1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 
  51 #ifdef PRODUCT
  52 #define BLOCK_COMMENT(str) /* nothing */
  53 #define STOP(error) stop(error)
  54 #else
  55 #define BLOCK_COMMENT(str) block_comment(str)
  56 #define STOP(error) block_comment(error); stop(error)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 #ifdef ASSERT
  62 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  63 #endif
  64 
  65 static Assembler::Condition reverse[] = {
  66     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  67     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  68     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  69     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  70     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  71     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  72     Assembler::above          /* belowEqual    = 0x6 */ ,
  73     Assembler::belowEqual     /* above         = 0x7 */ ,
  74     Assembler::positive       /* negative      = 0x8 */ ,
  75     Assembler::negative       /* positive      = 0x9 */ ,
  76     Assembler::noParity       /* parity        = 0xa */ ,
  77     Assembler::parity         /* noParity      = 0xb */ ,
  78     Assembler::greaterEqual   /* less          = 0xc */ ,
  79     Assembler::less           /* greaterEqual  = 0xd */ ,
  80     Assembler::greater        /* lessEqual     = 0xe */ ,
  81     Assembler::lessEqual      /* greater       = 0xf, */
  82 
  83 };
  84 
  85 
  86 // Implementation of MacroAssembler
  87 
  88 // First all the versions that have distinct versions depending on 32/64 bit
  89 // Unless the difference is trivial (1 line or so).
  90 
  91 #ifndef _LP64
  92 
  93 // 32bit versions
  94 
  95 Address MacroAssembler::as_Address(AddressLiteral adr) {
  96   return Address(adr.target(), adr.rspec());
  97 }
  98 
  99 Address MacroAssembler::as_Address(ArrayAddress adr) {
 100   return Address::make_array(adr);
 101 }
 102 
 103 void MacroAssembler::call_VM_leaf_base(address entry_point,
 104                                        int number_of_arguments) {
 105   call(RuntimeAddress(entry_point));
 106   increment(rsp, number_of_arguments * wordSize);
 107 }
 108 
 109 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 110   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 111 }
 112 
 113 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 118   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::extend_sign(Register hi, Register lo) {
 126   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 127   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 128     cdql();
 129   } else {
 130     movl(hi, lo);
 131     sarl(hi, 31);
 132   }
 133 }
 134 
 135 void MacroAssembler::jC2(Register tmp, Label& L) {
 136   // set parity bit if FPU flag C2 is set (via rax)
 137   save_rax(tmp);
 138   fwait(); fnstsw_ax();
 139   sahf();
 140   restore_rax(tmp);
 141   // branch
 142   jcc(Assembler::parity, L);
 143 }
 144 
 145 void MacroAssembler::jnC2(Register tmp, Label& L) {
 146   // set parity bit if FPU flag C2 is set (via rax)
 147   save_rax(tmp);
 148   fwait(); fnstsw_ax();
 149   sahf();
 150   restore_rax(tmp);
 151   // branch
 152   jcc(Assembler::noParity, L);
 153 }
 154 
 155 // 32bit can do a case table jump in one instruction but we no longer allow the base
 156 // to be installed in the Address class
 157 void MacroAssembler::jump(ArrayAddress entry) {
 158   jmp(as_Address(entry));
 159 }
 160 
 161 // Note: y_lo will be destroyed
 162 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 163   // Long compare for Java (semantics as described in JVM spec.)
 164   Label high, low, done;
 165 
 166   cmpl(x_hi, y_hi);
 167   jcc(Assembler::less, low);
 168   jcc(Assembler::greater, high);
 169   // x_hi is the return register
 170   xorl(x_hi, x_hi);
 171   cmpl(x_lo, y_lo);
 172   jcc(Assembler::below, low);
 173   jcc(Assembler::equal, done);
 174 
 175   bind(high);
 176   xorl(x_hi, x_hi);
 177   increment(x_hi);
 178   jmp(done);
 179 
 180   bind(low);
 181   xorl(x_hi, x_hi);
 182   decrementl(x_hi);
 183 
 184   bind(done);
 185 }
 186 
 187 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 188     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 189 }
 190 
 191 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 192   // leal(dst, as_Address(adr));
 193   // see note in movl as to why we must use a move
 194   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 195 }
 196 
 197 void MacroAssembler::leave() {
 198   mov(rsp, rbp);
 199   pop(rbp);
 200 }
 201 
 202 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 203   // Multiplication of two Java long values stored on the stack
 204   // as illustrated below. Result is in rdx:rax.
 205   //
 206   // rsp ---> [  ??  ] \               \
 207   //            ....    | y_rsp_offset  |
 208   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 209   //          [ y_hi ]                  | (in bytes)
 210   //            ....                    |
 211   //          [ x_lo ]                 /
 212   //          [ x_hi ]
 213   //            ....
 214   //
 215   // Basic idea: lo(result) = lo(x_lo * y_lo)
 216   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 217   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 218   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 219   Label quick;
 220   // load x_hi, y_hi and check if quick
 221   // multiplication is possible
 222   movl(rbx, x_hi);
 223   movl(rcx, y_hi);
 224   movl(rax, rbx);
 225   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 226   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 227   // do full multiplication
 228   // 1st step
 229   mull(y_lo);                                    // x_hi * y_lo
 230   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 231   // 2nd step
 232   movl(rax, x_lo);
 233   mull(rcx);                                     // x_lo * y_hi
 234   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 235   // 3rd step
 236   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 237   movl(rax, x_lo);
 238   mull(y_lo);                                    // x_lo * y_lo
 239   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 240 }
 241 
 242 void MacroAssembler::lneg(Register hi, Register lo) {
 243   negl(lo);
 244   adcl(hi, 0);
 245   negl(hi);
 246 }
 247 
 248 void MacroAssembler::lshl(Register hi, Register lo) {
 249   // Java shift left long support (semantics as described in JVM spec., p.305)
 250   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 251   // shift value is in rcx !
 252   assert(hi != rcx, "must not use rcx");
 253   assert(lo != rcx, "must not use rcx");
 254   const Register s = rcx;                        // shift count
 255   const int      n = BitsPerWord;
 256   Label L;
 257   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 258   cmpl(s, n);                                    // if (s < n)
 259   jcc(Assembler::less, L);                       // else (s >= n)
 260   movl(hi, lo);                                  // x := x << n
 261   xorl(lo, lo);
 262   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 263   bind(L);                                       // s (mod n) < n
 264   shldl(hi, lo);                                 // x := x << s
 265   shll(lo);
 266 }
 267 
 268 
 269 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 270   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 271   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 272   assert(hi != rcx, "must not use rcx");
 273   assert(lo != rcx, "must not use rcx");
 274   const Register s = rcx;                        // shift count
 275   const int      n = BitsPerWord;
 276   Label L;
 277   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 278   cmpl(s, n);                                    // if (s < n)
 279   jcc(Assembler::less, L);                       // else (s >= n)
 280   movl(lo, hi);                                  // x := x >> n
 281   if (sign_extension) sarl(hi, 31);
 282   else                xorl(hi, hi);
 283   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 284   bind(L);                                       // s (mod n) < n
 285   shrdl(lo, hi);                                 // x := x >> s
 286   if (sign_extension) sarl(hi);
 287   else                shrl(hi);
 288 }
 289 
 290 void MacroAssembler::movoop(Register dst, jobject obj) {
 291   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 292 }
 293 
 294 void MacroAssembler::movoop(Address dst, jobject obj) {
 295   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 296 }
 297 
 298 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 299   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 300 }
 301 
 302 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 303   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 304 }
 305 
 306 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 307   // scratch register is not used,
 308   // it is defined to match parameters of 64-bit version of this method.
 309   if (src.is_lval()) {
 310     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 311   } else {
 312     movl(dst, as_Address(src));
 313   }
 314 }
 315 
 316 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 317   movl(as_Address(dst), src);
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 321   movl(dst, as_Address(src));
 322 }
 323 
 324 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 325 void MacroAssembler::movptr(Address dst, intptr_t src) {
 326   movl(dst, src);
 327 }
 328 
 329 
 330 void MacroAssembler::pop_callee_saved_registers() {
 331   pop(rcx);
 332   pop(rdx);
 333   pop(rdi);
 334   pop(rsi);
 335 }
 336 
 337 void MacroAssembler::pop_fTOS() {
 338   fld_d(Address(rsp, 0));
 339   addl(rsp, 2 * wordSize);
 340 }
 341 
 342 void MacroAssembler::push_callee_saved_registers() {
 343   push(rsi);
 344   push(rdi);
 345   push(rdx);
 346   push(rcx);
 347 }
 348 
 349 void MacroAssembler::push_fTOS() {
 350   subl(rsp, 2 * wordSize);
 351   fstp_d(Address(rsp, 0));
 352 }
 353 
 354 
 355 void MacroAssembler::pushoop(jobject obj) {
 356   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 357 }
 358 
 359 void MacroAssembler::pushklass(Metadata* obj) {
 360   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 361 }
 362 
 363 void MacroAssembler::pushptr(AddressLiteral src) {
 364   if (src.is_lval()) {
 365     push_literal32((int32_t)src.target(), src.rspec());
 366   } else {
 367     pushl(as_Address(src));
 368   }
 369 }
 370 
 371 void MacroAssembler::set_word_if_not_zero(Register dst) {
 372   xorl(dst, dst);
 373   set_byte_if_not_zero(dst);
 374 }
 375 
 376 static void pass_arg0(MacroAssembler* masm, Register arg) {
 377   masm->push(arg);
 378 }
 379 
 380 static void pass_arg1(MacroAssembler* masm, Register arg) {
 381   masm->push(arg);
 382 }
 383 
 384 static void pass_arg2(MacroAssembler* masm, Register arg) {
 385   masm->push(arg);
 386 }
 387 
 388 static void pass_arg3(MacroAssembler* masm, Register arg) {
 389   masm->push(arg);
 390 }
 391 
 392 #ifndef PRODUCT
 393 extern "C" void findpc(intptr_t x);
 394 #endif
 395 
 396 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 397   // In order to get locks to work, we need to fake a in_VM state
 398   JavaThread* thread = JavaThread::current();
 399   JavaThreadState saved_state = thread->thread_state();
 400   thread->set_thread_state(_thread_in_vm);
 401   if (ShowMessageBoxOnError) {
 402     JavaThread* thread = JavaThread::current();
 403     JavaThreadState saved_state = thread->thread_state();
 404     thread->set_thread_state(_thread_in_vm);
 405     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 406       ttyLocker ttyl;
 407       BytecodeCounter::print();
 408     }
 409     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 410     // This is the value of eip which points to where verify_oop will return.
 411     if (os::message_box(msg, "Execution stopped, print registers?")) {
 412       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 413       BREAKPOINT;
 414     }
 415   } else {
 416     ttyLocker ttyl;
 417     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 418   }
 419   // Don't assert holding the ttyLock
 420     assert(false, "DEBUG MESSAGE: %s", msg);
 421   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 422 }
 423 
 424 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 425   ttyLocker ttyl;
 426   FlagSetting fs(Debugging, true);
 427   tty->print_cr("eip = 0x%08x", eip);
 428 #ifndef PRODUCT
 429   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 430     tty->cr();
 431     findpc(eip);
 432     tty->cr();
 433   }
 434 #endif
 435 #define PRINT_REG(rax) \
 436   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 437   PRINT_REG(rax);
 438   PRINT_REG(rbx);
 439   PRINT_REG(rcx);
 440   PRINT_REG(rdx);
 441   PRINT_REG(rdi);
 442   PRINT_REG(rsi);
 443   PRINT_REG(rbp);
 444   PRINT_REG(rsp);
 445 #undef PRINT_REG
 446   // Print some words near top of staack.
 447   int* dump_sp = (int*) rsp;
 448   for (int col1 = 0; col1 < 8; col1++) {
 449     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 450     os::print_location(tty, *dump_sp++);
 451   }
 452   for (int row = 0; row < 16; row++) {
 453     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 454     for (int col = 0; col < 8; col++) {
 455       tty->print(" 0x%08x", *dump_sp++);
 456     }
 457     tty->cr();
 458   }
 459   // Print some instructions around pc:
 460   Disassembler::decode((address)eip-64, (address)eip);
 461   tty->print_cr("--------");
 462   Disassembler::decode((address)eip, (address)eip+32);
 463 }
 464 
 465 void MacroAssembler::stop(const char* msg) {
 466   ExternalAddress message((address)msg);
 467   // push address of message
 468   pushptr(message.addr());
 469   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 470   pusha();                                            // push registers
 471   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 472   hlt();
 473 }
 474 
 475 void MacroAssembler::warn(const char* msg) {
 476   push_CPU_state();
 477 
 478   ExternalAddress message((address) msg);
 479   // push address of message
 480   pushptr(message.addr());
 481 
 482   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 483   addl(rsp, wordSize);       // discard argument
 484   pop_CPU_state();
 485 }
 486 
 487 void MacroAssembler::print_state() {
 488   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 489   pusha();                                            // push registers
 490 
 491   push_CPU_state();
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 493   pop_CPU_state();
 494 
 495   popa();
 496   addl(rsp, wordSize);
 497 }
 498 
 499 #else // _LP64
 500 
 501 // 64 bit versions
 502 
 503 Address MacroAssembler::as_Address(AddressLiteral adr) {
 504   // amd64 always does this as a pc-rel
 505   // we can be absolute or disp based on the instruction type
 506   // jmp/call are displacements others are absolute
 507   assert(!adr.is_lval(), "must be rval");
 508   assert(reachable(adr), "must be");
 509   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 510 
 511 }
 512 
 513 Address MacroAssembler::as_Address(ArrayAddress adr) {
 514   AddressLiteral base = adr.base();
 515   lea(rscratch1, base);
 516   Address index = adr.index();
 517   assert(index._disp == 0, "must not have disp"); // maybe it can?
 518   Address array(rscratch1, index._index, index._scale, index._disp);
 519   return array;
 520 }
 521 
 522 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 523   Label L, E;
 524 
 525 #ifdef _WIN64
 526   // Windows always allocates space for it's register args
 527   assert(num_args <= 4, "only register arguments supported");
 528   subq(rsp,  frame::arg_reg_save_area_bytes);
 529 #endif
 530 
 531   // Align stack if necessary
 532   testl(rsp, 15);
 533   jcc(Assembler::zero, L);
 534 
 535   subq(rsp, 8);
 536   {
 537     call(RuntimeAddress(entry_point));
 538   }
 539   addq(rsp, 8);
 540   jmp(E);
 541 
 542   bind(L);
 543   {
 544     call(RuntimeAddress(entry_point));
 545   }
 546 
 547   bind(E);
 548 
 549 #ifdef _WIN64
 550   // restore stack pointer
 551   addq(rsp, frame::arg_reg_save_area_bytes);
 552 #endif
 553 
 554 }
 555 
 556 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 557   assert(!src2.is_lval(), "should use cmpptr");
 558 
 559   if (reachable(src2)) {
 560     cmpq(src1, as_Address(src2));
 561   } else {
 562     lea(rscratch1, src2);
 563     Assembler::cmpq(src1, Address(rscratch1, 0));
 564   }
 565 }
 566 
 567 int MacroAssembler::corrected_idivq(Register reg) {
 568   // Full implementation of Java ldiv and lrem; checks for special
 569   // case as described in JVM spec., p.243 & p.271.  The function
 570   // returns the (pc) offset of the idivl instruction - may be needed
 571   // for implicit exceptions.
 572   //
 573   //         normal case                           special case
 574   //
 575   // input : rax: dividend                         min_long
 576   //         reg: divisor   (may not be eax/edx)   -1
 577   //
 578   // output: rax: quotient  (= rax idiv reg)       min_long
 579   //         rdx: remainder (= rax irem reg)       0
 580   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 581   static const int64_t min_long = 0x8000000000000000;
 582   Label normal_case, special_case;
 583 
 584   // check for special case
 585   cmp64(rax, ExternalAddress((address) &min_long));
 586   jcc(Assembler::notEqual, normal_case);
 587   xorl(rdx, rdx); // prepare rdx for possible special case (where
 588                   // remainder = 0)
 589   cmpq(reg, -1);
 590   jcc(Assembler::equal, special_case);
 591 
 592   // handle normal case
 593   bind(normal_case);
 594   cdqq();
 595   int idivq_offset = offset();
 596   idivq(reg);
 597 
 598   // normal and special case exit
 599   bind(special_case);
 600 
 601   return idivq_offset;
 602 }
 603 
 604 void MacroAssembler::decrementq(Register reg, int value) {
 605   if (value == min_jint) { subq(reg, value); return; }
 606   if (value <  0) { incrementq(reg, -value); return; }
 607   if (value == 0) {                        ; return; }
 608   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 609   /* else */      { subq(reg, value)       ; return; }
 610 }
 611 
 612 void MacroAssembler::decrementq(Address dst, int value) {
 613   if (value == min_jint) { subq(dst, value); return; }
 614   if (value <  0) { incrementq(dst, -value); return; }
 615   if (value == 0) {                        ; return; }
 616   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 617   /* else */      { subq(dst, value)       ; return; }
 618 }
 619 
 620 void MacroAssembler::incrementq(AddressLiteral dst) {
 621   if (reachable(dst)) {
 622     incrementq(as_Address(dst));
 623   } else {
 624     lea(rscratch1, dst);
 625     incrementq(Address(rscratch1, 0));
 626   }
 627 }
 628 
 629 void MacroAssembler::incrementq(Register reg, int value) {
 630   if (value == min_jint) { addq(reg, value); return; }
 631   if (value <  0) { decrementq(reg, -value); return; }
 632   if (value == 0) {                        ; return; }
 633   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 634   /* else */      { addq(reg, value)       ; return; }
 635 }
 636 
 637 void MacroAssembler::incrementq(Address dst, int value) {
 638   if (value == min_jint) { addq(dst, value); return; }
 639   if (value <  0) { decrementq(dst, -value); return; }
 640   if (value == 0) {                        ; return; }
 641   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 642   /* else */      { addq(dst, value)       ; return; }
 643 }
 644 
 645 // 32bit can do a case table jump in one instruction but we no longer allow the base
 646 // to be installed in the Address class
 647 void MacroAssembler::jump(ArrayAddress entry) {
 648   lea(rscratch1, entry.base());
 649   Address dispatch = entry.index();
 650   assert(dispatch._base == noreg, "must be");
 651   dispatch._base = rscratch1;
 652   jmp(dispatch);
 653 }
 654 
 655 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 656   ShouldNotReachHere(); // 64bit doesn't use two regs
 657   cmpq(x_lo, y_lo);
 658 }
 659 
 660 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 661     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 662 }
 663 
 664 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 665   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 666   movptr(dst, rscratch1);
 667 }
 668 
 669 void MacroAssembler::leave() {
 670   // %%% is this really better? Why not on 32bit too?
 671   emit_int8((unsigned char)0xC9); // LEAVE
 672 }
 673 
 674 void MacroAssembler::lneg(Register hi, Register lo) {
 675   ShouldNotReachHere(); // 64bit doesn't use two regs
 676   negq(lo);
 677 }
 678 
 679 void MacroAssembler::movoop(Register dst, jobject obj) {
 680   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 681 }
 682 
 683 void MacroAssembler::movoop(Address dst, jobject obj) {
 684   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 685   movq(dst, rscratch1);
 686 }
 687 
 688 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 689   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 690 }
 691 
 692 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 693   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 694   movq(dst, rscratch1);
 695 }
 696 
 697 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 698   if (src.is_lval()) {
 699     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 700   } else {
 701     if (reachable(src)) {
 702       movq(dst, as_Address(src));
 703     } else {
 704       lea(scratch, src);
 705       movq(dst, Address(scratch, 0));
 706     }
 707   }
 708 }
 709 
 710 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 711   movq(as_Address(dst), src);
 712 }
 713 
 714 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 715   movq(dst, as_Address(src));
 716 }
 717 
 718 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 719 void MacroAssembler::movptr(Address dst, intptr_t src) {
 720   mov64(rscratch1, src);
 721   movq(dst, rscratch1);
 722 }
 723 
 724 // These are mostly for initializing NULL
 725 void MacroAssembler::movptr(Address dst, int32_t src) {
 726   movslq(dst, src);
 727 }
 728 
 729 void MacroAssembler::movptr(Register dst, int32_t src) {
 730   mov64(dst, (intptr_t)src);
 731 }
 732 
 733 void MacroAssembler::pushoop(jobject obj) {
 734   movoop(rscratch1, obj);
 735   push(rscratch1);
 736 }
 737 
 738 void MacroAssembler::pushklass(Metadata* obj) {
 739   mov_metadata(rscratch1, obj);
 740   push(rscratch1);
 741 }
 742 
 743 void MacroAssembler::pushptr(AddressLiteral src) {
 744   lea(rscratch1, src);
 745   if (src.is_lval()) {
 746     push(rscratch1);
 747   } else {
 748     pushq(Address(rscratch1, 0));
 749   }
 750 }
 751 
 752 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 753                                            bool clear_pc) {
 754   // we must set sp to zero to clear frame
 755   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 756   // must clear fp, so that compiled frames are not confused; it is
 757   // possible that we need it only for debugging
 758   if (clear_fp) {
 759     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 760   }
 761 
 762   if (clear_pc) {
 763     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 764   }
 765 }
 766 
 767 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 768                                          Register last_java_fp,
 769                                          address  last_java_pc) {
 770   // determine last_java_sp register
 771   if (!last_java_sp->is_valid()) {
 772     last_java_sp = rsp;
 773   }
 774 
 775   // last_java_fp is optional
 776   if (last_java_fp->is_valid()) {
 777     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 778            last_java_fp);
 779   }
 780 
 781   // last_java_pc is optional
 782   if (last_java_pc != NULL) {
 783     Address java_pc(r15_thread,
 784                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 785     lea(rscratch1, InternalAddress(last_java_pc));
 786     movptr(java_pc, rscratch1);
 787   }
 788 
 789   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 790 }
 791 
 792 static void pass_arg0(MacroAssembler* masm, Register arg) {
 793   if (c_rarg0 != arg ) {
 794     masm->mov(c_rarg0, arg);
 795   }
 796 }
 797 
 798 static void pass_arg1(MacroAssembler* masm, Register arg) {
 799   if (c_rarg1 != arg ) {
 800     masm->mov(c_rarg1, arg);
 801   }
 802 }
 803 
 804 static void pass_arg2(MacroAssembler* masm, Register arg) {
 805   if (c_rarg2 != arg ) {
 806     masm->mov(c_rarg2, arg);
 807   }
 808 }
 809 
 810 static void pass_arg3(MacroAssembler* masm, Register arg) {
 811   if (c_rarg3 != arg ) {
 812     masm->mov(c_rarg3, arg);
 813   }
 814 }
 815 
 816 void MacroAssembler::stop(const char* msg) {
 817   address rip = pc();
 818   pusha(); // get regs on stack
 819   lea(c_rarg0, ExternalAddress((address) msg));
 820   lea(c_rarg1, InternalAddress(rip));
 821   movq(c_rarg2, rsp); // pass pointer to regs array
 822   andq(rsp, -16); // align stack as required by ABI
 823   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 824   hlt();
 825 }
 826 
 827 void MacroAssembler::warn(const char* msg) {
 828   push(rbp);
 829   movq(rbp, rsp);
 830   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 831   push_CPU_state();   // keeps alignment at 16 bytes
 832   lea(c_rarg0, ExternalAddress((address) msg));
 833   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 834   pop_CPU_state();
 835   mov(rsp, rbp);
 836   pop(rbp);
 837 }
 838 
 839 void MacroAssembler::print_state() {
 840   address rip = pc();
 841   pusha();            // get regs on stack
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846 
 847   lea(c_rarg0, InternalAddress(rip));
 848   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 849   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 850 
 851   pop_CPU_state();
 852   mov(rsp, rbp);
 853   pop(rbp);
 854   popa();
 855 }
 856 
 857 #ifndef PRODUCT
 858 extern "C" void findpc(intptr_t x);
 859 #endif
 860 
 861 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 862   // In order to get locks to work, we need to fake a in_VM state
 863   if (ShowMessageBoxOnError) {
 864     JavaThread* thread = JavaThread::current();
 865     JavaThreadState saved_state = thread->thread_state();
 866     thread->set_thread_state(_thread_in_vm);
 867 #ifndef PRODUCT
 868     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 869       ttyLocker ttyl;
 870       BytecodeCounter::print();
 871     }
 872 #endif
 873     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 874     // XXX correct this offset for amd64
 875     // This is the value of eip which points to where verify_oop will return.
 876     if (os::message_box(msg, "Execution stopped, print registers?")) {
 877       print_state64(pc, regs);
 878       BREAKPOINT;
 879       assert(false, "start up GDB");
 880     }
 881     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 882   } else {
 883     ttyLocker ttyl;
 884     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 885                     msg);
 886     assert(false, "DEBUG MESSAGE: %s", msg);
 887   }
 888 }
 889 
 890 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 891   ttyLocker ttyl;
 892   FlagSetting fs(Debugging, true);
 893   tty->print_cr("rip = 0x%016lx", pc);
 894 #ifndef PRODUCT
 895   tty->cr();
 896   findpc(pc);
 897   tty->cr();
 898 #endif
 899 #define PRINT_REG(rax, value) \
 900   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 901   PRINT_REG(rax, regs[15]);
 902   PRINT_REG(rbx, regs[12]);
 903   PRINT_REG(rcx, regs[14]);
 904   PRINT_REG(rdx, regs[13]);
 905   PRINT_REG(rdi, regs[8]);
 906   PRINT_REG(rsi, regs[9]);
 907   PRINT_REG(rbp, regs[10]);
 908   PRINT_REG(rsp, regs[11]);
 909   PRINT_REG(r8 , regs[7]);
 910   PRINT_REG(r9 , regs[6]);
 911   PRINT_REG(r10, regs[5]);
 912   PRINT_REG(r11, regs[4]);
 913   PRINT_REG(r12, regs[3]);
 914   PRINT_REG(r13, regs[2]);
 915   PRINT_REG(r14, regs[1]);
 916   PRINT_REG(r15, regs[0]);
 917 #undef PRINT_REG
 918   // Print some words near top of staack.
 919   int64_t* rsp = (int64_t*) regs[11];
 920   int64_t* dump_sp = rsp;
 921   for (int col1 = 0; col1 < 8; col1++) {
 922     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 923     os::print_location(tty, *dump_sp++);
 924   }
 925   for (int row = 0; row < 25; row++) {
 926     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 927     for (int col = 0; col < 4; col++) {
 928       tty->print(" 0x%016lx", *dump_sp++);
 929     }
 930     tty->cr();
 931   }
 932   // Print some instructions around pc:
 933   Disassembler::decode((address)pc-64, (address)pc);
 934   tty->print_cr("--------");
 935   Disassembler::decode((address)pc, (address)pc+32);
 936 }
 937 
 938 #endif // _LP64
 939 
 940 // Now versions that are common to 32/64 bit
 941 
 942 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 943   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 944 }
 945 
 946 void MacroAssembler::addptr(Register dst, Register src) {
 947   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 948 }
 949 
 950 void MacroAssembler::addptr(Address dst, Register src) {
 951   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 952 }
 953 
 954 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 955   if (reachable(src)) {
 956     Assembler::addsd(dst, as_Address(src));
 957   } else {
 958     lea(rscratch1, src);
 959     Assembler::addsd(dst, Address(rscratch1, 0));
 960   }
 961 }
 962 
 963 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 964   if (reachable(src)) {
 965     addss(dst, as_Address(src));
 966   } else {
 967     lea(rscratch1, src);
 968     addss(dst, Address(rscratch1, 0));
 969   }
 970 }
 971 
 972 void MacroAssembler::align(int modulus) {
 973   align(modulus, offset());
 974 }
 975 
 976 void MacroAssembler::align(int modulus, int target) {
 977   if (target % modulus != 0) {
 978     nop(modulus - (target % modulus));
 979   }
 980 }
 981 
 982 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 983   // Used in sign-masking with aligned address.
 984   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 985   if (reachable(src)) {
 986     Assembler::andpd(dst, as_Address(src));
 987   } else {
 988     lea(rscratch1, src);
 989     Assembler::andpd(dst, Address(rscratch1, 0));
 990   }
 991 }
 992 
 993 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 994   // Used in sign-masking with aligned address.
 995   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 996   if (reachable(src)) {
 997     Assembler::andps(dst, as_Address(src));
 998   } else {
 999     lea(rscratch1, src);
1000     Assembler::andps(dst, Address(rscratch1, 0));
1001   }
1002 }
1003 
1004 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1005   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1006 }
1007 
1008 void MacroAssembler::atomic_incl(Address counter_addr) {
1009   if (os::is_MP())
1010     lock();
1011   incrementl(counter_addr);
1012 }
1013 
1014 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1015   if (reachable(counter_addr)) {
1016     atomic_incl(as_Address(counter_addr));
1017   } else {
1018     lea(scr, counter_addr);
1019     atomic_incl(Address(scr, 0));
1020   }
1021 }
1022 
1023 #ifdef _LP64
1024 void MacroAssembler::atomic_incq(Address counter_addr) {
1025   if (os::is_MP())
1026     lock();
1027   incrementq(counter_addr);
1028 }
1029 
1030 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1031   if (reachable(counter_addr)) {
1032     atomic_incq(as_Address(counter_addr));
1033   } else {
1034     lea(scr, counter_addr);
1035     atomic_incq(Address(scr, 0));
1036   }
1037 }
1038 #endif
1039 
1040 // Writes to stack successive pages until offset reached to check for
1041 // stack overflow + shadow pages.  This clobbers tmp.
1042 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1043   movptr(tmp, rsp);
1044   // Bang stack for total size given plus shadow page size.
1045   // Bang one page at a time because large size can bang beyond yellow and
1046   // red zones.
1047   Label loop;
1048   bind(loop);
1049   movl(Address(tmp, (-os::vm_page_size())), size );
1050   subptr(tmp, os::vm_page_size());
1051   subl(size, os::vm_page_size());
1052   jcc(Assembler::greater, loop);
1053 
1054   // Bang down shadow pages too.
1055   // At this point, (tmp-0) is the last address touched, so don't
1056   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1057   // was post-decremented.)  Skip this address by starting at i=1, and
1058   // touch a few more pages below.  N.B.  It is important to touch all
1059   // the way down to and including i=StackShadowPages.
1060   for (int i = 1; i < StackShadowPages; i++) {
1061     // this could be any sized move but this is can be a debugging crumb
1062     // so the bigger the better.
1063     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1064   }
1065 }
1066 
1067 int MacroAssembler::biased_locking_enter(Register lock_reg,
1068                                          Register obj_reg,
1069                                          Register swap_reg,
1070                                          Register tmp_reg,
1071                                          bool swap_reg_contains_mark,
1072                                          Label& done,
1073                                          Label* slow_case,
1074                                          BiasedLockingCounters* counters) {
1075   assert(UseBiasedLocking, "why call this otherwise?");
1076   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1077   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1078   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1079   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1080   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1081   Address saved_mark_addr(lock_reg, 0);
1082 
1083   if (PrintBiasedLockingStatistics && counters == NULL) {
1084     counters = BiasedLocking::counters();
1085   }
1086   // Biased locking
1087   // See whether the lock is currently biased toward our thread and
1088   // whether the epoch is still valid
1089   // Note that the runtime guarantees sufficient alignment of JavaThread
1090   // pointers to allow age to be placed into low bits
1091   // First check to see whether biasing is even enabled for this object
1092   Label cas_label;
1093   int null_check_offset = -1;
1094   if (!swap_reg_contains_mark) {
1095     null_check_offset = offset();
1096     movptr(swap_reg, mark_addr);
1097   }
1098   movptr(tmp_reg, swap_reg);
1099   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1100   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1101   jcc(Assembler::notEqual, cas_label);
1102   // The bias pattern is present in the object's header. Need to check
1103   // whether the bias owner and the epoch are both still current.
1104 #ifndef _LP64
1105   // Note that because there is no current thread register on x86_32 we
1106   // need to store off the mark word we read out of the object to
1107   // avoid reloading it and needing to recheck invariants below. This
1108   // store is unfortunate but it makes the overall code shorter and
1109   // simpler.
1110   movptr(saved_mark_addr, swap_reg);
1111 #endif
1112   if (swap_reg_contains_mark) {
1113     null_check_offset = offset();
1114   }
1115   load_prototype_header(tmp_reg, obj_reg);
1116 #ifdef _LP64
1117   orptr(tmp_reg, r15_thread);
1118   xorptr(tmp_reg, swap_reg);
1119   Register header_reg = tmp_reg;
1120 #else
1121   xorptr(tmp_reg, swap_reg);
1122   get_thread(swap_reg);
1123   xorptr(swap_reg, tmp_reg);
1124   Register header_reg = swap_reg;
1125 #endif
1126   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1127   if (counters != NULL) {
1128     cond_inc32(Assembler::zero,
1129                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1130   }
1131   jcc(Assembler::equal, done);
1132 
1133   Label try_revoke_bias;
1134   Label try_rebias;
1135 
1136   // At this point we know that the header has the bias pattern and
1137   // that we are not the bias owner in the current epoch. We need to
1138   // figure out more details about the state of the header in order to
1139   // know what operations can be legally performed on the object's
1140   // header.
1141 
1142   // If the low three bits in the xor result aren't clear, that means
1143   // the prototype header is no longer biased and we have to revoke
1144   // the bias on this object.
1145   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1146   jccb(Assembler::notZero, try_revoke_bias);
1147 
1148   // Biasing is still enabled for this data type. See whether the
1149   // epoch of the current bias is still valid, meaning that the epoch
1150   // bits of the mark word are equal to the epoch bits of the
1151   // prototype header. (Note that the prototype header's epoch bits
1152   // only change at a safepoint.) If not, attempt to rebias the object
1153   // toward the current thread. Note that we must be absolutely sure
1154   // that the current epoch is invalid in order to do this because
1155   // otherwise the manipulations it performs on the mark word are
1156   // illegal.
1157   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1158   jccb(Assembler::notZero, try_rebias);
1159 
1160   // The epoch of the current bias is still valid but we know nothing
1161   // about the owner; it might be set or it might be clear. Try to
1162   // acquire the bias of the object using an atomic operation. If this
1163   // fails we will go in to the runtime to revoke the object's bias.
1164   // Note that we first construct the presumed unbiased header so we
1165   // don't accidentally blow away another thread's valid bias.
1166   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1167   andptr(swap_reg,
1168          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1169 #ifdef _LP64
1170   movptr(tmp_reg, swap_reg);
1171   orptr(tmp_reg, r15_thread);
1172 #else
1173   get_thread(tmp_reg);
1174   orptr(tmp_reg, swap_reg);
1175 #endif
1176   if (os::is_MP()) {
1177     lock();
1178   }
1179   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1180   // If the biasing toward our thread failed, this means that
1181   // another thread succeeded in biasing it toward itself and we
1182   // need to revoke that bias. The revocation will occur in the
1183   // interpreter runtime in the slow case.
1184   if (counters != NULL) {
1185     cond_inc32(Assembler::zero,
1186                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1187   }
1188   if (slow_case != NULL) {
1189     jcc(Assembler::notZero, *slow_case);
1190   }
1191   jmp(done);
1192 
1193   bind(try_rebias);
1194   // At this point we know the epoch has expired, meaning that the
1195   // current "bias owner", if any, is actually invalid. Under these
1196   // circumstances _only_, we are allowed to use the current header's
1197   // value as the comparison value when doing the cas to acquire the
1198   // bias in the current epoch. In other words, we allow transfer of
1199   // the bias from one thread to another directly in this situation.
1200   //
1201   // FIXME: due to a lack of registers we currently blow away the age
1202   // bits in this situation. Should attempt to preserve them.
1203   load_prototype_header(tmp_reg, obj_reg);
1204 #ifdef _LP64
1205   orptr(tmp_reg, r15_thread);
1206 #else
1207   get_thread(swap_reg);
1208   orptr(tmp_reg, swap_reg);
1209   movptr(swap_reg, saved_mark_addr);
1210 #endif
1211   if (os::is_MP()) {
1212     lock();
1213   }
1214   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1215   // If the biasing toward our thread failed, then another thread
1216   // succeeded in biasing it toward itself and we need to revoke that
1217   // bias. The revocation will occur in the runtime in the slow case.
1218   if (counters != NULL) {
1219     cond_inc32(Assembler::zero,
1220                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1221   }
1222   if (slow_case != NULL) {
1223     jcc(Assembler::notZero, *slow_case);
1224   }
1225   jmp(done);
1226 
1227   bind(try_revoke_bias);
1228   // The prototype mark in the klass doesn't have the bias bit set any
1229   // more, indicating that objects of this data type are not supposed
1230   // to be biased any more. We are going to try to reset the mark of
1231   // this object to the prototype value and fall through to the
1232   // CAS-based locking scheme. Note that if our CAS fails, it means
1233   // that another thread raced us for the privilege of revoking the
1234   // bias of this particular object, so it's okay to continue in the
1235   // normal locking code.
1236   //
1237   // FIXME: due to a lack of registers we currently blow away the age
1238   // bits in this situation. Should attempt to preserve them.
1239   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1240   load_prototype_header(tmp_reg, obj_reg);
1241   if (os::is_MP()) {
1242     lock();
1243   }
1244   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1245   // Fall through to the normal CAS-based lock, because no matter what
1246   // the result of the above CAS, some thread must have succeeded in
1247   // removing the bias bit from the object's header.
1248   if (counters != NULL) {
1249     cond_inc32(Assembler::zero,
1250                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1251   }
1252 
1253   bind(cas_label);
1254 
1255   return null_check_offset;
1256 }
1257 
1258 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1259   assert(UseBiasedLocking, "why call this otherwise?");
1260 
1261   // Check for biased locking unlock case, which is a no-op
1262   // Note: we do not have to check the thread ID for two reasons.
1263   // First, the interpreter checks for IllegalMonitorStateException at
1264   // a higher level. Second, if the bias was revoked while we held the
1265   // lock, the object could not be rebiased toward another thread, so
1266   // the bias bit would be clear.
1267   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1268   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1269   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1270   jcc(Assembler::equal, done);
1271 }
1272 
1273 #ifdef COMPILER2
1274 
1275 #if INCLUDE_RTM_OPT
1276 
1277 // Update rtm_counters based on abort status
1278 // input: abort_status
1279 //        rtm_counters (RTMLockingCounters*)
1280 // flags are killed
1281 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1282 
1283   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1284   if (PrintPreciseRTMLockingStatistics) {
1285     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1286       Label check_abort;
1287       testl(abort_status, (1<<i));
1288       jccb(Assembler::equal, check_abort);
1289       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1290       bind(check_abort);
1291     }
1292   }
1293 }
1294 
1295 // Branch if (random & (count-1) != 0), count is 2^n
1296 // tmp, scr and flags are killed
1297 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1298   assert(tmp == rax, "");
1299   assert(scr == rdx, "");
1300   rdtsc(); // modifies EDX:EAX
1301   andptr(tmp, count-1);
1302   jccb(Assembler::notZero, brLabel);
1303 }
1304 
1305 // Perform abort ratio calculation, set no_rtm bit if high ratio
1306 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1307 // tmpReg, rtm_counters_Reg and flags are killed
1308 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1309                                                  Register rtm_counters_Reg,
1310                                                  RTMLockingCounters* rtm_counters,
1311                                                  Metadata* method_data) {
1312   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1313 
1314   if (RTMLockingCalculationDelay > 0) {
1315     // Delay calculation
1316     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1317     testptr(tmpReg, tmpReg);
1318     jccb(Assembler::equal, L_done);
1319   }
1320   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1321   //   Aborted transactions = abort_count * 100
1322   //   All transactions = total_count *  RTMTotalCountIncrRate
1323   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1324 
1325   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1326   cmpptr(tmpReg, RTMAbortThreshold);
1327   jccb(Assembler::below, L_check_always_rtm2);
1328   imulptr(tmpReg, tmpReg, 100);
1329 
1330   Register scrReg = rtm_counters_Reg;
1331   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1332   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1333   imulptr(scrReg, scrReg, RTMAbortRatio);
1334   cmpptr(tmpReg, scrReg);
1335   jccb(Assembler::below, L_check_always_rtm1);
1336   if (method_data != NULL) {
1337     // set rtm_state to "no rtm" in MDO
1338     mov_metadata(tmpReg, method_data);
1339     if (os::is_MP()) {
1340       lock();
1341     }
1342     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1343   }
1344   jmpb(L_done);
1345   bind(L_check_always_rtm1);
1346   // Reload RTMLockingCounters* address
1347   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1348   bind(L_check_always_rtm2);
1349   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1350   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1351   jccb(Assembler::below, L_done);
1352   if (method_data != NULL) {
1353     // set rtm_state to "always rtm" in MDO
1354     mov_metadata(tmpReg, method_data);
1355     if (os::is_MP()) {
1356       lock();
1357     }
1358     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1359   }
1360   bind(L_done);
1361 }
1362 
1363 // Update counters and perform abort ratio calculation
1364 // input:  abort_status_Reg
1365 // rtm_counters_Reg, flags are killed
1366 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1367                                    Register rtm_counters_Reg,
1368                                    RTMLockingCounters* rtm_counters,
1369                                    Metadata* method_data,
1370                                    bool profile_rtm) {
1371 
1372   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1373   // update rtm counters based on rax value at abort
1374   // reads abort_status_Reg, updates flags
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1377   if (profile_rtm) {
1378     // Save abort status because abort_status_Reg is used by following code.
1379     if (RTMRetryCount > 0) {
1380       push(abort_status_Reg);
1381     }
1382     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1383     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1384     // restore abort status
1385     if (RTMRetryCount > 0) {
1386       pop(abort_status_Reg);
1387     }
1388   }
1389 }
1390 
1391 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1392 // inputs: retry_count_Reg
1393 //       : abort_status_Reg
1394 // output: retry_count_Reg decremented by 1
1395 // flags are killed
1396 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1397   Label doneRetry;
1398   assert(abort_status_Reg == rax, "");
1399   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1400   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1401   // if reason is in 0x6 and retry count != 0 then retry
1402   andptr(abort_status_Reg, 0x6);
1403   jccb(Assembler::zero, doneRetry);
1404   testl(retry_count_Reg, retry_count_Reg);
1405   jccb(Assembler::zero, doneRetry);
1406   pause();
1407   decrementl(retry_count_Reg);
1408   jmp(retryLabel);
1409   bind(doneRetry);
1410 }
1411 
1412 // Spin and retry if lock is busy,
1413 // inputs: box_Reg (monitor address)
1414 //       : retry_count_Reg
1415 // output: retry_count_Reg decremented by 1
1416 //       : clear z flag if retry count exceeded
1417 // tmp_Reg, scr_Reg, flags are killed
1418 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1419                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1420   Label SpinLoop, SpinExit, doneRetry;
1421   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1422 
1423   testl(retry_count_Reg, retry_count_Reg);
1424   jccb(Assembler::zero, doneRetry);
1425   decrementl(retry_count_Reg);
1426   movptr(scr_Reg, RTMSpinLoopCount);
1427 
1428   bind(SpinLoop);
1429   pause();
1430   decrementl(scr_Reg);
1431   jccb(Assembler::lessEqual, SpinExit);
1432   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1433   testptr(tmp_Reg, tmp_Reg);
1434   jccb(Assembler::notZero, SpinLoop);
1435 
1436   bind(SpinExit);
1437   jmp(retryLabel);
1438   bind(doneRetry);
1439   incrementl(retry_count_Reg); // clear z flag
1440 }
1441 
1442 // Use RTM for normal stack locks
1443 // Input: objReg (object to lock)
1444 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1445                                        Register retry_on_abort_count_Reg,
1446                                        RTMLockingCounters* stack_rtm_counters,
1447                                        Metadata* method_data, bool profile_rtm,
1448                                        Label& DONE_LABEL, Label& IsInflated) {
1449   assert(UseRTMForStackLocks, "why call this otherwise?");
1450   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1451   assert(tmpReg == rax, "");
1452   assert(scrReg == rdx, "");
1453   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1454 
1455   if (RTMRetryCount > 0) {
1456     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1457     bind(L_rtm_retry);
1458   }
1459   movptr(tmpReg, Address(objReg, 0));
1460   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1461   jcc(Assembler::notZero, IsInflated);
1462 
1463   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1464     Label L_noincrement;
1465     if (RTMTotalCountIncrRate > 1) {
1466       // tmpReg, scrReg and flags are killed
1467       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1468     }
1469     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1470     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1471     bind(L_noincrement);
1472   }
1473   xbegin(L_on_abort);
1474   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1475   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1476   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1477   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1478 
1479   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1480   if (UseRTMXendForLockBusy) {
1481     xend();
1482     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1483     jmp(L_decrement_retry);
1484   }
1485   else {
1486     xabort(0);
1487   }
1488   bind(L_on_abort);
1489   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1490     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1491   }
1492   bind(L_decrement_retry);
1493   if (RTMRetryCount > 0) {
1494     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1495     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1496   }
1497 }
1498 
1499 // Use RTM for inflating locks
1500 // inputs: objReg (object to lock)
1501 //         boxReg (on-stack box address (displaced header location) - KILLED)
1502 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1503 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1504                                           Register scrReg, Register retry_on_busy_count_Reg,
1505                                           Register retry_on_abort_count_Reg,
1506                                           RTMLockingCounters* rtm_counters,
1507                                           Metadata* method_data, bool profile_rtm,
1508                                           Label& DONE_LABEL) {
1509   assert(UseRTMLocking, "why call this otherwise?");
1510   assert(tmpReg == rax, "");
1511   assert(scrReg == rdx, "");
1512   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1513   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1514 
1515   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1516   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1517   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1518 
1519   if (RTMRetryCount > 0) {
1520     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1521     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1522     bind(L_rtm_retry);
1523   }
1524   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1525     Label L_noincrement;
1526     if (RTMTotalCountIncrRate > 1) {
1527       // tmpReg, scrReg and flags are killed
1528       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1529     }
1530     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1531     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1532     bind(L_noincrement);
1533   }
1534   xbegin(L_on_abort);
1535   movptr(tmpReg, Address(objReg, 0));
1536   movptr(tmpReg, Address(tmpReg, owner_offset));
1537   testptr(tmpReg, tmpReg);
1538   jcc(Assembler::zero, DONE_LABEL);
1539   if (UseRTMXendForLockBusy) {
1540     xend();
1541     jmp(L_decrement_retry);
1542   }
1543   else {
1544     xabort(0);
1545   }
1546   bind(L_on_abort);
1547   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1548   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1549     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1550   }
1551   if (RTMRetryCount > 0) {
1552     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1553     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1554   }
1555 
1556   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1557   testptr(tmpReg, tmpReg) ;
1558   jccb(Assembler::notZero, L_decrement_retry) ;
1559 
1560   // Appears unlocked - try to swing _owner from null to non-null.
1561   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1562 #ifdef _LP64
1563   Register threadReg = r15_thread;
1564 #else
1565   get_thread(scrReg);
1566   Register threadReg = scrReg;
1567 #endif
1568   if (os::is_MP()) {
1569     lock();
1570   }
1571   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1572 
1573   if (RTMRetryCount > 0) {
1574     // success done else retry
1575     jccb(Assembler::equal, DONE_LABEL) ;
1576     bind(L_decrement_retry);
1577     // Spin and retry if lock is busy.
1578     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1579   }
1580   else {
1581     bind(L_decrement_retry);
1582   }
1583 }
1584 
1585 #endif //  INCLUDE_RTM_OPT
1586 
1587 // Fast_Lock and Fast_Unlock used by C2
1588 
1589 // Because the transitions from emitted code to the runtime
1590 // monitorenter/exit helper stubs are so slow it's critical that
1591 // we inline both the stack-locking fast-path and the inflated fast path.
1592 //
1593 // See also: cmpFastLock and cmpFastUnlock.
1594 //
1595 // What follows is a specialized inline transliteration of the code
1596 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1597 // another option would be to emit TrySlowEnter and TrySlowExit methods
1598 // at startup-time.  These methods would accept arguments as
1599 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1600 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1601 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1602 // In practice, however, the # of lock sites is bounded and is usually small.
1603 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1604 // if the processor uses simple bimodal branch predictors keyed by EIP
1605 // Since the helper routines would be called from multiple synchronization
1606 // sites.
1607 //
1608 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1609 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1610 // to those specialized methods.  That'd give us a mostly platform-independent
1611 // implementation that the JITs could optimize and inline at their pleasure.
1612 // Done correctly, the only time we'd need to cross to native could would be
1613 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1614 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1615 // (b) explicit barriers or fence operations.
1616 //
1617 // TODO:
1618 //
1619 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1620 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1621 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1622 //    the lock operators would typically be faster than reifying Self.
1623 //
1624 // *  Ideally I'd define the primitives as:
1625 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1626 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1627 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1628 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1629 //    Furthermore the register assignments are overconstrained, possibly resulting in
1630 //    sub-optimal code near the synchronization site.
1631 //
1632 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1633 //    Alternately, use a better sp-proximity test.
1634 //
1635 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1636 //    Either one is sufficient to uniquely identify a thread.
1637 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1638 //
1639 // *  Intrinsify notify() and notifyAll() for the common cases where the
1640 //    object is locked by the calling thread but the waitlist is empty.
1641 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1642 //
1643 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1644 //    But beware of excessive branch density on AMD Opterons.
1645 //
1646 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1647 //    or failure of the fast-path.  If the fast-path fails then we pass
1648 //    control to the slow-path, typically in C.  In Fast_Lock and
1649 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1650 //    will emit a conditional branch immediately after the node.
1651 //    So we have branches to branches and lots of ICC.ZF games.
1652 //    Instead, it might be better to have C2 pass a "FailureLabel"
1653 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1654 //    will drop through the node.  ICC.ZF is undefined at exit.
1655 //    In the case of failure, the node will branch directly to the
1656 //    FailureLabel
1657 
1658 
1659 // obj: object to lock
1660 // box: on-stack box address (displaced header location) - KILLED
1661 // rax,: tmp -- KILLED
1662 // scr: tmp -- KILLED
1663 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1664                                Register scrReg, Register cx1Reg, Register cx2Reg,
1665                                BiasedLockingCounters* counters,
1666                                RTMLockingCounters* rtm_counters,
1667                                RTMLockingCounters* stack_rtm_counters,
1668                                Metadata* method_data,
1669                                bool use_rtm, bool profile_rtm) {
1670   // Ensure the register assignents are disjoint
1671   assert(tmpReg == rax, "");
1672 
1673   if (use_rtm) {
1674     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1675   } else {
1676     assert(cx1Reg == noreg, "");
1677     assert(cx2Reg == noreg, "");
1678     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1679   }
1680 
1681   if (counters != NULL) {
1682     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1683   }
1684   if (EmitSync & 1) {
1685       // set box->dhw = markOopDesc::unused_mark()
1686       // Force all sync thru slow-path: slow_enter() and slow_exit()
1687       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1688       cmpptr (rsp, (int32_t)NULL_WORD);
1689   } else {
1690     // Possible cases that we'll encounter in fast_lock
1691     // ------------------------------------------------
1692     // * Inflated
1693     //    -- unlocked
1694     //    -- Locked
1695     //       = by self
1696     //       = by other
1697     // * biased
1698     //    -- by Self
1699     //    -- by other
1700     // * neutral
1701     // * stack-locked
1702     //    -- by self
1703     //       = sp-proximity test hits
1704     //       = sp-proximity test generates false-negative
1705     //    -- by other
1706     //
1707 
1708     Label IsInflated, DONE_LABEL;
1709 
1710     // it's stack-locked, biased or neutral
1711     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1712     // order to reduce the number of conditional branches in the most common cases.
1713     // Beware -- there's a subtle invariant that fetch of the markword
1714     // at [FETCH], below, will never observe a biased encoding (*101b).
1715     // If this invariant is not held we risk exclusion (safety) failure.
1716     if (UseBiasedLocking && !UseOptoBiasInlining) {
1717       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1718     }
1719 
1720 #if INCLUDE_RTM_OPT
1721     if (UseRTMForStackLocks && use_rtm) {
1722       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1723                         stack_rtm_counters, method_data, profile_rtm,
1724                         DONE_LABEL, IsInflated);
1725     }
1726 #endif // INCLUDE_RTM_OPT
1727 
1728     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1729     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1730     jccb(Assembler::notZero, IsInflated);
1731 
1732     // Attempt stack-locking ...
1733     orptr (tmpReg, markOopDesc::unlocked_value);
1734     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1735     if (os::is_MP()) {
1736       lock();
1737     }
1738     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1739     if (counters != NULL) {
1740       cond_inc32(Assembler::equal,
1741                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1742     }
1743     jcc(Assembler::equal, DONE_LABEL);           // Success
1744 
1745     // Recursive locking.
1746     // The object is stack-locked: markword contains stack pointer to BasicLock.
1747     // Locked by current thread if difference with current SP is less than one page.
1748     subptr(tmpReg, rsp);
1749     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1750     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1751     movptr(Address(boxReg, 0), tmpReg);
1752     if (counters != NULL) {
1753       cond_inc32(Assembler::equal,
1754                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1755     }
1756     jmp(DONE_LABEL);
1757 
1758     bind(IsInflated);
1759     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1760 
1761 #if INCLUDE_RTM_OPT
1762     // Use the same RTM locking code in 32- and 64-bit VM.
1763     if (use_rtm) {
1764       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1765                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1766     } else {
1767 #endif // INCLUDE_RTM_OPT
1768 
1769 #ifndef _LP64
1770     // The object is inflated.
1771 
1772     // boxReg refers to the on-stack BasicLock in the current frame.
1773     // We'd like to write:
1774     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1775     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1776     // additional latency as we have another ST in the store buffer that must drain.
1777 
1778     if (EmitSync & 8192) {
1779        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1780        get_thread (scrReg);
1781        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1782        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1783        if (os::is_MP()) {
1784          lock();
1785        }
1786        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1787     } else
1788     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1789        // register juggle because we need tmpReg for cmpxchgptr below
1790        movptr(scrReg, boxReg);
1791        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1792 
1793        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1794        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1795           // prefetchw [eax + Offset(_owner)-2]
1796           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1797        }
1798 
1799        if ((EmitSync & 64) == 0) {
1800          // Optimistic form: consider XORL tmpReg,tmpReg
1801          movptr(tmpReg, NULL_WORD);
1802        } else {
1803          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1804          // Test-And-CAS instead of CAS
1805          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1806          testptr(tmpReg, tmpReg);                   // Locked ?
1807          jccb  (Assembler::notZero, DONE_LABEL);
1808        }
1809 
1810        // Appears unlocked - try to swing _owner from null to non-null.
1811        // Ideally, I'd manifest "Self" with get_thread and then attempt
1812        // to CAS the register containing Self into m->Owner.
1813        // But we don't have enough registers, so instead we can either try to CAS
1814        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1815        // we later store "Self" into m->Owner.  Transiently storing a stack address
1816        // (rsp or the address of the box) into  m->owner is harmless.
1817        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1818        if (os::is_MP()) {
1819          lock();
1820        }
1821        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1822        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1823        // If we weren't able to swing _owner from NULL to the BasicLock
1824        // then take the slow path.
1825        jccb  (Assembler::notZero, DONE_LABEL);
1826        // update _owner from BasicLock to thread
1827        get_thread (scrReg);                    // beware: clobbers ICCs
1828        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1829        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1830 
1831        // If the CAS fails we can either retry or pass control to the slow-path.
1832        // We use the latter tactic.
1833        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1834        // If the CAS was successful ...
1835        //   Self has acquired the lock
1836        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1837        // Intentional fall-through into DONE_LABEL ...
1838     } else {
1839        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1840        movptr(boxReg, tmpReg);
1841 
1842        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1843        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1844           // prefetchw [eax + Offset(_owner)-2]
1845           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1846        }
1847 
1848        if ((EmitSync & 64) == 0) {
1849          // Optimistic form
1850          xorptr  (tmpReg, tmpReg);
1851        } else {
1852          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1853          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1854          testptr(tmpReg, tmpReg);                   // Locked ?
1855          jccb  (Assembler::notZero, DONE_LABEL);
1856        }
1857 
1858        // Appears unlocked - try to swing _owner from null to non-null.
1859        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1860        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1861        get_thread (scrReg);
1862        if (os::is_MP()) {
1863          lock();
1864        }
1865        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1866 
1867        // If the CAS fails we can either retry or pass control to the slow-path.
1868        // We use the latter tactic.
1869        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1870        // If the CAS was successful ...
1871        //   Self has acquired the lock
1872        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1873        // Intentional fall-through into DONE_LABEL ...
1874     }
1875 #else // _LP64
1876     // It's inflated
1877     movq(scrReg, tmpReg);
1878     xorq(tmpReg, tmpReg);
1879 
1880     if (os::is_MP()) {
1881       lock();
1882     }
1883     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1884     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1885     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1886     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1887     // Intentional fall-through into DONE_LABEL ...
1888     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1889 #endif // _LP64
1890 #if INCLUDE_RTM_OPT
1891     } // use_rtm()
1892 #endif
1893     // DONE_LABEL is a hot target - we'd really like to place it at the
1894     // start of cache line by padding with NOPs.
1895     // See the AMD and Intel software optimization manuals for the
1896     // most efficient "long" NOP encodings.
1897     // Unfortunately none of our alignment mechanisms suffice.
1898     bind(DONE_LABEL);
1899 
1900     // At DONE_LABEL the icc ZFlag is set as follows ...
1901     // Fast_Unlock uses the same protocol.
1902     // ZFlag == 1 -> Success
1903     // ZFlag == 0 -> Failure - force control through the slow-path
1904   }
1905 }
1906 
1907 // obj: object to unlock
1908 // box: box address (displaced header location), killed.  Must be EAX.
1909 // tmp: killed, cannot be obj nor box.
1910 //
1911 // Some commentary on balanced locking:
1912 //
1913 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1914 // Methods that don't have provably balanced locking are forced to run in the
1915 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1916 // The interpreter provides two properties:
1917 // I1:  At return-time the interpreter automatically and quietly unlocks any
1918 //      objects acquired the current activation (frame).  Recall that the
1919 //      interpreter maintains an on-stack list of locks currently held by
1920 //      a frame.
1921 // I2:  If a method attempts to unlock an object that is not held by the
1922 //      the frame the interpreter throws IMSX.
1923 //
1924 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1925 // B() doesn't have provably balanced locking so it runs in the interpreter.
1926 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1927 // is still locked by A().
1928 //
1929 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1930 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1931 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1932 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1933 // Arguably given that the spec legislates the JNI case as undefined our implementation
1934 // could reasonably *avoid* checking owner in Fast_Unlock().
1935 // In the interest of performance we elide m->Owner==Self check in unlock.
1936 // A perfectly viable alternative is to elide the owner check except when
1937 // Xcheck:jni is enabled.
1938 
1939 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1940   assert(boxReg == rax, "");
1941   assert_different_registers(objReg, boxReg, tmpReg);
1942 
1943   if (EmitSync & 4) {
1944     // Disable - inhibit all inlining.  Force control through the slow-path
1945     cmpptr (rsp, 0);
1946   } else {
1947     Label DONE_LABEL, Stacked, CheckSucc;
1948 
1949     // Critically, the biased locking test must have precedence over
1950     // and appear before the (box->dhw == 0) recursive stack-lock test.
1951     if (UseBiasedLocking && !UseOptoBiasInlining) {
1952        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1953     }
1954 
1955 #if INCLUDE_RTM_OPT
1956     if (UseRTMForStackLocks && use_rtm) {
1957       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1958       Label L_regular_unlock;
1959       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1960       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1961       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1962       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1963       xend();                                       // otherwise end...
1964       jmp(DONE_LABEL);                              // ... and we're done
1965       bind(L_regular_unlock);
1966     }
1967 #endif
1968 
1969     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1970     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1971     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1972     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1973     jccb  (Assembler::zero, Stacked);
1974 
1975     // It's inflated.
1976 #if INCLUDE_RTM_OPT
1977     if (use_rtm) {
1978       Label L_regular_inflated_unlock;
1979       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1980       movptr(boxReg, Address(tmpReg, owner_offset));
1981       testptr(boxReg, boxReg);
1982       jccb(Assembler::notZero, L_regular_inflated_unlock);
1983       xend();
1984       jmpb(DONE_LABEL);
1985       bind(L_regular_inflated_unlock);
1986     }
1987 #endif
1988 
1989     // Despite our balanced locking property we still check that m->_owner == Self
1990     // as java routines or native JNI code called by this thread might
1991     // have released the lock.
1992     // Refer to the comments in synchronizer.cpp for how we might encode extra
1993     // state in _succ so we can avoid fetching EntryList|cxq.
1994     //
1995     // I'd like to add more cases in fast_lock() and fast_unlock() --
1996     // such as recursive enter and exit -- but we have to be wary of
1997     // I$ bloat, T$ effects and BP$ effects.
1998     //
1999     // If there's no contention try a 1-0 exit.  That is, exit without
2000     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2001     // we detect and recover from the race that the 1-0 exit admits.
2002     //
2003     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2004     // before it STs null into _owner, releasing the lock.  Updates
2005     // to data protected by the critical section must be visible before
2006     // we drop the lock (and thus before any other thread could acquire
2007     // the lock and observe the fields protected by the lock).
2008     // IA32's memory-model is SPO, so STs are ordered with respect to
2009     // each other and there's no need for an explicit barrier (fence).
2010     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2011 #ifndef _LP64
2012     get_thread (boxReg);
2013     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2014       // prefetchw [ebx + Offset(_owner)-2]
2015       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2016     }
2017 
2018     // Note that we could employ various encoding schemes to reduce
2019     // the number of loads below (currently 4) to just 2 or 3.
2020     // Refer to the comments in synchronizer.cpp.
2021     // In practice the chain of fetches doesn't seem to impact performance, however.
2022     xorptr(boxReg, boxReg);
2023     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2024        // Attempt to reduce branch density - AMD's branch predictor.
2025        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2026        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2027        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2028        jccb  (Assembler::notZero, DONE_LABEL);
2029        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2030        jmpb  (DONE_LABEL);
2031     } else {
2032        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2033        jccb  (Assembler::notZero, DONE_LABEL);
2034        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2035        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2036        jccb  (Assembler::notZero, CheckSucc);
2037        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2038        jmpb  (DONE_LABEL);
2039     }
2040 
2041     // The Following code fragment (EmitSync & 65536) improves the performance of
2042     // contended applications and contended synchronization microbenchmarks.
2043     // Unfortunately the emission of the code - even though not executed - causes regressions
2044     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2045     // with an equal number of never-executed NOPs results in the same regression.
2046     // We leave it off by default.
2047 
2048     if ((EmitSync & 65536) != 0) {
2049        Label LSuccess, LGoSlowPath ;
2050 
2051        bind  (CheckSucc);
2052 
2053        // Optional pre-test ... it's safe to elide this
2054        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2055        jccb(Assembler::zero, LGoSlowPath);
2056 
2057        // We have a classic Dekker-style idiom:
2058        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2059        // There are a number of ways to implement the barrier:
2060        // (1) lock:andl &m->_owner, 0
2061        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2062        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2063        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2064        // (2) If supported, an explicit MFENCE is appealing.
2065        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2066        //     particularly if the write-buffer is full as might be the case if
2067        //     if stores closely precede the fence or fence-equivalent instruction.
2068        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2069        //     as the situation has changed with Nehalem and Shanghai.
2070        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2071        //     The $lines underlying the top-of-stack should be in M-state.
2072        //     The locked add instruction is serializing, of course.
2073        // (4) Use xchg, which is serializing
2074        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2075        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2076        //     The integer condition codes will tell us if succ was 0.
2077        //     Since _succ and _owner should reside in the same $line and
2078        //     we just stored into _owner, it's likely that the $line
2079        //     remains in M-state for the lock:orl.
2080        //
2081        // We currently use (3), although it's likely that switching to (2)
2082        // is correct for the future.
2083 
2084        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2085        if (os::is_MP()) {
2086          lock(); addptr(Address(rsp, 0), 0);
2087        }
2088        // Ratify _succ remains non-null
2089        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2090        jccb  (Assembler::notZero, LSuccess);
2091 
2092        xorptr(boxReg, boxReg);                  // box is really EAX
2093        if (os::is_MP()) { lock(); }
2094        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2095        // There's no successor so we tried to regrab the lock with the
2096        // placeholder value. If that didn't work, then another thread
2097        // grabbed the lock so we're done (and exit was a success).
2098        jccb  (Assembler::notEqual, LSuccess);
2099        // Since we're low on registers we installed rsp as a placeholding in _owner.
2100        // Now install Self over rsp.  This is safe as we're transitioning from
2101        // non-null to non=null
2102        get_thread (boxReg);
2103        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2104        // Intentional fall-through into LGoSlowPath ...
2105 
2106        bind  (LGoSlowPath);
2107        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2108        jmpb  (DONE_LABEL);
2109 
2110        bind  (LSuccess);
2111        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2112        jmpb  (DONE_LABEL);
2113     }
2114 
2115     bind (Stacked);
2116     // It's not inflated and it's not recursively stack-locked and it's not biased.
2117     // It must be stack-locked.
2118     // Try to reset the header to displaced header.
2119     // The "box" value on the stack is stable, so we can reload
2120     // and be assured we observe the same value as above.
2121     movptr(tmpReg, Address(boxReg, 0));
2122     if (os::is_MP()) {
2123       lock();
2124     }
2125     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2126     // Intention fall-thru into DONE_LABEL
2127 
2128     // DONE_LABEL is a hot target - we'd really like to place it at the
2129     // start of cache line by padding with NOPs.
2130     // See the AMD and Intel software optimization manuals for the
2131     // most efficient "long" NOP encodings.
2132     // Unfortunately none of our alignment mechanisms suffice.
2133     if ((EmitSync & 65536) == 0) {
2134        bind (CheckSucc);
2135     }
2136 #else // _LP64
2137     // It's inflated
2138     if (EmitSync & 1024) {
2139       // Emit code to check that _owner == Self
2140       // We could fold the _owner test into subsequent code more efficiently
2141       // than using a stand-alone check, but since _owner checking is off by
2142       // default we don't bother. We also might consider predicating the
2143       // _owner==Self check on Xcheck:jni or running on a debug build.
2144       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2145       xorptr(boxReg, r15_thread);
2146     } else {
2147       xorptr(boxReg, boxReg);
2148     }
2149     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2150     jccb  (Assembler::notZero, DONE_LABEL);
2151     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2152     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2153     jccb  (Assembler::notZero, CheckSucc);
2154     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2155     jmpb  (DONE_LABEL);
2156 
2157     if ((EmitSync & 65536) == 0) {
2158       // Try to avoid passing control into the slow_path ...
2159       Label LSuccess, LGoSlowPath ;
2160       bind  (CheckSucc);
2161 
2162       // The following optional optimization can be elided if necessary
2163       // Effectively: if (succ == null) goto SlowPath
2164       // The code reduces the window for a race, however,
2165       // and thus benefits performance.
2166       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2167       jccb  (Assembler::zero, LGoSlowPath);
2168 
2169       if ((EmitSync & 16) && os::is_MP()) {
2170         orptr(boxReg, boxReg);
2171         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2172       } else {
2173         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2174         if (os::is_MP()) {
2175           // Memory barrier/fence
2176           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2177           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2178           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2179           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2180           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2181           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2182           lock(); addl(Address(rsp, 0), 0);
2183         }
2184       }
2185       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2186       jccb  (Assembler::notZero, LSuccess);
2187 
2188       // Rare inopportune interleaving - race.
2189       // The successor vanished in the small window above.
2190       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2191       // We need to ensure progress and succession.
2192       // Try to reacquire the lock.
2193       // If that fails then the new owner is responsible for succession and this
2194       // thread needs to take no further action and can exit via the fast path (success).
2195       // If the re-acquire succeeds then pass control into the slow path.
2196       // As implemented, this latter mode is horrible because we generated more
2197       // coherence traffic on the lock *and* artifically extended the critical section
2198       // length while by virtue of passing control into the slow path.
2199 
2200       // box is really RAX -- the following CMPXCHG depends on that binding
2201       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2202       movptr(boxReg, (int32_t)NULL_WORD);
2203       if (os::is_MP()) { lock(); }
2204       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2205       // There's no successor so we tried to regrab the lock.
2206       // If that didn't work, then another thread grabbed the
2207       // lock so we're done (and exit was a success).
2208       jccb  (Assembler::notEqual, LSuccess);
2209       // Intentional fall-through into slow-path
2210 
2211       bind  (LGoSlowPath);
2212       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2213       jmpb  (DONE_LABEL);
2214 
2215       bind  (LSuccess);
2216       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2217       jmpb  (DONE_LABEL);
2218     }
2219 
2220     bind  (Stacked);
2221     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2222     if (os::is_MP()) { lock(); }
2223     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2224 
2225     if (EmitSync & 65536) {
2226        bind (CheckSucc);
2227     }
2228 #endif
2229     bind(DONE_LABEL);
2230   }
2231 }
2232 #endif // COMPILER2
2233 
2234 void MacroAssembler::c2bool(Register x) {
2235   // implements x == 0 ? 0 : 1
2236   // note: must only look at least-significant byte of x
2237   //       since C-style booleans are stored in one byte
2238   //       only! (was bug)
2239   andl(x, 0xFF);
2240   setb(Assembler::notZero, x);
2241 }
2242 
2243 // Wouldn't need if AddressLiteral version had new name
2244 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2245   Assembler::call(L, rtype);
2246 }
2247 
2248 void MacroAssembler::call(Register entry) {
2249   Assembler::call(entry);
2250 }
2251 
2252 void MacroAssembler::call(AddressLiteral entry) {
2253   if (reachable(entry)) {
2254     Assembler::call_literal(entry.target(), entry.rspec());
2255   } else {
2256     lea(rscratch1, entry);
2257     Assembler::call(rscratch1);
2258   }
2259 }
2260 
2261 void MacroAssembler::ic_call(address entry) {
2262   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2263   movptr(rax, (intptr_t)Universe::non_oop_word());
2264   call(AddressLiteral(entry, rh));
2265 }
2266 
2267 // Implementation of call_VM versions
2268 
2269 void MacroAssembler::call_VM(Register oop_result,
2270                              address entry_point,
2271                              bool check_exceptions) {
2272   Label C, E;
2273   call(C, relocInfo::none);
2274   jmp(E);
2275 
2276   bind(C);
2277   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2278   ret(0);
2279 
2280   bind(E);
2281 }
2282 
2283 void MacroAssembler::call_VM(Register oop_result,
2284                              address entry_point,
2285                              Register arg_1,
2286                              bool check_exceptions) {
2287   Label C, E;
2288   call(C, relocInfo::none);
2289   jmp(E);
2290 
2291   bind(C);
2292   pass_arg1(this, arg_1);
2293   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2294   ret(0);
2295 
2296   bind(E);
2297 }
2298 
2299 void MacroAssembler::call_VM(Register oop_result,
2300                              address entry_point,
2301                              Register arg_1,
2302                              Register arg_2,
2303                              bool check_exceptions) {
2304   Label C, E;
2305   call(C, relocInfo::none);
2306   jmp(E);
2307 
2308   bind(C);
2309 
2310   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2311 
2312   pass_arg2(this, arg_2);
2313   pass_arg1(this, arg_1);
2314   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2315   ret(0);
2316 
2317   bind(E);
2318 }
2319 
2320 void MacroAssembler::call_VM(Register oop_result,
2321                              address entry_point,
2322                              Register arg_1,
2323                              Register arg_2,
2324                              Register arg_3,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331 
2332   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2333   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2334   pass_arg3(this, arg_3);
2335 
2336   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2337   pass_arg2(this, arg_2);
2338 
2339   pass_arg1(this, arg_1);
2340   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2341   ret(0);
2342 
2343   bind(E);
2344 }
2345 
2346 void MacroAssembler::call_VM(Register oop_result,
2347                              Register last_java_sp,
2348                              address entry_point,
2349                              int number_of_arguments,
2350                              bool check_exceptions) {
2351   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2352   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2353 }
2354 
2355 void MacroAssembler::call_VM(Register oop_result,
2356                              Register last_java_sp,
2357                              address entry_point,
2358                              Register arg_1,
2359                              bool check_exceptions) {
2360   pass_arg1(this, arg_1);
2361   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2362 }
2363 
2364 void MacroAssembler::call_VM(Register oop_result,
2365                              Register last_java_sp,
2366                              address entry_point,
2367                              Register arg_1,
2368                              Register arg_2,
2369                              bool check_exceptions) {
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2372   pass_arg2(this, arg_2);
2373   pass_arg1(this, arg_1);
2374   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2375 }
2376 
2377 void MacroAssembler::call_VM(Register oop_result,
2378                              Register last_java_sp,
2379                              address entry_point,
2380                              Register arg_1,
2381                              Register arg_2,
2382                              Register arg_3,
2383                              bool check_exceptions) {
2384   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2385   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2386   pass_arg3(this, arg_3);
2387   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2388   pass_arg2(this, arg_2);
2389   pass_arg1(this, arg_1);
2390   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2391 }
2392 
2393 void MacroAssembler::super_call_VM(Register oop_result,
2394                                    Register last_java_sp,
2395                                    address entry_point,
2396                                    int number_of_arguments,
2397                                    bool check_exceptions) {
2398   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2399   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2400 }
2401 
2402 void MacroAssembler::super_call_VM(Register oop_result,
2403                                    Register last_java_sp,
2404                                    address entry_point,
2405                                    Register arg_1,
2406                                    bool check_exceptions) {
2407   pass_arg1(this, arg_1);
2408   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2409 }
2410 
2411 void MacroAssembler::super_call_VM(Register oop_result,
2412                                    Register last_java_sp,
2413                                    address entry_point,
2414                                    Register arg_1,
2415                                    Register arg_2,
2416                                    bool check_exceptions) {
2417 
2418   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2419   pass_arg2(this, arg_2);
2420   pass_arg1(this, arg_1);
2421   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2422 }
2423 
2424 void MacroAssembler::super_call_VM(Register oop_result,
2425                                    Register last_java_sp,
2426                                    address entry_point,
2427                                    Register arg_1,
2428                                    Register arg_2,
2429                                    Register arg_3,
2430                                    bool check_exceptions) {
2431   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2432   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2433   pass_arg3(this, arg_3);
2434   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2435   pass_arg2(this, arg_2);
2436   pass_arg1(this, arg_1);
2437   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2438 }
2439 
2440 void MacroAssembler::call_VM_base(Register oop_result,
2441                                   Register java_thread,
2442                                   Register last_java_sp,
2443                                   address  entry_point,
2444                                   int      number_of_arguments,
2445                                   bool     check_exceptions) {
2446   // determine java_thread register
2447   if (!java_thread->is_valid()) {
2448 #ifdef _LP64
2449     java_thread = r15_thread;
2450 #else
2451     java_thread = rdi;
2452     get_thread(java_thread);
2453 #endif // LP64
2454   }
2455   // determine last_java_sp register
2456   if (!last_java_sp->is_valid()) {
2457     last_java_sp = rsp;
2458   }
2459   // debugging support
2460   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2461   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2462 #ifdef ASSERT
2463   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2464   // r12 is the heapbase.
2465   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2466 #endif // ASSERT
2467 
2468   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2469   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2470 
2471   // push java thread (becomes first argument of C function)
2472 
2473   NOT_LP64(push(java_thread); number_of_arguments++);
2474   LP64_ONLY(mov(c_rarg0, r15_thread));
2475 
2476   // set last Java frame before call
2477   assert(last_java_sp != rbp, "can't use ebp/rbp");
2478 
2479   // Only interpreter should have to set fp
2480   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2481 
2482   // do the call, remove parameters
2483   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2484 
2485   // restore the thread (cannot use the pushed argument since arguments
2486   // may be overwritten by C code generated by an optimizing compiler);
2487   // however can use the register value directly if it is callee saved.
2488   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2489     // rdi & rsi (also r15) are callee saved -> nothing to do
2490 #ifdef ASSERT
2491     guarantee(java_thread != rax, "change this code");
2492     push(rax);
2493     { Label L;
2494       get_thread(rax);
2495       cmpptr(java_thread, rax);
2496       jcc(Assembler::equal, L);
2497       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2498       bind(L);
2499     }
2500     pop(rax);
2501 #endif
2502   } else {
2503     get_thread(java_thread);
2504   }
2505   // reset last Java frame
2506   // Only interpreter should have to clear fp
2507   reset_last_Java_frame(java_thread, true, false);
2508 
2509 #ifndef CC_INTERP
2510    // C++ interp handles this in the interpreter
2511   check_and_handle_popframe(java_thread);
2512   check_and_handle_earlyret(java_thread);
2513 #endif /* CC_INTERP */
2514 
2515   if (check_exceptions) {
2516     // check for pending exceptions (java_thread is set upon return)
2517     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2518 #ifndef _LP64
2519     jump_cc(Assembler::notEqual,
2520             RuntimeAddress(StubRoutines::forward_exception_entry()));
2521 #else
2522     // This used to conditionally jump to forward_exception however it is
2523     // possible if we relocate that the branch will not reach. So we must jump
2524     // around so we can always reach
2525 
2526     Label ok;
2527     jcc(Assembler::equal, ok);
2528     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2529     bind(ok);
2530 #endif // LP64
2531   }
2532 
2533   // get oop result if there is one and reset the value in the thread
2534   if (oop_result->is_valid()) {
2535     get_vm_result(oop_result, java_thread);
2536   }
2537 }
2538 
2539 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2540 
2541   // Calculate the value for last_Java_sp
2542   // somewhat subtle. call_VM does an intermediate call
2543   // which places a return address on the stack just under the
2544   // stack pointer as the user finsihed with it. This allows
2545   // use to retrieve last_Java_pc from last_Java_sp[-1].
2546   // On 32bit we then have to push additional args on the stack to accomplish
2547   // the actual requested call. On 64bit call_VM only can use register args
2548   // so the only extra space is the return address that call_VM created.
2549   // This hopefully explains the calculations here.
2550 
2551 #ifdef _LP64
2552   // We've pushed one address, correct last_Java_sp
2553   lea(rax, Address(rsp, wordSize));
2554 #else
2555   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2556 #endif // LP64
2557 
2558   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2559 
2560 }
2561 
2562 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2563   call_VM_leaf_base(entry_point, number_of_arguments);
2564 }
2565 
2566 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2567   pass_arg0(this, arg_0);
2568   call_VM_leaf(entry_point, 1);
2569 }
2570 
2571 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2572 
2573   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2574   pass_arg1(this, arg_1);
2575   pass_arg0(this, arg_0);
2576   call_VM_leaf(entry_point, 2);
2577 }
2578 
2579 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2580   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2581   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2582   pass_arg2(this, arg_2);
2583   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2584   pass_arg1(this, arg_1);
2585   pass_arg0(this, arg_0);
2586   call_VM_leaf(entry_point, 3);
2587 }
2588 
2589 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2590   pass_arg0(this, arg_0);
2591   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2592 }
2593 
2594 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2595 
2596   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2597   pass_arg1(this, arg_1);
2598   pass_arg0(this, arg_0);
2599   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2600 }
2601 
2602 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2603   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2604   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2605   pass_arg2(this, arg_2);
2606   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2607   pass_arg1(this, arg_1);
2608   pass_arg0(this, arg_0);
2609   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2610 }
2611 
2612 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2613   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2614   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2615   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2616   pass_arg3(this, arg_3);
2617   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2618   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2619   pass_arg2(this, arg_2);
2620   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2621   pass_arg1(this, arg_1);
2622   pass_arg0(this, arg_0);
2623   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2624 }
2625 
2626 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2627   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2628   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2629   verify_oop(oop_result, "broken oop in call_VM_base");
2630 }
2631 
2632 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2633   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2634   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2635 }
2636 
2637 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2638 }
2639 
2640 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2641 }
2642 
2643 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2644   if (reachable(src1)) {
2645     cmpl(as_Address(src1), imm);
2646   } else {
2647     lea(rscratch1, src1);
2648     cmpl(Address(rscratch1, 0), imm);
2649   }
2650 }
2651 
2652 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2653   assert(!src2.is_lval(), "use cmpptr");
2654   if (reachable(src2)) {
2655     cmpl(src1, as_Address(src2));
2656   } else {
2657     lea(rscratch1, src2);
2658     cmpl(src1, Address(rscratch1, 0));
2659   }
2660 }
2661 
2662 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2663   Assembler::cmpl(src1, imm);
2664 }
2665 
2666 void MacroAssembler::cmp32(Register src1, Address src2) {
2667   Assembler::cmpl(src1, src2);
2668 }
2669 
2670 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2671   ucomisd(opr1, opr2);
2672 
2673   Label L;
2674   if (unordered_is_less) {
2675     movl(dst, -1);
2676     jcc(Assembler::parity, L);
2677     jcc(Assembler::below , L);
2678     movl(dst, 0);
2679     jcc(Assembler::equal , L);
2680     increment(dst);
2681   } else { // unordered is greater
2682     movl(dst, 1);
2683     jcc(Assembler::parity, L);
2684     jcc(Assembler::above , L);
2685     movl(dst, 0);
2686     jcc(Assembler::equal , L);
2687     decrementl(dst);
2688   }
2689   bind(L);
2690 }
2691 
2692 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2693   ucomiss(opr1, opr2);
2694 
2695   Label L;
2696   if (unordered_is_less) {
2697     movl(dst, -1);
2698     jcc(Assembler::parity, L);
2699     jcc(Assembler::below , L);
2700     movl(dst, 0);
2701     jcc(Assembler::equal , L);
2702     increment(dst);
2703   } else { // unordered is greater
2704     movl(dst, 1);
2705     jcc(Assembler::parity, L);
2706     jcc(Assembler::above , L);
2707     movl(dst, 0);
2708     jcc(Assembler::equal , L);
2709     decrementl(dst);
2710   }
2711   bind(L);
2712 }
2713 
2714 
2715 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2716   if (reachable(src1)) {
2717     cmpb(as_Address(src1), imm);
2718   } else {
2719     lea(rscratch1, src1);
2720     cmpb(Address(rscratch1, 0), imm);
2721   }
2722 }
2723 
2724 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2725 #ifdef _LP64
2726   if (src2.is_lval()) {
2727     movptr(rscratch1, src2);
2728     Assembler::cmpq(src1, rscratch1);
2729   } else if (reachable(src2)) {
2730     cmpq(src1, as_Address(src2));
2731   } else {
2732     lea(rscratch1, src2);
2733     Assembler::cmpq(src1, Address(rscratch1, 0));
2734   }
2735 #else
2736   if (src2.is_lval()) {
2737     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2738   } else {
2739     cmpl(src1, as_Address(src2));
2740   }
2741 #endif // _LP64
2742 }
2743 
2744 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2745   assert(src2.is_lval(), "not a mem-mem compare");
2746 #ifdef _LP64
2747   // moves src2's literal address
2748   movptr(rscratch1, src2);
2749   Assembler::cmpq(src1, rscratch1);
2750 #else
2751   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2752 #endif // _LP64
2753 }
2754 
2755 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2756   if (reachable(adr)) {
2757     if (os::is_MP())
2758       lock();
2759     cmpxchgptr(reg, as_Address(adr));
2760   } else {
2761     lea(rscratch1, adr);
2762     if (os::is_MP())
2763       lock();
2764     cmpxchgptr(reg, Address(rscratch1, 0));
2765   }
2766 }
2767 
2768 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2769   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2770 }
2771 
2772 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2773   if (reachable(src)) {
2774     Assembler::comisd(dst, as_Address(src));
2775   } else {
2776     lea(rscratch1, src);
2777     Assembler::comisd(dst, Address(rscratch1, 0));
2778   }
2779 }
2780 
2781 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2782   if (reachable(src)) {
2783     Assembler::comiss(dst, as_Address(src));
2784   } else {
2785     lea(rscratch1, src);
2786     Assembler::comiss(dst, Address(rscratch1, 0));
2787   }
2788 }
2789 
2790 
2791 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2792   Condition negated_cond = negate_condition(cond);
2793   Label L;
2794   jcc(negated_cond, L);
2795   pushf(); // Preserve flags
2796   atomic_incl(counter_addr);
2797   popf();
2798   bind(L);
2799 }
2800 
2801 int MacroAssembler::corrected_idivl(Register reg) {
2802   // Full implementation of Java idiv and irem; checks for
2803   // special case as described in JVM spec., p.243 & p.271.
2804   // The function returns the (pc) offset of the idivl
2805   // instruction - may be needed for implicit exceptions.
2806   //
2807   //         normal case                           special case
2808   //
2809   // input : rax,: dividend                         min_int
2810   //         reg: divisor   (may not be rax,/rdx)   -1
2811   //
2812   // output: rax,: quotient  (= rax, idiv reg)       min_int
2813   //         rdx: remainder (= rax, irem reg)       0
2814   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2815   const int min_int = 0x80000000;
2816   Label normal_case, special_case;
2817 
2818   // check for special case
2819   cmpl(rax, min_int);
2820   jcc(Assembler::notEqual, normal_case);
2821   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2822   cmpl(reg, -1);
2823   jcc(Assembler::equal, special_case);
2824 
2825   // handle normal case
2826   bind(normal_case);
2827   cdql();
2828   int idivl_offset = offset();
2829   idivl(reg);
2830 
2831   // normal and special case exit
2832   bind(special_case);
2833 
2834   return idivl_offset;
2835 }
2836 
2837 
2838 
2839 void MacroAssembler::decrementl(Register reg, int value) {
2840   if (value == min_jint) {subl(reg, value) ; return; }
2841   if (value <  0) { incrementl(reg, -value); return; }
2842   if (value == 0) {                        ; return; }
2843   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2844   /* else */      { subl(reg, value)       ; return; }
2845 }
2846 
2847 void MacroAssembler::decrementl(Address dst, int value) {
2848   if (value == min_jint) {subl(dst, value) ; return; }
2849   if (value <  0) { incrementl(dst, -value); return; }
2850   if (value == 0) {                        ; return; }
2851   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2852   /* else */      { subl(dst, value)       ; return; }
2853 }
2854 
2855 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2856   assert (shift_value > 0, "illegal shift value");
2857   Label _is_positive;
2858   testl (reg, reg);
2859   jcc (Assembler::positive, _is_positive);
2860   int offset = (1 << shift_value) - 1 ;
2861 
2862   if (offset == 1) {
2863     incrementl(reg);
2864   } else {
2865     addl(reg, offset);
2866   }
2867 
2868   bind (_is_positive);
2869   sarl(reg, shift_value);
2870 }
2871 
2872 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2873   if (reachable(src)) {
2874     Assembler::divsd(dst, as_Address(src));
2875   } else {
2876     lea(rscratch1, src);
2877     Assembler::divsd(dst, Address(rscratch1, 0));
2878   }
2879 }
2880 
2881 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2882   if (reachable(src)) {
2883     Assembler::divss(dst, as_Address(src));
2884   } else {
2885     lea(rscratch1, src);
2886     Assembler::divss(dst, Address(rscratch1, 0));
2887   }
2888 }
2889 
2890 // !defined(COMPILER2) is because of stupid core builds
2891 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2892 void MacroAssembler::empty_FPU_stack() {
2893   if (VM_Version::supports_mmx()) {
2894     emms();
2895   } else {
2896     for (int i = 8; i-- > 0; ) ffree(i);
2897   }
2898 }
2899 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2900 
2901 
2902 // Defines obj, preserves var_size_in_bytes
2903 void MacroAssembler::eden_allocate(Register obj,
2904                                    Register var_size_in_bytes,
2905                                    int con_size_in_bytes,
2906                                    Register t1,
2907                                    Label& slow_case) {
2908   assert(obj == rax, "obj must be in rax, for cmpxchg");
2909   assert_different_registers(obj, var_size_in_bytes, t1);
2910   if (!Universe::heap()->supports_inline_contig_alloc()) {
2911     jmp(slow_case);
2912   } else {
2913     Register end = t1;
2914     Label retry;
2915     bind(retry);
2916     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2917     movptr(obj, heap_top);
2918     if (var_size_in_bytes == noreg) {
2919       lea(end, Address(obj, con_size_in_bytes));
2920     } else {
2921       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2922     }
2923     // if end < obj then we wrapped around => object too long => slow case
2924     cmpptr(end, obj);
2925     jcc(Assembler::below, slow_case);
2926     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2927     jcc(Assembler::above, slow_case);
2928     // Compare obj with the top addr, and if still equal, store the new top addr in
2929     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2930     // it otherwise. Use lock prefix for atomicity on MPs.
2931     locked_cmpxchgptr(end, heap_top);
2932     jcc(Assembler::notEqual, retry);
2933   }
2934 }
2935 
2936 void MacroAssembler::enter() {
2937   push(rbp);
2938   mov(rbp, rsp);
2939 }
2940 
2941 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2942 void MacroAssembler::fat_nop() {
2943   if (UseAddressNop) {
2944     addr_nop_5();
2945   } else {
2946     emit_int8(0x26); // es:
2947     emit_int8(0x2e); // cs:
2948     emit_int8(0x64); // fs:
2949     emit_int8(0x65); // gs:
2950     emit_int8((unsigned char)0x90);
2951   }
2952 }
2953 
2954 void MacroAssembler::fcmp(Register tmp) {
2955   fcmp(tmp, 1, true, true);
2956 }
2957 
2958 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2959   assert(!pop_right || pop_left, "usage error");
2960   if (VM_Version::supports_cmov()) {
2961     assert(tmp == noreg, "unneeded temp");
2962     if (pop_left) {
2963       fucomip(index);
2964     } else {
2965       fucomi(index);
2966     }
2967     if (pop_right) {
2968       fpop();
2969     }
2970   } else {
2971     assert(tmp != noreg, "need temp");
2972     if (pop_left) {
2973       if (pop_right) {
2974         fcompp();
2975       } else {
2976         fcomp(index);
2977       }
2978     } else {
2979       fcom(index);
2980     }
2981     // convert FPU condition into eflags condition via rax,
2982     save_rax(tmp);
2983     fwait(); fnstsw_ax();
2984     sahf();
2985     restore_rax(tmp);
2986   }
2987   // condition codes set as follows:
2988   //
2989   // CF (corresponds to C0) if x < y
2990   // PF (corresponds to C2) if unordered
2991   // ZF (corresponds to C3) if x = y
2992 }
2993 
2994 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2995   fcmp2int(dst, unordered_is_less, 1, true, true);
2996 }
2997 
2998 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2999   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3000   Label L;
3001   if (unordered_is_less) {
3002     movl(dst, -1);
3003     jcc(Assembler::parity, L);
3004     jcc(Assembler::below , L);
3005     movl(dst, 0);
3006     jcc(Assembler::equal , L);
3007     increment(dst);
3008   } else { // unordered is greater
3009     movl(dst, 1);
3010     jcc(Assembler::parity, L);
3011     jcc(Assembler::above , L);
3012     movl(dst, 0);
3013     jcc(Assembler::equal , L);
3014     decrementl(dst);
3015   }
3016   bind(L);
3017 }
3018 
3019 void MacroAssembler::fld_d(AddressLiteral src) {
3020   fld_d(as_Address(src));
3021 }
3022 
3023 void MacroAssembler::fld_s(AddressLiteral src) {
3024   fld_s(as_Address(src));
3025 }
3026 
3027 void MacroAssembler::fld_x(AddressLiteral src) {
3028   Assembler::fld_x(as_Address(src));
3029 }
3030 
3031 void MacroAssembler::fldcw(AddressLiteral src) {
3032   Assembler::fldcw(as_Address(src));
3033 }
3034 
3035 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3036   if (reachable(src)) {
3037     Assembler::mulpd(dst, as_Address(src));
3038   } else {
3039     lea(rscratch1, src);
3040     Assembler::mulpd(dst, Address(rscratch1, 0));
3041   }
3042 }
3043 
3044 void MacroAssembler::pow_exp_core_encoding() {
3045   // kills rax, rcx, rdx
3046   subptr(rsp,sizeof(jdouble));
3047   // computes 2^X. Stack: X ...
3048   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3049   // keep it on the thread's stack to compute 2^int(X) later
3050   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3051   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3052   fld_s(0);                 // Stack: X X ...
3053   frndint();                // Stack: int(X) X ...
3054   fsuba(1);                 // Stack: int(X) X-int(X) ...
3055   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3056   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3057   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3058   faddp(1);                 // Stack: 2^(X-int(X))
3059   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3060   // shift int(X)+1023 to exponent position.
3061   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3062   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3063   // values so detect them and set result to NaN.
3064   movl(rax,Address(rsp,0));
3065   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3066   addl(rax, 1023);
3067   movl(rdx,rax);
3068   shll(rax,20);
3069   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3070   addl(rdx,1);
3071   // Check that 1 < int(X)+1023+1 < 2048
3072   // in 3 steps:
3073   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3074   // 2- (int(X)+1023+1)&-2048 != 0
3075   // 3- (int(X)+1023+1)&-2048 != 1
3076   // Do 2- first because addl just updated the flags.
3077   cmov32(Assembler::equal,rax,rcx);
3078   cmpl(rdx,1);
3079   cmov32(Assembler::equal,rax,rcx);
3080   testl(rdx,rcx);
3081   cmov32(Assembler::notEqual,rax,rcx);
3082   movl(Address(rsp,4),rax);
3083   movl(Address(rsp,0),0);
3084   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3085   addptr(rsp,sizeof(jdouble));
3086 }
3087 
3088 void MacroAssembler::increase_precision() {
3089   subptr(rsp, BytesPerWord);
3090   fnstcw(Address(rsp, 0));
3091   movl(rax, Address(rsp, 0));
3092   orl(rax, 0x300);
3093   push(rax);
3094   fldcw(Address(rsp, 0));
3095   pop(rax);
3096 }
3097 
3098 void MacroAssembler::restore_precision() {
3099   fldcw(Address(rsp, 0));
3100   addptr(rsp, BytesPerWord);
3101 }
3102 
3103 void MacroAssembler::fast_pow() {
3104   // computes X^Y = 2^(Y * log2(X))
3105   // if fast computation is not possible, result is NaN. Requires
3106   // fallback from user of this macro.
3107   // increase precision for intermediate steps of the computation
3108   BLOCK_COMMENT("fast_pow {");
3109   increase_precision();
3110   fyl2x();                 // Stack: (Y*log2(X)) ...
3111   pow_exp_core_encoding(); // Stack: exp(X) ...
3112   restore_precision();
3113   BLOCK_COMMENT("} fast_pow");
3114 }
3115 
3116 void MacroAssembler::pow_or_exp(int num_fpu_regs_in_use) {
3117   // kills rax, rcx, rdx
3118   // pow and exp needs 2 extra registers on the fpu stack.
3119   Label slow_case, done;
3120   Register tmp = noreg;
3121   if (!VM_Version::supports_cmov()) {
3122     // fcmp needs a temporary so preserve rdx,
3123     tmp = rdx;
3124   }
3125   Register tmp2 = rax;
3126   Register tmp3 = rcx;
3127 
3128   // Stack: X Y
3129   Label x_negative, y_not_2;
3130 
3131   static double two = 2.0;
3132   ExternalAddress two_addr((address)&two);
3133 
3134   // constant maybe too far on 64 bit
3135   lea(tmp2, two_addr);
3136   fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3137   fcmp(tmp, 2, true, false);  // Stack: X Y
3138   jcc(Assembler::parity, y_not_2);
3139   jcc(Assembler::notEqual, y_not_2);
3140 
3141   fxch(); fpop();             // Stack: X
3142   fmul(0);                    // Stack: X*X
3143 
3144   jmp(done);
3145 
3146   bind(y_not_2);
3147 
3148   fldz();                     // Stack: 0 X Y
3149   fcmp(tmp, 1, true, false);  // Stack: X Y
3150   jcc(Assembler::above, x_negative);
3151 
3152   // X >= 0
3153 
3154   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3155   fld_s(1);                   // Stack: X Y X Y
3156   fast_pow();                 // Stack: X^Y X Y
3157   fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3158   // X^Y not equal to itself: X^Y is NaN go to slow case.
3159   jcc(Assembler::parity, slow_case);
3160   // get rid of duplicate arguments. Stack: X^Y
3161   if (num_fpu_regs_in_use > 0) {
3162     fxch(); fpop();
3163     fxch(); fpop();
3164   } else {
3165     ffree(2);
3166     ffree(1);
3167   }
3168   jmp(done);
3169 
3170   // X <= 0
3171   bind(x_negative);
3172 
3173   fld_s(1);                   // Stack: Y X Y
3174   frndint();                  // Stack: int(Y) X Y
3175   fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3176   jcc(Assembler::notEqual, slow_case);
3177 
3178   subptr(rsp, 8);
3179 
3180   // For X^Y, when X < 0, Y has to be an integer and the final
3181   // result depends on whether it's odd or even. We just checked
3182   // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3183   // integer to test its parity. If int(Y) is huge and doesn't fit
3184   // in the 64 bit integer range, the integer indefinite value will
3185   // end up in the gp registers. Huge numbers are all even, the
3186   // integer indefinite number is even so it's fine.
3187 
3188 #ifdef ASSERT
3189   // Let's check we don't end up with an integer indefinite number
3190   // when not expected. First test for huge numbers: check whether
3191   // int(Y)+1 == int(Y) which is true for very large numbers and
3192   // those are all even. A 64 bit integer is guaranteed to not
3193   // overflow for numbers where y+1 != y (when precision is set to
3194   // double precision).
3195   Label y_not_huge;
3196 
3197   fld1();                     // Stack: 1 int(Y) X Y
3198   fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3199 
3200 #ifdef _LP64
3201   // trip to memory to force the precision down from double extended
3202   // precision
3203   fstp_d(Address(rsp, 0));
3204   fld_d(Address(rsp, 0));
3205 #endif
3206 
3207   fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3208 #endif
3209 
3210   // move int(Y) as 64 bit integer to thread's stack
3211   fistp_d(Address(rsp,0));    // Stack: X Y
3212 
3213 #ifdef ASSERT
3214   jcc(Assembler::notEqual, y_not_huge);
3215 
3216   // Y is huge so we know it's even. It may not fit in a 64 bit
3217   // integer and we don't want the debug code below to see the
3218   // integer indefinite value so overwrite int(Y) on the thread's
3219   // stack with 0.
3220   movl(Address(rsp, 0), 0);
3221   movl(Address(rsp, 4), 0);
3222 
3223   bind(y_not_huge);
3224 #endif
3225 
3226   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3227   fld_s(1);                   // Stack: X Y X Y
3228   fabs();                     // Stack: abs(X) Y X Y
3229   fast_pow();                 // Stack: abs(X)^Y X Y
3230   fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3231   // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3232 
3233   pop(tmp2);
3234   NOT_LP64(pop(tmp3));
3235   jcc(Assembler::parity, slow_case);
3236 
3237 #ifdef ASSERT
3238   // Check that int(Y) is not integer indefinite value (int
3239   // overflow). Shouldn't happen because for values that would
3240   // overflow, 1+int(Y)==Y which was tested earlier.
3241 #ifndef _LP64
3242   {
3243     Label integer;
3244     testl(tmp2, tmp2);
3245     jcc(Assembler::notZero, integer);
3246     cmpl(tmp3, 0x80000000);
3247     jcc(Assembler::notZero, integer);
3248     STOP("integer indefinite value shouldn't be seen here");
3249     bind(integer);
3250   }
3251 #else
3252   {
3253     Label integer;
3254     mov(tmp3, tmp2); // preserve tmp2 for parity check below
3255     shlq(tmp3, 1);
3256     jcc(Assembler::carryClear, integer);
3257     jcc(Assembler::notZero, integer);
3258     STOP("integer indefinite value shouldn't be seen here");
3259     bind(integer);
3260   }
3261 #endif
3262 #endif
3263 
3264   // get rid of duplicate arguments. Stack: X^Y
3265   if (num_fpu_regs_in_use > 0) {
3266     fxch(); fpop();
3267     fxch(); fpop();
3268   } else {
3269     ffree(2);
3270     ffree(1);
3271   }
3272 
3273   testl(tmp2, 1);
3274   jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3275   // X <= 0, Y even: X^Y = -abs(X)^Y
3276 
3277   fchs();                     // Stack: -abs(X)^Y Y
3278   jmp(done);
3279 
3280   // slow case: runtime call
3281   bind(slow_case);
3282 
3283   fpop();                       // pop incorrect result or int(Y)
3284 
3285   fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), 2, num_fpu_regs_in_use);
3286 
3287   // Come here with result in F-TOS
3288   bind(done);
3289 }
3290 
3291 void MacroAssembler::fpop() {
3292   ffree();
3293   fincstp();
3294 }
3295 
3296 void MacroAssembler::load_float(Address src) {
3297   if (UseSSE >= 1) {
3298     movflt(xmm0, src);
3299   } else {
3300     LP64_ONLY(ShouldNotReachHere());
3301     NOT_LP64(fld_s(src));
3302   }
3303 }
3304 
3305 void MacroAssembler::store_float(Address dst) {
3306   if (UseSSE >= 1) {
3307     movflt(dst, xmm0);
3308   } else {
3309     LP64_ONLY(ShouldNotReachHere());
3310     NOT_LP64(fstp_s(dst));
3311   }
3312 }
3313 
3314 void MacroAssembler::load_double(Address src) {
3315   if (UseSSE >= 2) {
3316     movdbl(xmm0, src);
3317   } else {
3318     LP64_ONLY(ShouldNotReachHere());
3319     NOT_LP64(fld_d(src));
3320   }
3321 }
3322 
3323 void MacroAssembler::store_double(Address dst) {
3324   if (UseSSE >= 2) {
3325     movdbl(dst, xmm0);
3326   } else {
3327     LP64_ONLY(ShouldNotReachHere());
3328     NOT_LP64(fstp_d(dst));
3329   }
3330 }
3331 
3332 void MacroAssembler::fremr(Register tmp) {
3333   save_rax(tmp);
3334   { Label L;
3335     bind(L);
3336     fprem();
3337     fwait(); fnstsw_ax();
3338 #ifdef _LP64
3339     testl(rax, 0x400);
3340     jcc(Assembler::notEqual, L);
3341 #else
3342     sahf();
3343     jcc(Assembler::parity, L);
3344 #endif // _LP64
3345   }
3346   restore_rax(tmp);
3347   // Result is in ST0.
3348   // Note: fxch & fpop to get rid of ST1
3349   // (otherwise FPU stack could overflow eventually)
3350   fxch(1);
3351   fpop();
3352 }
3353 
3354 
3355 void MacroAssembler::incrementl(AddressLiteral dst) {
3356   if (reachable(dst)) {
3357     incrementl(as_Address(dst));
3358   } else {
3359     lea(rscratch1, dst);
3360     incrementl(Address(rscratch1, 0));
3361   }
3362 }
3363 
3364 void MacroAssembler::incrementl(ArrayAddress dst) {
3365   incrementl(as_Address(dst));
3366 }
3367 
3368 void MacroAssembler::incrementl(Register reg, int value) {
3369   if (value == min_jint) {addl(reg, value) ; return; }
3370   if (value <  0) { decrementl(reg, -value); return; }
3371   if (value == 0) {                        ; return; }
3372   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3373   /* else */      { addl(reg, value)       ; return; }
3374 }
3375 
3376 void MacroAssembler::incrementl(Address dst, int value) {
3377   if (value == min_jint) {addl(dst, value) ; return; }
3378   if (value <  0) { decrementl(dst, -value); return; }
3379   if (value == 0) {                        ; return; }
3380   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3381   /* else */      { addl(dst, value)       ; return; }
3382 }
3383 
3384 void MacroAssembler::jump(AddressLiteral dst) {
3385   if (reachable(dst)) {
3386     jmp_literal(dst.target(), dst.rspec());
3387   } else {
3388     lea(rscratch1, dst);
3389     jmp(rscratch1);
3390   }
3391 }
3392 
3393 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3394   if (reachable(dst)) {
3395     InstructionMark im(this);
3396     relocate(dst.reloc());
3397     const int short_size = 2;
3398     const int long_size = 6;
3399     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3400     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3401       // 0111 tttn #8-bit disp
3402       emit_int8(0x70 | cc);
3403       emit_int8((offs - short_size) & 0xFF);
3404     } else {
3405       // 0000 1111 1000 tttn #32-bit disp
3406       emit_int8(0x0F);
3407       emit_int8((unsigned char)(0x80 | cc));
3408       emit_int32(offs - long_size);
3409     }
3410   } else {
3411 #ifdef ASSERT
3412     warning("reversing conditional branch");
3413 #endif /* ASSERT */
3414     Label skip;
3415     jccb(reverse[cc], skip);
3416     lea(rscratch1, dst);
3417     Assembler::jmp(rscratch1);
3418     bind(skip);
3419   }
3420 }
3421 
3422 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3423   if (reachable(src)) {
3424     Assembler::ldmxcsr(as_Address(src));
3425   } else {
3426     lea(rscratch1, src);
3427     Assembler::ldmxcsr(Address(rscratch1, 0));
3428   }
3429 }
3430 
3431 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3432   int off;
3433   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3434     off = offset();
3435     movsbl(dst, src); // movsxb
3436   } else {
3437     off = load_unsigned_byte(dst, src);
3438     shll(dst, 24);
3439     sarl(dst, 24);
3440   }
3441   return off;
3442 }
3443 
3444 // Note: load_signed_short used to be called load_signed_word.
3445 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3446 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3447 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3448 int MacroAssembler::load_signed_short(Register dst, Address src) {
3449   int off;
3450   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3451     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3452     // version but this is what 64bit has always done. This seems to imply
3453     // that users are only using 32bits worth.
3454     off = offset();
3455     movswl(dst, src); // movsxw
3456   } else {
3457     off = load_unsigned_short(dst, src);
3458     shll(dst, 16);
3459     sarl(dst, 16);
3460   }
3461   return off;
3462 }
3463 
3464 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3465   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3466   // and "3.9 Partial Register Penalties", p. 22).
3467   int off;
3468   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3469     off = offset();
3470     movzbl(dst, src); // movzxb
3471   } else {
3472     xorl(dst, dst);
3473     off = offset();
3474     movb(dst, src);
3475   }
3476   return off;
3477 }
3478 
3479 // Note: load_unsigned_short used to be called load_unsigned_word.
3480 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3481   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3482   // and "3.9 Partial Register Penalties", p. 22).
3483   int off;
3484   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3485     off = offset();
3486     movzwl(dst, src); // movzxw
3487   } else {
3488     xorl(dst, dst);
3489     off = offset();
3490     movw(dst, src);
3491   }
3492   return off;
3493 }
3494 
3495 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3496   switch (size_in_bytes) {
3497 #ifndef _LP64
3498   case  8:
3499     assert(dst2 != noreg, "second dest register required");
3500     movl(dst,  src);
3501     movl(dst2, src.plus_disp(BytesPerInt));
3502     break;
3503 #else
3504   case  8:  movq(dst, src); break;
3505 #endif
3506   case  4:  movl(dst, src); break;
3507   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3508   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3509   default:  ShouldNotReachHere();
3510   }
3511 }
3512 
3513 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3514   switch (size_in_bytes) {
3515 #ifndef _LP64
3516   case  8:
3517     assert(src2 != noreg, "second source register required");
3518     movl(dst,                        src);
3519     movl(dst.plus_disp(BytesPerInt), src2);
3520     break;
3521 #else
3522   case  8:  movq(dst, src); break;
3523 #endif
3524   case  4:  movl(dst, src); break;
3525   case  2:  movw(dst, src); break;
3526   case  1:  movb(dst, src); break;
3527   default:  ShouldNotReachHere();
3528   }
3529 }
3530 
3531 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3532   if (reachable(dst)) {
3533     movl(as_Address(dst), src);
3534   } else {
3535     lea(rscratch1, dst);
3536     movl(Address(rscratch1, 0), src);
3537   }
3538 }
3539 
3540 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3541   if (reachable(src)) {
3542     movl(dst, as_Address(src));
3543   } else {
3544     lea(rscratch1, src);
3545     movl(dst, Address(rscratch1, 0));
3546   }
3547 }
3548 
3549 // C++ bool manipulation
3550 
3551 void MacroAssembler::movbool(Register dst, Address src) {
3552   if(sizeof(bool) == 1)
3553     movb(dst, src);
3554   else if(sizeof(bool) == 2)
3555     movw(dst, src);
3556   else if(sizeof(bool) == 4)
3557     movl(dst, src);
3558   else
3559     // unsupported
3560     ShouldNotReachHere();
3561 }
3562 
3563 void MacroAssembler::movbool(Address dst, bool boolconst) {
3564   if(sizeof(bool) == 1)
3565     movb(dst, (int) boolconst);
3566   else if(sizeof(bool) == 2)
3567     movw(dst, (int) boolconst);
3568   else if(sizeof(bool) == 4)
3569     movl(dst, (int) boolconst);
3570   else
3571     // unsupported
3572     ShouldNotReachHere();
3573 }
3574 
3575 void MacroAssembler::movbool(Address dst, Register src) {
3576   if(sizeof(bool) == 1)
3577     movb(dst, src);
3578   else if(sizeof(bool) == 2)
3579     movw(dst, src);
3580   else if(sizeof(bool) == 4)
3581     movl(dst, src);
3582   else
3583     // unsupported
3584     ShouldNotReachHere();
3585 }
3586 
3587 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3588   movb(as_Address(dst), src);
3589 }
3590 
3591 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3592   if (reachable(src)) {
3593     movdl(dst, as_Address(src));
3594   } else {
3595     lea(rscratch1, src);
3596     movdl(dst, Address(rscratch1, 0));
3597   }
3598 }
3599 
3600 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3601   if (reachable(src)) {
3602     movq(dst, as_Address(src));
3603   } else {
3604     lea(rscratch1, src);
3605     movq(dst, Address(rscratch1, 0));
3606   }
3607 }
3608 
3609 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3610   if (reachable(src)) {
3611     if (UseXmmLoadAndClearUpper) {
3612       movsd (dst, as_Address(src));
3613     } else {
3614       movlpd(dst, as_Address(src));
3615     }
3616   } else {
3617     lea(rscratch1, src);
3618     if (UseXmmLoadAndClearUpper) {
3619       movsd (dst, Address(rscratch1, 0));
3620     } else {
3621       movlpd(dst, Address(rscratch1, 0));
3622     }
3623   }
3624 }
3625 
3626 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3627   if (reachable(src)) {
3628     movss(dst, as_Address(src));
3629   } else {
3630     lea(rscratch1, src);
3631     movss(dst, Address(rscratch1, 0));
3632   }
3633 }
3634 
3635 void MacroAssembler::movptr(Register dst, Register src) {
3636   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3637 }
3638 
3639 void MacroAssembler::movptr(Register dst, Address src) {
3640   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3641 }
3642 
3643 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3644 void MacroAssembler::movptr(Register dst, intptr_t src) {
3645   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3646 }
3647 
3648 void MacroAssembler::movptr(Address dst, Register src) {
3649   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3650 }
3651 
3652 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3653   if (reachable(src)) {
3654     Assembler::movdqu(dst, as_Address(src));
3655   } else {
3656     lea(rscratch1, src);
3657     Assembler::movdqu(dst, Address(rscratch1, 0));
3658   }
3659 }
3660 
3661 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3662   if (reachable(src)) {
3663     Assembler::movdqa(dst, as_Address(src));
3664   } else {
3665     lea(rscratch1, src);
3666     Assembler::movdqa(dst, Address(rscratch1, 0));
3667   }
3668 }
3669 
3670 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3671   if (reachable(src)) {
3672     Assembler::movsd(dst, as_Address(src));
3673   } else {
3674     lea(rscratch1, src);
3675     Assembler::movsd(dst, Address(rscratch1, 0));
3676   }
3677 }
3678 
3679 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3680   if (reachable(src)) {
3681     Assembler::movss(dst, as_Address(src));
3682   } else {
3683     lea(rscratch1, src);
3684     Assembler::movss(dst, Address(rscratch1, 0));
3685   }
3686 }
3687 
3688 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3689   if (reachable(src)) {
3690     Assembler::mulsd(dst, as_Address(src));
3691   } else {
3692     lea(rscratch1, src);
3693     Assembler::mulsd(dst, Address(rscratch1, 0));
3694   }
3695 }
3696 
3697 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3698   if (reachable(src)) {
3699     Assembler::mulss(dst, as_Address(src));
3700   } else {
3701     lea(rscratch1, src);
3702     Assembler::mulss(dst, Address(rscratch1, 0));
3703   }
3704 }
3705 
3706 void MacroAssembler::null_check(Register reg, int offset) {
3707   if (needs_explicit_null_check(offset)) {
3708     // provoke OS NULL exception if reg = NULL by
3709     // accessing M[reg] w/o changing any (non-CC) registers
3710     // NOTE: cmpl is plenty here to provoke a segv
3711     cmpptr(rax, Address(reg, 0));
3712     // Note: should probably use testl(rax, Address(reg, 0));
3713     //       may be shorter code (however, this version of
3714     //       testl needs to be implemented first)
3715   } else {
3716     // nothing to do, (later) access of M[reg + offset]
3717     // will provoke OS NULL exception if reg = NULL
3718   }
3719 }
3720 
3721 void MacroAssembler::os_breakpoint() {
3722   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3723   // (e.g., MSVC can't call ps() otherwise)
3724   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3725 }
3726 
3727 void MacroAssembler::pop_CPU_state() {
3728   pop_FPU_state();
3729   pop_IU_state();
3730 }
3731 
3732 void MacroAssembler::pop_FPU_state() {
3733 #ifndef _LP64
3734   frstor(Address(rsp, 0));
3735 #else
3736   // AVX will continue to use the fxsave area.
3737   // EVEX needs to utilize the xsave area, which is under different
3738   // management.
3739   if(VM_Version::supports_evex()) {
3740     // EDX:EAX describe the XSAVE header and
3741     // are obtained while fetching info for XCR0 via cpuid.
3742     // These two registers make up 64-bits in the header for which bits
3743     // 62:10 are currently reserved for future implementations and unused.  Bit 63
3744     // is unused for our implementation as we do not utilize
3745     // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
3746     // the functionality for PKRU state and MSR tracing.
3747     // Ergo we are primarily concerned with bits 7..0, which define
3748     // which ISA extensions and features are enabled for a given machine and are
3749     // defined in XemXcr0Eax and is used to map the XSAVE area
3750     // for restoring registers as described via XCR0.
3751     movl(rdx,VM_Version::get_xsave_header_upper_segment());
3752     movl(rax,VM_Version::get_xsave_header_lower_segment());
3753     xrstor(Address(rsp, 0));
3754   } else {
3755     fxrstor(Address(rsp, 0));
3756   }
3757 #endif
3758   addptr(rsp, FPUStateSizeInWords * wordSize);
3759 }
3760 
3761 void MacroAssembler::pop_IU_state() {
3762   popa();
3763   LP64_ONLY(addq(rsp, 8));
3764   popf();
3765 }
3766 
3767 // Save Integer and Float state
3768 // Warning: Stack must be 16 byte aligned (64bit)
3769 void MacroAssembler::push_CPU_state() {
3770   push_IU_state();
3771   push_FPU_state();
3772 }
3773 
3774 #ifdef _LP64
3775 #define XSTATE_BV 0x200
3776 #endif
3777 
3778 void MacroAssembler::push_FPU_state() {
3779   subptr(rsp, FPUStateSizeInWords * wordSize);
3780 #ifndef _LP64
3781   fnsave(Address(rsp, 0));
3782   fwait();
3783 #else
3784   // AVX will continue to use the fxsave area.
3785   // EVEX needs to utilize the xsave area, which is under different
3786   // management.
3787   if(VM_Version::supports_evex()) {
3788     // Save a copy of EAX and EDX
3789     push(rax);
3790     push(rdx);
3791     // EDX:EAX describe the XSAVE header and
3792     // are obtained while fetching info for XCR0 via cpuid.
3793     // These two registers make up 64-bits in the header for which bits
3794     // 62:10 are currently reserved for future implementations and unused.  Bit 63
3795     // is unused for our implementation as we do not utilize
3796     // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
3797     // the functionality for PKRU state and MSR tracing.
3798     // Ergo we are primarily concerned with bits 7..0, which define
3799     // which ISA extensions and features are enabled for a given machine and are
3800     // defined in XemXcr0Eax and is used to program XSAVE area
3801     // for saving the required registers as defined in XCR0.
3802     int xcr0_edx = VM_Version::get_xsave_header_upper_segment();
3803     int xcr0_eax = VM_Version::get_xsave_header_lower_segment();
3804     movl(rdx,xcr0_edx);
3805     movl(rax,xcr0_eax);
3806     xsave(Address(rsp, wordSize*2));
3807     // now Apply control bits and clear bytes 8..23 in the header
3808     pop(rdx);
3809     pop(rax);
3810     movl(Address(rsp, XSTATE_BV), xcr0_eax);
3811     movl(Address(rsp, XSTATE_BV+4), xcr0_edx);
3812     andq(Address(rsp, XSTATE_BV+8), 0);
3813     andq(Address(rsp, XSTATE_BV+16), 0);
3814   } else {
3815     fxsave(Address(rsp, 0));
3816   }
3817 #endif // LP64
3818 }
3819 
3820 void MacroAssembler::push_IU_state() {
3821   // Push flags first because pusha kills them
3822   pushf();
3823   // Make sure rsp stays 16-byte aligned
3824   LP64_ONLY(subq(rsp, 8));
3825   pusha();
3826 }
3827 
3828 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3829   // determine java_thread register
3830   if (!java_thread->is_valid()) {
3831     java_thread = rdi;
3832     get_thread(java_thread);
3833   }
3834   // we must set sp to zero to clear frame
3835   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3836   if (clear_fp) {
3837     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3838   }
3839 
3840   if (clear_pc)
3841     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3842 
3843 }
3844 
3845 void MacroAssembler::restore_rax(Register tmp) {
3846   if (tmp == noreg) pop(rax);
3847   else if (tmp != rax) mov(rax, tmp);
3848 }
3849 
3850 void MacroAssembler::round_to(Register reg, int modulus) {
3851   addptr(reg, modulus - 1);
3852   andptr(reg, -modulus);
3853 }
3854 
3855 void MacroAssembler::save_rax(Register tmp) {
3856   if (tmp == noreg) push(rax);
3857   else if (tmp != rax) mov(tmp, rax);
3858 }
3859 
3860 // Write serialization page so VM thread can do a pseudo remote membar.
3861 // We use the current thread pointer to calculate a thread specific
3862 // offset to write to within the page. This minimizes bus traffic
3863 // due to cache line collision.
3864 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3865   movl(tmp, thread);
3866   shrl(tmp, os::get_serialize_page_shift_count());
3867   andl(tmp, (os::vm_page_size() - sizeof(int)));
3868 
3869   Address index(noreg, tmp, Address::times_1);
3870   ExternalAddress page(os::get_memory_serialize_page());
3871 
3872   // Size of store must match masking code above
3873   movl(as_Address(ArrayAddress(page, index)), tmp);
3874 }
3875 
3876 // Calls to C land
3877 //
3878 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3879 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3880 // has to be reset to 0. This is required to allow proper stack traversal.
3881 void MacroAssembler::set_last_Java_frame(Register java_thread,
3882                                          Register last_java_sp,
3883                                          Register last_java_fp,
3884                                          address  last_java_pc) {
3885   // determine java_thread register
3886   if (!java_thread->is_valid()) {
3887     java_thread = rdi;
3888     get_thread(java_thread);
3889   }
3890   // determine last_java_sp register
3891   if (!last_java_sp->is_valid()) {
3892     last_java_sp = rsp;
3893   }
3894 
3895   // last_java_fp is optional
3896 
3897   if (last_java_fp->is_valid()) {
3898     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3899   }
3900 
3901   // last_java_pc is optional
3902 
3903   if (last_java_pc != NULL) {
3904     lea(Address(java_thread,
3905                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3906         InternalAddress(last_java_pc));
3907 
3908   }
3909   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3910 }
3911 
3912 void MacroAssembler::shlptr(Register dst, int imm8) {
3913   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3914 }
3915 
3916 void MacroAssembler::shrptr(Register dst, int imm8) {
3917   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3918 }
3919 
3920 void MacroAssembler::sign_extend_byte(Register reg) {
3921   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3922     movsbl(reg, reg); // movsxb
3923   } else {
3924     shll(reg, 24);
3925     sarl(reg, 24);
3926   }
3927 }
3928 
3929 void MacroAssembler::sign_extend_short(Register reg) {
3930   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3931     movswl(reg, reg); // movsxw
3932   } else {
3933     shll(reg, 16);
3934     sarl(reg, 16);
3935   }
3936 }
3937 
3938 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3939   assert(reachable(src), "Address should be reachable");
3940   testl(dst, as_Address(src));
3941 }
3942 
3943 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3944   if (reachable(src)) {
3945     Assembler::sqrtsd(dst, as_Address(src));
3946   } else {
3947     lea(rscratch1, src);
3948     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3949   }
3950 }
3951 
3952 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3953   if (reachable(src)) {
3954     Assembler::sqrtss(dst, as_Address(src));
3955   } else {
3956     lea(rscratch1, src);
3957     Assembler::sqrtss(dst, Address(rscratch1, 0));
3958   }
3959 }
3960 
3961 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3962   if (reachable(src)) {
3963     Assembler::subsd(dst, as_Address(src));
3964   } else {
3965     lea(rscratch1, src);
3966     Assembler::subsd(dst, Address(rscratch1, 0));
3967   }
3968 }
3969 
3970 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3971   if (reachable(src)) {
3972     Assembler::subss(dst, as_Address(src));
3973   } else {
3974     lea(rscratch1, src);
3975     Assembler::subss(dst, Address(rscratch1, 0));
3976   }
3977 }
3978 
3979 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3980   if (reachable(src)) {
3981     Assembler::ucomisd(dst, as_Address(src));
3982   } else {
3983     lea(rscratch1, src);
3984     Assembler::ucomisd(dst, Address(rscratch1, 0));
3985   }
3986 }
3987 
3988 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3989   if (reachable(src)) {
3990     Assembler::ucomiss(dst, as_Address(src));
3991   } else {
3992     lea(rscratch1, src);
3993     Assembler::ucomiss(dst, Address(rscratch1, 0));
3994   }
3995 }
3996 
3997 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3998   // Used in sign-bit flipping with aligned address.
3999   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4000   if (reachable(src)) {
4001     Assembler::xorpd(dst, as_Address(src));
4002   } else {
4003     lea(rscratch1, src);
4004     Assembler::xorpd(dst, Address(rscratch1, 0));
4005   }
4006 }
4007 
4008 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4009   // Used in sign-bit flipping with aligned address.
4010   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4011   if (reachable(src)) {
4012     Assembler::xorps(dst, as_Address(src));
4013   } else {
4014     lea(rscratch1, src);
4015     Assembler::xorps(dst, Address(rscratch1, 0));
4016   }
4017 }
4018 
4019 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4020   // Used in sign-bit flipping with aligned address.
4021   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4022   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4023   if (reachable(src)) {
4024     Assembler::pshufb(dst, as_Address(src));
4025   } else {
4026     lea(rscratch1, src);
4027     Assembler::pshufb(dst, Address(rscratch1, 0));
4028   }
4029 }
4030 
4031 // AVX 3-operands instructions
4032 
4033 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4034   if (reachable(src)) {
4035     vaddsd(dst, nds, as_Address(src));
4036   } else {
4037     lea(rscratch1, src);
4038     vaddsd(dst, nds, Address(rscratch1, 0));
4039   }
4040 }
4041 
4042 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4043   if (reachable(src)) {
4044     vaddss(dst, nds, as_Address(src));
4045   } else {
4046     lea(rscratch1, src);
4047     vaddss(dst, nds, Address(rscratch1, 0));
4048   }
4049 }
4050 
4051 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4052   if (reachable(src)) {
4053     vandpd(dst, nds, as_Address(src), vector_len);
4054   } else {
4055     lea(rscratch1, src);
4056     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4057   }
4058 }
4059 
4060 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4061   if (reachable(src)) {
4062     vandps(dst, nds, as_Address(src), vector_len);
4063   } else {
4064     lea(rscratch1, src);
4065     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4066   }
4067 }
4068 
4069 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4070   if (reachable(src)) {
4071     vdivsd(dst, nds, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     vdivsd(dst, nds, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4079   if (reachable(src)) {
4080     vdivss(dst, nds, as_Address(src));
4081   } else {
4082     lea(rscratch1, src);
4083     vdivss(dst, nds, Address(rscratch1, 0));
4084   }
4085 }
4086 
4087 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4088   if (reachable(src)) {
4089     vmulsd(dst, nds, as_Address(src));
4090   } else {
4091     lea(rscratch1, src);
4092     vmulsd(dst, nds, Address(rscratch1, 0));
4093   }
4094 }
4095 
4096 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4097   if (reachable(src)) {
4098     vmulss(dst, nds, as_Address(src));
4099   } else {
4100     lea(rscratch1, src);
4101     vmulss(dst, nds, Address(rscratch1, 0));
4102   }
4103 }
4104 
4105 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4106   if (reachable(src)) {
4107     vsubsd(dst, nds, as_Address(src));
4108   } else {
4109     lea(rscratch1, src);
4110     vsubsd(dst, nds, Address(rscratch1, 0));
4111   }
4112 }
4113 
4114 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4115   if (reachable(src)) {
4116     vsubss(dst, nds, as_Address(src));
4117   } else {
4118     lea(rscratch1, src);
4119     vsubss(dst, nds, Address(rscratch1, 0));
4120   }
4121 }
4122 
4123 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4124   int nds_enc = nds->encoding();
4125   int dst_enc = dst->encoding();
4126   bool dst_upper_bank = (dst_enc > 15);
4127   bool nds_upper_bank = (nds_enc > 15);
4128   if (VM_Version::supports_avx512novl() &&
4129       (nds_upper_bank || dst_upper_bank)) {
4130     if (dst_upper_bank) {
4131       subptr(rsp, 64);
4132       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4133       movflt(xmm0, nds);
4134       if (reachable(src)) {
4135         vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
4136       } else {
4137         lea(rscratch1, src);
4138         vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
4139       }
4140       movflt(dst, xmm0);
4141       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4142       addptr(rsp, 64);
4143     } else {
4144       movflt(dst, nds);
4145       if (reachable(src)) {
4146         vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
4147       } else {
4148         lea(rscratch1, src);
4149         vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
4150       }
4151     }
4152   } else {
4153     if (reachable(src)) {
4154       vxorps(dst, nds, as_Address(src), Assembler::AVX_128bit);
4155     } else {
4156       lea(rscratch1, src);
4157       vxorps(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
4158     }
4159   }
4160 }
4161 
4162 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4163   int nds_enc = nds->encoding();
4164   int dst_enc = dst->encoding();
4165   bool dst_upper_bank = (dst_enc > 15);
4166   bool nds_upper_bank = (nds_enc > 15);
4167   if (VM_Version::supports_avx512novl() &&
4168       (nds_upper_bank || dst_upper_bank)) {
4169     if (dst_upper_bank) {
4170       subptr(rsp, 64);
4171       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4172       movdbl(xmm0, nds);
4173       if (reachable(src)) {
4174         vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
4175       } else {
4176         lea(rscratch1, src);
4177         vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
4178       }
4179       movdbl(dst, xmm0);
4180       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4181       addptr(rsp, 64);
4182     } else {
4183       movdbl(dst, nds);
4184       if (reachable(src)) {
4185         vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
4186       } else {
4187         lea(rscratch1, src);
4188         vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
4189       }
4190     }
4191   } else {
4192     if (reachable(src)) {
4193       vxorpd(dst, nds, as_Address(src), Assembler::AVX_128bit);
4194     } else {
4195       lea(rscratch1, src);
4196       vxorpd(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
4197     }
4198   }
4199 }
4200 
4201 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4202   if (reachable(src)) {
4203     vxorpd(dst, nds, as_Address(src), vector_len);
4204   } else {
4205     lea(rscratch1, src);
4206     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4207   }
4208 }
4209 
4210 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4211   if (reachable(src)) {
4212     vxorps(dst, nds, as_Address(src), vector_len);
4213   } else {
4214     lea(rscratch1, src);
4215     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4216   }
4217 }
4218 
4219 
4220 //////////////////////////////////////////////////////////////////////////////////
4221 #if INCLUDE_ALL_GCS
4222 
4223 void MacroAssembler::g1_write_barrier_pre(Register obj,
4224                                           Register pre_val,
4225                                           Register thread,
4226                                           Register tmp,
4227                                           bool tosca_live,
4228                                           bool expand_call) {
4229 
4230   // If expand_call is true then we expand the call_VM_leaf macro
4231   // directly to skip generating the check by
4232   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4233 
4234 #ifdef _LP64
4235   assert(thread == r15_thread, "must be");
4236 #endif // _LP64
4237 
4238   Label done;
4239   Label runtime;
4240 
4241   assert(pre_val != noreg, "check this code");
4242 
4243   if (obj != noreg) {
4244     assert_different_registers(obj, pre_val, tmp);
4245     assert(pre_val != rax, "check this code");
4246   }
4247 
4248   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4249                                        PtrQueue::byte_offset_of_active()));
4250   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4251                                        PtrQueue::byte_offset_of_index()));
4252   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4253                                        PtrQueue::byte_offset_of_buf()));
4254 
4255 
4256   // Is marking active?
4257   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4258     cmpl(in_progress, 0);
4259   } else {
4260     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4261     cmpb(in_progress, 0);
4262   }
4263   jcc(Assembler::equal, done);
4264 
4265   // Do we need to load the previous value?
4266   if (obj != noreg) {
4267     load_heap_oop(pre_val, Address(obj, 0));
4268   }
4269 
4270   // Is the previous value null?
4271   cmpptr(pre_val, (int32_t) NULL_WORD);
4272   jcc(Assembler::equal, done);
4273 
4274   // Can we store original value in the thread's buffer?
4275   // Is index == 0?
4276   // (The index field is typed as size_t.)
4277 
4278   movptr(tmp, index);                   // tmp := *index_adr
4279   cmpptr(tmp, 0);                       // tmp == 0?
4280   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4281 
4282   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4283   movptr(index, tmp);                   // *index_adr := tmp
4284   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4285 
4286   // Record the previous value
4287   movptr(Address(tmp, 0), pre_val);
4288   jmp(done);
4289 
4290   bind(runtime);
4291   // save the live input values
4292   if(tosca_live) push(rax);
4293 
4294   if (obj != noreg && obj != rax)
4295     push(obj);
4296 
4297   if (pre_val != rax)
4298     push(pre_val);
4299 
4300   // Calling the runtime using the regular call_VM_leaf mechanism generates
4301   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4302   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4303   //
4304   // If we care generating the pre-barrier without a frame (e.g. in the
4305   // intrinsified Reference.get() routine) then ebp might be pointing to
4306   // the caller frame and so this check will most likely fail at runtime.
4307   //
4308   // Expanding the call directly bypasses the generation of the check.
4309   // So when we do not have have a full interpreter frame on the stack
4310   // expand_call should be passed true.
4311 
4312   NOT_LP64( push(thread); )
4313 
4314   if (expand_call) {
4315     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4316     pass_arg1(this, thread);
4317     pass_arg0(this, pre_val);
4318     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4319   } else {
4320     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4321   }
4322 
4323   NOT_LP64( pop(thread); )
4324 
4325   // save the live input values
4326   if (pre_val != rax)
4327     pop(pre_val);
4328 
4329   if (obj != noreg && obj != rax)
4330     pop(obj);
4331 
4332   if(tosca_live) pop(rax);
4333 
4334   bind(done);
4335 }
4336 
4337 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4338                                            Register new_val,
4339                                            Register thread,
4340                                            Register tmp,
4341                                            Register tmp2) {
4342 #ifdef _LP64
4343   assert(thread == r15_thread, "must be");
4344 #endif // _LP64
4345 
4346   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4347                                        PtrQueue::byte_offset_of_index()));
4348   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4349                                        PtrQueue::byte_offset_of_buf()));
4350 
4351   CardTableModRefBS* ct =
4352     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4353   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4354 
4355   Label done;
4356   Label runtime;
4357 
4358   // Does store cross heap regions?
4359 
4360   movptr(tmp, store_addr);
4361   xorptr(tmp, new_val);
4362   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4363   jcc(Assembler::equal, done);
4364 
4365   // crosses regions, storing NULL?
4366 
4367   cmpptr(new_val, (int32_t) NULL_WORD);
4368   jcc(Assembler::equal, done);
4369 
4370   // storing region crossing non-NULL, is card already dirty?
4371 
4372   const Register card_addr = tmp;
4373   const Register cardtable = tmp2;
4374 
4375   movptr(card_addr, store_addr);
4376   shrptr(card_addr, CardTableModRefBS::card_shift);
4377   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4378   // a valid address and therefore is not properly handled by the relocation code.
4379   movptr(cardtable, (intptr_t)ct->byte_map_base);
4380   addptr(card_addr, cardtable);
4381 
4382   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4383   jcc(Assembler::equal, done);
4384 
4385   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4386   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4387   jcc(Assembler::equal, done);
4388 
4389 
4390   // storing a region crossing, non-NULL oop, card is clean.
4391   // dirty card and log.
4392 
4393   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4394 
4395   cmpl(queue_index, 0);
4396   jcc(Assembler::equal, runtime);
4397   subl(queue_index, wordSize);
4398   movptr(tmp2, buffer);
4399 #ifdef _LP64
4400   movslq(rscratch1, queue_index);
4401   addq(tmp2, rscratch1);
4402   movq(Address(tmp2, 0), card_addr);
4403 #else
4404   addl(tmp2, queue_index);
4405   movl(Address(tmp2, 0), card_addr);
4406 #endif
4407   jmp(done);
4408 
4409   bind(runtime);
4410   // save the live input values
4411   push(store_addr);
4412   push(new_val);
4413 #ifdef _LP64
4414   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4415 #else
4416   push(thread);
4417   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4418   pop(thread);
4419 #endif
4420   pop(new_val);
4421   pop(store_addr);
4422 
4423   bind(done);
4424 }
4425 
4426 #endif // INCLUDE_ALL_GCS
4427 //////////////////////////////////////////////////////////////////////////////////
4428 
4429 
4430 void MacroAssembler::store_check(Register obj, Address dst) {
4431   store_check(obj);
4432 }
4433 
4434 void MacroAssembler::store_check(Register obj) {
4435   // Does a store check for the oop in register obj. The content of
4436   // register obj is destroyed afterwards.
4437   BarrierSet* bs = Universe::heap()->barrier_set();
4438   assert(bs->kind() == BarrierSet::CardTableForRS ||
4439          bs->kind() == BarrierSet::CardTableExtension,
4440          "Wrong barrier set kind");
4441 
4442   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4443   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4444 
4445   shrptr(obj, CardTableModRefBS::card_shift);
4446 
4447   Address card_addr;
4448 
4449   // The calculation for byte_map_base is as follows:
4450   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4451   // So this essentially converts an address to a displacement and it will
4452   // never need to be relocated. On 64bit however the value may be too
4453   // large for a 32bit displacement.
4454   intptr_t disp = (intptr_t) ct->byte_map_base;
4455   if (is_simm32(disp)) {
4456     card_addr = Address(noreg, obj, Address::times_1, disp);
4457   } else {
4458     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4459     // displacement and done in a single instruction given favorable mapping and a
4460     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4461     // entry and that entry is not properly handled by the relocation code.
4462     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4463     Address index(noreg, obj, Address::times_1);
4464     card_addr = as_Address(ArrayAddress(cardtable, index));
4465   }
4466 
4467   int dirty = CardTableModRefBS::dirty_card_val();
4468   if (UseCondCardMark) {
4469     Label L_already_dirty;
4470     if (UseConcMarkSweepGC) {
4471       membar(Assembler::StoreLoad);
4472     }
4473     cmpb(card_addr, dirty);
4474     jcc(Assembler::equal, L_already_dirty);
4475     movb(card_addr, dirty);
4476     bind(L_already_dirty);
4477   } else {
4478     movb(card_addr, dirty);
4479   }
4480 }
4481 
4482 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4483   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4484 }
4485 
4486 // Force generation of a 4 byte immediate value even if it fits into 8bit
4487 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4488   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4489 }
4490 
4491 void MacroAssembler::subptr(Register dst, Register src) {
4492   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4493 }
4494 
4495 // C++ bool manipulation
4496 void MacroAssembler::testbool(Register dst) {
4497   if(sizeof(bool) == 1)
4498     testb(dst, 0xff);
4499   else if(sizeof(bool) == 2) {
4500     // testw implementation needed for two byte bools
4501     ShouldNotReachHere();
4502   } else if(sizeof(bool) == 4)
4503     testl(dst, dst);
4504   else
4505     // unsupported
4506     ShouldNotReachHere();
4507 }
4508 
4509 void MacroAssembler::testptr(Register dst, Register src) {
4510   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4511 }
4512 
4513 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4514 void MacroAssembler::tlab_allocate(Register obj,
4515                                    Register var_size_in_bytes,
4516                                    int con_size_in_bytes,
4517                                    Register t1,
4518                                    Register t2,
4519                                    Label& slow_case) {
4520   assert_different_registers(obj, t1, t2);
4521   assert_different_registers(obj, var_size_in_bytes, t1);
4522   Register end = t2;
4523   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4524 
4525   verify_tlab();
4526 
4527   NOT_LP64(get_thread(thread));
4528 
4529   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4530   if (var_size_in_bytes == noreg) {
4531     lea(end, Address(obj, con_size_in_bytes));
4532   } else {
4533     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4534   }
4535   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4536   jcc(Assembler::above, slow_case);
4537 
4538   // update the tlab top pointer
4539   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4540 
4541   // recover var_size_in_bytes if necessary
4542   if (var_size_in_bytes == end) {
4543     subptr(var_size_in_bytes, obj);
4544   }
4545   verify_tlab();
4546 }
4547 
4548 // Preserves rbx, and rdx.
4549 Register MacroAssembler::tlab_refill(Label& retry,
4550                                      Label& try_eden,
4551                                      Label& slow_case) {
4552   Register top = rax;
4553   Register t1  = rcx;
4554   Register t2  = rsi;
4555   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4556   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4557   Label do_refill, discard_tlab;
4558 
4559   if (!Universe::heap()->supports_inline_contig_alloc()) {
4560     // No allocation in the shared eden.
4561     jmp(slow_case);
4562   }
4563 
4564   NOT_LP64(get_thread(thread_reg));
4565 
4566   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4567   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4568 
4569   // calculate amount of free space
4570   subptr(t1, top);
4571   shrptr(t1, LogHeapWordSize);
4572 
4573   // Retain tlab and allocate object in shared space if
4574   // the amount free in the tlab is too large to discard.
4575   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4576   jcc(Assembler::lessEqual, discard_tlab);
4577 
4578   // Retain
4579   // %%% yuck as movptr...
4580   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4581   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4582   if (TLABStats) {
4583     // increment number of slow_allocations
4584     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4585   }
4586   jmp(try_eden);
4587 
4588   bind(discard_tlab);
4589   if (TLABStats) {
4590     // increment number of refills
4591     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4592     // accumulate wastage -- t1 is amount free in tlab
4593     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4594   }
4595 
4596   // if tlab is currently allocated (top or end != null) then
4597   // fill [top, end + alignment_reserve) with array object
4598   testptr(top, top);
4599   jcc(Assembler::zero, do_refill);
4600 
4601   // set up the mark word
4602   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4603   // set the length to the remaining space
4604   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4605   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4606   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4607   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4608   // set klass to intArrayKlass
4609   // dubious reloc why not an oop reloc?
4610   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4611   // store klass last.  concurrent gcs assumes klass length is valid if
4612   // klass field is not null.
4613   store_klass(top, t1);
4614 
4615   movptr(t1, top);
4616   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4617   incr_allocated_bytes(thread_reg, t1, 0);
4618 
4619   // refill the tlab with an eden allocation
4620   bind(do_refill);
4621   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4622   shlptr(t1, LogHeapWordSize);
4623   // allocate new tlab, address returned in top
4624   eden_allocate(top, t1, 0, t2, slow_case);
4625 
4626   // Check that t1 was preserved in eden_allocate.
4627 #ifdef ASSERT
4628   if (UseTLAB) {
4629     Label ok;
4630     Register tsize = rsi;
4631     assert_different_registers(tsize, thread_reg, t1);
4632     push(tsize);
4633     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4634     shlptr(tsize, LogHeapWordSize);
4635     cmpptr(t1, tsize);
4636     jcc(Assembler::equal, ok);
4637     STOP("assert(t1 != tlab size)");
4638     should_not_reach_here();
4639 
4640     bind(ok);
4641     pop(tsize);
4642   }
4643 #endif
4644   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4645   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4646   addptr(top, t1);
4647   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4648   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4649   verify_tlab();
4650   jmp(retry);
4651 
4652   return thread_reg; // for use by caller
4653 }
4654 
4655 void MacroAssembler::incr_allocated_bytes(Register thread,
4656                                           Register var_size_in_bytes,
4657                                           int con_size_in_bytes,
4658                                           Register t1) {
4659   if (!thread->is_valid()) {
4660 #ifdef _LP64
4661     thread = r15_thread;
4662 #else
4663     assert(t1->is_valid(), "need temp reg");
4664     thread = t1;
4665     get_thread(thread);
4666 #endif
4667   }
4668 
4669 #ifdef _LP64
4670   if (var_size_in_bytes->is_valid()) {
4671     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4672   } else {
4673     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4674   }
4675 #else
4676   if (var_size_in_bytes->is_valid()) {
4677     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4678   } else {
4679     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4680   }
4681   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4682 #endif
4683 }
4684 
4685 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4686   pusha();
4687 
4688   // if we are coming from c1, xmm registers may be live
4689   int off = 0;
4690   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
4691   if (UseAVX > 2) {
4692     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
4693   }
4694 
4695   if (UseSSE == 1)  {
4696     subptr(rsp, sizeof(jdouble)*8);
4697     for (int n = 0; n < 8; n++) {
4698       movflt(Address(rsp, off++*sizeof(jdouble)), as_XMMRegister(n));
4699     }
4700   } else if (UseSSE >= 2)  {
4701     if (UseAVX > 2) {
4702       push(rbx);
4703       movl(rbx, 0xffff);
4704       kmovwl(k1, rbx);
4705       pop(rbx);
4706     }
4707 #ifdef COMPILER2
4708     if (MaxVectorSize > 16) {
4709       if(UseAVX > 2) {
4710         // Save upper half of ZMM registes
4711         subptr(rsp, 32*num_xmm_regs);
4712         for (int n = 0; n < num_xmm_regs; n++) {
4713           vextractf64x4h(Address(rsp, off++*32), as_XMMRegister(n));
4714         }
4715         off = 0;
4716       }
4717       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
4718       // Save upper half of YMM registes
4719       subptr(rsp, 16*num_xmm_regs);
4720       for (int n = 0; n < num_xmm_regs; n++) {
4721         vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
4722       }
4723     }
4724 #endif
4725     // Save whole 128bit (16 bytes) XMM registers
4726     subptr(rsp, 16*num_xmm_regs);
4727     off = 0;
4728 #ifdef _LP64
4729     if (VM_Version::supports_avx512novl()) {
4730       for (int n = 0; n < num_xmm_regs; n++) {
4731         vextractf32x4h(Address(rsp, off++*16), as_XMMRegister(n), 0);
4732       }
4733     } else {
4734       for (int n = 0; n < num_xmm_regs; n++) {
4735         movdqu(Address(rsp, off++*16), as_XMMRegister(n));
4736       }
4737     }
4738 #else
4739     for (int n = 0; n < num_xmm_regs; n++) {
4740       movdqu(Address(rsp, off++*16), as_XMMRegister(n));
4741     }
4742 #endif
4743   }
4744 
4745   // Preserve registers across runtime call
4746   int incoming_argument_and_return_value_offset = -1;
4747   if (num_fpu_regs_in_use > 1) {
4748     // Must preserve all other FPU regs (could alternatively convert
4749     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4750     // FPU state, but can not trust C compiler)
4751     NEEDS_CLEANUP;
4752     // NOTE that in this case we also push the incoming argument(s) to
4753     // the stack and restore it later; we also use this stack slot to
4754     // hold the return value from dsin, dcos etc.
4755     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4756       subptr(rsp, sizeof(jdouble));
4757       fstp_d(Address(rsp, 0));
4758     }
4759     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4760     for (int i = nb_args-1; i >= 0; i--) {
4761       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4762     }
4763   }
4764 
4765   subptr(rsp, nb_args*sizeof(jdouble));
4766   for (int i = 0; i < nb_args; i++) {
4767     fstp_d(Address(rsp, i*sizeof(jdouble)));
4768   }
4769 
4770 #ifdef _LP64
4771   if (nb_args > 0) {
4772     movdbl(xmm0, Address(rsp, 0));
4773   }
4774   if (nb_args > 1) {
4775     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4776   }
4777   assert(nb_args <= 2, "unsupported number of args");
4778 #endif // _LP64
4779 
4780   // NOTE: we must not use call_VM_leaf here because that requires a
4781   // complete interpreter frame in debug mode -- same bug as 4387334
4782   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4783   // do proper 64bit abi
4784 
4785   NEEDS_CLEANUP;
4786   // Need to add stack banging before this runtime call if it needs to
4787   // be taken; however, there is no generic stack banging routine at
4788   // the MacroAssembler level
4789 
4790   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4791 
4792 #ifdef _LP64
4793   movsd(Address(rsp, 0), xmm0);
4794   fld_d(Address(rsp, 0));
4795 #endif // _LP64
4796   addptr(rsp, sizeof(jdouble)*nb_args);
4797   if (num_fpu_regs_in_use > 1) {
4798     // Must save return value to stack and then restore entire FPU
4799     // stack except incoming arguments
4800     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4801     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4802       fld_d(Address(rsp, 0));
4803       addptr(rsp, sizeof(jdouble));
4804     }
4805     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4806     addptr(rsp, sizeof(jdouble)*nb_args);
4807   }
4808 
4809   off = 0;
4810   if (UseSSE == 1)  {
4811     for (int n = 0; n < 8; n++) {
4812       movflt(as_XMMRegister(n), Address(rsp, off++*sizeof(jdouble)));
4813     }
4814     addptr(rsp, sizeof(jdouble)*8);
4815   } else if (UseSSE >= 2)  {
4816     // Restore whole 128bit (16 bytes) XMM regiters
4817 #ifdef _LP64
4818     if (VM_Version::supports_avx512novl()) {
4819       for (int n = 0; n < num_xmm_regs; n++) {
4820         vinsertf32x4h(as_XMMRegister(n), Address(rsp, off++*16), 0);
4821       }
4822     }
4823     else {
4824       for (int n = 0; n < num_xmm_regs; n++) {
4825         movdqu(as_XMMRegister(n), Address(rsp, off++*16));
4826       }
4827     }
4828 #else
4829     for (int n = 0; n < num_xmm_regs; n++) {
4830       movdqu(as_XMMRegister(n), Address(rsp, off++ * 16));
4831     }
4832 #endif
4833     addptr(rsp, 16*num_xmm_regs);
4834 
4835 #ifdef COMPILER2
4836     if (MaxVectorSize > 16) {
4837       // Restore upper half of YMM registes.
4838       off = 0;
4839       for (int n = 0; n < num_xmm_regs; n++) {
4840         vinsertf128h(as_XMMRegister(n), Address(rsp, off++*16));
4841       }
4842       addptr(rsp, 16*num_xmm_regs);
4843       if(UseAVX > 2) {
4844         off = 0;
4845         for (int n = 0; n < num_xmm_regs; n++) {
4846           vinsertf64x4h(as_XMMRegister(n), Address(rsp, off++*32));
4847         }
4848         addptr(rsp, 32*num_xmm_regs);
4849       }
4850     }
4851 #endif
4852   }
4853   popa();
4854 }
4855 
4856 static const double     pi_4 =  0.7853981633974483;
4857 
4858 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4859   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4860   // was attempted in this code; unfortunately it appears that the
4861   // switch to 80-bit precision and back causes this to be
4862   // unprofitable compared with simply performing a runtime call if
4863   // the argument is out of the (-pi/4, pi/4) range.
4864 
4865   Register tmp = noreg;
4866   if (!VM_Version::supports_cmov()) {
4867     // fcmp needs a temporary so preserve rbx,
4868     tmp = rbx;
4869     push(tmp);
4870   }
4871 
4872   Label slow_case, done;
4873 
4874   ExternalAddress pi4_adr = (address)&pi_4;
4875   if (reachable(pi4_adr)) {
4876     // x ?<= pi/4
4877     fld_d(pi4_adr);
4878     fld_s(1);                // Stack:  X  PI/4  X
4879     fabs();                  // Stack: |X| PI/4  X
4880     fcmp(tmp);
4881     jcc(Assembler::above, slow_case);
4882 
4883     // fastest case: -pi/4 <= x <= pi/4
4884     switch(trig) {
4885     case 's':
4886       fsin();
4887       break;
4888     case 'c':
4889       fcos();
4890       break;
4891     case 't':
4892       ftan();
4893       break;
4894     default:
4895       assert(false, "bad intrinsic");
4896       break;
4897     }
4898     jmp(done);
4899   }
4900 
4901   // slow case: runtime call
4902   bind(slow_case);
4903 
4904   switch(trig) {
4905   case 's':
4906     {
4907       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4908     }
4909     break;
4910   case 'c':
4911     {
4912       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4913     }
4914     break;
4915   case 't':
4916     {
4917       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4918     }
4919     break;
4920   default:
4921     assert(false, "bad intrinsic");
4922     break;
4923   }
4924 
4925   // Come here with result in F-TOS
4926   bind(done);
4927 
4928   if (tmp != noreg) {
4929     pop(tmp);
4930   }
4931 }
4932 
4933 
4934 // Look up the method for a megamorphic invokeinterface call.
4935 // The target method is determined by <intf_klass, itable_index>.
4936 // The receiver klass is in recv_klass.
4937 // On success, the result will be in method_result, and execution falls through.
4938 // On failure, execution transfers to the given label.
4939 void MacroAssembler::lookup_interface_method(Register recv_klass,
4940                                              Register intf_klass,
4941                                              RegisterOrConstant itable_index,
4942                                              Register method_result,
4943                                              Register scan_temp,
4944                                              Label& L_no_such_interface) {
4945   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4946   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4947          "caller must use same register for non-constant itable index as for method");
4948 
4949   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4950   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4951   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4952   int scan_step   = itableOffsetEntry::size() * wordSize;
4953   int vte_size    = vtableEntry::size() * wordSize;
4954   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4955   assert(vte_size == wordSize, "else adjust times_vte_scale");
4956 
4957   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4958 
4959   // %%% Could store the aligned, prescaled offset in the klassoop.
4960   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4961   if (HeapWordsPerLong > 1) {
4962     // Round up to align_object_offset boundary
4963     // see code for InstanceKlass::start_of_itable!
4964     round_to(scan_temp, BytesPerLong);
4965   }
4966 
4967   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4968   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4969   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4970 
4971   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4972   //   if (scan->interface() == intf) {
4973   //     result = (klass + scan->offset() + itable_index);
4974   //   }
4975   // }
4976   Label search, found_method;
4977 
4978   for (int peel = 1; peel >= 0; peel--) {
4979     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4980     cmpptr(intf_klass, method_result);
4981 
4982     if (peel) {
4983       jccb(Assembler::equal, found_method);
4984     } else {
4985       jccb(Assembler::notEqual, search);
4986       // (invert the test to fall through to found_method...)
4987     }
4988 
4989     if (!peel)  break;
4990 
4991     bind(search);
4992 
4993     // Check that the previous entry is non-null.  A null entry means that
4994     // the receiver class doesn't implement the interface, and wasn't the
4995     // same as when the caller was compiled.
4996     testptr(method_result, method_result);
4997     jcc(Assembler::zero, L_no_such_interface);
4998     addptr(scan_temp, scan_step);
4999   }
5000 
5001   bind(found_method);
5002 
5003   // Got a hit.
5004   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5005   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5006 }
5007 
5008 
5009 // virtual method calling
5010 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5011                                            RegisterOrConstant vtable_index,
5012                                            Register method_result) {
5013   const int base = InstanceKlass::vtable_start_offset() * wordSize;
5014   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5015   Address vtable_entry_addr(recv_klass,
5016                             vtable_index, Address::times_ptr,
5017                             base + vtableEntry::method_offset_in_bytes());
5018   movptr(method_result, vtable_entry_addr);
5019 }
5020 
5021 
5022 void MacroAssembler::check_klass_subtype(Register sub_klass,
5023                            Register super_klass,
5024                            Register temp_reg,
5025                            Label& L_success) {
5026   Label L_failure;
5027   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5028   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5029   bind(L_failure);
5030 }
5031 
5032 
5033 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5034                                                    Register super_klass,
5035                                                    Register temp_reg,
5036                                                    Label* L_success,
5037                                                    Label* L_failure,
5038                                                    Label* L_slow_path,
5039                                         RegisterOrConstant super_check_offset) {
5040   assert_different_registers(sub_klass, super_klass, temp_reg);
5041   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5042   if (super_check_offset.is_register()) {
5043     assert_different_registers(sub_klass, super_klass,
5044                                super_check_offset.as_register());
5045   } else if (must_load_sco) {
5046     assert(temp_reg != noreg, "supply either a temp or a register offset");
5047   }
5048 
5049   Label L_fallthrough;
5050   int label_nulls = 0;
5051   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5052   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5053   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5054   assert(label_nulls <= 1, "at most one NULL in the batch");
5055 
5056   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5057   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5058   Address super_check_offset_addr(super_klass, sco_offset);
5059 
5060   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5061   // range of a jccb.  If this routine grows larger, reconsider at
5062   // least some of these.
5063 #define local_jcc(assembler_cond, label)                                \
5064   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5065   else                             jcc( assembler_cond, label) /*omit semi*/
5066 
5067   // Hacked jmp, which may only be used just before L_fallthrough.
5068 #define final_jmp(label)                                                \
5069   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5070   else                            jmp(label)                /*omit semi*/
5071 
5072   // If the pointers are equal, we are done (e.g., String[] elements).
5073   // This self-check enables sharing of secondary supertype arrays among
5074   // non-primary types such as array-of-interface.  Otherwise, each such
5075   // type would need its own customized SSA.
5076   // We move this check to the front of the fast path because many
5077   // type checks are in fact trivially successful in this manner,
5078   // so we get a nicely predicted branch right at the start of the check.
5079   cmpptr(sub_klass, super_klass);
5080   local_jcc(Assembler::equal, *L_success);
5081 
5082   // Check the supertype display:
5083   if (must_load_sco) {
5084     // Positive movl does right thing on LP64.
5085     movl(temp_reg, super_check_offset_addr);
5086     super_check_offset = RegisterOrConstant(temp_reg);
5087   }
5088   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5089   cmpptr(super_klass, super_check_addr); // load displayed supertype
5090 
5091   // This check has worked decisively for primary supers.
5092   // Secondary supers are sought in the super_cache ('super_cache_addr').
5093   // (Secondary supers are interfaces and very deeply nested subtypes.)
5094   // This works in the same check above because of a tricky aliasing
5095   // between the super_cache and the primary super display elements.
5096   // (The 'super_check_addr' can address either, as the case requires.)
5097   // Note that the cache is updated below if it does not help us find
5098   // what we need immediately.
5099   // So if it was a primary super, we can just fail immediately.
5100   // Otherwise, it's the slow path for us (no success at this point).
5101 
5102   if (super_check_offset.is_register()) {
5103     local_jcc(Assembler::equal, *L_success);
5104     cmpl(super_check_offset.as_register(), sc_offset);
5105     if (L_failure == &L_fallthrough) {
5106       local_jcc(Assembler::equal, *L_slow_path);
5107     } else {
5108       local_jcc(Assembler::notEqual, *L_failure);
5109       final_jmp(*L_slow_path);
5110     }
5111   } else if (super_check_offset.as_constant() == sc_offset) {
5112     // Need a slow path; fast failure is impossible.
5113     if (L_slow_path == &L_fallthrough) {
5114       local_jcc(Assembler::equal, *L_success);
5115     } else {
5116       local_jcc(Assembler::notEqual, *L_slow_path);
5117       final_jmp(*L_success);
5118     }
5119   } else {
5120     // No slow path; it's a fast decision.
5121     if (L_failure == &L_fallthrough) {
5122       local_jcc(Assembler::equal, *L_success);
5123     } else {
5124       local_jcc(Assembler::notEqual, *L_failure);
5125       final_jmp(*L_success);
5126     }
5127   }
5128 
5129   bind(L_fallthrough);
5130 
5131 #undef local_jcc
5132 #undef final_jmp
5133 }
5134 
5135 
5136 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5137                                                    Register super_klass,
5138                                                    Register temp_reg,
5139                                                    Register temp2_reg,
5140                                                    Label* L_success,
5141                                                    Label* L_failure,
5142                                                    bool set_cond_codes) {
5143   assert_different_registers(sub_klass, super_klass, temp_reg);
5144   if (temp2_reg != noreg)
5145     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5146 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5147 
5148   Label L_fallthrough;
5149   int label_nulls = 0;
5150   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5151   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5152   assert(label_nulls <= 1, "at most one NULL in the batch");
5153 
5154   // a couple of useful fields in sub_klass:
5155   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5156   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5157   Address secondary_supers_addr(sub_klass, ss_offset);
5158   Address super_cache_addr(     sub_klass, sc_offset);
5159 
5160   // Do a linear scan of the secondary super-klass chain.
5161   // This code is rarely used, so simplicity is a virtue here.
5162   // The repne_scan instruction uses fixed registers, which we must spill.
5163   // Don't worry too much about pre-existing connections with the input regs.
5164 
5165   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5166   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5167 
5168   // Get super_klass value into rax (even if it was in rdi or rcx).
5169   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5170   if (super_klass != rax || UseCompressedOops) {
5171     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5172     mov(rax, super_klass);
5173   }
5174   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5175   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5176 
5177 #ifndef PRODUCT
5178   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5179   ExternalAddress pst_counter_addr((address) pst_counter);
5180   NOT_LP64(  incrementl(pst_counter_addr) );
5181   LP64_ONLY( lea(rcx, pst_counter_addr) );
5182   LP64_ONLY( incrementl(Address(rcx, 0)) );
5183 #endif //PRODUCT
5184 
5185   // We will consult the secondary-super array.
5186   movptr(rdi, secondary_supers_addr);
5187   // Load the array length.  (Positive movl does right thing on LP64.)
5188   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5189   // Skip to start of data.
5190   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5191 
5192   // Scan RCX words at [RDI] for an occurrence of RAX.
5193   // Set NZ/Z based on last compare.
5194   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5195   // not change flags (only scas instruction which is repeated sets flags).
5196   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5197 
5198     testptr(rax,rax); // Set Z = 0
5199     repne_scan();
5200 
5201   // Unspill the temp. registers:
5202   if (pushed_rdi)  pop(rdi);
5203   if (pushed_rcx)  pop(rcx);
5204   if (pushed_rax)  pop(rax);
5205 
5206   if (set_cond_codes) {
5207     // Special hack for the AD files:  rdi is guaranteed non-zero.
5208     assert(!pushed_rdi, "rdi must be left non-NULL");
5209     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5210   }
5211 
5212   if (L_failure == &L_fallthrough)
5213         jccb(Assembler::notEqual, *L_failure);
5214   else  jcc(Assembler::notEqual, *L_failure);
5215 
5216   // Success.  Cache the super we found and proceed in triumph.
5217   movptr(super_cache_addr, super_klass);
5218 
5219   if (L_success != &L_fallthrough) {
5220     jmp(*L_success);
5221   }
5222 
5223 #undef IS_A_TEMP
5224 
5225   bind(L_fallthrough);
5226 }
5227 
5228 
5229 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5230   if (VM_Version::supports_cmov()) {
5231     cmovl(cc, dst, src);
5232   } else {
5233     Label L;
5234     jccb(negate_condition(cc), L);
5235     movl(dst, src);
5236     bind(L);
5237   }
5238 }
5239 
5240 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5241   if (VM_Version::supports_cmov()) {
5242     cmovl(cc, dst, src);
5243   } else {
5244     Label L;
5245     jccb(negate_condition(cc), L);
5246     movl(dst, src);
5247     bind(L);
5248   }
5249 }
5250 
5251 void MacroAssembler::verify_oop(Register reg, const char* s) {
5252   if (!VerifyOops) return;
5253 
5254   // Pass register number to verify_oop_subroutine
5255   const char* b = NULL;
5256   {
5257     ResourceMark rm;
5258     stringStream ss;
5259     ss.print("verify_oop: %s: %s", reg->name(), s);
5260     b = code_string(ss.as_string());
5261   }
5262   BLOCK_COMMENT("verify_oop {");
5263 #ifdef _LP64
5264   push(rscratch1);                    // save r10, trashed by movptr()
5265 #endif
5266   push(rax);                          // save rax,
5267   push(reg);                          // pass register argument
5268   ExternalAddress buffer((address) b);
5269   // avoid using pushptr, as it modifies scratch registers
5270   // and our contract is not to modify anything
5271   movptr(rax, buffer.addr());
5272   push(rax);
5273   // call indirectly to solve generation ordering problem
5274   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5275   call(rax);
5276   // Caller pops the arguments (oop, message) and restores rax, r10
5277   BLOCK_COMMENT("} verify_oop");
5278 }
5279 
5280 
5281 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5282                                                       Register tmp,
5283                                                       int offset) {
5284   intptr_t value = *delayed_value_addr;
5285   if (value != 0)
5286     return RegisterOrConstant(value + offset);
5287 
5288   // load indirectly to solve generation ordering problem
5289   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5290 
5291 #ifdef ASSERT
5292   { Label L;
5293     testptr(tmp, tmp);
5294     if (WizardMode) {
5295       const char* buf = NULL;
5296       {
5297         ResourceMark rm;
5298         stringStream ss;
5299         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5300         buf = code_string(ss.as_string());
5301       }
5302       jcc(Assembler::notZero, L);
5303       STOP(buf);
5304     } else {
5305       jccb(Assembler::notZero, L);
5306       hlt();
5307     }
5308     bind(L);
5309   }
5310 #endif
5311 
5312   if (offset != 0)
5313     addptr(tmp, offset);
5314 
5315   return RegisterOrConstant(tmp);
5316 }
5317 
5318 
5319 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5320                                          int extra_slot_offset) {
5321   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5322   int stackElementSize = Interpreter::stackElementSize;
5323   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5324 #ifdef ASSERT
5325   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5326   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5327 #endif
5328   Register             scale_reg    = noreg;
5329   Address::ScaleFactor scale_factor = Address::no_scale;
5330   if (arg_slot.is_constant()) {
5331     offset += arg_slot.as_constant() * stackElementSize;
5332   } else {
5333     scale_reg    = arg_slot.as_register();
5334     scale_factor = Address::times(stackElementSize);
5335   }
5336   offset += wordSize;           // return PC is on stack
5337   return Address(rsp, scale_reg, scale_factor, offset);
5338 }
5339 
5340 
5341 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5342   if (!VerifyOops) return;
5343 
5344   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5345   // Pass register number to verify_oop_subroutine
5346   const char* b = NULL;
5347   {
5348     ResourceMark rm;
5349     stringStream ss;
5350     ss.print("verify_oop_addr: %s", s);
5351     b = code_string(ss.as_string());
5352   }
5353 #ifdef _LP64
5354   push(rscratch1);                    // save r10, trashed by movptr()
5355 #endif
5356   push(rax);                          // save rax,
5357   // addr may contain rsp so we will have to adjust it based on the push
5358   // we just did (and on 64 bit we do two pushes)
5359   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5360   // stores rax into addr which is backwards of what was intended.
5361   if (addr.uses(rsp)) {
5362     lea(rax, addr);
5363     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5364   } else {
5365     pushptr(addr);
5366   }
5367 
5368   ExternalAddress buffer((address) b);
5369   // pass msg argument
5370   // avoid using pushptr, as it modifies scratch registers
5371   // and our contract is not to modify anything
5372   movptr(rax, buffer.addr());
5373   push(rax);
5374 
5375   // call indirectly to solve generation ordering problem
5376   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5377   call(rax);
5378   // Caller pops the arguments (addr, message) and restores rax, r10.
5379 }
5380 
5381 void MacroAssembler::verify_tlab() {
5382 #ifdef ASSERT
5383   if (UseTLAB && VerifyOops) {
5384     Label next, ok;
5385     Register t1 = rsi;
5386     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5387 
5388     push(t1);
5389     NOT_LP64(push(thread_reg));
5390     NOT_LP64(get_thread(thread_reg));
5391 
5392     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5393     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5394     jcc(Assembler::aboveEqual, next);
5395     STOP("assert(top >= start)");
5396     should_not_reach_here();
5397 
5398     bind(next);
5399     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5400     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5401     jcc(Assembler::aboveEqual, ok);
5402     STOP("assert(top <= end)");
5403     should_not_reach_here();
5404 
5405     bind(ok);
5406     NOT_LP64(pop(thread_reg));
5407     pop(t1);
5408   }
5409 #endif
5410 }
5411 
5412 class ControlWord {
5413  public:
5414   int32_t _value;
5415 
5416   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5417   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5418   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5419   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5420   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5421   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5422   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5423   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5424 
5425   void print() const {
5426     // rounding control
5427     const char* rc;
5428     switch (rounding_control()) {
5429       case 0: rc = "round near"; break;
5430       case 1: rc = "round down"; break;
5431       case 2: rc = "round up  "; break;
5432       case 3: rc = "chop      "; break;
5433     };
5434     // precision control
5435     const char* pc;
5436     switch (precision_control()) {
5437       case 0: pc = "24 bits "; break;
5438       case 1: pc = "reserved"; break;
5439       case 2: pc = "53 bits "; break;
5440       case 3: pc = "64 bits "; break;
5441     };
5442     // flags
5443     char f[9];
5444     f[0] = ' ';
5445     f[1] = ' ';
5446     f[2] = (precision   ()) ? 'P' : 'p';
5447     f[3] = (underflow   ()) ? 'U' : 'u';
5448     f[4] = (overflow    ()) ? 'O' : 'o';
5449     f[5] = (zero_divide ()) ? 'Z' : 'z';
5450     f[6] = (denormalized()) ? 'D' : 'd';
5451     f[7] = (invalid     ()) ? 'I' : 'i';
5452     f[8] = '\x0';
5453     // output
5454     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5455   }
5456 
5457 };
5458 
5459 class StatusWord {
5460  public:
5461   int32_t _value;
5462 
5463   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5464   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5465   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5466   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5467   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5468   int  top() const                     { return  (_value >> 11) & 7      ; }
5469   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5470   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5471   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5472   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5473   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5474   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5475   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5476   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5477 
5478   void print() const {
5479     // condition codes
5480     char c[5];
5481     c[0] = (C3()) ? '3' : '-';
5482     c[1] = (C2()) ? '2' : '-';
5483     c[2] = (C1()) ? '1' : '-';
5484     c[3] = (C0()) ? '0' : '-';
5485     c[4] = '\x0';
5486     // flags
5487     char f[9];
5488     f[0] = (error_status()) ? 'E' : '-';
5489     f[1] = (stack_fault ()) ? 'S' : '-';
5490     f[2] = (precision   ()) ? 'P' : '-';
5491     f[3] = (underflow   ()) ? 'U' : '-';
5492     f[4] = (overflow    ()) ? 'O' : '-';
5493     f[5] = (zero_divide ()) ? 'Z' : '-';
5494     f[6] = (denormalized()) ? 'D' : '-';
5495     f[7] = (invalid     ()) ? 'I' : '-';
5496     f[8] = '\x0';
5497     // output
5498     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5499   }
5500 
5501 };
5502 
5503 class TagWord {
5504  public:
5505   int32_t _value;
5506 
5507   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5508 
5509   void print() const {
5510     printf("%04x", _value & 0xFFFF);
5511   }
5512 
5513 };
5514 
5515 class FPU_Register {
5516  public:
5517   int32_t _m0;
5518   int32_t _m1;
5519   int16_t _ex;
5520 
5521   bool is_indefinite() const           {
5522     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5523   }
5524 
5525   void print() const {
5526     char  sign = (_ex < 0) ? '-' : '+';
5527     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5528     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5529   };
5530 
5531 };
5532 
5533 class FPU_State {
5534  public:
5535   enum {
5536     register_size       = 10,
5537     number_of_registers =  8,
5538     register_mask       =  7
5539   };
5540 
5541   ControlWord  _control_word;
5542   StatusWord   _status_word;
5543   TagWord      _tag_word;
5544   int32_t      _error_offset;
5545   int32_t      _error_selector;
5546   int32_t      _data_offset;
5547   int32_t      _data_selector;
5548   int8_t       _register[register_size * number_of_registers];
5549 
5550   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5551   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5552 
5553   const char* tag_as_string(int tag) const {
5554     switch (tag) {
5555       case 0: return "valid";
5556       case 1: return "zero";
5557       case 2: return "special";
5558       case 3: return "empty";
5559     }
5560     ShouldNotReachHere();
5561     return NULL;
5562   }
5563 
5564   void print() const {
5565     // print computation registers
5566     { int t = _status_word.top();
5567       for (int i = 0; i < number_of_registers; i++) {
5568         int j = (i - t) & register_mask;
5569         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5570         st(j)->print();
5571         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5572       }
5573     }
5574     printf("\n");
5575     // print control registers
5576     printf("ctrl = "); _control_word.print(); printf("\n");
5577     printf("stat = "); _status_word .print(); printf("\n");
5578     printf("tags = "); _tag_word    .print(); printf("\n");
5579   }
5580 
5581 };
5582 
5583 class Flag_Register {
5584  public:
5585   int32_t _value;
5586 
5587   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5588   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5589   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5590   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5591   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5592   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5593   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5594 
5595   void print() const {
5596     // flags
5597     char f[8];
5598     f[0] = (overflow       ()) ? 'O' : '-';
5599     f[1] = (direction      ()) ? 'D' : '-';
5600     f[2] = (sign           ()) ? 'S' : '-';
5601     f[3] = (zero           ()) ? 'Z' : '-';
5602     f[4] = (auxiliary_carry()) ? 'A' : '-';
5603     f[5] = (parity         ()) ? 'P' : '-';
5604     f[6] = (carry          ()) ? 'C' : '-';
5605     f[7] = '\x0';
5606     // output
5607     printf("%08x  flags = %s", _value, f);
5608   }
5609 
5610 };
5611 
5612 class IU_Register {
5613  public:
5614   int32_t _value;
5615 
5616   void print() const {
5617     printf("%08x  %11d", _value, _value);
5618   }
5619 
5620 };
5621 
5622 class IU_State {
5623  public:
5624   Flag_Register _eflags;
5625   IU_Register   _rdi;
5626   IU_Register   _rsi;
5627   IU_Register   _rbp;
5628   IU_Register   _rsp;
5629   IU_Register   _rbx;
5630   IU_Register   _rdx;
5631   IU_Register   _rcx;
5632   IU_Register   _rax;
5633 
5634   void print() const {
5635     // computation registers
5636     printf("rax,  = "); _rax.print(); printf("\n");
5637     printf("rbx,  = "); _rbx.print(); printf("\n");
5638     printf("rcx  = "); _rcx.print(); printf("\n");
5639     printf("rdx  = "); _rdx.print(); printf("\n");
5640     printf("rdi  = "); _rdi.print(); printf("\n");
5641     printf("rsi  = "); _rsi.print(); printf("\n");
5642     printf("rbp,  = "); _rbp.print(); printf("\n");
5643     printf("rsp  = "); _rsp.print(); printf("\n");
5644     printf("\n");
5645     // control registers
5646     printf("flgs = "); _eflags.print(); printf("\n");
5647   }
5648 };
5649 
5650 
5651 class CPU_State {
5652  public:
5653   FPU_State _fpu_state;
5654   IU_State  _iu_state;
5655 
5656   void print() const {
5657     printf("--------------------------------------------------\n");
5658     _iu_state .print();
5659     printf("\n");
5660     _fpu_state.print();
5661     printf("--------------------------------------------------\n");
5662   }
5663 
5664 };
5665 
5666 
5667 static void _print_CPU_state(CPU_State* state) {
5668   state->print();
5669 };
5670 
5671 
5672 void MacroAssembler::print_CPU_state() {
5673   push_CPU_state();
5674   push(rsp);                // pass CPU state
5675   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5676   addptr(rsp, wordSize);       // discard argument
5677   pop_CPU_state();
5678 }
5679 
5680 
5681 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5682   static int counter = 0;
5683   FPU_State* fs = &state->_fpu_state;
5684   counter++;
5685   // For leaf calls, only verify that the top few elements remain empty.
5686   // We only need 1 empty at the top for C2 code.
5687   if( stack_depth < 0 ) {
5688     if( fs->tag_for_st(7) != 3 ) {
5689       printf("FPR7 not empty\n");
5690       state->print();
5691       assert(false, "error");
5692       return false;
5693     }
5694     return true;                // All other stack states do not matter
5695   }
5696 
5697   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5698          "bad FPU control word");
5699 
5700   // compute stack depth
5701   int i = 0;
5702   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5703   int d = i;
5704   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5705   // verify findings
5706   if (i != FPU_State::number_of_registers) {
5707     // stack not contiguous
5708     printf("%s: stack not contiguous at ST%d\n", s, i);
5709     state->print();
5710     assert(false, "error");
5711     return false;
5712   }
5713   // check if computed stack depth corresponds to expected stack depth
5714   if (stack_depth < 0) {
5715     // expected stack depth is -stack_depth or less
5716     if (d > -stack_depth) {
5717       // too many elements on the stack
5718       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5719       state->print();
5720       assert(false, "error");
5721       return false;
5722     }
5723   } else {
5724     // expected stack depth is stack_depth
5725     if (d != stack_depth) {
5726       // wrong stack depth
5727       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5728       state->print();
5729       assert(false, "error");
5730       return false;
5731     }
5732   }
5733   // everything is cool
5734   return true;
5735 }
5736 
5737 
5738 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5739   if (!VerifyFPU) return;
5740   push_CPU_state();
5741   push(rsp);                // pass CPU state
5742   ExternalAddress msg((address) s);
5743   // pass message string s
5744   pushptr(msg.addr());
5745   push(stack_depth);        // pass stack depth
5746   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5747   addptr(rsp, 3 * wordSize);   // discard arguments
5748   // check for error
5749   { Label L;
5750     testl(rax, rax);
5751     jcc(Assembler::notZero, L);
5752     int3();                  // break if error condition
5753     bind(L);
5754   }
5755   pop_CPU_state();
5756 }
5757 
5758 void MacroAssembler::restore_cpu_control_state_after_jni() {
5759   // Either restore the MXCSR register after returning from the JNI Call
5760   // or verify that it wasn't changed (with -Xcheck:jni flag).
5761   if (VM_Version::supports_sse()) {
5762     if (RestoreMXCSROnJNICalls) {
5763       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5764     } else if (CheckJNICalls) {
5765       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5766     }
5767   }
5768   if (VM_Version::supports_avx()) {
5769     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5770     vzeroupper();
5771   }
5772 
5773 #ifndef _LP64
5774   // Either restore the x87 floating pointer control word after returning
5775   // from the JNI call or verify that it wasn't changed.
5776   if (CheckJNICalls) {
5777     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5778   }
5779 #endif // _LP64
5780 }
5781 
5782 
5783 void MacroAssembler::load_klass(Register dst, Register src) {
5784 #ifdef _LP64
5785   if (UseCompressedClassPointers) {
5786     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5787     decode_klass_not_null(dst);
5788   } else
5789 #endif
5790     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5791 }
5792 
5793 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5794   load_klass(dst, src);
5795   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5796 }
5797 
5798 void MacroAssembler::store_klass(Register dst, Register src) {
5799 #ifdef _LP64
5800   if (UseCompressedClassPointers) {
5801     encode_klass_not_null(src);
5802     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5803   } else
5804 #endif
5805     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5806 }
5807 
5808 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5809 #ifdef _LP64
5810   // FIXME: Must change all places where we try to load the klass.
5811   if (UseCompressedOops) {
5812     movl(dst, src);
5813     decode_heap_oop(dst);
5814   } else
5815 #endif
5816     movptr(dst, src);
5817 }
5818 
5819 // Doesn't do verfication, generates fixed size code
5820 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5821 #ifdef _LP64
5822   if (UseCompressedOops) {
5823     movl(dst, src);
5824     decode_heap_oop_not_null(dst);
5825   } else
5826 #endif
5827     movptr(dst, src);
5828 }
5829 
5830 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5831 #ifdef _LP64
5832   if (UseCompressedOops) {
5833     assert(!dst.uses(src), "not enough registers");
5834     encode_heap_oop(src);
5835     movl(dst, src);
5836   } else
5837 #endif
5838     movptr(dst, src);
5839 }
5840 
5841 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5842   assert_different_registers(src1, tmp);
5843 #ifdef _LP64
5844   if (UseCompressedOops) {
5845     bool did_push = false;
5846     if (tmp == noreg) {
5847       tmp = rax;
5848       push(tmp);
5849       did_push = true;
5850       assert(!src2.uses(rsp), "can't push");
5851     }
5852     load_heap_oop(tmp, src2);
5853     cmpptr(src1, tmp);
5854     if (did_push)  pop(tmp);
5855   } else
5856 #endif
5857     cmpptr(src1, src2);
5858 }
5859 
5860 // Used for storing NULLs.
5861 void MacroAssembler::store_heap_oop_null(Address dst) {
5862 #ifdef _LP64
5863   if (UseCompressedOops) {
5864     movl(dst, (int32_t)NULL_WORD);
5865   } else {
5866     movslq(dst, (int32_t)NULL_WORD);
5867   }
5868 #else
5869   movl(dst, (int32_t)NULL_WORD);
5870 #endif
5871 }
5872 
5873 #ifdef _LP64
5874 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5875   if (UseCompressedClassPointers) {
5876     // Store to klass gap in destination
5877     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5878   }
5879 }
5880 
5881 #ifdef ASSERT
5882 void MacroAssembler::verify_heapbase(const char* msg) {
5883   assert (UseCompressedOops, "should be compressed");
5884   assert (Universe::heap() != NULL, "java heap should be initialized");
5885   if (CheckCompressedOops) {
5886     Label ok;
5887     push(rscratch1); // cmpptr trashes rscratch1
5888     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5889     jcc(Assembler::equal, ok);
5890     STOP(msg);
5891     bind(ok);
5892     pop(rscratch1);
5893   }
5894 }
5895 #endif
5896 
5897 // Algorithm must match oop.inline.hpp encode_heap_oop.
5898 void MacroAssembler::encode_heap_oop(Register r) {
5899 #ifdef ASSERT
5900   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5901 #endif
5902   verify_oop(r, "broken oop in encode_heap_oop");
5903   if (Universe::narrow_oop_base() == NULL) {
5904     if (Universe::narrow_oop_shift() != 0) {
5905       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5906       shrq(r, LogMinObjAlignmentInBytes);
5907     }
5908     return;
5909   }
5910   testq(r, r);
5911   cmovq(Assembler::equal, r, r12_heapbase);
5912   subq(r, r12_heapbase);
5913   shrq(r, LogMinObjAlignmentInBytes);
5914 }
5915 
5916 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5917 #ifdef ASSERT
5918   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5919   if (CheckCompressedOops) {
5920     Label ok;
5921     testq(r, r);
5922     jcc(Assembler::notEqual, ok);
5923     STOP("null oop passed to encode_heap_oop_not_null");
5924     bind(ok);
5925   }
5926 #endif
5927   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5928   if (Universe::narrow_oop_base() != NULL) {
5929     subq(r, r12_heapbase);
5930   }
5931   if (Universe::narrow_oop_shift() != 0) {
5932     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5933     shrq(r, LogMinObjAlignmentInBytes);
5934   }
5935 }
5936 
5937 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5938 #ifdef ASSERT
5939   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5940   if (CheckCompressedOops) {
5941     Label ok;
5942     testq(src, src);
5943     jcc(Assembler::notEqual, ok);
5944     STOP("null oop passed to encode_heap_oop_not_null2");
5945     bind(ok);
5946   }
5947 #endif
5948   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5949   if (dst != src) {
5950     movq(dst, src);
5951   }
5952   if (Universe::narrow_oop_base() != NULL) {
5953     subq(dst, r12_heapbase);
5954   }
5955   if (Universe::narrow_oop_shift() != 0) {
5956     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5957     shrq(dst, LogMinObjAlignmentInBytes);
5958   }
5959 }
5960 
5961 void  MacroAssembler::decode_heap_oop(Register r) {
5962 #ifdef ASSERT
5963   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5964 #endif
5965   if (Universe::narrow_oop_base() == NULL) {
5966     if (Universe::narrow_oop_shift() != 0) {
5967       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5968       shlq(r, LogMinObjAlignmentInBytes);
5969     }
5970   } else {
5971     Label done;
5972     shlq(r, LogMinObjAlignmentInBytes);
5973     jccb(Assembler::equal, done);
5974     addq(r, r12_heapbase);
5975     bind(done);
5976   }
5977   verify_oop(r, "broken oop in decode_heap_oop");
5978 }
5979 
5980 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5981   // Note: it will change flags
5982   assert (UseCompressedOops, "should only be used for compressed headers");
5983   assert (Universe::heap() != NULL, "java heap should be initialized");
5984   // Cannot assert, unverified entry point counts instructions (see .ad file)
5985   // vtableStubs also counts instructions in pd_code_size_limit.
5986   // Also do not verify_oop as this is called by verify_oop.
5987   if (Universe::narrow_oop_shift() != 0) {
5988     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5989     shlq(r, LogMinObjAlignmentInBytes);
5990     if (Universe::narrow_oop_base() != NULL) {
5991       addq(r, r12_heapbase);
5992     }
5993   } else {
5994     assert (Universe::narrow_oop_base() == NULL, "sanity");
5995   }
5996 }
5997 
5998 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5999   // Note: it will change flags
6000   assert (UseCompressedOops, "should only be used for compressed headers");
6001   assert (Universe::heap() != NULL, "java heap should be initialized");
6002   // Cannot assert, unverified entry point counts instructions (see .ad file)
6003   // vtableStubs also counts instructions in pd_code_size_limit.
6004   // Also do not verify_oop as this is called by verify_oop.
6005   if (Universe::narrow_oop_shift() != 0) {
6006     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6007     if (LogMinObjAlignmentInBytes == Address::times_8) {
6008       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6009     } else {
6010       if (dst != src) {
6011         movq(dst, src);
6012       }
6013       shlq(dst, LogMinObjAlignmentInBytes);
6014       if (Universe::narrow_oop_base() != NULL) {
6015         addq(dst, r12_heapbase);
6016       }
6017     }
6018   } else {
6019     assert (Universe::narrow_oop_base() == NULL, "sanity");
6020     if (dst != src) {
6021       movq(dst, src);
6022     }
6023   }
6024 }
6025 
6026 void MacroAssembler::encode_klass_not_null(Register r) {
6027   if (Universe::narrow_klass_base() != NULL) {
6028     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6029     assert(r != r12_heapbase, "Encoding a klass in r12");
6030     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6031     subq(r, r12_heapbase);
6032   }
6033   if (Universe::narrow_klass_shift() != 0) {
6034     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6035     shrq(r, LogKlassAlignmentInBytes);
6036   }
6037   if (Universe::narrow_klass_base() != NULL) {
6038     reinit_heapbase();
6039   }
6040 }
6041 
6042 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6043   if (dst == src) {
6044     encode_klass_not_null(src);
6045   } else {
6046     if (Universe::narrow_klass_base() != NULL) {
6047       mov64(dst, (int64_t)Universe::narrow_klass_base());
6048       negq(dst);
6049       addq(dst, src);
6050     } else {
6051       movptr(dst, src);
6052     }
6053     if (Universe::narrow_klass_shift() != 0) {
6054       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6055       shrq(dst, LogKlassAlignmentInBytes);
6056     }
6057   }
6058 }
6059 
6060 // Function instr_size_for_decode_klass_not_null() counts the instructions
6061 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6062 // when (Universe::heap() != NULL).  Hence, if the instructions they
6063 // generate change, then this method needs to be updated.
6064 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6065   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6066   if (Universe::narrow_klass_base() != NULL) {
6067     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6068     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6069   } else {
6070     // longest load decode klass function, mov64, leaq
6071     return 16;
6072   }
6073 }
6074 
6075 // !!! If the instructions that get generated here change then function
6076 // instr_size_for_decode_klass_not_null() needs to get updated.
6077 void  MacroAssembler::decode_klass_not_null(Register r) {
6078   // Note: it will change flags
6079   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6080   assert(r != r12_heapbase, "Decoding a klass in r12");
6081   // Cannot assert, unverified entry point counts instructions (see .ad file)
6082   // vtableStubs also counts instructions in pd_code_size_limit.
6083   // Also do not verify_oop as this is called by verify_oop.
6084   if (Universe::narrow_klass_shift() != 0) {
6085     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6086     shlq(r, LogKlassAlignmentInBytes);
6087   }
6088   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6089   if (Universe::narrow_klass_base() != NULL) {
6090     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6091     addq(r, r12_heapbase);
6092     reinit_heapbase();
6093   }
6094 }
6095 
6096 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6097   // Note: it will change flags
6098   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6099   if (dst == src) {
6100     decode_klass_not_null(dst);
6101   } else {
6102     // Cannot assert, unverified entry point counts instructions (see .ad file)
6103     // vtableStubs also counts instructions in pd_code_size_limit.
6104     // Also do not verify_oop as this is called by verify_oop.
6105     mov64(dst, (int64_t)Universe::narrow_klass_base());
6106     if (Universe::narrow_klass_shift() != 0) {
6107       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6108       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6109       leaq(dst, Address(dst, src, Address::times_8, 0));
6110     } else {
6111       addq(dst, src);
6112     }
6113   }
6114 }
6115 
6116 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6117   assert (UseCompressedOops, "should only be used for compressed headers");
6118   assert (Universe::heap() != NULL, "java heap should be initialized");
6119   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6120   int oop_index = oop_recorder()->find_index(obj);
6121   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6122   mov_narrow_oop(dst, oop_index, rspec);
6123 }
6124 
6125 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6126   assert (UseCompressedOops, "should only be used for compressed headers");
6127   assert (Universe::heap() != NULL, "java heap should be initialized");
6128   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6129   int oop_index = oop_recorder()->find_index(obj);
6130   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6131   mov_narrow_oop(dst, oop_index, rspec);
6132 }
6133 
6134 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6135   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6136   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6137   int klass_index = oop_recorder()->find_index(k);
6138   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6139   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6140 }
6141 
6142 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6143   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6144   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6145   int klass_index = oop_recorder()->find_index(k);
6146   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6147   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6148 }
6149 
6150 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6151   assert (UseCompressedOops, "should only be used for compressed headers");
6152   assert (Universe::heap() != NULL, "java heap should be initialized");
6153   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6154   int oop_index = oop_recorder()->find_index(obj);
6155   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6156   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6157 }
6158 
6159 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6160   assert (UseCompressedOops, "should only be used for compressed headers");
6161   assert (Universe::heap() != NULL, "java heap should be initialized");
6162   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6163   int oop_index = oop_recorder()->find_index(obj);
6164   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6165   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6166 }
6167 
6168 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6169   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6170   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6171   int klass_index = oop_recorder()->find_index(k);
6172   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6173   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6174 }
6175 
6176 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6177   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6178   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6179   int klass_index = oop_recorder()->find_index(k);
6180   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6181   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6182 }
6183 
6184 void MacroAssembler::reinit_heapbase() {
6185   if (UseCompressedOops || UseCompressedClassPointers) {
6186     if (Universe::heap() != NULL) {
6187       if (Universe::narrow_oop_base() == NULL) {
6188         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6189       } else {
6190         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6191       }
6192     } else {
6193       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6194     }
6195   }
6196 }
6197 
6198 #endif // _LP64
6199 
6200 
6201 // C2 compiled method's prolog code.
6202 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6203 
6204   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6205   // NativeJump::patch_verified_entry will be able to patch out the entry
6206   // code safely. The push to verify stack depth is ok at 5 bytes,
6207   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6208   // stack bang then we must use the 6 byte frame allocation even if
6209   // we have no frame. :-(
6210   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6211 
6212   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6213   // Remove word for return addr
6214   framesize -= wordSize;
6215   stack_bang_size -= wordSize;
6216 
6217   // Calls to C2R adapters often do not accept exceptional returns.
6218   // We require that their callers must bang for them.  But be careful, because
6219   // some VM calls (such as call site linkage) can use several kilobytes of
6220   // stack.  But the stack safety zone should account for that.
6221   // See bugs 4446381, 4468289, 4497237.
6222   if (stack_bang_size > 0) {
6223     generate_stack_overflow_check(stack_bang_size);
6224 
6225     // We always push rbp, so that on return to interpreter rbp, will be
6226     // restored correctly and we can correct the stack.
6227     push(rbp);
6228     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6229     if (PreserveFramePointer) {
6230       mov(rbp, rsp);
6231     }
6232     // Remove word for ebp
6233     framesize -= wordSize;
6234 
6235     // Create frame
6236     if (framesize) {
6237       subptr(rsp, framesize);
6238     }
6239   } else {
6240     // Create frame (force generation of a 4 byte immediate value)
6241     subptr_imm32(rsp, framesize);
6242 
6243     // Save RBP register now.
6244     framesize -= wordSize;
6245     movptr(Address(rsp, framesize), rbp);
6246     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6247     if (PreserveFramePointer) {
6248       movptr(rbp, rsp);
6249       if (framesize > 0) {
6250         addptr(rbp, framesize);
6251       }
6252     }
6253   }
6254 
6255   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6256     framesize -= wordSize;
6257     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6258   }
6259 
6260 #ifndef _LP64
6261   // If method sets FPU control word do it now
6262   if (fp_mode_24b) {
6263     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6264   }
6265   if (UseSSE >= 2 && VerifyFPU) {
6266     verify_FPU(0, "FPU stack must be clean on entry");
6267   }
6268 #endif
6269 
6270 #ifdef ASSERT
6271   if (VerifyStackAtCalls) {
6272     Label L;
6273     push(rax);
6274     mov(rax, rsp);
6275     andptr(rax, StackAlignmentInBytes-1);
6276     cmpptr(rax, StackAlignmentInBytes-wordSize);
6277     pop(rax);
6278     jcc(Assembler::equal, L);
6279     STOP("Stack is not properly aligned!");
6280     bind(L);
6281   }
6282 #endif
6283 
6284 }
6285 
6286 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6287   // cnt - number of qwords (8-byte words).
6288   // base - start address, qword aligned.
6289   assert(base==rdi, "base register must be edi for rep stos");
6290   assert(tmp==rax,   "tmp register must be eax for rep stos");
6291   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6292 
6293   xorptr(tmp, tmp);
6294   if (UseFastStosb) {
6295     shlptr(cnt,3); // convert to number of bytes
6296     rep_stosb();
6297   } else {
6298     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6299     rep_stos();
6300   }
6301 }
6302 
6303 // IndexOf for constant substrings with size >= 8 chars
6304 // which don't need to be loaded through stack.
6305 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6306                                       Register cnt1, Register cnt2,
6307                                       int int_cnt2,  Register result,
6308                                       XMMRegister vec, Register tmp) {
6309   ShortBranchVerifier sbv(this);
6310   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6311 
6312   // This method uses pcmpestri instruction with bound registers
6313   //   inputs:
6314   //     xmm - substring
6315   //     rax - substring length (elements count)
6316   //     mem - scanned string
6317   //     rdx - string length (elements count)
6318   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6319   //   outputs:
6320   //     rcx - matched index in string
6321   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6322 
6323   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6324         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6325         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6326 
6327   // Note, inline_string_indexOf() generates checks:
6328   // if (substr.count > string.count) return -1;
6329   // if (substr.count == 0) return 0;
6330   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6331 
6332   // Load substring.
6333   movdqu(vec, Address(str2, 0));
6334   movl(cnt2, int_cnt2);
6335   movptr(result, str1); // string addr
6336 
6337   if (int_cnt2 > 8) {
6338     jmpb(SCAN_TO_SUBSTR);
6339 
6340     // Reload substr for rescan, this code
6341     // is executed only for large substrings (> 8 chars)
6342     bind(RELOAD_SUBSTR);
6343     movdqu(vec, Address(str2, 0));
6344     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6345 
6346     bind(RELOAD_STR);
6347     // We came here after the beginning of the substring was
6348     // matched but the rest of it was not so we need to search
6349     // again. Start from the next element after the previous match.
6350 
6351     // cnt2 is number of substring reminding elements and
6352     // cnt1 is number of string reminding elements when cmp failed.
6353     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6354     subl(cnt1, cnt2);
6355     addl(cnt1, int_cnt2);
6356     movl(cnt2, int_cnt2); // Now restore cnt2
6357 
6358     decrementl(cnt1);     // Shift to next element
6359     cmpl(cnt1, cnt2);
6360     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6361 
6362     addptr(result, 2);
6363 
6364   } // (int_cnt2 > 8)
6365 
6366   // Scan string for start of substr in 16-byte vectors
6367   bind(SCAN_TO_SUBSTR);
6368   pcmpestri(vec, Address(result, 0), 0x0d);
6369   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6370   subl(cnt1, 8);
6371   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6372   cmpl(cnt1, cnt2);
6373   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6374   addptr(result, 16);
6375   jmpb(SCAN_TO_SUBSTR);
6376 
6377   // Found a potential substr
6378   bind(FOUND_CANDIDATE);
6379   // Matched whole vector if first element matched (tmp(rcx) == 0).
6380   if (int_cnt2 == 8) {
6381     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6382   } else { // int_cnt2 > 8
6383     jccb(Assembler::overflow, FOUND_SUBSTR);
6384   }
6385   // After pcmpestri tmp(rcx) contains matched element index
6386   // Compute start addr of substr
6387   lea(result, Address(result, tmp, Address::times_2));
6388 
6389   // Make sure string is still long enough
6390   subl(cnt1, tmp);
6391   cmpl(cnt1, cnt2);
6392   if (int_cnt2 == 8) {
6393     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6394   } else { // int_cnt2 > 8
6395     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6396   }
6397   // Left less then substring.
6398 
6399   bind(RET_NOT_FOUND);
6400   movl(result, -1);
6401   jmpb(EXIT);
6402 
6403   if (int_cnt2 > 8) {
6404     // This code is optimized for the case when whole substring
6405     // is matched if its head is matched.
6406     bind(MATCH_SUBSTR_HEAD);
6407     pcmpestri(vec, Address(result, 0), 0x0d);
6408     // Reload only string if does not match
6409     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6410 
6411     Label CONT_SCAN_SUBSTR;
6412     // Compare the rest of substring (> 8 chars).
6413     bind(FOUND_SUBSTR);
6414     // First 8 chars are already matched.
6415     negptr(cnt2);
6416     addptr(cnt2, 8);
6417 
6418     bind(SCAN_SUBSTR);
6419     subl(cnt1, 8);
6420     cmpl(cnt2, -8); // Do not read beyond substring
6421     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6422     // Back-up strings to avoid reading beyond substring:
6423     // cnt1 = cnt1 - cnt2 + 8
6424     addl(cnt1, cnt2); // cnt2 is negative
6425     addl(cnt1, 8);
6426     movl(cnt2, 8); negptr(cnt2);
6427     bind(CONT_SCAN_SUBSTR);
6428     if (int_cnt2 < (int)G) {
6429       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6430       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6431     } else {
6432       // calculate index in register to avoid integer overflow (int_cnt2*2)
6433       movl(tmp, int_cnt2);
6434       addptr(tmp, cnt2);
6435       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6436       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6437     }
6438     // Need to reload strings pointers if not matched whole vector
6439     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6440     addptr(cnt2, 8);
6441     jcc(Assembler::negative, SCAN_SUBSTR);
6442     // Fall through if found full substring
6443 
6444   } // (int_cnt2 > 8)
6445 
6446   bind(RET_FOUND);
6447   // Found result if we matched full small substring.
6448   // Compute substr offset
6449   subptr(result, str1);
6450   shrl(result, 1); // index
6451   bind(EXIT);
6452 
6453 } // string_indexofC8
6454 
6455 // Small strings are loaded through stack if they cross page boundary.
6456 void MacroAssembler::string_indexof(Register str1, Register str2,
6457                                     Register cnt1, Register cnt2,
6458                                     int int_cnt2,  Register result,
6459                                     XMMRegister vec, Register tmp) {
6460   ShortBranchVerifier sbv(this);
6461   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6462   //
6463   // int_cnt2 is length of small (< 8 chars) constant substring
6464   // or (-1) for non constant substring in which case its length
6465   // is in cnt2 register.
6466   //
6467   // Note, inline_string_indexOf() generates checks:
6468   // if (substr.count > string.count) return -1;
6469   // if (substr.count == 0) return 0;
6470   //
6471   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6472 
6473   // This method uses pcmpestri instruction with bound registers
6474   //   inputs:
6475   //     xmm - substring
6476   //     rax - substring length (elements count)
6477   //     mem - scanned string
6478   //     rdx - string length (elements count)
6479   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6480   //   outputs:
6481   //     rcx - matched index in string
6482   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6483 
6484   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6485         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6486         FOUND_CANDIDATE;
6487 
6488   { //========================================================
6489     // We don't know where these strings are located
6490     // and we can't read beyond them. Load them through stack.
6491     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6492 
6493     movptr(tmp, rsp); // save old SP
6494 
6495     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6496       if (int_cnt2 == 1) {  // One char
6497         load_unsigned_short(result, Address(str2, 0));
6498         movdl(vec, result); // move 32 bits
6499       } else if (int_cnt2 == 2) { // Two chars
6500         movdl(vec, Address(str2, 0)); // move 32 bits
6501       } else if (int_cnt2 == 4) { // Four chars
6502         movq(vec, Address(str2, 0));  // move 64 bits
6503       } else { // cnt2 = { 3, 5, 6, 7 }
6504         // Array header size is 12 bytes in 32-bit VM
6505         // + 6 bytes for 3 chars == 18 bytes,
6506         // enough space to load vec and shift.
6507         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6508         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6509         psrldq(vec, 16-(int_cnt2*2));
6510       }
6511     } else { // not constant substring
6512       cmpl(cnt2, 8);
6513       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6514 
6515       // We can read beyond string if srt+16 does not cross page boundary
6516       // since heaps are aligned and mapped by pages.
6517       assert(os::vm_page_size() < (int)G, "default page should be small");
6518       movl(result, str2); // We need only low 32 bits
6519       andl(result, (os::vm_page_size()-1));
6520       cmpl(result, (os::vm_page_size()-16));
6521       jccb(Assembler::belowEqual, CHECK_STR);
6522 
6523       // Move small strings to stack to allow load 16 bytes into vec.
6524       subptr(rsp, 16);
6525       int stk_offset = wordSize-2;
6526       push(cnt2);
6527 
6528       bind(COPY_SUBSTR);
6529       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6530       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6531       decrement(cnt2);
6532       jccb(Assembler::notZero, COPY_SUBSTR);
6533 
6534       pop(cnt2);
6535       movptr(str2, rsp);  // New substring address
6536     } // non constant
6537 
6538     bind(CHECK_STR);
6539     cmpl(cnt1, 8);
6540     jccb(Assembler::aboveEqual, BIG_STRINGS);
6541 
6542     // Check cross page boundary.
6543     movl(result, str1); // We need only low 32 bits
6544     andl(result, (os::vm_page_size()-1));
6545     cmpl(result, (os::vm_page_size()-16));
6546     jccb(Assembler::belowEqual, BIG_STRINGS);
6547 
6548     subptr(rsp, 16);
6549     int stk_offset = -2;
6550     if (int_cnt2 < 0) { // not constant
6551       push(cnt2);
6552       stk_offset += wordSize;
6553     }
6554     movl(cnt2, cnt1);
6555 
6556     bind(COPY_STR);
6557     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6558     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6559     decrement(cnt2);
6560     jccb(Assembler::notZero, COPY_STR);
6561 
6562     if (int_cnt2 < 0) { // not constant
6563       pop(cnt2);
6564     }
6565     movptr(str1, rsp);  // New string address
6566 
6567     bind(BIG_STRINGS);
6568     // Load substring.
6569     if (int_cnt2 < 0) { // -1
6570       movdqu(vec, Address(str2, 0));
6571       push(cnt2);       // substr count
6572       push(str2);       // substr addr
6573       push(str1);       // string addr
6574     } else {
6575       // Small (< 8 chars) constant substrings are loaded already.
6576       movl(cnt2, int_cnt2);
6577     }
6578     push(tmp);  // original SP
6579 
6580   } // Finished loading
6581 
6582   //========================================================
6583   // Start search
6584   //
6585 
6586   movptr(result, str1); // string addr
6587 
6588   if (int_cnt2  < 0) {  // Only for non constant substring
6589     jmpb(SCAN_TO_SUBSTR);
6590 
6591     // SP saved at sp+0
6592     // String saved at sp+1*wordSize
6593     // Substr saved at sp+2*wordSize
6594     // Substr count saved at sp+3*wordSize
6595 
6596     // Reload substr for rescan, this code
6597     // is executed only for large substrings (> 8 chars)
6598     bind(RELOAD_SUBSTR);
6599     movptr(str2, Address(rsp, 2*wordSize));
6600     movl(cnt2, Address(rsp, 3*wordSize));
6601     movdqu(vec, Address(str2, 0));
6602     // We came here after the beginning of the substring was
6603     // matched but the rest of it was not so we need to search
6604     // again. Start from the next element after the previous match.
6605     subptr(str1, result); // Restore counter
6606     shrl(str1, 1);
6607     addl(cnt1, str1);
6608     decrementl(cnt1);   // Shift to next element
6609     cmpl(cnt1, cnt2);
6610     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6611 
6612     addptr(result, 2);
6613   } // non constant
6614 
6615   // Scan string for start of substr in 16-byte vectors
6616   bind(SCAN_TO_SUBSTR);
6617   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6618   pcmpestri(vec, Address(result, 0), 0x0d);
6619   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6620   subl(cnt1, 8);
6621   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6622   cmpl(cnt1, cnt2);
6623   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6624   addptr(result, 16);
6625 
6626   bind(ADJUST_STR);
6627   cmpl(cnt1, 8); // Do not read beyond string
6628   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6629   // Back-up string to avoid reading beyond string.
6630   lea(result, Address(result, cnt1, Address::times_2, -16));
6631   movl(cnt1, 8);
6632   jmpb(SCAN_TO_SUBSTR);
6633 
6634   // Found a potential substr
6635   bind(FOUND_CANDIDATE);
6636   // After pcmpestri tmp(rcx) contains matched element index
6637 
6638   // Make sure string is still long enough
6639   subl(cnt1, tmp);
6640   cmpl(cnt1, cnt2);
6641   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6642   // Left less then substring.
6643 
6644   bind(RET_NOT_FOUND);
6645   movl(result, -1);
6646   jmpb(CLEANUP);
6647 
6648   bind(FOUND_SUBSTR);
6649   // Compute start addr of substr
6650   lea(result, Address(result, tmp, Address::times_2));
6651 
6652   if (int_cnt2 > 0) { // Constant substring
6653     // Repeat search for small substring (< 8 chars)
6654     // from new point without reloading substring.
6655     // Have to check that we don't read beyond string.
6656     cmpl(tmp, 8-int_cnt2);
6657     jccb(Assembler::greater, ADJUST_STR);
6658     // Fall through if matched whole substring.
6659   } else { // non constant
6660     assert(int_cnt2 == -1, "should be != 0");
6661 
6662     addl(tmp, cnt2);
6663     // Found result if we matched whole substring.
6664     cmpl(tmp, 8);
6665     jccb(Assembler::lessEqual, RET_FOUND);
6666 
6667     // Repeat search for small substring (<= 8 chars)
6668     // from new point 'str1' without reloading substring.
6669     cmpl(cnt2, 8);
6670     // Have to check that we don't read beyond string.
6671     jccb(Assembler::lessEqual, ADJUST_STR);
6672 
6673     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6674     // Compare the rest of substring (> 8 chars).
6675     movptr(str1, result);
6676 
6677     cmpl(tmp, cnt2);
6678     // First 8 chars are already matched.
6679     jccb(Assembler::equal, CHECK_NEXT);
6680 
6681     bind(SCAN_SUBSTR);
6682     pcmpestri(vec, Address(str1, 0), 0x0d);
6683     // Need to reload strings pointers if not matched whole vector
6684     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6685 
6686     bind(CHECK_NEXT);
6687     subl(cnt2, 8);
6688     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6689     addptr(str1, 16);
6690     addptr(str2, 16);
6691     subl(cnt1, 8);
6692     cmpl(cnt2, 8); // Do not read beyond substring
6693     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6694     // Back-up strings to avoid reading beyond substring.
6695     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6696     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6697     subl(cnt1, cnt2);
6698     movl(cnt2, 8);
6699     addl(cnt1, 8);
6700     bind(CONT_SCAN_SUBSTR);
6701     movdqu(vec, Address(str2, 0));
6702     jmpb(SCAN_SUBSTR);
6703 
6704     bind(RET_FOUND_LONG);
6705     movptr(str1, Address(rsp, wordSize));
6706   } // non constant
6707 
6708   bind(RET_FOUND);
6709   // Compute substr offset
6710   subptr(result, str1);
6711   shrl(result, 1); // index
6712 
6713   bind(CLEANUP);
6714   pop(rsp); // restore SP
6715 
6716 } // string_indexof
6717 
6718 // Compare strings.
6719 void MacroAssembler::string_compare(Register str1, Register str2,
6720                                     Register cnt1, Register cnt2, Register result,
6721                                     XMMRegister vec1) {
6722   ShortBranchVerifier sbv(this);
6723   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6724 
6725   // Compute the minimum of the string lengths and the
6726   // difference of the string lengths (stack).
6727   // Do the conditional move stuff
6728   movl(result, cnt1);
6729   subl(cnt1, cnt2);
6730   push(cnt1);
6731   cmov32(Assembler::lessEqual, cnt2, result);
6732 
6733   // Is the minimum length zero?
6734   testl(cnt2, cnt2);
6735   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6736 
6737   // Compare first characters
6738   load_unsigned_short(result, Address(str1, 0));
6739   load_unsigned_short(cnt1, Address(str2, 0));
6740   subl(result, cnt1);
6741   jcc(Assembler::notZero,  POP_LABEL);
6742   cmpl(cnt2, 1);
6743   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6744 
6745   // Check if the strings start at the same location.
6746   cmpptr(str1, str2);
6747   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6748 
6749   Address::ScaleFactor scale = Address::times_2;
6750   int stride = 8;
6751 
6752   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6753     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6754     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6755     Label COMPARE_TAIL_LONG;
6756     int pcmpmask = 0x19;
6757 
6758     // Setup to compare 16-chars (32-bytes) vectors,
6759     // start from first character again because it has aligned address.
6760     int stride2 = 16;
6761     int adr_stride  = stride  << scale;
6762 
6763     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6764     // rax and rdx are used by pcmpestri as elements counters
6765     movl(result, cnt2);
6766     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6767     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6768 
6769     // fast path : compare first 2 8-char vectors.
6770     bind(COMPARE_16_CHARS);
6771     movdqu(vec1, Address(str1, 0));
6772     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6773     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6774 
6775     movdqu(vec1, Address(str1, adr_stride));
6776     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6777     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6778     addl(cnt1, stride);
6779 
6780     // Compare the characters at index in cnt1
6781     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6782     load_unsigned_short(result, Address(str1, cnt1, scale));
6783     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6784     subl(result, cnt2);
6785     jmp(POP_LABEL);
6786 
6787     // Setup the registers to start vector comparison loop
6788     bind(COMPARE_WIDE_VECTORS);
6789     lea(str1, Address(str1, result, scale));
6790     lea(str2, Address(str2, result, scale));
6791     subl(result, stride2);
6792     subl(cnt2, stride2);
6793     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6794     negptr(result);
6795 
6796     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6797     bind(COMPARE_WIDE_VECTORS_LOOP);
6798     vmovdqu(vec1, Address(str1, result, scale));
6799     vpxor(vec1, Address(str2, result, scale));
6800     vptest(vec1, vec1);
6801     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6802     addptr(result, stride2);
6803     subl(cnt2, stride2);
6804     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6805     // clean upper bits of YMM registers
6806     vpxor(vec1, vec1);
6807 
6808     // compare wide vectors tail
6809     bind(COMPARE_WIDE_TAIL);
6810     testptr(result, result);
6811     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6812 
6813     movl(result, stride2);
6814     movl(cnt2, result);
6815     negptr(result);
6816     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6817 
6818     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6819     bind(VECTOR_NOT_EQUAL);
6820     // clean upper bits of YMM registers
6821     vpxor(vec1, vec1);
6822     lea(str1, Address(str1, result, scale));
6823     lea(str2, Address(str2, result, scale));
6824     jmp(COMPARE_16_CHARS);
6825 
6826     // Compare tail chars, length between 1 to 15 chars
6827     bind(COMPARE_TAIL_LONG);
6828     movl(cnt2, result);
6829     cmpl(cnt2, stride);
6830     jccb(Assembler::less, COMPARE_SMALL_STR);
6831 
6832     movdqu(vec1, Address(str1, 0));
6833     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6834     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6835     subptr(cnt2, stride);
6836     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6837     lea(str1, Address(str1, result, scale));
6838     lea(str2, Address(str2, result, scale));
6839     negptr(cnt2);
6840     jmpb(WHILE_HEAD_LABEL);
6841 
6842     bind(COMPARE_SMALL_STR);
6843   } else if (UseSSE42Intrinsics) {
6844     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6845     int pcmpmask = 0x19;
6846     // Setup to compare 8-char (16-byte) vectors,
6847     // start from first character again because it has aligned address.
6848     movl(result, cnt2);
6849     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6850     jccb(Assembler::zero, COMPARE_TAIL);
6851 
6852     lea(str1, Address(str1, result, scale));
6853     lea(str2, Address(str2, result, scale));
6854     negptr(result);
6855 
6856     // pcmpestri
6857     //   inputs:
6858     //     vec1- substring
6859     //     rax - negative string length (elements count)
6860     //     mem - scanned string
6861     //     rdx - string length (elements count)
6862     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6863     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6864     //   outputs:
6865     //     rcx - first mismatched element index
6866     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6867 
6868     bind(COMPARE_WIDE_VECTORS);
6869     movdqu(vec1, Address(str1, result, scale));
6870     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6871     // After pcmpestri cnt1(rcx) contains mismatched element index
6872 
6873     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6874     addptr(result, stride);
6875     subptr(cnt2, stride);
6876     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6877 
6878     // compare wide vectors tail
6879     testptr(result, result);
6880     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6881 
6882     movl(cnt2, stride);
6883     movl(result, stride);
6884     negptr(result);
6885     movdqu(vec1, Address(str1, result, scale));
6886     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6887     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6888 
6889     // Mismatched characters in the vectors
6890     bind(VECTOR_NOT_EQUAL);
6891     addptr(cnt1, result);
6892     load_unsigned_short(result, Address(str1, cnt1, scale));
6893     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6894     subl(result, cnt2);
6895     jmpb(POP_LABEL);
6896 
6897     bind(COMPARE_TAIL); // limit is zero
6898     movl(cnt2, result);
6899     // Fallthru to tail compare
6900   }
6901   // Shift str2 and str1 to the end of the arrays, negate min
6902   lea(str1, Address(str1, cnt2, scale));
6903   lea(str2, Address(str2, cnt2, scale));
6904   decrementl(cnt2);  // first character was compared already
6905   negptr(cnt2);
6906 
6907   // Compare the rest of the elements
6908   bind(WHILE_HEAD_LABEL);
6909   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6910   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6911   subl(result, cnt1);
6912   jccb(Assembler::notZero, POP_LABEL);
6913   increment(cnt2);
6914   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6915 
6916   // Strings are equal up to min length.  Return the length difference.
6917   bind(LENGTH_DIFF_LABEL);
6918   pop(result);
6919   jmpb(DONE_LABEL);
6920 
6921   // Discard the stored length difference
6922   bind(POP_LABEL);
6923   pop(cnt1);
6924 
6925   // That's it
6926   bind(DONE_LABEL);
6927 }
6928 
6929 // Compare char[] arrays aligned to 4 bytes or substrings.
6930 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6931                                         Register limit, Register result, Register chr,
6932                                         XMMRegister vec1, XMMRegister vec2) {
6933   ShortBranchVerifier sbv(this);
6934   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6935 
6936   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6937   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6938 
6939   // Check the input args
6940   cmpptr(ary1, ary2);
6941   jcc(Assembler::equal, TRUE_LABEL);
6942 
6943   if (is_array_equ) {
6944     // Need additional checks for arrays_equals.
6945     testptr(ary1, ary1);
6946     jcc(Assembler::zero, FALSE_LABEL);
6947     testptr(ary2, ary2);
6948     jcc(Assembler::zero, FALSE_LABEL);
6949 
6950     // Check the lengths
6951     movl(limit, Address(ary1, length_offset));
6952     cmpl(limit, Address(ary2, length_offset));
6953     jcc(Assembler::notEqual, FALSE_LABEL);
6954   }
6955 
6956   // count == 0
6957   testl(limit, limit);
6958   jcc(Assembler::zero, TRUE_LABEL);
6959 
6960   if (is_array_equ) {
6961     // Load array address
6962     lea(ary1, Address(ary1, base_offset));
6963     lea(ary2, Address(ary2, base_offset));
6964   }
6965 
6966   shll(limit, 1);      // byte count != 0
6967   movl(result, limit); // copy
6968 
6969   if (UseAVX >= 2) {
6970     // With AVX2, use 32-byte vector compare
6971     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6972 
6973     // Compare 32-byte vectors
6974     andl(result, 0x0000001e);  //   tail count (in bytes)
6975     andl(limit, 0xffffffe0);   // vector count (in bytes)
6976     jccb(Assembler::zero, COMPARE_TAIL);
6977 
6978     lea(ary1, Address(ary1, limit, Address::times_1));
6979     lea(ary2, Address(ary2, limit, Address::times_1));
6980     negptr(limit);
6981 
6982     bind(COMPARE_WIDE_VECTORS);
6983     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6984     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6985     vpxor(vec1, vec2);
6986 
6987     vptest(vec1, vec1);
6988     jccb(Assembler::notZero, FALSE_LABEL);
6989     addptr(limit, 32);
6990     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6991 
6992     testl(result, result);
6993     jccb(Assembler::zero, TRUE_LABEL);
6994 
6995     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6996     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6997     vpxor(vec1, vec2);
6998 
6999     vptest(vec1, vec1);
7000     jccb(Assembler::notZero, FALSE_LABEL);
7001     jmpb(TRUE_LABEL);
7002 
7003     bind(COMPARE_TAIL); // limit is zero
7004     movl(limit, result);
7005     // Fallthru to tail compare
7006   } else if (UseSSE42Intrinsics) {
7007     // With SSE4.2, use double quad vector compare
7008     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7009 
7010     // Compare 16-byte vectors
7011     andl(result, 0x0000000e);  //   tail count (in bytes)
7012     andl(limit, 0xfffffff0);   // vector count (in bytes)
7013     jccb(Assembler::zero, COMPARE_TAIL);
7014 
7015     lea(ary1, Address(ary1, limit, Address::times_1));
7016     lea(ary2, Address(ary2, limit, Address::times_1));
7017     negptr(limit);
7018 
7019     bind(COMPARE_WIDE_VECTORS);
7020     movdqu(vec1, Address(ary1, limit, Address::times_1));
7021     movdqu(vec2, Address(ary2, limit, Address::times_1));
7022     pxor(vec1, vec2);
7023 
7024     ptest(vec1, vec1);
7025     jccb(Assembler::notZero, FALSE_LABEL);
7026     addptr(limit, 16);
7027     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7028 
7029     testl(result, result);
7030     jccb(Assembler::zero, TRUE_LABEL);
7031 
7032     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7033     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7034     pxor(vec1, vec2);
7035 
7036     ptest(vec1, vec1);
7037     jccb(Assembler::notZero, FALSE_LABEL);
7038     jmpb(TRUE_LABEL);
7039 
7040     bind(COMPARE_TAIL); // limit is zero
7041     movl(limit, result);
7042     // Fallthru to tail compare
7043   }
7044 
7045   // Compare 4-byte vectors
7046   andl(limit, 0xfffffffc); // vector count (in bytes)
7047   jccb(Assembler::zero, COMPARE_CHAR);
7048 
7049   lea(ary1, Address(ary1, limit, Address::times_1));
7050   lea(ary2, Address(ary2, limit, Address::times_1));
7051   negptr(limit);
7052 
7053   bind(COMPARE_VECTORS);
7054   movl(chr, Address(ary1, limit, Address::times_1));
7055   cmpl(chr, Address(ary2, limit, Address::times_1));
7056   jccb(Assembler::notEqual, FALSE_LABEL);
7057   addptr(limit, 4);
7058   jcc(Assembler::notZero, COMPARE_VECTORS);
7059 
7060   // Compare trailing char (final 2 bytes), if any
7061   bind(COMPARE_CHAR);
7062   testl(result, 0x2);   // tail  char
7063   jccb(Assembler::zero, TRUE_LABEL);
7064   load_unsigned_short(chr, Address(ary1, 0));
7065   load_unsigned_short(limit, Address(ary2, 0));
7066   cmpl(chr, limit);
7067   jccb(Assembler::notEqual, FALSE_LABEL);
7068 
7069   bind(TRUE_LABEL);
7070   movl(result, 1);   // return true
7071   jmpb(DONE);
7072 
7073   bind(FALSE_LABEL);
7074   xorl(result, result); // return false
7075 
7076   // That's it
7077   bind(DONE);
7078   if (UseAVX >= 2) {
7079     // clean upper bits of YMM registers
7080     vpxor(vec1, vec1);
7081     vpxor(vec2, vec2);
7082   }
7083 }
7084 
7085 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7086                                    Register to, Register value, Register count,
7087                                    Register rtmp, XMMRegister xtmp) {
7088   ShortBranchVerifier sbv(this);
7089   assert_different_registers(to, value, count, rtmp);
7090   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
7091   Label L_fill_2_bytes, L_fill_4_bytes;
7092 
7093   int shift = -1;
7094   switch (t) {
7095     case T_BYTE:
7096       shift = 2;
7097       break;
7098     case T_SHORT:
7099       shift = 1;
7100       break;
7101     case T_INT:
7102       shift = 0;
7103       break;
7104     default: ShouldNotReachHere();
7105   }
7106 
7107   if (t == T_BYTE) {
7108     andl(value, 0xff);
7109     movl(rtmp, value);
7110     shll(rtmp, 8);
7111     orl(value, rtmp);
7112   }
7113   if (t == T_SHORT) {
7114     andl(value, 0xffff);
7115   }
7116   if (t == T_BYTE || t == T_SHORT) {
7117     movl(rtmp, value);
7118     shll(rtmp, 16);
7119     orl(value, rtmp);
7120   }
7121 
7122   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7123   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7124   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7125     // align source address at 4 bytes address boundary
7126     if (t == T_BYTE) {
7127       // One byte misalignment happens only for byte arrays
7128       testptr(to, 1);
7129       jccb(Assembler::zero, L_skip_align1);
7130       movb(Address(to, 0), value);
7131       increment(to);
7132       decrement(count);
7133       BIND(L_skip_align1);
7134     }
7135     // Two bytes misalignment happens only for byte and short (char) arrays
7136     testptr(to, 2);
7137     jccb(Assembler::zero, L_skip_align2);
7138     movw(Address(to, 0), value);
7139     addptr(to, 2);
7140     subl(count, 1<<(shift-1));
7141     BIND(L_skip_align2);
7142   }
7143   if (UseSSE < 2) {
7144     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7145     // Fill 32-byte chunks
7146     subl(count, 8 << shift);
7147     jcc(Assembler::less, L_check_fill_8_bytes);
7148     align(16);
7149 
7150     BIND(L_fill_32_bytes_loop);
7151 
7152     for (int i = 0; i < 32; i += 4) {
7153       movl(Address(to, i), value);
7154     }
7155 
7156     addptr(to, 32);
7157     subl(count, 8 << shift);
7158     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7159     BIND(L_check_fill_8_bytes);
7160     addl(count, 8 << shift);
7161     jccb(Assembler::zero, L_exit);
7162     jmpb(L_fill_8_bytes);
7163 
7164     //
7165     // length is too short, just fill qwords
7166     //
7167     BIND(L_fill_8_bytes_loop);
7168     movl(Address(to, 0), value);
7169     movl(Address(to, 4), value);
7170     addptr(to, 8);
7171     BIND(L_fill_8_bytes);
7172     subl(count, 1 << (shift + 1));
7173     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7174     // fall through to fill 4 bytes
7175   } else {
7176     Label L_fill_32_bytes;
7177     if (!UseUnalignedLoadStores) {
7178       // align to 8 bytes, we know we are 4 byte aligned to start
7179       testptr(to, 4);
7180       jccb(Assembler::zero, L_fill_32_bytes);
7181       movl(Address(to, 0), value);
7182       addptr(to, 4);
7183       subl(count, 1<<shift);
7184     }
7185     BIND(L_fill_32_bytes);
7186     {
7187       assert( UseSSE >= 2, "supported cpu only" );
7188       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7189       if (UseAVX > 2) {
7190         movl(rtmp, 0xffff);
7191         kmovwl(k1, rtmp);
7192       }
7193       movdl(xtmp, value);
7194       if (UseAVX > 2 && UseUnalignedLoadStores) {
7195         // Fill 64-byte chunks
7196         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7197         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7198 
7199         subl(count, 16 << shift);
7200         jcc(Assembler::less, L_check_fill_32_bytes);
7201         align(16);
7202 
7203         BIND(L_fill_64_bytes_loop);
7204         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7205         addptr(to, 64);
7206         subl(count, 16 << shift);
7207         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7208 
7209         BIND(L_check_fill_32_bytes);
7210         addl(count, 8 << shift);
7211         jccb(Assembler::less, L_check_fill_8_bytes);
7212         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_256bit);
7213         addptr(to, 32);
7214         subl(count, 8 << shift);
7215 
7216         BIND(L_check_fill_8_bytes);
7217       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7218         // Fill 64-byte chunks
7219         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7220         vpbroadcastd(xtmp, xtmp);
7221 
7222         subl(count, 16 << shift);
7223         jcc(Assembler::less, L_check_fill_32_bytes);
7224         align(16);
7225 
7226         BIND(L_fill_64_bytes_loop);
7227         vmovdqu(Address(to, 0), xtmp);
7228         vmovdqu(Address(to, 32), xtmp);
7229         addptr(to, 64);
7230         subl(count, 16 << shift);
7231         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7232 
7233         BIND(L_check_fill_32_bytes);
7234         addl(count, 8 << shift);
7235         jccb(Assembler::less, L_check_fill_8_bytes);
7236         vmovdqu(Address(to, 0), xtmp);
7237         addptr(to, 32);
7238         subl(count, 8 << shift);
7239 
7240         BIND(L_check_fill_8_bytes);
7241         // clean upper bits of YMM registers
7242         movdl(xtmp, value);
7243         pshufd(xtmp, xtmp, 0);
7244       } else {
7245         // Fill 32-byte chunks
7246         pshufd(xtmp, xtmp, 0);
7247 
7248         subl(count, 8 << shift);
7249         jcc(Assembler::less, L_check_fill_8_bytes);
7250         align(16);
7251 
7252         BIND(L_fill_32_bytes_loop);
7253 
7254         if (UseUnalignedLoadStores) {
7255           movdqu(Address(to, 0), xtmp);
7256           movdqu(Address(to, 16), xtmp);
7257         } else {
7258           movq(Address(to, 0), xtmp);
7259           movq(Address(to, 8), xtmp);
7260           movq(Address(to, 16), xtmp);
7261           movq(Address(to, 24), xtmp);
7262         }
7263 
7264         addptr(to, 32);
7265         subl(count, 8 << shift);
7266         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7267 
7268         BIND(L_check_fill_8_bytes);
7269       }
7270       addl(count, 8 << shift);
7271       jccb(Assembler::zero, L_exit);
7272       jmpb(L_fill_8_bytes);
7273 
7274       //
7275       // length is too short, just fill qwords
7276       //
7277       BIND(L_fill_8_bytes_loop);
7278       movq(Address(to, 0), xtmp);
7279       addptr(to, 8);
7280       BIND(L_fill_8_bytes);
7281       subl(count, 1 << (shift + 1));
7282       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7283     }
7284   }
7285   // fill trailing 4 bytes
7286   BIND(L_fill_4_bytes);
7287   testl(count, 1<<shift);
7288   jccb(Assembler::zero, L_fill_2_bytes);
7289   movl(Address(to, 0), value);
7290   if (t == T_BYTE || t == T_SHORT) {
7291     addptr(to, 4);
7292     BIND(L_fill_2_bytes);
7293     // fill trailing 2 bytes
7294     testl(count, 1<<(shift-1));
7295     jccb(Assembler::zero, L_fill_byte);
7296     movw(Address(to, 0), value);
7297     if (t == T_BYTE) {
7298       addptr(to, 2);
7299       BIND(L_fill_byte);
7300       // fill trailing byte
7301       testl(count, 1);
7302       jccb(Assembler::zero, L_exit);
7303       movb(Address(to, 0), value);
7304     } else {
7305       BIND(L_fill_byte);
7306     }
7307   } else {
7308     BIND(L_fill_2_bytes);
7309   }
7310   BIND(L_exit);
7311 }
7312 
7313 // encode char[] to byte[] in ISO_8859_1
7314 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7315                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7316                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7317                                       Register tmp5, Register result) {
7318   // rsi: src
7319   // rdi: dst
7320   // rdx: len
7321   // rcx: tmp5
7322   // rax: result
7323   ShortBranchVerifier sbv(this);
7324   assert_different_registers(src, dst, len, tmp5, result);
7325   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7326 
7327   // set result
7328   xorl(result, result);
7329   // check for zero length
7330   testl(len, len);
7331   jcc(Assembler::zero, L_done);
7332   movl(result, len);
7333 
7334   // Setup pointers
7335   lea(src, Address(src, len, Address::times_2)); // char[]
7336   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7337   negptr(len);
7338 
7339   if (UseSSE42Intrinsics || UseAVX >= 2) {
7340     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7341     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7342 
7343     if (UseAVX >= 2) {
7344       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7345       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7346       movdl(tmp1Reg, tmp5);
7347       vpbroadcastd(tmp1Reg, tmp1Reg);
7348       jmpb(L_chars_32_check);
7349 
7350       bind(L_copy_32_chars);
7351       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7352       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7353       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7354       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7355       jccb(Assembler::notZero, L_copy_32_chars_exit);
7356       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7357       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7358       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7359 
7360       bind(L_chars_32_check);
7361       addptr(len, 32);
7362       jccb(Assembler::lessEqual, L_copy_32_chars);
7363 
7364       bind(L_copy_32_chars_exit);
7365       subptr(len, 16);
7366       jccb(Assembler::greater, L_copy_16_chars_exit);
7367 
7368     } else if (UseSSE42Intrinsics) {
7369       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7370       movdl(tmp1Reg, tmp5);
7371       pshufd(tmp1Reg, tmp1Reg, 0);
7372       jmpb(L_chars_16_check);
7373     }
7374 
7375     bind(L_copy_16_chars);
7376     if (UseAVX >= 2) {
7377       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7378       vptest(tmp2Reg, tmp1Reg);
7379       jccb(Assembler::notZero, L_copy_16_chars_exit);
7380       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7381       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7382     } else {
7383       if (UseAVX > 0) {
7384         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7385         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7386         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7387       } else {
7388         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7389         por(tmp2Reg, tmp3Reg);
7390         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7391         por(tmp2Reg, tmp4Reg);
7392       }
7393       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7394       jccb(Assembler::notZero, L_copy_16_chars_exit);
7395       packuswb(tmp3Reg, tmp4Reg);
7396     }
7397     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7398 
7399     bind(L_chars_16_check);
7400     addptr(len, 16);
7401     jccb(Assembler::lessEqual, L_copy_16_chars);
7402 
7403     bind(L_copy_16_chars_exit);
7404     if (UseAVX >= 2) {
7405       // clean upper bits of YMM registers
7406       vpxor(tmp2Reg, tmp2Reg);
7407       vpxor(tmp3Reg, tmp3Reg);
7408       vpxor(tmp4Reg, tmp4Reg);
7409       movdl(tmp1Reg, tmp5);
7410       pshufd(tmp1Reg, tmp1Reg, 0);
7411     }
7412     subptr(len, 8);
7413     jccb(Assembler::greater, L_copy_8_chars_exit);
7414 
7415     bind(L_copy_8_chars);
7416     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7417     ptest(tmp3Reg, tmp1Reg);
7418     jccb(Assembler::notZero, L_copy_8_chars_exit);
7419     packuswb(tmp3Reg, tmp1Reg);
7420     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7421     addptr(len, 8);
7422     jccb(Assembler::lessEqual, L_copy_8_chars);
7423 
7424     bind(L_copy_8_chars_exit);
7425     subptr(len, 8);
7426     jccb(Assembler::zero, L_done);
7427   }
7428 
7429   bind(L_copy_1_char);
7430   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7431   testl(tmp5, 0xff00);      // check if Unicode char
7432   jccb(Assembler::notZero, L_copy_1_char_exit);
7433   movb(Address(dst, len, Address::times_1, 0), tmp5);
7434   addptr(len, 1);
7435   jccb(Assembler::less, L_copy_1_char);
7436 
7437   bind(L_copy_1_char_exit);
7438   addptr(result, len); // len is negative count of not processed elements
7439   bind(L_done);
7440 }
7441 
7442 #ifdef _LP64
7443 /**
7444  * Helper for multiply_to_len().
7445  */
7446 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7447   addq(dest_lo, src1);
7448   adcq(dest_hi, 0);
7449   addq(dest_lo, src2);
7450   adcq(dest_hi, 0);
7451 }
7452 
7453 /**
7454  * Multiply 64 bit by 64 bit first loop.
7455  */
7456 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7457                                            Register y, Register y_idx, Register z,
7458                                            Register carry, Register product,
7459                                            Register idx, Register kdx) {
7460   //
7461   //  jlong carry, x[], y[], z[];
7462   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7463   //    huge_128 product = y[idx] * x[xstart] + carry;
7464   //    z[kdx] = (jlong)product;
7465   //    carry  = (jlong)(product >>> 64);
7466   //  }
7467   //  z[xstart] = carry;
7468   //
7469 
7470   Label L_first_loop, L_first_loop_exit;
7471   Label L_one_x, L_one_y, L_multiply;
7472 
7473   decrementl(xstart);
7474   jcc(Assembler::negative, L_one_x);
7475 
7476   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7477   rorq(x_xstart, 32); // convert big-endian to little-endian
7478 
7479   bind(L_first_loop);
7480   decrementl(idx);
7481   jcc(Assembler::negative, L_first_loop_exit);
7482   decrementl(idx);
7483   jcc(Assembler::negative, L_one_y);
7484   movq(y_idx, Address(y, idx, Address::times_4,  0));
7485   rorq(y_idx, 32); // convert big-endian to little-endian
7486   bind(L_multiply);
7487   movq(product, x_xstart);
7488   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7489   addq(product, carry);
7490   adcq(rdx, 0);
7491   subl(kdx, 2);
7492   movl(Address(z, kdx, Address::times_4,  4), product);
7493   shrq(product, 32);
7494   movl(Address(z, kdx, Address::times_4,  0), product);
7495   movq(carry, rdx);
7496   jmp(L_first_loop);
7497 
7498   bind(L_one_y);
7499   movl(y_idx, Address(y,  0));
7500   jmp(L_multiply);
7501 
7502   bind(L_one_x);
7503   movl(x_xstart, Address(x,  0));
7504   jmp(L_first_loop);
7505 
7506   bind(L_first_loop_exit);
7507 }
7508 
7509 /**
7510  * Multiply 64 bit by 64 bit and add 128 bit.
7511  */
7512 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7513                                             Register yz_idx, Register idx,
7514                                             Register carry, Register product, int offset) {
7515   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7516   //     z[kdx] = (jlong)product;
7517 
7518   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7519   rorq(yz_idx, 32); // convert big-endian to little-endian
7520   movq(product, x_xstart);
7521   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7522   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7523   rorq(yz_idx, 32); // convert big-endian to little-endian
7524 
7525   add2_with_carry(rdx, product, carry, yz_idx);
7526 
7527   movl(Address(z, idx, Address::times_4,  offset+4), product);
7528   shrq(product, 32);
7529   movl(Address(z, idx, Address::times_4,  offset), product);
7530 
7531 }
7532 
7533 /**
7534  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7535  */
7536 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7537                                              Register yz_idx, Register idx, Register jdx,
7538                                              Register carry, Register product,
7539                                              Register carry2) {
7540   //   jlong carry, x[], y[], z[];
7541   //   int kdx = ystart+1;
7542   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7543   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7544   //     z[kdx+idx+1] = (jlong)product;
7545   //     jlong carry2  = (jlong)(product >>> 64);
7546   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7547   //     z[kdx+idx] = (jlong)product;
7548   //     carry  = (jlong)(product >>> 64);
7549   //   }
7550   //   idx += 2;
7551   //   if (idx > 0) {
7552   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7553   //     z[kdx+idx] = (jlong)product;
7554   //     carry  = (jlong)(product >>> 64);
7555   //   }
7556   //
7557 
7558   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7559 
7560   movl(jdx, idx);
7561   andl(jdx, 0xFFFFFFFC);
7562   shrl(jdx, 2);
7563 
7564   bind(L_third_loop);
7565   subl(jdx, 1);
7566   jcc(Assembler::negative, L_third_loop_exit);
7567   subl(idx, 4);
7568 
7569   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7570   movq(carry2, rdx);
7571 
7572   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7573   movq(carry, rdx);
7574   jmp(L_third_loop);
7575 
7576   bind (L_third_loop_exit);
7577 
7578   andl (idx, 0x3);
7579   jcc(Assembler::zero, L_post_third_loop_done);
7580 
7581   Label L_check_1;
7582   subl(idx, 2);
7583   jcc(Assembler::negative, L_check_1);
7584 
7585   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7586   movq(carry, rdx);
7587 
7588   bind (L_check_1);
7589   addl (idx, 0x2);
7590   andl (idx, 0x1);
7591   subl(idx, 1);
7592   jcc(Assembler::negative, L_post_third_loop_done);
7593 
7594   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7595   movq(product, x_xstart);
7596   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7597   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7598 
7599   add2_with_carry(rdx, product, yz_idx, carry);
7600 
7601   movl(Address(z, idx, Address::times_4,  0), product);
7602   shrq(product, 32);
7603 
7604   shlq(rdx, 32);
7605   orq(product, rdx);
7606   movq(carry, product);
7607 
7608   bind(L_post_third_loop_done);
7609 }
7610 
7611 /**
7612  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7613  *
7614  */
7615 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7616                                                   Register carry, Register carry2,
7617                                                   Register idx, Register jdx,
7618                                                   Register yz_idx1, Register yz_idx2,
7619                                                   Register tmp, Register tmp3, Register tmp4) {
7620   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7621 
7622   //   jlong carry, x[], y[], z[];
7623   //   int kdx = ystart+1;
7624   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7625   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7626   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7627   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7628   //     carry  = (jlong)(tmp4 >>> 64);
7629   //     z[kdx+idx+1] = (jlong)tmp3;
7630   //     z[kdx+idx] = (jlong)tmp4;
7631   //   }
7632   //   idx += 2;
7633   //   if (idx > 0) {
7634   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7635   //     z[kdx+idx] = (jlong)yz_idx1;
7636   //     carry  = (jlong)(yz_idx1 >>> 64);
7637   //   }
7638   //
7639 
7640   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7641 
7642   movl(jdx, idx);
7643   andl(jdx, 0xFFFFFFFC);
7644   shrl(jdx, 2);
7645 
7646   bind(L_third_loop);
7647   subl(jdx, 1);
7648   jcc(Assembler::negative, L_third_loop_exit);
7649   subl(idx, 4);
7650 
7651   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7652   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7653   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7654   rorxq(yz_idx2, yz_idx2, 32);
7655 
7656   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7657   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7658 
7659   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7660   rorxq(yz_idx1, yz_idx1, 32);
7661   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7662   rorxq(yz_idx2, yz_idx2, 32);
7663 
7664   if (VM_Version::supports_adx()) {
7665     adcxq(tmp3, carry);
7666     adoxq(tmp3, yz_idx1);
7667 
7668     adcxq(tmp4, tmp);
7669     adoxq(tmp4, yz_idx2);
7670 
7671     movl(carry, 0); // does not affect flags
7672     adcxq(carry2, carry);
7673     adoxq(carry2, carry);
7674   } else {
7675     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7676     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7677   }
7678   movq(carry, carry2);
7679 
7680   movl(Address(z, idx, Address::times_4, 12), tmp3);
7681   shrq(tmp3, 32);
7682   movl(Address(z, idx, Address::times_4,  8), tmp3);
7683 
7684   movl(Address(z, idx, Address::times_4,  4), tmp4);
7685   shrq(tmp4, 32);
7686   movl(Address(z, idx, Address::times_4,  0), tmp4);
7687 
7688   jmp(L_third_loop);
7689 
7690   bind (L_third_loop_exit);
7691 
7692   andl (idx, 0x3);
7693   jcc(Assembler::zero, L_post_third_loop_done);
7694 
7695   Label L_check_1;
7696   subl(idx, 2);
7697   jcc(Assembler::negative, L_check_1);
7698 
7699   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7700   rorxq(yz_idx1, yz_idx1, 32);
7701   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7702   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7703   rorxq(yz_idx2, yz_idx2, 32);
7704 
7705   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7706 
7707   movl(Address(z, idx, Address::times_4,  4), tmp3);
7708   shrq(tmp3, 32);
7709   movl(Address(z, idx, Address::times_4,  0), tmp3);
7710   movq(carry, tmp4);
7711 
7712   bind (L_check_1);
7713   addl (idx, 0x2);
7714   andl (idx, 0x1);
7715   subl(idx, 1);
7716   jcc(Assembler::negative, L_post_third_loop_done);
7717   movl(tmp4, Address(y, idx, Address::times_4,  0));
7718   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7719   movl(tmp4, Address(z, idx, Address::times_4,  0));
7720 
7721   add2_with_carry(carry2, tmp3, tmp4, carry);
7722 
7723   movl(Address(z, idx, Address::times_4,  0), tmp3);
7724   shrq(tmp3, 32);
7725 
7726   shlq(carry2, 32);
7727   orq(tmp3, carry2);
7728   movq(carry, tmp3);
7729 
7730   bind(L_post_third_loop_done);
7731 }
7732 
7733 /**
7734  * Code for BigInteger::multiplyToLen() instrinsic.
7735  *
7736  * rdi: x
7737  * rax: xlen
7738  * rsi: y
7739  * rcx: ylen
7740  * r8:  z
7741  * r11: zlen
7742  * r12: tmp1
7743  * r13: tmp2
7744  * r14: tmp3
7745  * r15: tmp4
7746  * rbx: tmp5
7747  *
7748  */
7749 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7750                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7751   ShortBranchVerifier sbv(this);
7752   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7753 
7754   push(tmp1);
7755   push(tmp2);
7756   push(tmp3);
7757   push(tmp4);
7758   push(tmp5);
7759 
7760   push(xlen);
7761   push(zlen);
7762 
7763   const Register idx = tmp1;
7764   const Register kdx = tmp2;
7765   const Register xstart = tmp3;
7766 
7767   const Register y_idx = tmp4;
7768   const Register carry = tmp5;
7769   const Register product  = xlen;
7770   const Register x_xstart = zlen;  // reuse register
7771 
7772   // First Loop.
7773   //
7774   //  final static long LONG_MASK = 0xffffffffL;
7775   //  int xstart = xlen - 1;
7776   //  int ystart = ylen - 1;
7777   //  long carry = 0;
7778   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7779   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7780   //    z[kdx] = (int)product;
7781   //    carry = product >>> 32;
7782   //  }
7783   //  z[xstart] = (int)carry;
7784   //
7785 
7786   movl(idx, ylen);      // idx = ylen;
7787   movl(kdx, zlen);      // kdx = xlen+ylen;
7788   xorq(carry, carry);   // carry = 0;
7789 
7790   Label L_done;
7791 
7792   movl(xstart, xlen);
7793   decrementl(xstart);
7794   jcc(Assembler::negative, L_done);
7795 
7796   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7797 
7798   Label L_second_loop;
7799   testl(kdx, kdx);
7800   jcc(Assembler::zero, L_second_loop);
7801 
7802   Label L_carry;
7803   subl(kdx, 1);
7804   jcc(Assembler::zero, L_carry);
7805 
7806   movl(Address(z, kdx, Address::times_4,  0), carry);
7807   shrq(carry, 32);
7808   subl(kdx, 1);
7809 
7810   bind(L_carry);
7811   movl(Address(z, kdx, Address::times_4,  0), carry);
7812 
7813   // Second and third (nested) loops.
7814   //
7815   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7816   //   carry = 0;
7817   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7818   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7819   //                    (z[k] & LONG_MASK) + carry;
7820   //     z[k] = (int)product;
7821   //     carry = product >>> 32;
7822   //   }
7823   //   z[i] = (int)carry;
7824   // }
7825   //
7826   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7827 
7828   const Register jdx = tmp1;
7829 
7830   bind(L_second_loop);
7831   xorl(carry, carry);    // carry = 0;
7832   movl(jdx, ylen);       // j = ystart+1
7833 
7834   subl(xstart, 1);       // i = xstart-1;
7835   jcc(Assembler::negative, L_done);
7836 
7837   push (z);
7838 
7839   Label L_last_x;
7840   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7841   subl(xstart, 1);       // i = xstart-1;
7842   jcc(Assembler::negative, L_last_x);
7843 
7844   if (UseBMI2Instructions) {
7845     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7846     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7847   } else {
7848     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7849     rorq(x_xstart, 32);  // convert big-endian to little-endian
7850   }
7851 
7852   Label L_third_loop_prologue;
7853   bind(L_third_loop_prologue);
7854 
7855   push (x);
7856   push (xstart);
7857   push (ylen);
7858 
7859 
7860   if (UseBMI2Instructions) {
7861     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7862   } else { // !UseBMI2Instructions
7863     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7864   }
7865 
7866   pop(ylen);
7867   pop(xlen);
7868   pop(x);
7869   pop(z);
7870 
7871   movl(tmp3, xlen);
7872   addl(tmp3, 1);
7873   movl(Address(z, tmp3, Address::times_4,  0), carry);
7874   subl(tmp3, 1);
7875   jccb(Assembler::negative, L_done);
7876 
7877   shrq(carry, 32);
7878   movl(Address(z, tmp3, Address::times_4,  0), carry);
7879   jmp(L_second_loop);
7880 
7881   // Next infrequent code is moved outside loops.
7882   bind(L_last_x);
7883   if (UseBMI2Instructions) {
7884     movl(rdx, Address(x,  0));
7885   } else {
7886     movl(x_xstart, Address(x,  0));
7887   }
7888   jmp(L_third_loop_prologue);
7889 
7890   bind(L_done);
7891 
7892   pop(zlen);
7893   pop(xlen);
7894 
7895   pop(tmp5);
7896   pop(tmp4);
7897   pop(tmp3);
7898   pop(tmp2);
7899   pop(tmp1);
7900 }
7901 
7902 //Helper functions for square_to_len()
7903 
7904 /**
7905  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7906  * Preserves x and z and modifies rest of the registers.
7907  */
7908 
7909 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7910   // Perform square and right shift by 1
7911   // Handle odd xlen case first, then for even xlen do the following
7912   // jlong carry = 0;
7913   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7914   //     huge_128 product = x[j:j+1] * x[j:j+1];
7915   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7916   //     z[i+2:i+3] = (jlong)(product >>> 1);
7917   //     carry = (jlong)product;
7918   // }
7919 
7920   xorq(tmp5, tmp5);     // carry
7921   xorq(rdxReg, rdxReg);
7922   xorl(tmp1, tmp1);     // index for x
7923   xorl(tmp4, tmp4);     // index for z
7924 
7925   Label L_first_loop, L_first_loop_exit;
7926 
7927   testl(xlen, 1);
7928   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7929 
7930   // Square and right shift by 1 the odd element using 32 bit multiply
7931   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7932   imulq(raxReg, raxReg);
7933   shrq(raxReg, 1);
7934   adcq(tmp5, 0);
7935   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7936   incrementl(tmp1);
7937   addl(tmp4, 2);
7938 
7939   // Square and  right shift by 1 the rest using 64 bit multiply
7940   bind(L_first_loop);
7941   cmpptr(tmp1, xlen);
7942   jccb(Assembler::equal, L_first_loop_exit);
7943 
7944   // Square
7945   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7946   rorq(raxReg, 32);    // convert big-endian to little-endian
7947   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7948 
7949   // Right shift by 1 and save carry
7950   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7951   rcrq(rdxReg, 1);
7952   rcrq(raxReg, 1);
7953   adcq(tmp5, 0);
7954 
7955   // Store result in z
7956   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7957   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7958 
7959   // Update indices for x and z
7960   addl(tmp1, 2);
7961   addl(tmp4, 4);
7962   jmp(L_first_loop);
7963 
7964   bind(L_first_loop_exit);
7965 }
7966 
7967 
7968 /**
7969  * Perform the following multiply add operation using BMI2 instructions
7970  * carry:sum = sum + op1*op2 + carry
7971  * op2 should be in rdx
7972  * op2 is preserved, all other registers are modified
7973  */
7974 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7975   // assert op2 is rdx
7976   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7977   addq(sum, carry);
7978   adcq(tmp2, 0);
7979   addq(sum, op1);
7980   adcq(tmp2, 0);
7981   movq(carry, tmp2);
7982 }
7983 
7984 /**
7985  * Perform the following multiply add operation:
7986  * carry:sum = sum + op1*op2 + carry
7987  * Preserves op1, op2 and modifies rest of registers
7988  */
7989 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7990   // rdx:rax = op1 * op2
7991   movq(raxReg, op2);
7992   mulq(op1);
7993 
7994   //  rdx:rax = sum + carry + rdx:rax
7995   addq(sum, carry);
7996   adcq(rdxReg, 0);
7997   addq(sum, raxReg);
7998   adcq(rdxReg, 0);
7999 
8000   // carry:sum = rdx:sum
8001   movq(carry, rdxReg);
8002 }
8003 
8004 /**
8005  * Add 64 bit long carry into z[] with carry propogation.
8006  * Preserves z and carry register values and modifies rest of registers.
8007  *
8008  */
8009 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8010   Label L_fourth_loop, L_fourth_loop_exit;
8011 
8012   movl(tmp1, 1);
8013   subl(zlen, 2);
8014   addq(Address(z, zlen, Address::times_4, 0), carry);
8015 
8016   bind(L_fourth_loop);
8017   jccb(Assembler::carryClear, L_fourth_loop_exit);
8018   subl(zlen, 2);
8019   jccb(Assembler::negative, L_fourth_loop_exit);
8020   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8021   jmp(L_fourth_loop);
8022   bind(L_fourth_loop_exit);
8023 }
8024 
8025 /**
8026  * Shift z[] left by 1 bit.
8027  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8028  *
8029  */
8030 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8031 
8032   Label L_fifth_loop, L_fifth_loop_exit;
8033 
8034   // Fifth loop
8035   // Perform primitiveLeftShift(z, zlen, 1)
8036 
8037   const Register prev_carry = tmp1;
8038   const Register new_carry = tmp4;
8039   const Register value = tmp2;
8040   const Register zidx = tmp3;
8041 
8042   // int zidx, carry;
8043   // long value;
8044   // carry = 0;
8045   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8046   //    (carry:value)  = (z[i] << 1) | carry ;
8047   //    z[i] = value;
8048   // }
8049 
8050   movl(zidx, zlen);
8051   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8052 
8053   bind(L_fifth_loop);
8054   decl(zidx);  // Use decl to preserve carry flag
8055   decl(zidx);
8056   jccb(Assembler::negative, L_fifth_loop_exit);
8057 
8058   if (UseBMI2Instructions) {
8059      movq(value, Address(z, zidx, Address::times_4, 0));
8060      rclq(value, 1);
8061      rorxq(value, value, 32);
8062      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8063   }
8064   else {
8065     // clear new_carry
8066     xorl(new_carry, new_carry);
8067 
8068     // Shift z[i] by 1, or in previous carry and save new carry
8069     movq(value, Address(z, zidx, Address::times_4, 0));
8070     shlq(value, 1);
8071     adcl(new_carry, 0);
8072 
8073     orq(value, prev_carry);
8074     rorq(value, 0x20);
8075     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8076 
8077     // Set previous carry = new carry
8078     movl(prev_carry, new_carry);
8079   }
8080   jmp(L_fifth_loop);
8081 
8082   bind(L_fifth_loop_exit);
8083 }
8084 
8085 
8086 /**
8087  * Code for BigInteger::squareToLen() intrinsic
8088  *
8089  * rdi: x
8090  * rsi: len
8091  * r8:  z
8092  * rcx: zlen
8093  * r12: tmp1
8094  * r13: tmp2
8095  * r14: tmp3
8096  * r15: tmp4
8097  * rbx: tmp5
8098  *
8099  */
8100 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8101 
8102   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8103   push(tmp1);
8104   push(tmp2);
8105   push(tmp3);
8106   push(tmp4);
8107   push(tmp5);
8108 
8109   // First loop
8110   // Store the squares, right shifted one bit (i.e., divided by 2).
8111   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8112 
8113   // Add in off-diagonal sums.
8114   //
8115   // Second, third (nested) and fourth loops.
8116   // zlen +=2;
8117   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8118   //    carry = 0;
8119   //    long op2 = x[xidx:xidx+1];
8120   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8121   //       k -= 2;
8122   //       long op1 = x[j:j+1];
8123   //       long sum = z[k:k+1];
8124   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8125   //       z[k:k+1] = sum;
8126   //    }
8127   //    add_one_64(z, k, carry, tmp_regs);
8128   // }
8129 
8130   const Register carry = tmp5;
8131   const Register sum = tmp3;
8132   const Register op1 = tmp4;
8133   Register op2 = tmp2;
8134 
8135   push(zlen);
8136   push(len);
8137   addl(zlen,2);
8138   bind(L_second_loop);
8139   xorq(carry, carry);
8140   subl(zlen, 4);
8141   subl(len, 2);
8142   push(zlen);
8143   push(len);
8144   cmpl(len, 0);
8145   jccb(Assembler::lessEqual, L_second_loop_exit);
8146 
8147   // Multiply an array by one 64 bit long.
8148   if (UseBMI2Instructions) {
8149     op2 = rdxReg;
8150     movq(op2, Address(x, len, Address::times_4,  0));
8151     rorxq(op2, op2, 32);
8152   }
8153   else {
8154     movq(op2, Address(x, len, Address::times_4,  0));
8155     rorq(op2, 32);
8156   }
8157 
8158   bind(L_third_loop);
8159   decrementl(len);
8160   jccb(Assembler::negative, L_third_loop_exit);
8161   decrementl(len);
8162   jccb(Assembler::negative, L_last_x);
8163 
8164   movq(op1, Address(x, len, Address::times_4,  0));
8165   rorq(op1, 32);
8166 
8167   bind(L_multiply);
8168   subl(zlen, 2);
8169   movq(sum, Address(z, zlen, Address::times_4,  0));
8170 
8171   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8172   if (UseBMI2Instructions) {
8173     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8174   }
8175   else {
8176     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8177   }
8178 
8179   movq(Address(z, zlen, Address::times_4, 0), sum);
8180 
8181   jmp(L_third_loop);
8182   bind(L_third_loop_exit);
8183 
8184   // Fourth loop
8185   // Add 64 bit long carry into z with carry propogation.
8186   // Uses offsetted zlen.
8187   add_one_64(z, zlen, carry, tmp1);
8188 
8189   pop(len);
8190   pop(zlen);
8191   jmp(L_second_loop);
8192 
8193   // Next infrequent code is moved outside loops.
8194   bind(L_last_x);
8195   movl(op1, Address(x, 0));
8196   jmp(L_multiply);
8197 
8198   bind(L_second_loop_exit);
8199   pop(len);
8200   pop(zlen);
8201   pop(len);
8202   pop(zlen);
8203 
8204   // Fifth loop
8205   // Shift z left 1 bit.
8206   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8207 
8208   // z[zlen-1] |= x[len-1] & 1;
8209   movl(tmp3, Address(x, len, Address::times_4, -4));
8210   andl(tmp3, 1);
8211   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8212 
8213   pop(tmp5);
8214   pop(tmp4);
8215   pop(tmp3);
8216   pop(tmp2);
8217   pop(tmp1);
8218 }
8219 
8220 /**
8221  * Helper function for mul_add()
8222  * Multiply the in[] by int k and add to out[] starting at offset offs using
8223  * 128 bit by 32 bit multiply and return the carry in tmp5.
8224  * Only quad int aligned length of in[] is operated on in this function.
8225  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8226  * This function preserves out, in and k registers.
8227  * len and offset point to the appropriate index in "in" & "out" correspondingly
8228  * tmp5 has the carry.
8229  * other registers are temporary and are modified.
8230  *
8231  */
8232 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8233   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8234   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8235 
8236   Label L_first_loop, L_first_loop_exit;
8237 
8238   movl(tmp1, len);
8239   shrl(tmp1, 2);
8240 
8241   bind(L_first_loop);
8242   subl(tmp1, 1);
8243   jccb(Assembler::negative, L_first_loop_exit);
8244 
8245   subl(len, 4);
8246   subl(offset, 4);
8247 
8248   Register op2 = tmp2;
8249   const Register sum = tmp3;
8250   const Register op1 = tmp4;
8251   const Register carry = tmp5;
8252 
8253   if (UseBMI2Instructions) {
8254     op2 = rdxReg;
8255   }
8256 
8257   movq(op1, Address(in, len, Address::times_4,  8));
8258   rorq(op1, 32);
8259   movq(sum, Address(out, offset, Address::times_4,  8));
8260   rorq(sum, 32);
8261   if (UseBMI2Instructions) {
8262     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8263   }
8264   else {
8265     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8266   }
8267   // Store back in big endian from little endian
8268   rorq(sum, 0x20);
8269   movq(Address(out, offset, Address::times_4,  8), sum);
8270 
8271   movq(op1, Address(in, len, Address::times_4,  0));
8272   rorq(op1, 32);
8273   movq(sum, Address(out, offset, Address::times_4,  0));
8274   rorq(sum, 32);
8275   if (UseBMI2Instructions) {
8276     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8277   }
8278   else {
8279     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8280   }
8281   // Store back in big endian from little endian
8282   rorq(sum, 0x20);
8283   movq(Address(out, offset, Address::times_4,  0), sum);
8284 
8285   jmp(L_first_loop);
8286   bind(L_first_loop_exit);
8287 }
8288 
8289 /**
8290  * Code for BigInteger::mulAdd() intrinsic
8291  *
8292  * rdi: out
8293  * rsi: in
8294  * r11: offs (out.length - offset)
8295  * rcx: len
8296  * r8:  k
8297  * r12: tmp1
8298  * r13: tmp2
8299  * r14: tmp3
8300  * r15: tmp4
8301  * rbx: tmp5
8302  * Multiply the in[] by word k and add to out[], return the carry in rax
8303  */
8304 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8305    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8306    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8307 
8308   Label L_carry, L_last_in, L_done;
8309 
8310 // carry = 0;
8311 // for (int j=len-1; j >= 0; j--) {
8312 //    long product = (in[j] & LONG_MASK) * kLong +
8313 //                   (out[offs] & LONG_MASK) + carry;
8314 //    out[offs--] = (int)product;
8315 //    carry = product >>> 32;
8316 // }
8317 //
8318   push(tmp1);
8319   push(tmp2);
8320   push(tmp3);
8321   push(tmp4);
8322   push(tmp5);
8323 
8324   Register op2 = tmp2;
8325   const Register sum = tmp3;
8326   const Register op1 = tmp4;
8327   const Register carry =  tmp5;
8328 
8329   if (UseBMI2Instructions) {
8330     op2 = rdxReg;
8331     movl(op2, k);
8332   }
8333   else {
8334     movl(op2, k);
8335   }
8336 
8337   xorq(carry, carry);
8338 
8339   //First loop
8340 
8341   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8342   //The carry is in tmp5
8343   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8344 
8345   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8346   decrementl(len);
8347   jccb(Assembler::negative, L_carry);
8348   decrementl(len);
8349   jccb(Assembler::negative, L_last_in);
8350 
8351   movq(op1, Address(in, len, Address::times_4,  0));
8352   rorq(op1, 32);
8353 
8354   subl(offs, 2);
8355   movq(sum, Address(out, offs, Address::times_4,  0));
8356   rorq(sum, 32);
8357 
8358   if (UseBMI2Instructions) {
8359     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8360   }
8361   else {
8362     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8363   }
8364 
8365   // Store back in big endian from little endian
8366   rorq(sum, 0x20);
8367   movq(Address(out, offs, Address::times_4,  0), sum);
8368 
8369   testl(len, len);
8370   jccb(Assembler::zero, L_carry);
8371 
8372   //Multiply the last in[] entry, if any
8373   bind(L_last_in);
8374   movl(op1, Address(in, 0));
8375   movl(sum, Address(out, offs, Address::times_4,  -4));
8376 
8377   movl(raxReg, k);
8378   mull(op1); //tmp4 * eax -> edx:eax
8379   addl(sum, carry);
8380   adcl(rdxReg, 0);
8381   addl(sum, raxReg);
8382   adcl(rdxReg, 0);
8383   movl(carry, rdxReg);
8384 
8385   movl(Address(out, offs, Address::times_4,  -4), sum);
8386 
8387   bind(L_carry);
8388   //return tmp5/carry as carry in rax
8389   movl(rax, carry);
8390 
8391   bind(L_done);
8392   pop(tmp5);
8393   pop(tmp4);
8394   pop(tmp3);
8395   pop(tmp2);
8396   pop(tmp1);
8397 }
8398 #endif
8399 
8400 /**
8401  * Emits code to update CRC-32 with a byte value according to constants in table
8402  *
8403  * @param [in,out]crc   Register containing the crc.
8404  * @param [in]val       Register containing the byte to fold into the CRC.
8405  * @param [in]table     Register containing the table of crc constants.
8406  *
8407  * uint32_t crc;
8408  * val = crc_table[(val ^ crc) & 0xFF];
8409  * crc = val ^ (crc >> 8);
8410  *
8411  */
8412 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8413   xorl(val, crc);
8414   andl(val, 0xFF);
8415   shrl(crc, 8); // unsigned shift
8416   xorl(crc, Address(table, val, Address::times_4, 0));
8417 }
8418 
8419 /**
8420  * Fold 128-bit data chunk
8421  */
8422 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8423   if (UseAVX > 0) {
8424     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8425     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8426     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8427     pxor(xcrc, xtmp);
8428   } else {
8429     movdqa(xtmp, xcrc);
8430     pclmulhdq(xtmp, xK);   // [123:64]
8431     pclmulldq(xcrc, xK);   // [63:0]
8432     pxor(xcrc, xtmp);
8433     movdqu(xtmp, Address(buf, offset));
8434     pxor(xcrc, xtmp);
8435   }
8436 }
8437 
8438 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8439   if (UseAVX > 0) {
8440     vpclmulhdq(xtmp, xK, xcrc);
8441     vpclmulldq(xcrc, xK, xcrc);
8442     pxor(xcrc, xbuf);
8443     pxor(xcrc, xtmp);
8444   } else {
8445     movdqa(xtmp, xcrc);
8446     pclmulhdq(xtmp, xK);
8447     pclmulldq(xcrc, xK);
8448     pxor(xcrc, xbuf);
8449     pxor(xcrc, xtmp);
8450   }
8451 }
8452 
8453 /**
8454  * 8-bit folds to compute 32-bit CRC
8455  *
8456  * uint64_t xcrc;
8457  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8458  */
8459 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8460   movdl(tmp, xcrc);
8461   andl(tmp, 0xFF);
8462   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8463   psrldq(xcrc, 1); // unsigned shift one byte
8464   pxor(xcrc, xtmp);
8465 }
8466 
8467 /**
8468  * uint32_t crc;
8469  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8470  */
8471 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8472   movl(tmp, crc);
8473   andl(tmp, 0xFF);
8474   shrl(crc, 8);
8475   xorl(crc, Address(table, tmp, Address::times_4, 0));
8476 }
8477 
8478 /**
8479  * @param crc   register containing existing CRC (32-bit)
8480  * @param buf   register pointing to input byte buffer (byte*)
8481  * @param len   register containing number of bytes
8482  * @param table register that will contain address of CRC table
8483  * @param tmp   scratch register
8484  */
8485 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8486   assert_different_registers(crc, buf, len, table, tmp, rax);
8487 
8488   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8489   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8490 
8491   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8492   // context for the registers used, where all instructions below are using 128-bit mode
8493   // On EVEX without VL and BW, these instructions will all be AVX.
8494   if (VM_Version::supports_avx512vlbw()) {
8495     movl(tmp, 0xffff);
8496     kmovwl(k1, tmp);
8497   }
8498 
8499   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8500   notl(crc); // ~crc
8501   cmpl(len, 16);
8502   jcc(Assembler::less, L_tail);
8503 
8504   // Align buffer to 16 bytes
8505   movl(tmp, buf);
8506   andl(tmp, 0xF);
8507   jccb(Assembler::zero, L_aligned);
8508   subl(tmp,  16);
8509   addl(len, tmp);
8510 
8511   align(4);
8512   BIND(L_align_loop);
8513   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8514   update_byte_crc32(crc, rax, table);
8515   increment(buf);
8516   incrementl(tmp);
8517   jccb(Assembler::less, L_align_loop);
8518 
8519   BIND(L_aligned);
8520   movl(tmp, len); // save
8521   shrl(len, 4);
8522   jcc(Assembler::zero, L_tail_restore);
8523 
8524   // Fold crc into first bytes of vector
8525   movdqa(xmm1, Address(buf, 0));
8526   movdl(rax, xmm1);
8527   xorl(crc, rax);
8528   pinsrd(xmm1, crc, 0);
8529   addptr(buf, 16);
8530   subl(len, 4); // len > 0
8531   jcc(Assembler::less, L_fold_tail);
8532 
8533   movdqa(xmm2, Address(buf,  0));
8534   movdqa(xmm3, Address(buf, 16));
8535   movdqa(xmm4, Address(buf, 32));
8536   addptr(buf, 48);
8537   subl(len, 3);
8538   jcc(Assembler::lessEqual, L_fold_512b);
8539 
8540   // Fold total 512 bits of polynomial on each iteration,
8541   // 128 bits per each of 4 parallel streams.
8542   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8543 
8544   align(32);
8545   BIND(L_fold_512b_loop);
8546   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8547   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8548   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8549   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8550   addptr(buf, 64);
8551   subl(len, 4);
8552   jcc(Assembler::greater, L_fold_512b_loop);
8553 
8554   // Fold 512 bits to 128 bits.
8555   BIND(L_fold_512b);
8556   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8557   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8558   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8559   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8560 
8561   // Fold the rest of 128 bits data chunks
8562   BIND(L_fold_tail);
8563   addl(len, 3);
8564   jccb(Assembler::lessEqual, L_fold_128b);
8565   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8566 
8567   BIND(L_fold_tail_loop);
8568   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8569   addptr(buf, 16);
8570   decrementl(len);
8571   jccb(Assembler::greater, L_fold_tail_loop);
8572 
8573   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8574   BIND(L_fold_128b);
8575   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8576   if (UseAVX > 0) {
8577     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8578     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8579     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8580   } else {
8581     movdqa(xmm2, xmm0);
8582     pclmulqdq(xmm2, xmm1, 0x1);
8583     movdqa(xmm3, xmm0);
8584     pand(xmm3, xmm2);
8585     pclmulqdq(xmm0, xmm3, 0x1);
8586   }
8587   psrldq(xmm1, 8);
8588   psrldq(xmm2, 4);
8589   pxor(xmm0, xmm1);
8590   pxor(xmm0, xmm2);
8591 
8592   // 8 8-bit folds to compute 32-bit CRC.
8593   for (int j = 0; j < 4; j++) {
8594     fold_8bit_crc32(xmm0, table, xmm1, rax);
8595   }
8596   movdl(crc, xmm0); // mov 32 bits to general register
8597   for (int j = 0; j < 4; j++) {
8598     fold_8bit_crc32(crc, table, rax);
8599   }
8600 
8601   BIND(L_tail_restore);
8602   movl(len, tmp); // restore
8603   BIND(L_tail);
8604   andl(len, 0xf);
8605   jccb(Assembler::zero, L_exit);
8606 
8607   // Fold the rest of bytes
8608   align(4);
8609   BIND(L_tail_loop);
8610   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8611   update_byte_crc32(crc, rax, table);
8612   increment(buf);
8613   decrementl(len);
8614   jccb(Assembler::greater, L_tail_loop);
8615 
8616   BIND(L_exit);
8617   notl(crc); // ~c
8618 }
8619 
8620 #ifdef _LP64
8621 // S. Gueron / Information Processing Letters 112 (2012) 184
8622 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
8623 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
8624 // Output: the 64-bit carry-less product of B * CONST
8625 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
8626                                      Register tmp1, Register tmp2, Register tmp3) {
8627   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8628   if (n > 0) {
8629     addq(tmp3, n * 256 * 8);
8630   }
8631   //    Q1 = TABLEExt[n][B & 0xFF];
8632   movl(tmp1, in);
8633   andl(tmp1, 0x000000FF);
8634   shll(tmp1, 3);
8635   addq(tmp1, tmp3);
8636   movq(tmp1, Address(tmp1, 0));
8637 
8638   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8639   movl(tmp2, in);
8640   shrl(tmp2, 8);
8641   andl(tmp2, 0x000000FF);
8642   shll(tmp2, 3);
8643   addq(tmp2, tmp3);
8644   movq(tmp2, Address(tmp2, 0));
8645 
8646   shlq(tmp2, 8);
8647   xorq(tmp1, tmp2);
8648 
8649   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8650   movl(tmp2, in);
8651   shrl(tmp2, 16);
8652   andl(tmp2, 0x000000FF);
8653   shll(tmp2, 3);
8654   addq(tmp2, tmp3);
8655   movq(tmp2, Address(tmp2, 0));
8656 
8657   shlq(tmp2, 16);
8658   xorq(tmp1, tmp2);
8659 
8660   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8661   shrl(in, 24);
8662   andl(in, 0x000000FF);
8663   shll(in, 3);
8664   addq(in, tmp3);
8665   movq(in, Address(in, 0));
8666 
8667   shlq(in, 24);
8668   xorq(in, tmp1);
8669   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8670 }
8671 
8672 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8673                                       Register in_out,
8674                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8675                                       XMMRegister w_xtmp2,
8676                                       Register tmp1,
8677                                       Register n_tmp2, Register n_tmp3) {
8678   if (is_pclmulqdq_supported) {
8679     movdl(w_xtmp1, in_out); // modified blindly
8680 
8681     movl(tmp1, const_or_pre_comp_const_index);
8682     movdl(w_xtmp2, tmp1);
8683     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8684 
8685     movdq(in_out, w_xtmp1);
8686   } else {
8687     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8688   }
8689 }
8690 
8691 // Recombination Alternative 2: No bit-reflections
8692 // T1 = (CRC_A * U1) << 1
8693 // T2 = (CRC_B * U2) << 1
8694 // C1 = T1 >> 32
8695 // C2 = T2 >> 32
8696 // T1 = T1 & 0xFFFFFFFF
8697 // T2 = T2 & 0xFFFFFFFF
8698 // T1 = CRC32(0, T1)
8699 // T2 = CRC32(0, T2)
8700 // C1 = C1 ^ T1
8701 // C2 = C2 ^ T2
8702 // CRC = C1 ^ C2 ^ CRC_C
8703 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8704                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8705                                      Register tmp1, Register tmp2,
8706                                      Register n_tmp3) {
8707   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8708   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8709   shlq(in_out, 1);
8710   movl(tmp1, in_out);
8711   shrq(in_out, 32);
8712   xorl(tmp2, tmp2);
8713   crc32(tmp2, tmp1, 4);
8714   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8715   shlq(in1, 1);
8716   movl(tmp1, in1);
8717   shrq(in1, 32);
8718   xorl(tmp2, tmp2);
8719   crc32(tmp2, tmp1, 4);
8720   xorl(in1, tmp2);
8721   xorl(in_out, in1);
8722   xorl(in_out, in2);
8723 }
8724 
8725 // Set N to predefined value
8726 // Subtract from a lenght of a buffer
8727 // execute in a loop:
8728 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
8729 // for i = 1 to N do
8730 //  CRC_A = CRC32(CRC_A, A[i])
8731 //  CRC_B = CRC32(CRC_B, B[i])
8732 //  CRC_C = CRC32(CRC_C, C[i])
8733 // end for
8734 // Recombine
8735 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8736                                        Register in_out1, Register in_out2, Register in_out3,
8737                                        Register tmp1, Register tmp2, Register tmp3,
8738                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8739                                        Register tmp4, Register tmp5,
8740                                        Register n_tmp6) {
8741   Label L_processPartitions;
8742   Label L_processPartition;
8743   Label L_exit;
8744 
8745   bind(L_processPartitions);
8746   cmpl(in_out1, 3 * size);
8747   jcc(Assembler::less, L_exit);
8748     xorl(tmp1, tmp1);
8749     xorl(tmp2, tmp2);
8750     movq(tmp3, in_out2);
8751     addq(tmp3, size);
8752 
8753     bind(L_processPartition);
8754       crc32(in_out3, Address(in_out2, 0), 8);
8755       crc32(tmp1, Address(in_out2, size), 8);
8756       crc32(tmp2, Address(in_out2, size * 2), 8);
8757       addq(in_out2, 8);
8758       cmpq(in_out2, tmp3);
8759       jcc(Assembler::less, L_processPartition);
8760     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8761             w_xtmp1, w_xtmp2, w_xtmp3,
8762             tmp4, tmp5,
8763             n_tmp6);
8764     addq(in_out2, 2 * size);
8765     subl(in_out1, 3 * size);
8766     jmp(L_processPartitions);
8767 
8768   bind(L_exit);
8769 }
8770 #else
8771 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
8772                                      Register tmp1, Register tmp2, Register tmp3,
8773                                      XMMRegister xtmp1, XMMRegister xtmp2) {
8774   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8775   if (n > 0) {
8776     addl(tmp3, n * 256 * 8);
8777   }
8778   //    Q1 = TABLEExt[n][B & 0xFF];
8779   movl(tmp1, in_out);
8780   andl(tmp1, 0x000000FF);
8781   shll(tmp1, 3);
8782   addl(tmp1, tmp3);
8783   movq(xtmp1, Address(tmp1, 0));
8784 
8785   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8786   movl(tmp2, in_out);
8787   shrl(tmp2, 8);
8788   andl(tmp2, 0x000000FF);
8789   shll(tmp2, 3);
8790   addl(tmp2, tmp3);
8791   movq(xtmp2, Address(tmp2, 0));
8792 
8793   psllq(xtmp2, 8);
8794   pxor(xtmp1, xtmp2);
8795 
8796   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8797   movl(tmp2, in_out);
8798   shrl(tmp2, 16);
8799   andl(tmp2, 0x000000FF);
8800   shll(tmp2, 3);
8801   addl(tmp2, tmp3);
8802   movq(xtmp2, Address(tmp2, 0));
8803 
8804   psllq(xtmp2, 16);
8805   pxor(xtmp1, xtmp2);
8806 
8807   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8808   shrl(in_out, 24);
8809   andl(in_out, 0x000000FF);
8810   shll(in_out, 3);
8811   addl(in_out, tmp3);
8812   movq(xtmp2, Address(in_out, 0));
8813 
8814   psllq(xtmp2, 24);
8815   pxor(xtmp1, xtmp2); // Result in CXMM
8816   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8817 }
8818 
8819 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8820                                       Register in_out,
8821                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8822                                       XMMRegister w_xtmp2,
8823                                       Register tmp1,
8824                                       Register n_tmp2, Register n_tmp3) {
8825   if (is_pclmulqdq_supported) {
8826     movdl(w_xtmp1, in_out);
8827 
8828     movl(tmp1, const_or_pre_comp_const_index);
8829     movdl(w_xtmp2, tmp1);
8830     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8831     // Keep result in XMM since GPR is 32 bit in length
8832   } else {
8833     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
8834   }
8835 }
8836 
8837 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8838                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8839                                      Register tmp1, Register tmp2,
8840                                      Register n_tmp3) {
8841   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8842   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8843 
8844   psllq(w_xtmp1, 1);
8845   movdl(tmp1, w_xtmp1);
8846   psrlq(w_xtmp1, 32);
8847   movdl(in_out, w_xtmp1);
8848 
8849   xorl(tmp2, tmp2);
8850   crc32(tmp2, tmp1, 4);
8851   xorl(in_out, tmp2);
8852 
8853   psllq(w_xtmp2, 1);
8854   movdl(tmp1, w_xtmp2);
8855   psrlq(w_xtmp2, 32);
8856   movdl(in1, w_xtmp2);
8857 
8858   xorl(tmp2, tmp2);
8859   crc32(tmp2, tmp1, 4);
8860   xorl(in1, tmp2);
8861   xorl(in_out, in1);
8862   xorl(in_out, in2);
8863 }
8864 
8865 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8866                                        Register in_out1, Register in_out2, Register in_out3,
8867                                        Register tmp1, Register tmp2, Register tmp3,
8868                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8869                                        Register tmp4, Register tmp5,
8870                                        Register n_tmp6) {
8871   Label L_processPartitions;
8872   Label L_processPartition;
8873   Label L_exit;
8874 
8875   bind(L_processPartitions);
8876   cmpl(in_out1, 3 * size);
8877   jcc(Assembler::less, L_exit);
8878     xorl(tmp1, tmp1);
8879     xorl(tmp2, tmp2);
8880     movl(tmp3, in_out2);
8881     addl(tmp3, size);
8882 
8883     bind(L_processPartition);
8884       crc32(in_out3, Address(in_out2, 0), 4);
8885       crc32(tmp1, Address(in_out2, size), 4);
8886       crc32(tmp2, Address(in_out2, size*2), 4);
8887       crc32(in_out3, Address(in_out2, 0+4), 4);
8888       crc32(tmp1, Address(in_out2, size+4), 4);
8889       crc32(tmp2, Address(in_out2, size*2+4), 4);
8890       addl(in_out2, 8);
8891       cmpl(in_out2, tmp3);
8892       jcc(Assembler::less, L_processPartition);
8893 
8894         push(tmp3);
8895         push(in_out1);
8896         push(in_out2);
8897         tmp4 = tmp3;
8898         tmp5 = in_out1;
8899         n_tmp6 = in_out2;
8900 
8901       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8902             w_xtmp1, w_xtmp2, w_xtmp3,
8903             tmp4, tmp5,
8904             n_tmp6);
8905 
8906         pop(in_out2);
8907         pop(in_out1);
8908         pop(tmp3);
8909 
8910     addl(in_out2, 2 * size);
8911     subl(in_out1, 3 * size);
8912     jmp(L_processPartitions);
8913 
8914   bind(L_exit);
8915 }
8916 #endif //LP64
8917 
8918 #ifdef _LP64
8919 // Algorithm 2: Pipelined usage of the CRC32 instruction.
8920 // Input: A buffer I of L bytes.
8921 // Output: the CRC32C value of the buffer.
8922 // Notations:
8923 // Write L = 24N + r, with N = floor (L/24).
8924 // r = L mod 24 (0 <= r < 24).
8925 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
8926 // N quadwords, and R consists of r bytes.
8927 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
8928 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
8929 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
8930 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
8931 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8932                                           Register tmp1, Register tmp2, Register tmp3,
8933                                           Register tmp4, Register tmp5, Register tmp6,
8934                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8935                                           bool is_pclmulqdq_supported) {
8936   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
8937   Label L_wordByWord;
8938   Label L_byteByByteProlog;
8939   Label L_byteByByte;
8940   Label L_exit;
8941 
8942   if (is_pclmulqdq_supported ) {
8943     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
8944     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
8945 
8946     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
8947     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
8948 
8949     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
8950     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
8951     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
8952   } else {
8953     const_or_pre_comp_const_index[0] = 1;
8954     const_or_pre_comp_const_index[1] = 0;
8955 
8956     const_or_pre_comp_const_index[2] = 3;
8957     const_or_pre_comp_const_index[3] = 2;
8958 
8959     const_or_pre_comp_const_index[4] = 5;
8960     const_or_pre_comp_const_index[5] = 4;
8961    }
8962   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8963                     in2, in1, in_out,
8964                     tmp1, tmp2, tmp3,
8965                     w_xtmp1, w_xtmp2, w_xtmp3,
8966                     tmp4, tmp5,
8967                     tmp6);
8968   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8969                     in2, in1, in_out,
8970                     tmp1, tmp2, tmp3,
8971                     w_xtmp1, w_xtmp2, w_xtmp3,
8972                     tmp4, tmp5,
8973                     tmp6);
8974   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8975                     in2, in1, in_out,
8976                     tmp1, tmp2, tmp3,
8977                     w_xtmp1, w_xtmp2, w_xtmp3,
8978                     tmp4, tmp5,
8979                     tmp6);
8980   movl(tmp1, in2);
8981   andl(tmp1, 0x00000007);
8982   negl(tmp1);
8983   addl(tmp1, in2);
8984   addq(tmp1, in1);
8985 
8986   BIND(L_wordByWord);
8987   cmpq(in1, tmp1);
8988   jcc(Assembler::greaterEqual, L_byteByByteProlog);
8989     crc32(in_out, Address(in1, 0), 4);
8990     addq(in1, 4);
8991     jmp(L_wordByWord);
8992 
8993   BIND(L_byteByByteProlog);
8994   andl(in2, 0x00000007);
8995   movl(tmp2, 1);
8996 
8997   BIND(L_byteByByte);
8998   cmpl(tmp2, in2);
8999   jccb(Assembler::greater, L_exit);
9000     crc32(in_out, Address(in1, 0), 1);
9001     incq(in1);
9002     incl(tmp2);
9003     jmp(L_byteByByte);
9004 
9005   BIND(L_exit);
9006 }
9007 #else
9008 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9009                                           Register tmp1, Register  tmp2, Register tmp3,
9010                                           Register tmp4, Register  tmp5, Register tmp6,
9011                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9012                                           bool is_pclmulqdq_supported) {
9013   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9014   Label L_wordByWord;
9015   Label L_byteByByteProlog;
9016   Label L_byteByByte;
9017   Label L_exit;
9018 
9019   if (is_pclmulqdq_supported) {
9020     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9021     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9022 
9023     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9024     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9025 
9026     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9027     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9028   } else {
9029     const_or_pre_comp_const_index[0] = 1;
9030     const_or_pre_comp_const_index[1] = 0;
9031 
9032     const_or_pre_comp_const_index[2] = 3;
9033     const_or_pre_comp_const_index[3] = 2;
9034 
9035     const_or_pre_comp_const_index[4] = 5;
9036     const_or_pre_comp_const_index[5] = 4;
9037   }
9038   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9039                     in2, in1, in_out,
9040                     tmp1, tmp2, tmp3,
9041                     w_xtmp1, w_xtmp2, w_xtmp3,
9042                     tmp4, tmp5,
9043                     tmp6);
9044   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9045                     in2, in1, in_out,
9046                     tmp1, tmp2, tmp3,
9047                     w_xtmp1, w_xtmp2, w_xtmp3,
9048                     tmp4, tmp5,
9049                     tmp6);
9050   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9051                     in2, in1, in_out,
9052                     tmp1, tmp2, tmp3,
9053                     w_xtmp1, w_xtmp2, w_xtmp3,
9054                     tmp4, tmp5,
9055                     tmp6);
9056   movl(tmp1, in2);
9057   andl(tmp1, 0x00000007);
9058   negl(tmp1);
9059   addl(tmp1, in2);
9060   addl(tmp1, in1);
9061 
9062   BIND(L_wordByWord);
9063   cmpl(in1, tmp1);
9064   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9065     crc32(in_out, Address(in1,0), 4);
9066     addl(in1, 4);
9067     jmp(L_wordByWord);
9068 
9069   BIND(L_byteByByteProlog);
9070   andl(in2, 0x00000007);
9071   movl(tmp2, 1);
9072 
9073   BIND(L_byteByByte);
9074   cmpl(tmp2, in2);
9075   jccb(Assembler::greater, L_exit);
9076     movb(tmp1, Address(in1, 0));
9077     crc32(in_out, tmp1, 1);
9078     incl(in1);
9079     incl(tmp2);
9080     jmp(L_byteByByte);
9081 
9082   BIND(L_exit);
9083 }
9084 #endif // LP64
9085 #undef BIND
9086 #undef BLOCK_COMMENT
9087 
9088 
9089 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9090   switch (cond) {
9091     // Note some conditions are synonyms for others
9092     case Assembler::zero:         return Assembler::notZero;
9093     case Assembler::notZero:      return Assembler::zero;
9094     case Assembler::less:         return Assembler::greaterEqual;
9095     case Assembler::lessEqual:    return Assembler::greater;
9096     case Assembler::greater:      return Assembler::lessEqual;
9097     case Assembler::greaterEqual: return Assembler::less;
9098     case Assembler::below:        return Assembler::aboveEqual;
9099     case Assembler::belowEqual:   return Assembler::above;
9100     case Assembler::above:        return Assembler::belowEqual;
9101     case Assembler::aboveEqual:   return Assembler::below;
9102     case Assembler::overflow:     return Assembler::noOverflow;
9103     case Assembler::noOverflow:   return Assembler::overflow;
9104     case Assembler::negative:     return Assembler::positive;
9105     case Assembler::positive:     return Assembler::negative;
9106     case Assembler::parity:       return Assembler::noParity;
9107     case Assembler::noParity:     return Assembler::parity;
9108   }
9109   ShouldNotReachHere(); return Assembler::overflow;
9110 }
9111 
9112 SkipIfEqual::SkipIfEqual(
9113     MacroAssembler* masm, const bool* flag_addr, bool value) {
9114   _masm = masm;
9115   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9116   _masm->jcc(Assembler::equal, _label);
9117 }
9118 
9119 SkipIfEqual::~SkipIfEqual() {
9120   _masm->bind(_label);
9121 }
9122 
9123 // 32-bit Windows has its own fast-path implementation
9124 // of get_thread
9125 #if !defined(WIN32) || defined(_LP64)
9126 
9127 // This is simply a call to Thread::current()
9128 void MacroAssembler::get_thread(Register thread) {
9129   if (thread != rax) {
9130     push(rax);
9131   }
9132   LP64_ONLY(push(rdi);)
9133   LP64_ONLY(push(rsi);)
9134   push(rdx);
9135   push(rcx);
9136   LP64_ONLY(push(r8);)
9137   LP64_ONLY(push(r9);)
9138   LP64_ONLY(push(r10);)
9139   LP64_ONLY(push(r11);)
9140 
9141   call(RuntimeAddress(CAST_FROM_FN_PTR(address, Thread::current)));
9142 
9143   LP64_ONLY(pop(r11);)
9144   LP64_ONLY(pop(r10);)
9145   LP64_ONLY(pop(r9);)
9146   LP64_ONLY(pop(r8);)
9147   pop(rcx);
9148   pop(rdx);
9149   LP64_ONLY(pop(rsi);)
9150   LP64_ONLY(pop(rdi);)
9151   if (thread != rax) {
9152     mov(thread, rax);
9153     pop(rax);
9154   }
9155 }
9156 
9157 #endif