1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/logConfiguration.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/instanceKlass.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvm_misc.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "prims/privilegedStack.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/commandLineFlagConstraintList.hpp"
  58 #include "runtime/commandLineFlagRangeList.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/globals.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniPeriodicChecker.hpp"
  68 #include "runtime/memprofiler.hpp"
  69 #include "runtime/mutexLocker.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/osThread.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/statSampler.hpp"
  76 #include "runtime/stubRoutines.hpp"
  77 #include "runtime/sweeper.hpp"
  78 #include "runtime/task.hpp"
  79 #include "runtime/thread.inline.hpp"
  80 #include "runtime/threadCritical.hpp"
  81 #include "runtime/vframe.hpp"
  82 #include "runtime/vframeArray.hpp"
  83 #include "runtime/vframe_hp.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "runtime/vm_operations.hpp"
  86 #include "runtime/vm_version.hpp"
  87 #include "services/attachListener.hpp"
  88 #include "services/management.hpp"
  89 #include "services/memTracker.hpp"
  90 #include "services/threadService.hpp"
  91 #include "trace/traceMacros.hpp"
  92 #include "trace/tracing.hpp"
  93 #include "utilities/defaultStream.hpp"
  94 #include "utilities/dtrace.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/preserveException.hpp"
  98 #if INCLUDE_ALL_GCS
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #if INCLUDE_JVMCI
 104 #include "jvmci/jvmciCompiler.hpp"
 105 #include "jvmci/jvmciRuntime.hpp"
 106 #endif
 107 #ifdef COMPILER1
 108 #include "c1/c1_Compiler.hpp"
 109 #endif
 110 #ifdef COMPILER2
 111 #include "opto/c2compiler.hpp"
 112 #include "opto/idealGraphPrinter.hpp"
 113 #endif
 114 #if INCLUDE_RTM_OPT
 115 #include "runtime/rtmLocking.hpp"
 116 #endif
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 126     {                                                                      \
 127       ResourceMark rm(this);                                               \
 128       int len = 0;                                                         \
 129       const char* name = (javathread)->get_thread_name();                  \
 130       len = strlen(name);                                                  \
 131       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 132         (char *) name, len,                                                \
 133         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 134         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 135         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 136     }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140   #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 145 // Current thread is maintained as a thread-local variable
 146 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 147 #endif
 148 
 149 // Class hierarchy
 150 // - Thread
 151 //   - VMThread
 152 //   - WatcherThread
 153 //   - ConcurrentMarkSweepThread
 154 //   - JavaThread
 155 //     - CompilerThread
 156 
 157 // ======= Thread ========
 158 // Support for forcing alignment of thread objects for biased locking
 159 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 160   if (UseBiasedLocking) {
 161     const int alignment = markOopDesc::biased_lock_alignment;
 162     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 163     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 164                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 165                                                          AllocFailStrategy::RETURN_NULL);
 166     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 167     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 168            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 169            "JavaThread alignment code overflowed allocated storage");
 170     if (TraceBiasedLocking) {
 171       if (aligned_addr != real_malloc_addr) {
 172         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 173                       p2i(real_malloc_addr), p2i(aligned_addr));
 174       }
 175     }
 176     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 177     return aligned_addr;
 178   } else {
 179     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 180                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 181   }
 182 }
 183 
 184 void Thread::operator delete(void* p) {
 185   if (UseBiasedLocking) {
 186     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 187     FreeHeap(real_malloc_addr);
 188   } else {
 189     FreeHeap(p);
 190   }
 191 }
 192 
 193 
 194 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 195 // JavaThread
 196 
 197 
 198 Thread::Thread() {
 199   // stack and get_thread
 200   set_stack_base(NULL);
 201   set_stack_size(0);
 202   set_self_raw_id(0);
 203   set_lgrp_id(-1);
 204   DEBUG_ONLY(clear_suspendible_thread();)
 205 
 206   // allocated data structures
 207   set_osthread(NULL);
 208   set_resource_area(new (mtThread)ResourceArea());
 209   DEBUG_ONLY(_current_resource_mark = NULL;)
 210   set_handle_area(new (mtThread) HandleArea(NULL));
 211   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 212   set_active_handles(NULL);
 213   set_free_handle_block(NULL);
 214   set_last_handle_mark(NULL);
 215 
 216   // This initial value ==> never claimed.
 217   _oops_do_parity = 0;
 218 
 219   // the handle mark links itself to last_handle_mark
 220   new HandleMark(this);
 221 
 222   // plain initialization
 223   debug_only(_owned_locks = NULL;)
 224   debug_only(_allow_allocation_count = 0;)
 225   NOT_PRODUCT(_allow_safepoint_count = 0;)
 226   NOT_PRODUCT(_skip_gcalot = false;)
 227   _jvmti_env_iteration_count = 0;
 228   set_allocated_bytes(0);
 229   _vm_operation_started_count = 0;
 230   _vm_operation_completed_count = 0;
 231   _current_pending_monitor = NULL;
 232   _current_pending_monitor_is_from_java = true;
 233   _current_waiting_monitor = NULL;
 234   _num_nested_signal = 0;
 235   omFreeList = NULL;
 236   omFreeCount = 0;
 237   omFreeProvision = 32;
 238   omInUseList = NULL;
 239   omInUseCount = 0;
 240 
 241 #ifdef ASSERT
 242   _visited_for_critical_count = false;
 243 #endif
 244 
 245   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 246                          Monitor::_safepoint_check_sometimes);
 247   _suspend_flags = 0;
 248 
 249   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 250   _hashStateX = os::random();
 251   _hashStateY = 842502087;
 252   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 253   _hashStateW = 273326509;
 254 
 255   _OnTrap   = 0;
 256   _schedctl = NULL;
 257   _Stalled  = 0;
 258   _TypeTag  = 0x2BAD;
 259 
 260   // Many of the following fields are effectively final - immutable
 261   // Note that nascent threads can't use the Native Monitor-Mutex
 262   // construct until the _MutexEvent is initialized ...
 263   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 264   // we might instead use a stack of ParkEvents that we could provision on-demand.
 265   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 266   // and ::Release()
 267   _ParkEvent   = ParkEvent::Allocate(this);
 268   _SleepEvent  = ParkEvent::Allocate(this);
 269   _MutexEvent  = ParkEvent::Allocate(this);
 270   _MuxEvent    = ParkEvent::Allocate(this);
 271 
 272 #ifdef CHECK_UNHANDLED_OOPS
 273   if (CheckUnhandledOops) {
 274     _unhandled_oops = new UnhandledOops(this);
 275   }
 276 #endif // CHECK_UNHANDLED_OOPS
 277 #ifdef ASSERT
 278   if (UseBiasedLocking) {
 279     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 280     assert(this == _real_malloc_address ||
 281            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 282            "bug in forced alignment of thread objects");
 283   }
 284 #endif // ASSERT
 285 }
 286 
 287 void Thread::initialize_thread_current() {
 288 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 289   assert(_thr_current == NULL, "Thread::current already initialized");
 290   _thr_current = this;
 291 #endif
 292   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 293   ThreadLocalStorage::set_thread(this);
 294   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 295 }
 296 
 297 void Thread::clear_thread_current() {
 298   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 299 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 300   _thr_current = NULL;
 301 #endif
 302   ThreadLocalStorage::set_thread(NULL);
 303 }
 304 
 305 void Thread::record_stack_base_and_size() {
 306   set_stack_base(os::current_stack_base());
 307   set_stack_size(os::current_stack_size());
 308   if (is_Java_thread()) {
 309     ((JavaThread*) this)->set_stack_overflow_limit();
 310   }
 311   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 312   // in initialize_thread(). Without the adjustment, stack size is
 313   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 314   // So far, only Solaris has real implementation of initialize_thread().
 315   //
 316   // set up any platform-specific state.
 317   os::initialize_thread(this);
 318 
 319 #if INCLUDE_NMT
 320   // record thread's native stack, stack grows downward
 321   address stack_low_addr = stack_base() - stack_size();
 322   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 323 #endif // INCLUDE_NMT
 324 }
 325 
 326 
 327 Thread::~Thread() {
 328   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 329   ObjectSynchronizer::omFlush(this);
 330 
 331   EVENT_THREAD_DESTRUCT(this);
 332 
 333   // stack_base can be NULL if the thread is never started or exited before
 334   // record_stack_base_and_size called. Although, we would like to ensure
 335   // that all started threads do call record_stack_base_and_size(), there is
 336   // not proper way to enforce that.
 337 #if INCLUDE_NMT
 338   if (_stack_base != NULL) {
 339     address low_stack_addr = stack_base() - stack_size();
 340     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 341 #ifdef ASSERT
 342     set_stack_base(NULL);
 343 #endif
 344   }
 345 #endif // INCLUDE_NMT
 346 
 347   // deallocate data structures
 348   delete resource_area();
 349   // since the handle marks are using the handle area, we have to deallocated the root
 350   // handle mark before deallocating the thread's handle area,
 351   assert(last_handle_mark() != NULL, "check we have an element");
 352   delete last_handle_mark();
 353   assert(last_handle_mark() == NULL, "check we have reached the end");
 354 
 355   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 356   // We NULL out the fields for good hygiene.
 357   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 358   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 359   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 360   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 361 
 362   delete handle_area();
 363   delete metadata_handles();
 364 
 365   // osthread() can be NULL, if creation of thread failed.
 366   if (osthread() != NULL) os::free_thread(osthread());
 367 
 368   delete _SR_lock;
 369 
 370   // clear Thread::current if thread is deleting itself.
 371   // Needed to ensure JNI correctly detects non-attached threads.
 372   if (this == Thread::current()) {
 373     clear_thread_current();
 374   }
 375 
 376   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 377 }
 378 
 379 // NOTE: dummy function for assertion purpose.
 380 void Thread::run() {
 381   ShouldNotReachHere();
 382 }
 383 
 384 #ifdef ASSERT
 385 // Private method to check for dangling thread pointer
 386 void check_for_dangling_thread_pointer(Thread *thread) {
 387   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 388          "possibility of dangling Thread pointer");
 389 }
 390 #endif
 391 
 392 ThreadPriority Thread::get_priority(const Thread* const thread) {
 393   ThreadPriority priority;
 394   // Can return an error!
 395   (void)os::get_priority(thread, priority);
 396   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 397   return priority;
 398 }
 399 
 400 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 401   debug_only(check_for_dangling_thread_pointer(thread);)
 402   // Can return an error!
 403   (void)os::set_priority(thread, priority);
 404 }
 405 
 406 
 407 void Thread::start(Thread* thread) {
 408   // Start is different from resume in that its safety is guaranteed by context or
 409   // being called from a Java method synchronized on the Thread object.
 410   if (!DisableStartThread) {
 411     if (thread->is_Java_thread()) {
 412       // Initialize the thread state to RUNNABLE before starting this thread.
 413       // Can not set it after the thread started because we do not know the
 414       // exact thread state at that time. It could be in MONITOR_WAIT or
 415       // in SLEEPING or some other state.
 416       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 417                                           java_lang_Thread::RUNNABLE);
 418     }
 419     os::start_thread(thread);
 420   }
 421 }
 422 
 423 // Enqueue a VM_Operation to do the job for us - sometime later
 424 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 425   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 426   VMThread::execute(vm_stop);
 427 }
 428 
 429 
 430 // Check if an external suspend request has completed (or has been
 431 // cancelled). Returns true if the thread is externally suspended and
 432 // false otherwise.
 433 //
 434 // The bits parameter returns information about the code path through
 435 // the routine. Useful for debugging:
 436 //
 437 // set in is_ext_suspend_completed():
 438 // 0x00000001 - routine was entered
 439 // 0x00000010 - routine return false at end
 440 // 0x00000100 - thread exited (return false)
 441 // 0x00000200 - suspend request cancelled (return false)
 442 // 0x00000400 - thread suspended (return true)
 443 // 0x00001000 - thread is in a suspend equivalent state (return true)
 444 // 0x00002000 - thread is native and walkable (return true)
 445 // 0x00004000 - thread is native_trans and walkable (needed retry)
 446 //
 447 // set in wait_for_ext_suspend_completion():
 448 // 0x00010000 - routine was entered
 449 // 0x00020000 - suspend request cancelled before loop (return false)
 450 // 0x00040000 - thread suspended before loop (return true)
 451 // 0x00080000 - suspend request cancelled in loop (return false)
 452 // 0x00100000 - thread suspended in loop (return true)
 453 // 0x00200000 - suspend not completed during retry loop (return false)
 454 
 455 // Helper class for tracing suspend wait debug bits.
 456 //
 457 // 0x00000100 indicates that the target thread exited before it could
 458 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 459 // 0x00080000 each indicate a cancelled suspend request so they don't
 460 // count as wait failures either.
 461 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 462 
 463 class TraceSuspendDebugBits : public StackObj {
 464  private:
 465   JavaThread * jt;
 466   bool         is_wait;
 467   bool         called_by_wait;  // meaningful when !is_wait
 468   uint32_t *   bits;
 469 
 470  public:
 471   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 472                         uint32_t *_bits) {
 473     jt             = _jt;
 474     is_wait        = _is_wait;
 475     called_by_wait = _called_by_wait;
 476     bits           = _bits;
 477   }
 478 
 479   ~TraceSuspendDebugBits() {
 480     if (!is_wait) {
 481 #if 1
 482       // By default, don't trace bits for is_ext_suspend_completed() calls.
 483       // That trace is very chatty.
 484       return;
 485 #else
 486       if (!called_by_wait) {
 487         // If tracing for is_ext_suspend_completed() is enabled, then only
 488         // trace calls to it from wait_for_ext_suspend_completion()
 489         return;
 490       }
 491 #endif
 492     }
 493 
 494     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 495       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 496         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 497         ResourceMark rm;
 498 
 499         tty->print_cr(
 500                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 501                       jt->get_thread_name(), *bits);
 502 
 503         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 504       }
 505     }
 506   }
 507 };
 508 #undef DEBUG_FALSE_BITS
 509 
 510 
 511 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 512                                           uint32_t *bits) {
 513   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 514 
 515   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 516   bool do_trans_retry;           // flag to force the retry
 517 
 518   *bits |= 0x00000001;
 519 
 520   do {
 521     do_trans_retry = false;
 522 
 523     if (is_exiting()) {
 524       // Thread is in the process of exiting. This is always checked
 525       // first to reduce the risk of dereferencing a freed JavaThread.
 526       *bits |= 0x00000100;
 527       return false;
 528     }
 529 
 530     if (!is_external_suspend()) {
 531       // Suspend request is cancelled. This is always checked before
 532       // is_ext_suspended() to reduce the risk of a rogue resume
 533       // confusing the thread that made the suspend request.
 534       *bits |= 0x00000200;
 535       return false;
 536     }
 537 
 538     if (is_ext_suspended()) {
 539       // thread is suspended
 540       *bits |= 0x00000400;
 541       return true;
 542     }
 543 
 544     // Now that we no longer do hard suspends of threads running
 545     // native code, the target thread can be changing thread state
 546     // while we are in this routine:
 547     //
 548     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 549     //
 550     // We save a copy of the thread state as observed at this moment
 551     // and make our decision about suspend completeness based on the
 552     // copy. This closes the race where the thread state is seen as
 553     // _thread_in_native_trans in the if-thread_blocked check, but is
 554     // seen as _thread_blocked in if-thread_in_native_trans check.
 555     JavaThreadState save_state = thread_state();
 556 
 557     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 558       // If the thread's state is _thread_blocked and this blocking
 559       // condition is known to be equivalent to a suspend, then we can
 560       // consider the thread to be externally suspended. This means that
 561       // the code that sets _thread_blocked has been modified to do
 562       // self-suspension if the blocking condition releases. We also
 563       // used to check for CONDVAR_WAIT here, but that is now covered by
 564       // the _thread_blocked with self-suspension check.
 565       //
 566       // Return true since we wouldn't be here unless there was still an
 567       // external suspend request.
 568       *bits |= 0x00001000;
 569       return true;
 570     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 571       // Threads running native code will self-suspend on native==>VM/Java
 572       // transitions. If its stack is walkable (should always be the case
 573       // unless this function is called before the actual java_suspend()
 574       // call), then the wait is done.
 575       *bits |= 0x00002000;
 576       return true;
 577     } else if (!called_by_wait && !did_trans_retry &&
 578                save_state == _thread_in_native_trans &&
 579                frame_anchor()->walkable()) {
 580       // The thread is transitioning from thread_in_native to another
 581       // thread state. check_safepoint_and_suspend_for_native_trans()
 582       // will force the thread to self-suspend. If it hasn't gotten
 583       // there yet we may have caught the thread in-between the native
 584       // code check above and the self-suspend. Lucky us. If we were
 585       // called by wait_for_ext_suspend_completion(), then it
 586       // will be doing the retries so we don't have to.
 587       //
 588       // Since we use the saved thread state in the if-statement above,
 589       // there is a chance that the thread has already transitioned to
 590       // _thread_blocked by the time we get here. In that case, we will
 591       // make a single unnecessary pass through the logic below. This
 592       // doesn't hurt anything since we still do the trans retry.
 593 
 594       *bits |= 0x00004000;
 595 
 596       // Once the thread leaves thread_in_native_trans for another
 597       // thread state, we break out of this retry loop. We shouldn't
 598       // need this flag to prevent us from getting back here, but
 599       // sometimes paranoia is good.
 600       did_trans_retry = true;
 601 
 602       // We wait for the thread to transition to a more usable state.
 603       for (int i = 1; i <= SuspendRetryCount; i++) {
 604         // We used to do an "os::yield_all(i)" call here with the intention
 605         // that yielding would increase on each retry. However, the parameter
 606         // is ignored on Linux which means the yield didn't scale up. Waiting
 607         // on the SR_lock below provides a much more predictable scale up for
 608         // the delay. It also provides a simple/direct point to check for any
 609         // safepoint requests from the VMThread
 610 
 611         // temporarily drops SR_lock while doing wait with safepoint check
 612         // (if we're a JavaThread - the WatcherThread can also call this)
 613         // and increase delay with each retry
 614         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 615 
 616         // check the actual thread state instead of what we saved above
 617         if (thread_state() != _thread_in_native_trans) {
 618           // the thread has transitioned to another thread state so
 619           // try all the checks (except this one) one more time.
 620           do_trans_retry = true;
 621           break;
 622         }
 623       } // end retry loop
 624 
 625 
 626     }
 627   } while (do_trans_retry);
 628 
 629   *bits |= 0x00000010;
 630   return false;
 631 }
 632 
 633 // Wait for an external suspend request to complete (or be cancelled).
 634 // Returns true if the thread is externally suspended and false otherwise.
 635 //
 636 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 637                                                  uint32_t *bits) {
 638   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 639                              false /* !called_by_wait */, bits);
 640 
 641   // local flag copies to minimize SR_lock hold time
 642   bool is_suspended;
 643   bool pending;
 644   uint32_t reset_bits;
 645 
 646   // set a marker so is_ext_suspend_completed() knows we are the caller
 647   *bits |= 0x00010000;
 648 
 649   // We use reset_bits to reinitialize the bits value at the top of
 650   // each retry loop. This allows the caller to make use of any
 651   // unused bits for their own marking purposes.
 652   reset_bits = *bits;
 653 
 654   {
 655     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 656     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 657                                             delay, bits);
 658     pending = is_external_suspend();
 659   }
 660   // must release SR_lock to allow suspension to complete
 661 
 662   if (!pending) {
 663     // A cancelled suspend request is the only false return from
 664     // is_ext_suspend_completed() that keeps us from entering the
 665     // retry loop.
 666     *bits |= 0x00020000;
 667     return false;
 668   }
 669 
 670   if (is_suspended) {
 671     *bits |= 0x00040000;
 672     return true;
 673   }
 674 
 675   for (int i = 1; i <= retries; i++) {
 676     *bits = reset_bits;  // reinit to only track last retry
 677 
 678     // We used to do an "os::yield_all(i)" call here with the intention
 679     // that yielding would increase on each retry. However, the parameter
 680     // is ignored on Linux which means the yield didn't scale up. Waiting
 681     // on the SR_lock below provides a much more predictable scale up for
 682     // the delay. It also provides a simple/direct point to check for any
 683     // safepoint requests from the VMThread
 684 
 685     {
 686       MutexLocker ml(SR_lock());
 687       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 688       // can also call this)  and increase delay with each retry
 689       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 690 
 691       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                               delay, bits);
 693 
 694       // It is possible for the external suspend request to be cancelled
 695       // (by a resume) before the actual suspend operation is completed.
 696       // Refresh our local copy to see if we still need to wait.
 697       pending = is_external_suspend();
 698     }
 699 
 700     if (!pending) {
 701       // A cancelled suspend request is the only false return from
 702       // is_ext_suspend_completed() that keeps us from staying in the
 703       // retry loop.
 704       *bits |= 0x00080000;
 705       return false;
 706     }
 707 
 708     if (is_suspended) {
 709       *bits |= 0x00100000;
 710       return true;
 711     }
 712   } // end retry loop
 713 
 714   // thread did not suspend after all our retries
 715   *bits |= 0x00200000;
 716   return false;
 717 }
 718 
 719 #ifndef PRODUCT
 720 void JavaThread::record_jump(address target, address instr, const char* file,
 721                              int line) {
 722 
 723   // This should not need to be atomic as the only way for simultaneous
 724   // updates is via interrupts. Even then this should be rare or non-existent
 725   // and we don't care that much anyway.
 726 
 727   int index = _jmp_ring_index;
 728   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 729   _jmp_ring[index]._target = (intptr_t) target;
 730   _jmp_ring[index]._instruction = (intptr_t) instr;
 731   _jmp_ring[index]._file = file;
 732   _jmp_ring[index]._line = line;
 733 }
 734 #endif // PRODUCT
 735 
 736 // Called by flat profiler
 737 // Callers have already called wait_for_ext_suspend_completion
 738 // The assertion for that is currently too complex to put here:
 739 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 740   bool gotframe = false;
 741   // self suspension saves needed state.
 742   if (has_last_Java_frame() && _anchor.walkable()) {
 743     *_fr = pd_last_frame();
 744     gotframe = true;
 745   }
 746   return gotframe;
 747 }
 748 
 749 void Thread::interrupt(Thread* thread) {
 750   debug_only(check_for_dangling_thread_pointer(thread);)
 751   os::interrupt(thread);
 752 }
 753 
 754 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 755   debug_only(check_for_dangling_thread_pointer(thread);)
 756   // Note:  If clear_interrupted==false, this simply fetches and
 757   // returns the value of the field osthread()->interrupted().
 758   return os::is_interrupted(thread, clear_interrupted);
 759 }
 760 
 761 
 762 // GC Support
 763 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 764   jint thread_parity = _oops_do_parity;
 765   if (thread_parity != strong_roots_parity) {
 766     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 767     if (res == thread_parity) {
 768       return true;
 769     } else {
 770       guarantee(res == strong_roots_parity, "Or else what?");
 771       return false;
 772     }
 773   }
 774   return false;
 775 }
 776 
 777 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 778   active_handles()->oops_do(f);
 779   // Do oop for ThreadShadow
 780   f->do_oop((oop*)&_pending_exception);
 781   handle_area()->oops_do(f);
 782 }
 783 
 784 void Thread::nmethods_do(CodeBlobClosure* cf) {
 785   // no nmethods in a generic thread...
 786 }
 787 
 788 void Thread::metadata_handles_do(void f(Metadata*)) {
 789   // Only walk the Handles in Thread.
 790   if (metadata_handles() != NULL) {
 791     for (int i = 0; i< metadata_handles()->length(); i++) {
 792       f(metadata_handles()->at(i));
 793     }
 794   }
 795 }
 796 
 797 void Thread::print_on(outputStream* st) const {
 798   // get_priority assumes osthread initialized
 799   if (osthread() != NULL) {
 800     int os_prio;
 801     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 802       st->print("os_prio=%d ", os_prio);
 803     }
 804     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 805     ext().print_on(st);
 806     osthread()->print_on(st);
 807   }
 808   debug_only(if (WizardMode) print_owned_locks_on(st);)
 809 }
 810 
 811 // Thread::print_on_error() is called by fatal error handler. Don't use
 812 // any lock or allocate memory.
 813 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 814   if (is_VM_thread())                 st->print("VMThread");
 815   else if (is_Compiler_thread())      st->print("CompilerThread");
 816   else if (is_Java_thread())          st->print("JavaThread");
 817   else if (is_GC_task_thread())       st->print("GCTaskThread");
 818   else if (is_Watcher_thread())       st->print("WatcherThread");
 819   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 820   else                                st->print("Thread");
 821 
 822   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 823             p2i(_stack_base - _stack_size), p2i(_stack_base));
 824 
 825   if (osthread()) {
 826     st->print(" [id=%d]", osthread()->thread_id());
 827   }
 828 }
 829 
 830 #ifdef ASSERT
 831 void Thread::print_owned_locks_on(outputStream* st) const {
 832   Monitor *cur = _owned_locks;
 833   if (cur == NULL) {
 834     st->print(" (no locks) ");
 835   } else {
 836     st->print_cr(" Locks owned:");
 837     while (cur) {
 838       cur->print_on(st);
 839       cur = cur->next();
 840     }
 841   }
 842 }
 843 
 844 static int ref_use_count  = 0;
 845 
 846 bool Thread::owns_locks_but_compiled_lock() const {
 847   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 848     if (cur != Compile_lock) return true;
 849   }
 850   return false;
 851 }
 852 
 853 
 854 #endif
 855 
 856 #ifndef PRODUCT
 857 
 858 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 859 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 860 // no threads which allow_vm_block's are held
 861 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 862   // Check if current thread is allowed to block at a safepoint
 863   if (!(_allow_safepoint_count == 0)) {
 864     fatal("Possible safepoint reached by thread that does not allow it");
 865   }
 866   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 867     fatal("LEAF method calling lock?");
 868   }
 869 
 870 #ifdef ASSERT
 871   if (potential_vm_operation && is_Java_thread()
 872       && !Universe::is_bootstrapping()) {
 873     // Make sure we do not hold any locks that the VM thread also uses.
 874     // This could potentially lead to deadlocks
 875     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 876       // Threads_lock is special, since the safepoint synchronization will not start before this is
 877       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 878       // since it is used to transfer control between JavaThreads and the VMThread
 879       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 880       if ((cur->allow_vm_block() &&
 881            cur != Threads_lock &&
 882            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 883            cur != VMOperationRequest_lock &&
 884            cur != VMOperationQueue_lock) ||
 885            cur->rank() == Mutex::special) {
 886         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 887       }
 888     }
 889   }
 890 
 891   if (GCALotAtAllSafepoints) {
 892     // We could enter a safepoint here and thus have a gc
 893     InterfaceSupport::check_gc_alot();
 894   }
 895 #endif
 896 }
 897 #endif
 898 
 899 bool Thread::is_in_stack(address adr) const {
 900   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 901   address end = os::current_stack_pointer();
 902   // Allow non Java threads to call this without stack_base
 903   if (_stack_base == NULL) return true;
 904   if (stack_base() >= adr && adr >= end) return true;
 905 
 906   return false;
 907 }
 908 
 909 
 910 bool Thread::is_in_usable_stack(address adr) const {
 911   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 912   size_t usable_stack_size = _stack_size - stack_guard_size;
 913 
 914   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 915 }
 916 
 917 
 918 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 919 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 920 // used for compilation in the future. If that change is made, the need for these methods
 921 // should be revisited, and they should be removed if possible.
 922 
 923 bool Thread::is_lock_owned(address adr) const {
 924   return on_local_stack(adr);
 925 }
 926 
 927 bool Thread::set_as_starting_thread() {
 928   // NOTE: this must be called inside the main thread.
 929   return os::create_main_thread((JavaThread*)this);
 930 }
 931 
 932 static void initialize_class(Symbol* class_name, TRAPS) {
 933   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 934   InstanceKlass::cast(klass)->initialize(CHECK);
 935 }
 936 
 937 
 938 // Creates the initial ThreadGroup
 939 static Handle create_initial_thread_group(TRAPS) {
 940   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 941   instanceKlassHandle klass (THREAD, k);
 942 
 943   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 944   {
 945     JavaValue result(T_VOID);
 946     JavaCalls::call_special(&result,
 947                             system_instance,
 948                             klass,
 949                             vmSymbols::object_initializer_name(),
 950                             vmSymbols::void_method_signature(),
 951                             CHECK_NH);
 952   }
 953   Universe::set_system_thread_group(system_instance());
 954 
 955   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 959     JavaCalls::call_special(&result,
 960                             main_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::threadgroup_string_void_signature(),
 964                             system_instance,
 965                             string,
 966                             CHECK_NH);
 967   }
 968   return main_instance;
 969 }
 970 
 971 // Creates the initial Thread
 972 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 973                                  TRAPS) {
 974   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 975   instanceKlassHandle klass (THREAD, k);
 976   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 977 
 978   java_lang_Thread::set_thread(thread_oop(), thread);
 979   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 980   thread->set_threadObj(thread_oop());
 981 
 982   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 983 
 984   JavaValue result(T_VOID);
 985   JavaCalls::call_special(&result, thread_oop,
 986                           klass,
 987                           vmSymbols::object_initializer_name(),
 988                           vmSymbols::threadgroup_string_void_signature(),
 989                           thread_group,
 990                           string,
 991                           CHECK_NULL);
 992   return thread_oop();
 993 }
 994 
 995 static void call_initializeSystemClass(TRAPS) {
 996   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 997   instanceKlassHandle klass (THREAD, k);
 998 
 999   JavaValue result(T_VOID);
1000   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                          vmSymbols::void_method_signature(), CHECK);
1002 }
1003 
1004 char java_runtime_name[128] = "";
1005 char java_runtime_version[128] = "";
1006 
1007 // extract the JRE name from sun.misc.Version.java_runtime_name
1008 static const char* get_java_runtime_name(TRAPS) {
1009   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011   fieldDescriptor fd;
1012   bool found = k != NULL &&
1013                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                         vmSymbols::string_signature(), &fd);
1015   if (found) {
1016     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017     if (name_oop == NULL) {
1018       return NULL;
1019     }
1020     const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                         java_runtime_name,
1022                                                         sizeof(java_runtime_name));
1023     return name;
1024   } else {
1025     return NULL;
1026   }
1027 }
1028 
1029 // extract the JRE version from sun.misc.Version.java_runtime_version
1030 static const char* get_java_runtime_version(TRAPS) {
1031   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033   fieldDescriptor fd;
1034   bool found = k != NULL &&
1035                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                         vmSymbols::string_signature(), &fd);
1037   if (found) {
1038     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039     if (name_oop == NULL) {
1040       return NULL;
1041     }
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_version,
1044                                                         sizeof(java_runtime_version));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                            vmSymbols::void_method_signature(),
1060                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                     bool daemon, TRAPS) {
1093   assert(thread_group.not_null(), "thread group should be specified");
1094   assert(threadObj() == NULL, "should only create Java thread object once");
1095 
1096   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097   instanceKlassHandle klass (THREAD, k);
1098   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099 
1100   java_lang_Thread::set_thread(thread_oop(), this);
1101   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102   set_threadObj(thread_oop());
1103 
1104   JavaValue result(T_VOID);
1105   if (thread_name != NULL) {
1106     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107     // Thread gets assigned specified name and null target
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_string_void_signature(),
1113                             thread_group, // Argument 1
1114                             name,         // Argument 2
1115                             THREAD);
1116   } else {
1117     // Thread gets assigned name "Thread-nnn" and null target
1118     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_runnable_void_signature(),
1124                             thread_group, // Argument 1
1125                             Handle(),     // Argument 2
1126                             THREAD);
1127   }
1128 
1129 
1130   if (daemon) {
1131     java_lang_Thread::set_daemon(thread_oop());
1132   }
1133 
1134   if (HAS_PENDING_EXCEPTION) {
1135     return;
1136   }
1137 
1138   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139   Handle threadObj(THREAD, this->threadObj());
1140 
1141   JavaCalls::call_special(&result,
1142                           thread_group,
1143                           group,
1144                           vmSymbols::add_method_name(),
1145                           vmSymbols::thread_void_signature(),
1146                           threadObj,          // Arg 1
1147                           THREAD);
1148 }
1149 
1150 // NamedThread --  non-JavaThread subclasses with multiple
1151 // uniquely named instances should derive from this.
1152 NamedThread::NamedThread() : Thread() {
1153   _name = NULL;
1154   _processed_thread = NULL;
1155   _gc_id = GCId::undefined();
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 void NamedThread::initialize_named_thread() {
1176   set_native_thread_name(name());
1177 }
1178 
1179 void NamedThread::print_on(outputStream* st) const {
1180   st->print("\"%s\" ", name());
1181   Thread::print_on(st);
1182   st->cr();
1183 }
1184 
1185 
1186 // ======= WatcherThread ========
1187 
1188 // The watcher thread exists to simulate timer interrupts.  It should
1189 // be replaced by an abstraction over whatever native support for
1190 // timer interrupts exists on the platform.
1191 
1192 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193 bool WatcherThread::_startable = false;
1194 volatile bool  WatcherThread::_should_terminate = false;
1195 
1196 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198   if (os::create_thread(this, os::watcher_thread)) {
1199     _watcher_thread = this;
1200 
1201     // Set the watcher thread to the highest OS priority which should not be
1202     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203     // is created. The only normal thread using this priority is the reference
1204     // handler thread, which runs for very short intervals only.
1205     // If the VMThread's priority is not lower than the WatcherThread profiling
1206     // will be inaccurate.
1207     os::set_priority(this, MaxPriority);
1208     if (!DisableStartThread) {
1209       os::start_thread(this);
1210     }
1211   }
1212 }
1213 
1214 int WatcherThread::sleep() const {
1215   // The WatcherThread does not participate in the safepoint protocol
1216   // for the PeriodicTask_lock because it is not a JavaThread.
1217   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218 
1219   if (_should_terminate) {
1220     // check for termination before we do any housekeeping or wait
1221     return 0;  // we did not sleep.
1222   }
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   while (true) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                             remaining);
1239     jlong now = os::javaTimeNanos();
1240 
1241     if (remaining == 0) {
1242       // if we didn't have any tasks we could have waited for a long time
1243       // consider the time_slept zero and reset time_before_loop
1244       time_slept = 0;
1245       time_before_loop = now;
1246     } else {
1247       // need to recalculate since we might have new tasks in _tasks
1248       time_slept = (int) ((now - time_before_loop) / 1000000);
1249     }
1250 
1251     // Change to task list or spurious wakeup of some kind
1252     if (timedout || _should_terminate) {
1253       break;
1254     }
1255 
1256     remaining = PeriodicTask::time_to_wait();
1257     if (remaining == 0) {
1258       // Last task was just disenrolled so loop around and wait until
1259       // another task gets enrolled
1260       continue;
1261     }
1262 
1263     remaining -= time_slept;
1264     if (remaining <= 0) {
1265       break;
1266     }
1267   }
1268 
1269   return time_slept;
1270 }
1271 
1272 void WatcherThread::run() {
1273   assert(this == watcher_thread(), "just checking");
1274 
1275   this->record_stack_base_and_size();
1276   this->set_native_thread_name(this->name());
1277   this->set_active_handles(JNIHandleBlock::allocate_block());
1278   while (true) {
1279     assert(watcher_thread() == Thread::current(), "thread consistency check");
1280     assert(watcher_thread() == this, "thread consistency check");
1281 
1282     // Calculate how long it'll be until the next PeriodicTask work
1283     // should be done, and sleep that amount of time.
1284     int time_waited = sleep();
1285 
1286     if (is_error_reported()) {
1287       // A fatal error has happened, the error handler(VMError::report_and_die)
1288       // should abort JVM after creating an error log file. However in some
1289       // rare cases, the error handler itself might deadlock. Here we try to
1290       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291       //
1292       // This code is in WatcherThread because WatcherThread wakes up
1293       // periodically so the fatal error handler doesn't need to do anything;
1294       // also because the WatcherThread is less likely to crash than other
1295       // threads.
1296 
1297       for (;;) {
1298         if (!ShowMessageBoxOnError
1299             && (OnError == NULL || OnError[0] == '\0')
1300             && Arguments::abort_hook() == NULL) {
1301           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1302           fdStream err(defaultStream::output_fd());
1303           err.print_raw_cr("# [ timer expired, abort... ]");
1304           // skip atexit/vm_exit/vm_abort hooks
1305           os::die();
1306         }
1307 
1308         // Wake up 5 seconds later, the fatal handler may reset OnError or
1309         // ShowMessageBoxOnError when it is ready to abort.
1310         os::sleep(this, 5 * 1000, false);
1311       }
1312     }
1313 
1314     if (_should_terminate) {
1315       // check for termination before posting the next tick
1316       break;
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 }
1329 
1330 void WatcherThread::start() {
1331   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332 
1333   if (watcher_thread() == NULL && _startable) {
1334     _should_terminate = false;
1335     // Create the single instance of WatcherThread
1336     new WatcherThread();
1337   }
1338 }
1339 
1340 void WatcherThread::make_startable() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342   _startable = true;
1343 }
1344 
1345 void WatcherThread::stop() {
1346   {
1347     // Follow normal safepoint aware lock enter protocol since the
1348     // WatcherThread is stopped by another JavaThread.
1349     MutexLocker ml(PeriodicTask_lock);
1350     _should_terminate = true;
1351 
1352     WatcherThread* watcher = watcher_thread();
1353     if (watcher != NULL) {
1354       // unpark the WatcherThread so it can see that it should terminate
1355       watcher->unpark();
1356     }
1357   }
1358 
1359   MutexLocker mu(Terminator_lock);
1360 
1361   while (watcher_thread() != NULL) {
1362     // This wait should make safepoint checks, wait without a timeout,
1363     // and wait as a suspend-equivalent condition.
1364     //
1365     // Note: If the FlatProfiler is running, then this thread is waiting
1366     // for the WatcherThread to terminate and the WatcherThread, via the
1367     // FlatProfiler task, is waiting for the external suspend request on
1368     // this thread to complete. wait_for_ext_suspend_completion() will
1369     // eventually timeout, but that takes time. Making this wait a
1370     // suspend-equivalent condition solves that timeout problem.
1371     //
1372     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                           Mutex::_as_suspend_equivalent_flag);
1374   }
1375 }
1376 
1377 void WatcherThread::unpark() {
1378   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379   PeriodicTask_lock->notify();
1380 }
1381 
1382 void WatcherThread::print_on(outputStream* st) const {
1383   st->print("\"%s\" ", name());
1384   Thread::print_on(st);
1385   st->cr();
1386 }
1387 
1388 // ======= JavaThread ========
1389 
1390 #if INCLUDE_JVMCI
1391 
1392 jlong* JavaThread::_jvmci_old_thread_counters;
1393 
1394 bool jvmci_counters_include(JavaThread* thread) {
1395   oop threadObj = thread->threadObj();
1396   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1397 }
1398 
1399 void JavaThread::collect_counters(typeArrayOop array) {
1400   if (JVMCICounterSize > 0) {
1401     MutexLocker tl(Threads_lock);
1402     for (int i = 0; i < array->length(); i++) {
1403       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1404     }
1405     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1406       if (jvmci_counters_include(tp)) {
1407         for (int i = 0; i < array->length(); i++) {
1408           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1409         }
1410       }
1411     }
1412   }
1413 }
1414 
1415 #endif // INCLUDE_JVMCI
1416 
1417 // A JavaThread is a normal Java thread
1418 
1419 void JavaThread::initialize() {
1420   // Initialize fields
1421 
1422   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1423   set_claimed_par_id(UINT_MAX);
1424 
1425   set_saved_exception_pc(NULL);
1426   set_threadObj(NULL);
1427   _anchor.clear();
1428   set_entry_point(NULL);
1429   set_jni_functions(jni_functions());
1430   set_callee_target(NULL);
1431   set_vm_result(NULL);
1432   set_vm_result_2(NULL);
1433   set_vframe_array_head(NULL);
1434   set_vframe_array_last(NULL);
1435   set_deferred_locals(NULL);
1436   set_deopt_mark(NULL);
1437   set_deopt_nmethod(NULL);
1438   clear_must_deopt_id();
1439   set_monitor_chunks(NULL);
1440   set_next(NULL);
1441   set_thread_state(_thread_new);
1442   _terminated = _not_terminated;
1443   _privileged_stack_top = NULL;
1444   _array_for_gc = NULL;
1445   _suspend_equivalent = false;
1446   _in_deopt_handler = 0;
1447   _doing_unsafe_access = false;
1448   _stack_guard_state = stack_guard_unused;
1449 #if INCLUDE_JVMCI
1450   _pending_monitorenter = false;
1451   _pending_deoptimization = -1;
1452   _pending_failed_speculation = NULL;
1453   _pending_transfer_to_interpreter = false;
1454   _jvmci._alternate_call_target = NULL;
1455   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1456   if (JVMCICounterSize > 0) {
1457     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1458     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1459   } else {
1460     _jvmci_counters = NULL;
1461   }
1462 #endif // INCLUDE_JVMCI
1463   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1464   _exception_pc  = 0;
1465   _exception_handler_pc = 0;
1466   _is_method_handle_return = 0;
1467   _jvmti_thread_state= NULL;
1468   _should_post_on_exceptions_flag = JNI_FALSE;
1469   _jvmti_get_loaded_classes_closure = NULL;
1470   _interp_only_mode    = 0;
1471   _special_runtime_exit_condition = _no_async_condition;
1472   _pending_async_exception = NULL;
1473   _thread_stat = NULL;
1474   _thread_stat = new ThreadStatistics();
1475   _blocked_on_compilation = false;
1476   _jni_active_critical = 0;
1477   _pending_jni_exception_check_fn = NULL;
1478   _do_not_unlock_if_synchronized = false;
1479   _cached_monitor_info = NULL;
1480   _parker = Parker::Allocate(this);
1481 
1482 #ifndef PRODUCT
1483   _jmp_ring_index = 0;
1484   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1485     record_jump(NULL, NULL, NULL, 0);
1486   }
1487 #endif // PRODUCT
1488 
1489   set_thread_profiler(NULL);
1490   if (FlatProfiler::is_active()) {
1491     // This is where we would decide to either give each thread it's own profiler
1492     // or use one global one from FlatProfiler,
1493     // or up to some count of the number of profiled threads, etc.
1494     ThreadProfiler* pp = new ThreadProfiler();
1495     pp->engage();
1496     set_thread_profiler(pp);
1497   }
1498 
1499   // Setup safepoint state info for this thread
1500   ThreadSafepointState::create(this);
1501 
1502   debug_only(_java_call_counter = 0);
1503 
1504   // JVMTI PopFrame support
1505   _popframe_condition = popframe_inactive;
1506   _popframe_preserved_args = NULL;
1507   _popframe_preserved_args_size = 0;
1508   _frames_to_pop_failed_realloc = 0;
1509 
1510   pd_initialize();
1511 }
1512 
1513 #if INCLUDE_ALL_GCS
1514 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1515 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1516 #endif // INCLUDE_ALL_GCS
1517 
1518 JavaThread::JavaThread(bool is_attaching_via_jni) :
1519                        Thread()
1520 #if INCLUDE_ALL_GCS
1521                        , _satb_mark_queue(&_satb_mark_queue_set),
1522                        _dirty_card_queue(&_dirty_card_queue_set)
1523 #endif // INCLUDE_ALL_GCS
1524 {
1525   initialize();
1526   if (is_attaching_via_jni) {
1527     _jni_attach_state = _attaching_via_jni;
1528   } else {
1529     _jni_attach_state = _not_attaching_via_jni;
1530   }
1531   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1532 }
1533 
1534 bool JavaThread::reguard_stack(address cur_sp) {
1535   if (_stack_guard_state != stack_guard_yellow_disabled) {
1536     return true; // Stack already guarded or guard pages not needed.
1537   }
1538 
1539   if (register_stack_overflow()) {
1540     // For those architectures which have separate register and
1541     // memory stacks, we must check the register stack to see if
1542     // it has overflowed.
1543     return false;
1544   }
1545 
1546   // Java code never executes within the yellow zone: the latter is only
1547   // there to provoke an exception during stack banging.  If java code
1548   // is executing there, either StackShadowPages should be larger, or
1549   // some exception code in c1, c2 or the interpreter isn't unwinding
1550   // when it should.
1551   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1552 
1553   enable_stack_yellow_zone();
1554   return true;
1555 }
1556 
1557 bool JavaThread::reguard_stack(void) {
1558   return reguard_stack(os::current_stack_pointer());
1559 }
1560 
1561 
1562 void JavaThread::block_if_vm_exited() {
1563   if (_terminated == _vm_exited) {
1564     // _vm_exited is set at safepoint, and Threads_lock is never released
1565     // we will block here forever
1566     Threads_lock->lock_without_safepoint_check();
1567     ShouldNotReachHere();
1568   }
1569 }
1570 
1571 
1572 // Remove this ifdef when C1 is ported to the compiler interface.
1573 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1574 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1575 
1576 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1577                        Thread()
1578 #if INCLUDE_ALL_GCS
1579                        , _satb_mark_queue(&_satb_mark_queue_set),
1580                        _dirty_card_queue(&_dirty_card_queue_set)
1581 #endif // INCLUDE_ALL_GCS
1582 {
1583   initialize();
1584   _jni_attach_state = _not_attaching_via_jni;
1585   set_entry_point(entry_point);
1586   // Create the native thread itself.
1587   // %note runtime_23
1588   os::ThreadType thr_type = os::java_thread;
1589   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1590                                                      os::java_thread;
1591   os::create_thread(this, thr_type, stack_sz);
1592   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1593   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1594   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1595   // the exception consists of creating the exception object & initializing it, initialization
1596   // will leave the VM via a JavaCall and then all locks must be unlocked).
1597   //
1598   // The thread is still suspended when we reach here. Thread must be explicit started
1599   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1600   // by calling Threads:add. The reason why this is not done here, is because the thread
1601   // object must be fully initialized (take a look at JVM_Start)
1602 }
1603 
1604 JavaThread::~JavaThread() {
1605 
1606   // JSR166 -- return the parker to the free list
1607   Parker::Release(_parker);
1608   _parker = NULL;
1609 
1610   // Free any remaining  previous UnrollBlock
1611   vframeArray* old_array = vframe_array_last();
1612 
1613   if (old_array != NULL) {
1614     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1615     old_array->set_unroll_block(NULL);
1616     delete old_info;
1617     delete old_array;
1618   }
1619 
1620   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1621   if (deferred != NULL) {
1622     // This can only happen if thread is destroyed before deoptimization occurs.
1623     assert(deferred->length() != 0, "empty array!");
1624     do {
1625       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1626       deferred->remove_at(0);
1627       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1628       delete dlv;
1629     } while (deferred->length() != 0);
1630     delete deferred;
1631   }
1632 
1633   // All Java related clean up happens in exit
1634   ThreadSafepointState::destroy(this);
1635   if (_thread_profiler != NULL) delete _thread_profiler;
1636   if (_thread_stat != NULL) delete _thread_stat;
1637 
1638 #if INCLUDE_JVMCI
1639   if (JVMCICounterSize > 0) {
1640     if (jvmci_counters_include(this)) {
1641       for (int i = 0; i < JVMCICounterSize; i++) {
1642         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1643       }
1644     }
1645     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1646   }
1647 #endif // INCLUDE_JVMCI
1648 }
1649 
1650 
1651 // The first routine called by a new Java thread
1652 void JavaThread::run() {
1653   // initialize thread-local alloc buffer related fields
1654   this->initialize_tlab();
1655 
1656   // used to test validity of stack trace backs
1657   this->record_base_of_stack_pointer();
1658 
1659   // Record real stack base and size.
1660   this->record_stack_base_and_size();
1661 
1662   this->create_stack_guard_pages();
1663 
1664   this->cache_global_variables();
1665 
1666   // Thread is now sufficient initialized to be handled by the safepoint code as being
1667   // in the VM. Change thread state from _thread_new to _thread_in_vm
1668   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1669 
1670   assert(JavaThread::current() == this, "sanity check");
1671   assert(!Thread::current()->owns_locks(), "sanity check");
1672 
1673   DTRACE_THREAD_PROBE(start, this);
1674 
1675   // This operation might block. We call that after all safepoint checks for a new thread has
1676   // been completed.
1677   this->set_active_handles(JNIHandleBlock::allocate_block());
1678 
1679   if (JvmtiExport::should_post_thread_life()) {
1680     JvmtiExport::post_thread_start(this);
1681   }
1682 
1683   EventThreadStart event;
1684   if (event.should_commit()) {
1685     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1686     event.commit();
1687   }
1688 
1689   // We call another function to do the rest so we are sure that the stack addresses used
1690   // from there will be lower than the stack base just computed
1691   thread_main_inner();
1692 
1693   // Note, thread is no longer valid at this point!
1694 }
1695 
1696 
1697 void JavaThread::thread_main_inner() {
1698   assert(JavaThread::current() == this, "sanity check");
1699   assert(this->threadObj() != NULL, "just checking");
1700 
1701   // Execute thread entry point unless this thread has a pending exception
1702   // or has been stopped before starting.
1703   // Note: Due to JVM_StopThread we can have pending exceptions already!
1704   if (!this->has_pending_exception() &&
1705       !java_lang_Thread::is_stillborn(this->threadObj())) {
1706     {
1707       ResourceMark rm(this);
1708       this->set_native_thread_name(this->get_thread_name());
1709     }
1710     HandleMark hm(this);
1711     this->entry_point()(this, this);
1712   }
1713 
1714   DTRACE_THREAD_PROBE(stop, this);
1715 
1716   this->exit(false);
1717   delete this;
1718 }
1719 
1720 
1721 static void ensure_join(JavaThread* thread) {
1722   // We do not need to grap the Threads_lock, since we are operating on ourself.
1723   Handle threadObj(thread, thread->threadObj());
1724   assert(threadObj.not_null(), "java thread object must exist");
1725   ObjectLocker lock(threadObj, thread);
1726   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1727   thread->clear_pending_exception();
1728   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1729   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1730   // Clear the native thread instance - this makes isAlive return false and allows the join()
1731   // to complete once we've done the notify_all below
1732   java_lang_Thread::set_thread(threadObj(), NULL);
1733   lock.notify_all(thread);
1734   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1735   thread->clear_pending_exception();
1736 }
1737 
1738 
1739 // For any new cleanup additions, please check to see if they need to be applied to
1740 // cleanup_failed_attach_current_thread as well.
1741 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1742   assert(this == JavaThread::current(), "thread consistency check");
1743 
1744   HandleMark hm(this);
1745   Handle uncaught_exception(this, this->pending_exception());
1746   this->clear_pending_exception();
1747   Handle threadObj(this, this->threadObj());
1748   assert(threadObj.not_null(), "Java thread object should be created");
1749 
1750   if (get_thread_profiler() != NULL) {
1751     get_thread_profiler()->disengage();
1752     ResourceMark rm;
1753     get_thread_profiler()->print(get_thread_name());
1754   }
1755 
1756 
1757   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1758   {
1759     EXCEPTION_MARK;
1760 
1761     CLEAR_PENDING_EXCEPTION;
1762   }
1763   if (!destroy_vm) {
1764     if (uncaught_exception.not_null()) {
1765       EXCEPTION_MARK;
1766       // Call method Thread.dispatchUncaughtException().
1767       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1768       JavaValue result(T_VOID);
1769       JavaCalls::call_virtual(&result,
1770                               threadObj, thread_klass,
1771                               vmSymbols::dispatchUncaughtException_name(),
1772                               vmSymbols::throwable_void_signature(),
1773                               uncaught_exception,
1774                               THREAD);
1775       if (HAS_PENDING_EXCEPTION) {
1776         ResourceMark rm(this);
1777         jio_fprintf(defaultStream::error_stream(),
1778                     "\nException: %s thrown from the UncaughtExceptionHandler"
1779                     " in thread \"%s\"\n",
1780                     pending_exception()->klass()->external_name(),
1781                     get_thread_name());
1782         CLEAR_PENDING_EXCEPTION;
1783       }
1784     }
1785 
1786     // Called before the java thread exit since we want to read info
1787     // from java_lang_Thread object
1788     EventThreadEnd event;
1789     if (event.should_commit()) {
1790       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1791       event.commit();
1792     }
1793 
1794     // Call after last event on thread
1795     EVENT_THREAD_EXIT(this);
1796 
1797     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1798     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1799     // is deprecated anyhow.
1800     if (!is_Compiler_thread()) {
1801       int count = 3;
1802       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1803         EXCEPTION_MARK;
1804         JavaValue result(T_VOID);
1805         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1806         JavaCalls::call_virtual(&result,
1807                                 threadObj, thread_klass,
1808                                 vmSymbols::exit_method_name(),
1809                                 vmSymbols::void_method_signature(),
1810                                 THREAD);
1811         CLEAR_PENDING_EXCEPTION;
1812       }
1813     }
1814     // notify JVMTI
1815     if (JvmtiExport::should_post_thread_life()) {
1816       JvmtiExport::post_thread_end(this);
1817     }
1818 
1819     // We have notified the agents that we are exiting, before we go on,
1820     // we must check for a pending external suspend request and honor it
1821     // in order to not surprise the thread that made the suspend request.
1822     while (true) {
1823       {
1824         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1825         if (!is_external_suspend()) {
1826           set_terminated(_thread_exiting);
1827           ThreadService::current_thread_exiting(this);
1828           break;
1829         }
1830         // Implied else:
1831         // Things get a little tricky here. We have a pending external
1832         // suspend request, but we are holding the SR_lock so we
1833         // can't just self-suspend. So we temporarily drop the lock
1834         // and then self-suspend.
1835       }
1836 
1837       ThreadBlockInVM tbivm(this);
1838       java_suspend_self();
1839 
1840       // We're done with this suspend request, but we have to loop around
1841       // and check again. Eventually we will get SR_lock without a pending
1842       // external suspend request and will be able to mark ourselves as
1843       // exiting.
1844     }
1845     // no more external suspends are allowed at this point
1846   } else {
1847     // before_exit() has already posted JVMTI THREAD_END events
1848   }
1849 
1850   // Notify waiters on thread object. This has to be done after exit() is called
1851   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1852   // group should have the destroyed bit set before waiters are notified).
1853   ensure_join(this);
1854   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1855 
1856   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1857   // held by this thread must be released. The spec does not distinguish
1858   // between JNI-acquired and regular Java monitors. We can only see
1859   // regular Java monitors here if monitor enter-exit matching is broken.
1860   //
1861   // Optionally release any monitors for regular JavaThread exits. This
1862   // is provided as a work around for any bugs in monitor enter-exit
1863   // matching. This can be expensive so it is not enabled by default.
1864   //
1865   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1866   // ObjectSynchronizer::release_monitors_owned_by_thread().
1867   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1868     // Sanity check even though JNI DetachCurrentThread() would have
1869     // returned JNI_ERR if there was a Java frame. JavaThread exit
1870     // should be done executing Java code by the time we get here.
1871     assert(!this->has_last_Java_frame(),
1872            "should not have a Java frame when detaching or exiting");
1873     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1874     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1875   }
1876 
1877   // These things needs to be done while we are still a Java Thread. Make sure that thread
1878   // is in a consistent state, in case GC happens
1879   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1880 
1881   if (active_handles() != NULL) {
1882     JNIHandleBlock* block = active_handles();
1883     set_active_handles(NULL);
1884     JNIHandleBlock::release_block(block);
1885   }
1886 
1887   if (free_handle_block() != NULL) {
1888     JNIHandleBlock* block = free_handle_block();
1889     set_free_handle_block(NULL);
1890     JNIHandleBlock::release_block(block);
1891   }
1892 
1893   // These have to be removed while this is still a valid thread.
1894   remove_stack_guard_pages();
1895 
1896   if (UseTLAB) {
1897     tlab().make_parsable(true);  // retire TLAB
1898   }
1899 
1900   if (JvmtiEnv::environments_might_exist()) {
1901     JvmtiExport::cleanup_thread(this);
1902   }
1903 
1904   // We must flush any deferred card marks before removing a thread from
1905   // the list of active threads.
1906   Universe::heap()->flush_deferred_store_barrier(this);
1907   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1908 
1909 #if INCLUDE_ALL_GCS
1910   // We must flush the G1-related buffers before removing a thread
1911   // from the list of active threads. We must do this after any deferred
1912   // card marks have been flushed (above) so that any entries that are
1913   // added to the thread's dirty card queue as a result are not lost.
1914   if (UseG1GC) {
1915     flush_barrier_queues();
1916   }
1917 #endif // INCLUDE_ALL_GCS
1918 
1919   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1920   Threads::remove(this);
1921 }
1922 
1923 #if INCLUDE_ALL_GCS
1924 // Flush G1-related queues.
1925 void JavaThread::flush_barrier_queues() {
1926   satb_mark_queue().flush();
1927   dirty_card_queue().flush();
1928 }
1929 
1930 void JavaThread::initialize_queues() {
1931   assert(!SafepointSynchronize::is_at_safepoint(),
1932          "we should not be at a safepoint");
1933 
1934   SATBMarkQueue& satb_queue = satb_mark_queue();
1935   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1936   // The SATB queue should have been constructed with its active
1937   // field set to false.
1938   assert(!satb_queue.is_active(), "SATB queue should not be active");
1939   assert(satb_queue.is_empty(), "SATB queue should be empty");
1940   // If we are creating the thread during a marking cycle, we should
1941   // set the active field of the SATB queue to true.
1942   if (satb_queue_set.is_active()) {
1943     satb_queue.set_active(true);
1944   }
1945 
1946   DirtyCardQueue& dirty_queue = dirty_card_queue();
1947   // The dirty card queue should have been constructed with its
1948   // active field set to true.
1949   assert(dirty_queue.is_active(), "dirty card queue should be active");
1950 }
1951 #endif // INCLUDE_ALL_GCS
1952 
1953 void JavaThread::cleanup_failed_attach_current_thread() {
1954   if (get_thread_profiler() != NULL) {
1955     get_thread_profiler()->disengage();
1956     ResourceMark rm;
1957     get_thread_profiler()->print(get_thread_name());
1958   }
1959 
1960   if (active_handles() != NULL) {
1961     JNIHandleBlock* block = active_handles();
1962     set_active_handles(NULL);
1963     JNIHandleBlock::release_block(block);
1964   }
1965 
1966   if (free_handle_block() != NULL) {
1967     JNIHandleBlock* block = free_handle_block();
1968     set_free_handle_block(NULL);
1969     JNIHandleBlock::release_block(block);
1970   }
1971 
1972   // These have to be removed while this is still a valid thread.
1973   remove_stack_guard_pages();
1974 
1975   if (UseTLAB) {
1976     tlab().make_parsable(true);  // retire TLAB, if any
1977   }
1978 
1979 #if INCLUDE_ALL_GCS
1980   if (UseG1GC) {
1981     flush_barrier_queues();
1982   }
1983 #endif // INCLUDE_ALL_GCS
1984 
1985   Threads::remove(this);
1986   delete this;
1987 }
1988 
1989 
1990 
1991 
1992 JavaThread* JavaThread::active() {
1993   Thread* thread = Thread::current();
1994   if (thread->is_Java_thread()) {
1995     return (JavaThread*) thread;
1996   } else {
1997     assert(thread->is_VM_thread(), "this must be a vm thread");
1998     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1999     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2000     assert(ret->is_Java_thread(), "must be a Java thread");
2001     return ret;
2002   }
2003 }
2004 
2005 bool JavaThread::is_lock_owned(address adr) const {
2006   if (Thread::is_lock_owned(adr)) return true;
2007 
2008   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2009     if (chunk->contains(adr)) return true;
2010   }
2011 
2012   return false;
2013 }
2014 
2015 
2016 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2017   chunk->set_next(monitor_chunks());
2018   set_monitor_chunks(chunk);
2019 }
2020 
2021 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2022   guarantee(monitor_chunks() != NULL, "must be non empty");
2023   if (monitor_chunks() == chunk) {
2024     set_monitor_chunks(chunk->next());
2025   } else {
2026     MonitorChunk* prev = monitor_chunks();
2027     while (prev->next() != chunk) prev = prev->next();
2028     prev->set_next(chunk->next());
2029   }
2030 }
2031 
2032 // JVM support.
2033 
2034 // Note: this function shouldn't block if it's called in
2035 // _thread_in_native_trans state (such as from
2036 // check_special_condition_for_native_trans()).
2037 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2038 
2039   if (has_last_Java_frame() && has_async_condition()) {
2040     // If we are at a polling page safepoint (not a poll return)
2041     // then we must defer async exception because live registers
2042     // will be clobbered by the exception path. Poll return is
2043     // ok because the call we a returning from already collides
2044     // with exception handling registers and so there is no issue.
2045     // (The exception handling path kills call result registers but
2046     //  this is ok since the exception kills the result anyway).
2047 
2048     if (is_at_poll_safepoint()) {
2049       // if the code we are returning to has deoptimized we must defer
2050       // the exception otherwise live registers get clobbered on the
2051       // exception path before deoptimization is able to retrieve them.
2052       //
2053       RegisterMap map(this, false);
2054       frame caller_fr = last_frame().sender(&map);
2055       assert(caller_fr.is_compiled_frame(), "what?");
2056       if (caller_fr.is_deoptimized_frame()) {
2057         if (TraceExceptions) {
2058           ResourceMark rm;
2059           tty->print_cr("deferred async exception at compiled safepoint");
2060         }
2061         return;
2062       }
2063     }
2064   }
2065 
2066   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2067   if (condition == _no_async_condition) {
2068     // Conditions have changed since has_special_runtime_exit_condition()
2069     // was called:
2070     // - if we were here only because of an external suspend request,
2071     //   then that was taken care of above (or cancelled) so we are done
2072     // - if we were here because of another async request, then it has
2073     //   been cleared between the has_special_runtime_exit_condition()
2074     //   and now so again we are done
2075     return;
2076   }
2077 
2078   // Check for pending async. exception
2079   if (_pending_async_exception != NULL) {
2080     // Only overwrite an already pending exception, if it is not a threadDeath.
2081     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2082 
2083       // We cannot call Exceptions::_throw(...) here because we cannot block
2084       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2085 
2086       if (TraceExceptions) {
2087         ResourceMark rm;
2088         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2089         if (has_last_Java_frame()) {
2090           frame f = last_frame();
2091           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2092         }
2093         tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2094       }
2095       _pending_async_exception = NULL;
2096       clear_has_async_exception();
2097     }
2098   }
2099 
2100   if (check_unsafe_error &&
2101       condition == _async_unsafe_access_error && !has_pending_exception()) {
2102     condition = _no_async_condition;  // done
2103     switch (thread_state()) {
2104     case _thread_in_vm: {
2105       JavaThread* THREAD = this;
2106       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2107     }
2108     case _thread_in_native: {
2109       ThreadInVMfromNative tiv(this);
2110       JavaThread* THREAD = this;
2111       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112     }
2113     case _thread_in_Java: {
2114       ThreadInVMfromJava tiv(this);
2115       JavaThread* THREAD = this;
2116       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2117     }
2118     default:
2119       ShouldNotReachHere();
2120     }
2121   }
2122 
2123   assert(condition == _no_async_condition || has_pending_exception() ||
2124          (!check_unsafe_error && condition == _async_unsafe_access_error),
2125          "must have handled the async condition, if no exception");
2126 }
2127 
2128 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2129   //
2130   // Check for pending external suspend. Internal suspend requests do
2131   // not use handle_special_runtime_exit_condition().
2132   // If JNIEnv proxies are allowed, don't self-suspend if the target
2133   // thread is not the current thread. In older versions of jdbx, jdbx
2134   // threads could call into the VM with another thread's JNIEnv so we
2135   // can be here operating on behalf of a suspended thread (4432884).
2136   bool do_self_suspend = is_external_suspend_with_lock();
2137   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2138     //
2139     // Because thread is external suspended the safepoint code will count
2140     // thread as at a safepoint. This can be odd because we can be here
2141     // as _thread_in_Java which would normally transition to _thread_blocked
2142     // at a safepoint. We would like to mark the thread as _thread_blocked
2143     // before calling java_suspend_self like all other callers of it but
2144     // we must then observe proper safepoint protocol. (We can't leave
2145     // _thread_blocked with a safepoint in progress). However we can be
2146     // here as _thread_in_native_trans so we can't use a normal transition
2147     // constructor/destructor pair because they assert on that type of
2148     // transition. We could do something like:
2149     //
2150     // JavaThreadState state = thread_state();
2151     // set_thread_state(_thread_in_vm);
2152     // {
2153     //   ThreadBlockInVM tbivm(this);
2154     //   java_suspend_self()
2155     // }
2156     // set_thread_state(_thread_in_vm_trans);
2157     // if (safepoint) block;
2158     // set_thread_state(state);
2159     //
2160     // but that is pretty messy. Instead we just go with the way the
2161     // code has worked before and note that this is the only path to
2162     // java_suspend_self that doesn't put the thread in _thread_blocked
2163     // mode.
2164 
2165     frame_anchor()->make_walkable(this);
2166     java_suspend_self();
2167 
2168     // We might be here for reasons in addition to the self-suspend request
2169     // so check for other async requests.
2170   }
2171 
2172   if (check_asyncs) {
2173     check_and_handle_async_exceptions();
2174   }
2175 }
2176 
2177 void JavaThread::send_thread_stop(oop java_throwable)  {
2178   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2179   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2180   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2181 
2182   // Do not throw asynchronous exceptions against the compiler thread
2183   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2184   if (!can_call_java()) return;
2185 
2186   {
2187     // Actually throw the Throwable against the target Thread - however
2188     // only if there is no thread death exception installed already.
2189     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2190       // If the topmost frame is a runtime stub, then we are calling into
2191       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2192       // must deoptimize the caller before continuing, as the compiled  exception handler table
2193       // may not be valid
2194       if (has_last_Java_frame()) {
2195         frame f = last_frame();
2196         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2197           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2198           RegisterMap reg_map(this, UseBiasedLocking);
2199           frame compiled_frame = f.sender(&reg_map);
2200           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2201             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2202           }
2203         }
2204       }
2205 
2206       // Set async. pending exception in thread.
2207       set_pending_async_exception(java_throwable);
2208 
2209       if (TraceExceptions) {
2210         ResourceMark rm;
2211         tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2212       }
2213       // for AbortVMOnException flag
2214       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2215     }
2216   }
2217 
2218 
2219   // Interrupt thread so it will wake up from a potential wait()
2220   Thread::interrupt(this);
2221 }
2222 
2223 // External suspension mechanism.
2224 //
2225 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2226 // to any VM_locks and it is at a transition
2227 // Self-suspension will happen on the transition out of the vm.
2228 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2229 //
2230 // Guarantees on return:
2231 //   + Target thread will not execute any new bytecode (that's why we need to
2232 //     force a safepoint)
2233 //   + Target thread will not enter any new monitors
2234 //
2235 void JavaThread::java_suspend() {
2236   { MutexLocker mu(Threads_lock);
2237     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2238       return;
2239     }
2240   }
2241 
2242   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2243     if (!is_external_suspend()) {
2244       // a racing resume has cancelled us; bail out now
2245       return;
2246     }
2247 
2248     // suspend is done
2249     uint32_t debug_bits = 0;
2250     // Warning: is_ext_suspend_completed() may temporarily drop the
2251     // SR_lock to allow the thread to reach a stable thread state if
2252     // it is currently in a transient thread state.
2253     if (is_ext_suspend_completed(false /* !called_by_wait */,
2254                                  SuspendRetryDelay, &debug_bits)) {
2255       return;
2256     }
2257   }
2258 
2259   VM_ForceSafepoint vm_suspend;
2260   VMThread::execute(&vm_suspend);
2261 }
2262 
2263 // Part II of external suspension.
2264 // A JavaThread self suspends when it detects a pending external suspend
2265 // request. This is usually on transitions. It is also done in places
2266 // where continuing to the next transition would surprise the caller,
2267 // e.g., monitor entry.
2268 //
2269 // Returns the number of times that the thread self-suspended.
2270 //
2271 // Note: DO NOT call java_suspend_self() when you just want to block current
2272 //       thread. java_suspend_self() is the second stage of cooperative
2273 //       suspension for external suspend requests and should only be used
2274 //       to complete an external suspend request.
2275 //
2276 int JavaThread::java_suspend_self() {
2277   int ret = 0;
2278 
2279   // we are in the process of exiting so don't suspend
2280   if (is_exiting()) {
2281     clear_external_suspend();
2282     return ret;
2283   }
2284 
2285   assert(_anchor.walkable() ||
2286          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2287          "must have walkable stack");
2288 
2289   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2290 
2291   assert(!this->is_ext_suspended(),
2292          "a thread trying to self-suspend should not already be suspended");
2293 
2294   if (this->is_suspend_equivalent()) {
2295     // If we are self-suspending as a result of the lifting of a
2296     // suspend equivalent condition, then the suspend_equivalent
2297     // flag is not cleared until we set the ext_suspended flag so
2298     // that wait_for_ext_suspend_completion() returns consistent
2299     // results.
2300     this->clear_suspend_equivalent();
2301   }
2302 
2303   // A racing resume may have cancelled us before we grabbed SR_lock
2304   // above. Or another external suspend request could be waiting for us
2305   // by the time we return from SR_lock()->wait(). The thread
2306   // that requested the suspension may already be trying to walk our
2307   // stack and if we return now, we can change the stack out from under
2308   // it. This would be a "bad thing (TM)" and cause the stack walker
2309   // to crash. We stay self-suspended until there are no more pending
2310   // external suspend requests.
2311   while (is_external_suspend()) {
2312     ret++;
2313     this->set_ext_suspended();
2314 
2315     // _ext_suspended flag is cleared by java_resume()
2316     while (is_ext_suspended()) {
2317       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2318     }
2319   }
2320 
2321   return ret;
2322 }
2323 
2324 #ifdef ASSERT
2325 // verify the JavaThread has not yet been published in the Threads::list, and
2326 // hence doesn't need protection from concurrent access at this stage
2327 void JavaThread::verify_not_published() {
2328   if (!Threads_lock->owned_by_self()) {
2329     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2330     assert(!Threads::includes(this),
2331            "java thread shouldn't have been published yet!");
2332   } else {
2333     assert(!Threads::includes(this),
2334            "java thread shouldn't have been published yet!");
2335   }
2336 }
2337 #endif
2338 
2339 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2340 // progress or when _suspend_flags is non-zero.
2341 // Current thread needs to self-suspend if there is a suspend request and/or
2342 // block if a safepoint is in progress.
2343 // Async exception ISN'T checked.
2344 // Note only the ThreadInVMfromNative transition can call this function
2345 // directly and when thread state is _thread_in_native_trans
2346 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2347   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2348 
2349   JavaThread *curJT = JavaThread::current();
2350   bool do_self_suspend = thread->is_external_suspend();
2351 
2352   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2353 
2354   // If JNIEnv proxies are allowed, don't self-suspend if the target
2355   // thread is not the current thread. In older versions of jdbx, jdbx
2356   // threads could call into the VM with another thread's JNIEnv so we
2357   // can be here operating on behalf of a suspended thread (4432884).
2358   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2359     JavaThreadState state = thread->thread_state();
2360 
2361     // We mark this thread_blocked state as a suspend-equivalent so
2362     // that a caller to is_ext_suspend_completed() won't be confused.
2363     // The suspend-equivalent state is cleared by java_suspend_self().
2364     thread->set_suspend_equivalent();
2365 
2366     // If the safepoint code sees the _thread_in_native_trans state, it will
2367     // wait until the thread changes to other thread state. There is no
2368     // guarantee on how soon we can obtain the SR_lock and complete the
2369     // self-suspend request. It would be a bad idea to let safepoint wait for
2370     // too long. Temporarily change the state to _thread_blocked to
2371     // let the VM thread know that this thread is ready for GC. The problem
2372     // of changing thread state is that safepoint could happen just after
2373     // java_suspend_self() returns after being resumed, and VM thread will
2374     // see the _thread_blocked state. We must check for safepoint
2375     // after restoring the state and make sure we won't leave while a safepoint
2376     // is in progress.
2377     thread->set_thread_state(_thread_blocked);
2378     thread->java_suspend_self();
2379     thread->set_thread_state(state);
2380     // Make sure new state is seen by VM thread
2381     if (os::is_MP()) {
2382       if (UseMembar) {
2383         // Force a fence between the write above and read below
2384         OrderAccess::fence();
2385       } else {
2386         // Must use this rather than serialization page in particular on Windows
2387         InterfaceSupport::serialize_memory(thread);
2388       }
2389     }
2390   }
2391 
2392   if (SafepointSynchronize::do_call_back()) {
2393     // If we are safepointing, then block the caller which may not be
2394     // the same as the target thread (see above).
2395     SafepointSynchronize::block(curJT);
2396   }
2397 
2398   if (thread->is_deopt_suspend()) {
2399     thread->clear_deopt_suspend();
2400     RegisterMap map(thread, false);
2401     frame f = thread->last_frame();
2402     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2403       f = f.sender(&map);
2404     }
2405     if (f.id() == thread->must_deopt_id()) {
2406       thread->clear_must_deopt_id();
2407       f.deoptimize(thread);
2408     } else {
2409       fatal("missed deoptimization!");
2410     }
2411   }
2412 }
2413 
2414 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2415 // progress or when _suspend_flags is non-zero.
2416 // Current thread needs to self-suspend if there is a suspend request and/or
2417 // block if a safepoint is in progress.
2418 // Also check for pending async exception (not including unsafe access error).
2419 // Note only the native==>VM/Java barriers can call this function and when
2420 // thread state is _thread_in_native_trans.
2421 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2422   check_safepoint_and_suspend_for_native_trans(thread);
2423 
2424   if (thread->has_async_exception()) {
2425     // We are in _thread_in_native_trans state, don't handle unsafe
2426     // access error since that may block.
2427     thread->check_and_handle_async_exceptions(false);
2428   }
2429 }
2430 
2431 // This is a variant of the normal
2432 // check_special_condition_for_native_trans with slightly different
2433 // semantics for use by critical native wrappers.  It does all the
2434 // normal checks but also performs the transition back into
2435 // thread_in_Java state.  This is required so that critical natives
2436 // can potentially block and perform a GC if they are the last thread
2437 // exiting the GC_locker.
2438 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2439   check_special_condition_for_native_trans(thread);
2440 
2441   // Finish the transition
2442   thread->set_thread_state(_thread_in_Java);
2443 
2444   if (thread->do_critical_native_unlock()) {
2445     ThreadInVMfromJavaNoAsyncException tiv(thread);
2446     GC_locker::unlock_critical(thread);
2447     thread->clear_critical_native_unlock();
2448   }
2449 }
2450 
2451 // We need to guarantee the Threads_lock here, since resumes are not
2452 // allowed during safepoint synchronization
2453 // Can only resume from an external suspension
2454 void JavaThread::java_resume() {
2455   assert_locked_or_safepoint(Threads_lock);
2456 
2457   // Sanity check: thread is gone, has started exiting or the thread
2458   // was not externally suspended.
2459   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2460     return;
2461   }
2462 
2463   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2464 
2465   clear_external_suspend();
2466 
2467   if (is_ext_suspended()) {
2468     clear_ext_suspended();
2469     SR_lock()->notify_all();
2470   }
2471 }
2472 
2473 void JavaThread::create_stack_guard_pages() {
2474   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2475   address low_addr = stack_base() - stack_size();
2476   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2477 
2478   int allocate = os::allocate_stack_guard_pages();
2479   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2480 
2481   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2482     warning("Attempt to allocate stack guard pages failed.");
2483     return;
2484   }
2485 
2486   if (os::guard_memory((char *) low_addr, len)) {
2487     _stack_guard_state = stack_guard_enabled;
2488   } else {
2489     warning("Attempt to protect stack guard pages failed.");
2490     if (os::uncommit_memory((char *) low_addr, len)) {
2491       warning("Attempt to deallocate stack guard pages failed.");
2492     }
2493   }
2494 }
2495 
2496 void JavaThread::remove_stack_guard_pages() {
2497   assert(Thread::current() == this, "from different thread");
2498   if (_stack_guard_state == stack_guard_unused) return;
2499   address low_addr = stack_base() - stack_size();
2500   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2501 
2502   if (os::allocate_stack_guard_pages()) {
2503     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2504       _stack_guard_state = stack_guard_unused;
2505     } else {
2506       warning("Attempt to deallocate stack guard pages failed.");
2507     }
2508   } else {
2509     if (_stack_guard_state == stack_guard_unused) return;
2510     if (os::unguard_memory((char *) low_addr, len)) {
2511       _stack_guard_state = stack_guard_unused;
2512     } else {
2513       warning("Attempt to unprotect stack guard pages failed.");
2514     }
2515   }
2516 }
2517 
2518 void JavaThread::enable_stack_yellow_zone() {
2519   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2520   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2521 
2522   // The base notation is from the stacks point of view, growing downward.
2523   // We need to adjust it to work correctly with guard_memory()
2524   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2525 
2526   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2527   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2528 
2529   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2530     _stack_guard_state = stack_guard_enabled;
2531   } else {
2532     warning("Attempt to guard stack yellow zone failed.");
2533   }
2534   enable_register_stack_guard();
2535 }
2536 
2537 void JavaThread::disable_stack_yellow_zone() {
2538   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2539   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2540 
2541   // Simply return if called for a thread that does not use guard pages.
2542   if (_stack_guard_state == stack_guard_unused) return;
2543 
2544   // The base notation is from the stacks point of view, growing downward.
2545   // We need to adjust it to work correctly with guard_memory()
2546   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2547 
2548   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2549     _stack_guard_state = stack_guard_yellow_disabled;
2550   } else {
2551     warning("Attempt to unguard stack yellow zone failed.");
2552   }
2553   disable_register_stack_guard();
2554 }
2555 
2556 void JavaThread::enable_stack_red_zone() {
2557   // The base notation is from the stacks point of view, growing downward.
2558   // We need to adjust it to work correctly with guard_memory()
2559   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2560   address base = stack_red_zone_base() - stack_red_zone_size();
2561 
2562   guarantee(base < stack_base(), "Error calculating stack red zone");
2563   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2564 
2565   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2566     warning("Attempt to guard stack red zone failed.");
2567   }
2568 }
2569 
2570 void JavaThread::disable_stack_red_zone() {
2571   // The base notation is from the stacks point of view, growing downward.
2572   // We need to adjust it to work correctly with guard_memory()
2573   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2574   address base = stack_red_zone_base() - stack_red_zone_size();
2575   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2576     warning("Attempt to unguard stack red zone failed.");
2577   }
2578 }
2579 
2580 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2581   // ignore is there is no stack
2582   if (!has_last_Java_frame()) return;
2583   // traverse the stack frames. Starts from top frame.
2584   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2585     frame* fr = fst.current();
2586     f(fr, fst.register_map());
2587   }
2588 }
2589 
2590 
2591 #ifndef PRODUCT
2592 // Deoptimization
2593 // Function for testing deoptimization
2594 void JavaThread::deoptimize() {
2595   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2596   StackFrameStream fst(this, UseBiasedLocking);
2597   bool deopt = false;           // Dump stack only if a deopt actually happens.
2598   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2599   // Iterate over all frames in the thread and deoptimize
2600   for (; !fst.is_done(); fst.next()) {
2601     if (fst.current()->can_be_deoptimized()) {
2602 
2603       if (only_at) {
2604         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2605         // consists of comma or carriage return separated numbers so
2606         // search for the current bci in that string.
2607         address pc = fst.current()->pc();
2608         nmethod* nm =  (nmethod*) fst.current()->cb();
2609         ScopeDesc* sd = nm->scope_desc_at(pc);
2610         char buffer[8];
2611         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2612         size_t len = strlen(buffer);
2613         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2614         while (found != NULL) {
2615           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2616               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2617             // Check that the bci found is bracketed by terminators.
2618             break;
2619           }
2620           found = strstr(found + 1, buffer);
2621         }
2622         if (!found) {
2623           continue;
2624         }
2625       }
2626 
2627       if (DebugDeoptimization && !deopt) {
2628         deopt = true; // One-time only print before deopt
2629         tty->print_cr("[BEFORE Deoptimization]");
2630         trace_frames();
2631         trace_stack();
2632       }
2633       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2634     }
2635   }
2636 
2637   if (DebugDeoptimization && deopt) {
2638     tty->print_cr("[AFTER Deoptimization]");
2639     trace_frames();
2640   }
2641 }
2642 
2643 
2644 // Make zombies
2645 void JavaThread::make_zombies() {
2646   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2647     if (fst.current()->can_be_deoptimized()) {
2648       // it is a Java nmethod
2649       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2650       nm->make_not_entrant();
2651     }
2652   }
2653 }
2654 #endif // PRODUCT
2655 
2656 
2657 void JavaThread::deoptimized_wrt_marked_nmethods() {
2658   if (!has_last_Java_frame()) return;
2659   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2660   StackFrameStream fst(this, UseBiasedLocking);
2661   for (; !fst.is_done(); fst.next()) {
2662     if (fst.current()->should_be_deoptimized()) {
2663       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2664     }
2665   }
2666 }
2667 
2668 
2669 // If the caller is a NamedThread, then remember, in the current scope,
2670 // the given JavaThread in its _processed_thread field.
2671 class RememberProcessedThread: public StackObj {
2672   NamedThread* _cur_thr;
2673  public:
2674   RememberProcessedThread(JavaThread* jthr) {
2675     Thread* thread = Thread::current();
2676     if (thread->is_Named_thread()) {
2677       _cur_thr = (NamedThread *)thread;
2678       _cur_thr->set_processed_thread(jthr);
2679     } else {
2680       _cur_thr = NULL;
2681     }
2682   }
2683 
2684   ~RememberProcessedThread() {
2685     if (_cur_thr) {
2686       _cur_thr->set_processed_thread(NULL);
2687     }
2688   }
2689 };
2690 
2691 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2692   // Verify that the deferred card marks have been flushed.
2693   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2694 
2695   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2696   // since there may be more than one thread using each ThreadProfiler.
2697 
2698   // Traverse the GCHandles
2699   Thread::oops_do(f, cld_f, cf);
2700 
2701   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2702 
2703   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2704          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2705 
2706   if (has_last_Java_frame()) {
2707     // Record JavaThread to GC thread
2708     RememberProcessedThread rpt(this);
2709 
2710     // Traverse the privileged stack
2711     if (_privileged_stack_top != NULL) {
2712       _privileged_stack_top->oops_do(f);
2713     }
2714 
2715     // traverse the registered growable array
2716     if (_array_for_gc != NULL) {
2717       for (int index = 0; index < _array_for_gc->length(); index++) {
2718         f->do_oop(_array_for_gc->adr_at(index));
2719       }
2720     }
2721 
2722     // Traverse the monitor chunks
2723     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2724       chunk->oops_do(f);
2725     }
2726 
2727     // Traverse the execution stack
2728     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2729       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2730     }
2731   }
2732 
2733   // callee_target is never live across a gc point so NULL it here should
2734   // it still contain a methdOop.
2735 
2736   set_callee_target(NULL);
2737 
2738   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2739   // If we have deferred set_locals there might be oops waiting to be
2740   // written
2741   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2742   if (list != NULL) {
2743     for (int i = 0; i < list->length(); i++) {
2744       list->at(i)->oops_do(f);
2745     }
2746   }
2747 
2748   // Traverse instance variables at the end since the GC may be moving things
2749   // around using this function
2750   f->do_oop((oop*) &_threadObj);
2751   f->do_oop((oop*) &_vm_result);
2752   f->do_oop((oop*) &_exception_oop);
2753   f->do_oop((oop*) &_pending_async_exception);
2754 
2755   if (jvmti_thread_state() != NULL) {
2756     jvmti_thread_state()->oops_do(f);
2757   }
2758 }
2759 
2760 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2761   Thread::nmethods_do(cf);  // (super method is a no-op)
2762 
2763   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2764          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2765 
2766   if (has_last_Java_frame()) {
2767     // Traverse the execution stack
2768     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2769       fst.current()->nmethods_do(cf);
2770     }
2771   }
2772 }
2773 
2774 void JavaThread::metadata_do(void f(Metadata*)) {
2775   if (has_last_Java_frame()) {
2776     // Traverse the execution stack to call f() on the methods in the stack
2777     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2778       fst.current()->metadata_do(f);
2779     }
2780   } else if (is_Compiler_thread()) {
2781     // need to walk ciMetadata in current compile tasks to keep alive.
2782     CompilerThread* ct = (CompilerThread*)this;
2783     if (ct->env() != NULL) {
2784       ct->env()->metadata_do(f);
2785     }
2786     if (ct->task() != NULL) {
2787       ct->task()->metadata_do(f);
2788     }
2789   }
2790 }
2791 
2792 // Printing
2793 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2794   switch (_thread_state) {
2795   case _thread_uninitialized:     return "_thread_uninitialized";
2796   case _thread_new:               return "_thread_new";
2797   case _thread_new_trans:         return "_thread_new_trans";
2798   case _thread_in_native:         return "_thread_in_native";
2799   case _thread_in_native_trans:   return "_thread_in_native_trans";
2800   case _thread_in_vm:             return "_thread_in_vm";
2801   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2802   case _thread_in_Java:           return "_thread_in_Java";
2803   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2804   case _thread_blocked:           return "_thread_blocked";
2805   case _thread_blocked_trans:     return "_thread_blocked_trans";
2806   default:                        return "unknown thread state";
2807   }
2808 }
2809 
2810 #ifndef PRODUCT
2811 void JavaThread::print_thread_state_on(outputStream *st) const {
2812   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2813 };
2814 void JavaThread::print_thread_state() const {
2815   print_thread_state_on(tty);
2816 }
2817 #endif // PRODUCT
2818 
2819 // Called by Threads::print() for VM_PrintThreads operation
2820 void JavaThread::print_on(outputStream *st) const {
2821   st->print("\"%s\" ", get_thread_name());
2822   oop thread_oop = threadObj();
2823   if (thread_oop != NULL) {
2824     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2825     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2826     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2827   }
2828   Thread::print_on(st);
2829   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2830   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2831   if (thread_oop != NULL) {
2832     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2833   }
2834 #ifndef PRODUCT
2835   print_thread_state_on(st);
2836   _safepoint_state->print_on(st);
2837 #endif // PRODUCT
2838 }
2839 
2840 // Called by fatal error handler. The difference between this and
2841 // JavaThread::print() is that we can't grab lock or allocate memory.
2842 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2843   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2844   oop thread_obj = threadObj();
2845   if (thread_obj != NULL) {
2846     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2847   }
2848   st->print(" [");
2849   st->print("%s", _get_thread_state_name(_thread_state));
2850   if (osthread()) {
2851     st->print(", id=%d", osthread()->thread_id());
2852   }
2853   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2854             p2i(_stack_base - _stack_size), p2i(_stack_base));
2855   st->print("]");
2856   return;
2857 }
2858 
2859 // Verification
2860 
2861 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2862 
2863 void JavaThread::verify() {
2864   // Verify oops in the thread.
2865   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2866 
2867   // Verify the stack frames.
2868   frames_do(frame_verify);
2869 }
2870 
2871 // CR 6300358 (sub-CR 2137150)
2872 // Most callers of this method assume that it can't return NULL but a
2873 // thread may not have a name whilst it is in the process of attaching to
2874 // the VM - see CR 6412693, and there are places where a JavaThread can be
2875 // seen prior to having it's threadObj set (eg JNI attaching threads and
2876 // if vm exit occurs during initialization). These cases can all be accounted
2877 // for such that this method never returns NULL.
2878 const char* JavaThread::get_thread_name() const {
2879 #ifdef ASSERT
2880   // early safepoints can hit while current thread does not yet have TLS
2881   if (!SafepointSynchronize::is_at_safepoint()) {
2882     Thread *cur = Thread::current();
2883     if (!(cur->is_Java_thread() && cur == this)) {
2884       // Current JavaThreads are allowed to get their own name without
2885       // the Threads_lock.
2886       assert_locked_or_safepoint(Threads_lock);
2887     }
2888   }
2889 #endif // ASSERT
2890   return get_thread_name_string();
2891 }
2892 
2893 // Returns a non-NULL representation of this thread's name, or a suitable
2894 // descriptive string if there is no set name
2895 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2896   const char* name_str;
2897   oop thread_obj = threadObj();
2898   if (thread_obj != NULL) {
2899     oop name = java_lang_Thread::name(thread_obj);
2900     if (name != NULL) {
2901       if (buf == NULL) {
2902         name_str = java_lang_String::as_utf8_string(name);
2903       } else {
2904         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2905       }
2906     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2907       name_str = "<no-name - thread is attaching>";
2908     } else {
2909       name_str = Thread::name();
2910     }
2911   } else {
2912     name_str = Thread::name();
2913   }
2914   assert(name_str != NULL, "unexpected NULL thread name");
2915   return name_str;
2916 }
2917 
2918 
2919 const char* JavaThread::get_threadgroup_name() const {
2920   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2921   oop thread_obj = threadObj();
2922   if (thread_obj != NULL) {
2923     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2924     if (thread_group != NULL) {
2925       // ThreadGroup.name can be null
2926       return java_lang_ThreadGroup::name(thread_group);
2927     }
2928   }
2929   return NULL;
2930 }
2931 
2932 const char* JavaThread::get_parent_name() const {
2933   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2934   oop thread_obj = threadObj();
2935   if (thread_obj != NULL) {
2936     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2937     if (thread_group != NULL) {
2938       oop parent = java_lang_ThreadGroup::parent(thread_group);
2939       if (parent != NULL) {
2940         // ThreadGroup.name can be null
2941         return java_lang_ThreadGroup::name(parent);
2942       }
2943     }
2944   }
2945   return NULL;
2946 }
2947 
2948 ThreadPriority JavaThread::java_priority() const {
2949   oop thr_oop = threadObj();
2950   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2951   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2952   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2953   return priority;
2954 }
2955 
2956 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2957 
2958   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2959   // Link Java Thread object <-> C++ Thread
2960 
2961   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2962   // and put it into a new Handle.  The Handle "thread_oop" can then
2963   // be used to pass the C++ thread object to other methods.
2964 
2965   // Set the Java level thread object (jthread) field of the
2966   // new thread (a JavaThread *) to C++ thread object using the
2967   // "thread_oop" handle.
2968 
2969   // Set the thread field (a JavaThread *) of the
2970   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2971 
2972   Handle thread_oop(Thread::current(),
2973                     JNIHandles::resolve_non_null(jni_thread));
2974   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2975          "must be initialized");
2976   set_threadObj(thread_oop());
2977   java_lang_Thread::set_thread(thread_oop(), this);
2978 
2979   if (prio == NoPriority) {
2980     prio = java_lang_Thread::priority(thread_oop());
2981     assert(prio != NoPriority, "A valid priority should be present");
2982   }
2983 
2984   // Push the Java priority down to the native thread; needs Threads_lock
2985   Thread::set_priority(this, prio);
2986 
2987   prepare_ext();
2988 
2989   // Add the new thread to the Threads list and set it in motion.
2990   // We must have threads lock in order to call Threads::add.
2991   // It is crucial that we do not block before the thread is
2992   // added to the Threads list for if a GC happens, then the java_thread oop
2993   // will not be visited by GC.
2994   Threads::add(this);
2995 }
2996 
2997 oop JavaThread::current_park_blocker() {
2998   // Support for JSR-166 locks
2999   oop thread_oop = threadObj();
3000   if (thread_oop != NULL &&
3001       JDK_Version::current().supports_thread_park_blocker()) {
3002     return java_lang_Thread::park_blocker(thread_oop);
3003   }
3004   return NULL;
3005 }
3006 
3007 
3008 void JavaThread::print_stack_on(outputStream* st) {
3009   if (!has_last_Java_frame()) return;
3010   ResourceMark rm;
3011   HandleMark   hm;
3012 
3013   RegisterMap reg_map(this);
3014   vframe* start_vf = last_java_vframe(&reg_map);
3015   int count = 0;
3016   for (vframe* f = start_vf; f; f = f->sender()) {
3017     if (f->is_java_frame()) {
3018       javaVFrame* jvf = javaVFrame::cast(f);
3019       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3020 
3021       // Print out lock information
3022       if (JavaMonitorsInStackTrace) {
3023         jvf->print_lock_info_on(st, count);
3024       }
3025     } else {
3026       // Ignore non-Java frames
3027     }
3028 
3029     // Bail-out case for too deep stacks
3030     count++;
3031     if (MaxJavaStackTraceDepth == count) return;
3032   }
3033 }
3034 
3035 
3036 // JVMTI PopFrame support
3037 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3038   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3039   if (in_bytes(size_in_bytes) != 0) {
3040     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3041     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3042     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3043   }
3044 }
3045 
3046 void* JavaThread::popframe_preserved_args() {
3047   return _popframe_preserved_args;
3048 }
3049 
3050 ByteSize JavaThread::popframe_preserved_args_size() {
3051   return in_ByteSize(_popframe_preserved_args_size);
3052 }
3053 
3054 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3055   int sz = in_bytes(popframe_preserved_args_size());
3056   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3057   return in_WordSize(sz / wordSize);
3058 }
3059 
3060 void JavaThread::popframe_free_preserved_args() {
3061   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3062   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3063   _popframe_preserved_args = NULL;
3064   _popframe_preserved_args_size = 0;
3065 }
3066 
3067 #ifndef PRODUCT
3068 
3069 void JavaThread::trace_frames() {
3070   tty->print_cr("[Describe stack]");
3071   int frame_no = 1;
3072   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3073     tty->print("  %d. ", frame_no++);
3074     fst.current()->print_value_on(tty, this);
3075     tty->cr();
3076   }
3077 }
3078 
3079 class PrintAndVerifyOopClosure: public OopClosure {
3080  protected:
3081   template <class T> inline void do_oop_work(T* p) {
3082     oop obj = oopDesc::load_decode_heap_oop(p);
3083     if (obj == NULL) return;
3084     tty->print(INTPTR_FORMAT ": ", p2i(p));
3085     if (obj->is_oop_or_null()) {
3086       if (obj->is_objArray()) {
3087         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3088       } else {
3089         obj->print();
3090       }
3091     } else {
3092       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3093     }
3094     tty->cr();
3095   }
3096  public:
3097   virtual void do_oop(oop* p) { do_oop_work(p); }
3098   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3099 };
3100 
3101 
3102 static void oops_print(frame* f, const RegisterMap *map) {
3103   PrintAndVerifyOopClosure print;
3104   f->print_value();
3105   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3106 }
3107 
3108 // Print our all the locations that contain oops and whether they are
3109 // valid or not.  This useful when trying to find the oldest frame
3110 // where an oop has gone bad since the frame walk is from youngest to
3111 // oldest.
3112 void JavaThread::trace_oops() {
3113   tty->print_cr("[Trace oops]");
3114   frames_do(oops_print);
3115 }
3116 
3117 
3118 #ifdef ASSERT
3119 // Print or validate the layout of stack frames
3120 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3121   ResourceMark rm;
3122   PRESERVE_EXCEPTION_MARK;
3123   FrameValues values;
3124   int frame_no = 0;
3125   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3126     fst.current()->describe(values, ++frame_no);
3127     if (depth == frame_no) break;
3128   }
3129   if (validate_only) {
3130     values.validate();
3131   } else {
3132     tty->print_cr("[Describe stack layout]");
3133     values.print(this);
3134   }
3135 }
3136 #endif
3137 
3138 void JavaThread::trace_stack_from(vframe* start_vf) {
3139   ResourceMark rm;
3140   int vframe_no = 1;
3141   for (vframe* f = start_vf; f; f = f->sender()) {
3142     if (f->is_java_frame()) {
3143       javaVFrame::cast(f)->print_activation(vframe_no++);
3144     } else {
3145       f->print();
3146     }
3147     if (vframe_no > StackPrintLimit) {
3148       tty->print_cr("...<more frames>...");
3149       return;
3150     }
3151   }
3152 }
3153 
3154 
3155 void JavaThread::trace_stack() {
3156   if (!has_last_Java_frame()) return;
3157   ResourceMark rm;
3158   HandleMark   hm;
3159   RegisterMap reg_map(this);
3160   trace_stack_from(last_java_vframe(&reg_map));
3161 }
3162 
3163 
3164 #endif // PRODUCT
3165 
3166 
3167 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3168   assert(reg_map != NULL, "a map must be given");
3169   frame f = last_frame();
3170   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3171     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3172   }
3173   return NULL;
3174 }
3175 
3176 
3177 Klass* JavaThread::security_get_caller_class(int depth) {
3178   vframeStream vfst(this);
3179   vfst.security_get_caller_frame(depth);
3180   if (!vfst.at_end()) {
3181     return vfst.method()->method_holder();
3182   }
3183   return NULL;
3184 }
3185 
3186 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3187   assert(thread->is_Compiler_thread(), "must be compiler thread");
3188   CompileBroker::compiler_thread_loop();
3189 }
3190 
3191 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3192   NMethodSweeper::sweeper_loop();
3193 }
3194 
3195 // Create a CompilerThread
3196 CompilerThread::CompilerThread(CompileQueue* queue,
3197                                CompilerCounters* counters)
3198                                : JavaThread(&compiler_thread_entry) {
3199   _env   = NULL;
3200   _log   = NULL;
3201   _task  = NULL;
3202   _queue = queue;
3203   _counters = counters;
3204   _buffer_blob = NULL;
3205   _compiler = NULL;
3206 
3207 #ifndef PRODUCT
3208   _ideal_graph_printer = NULL;
3209 #endif
3210 }
3211 
3212 bool CompilerThread::can_call_java() const {
3213   return _compiler != NULL && _compiler->is_jvmci();
3214 }
3215 
3216 // Create sweeper thread
3217 CodeCacheSweeperThread::CodeCacheSweeperThread()
3218 : JavaThread(&sweeper_thread_entry) {
3219   _scanned_nmethod = NULL;
3220 }
3221 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3222   JavaThread::oops_do(f, cld_f, cf);
3223   if (_scanned_nmethod != NULL && cf != NULL) {
3224     // Safepoints can occur when the sweeper is scanning an nmethod so
3225     // process it here to make sure it isn't unloaded in the middle of
3226     // a scan.
3227     cf->do_code_blob(_scanned_nmethod);
3228   }
3229 }
3230 
3231 
3232 // ======= Threads ========
3233 
3234 // The Threads class links together all active threads, and provides
3235 // operations over all threads.  It is protected by its own Mutex
3236 // lock, which is also used in other contexts to protect thread
3237 // operations from having the thread being operated on from exiting
3238 // and going away unexpectedly (e.g., safepoint synchronization)
3239 
3240 JavaThread* Threads::_thread_list = NULL;
3241 int         Threads::_number_of_threads = 0;
3242 int         Threads::_number_of_non_daemon_threads = 0;
3243 int         Threads::_return_code = 0;
3244 int         Threads::_thread_claim_parity = 0;
3245 size_t      JavaThread::_stack_size_at_create = 0;
3246 #ifdef ASSERT
3247 bool        Threads::_vm_complete = false;
3248 #endif
3249 
3250 // All JavaThreads
3251 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3252 
3253 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3254 void Threads::threads_do(ThreadClosure* tc) {
3255   assert_locked_or_safepoint(Threads_lock);
3256   // ALL_JAVA_THREADS iterates through all JavaThreads
3257   ALL_JAVA_THREADS(p) {
3258     tc->do_thread(p);
3259   }
3260   // Someday we could have a table or list of all non-JavaThreads.
3261   // For now, just manually iterate through them.
3262   tc->do_thread(VMThread::vm_thread());
3263   Universe::heap()->gc_threads_do(tc);
3264   WatcherThread *wt = WatcherThread::watcher_thread();
3265   // Strictly speaking, the following NULL check isn't sufficient to make sure
3266   // the data for WatcherThread is still valid upon being examined. However,
3267   // considering that WatchThread terminates when the VM is on the way to
3268   // exit at safepoint, the chance of the above is extremely small. The right
3269   // way to prevent termination of WatcherThread would be to acquire
3270   // Terminator_lock, but we can't do that without violating the lock rank
3271   // checking in some cases.
3272   if (wt != NULL) {
3273     tc->do_thread(wt);
3274   }
3275 
3276   // If CompilerThreads ever become non-JavaThreads, add them here
3277 }
3278 
3279 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3280   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3281 
3282   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3283     create_vm_init_libraries();
3284   }
3285 
3286   initialize_class(vmSymbols::java_lang_String(), CHECK);
3287 
3288   // Inject CompactStrings value after the static initializers for String ran.
3289   java_lang_String::set_compact_strings(CompactStrings);
3290 
3291   // Initialize java_lang.System (needed before creating the thread)
3292   initialize_class(vmSymbols::java_lang_System(), CHECK);
3293   // The VM creates & returns objects of this class. Make sure it's initialized.
3294   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3295   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3296   Handle thread_group = create_initial_thread_group(CHECK);
3297   Universe::set_main_thread_group(thread_group());
3298   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3299   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3300   main_thread->set_threadObj(thread_object);
3301   // Set thread status to running since main thread has
3302   // been started and running.
3303   java_lang_Thread::set_thread_status(thread_object,
3304                                       java_lang_Thread::RUNNABLE);
3305 
3306   // The VM preresolves methods to these classes. Make sure that they get initialized
3307   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3308   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3309   call_initializeSystemClass(CHECK);
3310 
3311   // get the Java runtime name after java.lang.System is initialized
3312   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3313   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3314 
3315   // an instance of OutOfMemory exception has been allocated earlier
3316   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3317   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3318   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3319   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3320   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3321   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3322   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3323   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3324 }
3325 
3326 void Threads::initialize_jsr292_core_classes(TRAPS) {
3327   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3328   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3329   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3330 }
3331 
3332 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3333   extern void JDK_Version_init();
3334 
3335   // Preinitialize version info.
3336   VM_Version::early_initialize();
3337 
3338   // Check version
3339   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3340 
3341   // Initialize the output stream module
3342   ostream_init();
3343 
3344   // Process java launcher properties.
3345   Arguments::process_sun_java_launcher_properties(args);
3346 
3347   // Initialize the os module before using TLS
3348   os::init();
3349 
3350   // Record VM creation timing statistics
3351   TraceVmCreationTime create_vm_timer;
3352   create_vm_timer.start();
3353 
3354   // Initialize system properties.
3355   Arguments::init_system_properties();
3356 
3357   // So that JDK version can be used as a discriminator when parsing arguments
3358   JDK_Version_init();
3359 
3360   // Update/Initialize System properties after JDK version number is known
3361   Arguments::init_version_specific_system_properties();
3362 
3363   // Make sure to initialize log configuration *before* parsing arguments
3364   LogConfiguration::initialize(create_vm_timer.begin_time());
3365 
3366   // Parse arguments
3367   jint parse_result = Arguments::parse(args);
3368   if (parse_result != JNI_OK) return parse_result;
3369 
3370   os::init_before_ergo();
3371 
3372   jint ergo_result = Arguments::apply_ergo();
3373   if (ergo_result != JNI_OK) return ergo_result;
3374 
3375   // Final check of all ranges after ergonomics which may change values.
3376   if (!CommandLineFlagRangeList::check_ranges()) {
3377     return JNI_EINVAL;
3378   }
3379 
3380   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3381   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3382   if (!constraint_result) {
3383     return JNI_EINVAL;
3384   }
3385 
3386   if (PauseAtStartup) {
3387     os::pause();
3388   }
3389 
3390   HOTSPOT_VM_INIT_BEGIN();
3391 
3392   // Timing (must come after argument parsing)
3393   TraceTime timer("Create VM", TraceStartupTime);
3394 
3395   // Initialize the os module after parsing the args
3396   jint os_init_2_result = os::init_2();
3397   if (os_init_2_result != JNI_OK) return os_init_2_result;
3398 
3399   jint adjust_after_os_result = Arguments::adjust_after_os();
3400   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3401 
3402   // Initialize library-based TLS
3403   ThreadLocalStorage::init();
3404 
3405   // Initialize output stream logging
3406   ostream_init_log();
3407 
3408   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3409   // Must be before create_vm_init_agents()
3410   if (Arguments::init_libraries_at_startup()) {
3411     convert_vm_init_libraries_to_agents();
3412   }
3413 
3414   // Launch -agentlib/-agentpath and converted -Xrun agents
3415   if (Arguments::init_agents_at_startup()) {
3416     create_vm_init_agents();
3417   }
3418 
3419   // Initialize Threads state
3420   _thread_list = NULL;
3421   _number_of_threads = 0;
3422   _number_of_non_daemon_threads = 0;
3423 
3424   // Initialize global data structures and create system classes in heap
3425   vm_init_globals();
3426 
3427 #if INCLUDE_JVMCI
3428   if (JVMCICounterSize > 0) {
3429     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3430     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3431   } else {
3432     JavaThread::_jvmci_old_thread_counters = NULL;
3433   }
3434 #endif // INCLUDE_JVMCI
3435 
3436   // Attach the main thread to this os thread
3437   JavaThread* main_thread = new JavaThread();
3438   main_thread->set_thread_state(_thread_in_vm);
3439   main_thread->initialize_thread_current();
3440   // must do this before set_active_handles
3441   main_thread->record_stack_base_and_size();
3442   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3443 
3444   if (!main_thread->set_as_starting_thread()) {
3445     vm_shutdown_during_initialization(
3446                                       "Failed necessary internal allocation. Out of swap space");
3447     delete main_thread;
3448     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3449     return JNI_ENOMEM;
3450   }
3451 
3452   // Enable guard page *after* os::create_main_thread(), otherwise it would
3453   // crash Linux VM, see notes in os_linux.cpp.
3454   main_thread->create_stack_guard_pages();
3455 
3456   // Initialize Java-Level synchronization subsystem
3457   ObjectMonitor::Initialize();
3458 
3459   // Initialize global modules
3460   jint status = init_globals();
3461   if (status != JNI_OK) {
3462     delete main_thread;
3463     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3464     return status;
3465   }
3466 
3467   // Should be done after the heap is fully created
3468   main_thread->cache_global_variables();
3469 
3470   HandleMark hm;
3471 
3472   { MutexLocker mu(Threads_lock);
3473     Threads::add(main_thread);
3474   }
3475 
3476   // Any JVMTI raw monitors entered in onload will transition into
3477   // real raw monitor. VM is setup enough here for raw monitor enter.
3478   JvmtiExport::transition_pending_onload_raw_monitors();
3479 
3480   // Create the VMThread
3481   { TraceTime timer("Start VMThread", TraceStartupTime);
3482     VMThread::create();
3483     Thread* vmthread = VMThread::vm_thread();
3484 
3485     if (!os::create_thread(vmthread, os::vm_thread)) {
3486       vm_exit_during_initialization("Cannot create VM thread. "
3487                                     "Out of system resources.");
3488     }
3489 
3490     // Wait for the VM thread to become ready, and VMThread::run to initialize
3491     // Monitors can have spurious returns, must always check another state flag
3492     {
3493       MutexLocker ml(Notify_lock);
3494       os::start_thread(vmthread);
3495       while (vmthread->active_handles() == NULL) {
3496         Notify_lock->wait();
3497       }
3498     }
3499   }
3500 
3501   assert(Universe::is_fully_initialized(), "not initialized");
3502   if (VerifyDuringStartup) {
3503     // Make sure we're starting with a clean slate.
3504     VM_Verify verify_op;
3505     VMThread::execute(&verify_op);
3506   }
3507 
3508   Thread* THREAD = Thread::current();
3509 
3510   // At this point, the Universe is initialized, but we have not executed
3511   // any byte code.  Now is a good time (the only time) to dump out the
3512   // internal state of the JVM for sharing.
3513   if (DumpSharedSpaces) {
3514     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3515     ShouldNotReachHere();
3516   }
3517 
3518   // Always call even when there are not JVMTI environments yet, since environments
3519   // may be attached late and JVMTI must track phases of VM execution
3520   JvmtiExport::enter_start_phase();
3521 
3522   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3523   JvmtiExport::post_vm_start();
3524 
3525   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3526 
3527   // We need this for ClassDataSharing - the initial vm.info property is set
3528   // with the default value of CDS "sharing" which may be reset through
3529   // command line options.
3530   reset_vm_info_property(CHECK_JNI_ERR);
3531 
3532   quicken_jni_functions();
3533 
3534   // Must be run after init_ft which initializes ft_enabled
3535   if (TRACE_INITIALIZE() != JNI_OK) {
3536     vm_exit_during_initialization("Failed to initialize tracing backend");
3537   }
3538 
3539   // Set flag that basic initialization has completed. Used by exceptions and various
3540   // debug stuff, that does not work until all basic classes have been initialized.
3541   set_init_completed();
3542 
3543   LogConfiguration::post_initialize();
3544   Metaspace::post_initialize();
3545 
3546   HOTSPOT_VM_INIT_END();
3547 
3548   // record VM initialization completion time
3549 #if INCLUDE_MANAGEMENT
3550   Management::record_vm_init_completed();
3551 #endif // INCLUDE_MANAGEMENT
3552 
3553   // Compute system loader. Note that this has to occur after set_init_completed, since
3554   // valid exceptions may be thrown in the process.
3555   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3556   // set_init_completed has just been called, causing exceptions not to be shortcut
3557   // anymore. We call vm_exit_during_initialization directly instead.
3558   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3559 
3560 #if INCLUDE_ALL_GCS
3561   // Support for ConcurrentMarkSweep. This should be cleaned up
3562   // and better encapsulated. The ugly nested if test would go away
3563   // once things are properly refactored. XXX YSR
3564   if (UseConcMarkSweepGC || UseG1GC) {
3565     if (UseConcMarkSweepGC) {
3566       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3567     } else {
3568       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3569     }
3570   }
3571 #endif // INCLUDE_ALL_GCS
3572 
3573   // Always call even when there are not JVMTI environments yet, since environments
3574   // may be attached late and JVMTI must track phases of VM execution
3575   JvmtiExport::enter_live_phase();
3576 
3577   // Signal Dispatcher needs to be started before VMInit event is posted
3578   os::signal_init();
3579 
3580   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3581   if (!DisableAttachMechanism) {
3582     AttachListener::vm_start();
3583     if (StartAttachListener || AttachListener::init_at_startup()) {
3584       AttachListener::init();
3585     }
3586   }
3587 
3588   // Launch -Xrun agents
3589   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3590   // back-end can launch with -Xdebug -Xrunjdwp.
3591   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3592     create_vm_init_libraries();
3593   }
3594 
3595   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3596   JvmtiExport::post_vm_initialized();
3597 
3598   if (TRACE_START() != JNI_OK) {
3599     vm_exit_during_initialization("Failed to start tracing backend.");
3600   }
3601 
3602   if (CleanChunkPoolAsync) {
3603     Chunk::start_chunk_pool_cleaner_task();
3604   }
3605 
3606 #if INCLUDE_JVMCI
3607   if (EnableJVMCI) {
3608     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3609     if (jvmciCompiler != NULL) {
3610       JVMCIRuntime::save_compiler(jvmciCompiler);
3611     }
3612     JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3613   }
3614 #endif // INCLUDE_JVMCI
3615 
3616   // initialize compiler(s)
3617 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3618   CompileBroker::compilation_init();
3619 #endif
3620 
3621   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3622   // It is done after compilers are initialized, because otherwise compilations of
3623   // signature polymorphic MH intrinsics can be missed
3624   // (see SystemDictionary::find_method_handle_intrinsic).
3625   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3626 
3627 #if INCLUDE_MANAGEMENT
3628   Management::initialize(THREAD);
3629 
3630   if (HAS_PENDING_EXCEPTION) {
3631     // management agent fails to start possibly due to
3632     // configuration problem and is responsible for printing
3633     // stack trace if appropriate. Simply exit VM.
3634     vm_exit(1);
3635   }
3636 #endif // INCLUDE_MANAGEMENT
3637 
3638   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3639   if (MemProfiling)                   MemProfiler::engage();
3640   StatSampler::engage();
3641   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3642 
3643   BiasedLocking::init();
3644 
3645 #if INCLUDE_RTM_OPT
3646   RTMLockingCounters::init();
3647 #endif
3648 
3649   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3650     call_postVMInitHook(THREAD);
3651     // The Java side of PostVMInitHook.run must deal with all
3652     // exceptions and provide means of diagnosis.
3653     if (HAS_PENDING_EXCEPTION) {
3654       CLEAR_PENDING_EXCEPTION;
3655     }
3656   }
3657 
3658   {
3659     MutexLocker ml(PeriodicTask_lock);
3660     // Make sure the WatcherThread can be started by WatcherThread::start()
3661     // or by dynamic enrollment.
3662     WatcherThread::make_startable();
3663     // Start up the WatcherThread if there are any periodic tasks
3664     // NOTE:  All PeriodicTasks should be registered by now. If they
3665     //   aren't, late joiners might appear to start slowly (we might
3666     //   take a while to process their first tick).
3667     if (PeriodicTask::num_tasks() > 0) {
3668       WatcherThread::start();
3669     }
3670   }
3671 
3672   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3673 
3674   create_vm_timer.end();
3675 #ifdef ASSERT
3676   _vm_complete = true;
3677 #endif
3678   return JNI_OK;
3679 }
3680 
3681 // type for the Agent_OnLoad and JVM_OnLoad entry points
3682 extern "C" {
3683   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3684 }
3685 // Find a command line agent library and return its entry point for
3686 //         -agentlib:  -agentpath:   -Xrun
3687 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3688 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3689                                     const char *on_load_symbols[],
3690                                     size_t num_symbol_entries) {
3691   OnLoadEntry_t on_load_entry = NULL;
3692   void *library = NULL;
3693 
3694   if (!agent->valid()) {
3695     char buffer[JVM_MAXPATHLEN];
3696     char ebuf[1024] = "";
3697     const char *name = agent->name();
3698     const char *msg = "Could not find agent library ";
3699 
3700     // First check to see if agent is statically linked into executable
3701     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3702       library = agent->os_lib();
3703     } else if (agent->is_absolute_path()) {
3704       library = os::dll_load(name, ebuf, sizeof ebuf);
3705       if (library == NULL) {
3706         const char *sub_msg = " in absolute path, with error: ";
3707         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3708         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3709         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3710         // If we can't find the agent, exit.
3711         vm_exit_during_initialization(buf, NULL);
3712         FREE_C_HEAP_ARRAY(char, buf);
3713       }
3714     } else {
3715       // Try to load the agent from the standard dll directory
3716       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3717                              name)) {
3718         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3719       }
3720       if (library == NULL) { // Try the local directory
3721         char ns[1] = {0};
3722         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3723           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3724         }
3725         if (library == NULL) {
3726           const char *sub_msg = " on the library path, with error: ";
3727           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3728           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3729           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3730           // If we can't find the agent, exit.
3731           vm_exit_during_initialization(buf, NULL);
3732           FREE_C_HEAP_ARRAY(char, buf);
3733         }
3734       }
3735     }
3736     agent->set_os_lib(library);
3737     agent->set_valid();
3738   }
3739 
3740   // Find the OnLoad function.
3741   on_load_entry =
3742     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3743                                                           false,
3744                                                           on_load_symbols,
3745                                                           num_symbol_entries));
3746   return on_load_entry;
3747 }
3748 
3749 // Find the JVM_OnLoad entry point
3750 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3751   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3752   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3753 }
3754 
3755 // Find the Agent_OnLoad entry point
3756 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3757   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3758   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3759 }
3760 
3761 // For backwards compatibility with -Xrun
3762 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3763 // treated like -agentpath:
3764 // Must be called before agent libraries are created
3765 void Threads::convert_vm_init_libraries_to_agents() {
3766   AgentLibrary* agent;
3767   AgentLibrary* next;
3768 
3769   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3770     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3771     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3772 
3773     // If there is an JVM_OnLoad function it will get called later,
3774     // otherwise see if there is an Agent_OnLoad
3775     if (on_load_entry == NULL) {
3776       on_load_entry = lookup_agent_on_load(agent);
3777       if (on_load_entry != NULL) {
3778         // switch it to the agent list -- so that Agent_OnLoad will be called,
3779         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3780         Arguments::convert_library_to_agent(agent);
3781       } else {
3782         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3783       }
3784     }
3785   }
3786 }
3787 
3788 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3789 // Invokes Agent_OnLoad
3790 // Called very early -- before JavaThreads exist
3791 void Threads::create_vm_init_agents() {
3792   extern struct JavaVM_ main_vm;
3793   AgentLibrary* agent;
3794 
3795   JvmtiExport::enter_onload_phase();
3796 
3797   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3798     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3799 
3800     if (on_load_entry != NULL) {
3801       // Invoke the Agent_OnLoad function
3802       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3803       if (err != JNI_OK) {
3804         vm_exit_during_initialization("agent library failed to init", agent->name());
3805       }
3806     } else {
3807       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3808     }
3809   }
3810   JvmtiExport::enter_primordial_phase();
3811 }
3812 
3813 extern "C" {
3814   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3815 }
3816 
3817 void Threads::shutdown_vm_agents() {
3818   // Send any Agent_OnUnload notifications
3819   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3820   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3821   extern struct JavaVM_ main_vm;
3822   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3823 
3824     // Find the Agent_OnUnload function.
3825     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3826                                                    os::find_agent_function(agent,
3827                                                    false,
3828                                                    on_unload_symbols,
3829                                                    num_symbol_entries));
3830 
3831     // Invoke the Agent_OnUnload function
3832     if (unload_entry != NULL) {
3833       JavaThread* thread = JavaThread::current();
3834       ThreadToNativeFromVM ttn(thread);
3835       HandleMark hm(thread);
3836       (*unload_entry)(&main_vm);
3837     }
3838   }
3839 }
3840 
3841 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3842 // Invokes JVM_OnLoad
3843 void Threads::create_vm_init_libraries() {
3844   extern struct JavaVM_ main_vm;
3845   AgentLibrary* agent;
3846 
3847   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3848     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3849 
3850     if (on_load_entry != NULL) {
3851       // Invoke the JVM_OnLoad function
3852       JavaThread* thread = JavaThread::current();
3853       ThreadToNativeFromVM ttn(thread);
3854       HandleMark hm(thread);
3855       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3856       if (err != JNI_OK) {
3857         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3858       }
3859     } else {
3860       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3861     }
3862   }
3863 }
3864 
3865 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3866   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3867 
3868   JavaThread* java_thread = NULL;
3869   // Sequential search for now.  Need to do better optimization later.
3870   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3871     oop tobj = thread->threadObj();
3872     if (!thread->is_exiting() &&
3873         tobj != NULL &&
3874         java_tid == java_lang_Thread::thread_id(tobj)) {
3875       java_thread = thread;
3876       break;
3877     }
3878   }
3879   return java_thread;
3880 }
3881 
3882 
3883 // Last thread running calls java.lang.Shutdown.shutdown()
3884 void JavaThread::invoke_shutdown_hooks() {
3885   HandleMark hm(this);
3886 
3887   // We could get here with a pending exception, if so clear it now.
3888   if (this->has_pending_exception()) {
3889     this->clear_pending_exception();
3890   }
3891 
3892   EXCEPTION_MARK;
3893   Klass* k =
3894     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3895                                       THREAD);
3896   if (k != NULL) {
3897     // SystemDictionary::resolve_or_null will return null if there was
3898     // an exception.  If we cannot load the Shutdown class, just don't
3899     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3900     // and finalizers (if runFinalizersOnExit is set) won't be run.
3901     // Note that if a shutdown hook was registered or runFinalizersOnExit
3902     // was called, the Shutdown class would have already been loaded
3903     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3904     instanceKlassHandle shutdown_klass (THREAD, k);
3905     JavaValue result(T_VOID);
3906     JavaCalls::call_static(&result,
3907                            shutdown_klass,
3908                            vmSymbols::shutdown_method_name(),
3909                            vmSymbols::void_method_signature(),
3910                            THREAD);
3911   }
3912   CLEAR_PENDING_EXCEPTION;
3913 }
3914 
3915 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3916 // the program falls off the end of main(). Another VM exit path is through
3917 // vm_exit() when the program calls System.exit() to return a value or when
3918 // there is a serious error in VM. The two shutdown paths are not exactly
3919 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3920 // and VM_Exit op at VM level.
3921 //
3922 // Shutdown sequence:
3923 //   + Shutdown native memory tracking if it is on
3924 //   + Wait until we are the last non-daemon thread to execute
3925 //     <-- every thing is still working at this moment -->
3926 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3927 //        shutdown hooks, run finalizers if finalization-on-exit
3928 //   + Call before_exit(), prepare for VM exit
3929 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3930 //        currently the only user of this mechanism is File.deleteOnExit())
3931 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3932 //        post thread end and vm death events to JVMTI,
3933 //        stop signal thread
3934 //   + Call JavaThread::exit(), it will:
3935 //      > release JNI handle blocks, remove stack guard pages
3936 //      > remove this thread from Threads list
3937 //     <-- no more Java code from this thread after this point -->
3938 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3939 //     the compiler threads at safepoint
3940 //     <-- do not use anything that could get blocked by Safepoint -->
3941 //   + Disable tracing at JNI/JVM barriers
3942 //   + Set _vm_exited flag for threads that are still running native code
3943 //   + Delete this thread
3944 //   + Call exit_globals()
3945 //      > deletes tty
3946 //      > deletes PerfMemory resources
3947 //   + Return to caller
3948 
3949 bool Threads::destroy_vm() {
3950   JavaThread* thread = JavaThread::current();
3951 
3952 #ifdef ASSERT
3953   _vm_complete = false;
3954 #endif
3955   // Wait until we are the last non-daemon thread to execute
3956   { MutexLocker nu(Threads_lock);
3957     while (Threads::number_of_non_daemon_threads() > 1)
3958       // This wait should make safepoint checks, wait without a timeout,
3959       // and wait as a suspend-equivalent condition.
3960       //
3961       // Note: If the FlatProfiler is running and this thread is waiting
3962       // for another non-daemon thread to finish, then the FlatProfiler
3963       // is waiting for the external suspend request on this thread to
3964       // complete. wait_for_ext_suspend_completion() will eventually
3965       // timeout, but that takes time. Making this wait a suspend-
3966       // equivalent condition solves that timeout problem.
3967       //
3968       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3969                          Mutex::_as_suspend_equivalent_flag);
3970   }
3971 
3972   // Hang forever on exit if we are reporting an error.
3973   if (ShowMessageBoxOnError && is_error_reported()) {
3974     os::infinite_sleep();
3975   }
3976   os::wait_for_keypress_at_exit();
3977 
3978   // run Java level shutdown hooks
3979   thread->invoke_shutdown_hooks();
3980 
3981   before_exit(thread);
3982 
3983   thread->exit(true);
3984 
3985   // Stop VM thread.
3986   {
3987     // 4945125 The vm thread comes to a safepoint during exit.
3988     // GC vm_operations can get caught at the safepoint, and the
3989     // heap is unparseable if they are caught. Grab the Heap_lock
3990     // to prevent this. The GC vm_operations will not be able to
3991     // queue until after the vm thread is dead. After this point,
3992     // we'll never emerge out of the safepoint before the VM exits.
3993 
3994     MutexLocker ml(Heap_lock);
3995 
3996     VMThread::wait_for_vm_thread_exit();
3997     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3998     VMThread::destroy();
3999   }
4000 
4001   // clean up ideal graph printers
4002 #if defined(COMPILER2) && !defined(PRODUCT)
4003   IdealGraphPrinter::clean_up();
4004 #endif
4005 
4006   // Now, all Java threads are gone except daemon threads. Daemon threads
4007   // running Java code or in VM are stopped by the Safepoint. However,
4008   // daemon threads executing native code are still running.  But they
4009   // will be stopped at native=>Java/VM barriers. Note that we can't
4010   // simply kill or suspend them, as it is inherently deadlock-prone.
4011 
4012 #ifndef PRODUCT
4013   // disable function tracing at JNI/JVM barriers
4014   TraceJNICalls = false;
4015   TraceJVMCalls = false;
4016   TraceRuntimeCalls = false;
4017 #endif
4018 
4019   VM_Exit::set_vm_exited();
4020 
4021   notify_vm_shutdown();
4022 
4023   delete thread;
4024 
4025 #if INCLUDE_JVMCI
4026   if (JVMCICounterSize > 0) {
4027     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4028   }
4029 #endif
4030 
4031   // exit_globals() will delete tty
4032   exit_globals();
4033 
4034   LogConfiguration::finalize();
4035 
4036   return true;
4037 }
4038 
4039 
4040 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4041   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4042   return is_supported_jni_version(version);
4043 }
4044 
4045 
4046 jboolean Threads::is_supported_jni_version(jint version) {
4047   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4048   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4049   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4050   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4051   return JNI_FALSE;
4052 }
4053 
4054 
4055 void Threads::add(JavaThread* p, bool force_daemon) {
4056   // The threads lock must be owned at this point
4057   assert_locked_or_safepoint(Threads_lock);
4058 
4059   // See the comment for this method in thread.hpp for its purpose and
4060   // why it is called here.
4061   p->initialize_queues();
4062   p->set_next(_thread_list);
4063   _thread_list = p;
4064   _number_of_threads++;
4065   oop threadObj = p->threadObj();
4066   bool daemon = true;
4067   // Bootstrapping problem: threadObj can be null for initial
4068   // JavaThread (or for threads attached via JNI)
4069   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4070     _number_of_non_daemon_threads++;
4071     daemon = false;
4072   }
4073 
4074   ThreadService::add_thread(p, daemon);
4075 
4076   // Possible GC point.
4077   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4078 }
4079 
4080 void Threads::remove(JavaThread* p) {
4081   // Extra scope needed for Thread_lock, so we can check
4082   // that we do not remove thread without safepoint code notice
4083   { MutexLocker ml(Threads_lock);
4084 
4085     assert(includes(p), "p must be present");
4086 
4087     JavaThread* current = _thread_list;
4088     JavaThread* prev    = NULL;
4089 
4090     while (current != p) {
4091       prev    = current;
4092       current = current->next();
4093     }
4094 
4095     if (prev) {
4096       prev->set_next(current->next());
4097     } else {
4098       _thread_list = p->next();
4099     }
4100     _number_of_threads--;
4101     oop threadObj = p->threadObj();
4102     bool daemon = true;
4103     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4104       _number_of_non_daemon_threads--;
4105       daemon = false;
4106 
4107       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4108       // on destroy_vm will wake up.
4109       if (number_of_non_daemon_threads() == 1) {
4110         Threads_lock->notify_all();
4111       }
4112     }
4113     ThreadService::remove_thread(p, daemon);
4114 
4115     // Make sure that safepoint code disregard this thread. This is needed since
4116     // the thread might mess around with locks after this point. This can cause it
4117     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4118     // of this thread since it is removed from the queue.
4119     p->set_terminated_value();
4120   } // unlock Threads_lock
4121 
4122   // Since Events::log uses a lock, we grab it outside the Threads_lock
4123   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4124 }
4125 
4126 // Threads_lock must be held when this is called (or must be called during a safepoint)
4127 bool Threads::includes(JavaThread* p) {
4128   assert(Threads_lock->is_locked(), "sanity check");
4129   ALL_JAVA_THREADS(q) {
4130     if (q == p) {
4131       return true;
4132     }
4133   }
4134   return false;
4135 }
4136 
4137 // Operations on the Threads list for GC.  These are not explicitly locked,
4138 // but the garbage collector must provide a safe context for them to run.
4139 // In particular, these things should never be called when the Threads_lock
4140 // is held by some other thread. (Note: the Safepoint abstraction also
4141 // uses the Threads_lock to guarantee this property. It also makes sure that
4142 // all threads gets blocked when exiting or starting).
4143 
4144 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4145   ALL_JAVA_THREADS(p) {
4146     p->oops_do(f, cld_f, cf);
4147   }
4148   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4149 }
4150 
4151 void Threads::change_thread_claim_parity() {
4152   // Set the new claim parity.
4153   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4154          "Not in range.");
4155   _thread_claim_parity++;
4156   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4157   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4158          "Not in range.");
4159 }
4160 
4161 #ifdef ASSERT
4162 void Threads::assert_all_threads_claimed() {
4163   ALL_JAVA_THREADS(p) {
4164     const int thread_parity = p->oops_do_parity();
4165     assert((thread_parity == _thread_claim_parity),
4166            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4167   }
4168 }
4169 #endif // ASSERT
4170 
4171 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4172   int cp = Threads::thread_claim_parity();
4173   ALL_JAVA_THREADS(p) {
4174     if (p->claim_oops_do(is_par, cp)) {
4175       p->oops_do(f, cld_f, cf);
4176     }
4177   }
4178   VMThread* vmt = VMThread::vm_thread();
4179   if (vmt->claim_oops_do(is_par, cp)) {
4180     vmt->oops_do(f, cld_f, cf);
4181   }
4182 }
4183 
4184 #if INCLUDE_ALL_GCS
4185 // Used by ParallelScavenge
4186 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4187   ALL_JAVA_THREADS(p) {
4188     q->enqueue(new ThreadRootsTask(p));
4189   }
4190   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4191 }
4192 
4193 // Used by Parallel Old
4194 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4195   ALL_JAVA_THREADS(p) {
4196     q->enqueue(new ThreadRootsMarkingTask(p));
4197   }
4198   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4199 }
4200 #endif // INCLUDE_ALL_GCS
4201 
4202 void Threads::nmethods_do(CodeBlobClosure* cf) {
4203   ALL_JAVA_THREADS(p) {
4204     p->nmethods_do(cf);
4205   }
4206   VMThread::vm_thread()->nmethods_do(cf);
4207 }
4208 
4209 void Threads::metadata_do(void f(Metadata*)) {
4210   ALL_JAVA_THREADS(p) {
4211     p->metadata_do(f);
4212   }
4213 }
4214 
4215 class ThreadHandlesClosure : public ThreadClosure {
4216   void (*_f)(Metadata*);
4217  public:
4218   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4219   virtual void do_thread(Thread* thread) {
4220     thread->metadata_handles_do(_f);
4221   }
4222 };
4223 
4224 void Threads::metadata_handles_do(void f(Metadata*)) {
4225   // Only walk the Handles in Thread.
4226   ThreadHandlesClosure handles_closure(f);
4227   threads_do(&handles_closure);
4228 }
4229 
4230 void Threads::deoptimized_wrt_marked_nmethods() {
4231   ALL_JAVA_THREADS(p) {
4232     p->deoptimized_wrt_marked_nmethods();
4233   }
4234 }
4235 
4236 
4237 // Get count Java threads that are waiting to enter the specified monitor.
4238 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4239                                                          address monitor,
4240                                                          bool doLock) {
4241   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4242          "must grab Threads_lock or be at safepoint");
4243   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4244 
4245   int i = 0;
4246   {
4247     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4248     ALL_JAVA_THREADS(p) {
4249       if (!p->can_call_java()) continue;
4250 
4251       address pending = (address)p->current_pending_monitor();
4252       if (pending == monitor) {             // found a match
4253         if (i < count) result->append(p);   // save the first count matches
4254         i++;
4255       }
4256     }
4257   }
4258   return result;
4259 }
4260 
4261 
4262 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4263                                                       bool doLock) {
4264   assert(doLock ||
4265          Threads_lock->owned_by_self() ||
4266          SafepointSynchronize::is_at_safepoint(),
4267          "must grab Threads_lock or be at safepoint");
4268 
4269   // NULL owner means not locked so we can skip the search
4270   if (owner == NULL) return NULL;
4271 
4272   {
4273     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4274     ALL_JAVA_THREADS(p) {
4275       // first, see if owner is the address of a Java thread
4276       if (owner == (address)p) return p;
4277     }
4278   }
4279   // Cannot assert on lack of success here since this function may be
4280   // used by code that is trying to report useful problem information
4281   // like deadlock detection.
4282   if (UseHeavyMonitors) return NULL;
4283 
4284   // If we didn't find a matching Java thread and we didn't force use of
4285   // heavyweight monitors, then the owner is the stack address of the
4286   // Lock Word in the owning Java thread's stack.
4287   //
4288   JavaThread* the_owner = NULL;
4289   {
4290     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4291     ALL_JAVA_THREADS(q) {
4292       if (q->is_lock_owned(owner)) {
4293         the_owner = q;
4294         break;
4295       }
4296     }
4297   }
4298   // cannot assert on lack of success here; see above comment
4299   return the_owner;
4300 }
4301 
4302 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4303 void Threads::print_on(outputStream* st, bool print_stacks,
4304                        bool internal_format, bool print_concurrent_locks) {
4305   char buf[32];
4306   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4307 
4308   st->print_cr("Full thread dump %s (%s %s):",
4309                Abstract_VM_Version::vm_name(),
4310                Abstract_VM_Version::vm_release(),
4311                Abstract_VM_Version::vm_info_string());
4312   st->cr();
4313 
4314 #if INCLUDE_SERVICES
4315   // Dump concurrent locks
4316   ConcurrentLocksDump concurrent_locks;
4317   if (print_concurrent_locks) {
4318     concurrent_locks.dump_at_safepoint();
4319   }
4320 #endif // INCLUDE_SERVICES
4321 
4322   ALL_JAVA_THREADS(p) {
4323     ResourceMark rm;
4324     p->print_on(st);
4325     if (print_stacks) {
4326       if (internal_format) {
4327         p->trace_stack();
4328       } else {
4329         p->print_stack_on(st);
4330       }
4331     }
4332     st->cr();
4333 #if INCLUDE_SERVICES
4334     if (print_concurrent_locks) {
4335       concurrent_locks.print_locks_on(p, st);
4336     }
4337 #endif // INCLUDE_SERVICES
4338   }
4339 
4340   VMThread::vm_thread()->print_on(st);
4341   st->cr();
4342   Universe::heap()->print_gc_threads_on(st);
4343   WatcherThread* wt = WatcherThread::watcher_thread();
4344   if (wt != NULL) {
4345     wt->print_on(st);
4346     st->cr();
4347   }
4348   CompileBroker::print_compiler_threads_on(st);
4349   st->flush();
4350 }
4351 
4352 // Threads::print_on_error() is called by fatal error handler. It's possible
4353 // that VM is not at safepoint and/or current thread is inside signal handler.
4354 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4355 // memory (even in resource area), it might deadlock the error handler.
4356 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4357                              int buflen) {
4358   bool found_current = false;
4359   st->print_cr("Java Threads: ( => current thread )");
4360   ALL_JAVA_THREADS(thread) {
4361     bool is_current = (current == thread);
4362     found_current = found_current || is_current;
4363 
4364     st->print("%s", is_current ? "=>" : "  ");
4365 
4366     st->print(PTR_FORMAT, p2i(thread));
4367     st->print(" ");
4368     thread->print_on_error(st, buf, buflen);
4369     st->cr();
4370   }
4371   st->cr();
4372 
4373   st->print_cr("Other Threads:");
4374   if (VMThread::vm_thread()) {
4375     bool is_current = (current == VMThread::vm_thread());
4376     found_current = found_current || is_current;
4377     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4378 
4379     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4380     st->print(" ");
4381     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4382     st->cr();
4383   }
4384   WatcherThread* wt = WatcherThread::watcher_thread();
4385   if (wt != NULL) {
4386     bool is_current = (current == wt);
4387     found_current = found_current || is_current;
4388     st->print("%s", is_current ? "=>" : "  ");
4389 
4390     st->print(PTR_FORMAT, p2i(wt));
4391     st->print(" ");
4392     wt->print_on_error(st, buf, buflen);
4393     st->cr();
4394   }
4395   if (!found_current) {
4396     st->cr();
4397     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4398     current->print_on_error(st, buf, buflen);
4399     st->cr();
4400   }
4401 }
4402 
4403 // Internal SpinLock and Mutex
4404 // Based on ParkEvent
4405 
4406 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4407 //
4408 // We employ SpinLocks _only for low-contention, fixed-length
4409 // short-duration critical sections where we're concerned
4410 // about native mutex_t or HotSpot Mutex:: latency.
4411 // The mux construct provides a spin-then-block mutual exclusion
4412 // mechanism.
4413 //
4414 // Testing has shown that contention on the ListLock guarding gFreeList
4415 // is common.  If we implement ListLock as a simple SpinLock it's common
4416 // for the JVM to devolve to yielding with little progress.  This is true
4417 // despite the fact that the critical sections protected by ListLock are
4418 // extremely short.
4419 //
4420 // TODO-FIXME: ListLock should be of type SpinLock.
4421 // We should make this a 1st-class type, integrated into the lock
4422 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4423 // should have sufficient padding to avoid false-sharing and excessive
4424 // cache-coherency traffic.
4425 
4426 
4427 typedef volatile int SpinLockT;
4428 
4429 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4430   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4431     return;   // normal fast-path return
4432   }
4433 
4434   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4435   TEVENT(SpinAcquire - ctx);
4436   int ctr = 0;
4437   int Yields = 0;
4438   for (;;) {
4439     while (*adr != 0) {
4440       ++ctr;
4441       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4442         if (Yields > 5) {
4443           os::naked_short_sleep(1);
4444         } else {
4445           os::naked_yield();
4446           ++Yields;
4447         }
4448       } else {
4449         SpinPause();
4450       }
4451     }
4452     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4453   }
4454 }
4455 
4456 void Thread::SpinRelease(volatile int * adr) {
4457   assert(*adr != 0, "invariant");
4458   OrderAccess::fence();      // guarantee at least release consistency.
4459   // Roach-motel semantics.
4460   // It's safe if subsequent LDs and STs float "up" into the critical section,
4461   // but prior LDs and STs within the critical section can't be allowed
4462   // to reorder or float past the ST that releases the lock.
4463   // Loads and stores in the critical section - which appear in program
4464   // order before the store that releases the lock - must also appear
4465   // before the store that releases the lock in memory visibility order.
4466   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4467   // the ST of 0 into the lock-word which releases the lock, so fence
4468   // more than covers this on all platforms.
4469   *adr = 0;
4470 }
4471 
4472 // muxAcquire and muxRelease:
4473 //
4474 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4475 //    The LSB of the word is set IFF the lock is held.
4476 //    The remainder of the word points to the head of a singly-linked list
4477 //    of threads blocked on the lock.
4478 //
4479 // *  The current implementation of muxAcquire-muxRelease uses its own
4480 //    dedicated Thread._MuxEvent instance.  If we're interested in
4481 //    minimizing the peak number of extant ParkEvent instances then
4482 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4483 //    as certain invariants were satisfied.  Specifically, care would need
4484 //    to be taken with regards to consuming unpark() "permits".
4485 //    A safe rule of thumb is that a thread would never call muxAcquire()
4486 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4487 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4488 //    consume an unpark() permit intended for monitorenter, for instance.
4489 //    One way around this would be to widen the restricted-range semaphore
4490 //    implemented in park().  Another alternative would be to provide
4491 //    multiple instances of the PlatformEvent() for each thread.  One
4492 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4493 //
4494 // *  Usage:
4495 //    -- Only as leaf locks
4496 //    -- for short-term locking only as muxAcquire does not perform
4497 //       thread state transitions.
4498 //
4499 // Alternatives:
4500 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4501 //    but with parking or spin-then-park instead of pure spinning.
4502 // *  Use Taura-Oyama-Yonenzawa locks.
4503 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4504 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4505 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4506 //    acquiring threads use timers (ParkTimed) to detect and recover from
4507 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4508 //    boundaries by using placement-new.
4509 // *  Augment MCS with advisory back-link fields maintained with CAS().
4510 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4511 //    The validity of the backlinks must be ratified before we trust the value.
4512 //    If the backlinks are invalid the exiting thread must back-track through the
4513 //    the forward links, which are always trustworthy.
4514 // *  Add a successor indication.  The LockWord is currently encoded as
4515 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4516 //    to provide the usual futile-wakeup optimization.
4517 //    See RTStt for details.
4518 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4519 //
4520 
4521 
4522 typedef volatile intptr_t MutexT;      // Mux Lock-word
4523 enum MuxBits { LOCKBIT = 1 };
4524 
4525 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4526   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4527   if (w == 0) return;
4528   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4529     return;
4530   }
4531 
4532   TEVENT(muxAcquire - Contention);
4533   ParkEvent * const Self = Thread::current()->_MuxEvent;
4534   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4535   for (;;) {
4536     int its = (os::is_MP() ? 100 : 0) + 1;
4537 
4538     // Optional spin phase: spin-then-park strategy
4539     while (--its >= 0) {
4540       w = *Lock;
4541       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542         return;
4543       }
4544     }
4545 
4546     Self->reset();
4547     Self->OnList = intptr_t(Lock);
4548     // The following fence() isn't _strictly necessary as the subsequent
4549     // CAS() both serializes execution and ratifies the fetched *Lock value.
4550     OrderAccess::fence();
4551     for (;;) {
4552       w = *Lock;
4553       if ((w & LOCKBIT) == 0) {
4554         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4555           Self->OnList = 0;   // hygiene - allows stronger asserts
4556           return;
4557         }
4558         continue;      // Interference -- *Lock changed -- Just retry
4559       }
4560       assert(w & LOCKBIT, "invariant");
4561       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4562       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4563     }
4564 
4565     while (Self->OnList != 0) {
4566       Self->park();
4567     }
4568   }
4569 }
4570 
4571 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4572   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4573   if (w == 0) return;
4574   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4575     return;
4576   }
4577 
4578   TEVENT(muxAcquire - Contention);
4579   ParkEvent * ReleaseAfter = NULL;
4580   if (ev == NULL) {
4581     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4582   }
4583   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4584   for (;;) {
4585     guarantee(ev->OnList == 0, "invariant");
4586     int its = (os::is_MP() ? 100 : 0) + 1;
4587 
4588     // Optional spin phase: spin-then-park strategy
4589     while (--its >= 0) {
4590       w = *Lock;
4591       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4592         if (ReleaseAfter != NULL) {
4593           ParkEvent::Release(ReleaseAfter);
4594         }
4595         return;
4596       }
4597     }
4598 
4599     ev->reset();
4600     ev->OnList = intptr_t(Lock);
4601     // The following fence() isn't _strictly necessary as the subsequent
4602     // CAS() both serializes execution and ratifies the fetched *Lock value.
4603     OrderAccess::fence();
4604     for (;;) {
4605       w = *Lock;
4606       if ((w & LOCKBIT) == 0) {
4607         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4608           ev->OnList = 0;
4609           // We call ::Release while holding the outer lock, thus
4610           // artificially lengthening the critical section.
4611           // Consider deferring the ::Release() until the subsequent unlock(),
4612           // after we've dropped the outer lock.
4613           if (ReleaseAfter != NULL) {
4614             ParkEvent::Release(ReleaseAfter);
4615           }
4616           return;
4617         }
4618         continue;      // Interference -- *Lock changed -- Just retry
4619       }
4620       assert(w & LOCKBIT, "invariant");
4621       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4622       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4623     }
4624 
4625     while (ev->OnList != 0) {
4626       ev->park();
4627     }
4628   }
4629 }
4630 
4631 // Release() must extract a successor from the list and then wake that thread.
4632 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4633 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4634 // Release() would :
4635 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4636 // (B) Extract a successor from the private list "in-hand"
4637 // (C) attempt to CAS() the residual back into *Lock over null.
4638 //     If there were any newly arrived threads and the CAS() would fail.
4639 //     In that case Release() would detach the RATs, re-merge the list in-hand
4640 //     with the RATs and repeat as needed.  Alternately, Release() might
4641 //     detach and extract a successor, but then pass the residual list to the wakee.
4642 //     The wakee would be responsible for reattaching and remerging before it
4643 //     competed for the lock.
4644 //
4645 // Both "pop" and DMR are immune from ABA corruption -- there can be
4646 // multiple concurrent pushers, but only one popper or detacher.
4647 // This implementation pops from the head of the list.  This is unfair,
4648 // but tends to provide excellent throughput as hot threads remain hot.
4649 // (We wake recently run threads first).
4650 //
4651 // All paths through muxRelease() will execute a CAS.
4652 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4653 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4654 // executed within the critical section are complete and globally visible before the
4655 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4656 void Thread::muxRelease(volatile intptr_t * Lock)  {
4657   for (;;) {
4658     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4659     assert(w & LOCKBIT, "invariant");
4660     if (w == LOCKBIT) return;
4661     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4662     assert(List != NULL, "invariant");
4663     assert(List->OnList == intptr_t(Lock), "invariant");
4664     ParkEvent * const nxt = List->ListNext;
4665     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4666 
4667     // The following CAS() releases the lock and pops the head element.
4668     // The CAS() also ratifies the previously fetched lock-word value.
4669     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4670       continue;
4671     }
4672     List->OnList = 0;
4673     OrderAccess::fence();
4674     List->unpark();
4675     return;
4676   }
4677 }
4678 
4679 
4680 void Threads::verify() {
4681   ALL_JAVA_THREADS(p) {
4682     p->verify();
4683   }
4684   VMThread* thread = VMThread::vm_thread();
4685   if (thread != NULL) thread->verify();
4686 }