::naked_yield();
4459           ++Yields;
4460         }
4461       } else {
4462         SpinPause();
4463       }
4464     }
4465     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4466   }
4467 }
4468 
4469 void Thread::SpinRelease(volatile int * adr) {
4470   assert(*adr != 0, "invariant");
4471   OrderAccess::fence();      // guarantee at least release consistency.
4472   // Roach-motel semantics.
4473   // It's safe if subsequent LDs and STs float "up" into the critical section,
4474   // but prior LDs and STs within the critical section can't be allowed
4475   // to reorder or float past the ST that releases the lock.
4476   // Loads and stores in the critical section - which appear in program
4477   // order before the store that releases the lock - must also appear
4478   // before the store that releases the lock in memory visibility order.
4479   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4480   // the ST of 0 into the lock-word which releases the lock, so fence
4481   // more than covers this on all platforms.
4482   *adr = 0;
4483 }
4484 
4485 // muxAcquire and muxRelease:
4486 //
4487 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4488 //    The LSB of the word is set IFF the lock is held.
4489 //    The remainder of the word points to the head of a singly-linked list
4490 //    of threads blocked on the lock.
4491 //
4492 // *  The current implementation of muxAcquire-muxRelease uses its own
4493 //    dedicated Thread._MuxEvent instance.  If we're interested in
4494 //    minimizing the peak number of extant ParkEvent instances then
4495 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4496 //    as certain invariants were satisfied.  Specifically, care would need
4497 //    to be taken with regards to consuming unpark() "permits".
4498 //    A safe rule of thumb is that a thread would never call muxAcquire()
4499 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4500 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4501 //    consume an unpark() permit intended for monitorenter, for instance.
4502 //    One way around this would be to widen the restricted-range semaphore
4503 //    implemented in park().  Another alternative would be to provide
4504 //    multiple instances of the PlatformEvent() for each thread.  One
4505 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4506 //
4507 // *  Usage:
4508 //    -- Only as leaf locks
4509 //    -- for short-term locking only as muxAcquire does not perform
4510 //       thread state transitions.
4511 //
4512 // Alternatives:
4513 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4514 //    but with parking or spin-then-park instead of pure spinning.
4515 // *  Use Taura-Oyama-Yonenzawa locks.
4516 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4517 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4518 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4519 //    acquiring threads use timers (ParkTimed) to detect and recover from
4520 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4521 //    boundaries by using placement-new.
4522 // *  Augment MCS with advisory back-link fields maintained with CAS().
4523 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4524 //    The validity of the backlinks must be ratified before we trust the value.
4525 //    If the backlinks are invalid the exiting thread must back-track through the
4526 //    the forward links, which are always trustworthy.
4527 // *  Add a successor indication.  The LockWord is currently encoded as
4528 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4529 //    to provide the usual futile-wakeup optimization.
4530 //    See RTStt for details.
4531 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4532 //
4533 
4534 
4535 typedef volatile intptr_t MutexT;      // Mux Lock-word
4536 enum MuxBits { LOCKBIT = 1 };
4537 
4538 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4539   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4540   if (w == 0) return;
4541   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542     return;
4543   }
4544 
4545   TEVENT(muxAcquire - Contention);
4546   ParkEvent * const Self = Thread::current()->_MuxEvent;
4547   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4548   for (;;) {
4549     int its = (os::is_MP() ? 100 : 0) + 1;
4550 
4551     // Optional spin phase: spin-then-park strategy
4552     while (--its >= 0) {
4553       w = *Lock;
4554       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4555         return;
4556       }
4557     }
4558 
4559     Self->reset();
4560     Self->OnList = intptr_t(Lock);
4561     // The following fence() isn't _strictly necessary as the subsequent
4562     // CAS() both serializes execution and ratifies the fetched *Lock value.
4563     OrderAccess::fence();
4564     for (;;) {
4565       w = *Lock;
4566       if ((w & LOCKBIT) == 0) {
4567         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4568           Self->OnList = 0;   // hygiene - allows stronger asserts
4569           return;
4570         }
4571         continue;      // Interference -- *Lock changed -- Just retry
4572       }
4573       assert(w & LOCKBIT, "invariant");
4574       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4575       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4576     }
4577 
4578     while (Self->OnList != 0) {
4579       Self->park();
4580     }
4581   }
4582 }
4583 
4584 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4585   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4586   if (w == 0) return;
4587   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588     return;
4589   }
4590 
4591   TEVENT(muxAcquire - Contention);
4592   ParkEvent * ReleaseAfter = NULL;
4593   if (ev == NULL) {
4594     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4595   }
4596   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4597   for (;;) {
4598     guarantee(ev->OnList == 0, "invariant");
4599     int its = (os::is_MP() ? 100 : 0) + 1;
4600 
4601     // Optional spin phase: spin-then-park strategy
4602     while (--its >= 0) {
4603       w = *Lock;
4604       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4605         if (ReleaseAfter != NULL) {
4606           ParkEvent::Release(ReleaseAfter);
4607         }
4608         return;
4609       }
4610     }
4611 
4612     ev->reset();
4613     ev->OnList = intptr_t(Lock);
4614     // The following fence() isn't _strictly necessary as the subsequent
4615     // CAS() both serializes execution and ratifies the fetched *Lock value.
4616     OrderAccess::fence();
4617     for (;;) {
4618       w = *Lock;
4619       if ((w & LOCKBIT) == 0) {
4620         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4621           ev->OnList = 0;
4622           // We call ::Release while holding the outer lock, thus
4623           // artificially lengthening the critical section.
4624           // Consider deferring the ::Release() until the subsequent unlock(),
4625           // after we've dropped the outer lock.
4626           if (ReleaseAfter != NULL) {
4627             ParkEvent::Release(ReleaseAfter);
4628           }
4629           return;
4630         }
4631         continue;      // Interference -- *Lock changed -- Just retry
4632       }
4633       assert(w & LOCKBIT, "invariant");
4634       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4635       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4636     }
4637 
4638     while (ev->OnList != 0) {
4639       ev->park();
4640     }
4641   }
4642 }
4643 
4644 // Release() must extract a successor from the list and then wake that thread.
4645 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4646 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4647 // Release() would :
4648 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4649 // (B) Extract a successor from the private list "in-hand"
4650 // (C) attempt to CAS() the residual back into *Lock over null.
4651 //     If there were any newly arrived threads and the CAS() would fail.
4652 //     In that case Release() would detach the RATs, re-merge the list in-hand
4653 //     with the RATs and repeat as needed.  Alternately, Release() might
4654 //     detach and extract a successor, but then pass the residual list to the wakee.
4655 //     The wakee would be responsible for reattaching and remerging before it
4656 //     competed for the lock.
4657 //
4658 // Both "pop" and DMR are immune from ABA corruption -- there can be
4659 // multiple concurrent pushers, but only one popper or detacher.
4660 // This implementation pops from the head of the list.  This is unfair,
4661 // but tends to provide excellent throughput as hot threads remain hot.
4662 // (We wake recently run threads first).
4663 //
4664 // All paths through muxRelease() will execute a CAS.
4665 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4666 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4667 // executed within the critical section are complete and globally visible before the
4668 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4669 void Thread::muxRelease(volatile intptr_t * Lock)  {
4670   for (;;) {
4671     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4672     assert(w & LOCKBIT, "invariant");
4673     if (w == LOCKBIT) return;
4674     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4675     assert(List != NULL, "invariant");
4676     assert(List->OnList == intptr_t(Lock), "invariant");
4677     ParkEvent * const nxt = List->ListNext;
4678     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4679 
4680     // The following CAS() releases the lock and pops the head element.
4681     // The CAS() also ratifies the previously fetched lock-word value.
4682     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4683       continue;
4684     }
4685     List->OnList = 0;
4686     OrderAccess::fence();
4687     List->unpark();
4688     return;
4689   }
4690 }
4691 
4692 
4693 void Threads::verify() {
4694   ALL_JAVA_THREADS(p) {
4695     p->verify();
4696   }
4697   VMThread* thread = VMThread::vm_thread();
4698   if (thread != NULL) thread->verify();
4699 }