1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "classfile/classLoader.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "jvm_aix.h"
  39 #include "libperfstat_aix.hpp"
  40 #include "loadlib_aix.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/filemap.hpp"
  43 #include "mutex_aix.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "os_aix.inline.hpp"
  46 #include "os_share_aix.hpp"
  47 #include "porting_aix.hpp"
  48 #include "prims/jniFastGetField.hpp"
  49 #include "prims/jvm.h"
  50 #include "prims/jvm_misc.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/extendedPC.hpp"
  54 #include "runtime/globals.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/orderAccess.inline.hpp"
  61 #include "runtime/os.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/perfMemory.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vm_version.hpp"
  71 #include "services/attachListener.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/decoder.hpp"
  74 #include "utilities/defaultStream.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here (sorted alphabetically)
  80 #include <errno.h>
  81 #include <fcntl.h>
  82 #include <inttypes.h>
  83 #include <poll.h>
  84 #include <procinfo.h>
  85 #include <pthread.h>
  86 #include <pwd.h>
  87 #include <semaphore.h>
  88 #include <signal.h>
  89 #include <stdint.h>
  90 #include <stdio.h>
  91 #include <string.h>
  92 #include <unistd.h>
  93 #include <sys/ioctl.h>
  94 #include <sys/ipc.h>
  95 #include <sys/mman.h>
  96 #include <sys/resource.h>
  97 #include <sys/select.h>
  98 #include <sys/shm.h>
  99 #include <sys/socket.h>
 100 #include <sys/stat.h>
 101 #include <sys/sysinfo.h>
 102 #include <sys/systemcfg.h>
 103 #include <sys/time.h>
 104 #include <sys/times.h>
 105 #include <sys/types.h>
 106 #include <sys/utsname.h>
 107 #include <sys/vminfo.h>
 108 #include <sys/wait.h>
 109 
 110 // If RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 // PPC port
 117 static const uintx Use64KPagesThreshold       = 1*M;
 118 static const uintx MaxExpectedDataSegmentSize = SIZE_4G*2;
 119 
 120 // Add missing declarations (should be in procinfo.h but isn't until AIX 6.1).
 121 #if !defined(_AIXVERSION_610)
 122 extern "C" {
 123   int getthrds64(pid_t ProcessIdentifier,
 124                  struct thrdentry64* ThreadBuffer,
 125                  int ThreadSize,
 126                  tid64_t* IndexPointer,
 127                  int Count);
 128 }
 129 #endif
 130 
 131 #define MAX_PATH (2 * K)
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 // for multipage initialization error analysis (in 'g_multipage_error')
 136 #define ERROR_MP_OS_TOO_OLD                          100
 137 #define ERROR_MP_EXTSHM_ACTIVE                       101
 138 #define ERROR_MP_VMGETINFO_FAILED                    102
 139 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 140 
 141 // The semantics in this file are thus that codeptr_t is a *real code ptr*.
 142 // This means that any function taking codeptr_t as arguments will assume
 143 // a real codeptr and won't handle function descriptors (eg getFuncName),
 144 // whereas functions taking address as args will deal with function
 145 // descriptors (eg os::dll_address_to_library_name).
 146 typedef unsigned int* codeptr_t;
 147 
 148 // Typedefs for stackslots, stack pointers, pointers to op codes.
 149 typedef unsigned long stackslot_t;
 150 typedef stackslot_t* stackptr_t;
 151 
 152 // Excerpts from systemcfg.h definitions newer than AIX 5.3.
 153 #ifndef PV_7
 154 #define PV_7 0x200000          /* Power PC 7 */
 155 #define PV_7_Compat 0x208000   /* Power PC 7 */
 156 #endif
 157 #ifndef PV_8
 158 #define PV_8 0x300000          /* Power PC 8 */
 159 #define PV_8_Compat 0x308000   /* Power PC 8 */
 160 #endif
 161 
 162 #define trcVerbose(fmt, ...) { /* PPC port */  \
 163   if (Verbose) { \
 164     fprintf(stderr, fmt, ##__VA_ARGS__); \
 165     fputc('\n', stderr); fflush(stderr); \
 166   } \
 167 }
 168 #define trc(fmt, ...)        /* PPC port */
 169 
 170 #define ERRBYE(s) { \
 171     trcVerbose(s); \
 172     return -1; \
 173 }
 174 
 175 // Query dimensions of the stack of the calling thread.
 176 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size);
 177 
 178 // function to check a given stack pointer against given stack limits
 179 inline bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) {
 180   if (((uintptr_t)sp) & 0x7) {
 181     return false;
 182   }
 183   if (sp > stack_base) {
 184     return false;
 185   }
 186   if (sp < (stackptr_t) ((address)stack_base - stack_size)) {
 187     return false;
 188   }
 189   return true;
 190 }
 191 
 192 // returns true if function is a valid codepointer
 193 inline bool is_valid_codepointer(codeptr_t p) {
 194   if (!p) {
 195     return false;
 196   }
 197   if (((uintptr_t)p) & 0x3) {
 198     return false;
 199   }
 200   if (LoadedLibraries::find_for_text_address((address)p) == NULL) {
 201     return false;
 202   }
 203   return true;
 204 }
 205 
 206 // Macro to check a given stack pointer against given stack limits and to die if test fails.
 207 #define CHECK_STACK_PTR(sp, stack_base, stack_size) { \
 208     guarantee(is_valid_stackpointer((stackptr_t)(sp), (stackptr_t)(stack_base), stack_size), "Stack Pointer Invalid"); \
 209 }
 210 
 211 // Macro to check the current stack pointer against given stacklimits.
 212 #define CHECK_CURRENT_STACK_PTR(stack_base, stack_size) { \
 213   address sp; \
 214   sp = os::current_stack_pointer(); \
 215   CHECK_STACK_PTR(sp, stack_base, stack_size); \
 216 }
 217 
 218 ////////////////////////////////////////////////////////////////////////////////
 219 // global variables (for a description see os_aix.hpp)
 220 
 221 julong    os::Aix::_physical_memory = 0;
 222 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 223 int       os::Aix::_page_size = -1;
 224 int       os::Aix::_on_pase = -1;
 225 int       os::Aix::_os_version = -1;
 226 int       os::Aix::_stack_page_size = -1;
 227 int       os::Aix::_xpg_sus_mode = -1;
 228 int       os::Aix::_extshm = -1;
 229 int       os::Aix::_logical_cpus = -1;
 230 
 231 ////////////////////////////////////////////////////////////////////////////////
 232 // local variables
 233 
 234 static int      g_multipage_error  = -1;   // error analysis for multipage initialization
 235 static jlong    initial_time_count = 0;
 236 static int      clock_tics_per_sec = 100;
 237 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 238 static bool     check_signals      = true;
 239 static pid_t    _initial_pid       = 0;
 240 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 241 static sigset_t SR_sigset;
 242 
 243 // This describes the state of multipage support of the underlying
 244 // OS. Note that this is of no interest to the outsize world and
 245 // therefore should not be defined in AIX class.
 246 //
 247 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 248 // latter two (16M "large" resp. 16G "huge" pages) require special
 249 // setup and are normally not available.
 250 //
 251 // AIX supports multiple page sizes per process, for:
 252 //  - Stack (of the primordial thread, so not relevant for us)
 253 //  - Data - data, bss, heap, for us also pthread stacks
 254 //  - Text - text code
 255 //  - shared memory
 256 //
 257 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 258 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 259 //
 260 // For shared memory, page size can be set dynamically via
 261 // shmctl(). Different shared memory regions can have different page
 262 // sizes.
 263 //
 264 // More information can be found at AIBM info center:
 265 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 266 //
 267 static struct {
 268   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 269   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 270   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 271   size_t pthr_stack_pagesize; // stack page size of pthread threads
 272   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 273   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 274   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 275   int error;                  // Error describing if something went wrong at multipage init.
 276 } g_multipage_support = {
 277   (size_t) -1,
 278   (size_t) -1,
 279   (size_t) -1,
 280   (size_t) -1,
 281   (size_t) -1,
 282   false, false,
 283   0
 284 };
 285 
 286 // We must not accidentally allocate memory close to the BRK - even if
 287 // that would work - because then we prevent the BRK segment from
 288 // growing which may result in a malloc OOM even though there is
 289 // enough memory. The problem only arises if we shmat() or mmap() at
 290 // a specific wish address, e.g. to place the heap in a
 291 // compressed-oops-friendly way.
 292 static bool is_close_to_brk(address a) {
 293   address a1 = (address) sbrk(0);
 294   if (a >= a1 && a < (a1 + MaxExpectedDataSegmentSize)) {
 295     return true;
 296   }
 297   return false;
 298 }
 299 
 300 julong os::available_memory() {
 301   return Aix::available_memory();
 302 }
 303 
 304 julong os::Aix::available_memory() {
 305   os::Aix::meminfo_t mi;
 306   if (os::Aix::get_meminfo(&mi)) {
 307     return mi.real_free;
 308   } else {
 309     return 0xFFFFFFFFFFFFFFFFLL;
 310   }
 311 }
 312 
 313 julong os::physical_memory() {
 314   return Aix::physical_memory();
 315 }
 316 
 317 // Return true if user is running as root.
 318 
 319 bool os::have_special_privileges() {
 320   static bool init = false;
 321   static bool privileges = false;
 322   if (!init) {
 323     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 324     init = true;
 325   }
 326   return privileges;
 327 }
 328 
 329 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 330 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 331 static bool my_disclaim64(char* addr, size_t size) {
 332 
 333   if (size == 0) {
 334     return true;
 335   }
 336 
 337   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 338   const unsigned int maxDisclaimSize = 0x40000000;
 339 
 340   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 341   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 342 
 343   char* p = addr;
 344 
 345   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 346     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 347       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 348       return false;
 349     }
 350     p += maxDisclaimSize;
 351   }
 352 
 353   if (lastDisclaimSize > 0) {
 354     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 355       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 356       return false;
 357     }
 358   }
 359 
 360   return true;
 361 }
 362 
 363 // Cpu architecture string
 364 #if defined(PPC32)
 365 static char cpu_arch[] = "ppc";
 366 #elif defined(PPC64)
 367 static char cpu_arch[] = "ppc64";
 368 #else
 369 #error Add appropriate cpu_arch setting
 370 #endif
 371 
 372 
 373 // Given an address, returns the size of the page backing that address.
 374 size_t os::Aix::query_pagesize(void* addr) {
 375 
 376   vm_page_info pi;
 377   pi.addr = (uint64_t)addr;
 378   if (::vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 379     return pi.pagesize;
 380   } else {
 381     fprintf(stderr, "vmgetinfo failed to retrieve page size for address %p (errno %d).\n", addr, errno);
 382     assert(false, "vmgetinfo failed to retrieve page size");
 383     return SIZE_4K;
 384   }
 385 
 386 }
 387 
 388 // Returns the kernel thread id of the currently running thread.
 389 pid_t os::Aix::gettid() {
 390   return (pid_t) thread_self();
 391 }
 392 
 393 void os::Aix::initialize_system_info() {
 394 
 395   // Get the number of online(logical) cpus instead of configured.
 396   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 397   assert(_processor_count > 0, "_processor_count must be > 0");
 398 
 399   // Retrieve total physical storage.
 400   os::Aix::meminfo_t mi;
 401   if (!os::Aix::get_meminfo(&mi)) {
 402     fprintf(stderr, "os::Aix::get_meminfo failed.\n"); fflush(stderr);
 403     assert(false, "os::Aix::get_meminfo failed.");
 404   }
 405   _physical_memory = (julong) mi.real_total;
 406 }
 407 
 408 // Helper function for tracing page sizes.
 409 static const char* describe_pagesize(size_t pagesize) {
 410   switch (pagesize) {
 411     case SIZE_4K : return "4K";
 412     case SIZE_64K: return "64K";
 413     case SIZE_16M: return "16M";
 414     case SIZE_16G: return "16G";
 415     case -1:       return "not set";
 416     default:
 417       assert(false, "surprise");
 418       return "??";
 419   }
 420 }
 421 
 422 // Probe OS for multipage support.
 423 // Will fill the global g_multipage_support structure.
 424 // Must be called before calling os::large_page_init().
 425 static void query_multipage_support() {
 426 
 427   guarantee(g_multipage_support.pagesize == -1,
 428             "do not call twice");
 429 
 430   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 431 
 432   // This really would surprise me.
 433   assert(g_multipage_support.pagesize == SIZE_4K, "surprise!");
 434 
 435   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 436   // Default data page size is defined either by linker options (-bdatapsize)
 437   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 438   // default should be 4K.
 439   {
 440     void* p = ::malloc(SIZE_16M);
 441     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 442     ::free(p);
 443   }
 444 
 445   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 446   {
 447     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 448     guarantee(shmid != -1, "shmget failed");
 449     void* p = ::shmat(shmid, NULL, 0);
 450     ::shmctl(shmid, IPC_RMID, NULL);
 451     guarantee(p != (void*) -1, "shmat failed");
 452     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 453     ::shmdt(p);
 454   }
 455 
 456   // Before querying the stack page size, make sure we are not running as primordial
 457   // thread (because primordial thread's stack may have different page size than
 458   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 459   // number of reasons so we may just as well guarantee it here.
 460   guarantee0(!os::Aix::is_primordial_thread());
 461 
 462   // Query pthread stack page size.
 463   {
 464     int dummy = 0;
 465     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 466   }
 467 
 468   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 469   /* PPC port: so far unused.
 470   {
 471     address any_function =
 472       (address) resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 473     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 474   }
 475   */
 476 
 477   // Now probe for support of 64K pages and 16M pages.
 478 
 479   // Before OS/400 V6R1, there is no support for pages other than 4K.
 480   if (os::Aix::on_pase_V5R4_or_older()) {
 481     Unimplemented();
 482     goto query_multipage_support_end;
 483   }
 484 
 485   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 486   {
 487     const int MAX_PAGE_SIZES = 4;
 488     psize_t sizes[MAX_PAGE_SIZES];
 489     const int num_psizes = ::vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 490     if (num_psizes == -1) {
 491       trc("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)\n", errno);
 492       trc("disabling multipage support.\n");
 493       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 494       goto query_multipage_support_end;
 495     }
 496     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 497     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 498     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 499     for (int i = 0; i < num_psizes; i ++) {
 500       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 501     }
 502 
 503     // Can we use 64K, 16M pages?
 504     for (int i = 0; i < num_psizes; i ++) {
 505       const size_t pagesize = sizes[i];
 506       if (pagesize != SIZE_64K && pagesize != SIZE_16M) {
 507         continue;
 508       }
 509       bool can_use = false;
 510       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 511       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 512         IPC_CREAT | S_IRUSR | S_IWUSR);
 513       guarantee0(shmid != -1); // Should always work.
 514       // Try to set pagesize.
 515       struct shmid_ds shm_buf = { 0 };
 516       shm_buf.shm_pagesize = pagesize;
 517       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 518         const int en = errno;
 519         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 520         // PPC port trcVerbose("shmctl(SHM_PAGESIZE) failed with %s",
 521         // PPC port  MiscUtils::describe_errno(en));
 522       } else {
 523         // Attach and double check pageisze.
 524         void* p = ::shmat(shmid, NULL, 0);
 525         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 526         guarantee0(p != (void*) -1); // Should always work.
 527         const size_t real_pagesize = os::Aix::query_pagesize(p);
 528         if (real_pagesize != pagesize) {
 529           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 530         } else {
 531           can_use = true;
 532         }
 533         ::shmdt(p);
 534       }
 535       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 536       if (pagesize == SIZE_64K) {
 537         g_multipage_support.can_use_64K_pages = can_use;
 538       } else if (pagesize == SIZE_16M) {
 539         g_multipage_support.can_use_16M_pages = can_use;
 540       }
 541     }
 542 
 543   } // end: check which pages can be used for shared memory
 544 
 545 query_multipage_support_end:
 546 
 547   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s\n",
 548       describe_pagesize(g_multipage_support.pagesize));
 549   trcVerbose("Data page size (C-Heap, bss, etc): %s\n",
 550       describe_pagesize(g_multipage_support.datapsize));
 551   trcVerbose("Text page size: %s\n",
 552       describe_pagesize(g_multipage_support.textpsize));
 553   trcVerbose("Thread stack page size (pthread): %s\n",
 554       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 555   trcVerbose("Default shared memory page size: %s\n",
 556       describe_pagesize(g_multipage_support.shmpsize));
 557   trcVerbose("Can use 64K pages dynamically with shared meory: %s\n",
 558       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 559   trcVerbose("Can use 16M pages dynamically with shared memory: %s\n",
 560       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 561   trcVerbose("Multipage error details: %d\n",
 562       g_multipage_support.error);
 563 
 564   // sanity checks
 565   assert0(g_multipage_support.pagesize == SIZE_4K);
 566   assert0(g_multipage_support.datapsize == SIZE_4K || g_multipage_support.datapsize == SIZE_64K);
 567   // PPC port: so far unused.assert0(g_multipage_support.textpsize == SIZE_4K || g_multipage_support.textpsize == SIZE_64K);
 568   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 569   assert0(g_multipage_support.shmpsize == SIZE_4K || g_multipage_support.shmpsize == SIZE_64K);
 570 
 571 } // end os::Aix::query_multipage_support()
 572 
 573 void os::init_system_properties_values() {
 574 
 575 #define DEFAULT_LIBPATH "/usr/lib:/lib"
 576 #define EXTENSIONS_DIR  "/lib/ext"
 577 
 578   // Buffer that fits several sprintfs.
 579   // Note that the space for the trailing null is provided
 580   // by the nulls included by the sizeof operator.
 581   const size_t bufsize =
 582     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 583          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 584   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 585 
 586   // sysclasspath, java_home, dll_dir
 587   {
 588     char *pslash;
 589     os::jvm_path(buf, bufsize);
 590 
 591     // Found the full path to libjvm.so.
 592     // Now cut the path to <java_home>/jre if we can.
 593     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 594     pslash = strrchr(buf, '/');
 595     if (pslash != NULL) {
 596       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 597     }
 598     Arguments::set_dll_dir(buf);
 599 
 600     if (pslash != NULL) {
 601       pslash = strrchr(buf, '/');
 602       if (pslash != NULL) {
 603         *pslash = '\0';          // Get rid of /<arch>.
 604         pslash = strrchr(buf, '/');
 605         if (pslash != NULL) {
 606           *pslash = '\0';        // Get rid of /lib.
 607         }
 608       }
 609     }
 610     Arguments::set_java_home(buf);
 611     set_boot_path('/', ':');
 612   }
 613 
 614   // Where to look for native libraries.
 615 
 616   // On Aix we get the user setting of LIBPATH.
 617   // Eventually, all the library path setting will be done here.
 618   // Get the user setting of LIBPATH.
 619   const char *v = ::getenv("LIBPATH");
 620   const char *v_colon = ":";
 621   if (v == NULL) { v = ""; v_colon = ""; }
 622 
 623   // Concatenate user and invariant part of ld_library_path.
 624   // That's +1 for the colon and +1 for the trailing '\0'.
 625   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 626   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 627   Arguments::set_library_path(ld_library_path);
 628   FREE_C_HEAP_ARRAY(char, ld_library_path);
 629 
 630   // Extensions directories.
 631   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 632   Arguments::set_ext_dirs(buf);
 633 
 634   FREE_C_HEAP_ARRAY(char, buf);
 635 
 636 #undef DEFAULT_LIBPATH
 637 #undef EXTENSIONS_DIR
 638 }
 639 
 640 ////////////////////////////////////////////////////////////////////////////////
 641 // breakpoint support
 642 
 643 void os::breakpoint() {
 644   BREAKPOINT;
 645 }
 646 
 647 extern "C" void breakpoint() {
 648   // use debugger to set breakpoint here
 649 }
 650 
 651 ////////////////////////////////////////////////////////////////////////////////
 652 // signal support
 653 
 654 debug_only(static bool signal_sets_initialized = false);
 655 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 656 
 657 bool os::Aix::is_sig_ignored(int sig) {
 658   struct sigaction oact;
 659   sigaction(sig, (struct sigaction*)NULL, &oact);
 660   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 661     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 662   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 663     return true;
 664   } else {
 665     return false;
 666   }
 667 }
 668 
 669 void os::Aix::signal_sets_init() {
 670   // Should also have an assertion stating we are still single-threaded.
 671   assert(!signal_sets_initialized, "Already initialized");
 672   // Fill in signals that are necessarily unblocked for all threads in
 673   // the VM. Currently, we unblock the following signals:
 674   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 675   //                         by -Xrs (=ReduceSignalUsage));
 676   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 677   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 678   // the dispositions or masks wrt these signals.
 679   // Programs embedding the VM that want to use the above signals for their
 680   // own purposes must, at this time, use the "-Xrs" option to prevent
 681   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 682   // (See bug 4345157, and other related bugs).
 683   // In reality, though, unblocking these signals is really a nop, since
 684   // these signals are not blocked by default.
 685   sigemptyset(&unblocked_sigs);
 686   sigemptyset(&allowdebug_blocked_sigs);
 687   sigaddset(&unblocked_sigs, SIGILL);
 688   sigaddset(&unblocked_sigs, SIGSEGV);
 689   sigaddset(&unblocked_sigs, SIGBUS);
 690   sigaddset(&unblocked_sigs, SIGFPE);
 691   sigaddset(&unblocked_sigs, SIGTRAP);
 692   sigaddset(&unblocked_sigs, SIGDANGER);
 693   sigaddset(&unblocked_sigs, SR_signum);
 694 
 695   if (!ReduceSignalUsage) {
 696    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 697      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 698      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 699    }
 700    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 701      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 702      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 703    }
 704    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 705      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 706      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 707    }
 708   }
 709   // Fill in signals that are blocked by all but the VM thread.
 710   sigemptyset(&vm_sigs);
 711   if (!ReduceSignalUsage)
 712     sigaddset(&vm_sigs, BREAK_SIGNAL);
 713   debug_only(signal_sets_initialized = true);
 714 }
 715 
 716 // These are signals that are unblocked while a thread is running Java.
 717 // (For some reason, they get blocked by default.)
 718 sigset_t* os::Aix::unblocked_signals() {
 719   assert(signal_sets_initialized, "Not initialized");
 720   return &unblocked_sigs;
 721 }
 722 
 723 // These are the signals that are blocked while a (non-VM) thread is
 724 // running Java. Only the VM thread handles these signals.
 725 sigset_t* os::Aix::vm_signals() {
 726   assert(signal_sets_initialized, "Not initialized");
 727   return &vm_sigs;
 728 }
 729 
 730 // These are signals that are blocked during cond_wait to allow debugger in
 731 sigset_t* os::Aix::allowdebug_blocked_signals() {
 732   assert(signal_sets_initialized, "Not initialized");
 733   return &allowdebug_blocked_sigs;
 734 }
 735 
 736 void os::Aix::hotspot_sigmask(Thread* thread) {
 737 
 738   //Save caller's signal mask before setting VM signal mask
 739   sigset_t caller_sigmask;
 740   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 741 
 742   OSThread* osthread = thread->osthread();
 743   osthread->set_caller_sigmask(caller_sigmask);
 744 
 745   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 746 
 747   if (!ReduceSignalUsage) {
 748     if (thread->is_VM_thread()) {
 749       // Only the VM thread handles BREAK_SIGNAL ...
 750       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 751     } else {
 752       // ... all other threads block BREAK_SIGNAL
 753       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 754     }
 755   }
 756 }
 757 
 758 // retrieve memory information.
 759 // Returns false if something went wrong;
 760 // content of pmi undefined in this case.
 761 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 762 
 763   assert(pmi, "get_meminfo: invalid parameter");
 764 
 765   memset(pmi, 0, sizeof(meminfo_t));
 766 
 767   if (os::Aix::on_pase()) {
 768 
 769     Unimplemented();
 770     return false;
 771 
 772   } else {
 773 
 774     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 775     // See:
 776     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 777     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 778     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 779     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 780 
 781     perfstat_memory_total_t psmt;
 782     memset (&psmt, '\0', sizeof(psmt));
 783     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 784     if (rc == -1) {
 785       fprintf(stderr, "perfstat_memory_total() failed (errno=%d)\n", errno);
 786       assert(0, "perfstat_memory_total() failed");
 787       return false;
 788     }
 789 
 790     assert(rc == 1, "perfstat_memory_total() - weird return code");
 791 
 792     // excerpt from
 793     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 794     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 795     // The fields of perfstat_memory_total_t:
 796     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 797     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 798     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 799     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 800     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 801 
 802     pmi->virt_total = psmt.virt_total * 4096;
 803     pmi->real_total = psmt.real_total * 4096;
 804     pmi->real_free = psmt.real_free * 4096;
 805     pmi->pgsp_total = psmt.pgsp_total * 4096;
 806     pmi->pgsp_free = psmt.pgsp_free * 4096;
 807 
 808     return true;
 809 
 810   }
 811 } // end os::Aix::get_meminfo
 812 
 813 // Retrieve global cpu information.
 814 // Returns false if something went wrong;
 815 // the content of pci is undefined in this case.
 816 bool os::Aix::get_cpuinfo(cpuinfo_t* pci) {
 817   assert(pci, "get_cpuinfo: invalid parameter");
 818   memset(pci, 0, sizeof(cpuinfo_t));
 819 
 820   perfstat_cpu_total_t psct;
 821   memset (&psct, '\0', sizeof(psct));
 822 
 823   if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t), 1)) {
 824     fprintf(stderr, "perfstat_cpu_total() failed (errno=%d)\n", errno);
 825     assert(0, "perfstat_cpu_total() failed");
 826     return false;
 827   }
 828 
 829   // global cpu information
 830   strcpy (pci->description, psct.description);
 831   pci->processorHZ = psct.processorHZ;
 832   pci->ncpus = psct.ncpus;
 833   os::Aix::_logical_cpus = psct.ncpus;
 834   for (int i = 0; i < 3; i++) {
 835     pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS);
 836   }
 837 
 838   // get the processor version from _system_configuration
 839   switch (_system_configuration.version) {
 840   case PV_8:
 841     strcpy(pci->version, "Power PC 8");
 842     break;
 843   case PV_7:
 844     strcpy(pci->version, "Power PC 7");
 845     break;
 846   case PV_6_1:
 847     strcpy(pci->version, "Power PC 6 DD1.x");
 848     break;
 849   case PV_6:
 850     strcpy(pci->version, "Power PC 6");
 851     break;
 852   case PV_5:
 853     strcpy(pci->version, "Power PC 5");
 854     break;
 855   case PV_5_2:
 856     strcpy(pci->version, "Power PC 5_2");
 857     break;
 858   case PV_5_3:
 859     strcpy(pci->version, "Power PC 5_3");
 860     break;
 861   case PV_5_Compat:
 862     strcpy(pci->version, "PV_5_Compat");
 863     break;
 864   case PV_6_Compat:
 865     strcpy(pci->version, "PV_6_Compat");
 866     break;
 867   case PV_7_Compat:
 868     strcpy(pci->version, "PV_7_Compat");
 869     break;
 870   case PV_8_Compat:
 871     strcpy(pci->version, "PV_8_Compat");
 872     break;
 873   default:
 874     strcpy(pci->version, "unknown");
 875   }
 876 
 877   return true;
 878 
 879 } //end os::Aix::get_cpuinfo
 880 
 881 //////////////////////////////////////////////////////////////////////////////
 882 // detecting pthread library
 883 
 884 void os::Aix::libpthread_init() {
 885   return;
 886 }
 887 
 888 //////////////////////////////////////////////////////////////////////////////
 889 // create new thread
 890 
 891 // Thread start routine for all newly created threads
 892 static void *java_start(Thread *thread) {
 893 
 894   // find out my own stack dimensions
 895   {
 896     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 897     address base = 0;
 898     size_t size = 0;
 899     query_stack_dimensions(&base, &size);
 900     thread->set_stack_base(base);
 901     thread->set_stack_size(size);
 902   }
 903 
 904   // Do some sanity checks.
 905   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
 906 
 907   // Try to randomize the cache line index of hot stack frames.
 908   // This helps when threads of the same stack traces evict each other's
 909   // cache lines. The threads can be either from the same JVM instance, or
 910   // from different JVM instances. The benefit is especially true for
 911   // processors with hyperthreading technology.
 912 
 913   static int counter = 0;
 914   int pid = os::current_process_id();
 915   alloca(((pid ^ counter++) & 7) * 128);
 916 
 917   ThreadLocalStorage::set_thread(thread);
 918 
 919   OSThread* osthread = thread->osthread();
 920 
 921   // thread_id is kernel thread id (similar to Solaris LWP id)
 922   osthread->set_thread_id(os::Aix::gettid());
 923 
 924   // initialize signal mask for this thread
 925   os::Aix::hotspot_sigmask(thread);
 926 
 927   // initialize floating point control register
 928   os::Aix::init_thread_fpu_state();
 929 
 930   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 931 
 932   // call one more level start routine
 933   thread->run();
 934 
 935   return 0;
 936 }
 937 
 938 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 939 
 940   // We want the whole function to be synchronized.
 941   ThreadCritical cs;
 942 
 943   assert(thread->osthread() == NULL, "caller responsible");
 944 
 945   // Allocate the OSThread object
 946   OSThread* osthread = new OSThread(NULL, NULL);
 947   if (osthread == NULL) {
 948     return false;
 949   }
 950 
 951   // set the correct thread state
 952   osthread->set_thread_type(thr_type);
 953 
 954   // Initial state is ALLOCATED but not INITIALIZED
 955   osthread->set_state(ALLOCATED);
 956 
 957   thread->set_osthread(osthread);
 958 
 959   // init thread attributes
 960   pthread_attr_t attr;
 961   pthread_attr_init(&attr);
 962   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 963 
 964   // Make sure we run in 1:1 kernel-user-thread mode.
 965   if (os::Aix::on_aix()) {
 966     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 967     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 968   } // end: aix
 969 
 970   // Start in suspended state, and in os::thread_start, wake the thread up.
 971   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 972 
 973   // calculate stack size if it's not specified by caller
 974   if (stack_size == 0) {
 975     stack_size = os::Aix::default_stack_size(thr_type);
 976 
 977     switch (thr_type) {
 978     case os::java_thread:
 979       // Java threads use ThreadStackSize whose default value can be changed with the flag -Xss.
 980       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 981       stack_size = JavaThread::stack_size_at_create();
 982       break;
 983     case os::compiler_thread:
 984       if (CompilerThreadStackSize > 0) {
 985         stack_size = (size_t)(CompilerThreadStackSize * K);
 986         break;
 987       } // else fall through:
 988         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 989     case os::vm_thread:
 990     case os::pgc_thread:
 991     case os::cgc_thread:
 992     case os::watcher_thread:
 993       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 994       break;
 995     }
 996   }
 997 
 998   stack_size = MAX2(stack_size, os::Aix::min_stack_allowed);
 999   pthread_attr_setstacksize(&attr, stack_size);
1000 
1001   pthread_t tid;
1002   int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1003 
1004   pthread_attr_destroy(&attr);
1005 
1006   if (ret == 0) {
1007     // PPC port traceOsMisc(("Created New Thread : pthread-id %u", tid));
1008   } else {
1009     if (PrintMiscellaneous && (Verbose || WizardMode)) {
1010       perror("pthread_create()");
1011     }
1012     // Need to clean up stuff we've allocated so far
1013     thread->set_osthread(NULL);
1014     delete osthread;
1015     return false;
1016   }
1017 
1018   // Store pthread info into the OSThread
1019   osthread->set_pthread_id(tid);
1020 
1021   return true;
1022 }
1023 
1024 /////////////////////////////////////////////////////////////////////////////
1025 // attach existing thread
1026 
1027 // bootstrap the main thread
1028 bool os::create_main_thread(JavaThread* thread) {
1029   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
1030   return create_attached_thread(thread);
1031 }
1032 
1033 bool os::create_attached_thread(JavaThread* thread) {
1034 #ifdef ASSERT
1035     thread->verify_not_published();
1036 #endif
1037 
1038   // Allocate the OSThread object
1039   OSThread* osthread = new OSThread(NULL, NULL);
1040 
1041   if (osthread == NULL) {
1042     return false;
1043   }
1044 
1045   // Store pthread info into the OSThread
1046   osthread->set_thread_id(os::Aix::gettid());
1047   osthread->set_pthread_id(::pthread_self());
1048 
1049   // initialize floating point control register
1050   os::Aix::init_thread_fpu_state();
1051 
1052   // some sanity checks
1053   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
1054 
1055   // Initial thread state is RUNNABLE
1056   osthread->set_state(RUNNABLE);
1057 
1058   thread->set_osthread(osthread);
1059 
1060   if (UseNUMA) {
1061     int lgrp_id = os::numa_get_group_id();
1062     if (lgrp_id != -1) {
1063       thread->set_lgrp_id(lgrp_id);
1064     }
1065   }
1066 
1067   // initialize signal mask for this thread
1068   // and save the caller's signal mask
1069   os::Aix::hotspot_sigmask(thread);
1070 
1071   return true;
1072 }
1073 
1074 void os::pd_start_thread(Thread* thread) {
1075   int status = pthread_continue_np(thread->osthread()->pthread_id());
1076   assert(status == 0, "thr_continue failed");
1077 }
1078 
1079 // Free OS resources related to the OSThread
1080 void os::free_thread(OSThread* osthread) {
1081   assert(osthread != NULL, "osthread not set");
1082 
1083   if (Thread::current()->osthread() == osthread) {
1084     // Restore caller's signal mask
1085     sigset_t sigmask = osthread->caller_sigmask();
1086     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1087    }
1088 
1089   delete osthread;
1090 }
1091 
1092 //////////////////////////////////////////////////////////////////////////////
1093 // thread local storage
1094 
1095 int os::allocate_thread_local_storage() {
1096   pthread_key_t key;
1097   int rslt = pthread_key_create(&key, NULL);
1098   assert(rslt == 0, "cannot allocate thread local storage");
1099   return (int)key;
1100 }
1101 
1102 // Note: This is currently not used by VM, as we don't destroy TLS key
1103 // on VM exit.
1104 void os::free_thread_local_storage(int index) {
1105   int rslt = pthread_key_delete((pthread_key_t)index);
1106   assert(rslt == 0, "invalid index");
1107 }
1108 
1109 void os::thread_local_storage_at_put(int index, void* value) {
1110   int rslt = pthread_setspecific((pthread_key_t)index, value);
1111   assert(rslt == 0, "pthread_setspecific failed");
1112 }
1113 
1114 extern "C" Thread* get_thread() {
1115   return ThreadLocalStorage::thread();
1116 }
1117 
1118 ////////////////////////////////////////////////////////////////////////////////
1119 // time support
1120 
1121 // Time since start-up in seconds to a fine granularity.
1122 // Used by VMSelfDestructTimer and the MemProfiler.
1123 double os::elapsedTime() {
1124   return (double)(os::elapsed_counter()) * 0.000001;
1125 }
1126 
1127 jlong os::elapsed_counter() {
1128   timeval time;
1129   int status = gettimeofday(&time, NULL);
1130   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1131 }
1132 
1133 jlong os::elapsed_frequency() {
1134   return (1000 * 1000);
1135 }
1136 
1137 bool os::supports_vtime() { return true; }
1138 bool os::enable_vtime()   { return false; }
1139 bool os::vtime_enabled()  { return false; }
1140 
1141 double os::elapsedVTime() {
1142   struct rusage usage;
1143   int retval = getrusage(RUSAGE_THREAD, &usage);
1144   if (retval == 0) {
1145     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1146   } else {
1147     // better than nothing, but not much
1148     return elapsedTime();
1149   }
1150 }
1151 
1152 jlong os::javaTimeMillis() {
1153   timeval time;
1154   int status = gettimeofday(&time, NULL);
1155   assert(status != -1, "aix error at gettimeofday()");
1156   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1157 }
1158 
1159 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1160   timeval time;
1161   int status = gettimeofday(&time, NULL);
1162   assert(status != -1, "aix error at gettimeofday()");
1163   seconds = jlong(time.tv_sec);
1164   nanos = jlong(time.tv_usec) * 1000;
1165 }
1166 
1167 
1168 // We need to manually declare mread_real_time,
1169 // because IBM didn't provide a prototype in time.h.
1170 // (they probably only ever tested in C, not C++)
1171 extern "C"
1172 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
1173 
1174 jlong os::javaTimeNanos() {
1175   if (os::Aix::on_pase()) {
1176     Unimplemented();
1177     return 0;
1178   } else {
1179     // On AIX use the precision of processors real time clock
1180     // or time base registers.
1181     timebasestruct_t time;
1182     int rc;
1183 
1184     // If the CPU has a time register, it will be used and
1185     // we have to convert to real time first. After convertion we have following data:
1186     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1187     // time.tb_low  [nanoseconds after the last full second above]
1188     // We better use mread_real_time here instead of read_real_time
1189     // to ensure that we will get a monotonic increasing time.
1190     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1191       rc = time_base_to_time(&time, TIMEBASE_SZ);
1192       assert(rc != -1, "aix error at time_base_to_time()");
1193     }
1194     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1195   }
1196 }
1197 
1198 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1199   info_ptr->max_value = ALL_64_BITS;
1200   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1201   info_ptr->may_skip_backward = false;
1202   info_ptr->may_skip_forward = false;
1203   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1204 }
1205 
1206 // Return the real, user, and system times in seconds from an
1207 // arbitrary fixed point in the past.
1208 bool os::getTimesSecs(double* process_real_time,
1209                       double* process_user_time,
1210                       double* process_system_time) {
1211   struct tms ticks;
1212   clock_t real_ticks = times(&ticks);
1213 
1214   if (real_ticks == (clock_t) (-1)) {
1215     return false;
1216   } else {
1217     double ticks_per_second = (double) clock_tics_per_sec;
1218     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1219     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1220     *process_real_time = ((double) real_ticks) / ticks_per_second;
1221 
1222     return true;
1223   }
1224 }
1225 
1226 char * os::local_time_string(char *buf, size_t buflen) {
1227   struct tm t;
1228   time_t long_time;
1229   time(&long_time);
1230   localtime_r(&long_time, &t);
1231   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1232                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1233                t.tm_hour, t.tm_min, t.tm_sec);
1234   return buf;
1235 }
1236 
1237 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1238   return localtime_r(clock, res);
1239 }
1240 
1241 ////////////////////////////////////////////////////////////////////////////////
1242 // runtime exit support
1243 
1244 // Note: os::shutdown() might be called very early during initialization, or
1245 // called from signal handler. Before adding something to os::shutdown(), make
1246 // sure it is async-safe and can handle partially initialized VM.
1247 void os::shutdown() {
1248 
1249   // allow PerfMemory to attempt cleanup of any persistent resources
1250   perfMemory_exit();
1251 
1252   // needs to remove object in file system
1253   AttachListener::abort();
1254 
1255   // flush buffered output, finish log files
1256   ostream_abort();
1257 
1258   // Check for abort hook
1259   abort_hook_t abort_hook = Arguments::abort_hook();
1260   if (abort_hook != NULL) {
1261     abort_hook();
1262   }
1263 }
1264 
1265 // Note: os::abort() might be called very early during initialization, or
1266 // called from signal handler. Before adding something to os::abort(), make
1267 // sure it is async-safe and can handle partially initialized VM.
1268 void os::abort(bool dump_core, void* siginfo, void* context) {
1269   os::shutdown();
1270   if (dump_core) {
1271 #ifndef PRODUCT
1272     fdStream out(defaultStream::output_fd());
1273     out.print_raw("Current thread is ");
1274     char buf[16];
1275     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1276     out.print_raw_cr(buf);
1277     out.print_raw_cr("Dumping core ...");
1278 #endif
1279     ::abort(); // dump core
1280   }
1281 
1282   ::exit(1);
1283 }
1284 
1285 // Die immediately, no exit hook, no abort hook, no cleanup.
1286 void os::die() {
1287   ::abort();
1288 }
1289 
1290 // This method is a copy of JDK's sysGetLastErrorString
1291 // from src/solaris/hpi/src/system_md.c
1292 
1293 size_t os::lasterror(char *buf, size_t len) {
1294   if (errno == 0) return 0;
1295 
1296   const char *s = ::strerror(errno);
1297   size_t n = ::strlen(s);
1298   if (n >= len) {
1299     n = len - 1;
1300   }
1301   ::strncpy(buf, s, n);
1302   buf[n] = '\0';
1303   return n;
1304 }
1305 
1306 intx os::current_thread_id() { return (intx)pthread_self(); }
1307 
1308 int os::current_process_id() {
1309 
1310   // This implementation returns a unique pid, the pid of the
1311   // launcher thread that starts the vm 'process'.
1312 
1313   // Under POSIX, getpid() returns the same pid as the
1314   // launcher thread rather than a unique pid per thread.
1315   // Use gettid() if you want the old pre NPTL behaviour.
1316 
1317   // if you are looking for the result of a call to getpid() that
1318   // returns a unique pid for the calling thread, then look at the
1319   // OSThread::thread_id() method in osThread_linux.hpp file
1320 
1321   return (int)(_initial_pid ? _initial_pid : getpid());
1322 }
1323 
1324 // DLL functions
1325 
1326 const char* os::dll_file_extension() { return ".so"; }
1327 
1328 // This must be hard coded because it's the system's temporary
1329 // directory not the java application's temp directory, ala java.io.tmpdir.
1330 const char* os::get_temp_directory() { return "/tmp"; }
1331 
1332 static bool file_exists(const char* filename) {
1333   struct stat statbuf;
1334   if (filename == NULL || strlen(filename) == 0) {
1335     return false;
1336   }
1337   return os::stat(filename, &statbuf) == 0;
1338 }
1339 
1340 bool os::dll_build_name(char* buffer, size_t buflen,
1341                         const char* pname, const char* fname) {
1342   bool retval = false;
1343   // Copied from libhpi
1344   const size_t pnamelen = pname ? strlen(pname) : 0;
1345 
1346   // Return error on buffer overflow.
1347   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1348     *buffer = '\0';
1349     return retval;
1350   }
1351 
1352   if (pnamelen == 0) {
1353     snprintf(buffer, buflen, "lib%s.so", fname);
1354     retval = true;
1355   } else if (strchr(pname, *os::path_separator()) != NULL) {
1356     int n;
1357     char** pelements = split_path(pname, &n);
1358     for (int i = 0; i < n; i++) {
1359       // Really shouldn't be NULL, but check can't hurt
1360       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1361         continue; // skip the empty path values
1362       }
1363       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1364       if (file_exists(buffer)) {
1365         retval = true;
1366         break;
1367       }
1368     }
1369     // release the storage
1370     for (int i = 0; i < n; i++) {
1371       if (pelements[i] != NULL) {
1372         FREE_C_HEAP_ARRAY(char, pelements[i]);
1373       }
1374     }
1375     if (pelements != NULL) {
1376       FREE_C_HEAP_ARRAY(char*, pelements);
1377     }
1378   } else {
1379     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1380     retval = true;
1381   }
1382   return retval;
1383 }
1384 
1385 // Check if addr is inside libjvm.so.
1386 bool os::address_is_in_vm(address addr) {
1387 
1388   // Input could be a real pc or a function pointer literal. The latter
1389   // would be a function descriptor residing in the data segment of a module.
1390 
1391   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
1392   if (lib) {
1393     if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1394       return true;
1395     } else {
1396       return false;
1397     }
1398   } else {
1399     lib = LoadedLibraries::find_for_data_address(addr);
1400     if (lib) {
1401       if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1402         return true;
1403       } else {
1404         return false;
1405       }
1406     } else {
1407       return false;
1408     }
1409   }
1410 }
1411 
1412 // Resolve an AIX function descriptor literal to a code pointer.
1413 // If the input is a valid code pointer to a text segment of a loaded module,
1414 //   it is returned unchanged.
1415 // If the input is a valid AIX function descriptor, it is resolved to the
1416 //   code entry point.
1417 // If the input is neither a valid function descriptor nor a valid code pointer,
1418 //   NULL is returned.
1419 static address resolve_function_descriptor_to_code_pointer(address p) {
1420 
1421   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(p);
1422   if (lib) {
1423     // its a real code pointer
1424     return p;
1425   } else {
1426     lib = LoadedLibraries::find_for_data_address(p);
1427     if (lib) {
1428       // pointer to data segment, potential function descriptor
1429       address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1430       if (LoadedLibraries::find_for_text_address(code_entry)) {
1431         // Its a function descriptor
1432         return code_entry;
1433       }
1434     }
1435   }
1436   return NULL;
1437 }
1438 
1439 bool os::dll_address_to_function_name(address addr, char *buf,
1440                                       int buflen, int *offset,
1441                                       bool demangle) {
1442   if (offset) {
1443     *offset = -1;
1444   }
1445   // Buf is not optional, but offset is optional.
1446   assert(buf != NULL, "sanity check");
1447   buf[0] = '\0';
1448 
1449   // Resolve function ptr literals first.
1450   addr = resolve_function_descriptor_to_code_pointer(addr);
1451   if (!addr) {
1452     return false;
1453   }
1454 
1455   // Go through Decoder::decode to call getFuncName which reads the name from the traceback table.
1456   return Decoder::decode(addr, buf, buflen, offset, demangle);
1457 }
1458 
1459 static int getModuleName(codeptr_t pc,                    // [in] program counter
1460                          char* p_name, size_t namelen,    // [out] optional: function name
1461                          char* p_errmsg, size_t errmsglen // [out] optional: user provided buffer for error messages
1462                          ) {
1463 
1464   // initialize output parameters
1465   if (p_name && namelen > 0) {
1466     *p_name = '\0';
1467   }
1468   if (p_errmsg && errmsglen > 0) {
1469     *p_errmsg = '\0';
1470   }
1471 
1472   const LoadedLibraryModule* const lib = LoadedLibraries::find_for_text_address((address)pc);
1473   if (lib) {
1474     if (p_name && namelen > 0) {
1475       sprintf(p_name, "%.*s", namelen, lib->get_shortname());
1476     }
1477     return 0;
1478   }
1479 
1480   trcVerbose("pc outside any module");
1481 
1482   return -1;
1483 }
1484 
1485 bool os::dll_address_to_library_name(address addr, char* buf,
1486                                      int buflen, int* offset) {
1487   if (offset) {
1488     *offset = -1;
1489   }
1490   // Buf is not optional, but offset is optional.
1491   assert(buf != NULL, "sanity check");
1492   buf[0] = '\0';
1493 
1494   // Resolve function ptr literals first.
1495   addr = resolve_function_descriptor_to_code_pointer(addr);
1496   if (!addr) {
1497     return false;
1498   }
1499 
1500   if (::getModuleName((codeptr_t) addr, buf, buflen, 0, 0) == 0) {
1501     return true;
1502   }
1503   return false;
1504 }
1505 
1506 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1507 // for the same architecture as Hotspot is running on.
1508 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1509 
1510   if (ebuf && ebuflen > 0) {
1511     ebuf[0] = '\0';
1512     ebuf[ebuflen - 1] = '\0';
1513   }
1514 
1515   if (!filename || strlen(filename) == 0) {
1516     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1517     return NULL;
1518   }
1519 
1520   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1521   void * result= ::dlopen(filename, RTLD_LAZY);
1522   if (result != NULL) {
1523     // Reload dll cache. Don't do this in signal handling.
1524     LoadedLibraries::reload();
1525     return result;
1526   } else {
1527     // error analysis when dlopen fails
1528     const char* const error_report = ::dlerror();
1529     if (error_report && ebuf && ebuflen > 0) {
1530       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1531                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1532     }
1533   }
1534   return NULL;
1535 }
1536 
1537 void* os::dll_lookup(void* handle, const char* name) {
1538   void* res = dlsym(handle, name);
1539   return res;
1540 }
1541 
1542 void* os::get_default_process_handle() {
1543   return (void*)::dlopen(NULL, RTLD_LAZY);
1544 }
1545 
1546 void os::print_dll_info(outputStream *st) {
1547   st->print_cr("Dynamic libraries:");
1548   LoadedLibraries::print(st);
1549 }
1550 
1551 void os::get_summary_os_info(char* buf, size_t buflen) {
1552   // There might be something more readable than uname results for AIX.
1553   struct utsname name;
1554   uname(&name);
1555   snprintf(buf, buflen, "%s %s", name.release, name.version);
1556 }
1557 
1558 void os::print_os_info(outputStream* st) {
1559   st->print("OS:");
1560 
1561   st->print("uname:");
1562   struct utsname name;
1563   uname(&name);
1564   st->print(name.sysname); st->print(" ");
1565   st->print(name.nodename); st->print(" ");
1566   st->print(name.release); st->print(" ");
1567   st->print(name.version); st->print(" ");
1568   st->print(name.machine);
1569   st->cr();
1570 
1571   // rlimit
1572   st->print("rlimit:");
1573   struct rlimit rlim;
1574 
1575   st->print(" STACK ");
1576   getrlimit(RLIMIT_STACK, &rlim);
1577   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1578   else st->print("%uk", rlim.rlim_cur >> 10);
1579 
1580   st->print(", CORE ");
1581   getrlimit(RLIMIT_CORE, &rlim);
1582   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1583   else st->print("%uk", rlim.rlim_cur >> 10);
1584 
1585   st->print(", NPROC ");
1586   st->print("%d", sysconf(_SC_CHILD_MAX));
1587 
1588   st->print(", NOFILE ");
1589   getrlimit(RLIMIT_NOFILE, &rlim);
1590   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1591   else st->print("%d", rlim.rlim_cur);
1592 
1593   st->print(", AS ");
1594   getrlimit(RLIMIT_AS, &rlim);
1595   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1596   else st->print("%uk", rlim.rlim_cur >> 10);
1597 
1598   // Print limits on DATA, because it limits the C-heap.
1599   st->print(", DATA ");
1600   getrlimit(RLIMIT_DATA, &rlim);
1601   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1602   else st->print("%uk", rlim.rlim_cur >> 10);
1603   st->cr();
1604 
1605   // load average
1606   st->print("load average:");
1607   double loadavg[3] = {-1.L, -1.L, -1.L};
1608   os::loadavg(loadavg, 3);
1609   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1610   st->cr();
1611 }
1612 
1613 void os::print_memory_info(outputStream* st) {
1614 
1615   st->print_cr("Memory:");
1616 
1617   st->print_cr("  default page size: %s", describe_pagesize(os::vm_page_size()));
1618   st->print_cr("  default stack page size: %s", describe_pagesize(os::vm_page_size()));
1619   st->print_cr("  Default shared memory page size:        %s",
1620     describe_pagesize(g_multipage_support.shmpsize));
1621   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1622     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1623   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1624     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1625   if (g_multipage_error != 0) {
1626     st->print_cr("  multipage error: %d", g_multipage_error);
1627   }
1628 
1629   // print out LDR_CNTRL because it affects the default page sizes
1630   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1631   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1632 
1633   const char* const extshm = ::getenv("EXTSHM");
1634   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1635   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1636     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1637   }
1638 
1639   // Call os::Aix::get_meminfo() to retrieve memory statistics.
1640   os::Aix::meminfo_t mi;
1641   if (os::Aix::get_meminfo(&mi)) {
1642     char buffer[256];
1643     if (os::Aix::on_aix()) {
1644       jio_snprintf(buffer, sizeof(buffer),
1645                    "  physical total : %llu\n"
1646                    "  physical free  : %llu\n"
1647                    "  swap total     : %llu\n"
1648                    "  swap free      : %llu\n",
1649                    mi.real_total,
1650                    mi.real_free,
1651                    mi.pgsp_total,
1652                    mi.pgsp_free);
1653     } else {
1654       Unimplemented();
1655     }
1656     st->print_raw(buffer);
1657   } else {
1658     st->print_cr("  (no more information available)");
1659   }
1660 }
1661 
1662 // Get a string for the cpuinfo that is a summary of the cpu type
1663 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1664   // This looks good
1665   os::Aix::cpuinfo_t ci;
1666   if (os::Aix::get_cpuinfo(&ci)) {
1667     strncpy(buf, ci.version, buflen);
1668   } else {
1669     strncpy(buf, "AIX", buflen);
1670   }
1671 }
1672 
1673 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1674 }
1675 
1676 void os::print_siginfo(outputStream* st, void* siginfo) {
1677   // Use common posix version.
1678   os::Posix::print_siginfo_brief(st, (const siginfo_t*) siginfo);
1679   st->cr();
1680 }
1681 
1682 static void print_signal_handler(outputStream* st, int sig,
1683                                  char* buf, size_t buflen);
1684 
1685 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1686   st->print_cr("Signal Handlers:");
1687   print_signal_handler(st, SIGSEGV, buf, buflen);
1688   print_signal_handler(st, SIGBUS , buf, buflen);
1689   print_signal_handler(st, SIGFPE , buf, buflen);
1690   print_signal_handler(st, SIGPIPE, buf, buflen);
1691   print_signal_handler(st, SIGXFSZ, buf, buflen);
1692   print_signal_handler(st, SIGILL , buf, buflen);
1693   print_signal_handler(st, SR_signum, buf, buflen);
1694   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1695   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1696   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1697   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1698   print_signal_handler(st, SIGTRAP, buf, buflen);
1699   print_signal_handler(st, SIGDANGER, buf, buflen);
1700 }
1701 
1702 static char saved_jvm_path[MAXPATHLEN] = {0};
1703 
1704 // Find the full path to the current module, libjvm.so.
1705 void os::jvm_path(char *buf, jint buflen) {
1706   // Error checking.
1707   if (buflen < MAXPATHLEN) {
1708     assert(false, "must use a large-enough buffer");
1709     buf[0] = '\0';
1710     return;
1711   }
1712   // Lazy resolve the path to current module.
1713   if (saved_jvm_path[0] != 0) {
1714     strcpy(buf, saved_jvm_path);
1715     return;
1716   }
1717 
1718   Dl_info dlinfo;
1719   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1720   assert(ret != 0, "cannot locate libjvm");
1721   char* rp = realpath((char *)dlinfo.dli_fname, buf);
1722   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1723 
1724   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1725   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1726 }
1727 
1728 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1729   // no prefix required, not even "_"
1730 }
1731 
1732 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1733   // no suffix required
1734 }
1735 
1736 ////////////////////////////////////////////////////////////////////////////////
1737 // sun.misc.Signal support
1738 
1739 static volatile jint sigint_count = 0;
1740 
1741 static void
1742 UserHandler(int sig, void *siginfo, void *context) {
1743   // 4511530 - sem_post is serialized and handled by the manager thread. When
1744   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1745   // don't want to flood the manager thread with sem_post requests.
1746   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1747     return;
1748 
1749   // Ctrl-C is pressed during error reporting, likely because the error
1750   // handler fails to abort. Let VM die immediately.
1751   if (sig == SIGINT && is_error_reported()) {
1752     os::die();
1753   }
1754 
1755   os::signal_notify(sig);
1756 }
1757 
1758 void* os::user_handler() {
1759   return CAST_FROM_FN_PTR(void*, UserHandler);
1760 }
1761 
1762 extern "C" {
1763   typedef void (*sa_handler_t)(int);
1764   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1765 }
1766 
1767 void* os::signal(int signal_number, void* handler) {
1768   struct sigaction sigAct, oldSigAct;
1769 
1770   sigfillset(&(sigAct.sa_mask));
1771 
1772   // Do not block out synchronous signals in the signal handler.
1773   // Blocking synchronous signals only makes sense if you can really
1774   // be sure that those signals won't happen during signal handling,
1775   // when the blocking applies. Normal signal handlers are lean and
1776   // do not cause signals. But our signal handlers tend to be "risky"
1777   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1778   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1779   // by a SIGILL, which was blocked due to the signal mask. The process
1780   // just hung forever. Better to crash from a secondary signal than to hang.
1781   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1782   sigdelset(&(sigAct.sa_mask), SIGBUS);
1783   sigdelset(&(sigAct.sa_mask), SIGILL);
1784   sigdelset(&(sigAct.sa_mask), SIGFPE);
1785   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1786 
1787   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1788 
1789   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1790 
1791   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1792     // -1 means registration failed
1793     return (void *)-1;
1794   }
1795 
1796   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1797 }
1798 
1799 void os::signal_raise(int signal_number) {
1800   ::raise(signal_number);
1801 }
1802 
1803 //
1804 // The following code is moved from os.cpp for making this
1805 // code platform specific, which it is by its very nature.
1806 //
1807 
1808 // Will be modified when max signal is changed to be dynamic
1809 int os::sigexitnum_pd() {
1810   return NSIG;
1811 }
1812 
1813 // a counter for each possible signal value
1814 static volatile jint pending_signals[NSIG+1] = { 0 };
1815 
1816 // Linux(POSIX) specific hand shaking semaphore.
1817 static sem_t sig_sem;
1818 
1819 void os::signal_init_pd() {
1820   // Initialize signal structures
1821   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1822 
1823   // Initialize signal semaphore
1824   int rc = ::sem_init(&sig_sem, 0, 0);
1825   guarantee(rc != -1, "sem_init failed");
1826 }
1827 
1828 void os::signal_notify(int sig) {
1829   Atomic::inc(&pending_signals[sig]);
1830   ::sem_post(&sig_sem);
1831 }
1832 
1833 static int check_pending_signals(bool wait) {
1834   Atomic::store(0, &sigint_count);
1835   for (;;) {
1836     for (int i = 0; i < NSIG + 1; i++) {
1837       jint n = pending_signals[i];
1838       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1839         return i;
1840       }
1841     }
1842     if (!wait) {
1843       return -1;
1844     }
1845     JavaThread *thread = JavaThread::current();
1846     ThreadBlockInVM tbivm(thread);
1847 
1848     bool threadIsSuspended;
1849     do {
1850       thread->set_suspend_equivalent();
1851       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1852 
1853       ::sem_wait(&sig_sem);
1854 
1855       // were we externally suspended while we were waiting?
1856       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1857       if (threadIsSuspended) {
1858         //
1859         // The semaphore has been incremented, but while we were waiting
1860         // another thread suspended us. We don't want to continue running
1861         // while suspended because that would surprise the thread that
1862         // suspended us.
1863         //
1864         ::sem_post(&sig_sem);
1865 
1866         thread->java_suspend_self();
1867       }
1868     } while (threadIsSuspended);
1869   }
1870 }
1871 
1872 int os::signal_lookup() {
1873   return check_pending_signals(false);
1874 }
1875 
1876 int os::signal_wait() {
1877   return check_pending_signals(true);
1878 }
1879 
1880 ////////////////////////////////////////////////////////////////////////////////
1881 // Virtual Memory
1882 
1883 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1884 
1885 #define VMEM_MAPPED  1
1886 #define VMEM_SHMATED 2
1887 
1888 struct vmembk_t {
1889   int type;         // 1 - mmap, 2 - shmat
1890   char* addr;
1891   size_t size;      // Real size, may be larger than usersize.
1892   size_t pagesize;  // page size of area
1893   vmembk_t* next;
1894 
1895   bool contains_addr(char* p) const {
1896     return p >= addr && p < (addr + size);
1897   }
1898 
1899   bool contains_range(char* p, size_t s) const {
1900     return contains_addr(p) && contains_addr(p + s - 1);
1901   }
1902 
1903   void print_on(outputStream* os) const {
1904     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1905       " bytes, %d %s pages), %s",
1906       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1907       (type == VMEM_SHMATED ? "shmat" : "mmap")
1908     );
1909   }
1910 
1911   // Check that range is a sub range of memory block (or equal to memory block);
1912   // also check that range is fully page aligned to the page size if the block.
1913   void assert_is_valid_subrange(char* p, size_t s) const {
1914     if (!contains_range(p, s)) {
1915       fprintf(stderr, "[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1916               "range of [" PTR_FORMAT " - " PTR_FORMAT "].\n",
1917               p, p + s - 1, addr, addr + size - 1);
1918       guarantee0(false);
1919     }
1920     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1921       fprintf(stderr, "range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1922               " aligned to pagesize (%s)\n", p, p + s);
1923       guarantee0(false);
1924     }
1925   }
1926 };
1927 
1928 static struct {
1929   vmembk_t* first;
1930   MiscUtils::CritSect cs;
1931 } vmem;
1932 
1933 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1934   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1935   assert0(p);
1936   if (p) {
1937     MiscUtils::AutoCritSect lck(&vmem.cs);
1938     p->addr = addr; p->size = size;
1939     p->pagesize = pagesize;
1940     p->type = type;
1941     p->next = vmem.first;
1942     vmem.first = p;
1943   }
1944 }
1945 
1946 static vmembk_t* vmembk_find(char* addr) {
1947   MiscUtils::AutoCritSect lck(&vmem.cs);
1948   for (vmembk_t* p = vmem.first; p; p = p->next) {
1949     if (p->addr <= addr && (p->addr + p->size) > addr) {
1950       return p;
1951     }
1952   }
1953   return NULL;
1954 }
1955 
1956 static void vmembk_remove(vmembk_t* p0) {
1957   MiscUtils::AutoCritSect lck(&vmem.cs);
1958   assert0(p0);
1959   assert0(vmem.first); // List should not be empty.
1960   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1961     if (*pp == p0) {
1962       *pp = p0->next;
1963       ::free(p0);
1964       return;
1965     }
1966   }
1967   assert0(false); // Not found?
1968 }
1969 
1970 static void vmembk_print_on(outputStream* os) {
1971   MiscUtils::AutoCritSect lck(&vmem.cs);
1972   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1973     vmi->print_on(os);
1974     os->cr();
1975   }
1976 }
1977 
1978 // Reserve and attach a section of System V memory.
1979 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1980 // address. Failing that, it will attach the memory anywhere.
1981 // If <requested_addr> is NULL, function will attach the memory anywhere.
1982 //
1983 // <alignment_hint> is being ignored by this function. It is very probable however that the
1984 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1985 // Should this be not enogh, we can put more work into it.
1986 static char* reserve_shmated_memory (
1987   size_t bytes,
1988   char* requested_addr,
1989   size_t alignment_hint) {
1990 
1991   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1992     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1993     bytes, requested_addr, alignment_hint);
1994 
1995   // Either give me wish address or wish alignment but not both.
1996   assert0(!(requested_addr != NULL && alignment_hint != 0));
1997 
1998   // We must prevent anyone from attaching too close to the
1999   // BRK because that may cause malloc OOM.
2000   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2001     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2002       "Will attach anywhere.", requested_addr);
2003     // Act like the OS refused to attach there.
2004     requested_addr = NULL;
2005   }
2006 
2007   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
2008   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
2009   if (os::Aix::on_pase_V5R4_or_older()) {
2010     ShouldNotReachHere();
2011   }
2012 
2013   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
2014   const size_t size = align_size_up(bytes, SIZE_64K);
2015 
2016   // Reserve the shared segment.
2017   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
2018   if (shmid == -1) {
2019     trc("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
2020     return NULL;
2021   }
2022 
2023   // Important note:
2024   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
2025   // We must right after attaching it remove it from the system. System V shm segments are global and
2026   // survive the process.
2027   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2028 
2029   struct shmid_ds shmbuf;
2030   memset(&shmbuf, 0, sizeof(shmbuf));
2031   shmbuf.shm_pagesize = SIZE_64K;
2032   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2033     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2034                size / SIZE_64K, errno);
2035     // I want to know if this ever happens.
2036     assert(false, "failed to set page size for shmat");
2037   }
2038 
2039   // Now attach the shared segment.
2040   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2041   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2042   // were not a segment boundary.
2043   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2044   const int errno_shmat = errno;
2045 
2046   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2047   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2048     trc("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2049     assert(false, "failed to remove shared memory segment!");
2050   }
2051 
2052   // Handle shmat error. If we failed to attach, just return.
2053   if (addr == (char*)-1) {
2054     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2055     return NULL;
2056   }
2057 
2058   // Just for info: query the real page size. In case setting the page size did not
2059   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2060   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2061   if (real_pagesize != shmbuf.shm_pagesize) {
2062     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2063   }
2064 
2065   if (addr) {
2066     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2067       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2068   } else {
2069     if (requested_addr != NULL) {
2070       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2071     } else {
2072       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2073     }
2074   }
2075 
2076   // book-keeping
2077   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2078   assert0(is_aligned_to(addr, os::vm_page_size()));
2079 
2080   return addr;
2081 }
2082 
2083 static bool release_shmated_memory(char* addr, size_t size) {
2084 
2085   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2086     addr, addr + size - 1);
2087 
2088   bool rc = false;
2089 
2090   // TODO: is there a way to verify shm size without doing bookkeeping?
2091   if (::shmdt(addr) != 0) {
2092     trcVerbose("error (%d).", errno);
2093   } else {
2094     trcVerbose("ok.");
2095     rc = true;
2096   }
2097   return rc;
2098 }
2099 
2100 static bool uncommit_shmated_memory(char* addr, size_t size) {
2101   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2102     addr, addr + size - 1);
2103 
2104   const bool rc = my_disclaim64(addr, size);
2105 
2106   if (!rc) {
2107     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2108     return false;
2109   }
2110   return true;
2111 }
2112 
2113 // Reserve memory via mmap.
2114 // If <requested_addr> is given, an attempt is made to attach at the given address.
2115 // Failing that, memory is allocated at any address.
2116 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2117 // allocate at an address aligned with the given alignment. Failing that, memory
2118 // is aligned anywhere.
2119 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2120   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2121     "alignment_hint " UINTX_FORMAT "...",
2122     bytes, requested_addr, alignment_hint);
2123 
2124   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2125   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2126     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2127     return NULL;
2128   }
2129 
2130   // We must prevent anyone from attaching too close to the
2131   // BRK because that may cause malloc OOM.
2132   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2133     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2134       "Will attach anywhere.", requested_addr);
2135     // Act like the OS refused to attach there.
2136     requested_addr = NULL;
2137   }
2138 
2139   // Specify one or the other but not both.
2140   assert0(!(requested_addr != NULL && alignment_hint > 0));
2141 
2142   // In 64K mode, we claim the global page size (os::vm_page_size())
2143   // is 64K. This is one of the few points where that illusion may
2144   // break, because mmap() will always return memory aligned to 4K. So
2145   // we must ensure we only ever return memory aligned to 64k.
2146   if (alignment_hint) {
2147     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2148   } else {
2149     alignment_hint = os::vm_page_size();
2150   }
2151 
2152   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2153   const size_t size = align_size_up(bytes, os::vm_page_size());
2154 
2155   // alignment: Allocate memory large enough to include an aligned range of the right size and
2156   // cut off the leading and trailing waste pages.
2157   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2158   const size_t extra_size = size + alignment_hint;
2159 
2160   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2161   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2162   int flags = MAP_ANONYMOUS | MAP_SHARED;
2163 
2164   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2165   // it means if wishaddress is given but MAP_FIXED is not set.
2166   //
2167   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2168   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2169   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2170   // get clobbered.
2171   if (requested_addr != NULL) {
2172     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2173       flags |= MAP_FIXED;
2174     }
2175   }
2176 
2177   char* addr = (char*)::mmap(requested_addr, extra_size,
2178       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2179 
2180   if (addr == MAP_FAILED) {
2181     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2182     return NULL;
2183   }
2184 
2185   // Handle alignment.
2186   char* const addr_aligned = (char *)align_ptr_up(addr, alignment_hint);
2187   const size_t waste_pre = addr_aligned - addr;
2188   char* const addr_aligned_end = addr_aligned + size;
2189   const size_t waste_post = extra_size - waste_pre - size;
2190   if (waste_pre > 0) {
2191     ::munmap(addr, waste_pre);
2192   }
2193   if (waste_post > 0) {
2194     ::munmap(addr_aligned_end, waste_post);
2195   }
2196   addr = addr_aligned;
2197 
2198   if (addr) {
2199     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2200       addr, addr + bytes, bytes);
2201   } else {
2202     if (requested_addr != NULL) {
2203       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2204     } else {
2205       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2206     }
2207   }
2208 
2209   // bookkeeping
2210   vmembk_add(addr, size, SIZE_4K, VMEM_MAPPED);
2211 
2212   // Test alignment, see above.
2213   assert0(is_aligned_to(addr, os::vm_page_size()));
2214 
2215   return addr;
2216 }
2217 
2218 static bool release_mmaped_memory(char* addr, size_t size) {
2219   assert0(is_aligned_to(addr, os::vm_page_size()));
2220   assert0(is_aligned_to(size, os::vm_page_size()));
2221 
2222   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2223     addr, addr + size - 1);
2224   bool rc = false;
2225 
2226   if (::munmap(addr, size) != 0) {
2227     trcVerbose("failed (%d)\n", errno);
2228     rc = false;
2229   } else {
2230     trcVerbose("ok.");
2231     rc = true;
2232   }
2233 
2234   return rc;
2235 }
2236 
2237 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2238 
2239   assert0(is_aligned_to(addr, os::vm_page_size()));
2240   assert0(is_aligned_to(size, os::vm_page_size()));
2241 
2242   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2243     addr, addr + size - 1);
2244   bool rc = false;
2245 
2246   // Uncommit mmap memory with msync MS_INVALIDATE.
2247   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2248     trcVerbose("failed (%d)\n", errno);
2249     rc = false;
2250   } else {
2251     trcVerbose("ok.");
2252     rc = true;
2253   }
2254 
2255   return rc;
2256 }
2257 
2258 // End: shared memory bookkeeping
2259 ////////////////////////////////////////////////////////////////////////////////////////////////////
2260 
2261 int os::vm_page_size() {
2262   // Seems redundant as all get out.
2263   assert(os::Aix::page_size() != -1, "must call os::init");
2264   return os::Aix::page_size();
2265 }
2266 
2267 // Aix allocates memory by pages.
2268 int os::vm_allocation_granularity() {
2269   assert(os::Aix::page_size() != -1, "must call os::init");
2270   return os::Aix::page_size();
2271 }
2272 
2273 #ifdef PRODUCT
2274 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2275                                     int err) {
2276   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2277           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2278           strerror(err), err);
2279 }
2280 #endif
2281 
2282 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2283                                   const char* mesg) {
2284   assert(mesg != NULL, "mesg must be specified");
2285   if (!pd_commit_memory(addr, size, exec)) {
2286     // Add extra info in product mode for vm_exit_out_of_memory():
2287     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2288     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2289   }
2290 }
2291 
2292 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2293 
2294   assert0(is_aligned_to(addr, os::vm_page_size()));
2295   assert0(is_aligned_to(size, os::vm_page_size()));
2296 
2297   vmembk_t* const vmi = vmembk_find(addr);
2298   assert0(vmi);
2299   vmi->assert_is_valid_subrange(addr, size);
2300 
2301   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2302 
2303   return true;
2304 }
2305 
2306 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2307   return pd_commit_memory(addr, size, exec);
2308 }
2309 
2310 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2311                                   size_t alignment_hint, bool exec,
2312                                   const char* mesg) {
2313   // Alignment_hint is ignored on this OS.
2314   pd_commit_memory_or_exit(addr, size, exec, mesg);
2315 }
2316 
2317 bool os::pd_uncommit_memory(char* addr, size_t size) {
2318   assert0(is_aligned_to(addr, os::vm_page_size()));
2319   assert0(is_aligned_to(size, os::vm_page_size()));
2320 
2321   // Dynamically do different things for mmap/shmat.
2322   const vmembk_t* const vmi = vmembk_find(addr);
2323   assert0(vmi);
2324   vmi->assert_is_valid_subrange(addr, size);
2325 
2326   if (vmi->type == VMEM_SHMATED) {
2327     return uncommit_shmated_memory(addr, size);
2328   } else {
2329     return uncommit_mmaped_memory(addr, size);
2330   }
2331 }
2332 
2333 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2334   // Do not call this; no need to commit stack pages on AIX.
2335   ShouldNotReachHere();
2336   return true;
2337 }
2338 
2339 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2340   // Do not call this; no need to commit stack pages on AIX.
2341   ShouldNotReachHere();
2342   return true;
2343 }
2344 
2345 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2346 }
2347 
2348 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2349 }
2350 
2351 void os::numa_make_global(char *addr, size_t bytes) {
2352 }
2353 
2354 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2355 }
2356 
2357 bool os::numa_topology_changed() {
2358   return false;
2359 }
2360 
2361 size_t os::numa_get_groups_num() {
2362   return 1;
2363 }
2364 
2365 int os::numa_get_group_id() {
2366   return 0;
2367 }
2368 
2369 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2370   if (size > 0) {
2371     ids[0] = 0;
2372     return 1;
2373   }
2374   return 0;
2375 }
2376 
2377 bool os::get_page_info(char *start, page_info* info) {
2378   return false;
2379 }
2380 
2381 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2382   return end;
2383 }
2384 
2385 // Reserves and attaches a shared memory segment.
2386 // Will assert if a wish address is given and could not be obtained.
2387 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2388 
2389   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2390   // thereby clobbering old mappings at that place. That is probably
2391   // not intended, never used and almost certainly an error were it
2392   // ever be used this way (to try attaching at a specified address
2393   // without clobbering old mappings an alternate API exists,
2394   // os::attempt_reserve_memory_at()).
2395   // Instead of mimicking the dangerous coding of the other platforms, here I
2396   // just ignore the request address (release) or assert(debug).
2397   assert0(requested_addr == NULL);
2398 
2399   // Always round to os::vm_page_size(), which may be larger than 4K.
2400   bytes = align_size_up(bytes, os::vm_page_size());
2401   const size_t alignment_hint0 =
2402     alignment_hint ? align_size_up(alignment_hint, os::vm_page_size()) : 0;
2403 
2404   // In 4K mode always use mmap.
2405   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2406   if (os::vm_page_size() == SIZE_4K) {
2407     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2408   } else {
2409     if (bytes >= Use64KPagesThreshold) {
2410       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2411     } else {
2412       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2413     }
2414   }
2415 }
2416 
2417 bool os::pd_release_memory(char* addr, size_t size) {
2418 
2419   // Dynamically do different things for mmap/shmat.
2420   vmembk_t* const vmi = vmembk_find(addr);
2421   assert0(vmi);
2422 
2423   // Always round to os::vm_page_size(), which may be larger than 4K.
2424   size = align_size_up(size, os::vm_page_size());
2425   addr = (char *)align_ptr_up(addr, os::vm_page_size());
2426 
2427   bool rc = false;
2428   bool remove_bookkeeping = false;
2429   if (vmi->type == VMEM_SHMATED) {
2430     // For shmatted memory, we do:
2431     // - If user wants to release the whole range, release the memory (shmdt).
2432     // - If user only wants to release a partial range, uncommit (disclaim) that
2433     //   range. That way, at least, we do not use memory anymore (bust still page
2434     //   table space).
2435     vmi->assert_is_valid_subrange(addr, size);
2436     if (addr == vmi->addr && size == vmi->size) {
2437       rc = release_shmated_memory(addr, size);
2438       remove_bookkeeping = true;
2439     } else {
2440       rc = uncommit_shmated_memory(addr, size);
2441     }
2442   } else {
2443     // User may unmap partial regions but region has to be fully contained.
2444 #ifdef ASSERT
2445     vmi->assert_is_valid_subrange(addr, size);
2446 #endif
2447     rc = release_mmaped_memory(addr, size);
2448     remove_bookkeeping = true;
2449   }
2450 
2451   // update bookkeeping
2452   if (rc && remove_bookkeeping) {
2453     vmembk_remove(vmi);
2454   }
2455 
2456   return rc;
2457 }
2458 
2459 static bool checked_mprotect(char* addr, size_t size, int prot) {
2460 
2461   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2462   // not tell me if protection failed when trying to protect an un-protectable range.
2463   //
2464   // This means if the memory was allocated using shmget/shmat, protection wont work
2465   // but mprotect will still return 0:
2466   //
2467   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2468 
2469   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2470 
2471   if (!rc) {
2472     const char* const s_errno = strerror(errno);
2473     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2474     return false;
2475   }
2476 
2477   // mprotect success check
2478   //
2479   // Mprotect said it changed the protection but can I believe it?
2480   //
2481   // To be sure I need to check the protection afterwards. Try to
2482   // read from protected memory and check whether that causes a segfault.
2483   //
2484   if (!os::Aix::xpg_sus_mode()) {
2485 
2486     if (CanUseSafeFetch32()) {
2487 
2488       const bool read_protected =
2489         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2490          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2491 
2492       if (prot & PROT_READ) {
2493         rc = !read_protected;
2494       } else {
2495         rc = read_protected;
2496       }
2497     }
2498   }
2499   if (!rc) {
2500     assert(false, "mprotect failed.");
2501   }
2502   return rc;
2503 }
2504 
2505 // Set protections specified
2506 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2507   unsigned int p = 0;
2508   switch (prot) {
2509   case MEM_PROT_NONE: p = PROT_NONE; break;
2510   case MEM_PROT_READ: p = PROT_READ; break;
2511   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2512   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2513   default:
2514     ShouldNotReachHere();
2515   }
2516   // is_committed is unused.
2517   return checked_mprotect(addr, size, p);
2518 }
2519 
2520 bool os::guard_memory(char* addr, size_t size) {
2521   return checked_mprotect(addr, size, PROT_NONE);
2522 }
2523 
2524 bool os::unguard_memory(char* addr, size_t size) {
2525   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2526 }
2527 
2528 // Large page support
2529 
2530 static size_t _large_page_size = 0;
2531 
2532 // Enable large page support if OS allows that.
2533 void os::large_page_init() {
2534   return; // Nothing to do. See query_multipage_support and friends.
2535 }
2536 
2537 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2538   // "exec" is passed in but not used. Creating the shared image for
2539   // the code cache doesn't have an SHM_X executable permission to check.
2540   Unimplemented();
2541   return 0;
2542 }
2543 
2544 bool os::release_memory_special(char* base, size_t bytes) {
2545   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2546   Unimplemented();
2547   return false;
2548 }
2549 
2550 size_t os::large_page_size() {
2551   return _large_page_size;
2552 }
2553 
2554 bool os::can_commit_large_page_memory() {
2555   // Does not matter, we do not support huge pages.
2556   return false;
2557 }
2558 
2559 bool os::can_execute_large_page_memory() {
2560   // Does not matter, we do not support huge pages.
2561   return false;
2562 }
2563 
2564 // Reserve memory at an arbitrary address, only if that area is
2565 // available (and not reserved for something else).
2566 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2567   char* addr = NULL;
2568 
2569   // Always round to os::vm_page_size(), which may be larger than 4K.
2570   bytes = align_size_up(bytes, os::vm_page_size());
2571 
2572   // In 4K mode always use mmap.
2573   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2574   if (os::vm_page_size() == SIZE_4K) {
2575     return reserve_mmaped_memory(bytes, requested_addr, 0);
2576   } else {
2577     if (bytes >= Use64KPagesThreshold) {
2578       return reserve_shmated_memory(bytes, requested_addr, 0);
2579     } else {
2580       return reserve_mmaped_memory(bytes, requested_addr, 0);
2581     }
2582   }
2583 
2584   return addr;
2585 }
2586 
2587 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2588   return ::read(fd, buf, nBytes);
2589 }
2590 
2591 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2592   return ::pread(fd, buf, nBytes, offset);
2593 }
2594 
2595 void os::naked_short_sleep(jlong ms) {
2596   struct timespec req;
2597 
2598   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2599   req.tv_sec = 0;
2600   if (ms > 0) {
2601     req.tv_nsec = (ms % 1000) * 1000000;
2602   }
2603   else {
2604     req.tv_nsec = 1;
2605   }
2606 
2607   nanosleep(&req, NULL);
2608 
2609   return;
2610 }
2611 
2612 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2613 void os::infinite_sleep() {
2614   while (true) {    // sleep forever ...
2615     ::sleep(100);   // ... 100 seconds at a time
2616   }
2617 }
2618 
2619 // Used to convert frequent JVM_Yield() to nops
2620 bool os::dont_yield() {
2621   return DontYieldALot;
2622 }
2623 
2624 void os::naked_yield() {
2625   sched_yield();
2626 }
2627 
2628 ////////////////////////////////////////////////////////////////////////////////
2629 // thread priority support
2630 
2631 // From AIX manpage to pthread_setschedparam
2632 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2633 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2634 //
2635 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2636 // range from 40 to 80, where 40 is the least favored priority and 80
2637 // is the most favored."
2638 //
2639 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2640 // scheduling there; however, this still leaves iSeries.)
2641 //
2642 // We use the same values for AIX and PASE.
2643 int os::java_to_os_priority[CriticalPriority + 1] = {
2644   54,             // 0 Entry should never be used
2645 
2646   55,             // 1 MinPriority
2647   55,             // 2
2648   56,             // 3
2649 
2650   56,             // 4
2651   57,             // 5 NormPriority
2652   57,             // 6
2653 
2654   58,             // 7
2655   58,             // 8
2656   59,             // 9 NearMaxPriority
2657 
2658   60,             // 10 MaxPriority
2659 
2660   60              // 11 CriticalPriority
2661 };
2662 
2663 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2664   if (!UseThreadPriorities) return OS_OK;
2665   pthread_t thr = thread->osthread()->pthread_id();
2666   int policy = SCHED_OTHER;
2667   struct sched_param param;
2668   param.sched_priority = newpri;
2669   int ret = pthread_setschedparam(thr, policy, &param);
2670 
2671   if (ret != 0) {
2672     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2673         (int)thr, newpri, ret, strerror(ret));
2674   }
2675   return (ret == 0) ? OS_OK : OS_ERR;
2676 }
2677 
2678 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2679   if (!UseThreadPriorities) {
2680     *priority_ptr = java_to_os_priority[NormPriority];
2681     return OS_OK;
2682   }
2683   pthread_t thr = thread->osthread()->pthread_id();
2684   int policy = SCHED_OTHER;
2685   struct sched_param param;
2686   int ret = pthread_getschedparam(thr, &policy, &param);
2687   *priority_ptr = param.sched_priority;
2688 
2689   return (ret == 0) ? OS_OK : OS_ERR;
2690 }
2691 
2692 // Hint to the underlying OS that a task switch would not be good.
2693 // Void return because it's a hint and can fail.
2694 void os::hint_no_preempt() {}
2695 
2696 ////////////////////////////////////////////////////////////////////////////////
2697 // suspend/resume support
2698 
2699 //  the low-level signal-based suspend/resume support is a remnant from the
2700 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2701 //  within hotspot. Now there is a single use-case for this:
2702 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2703 //      that runs in the watcher thread.
2704 //  The remaining code is greatly simplified from the more general suspension
2705 //  code that used to be used.
2706 //
2707 //  The protocol is quite simple:
2708 //  - suspend:
2709 //      - sends a signal to the target thread
2710 //      - polls the suspend state of the osthread using a yield loop
2711 //      - target thread signal handler (SR_handler) sets suspend state
2712 //        and blocks in sigsuspend until continued
2713 //  - resume:
2714 //      - sets target osthread state to continue
2715 //      - sends signal to end the sigsuspend loop in the SR_handler
2716 //
2717 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2718 //
2719 
2720 static void resume_clear_context(OSThread *osthread) {
2721   osthread->set_ucontext(NULL);
2722   osthread->set_siginfo(NULL);
2723 }
2724 
2725 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2726   osthread->set_ucontext(context);
2727   osthread->set_siginfo(siginfo);
2728 }
2729 
2730 //
2731 // Handler function invoked when a thread's execution is suspended or
2732 // resumed. We have to be careful that only async-safe functions are
2733 // called here (Note: most pthread functions are not async safe and
2734 // should be avoided.)
2735 //
2736 // Note: sigwait() is a more natural fit than sigsuspend() from an
2737 // interface point of view, but sigwait() prevents the signal hander
2738 // from being run. libpthread would get very confused by not having
2739 // its signal handlers run and prevents sigwait()'s use with the
2740 // mutex granting granting signal.
2741 //
2742 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2743 //
2744 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2745   // Save and restore errno to avoid confusing native code with EINTR
2746   // after sigsuspend.
2747   int old_errno = errno;
2748 
2749   Thread* thread = Thread::current();
2750   OSThread* osthread = thread->osthread();
2751   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2752 
2753   os::SuspendResume::State current = osthread->sr.state();
2754   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2755     suspend_save_context(osthread, siginfo, context);
2756 
2757     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2758     os::SuspendResume::State state = osthread->sr.suspended();
2759     if (state == os::SuspendResume::SR_SUSPENDED) {
2760       sigset_t suspend_set;  // signals for sigsuspend()
2761 
2762       // get current set of blocked signals and unblock resume signal
2763       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2764       sigdelset(&suspend_set, SR_signum);
2765 
2766       // wait here until we are resumed
2767       while (1) {
2768         sigsuspend(&suspend_set);
2769 
2770         os::SuspendResume::State result = osthread->sr.running();
2771         if (result == os::SuspendResume::SR_RUNNING) {
2772           break;
2773         }
2774       }
2775 
2776     } else if (state == os::SuspendResume::SR_RUNNING) {
2777       // request was cancelled, continue
2778     } else {
2779       ShouldNotReachHere();
2780     }
2781 
2782     resume_clear_context(osthread);
2783   } else if (current == os::SuspendResume::SR_RUNNING) {
2784     // request was cancelled, continue
2785   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2786     // ignore
2787   } else {
2788     ShouldNotReachHere();
2789   }
2790 
2791   errno = old_errno;
2792 }
2793 
2794 static int SR_initialize() {
2795   struct sigaction act;
2796   char *s;
2797   // Get signal number to use for suspend/resume
2798   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2799     int sig = ::strtol(s, 0, 10);
2800     if (sig > 0 || sig < NSIG) {
2801       SR_signum = sig;
2802     }
2803   }
2804 
2805   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2806         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2807 
2808   sigemptyset(&SR_sigset);
2809   sigaddset(&SR_sigset, SR_signum);
2810 
2811   // Set up signal handler for suspend/resume.
2812   act.sa_flags = SA_RESTART|SA_SIGINFO;
2813   act.sa_handler = (void (*)(int)) SR_handler;
2814 
2815   // SR_signum is blocked by default.
2816   // 4528190 - We also need to block pthread restart signal (32 on all
2817   // supported Linux platforms). Note that LinuxThreads need to block
2818   // this signal for all threads to work properly. So we don't have
2819   // to use hard-coded signal number when setting up the mask.
2820   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2821 
2822   if (sigaction(SR_signum, &act, 0) == -1) {
2823     return -1;
2824   }
2825 
2826   // Save signal flag
2827   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2828   return 0;
2829 }
2830 
2831 static int SR_finalize() {
2832   return 0;
2833 }
2834 
2835 static int sr_notify(OSThread* osthread) {
2836   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2837   assert_status(status == 0, status, "pthread_kill");
2838   return status;
2839 }
2840 
2841 // "Randomly" selected value for how long we want to spin
2842 // before bailing out on suspending a thread, also how often
2843 // we send a signal to a thread we want to resume
2844 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2845 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2846 
2847 // returns true on success and false on error - really an error is fatal
2848 // but this seems the normal response to library errors
2849 static bool do_suspend(OSThread* osthread) {
2850   assert(osthread->sr.is_running(), "thread should be running");
2851   // mark as suspended and send signal
2852 
2853   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2854     // failed to switch, state wasn't running?
2855     ShouldNotReachHere();
2856     return false;
2857   }
2858 
2859   if (sr_notify(osthread) != 0) {
2860     // try to cancel, switch to running
2861 
2862     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2863     if (result == os::SuspendResume::SR_RUNNING) {
2864       // cancelled
2865       return false;
2866     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2867       // somehow managed to suspend
2868       return true;
2869     } else {
2870       ShouldNotReachHere();
2871       return false;
2872     }
2873   }
2874 
2875   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2876 
2877   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2878     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2879       os::naked_yield();
2880     }
2881 
2882     // timeout, try to cancel the request
2883     if (n >= RANDOMLY_LARGE_INTEGER) {
2884       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2885       if (cancelled == os::SuspendResume::SR_RUNNING) {
2886         return false;
2887       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2888         return true;
2889       } else {
2890         ShouldNotReachHere();
2891         return false;
2892       }
2893     }
2894   }
2895 
2896   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2897   return true;
2898 }
2899 
2900 static void do_resume(OSThread* osthread) {
2901   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2902 
2903   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2904     // failed to switch to WAKEUP_REQUEST
2905     ShouldNotReachHere();
2906     return;
2907   }
2908 
2909   while (!osthread->sr.is_running()) {
2910     if (sr_notify(osthread) == 0) {
2911       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2912         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2913           os::naked_yield();
2914         }
2915       }
2916     } else {
2917       ShouldNotReachHere();
2918     }
2919   }
2920 
2921   guarantee(osthread->sr.is_running(), "Must be running!");
2922 }
2923 
2924 ///////////////////////////////////////////////////////////////////////////////////
2925 // signal handling (except suspend/resume)
2926 
2927 // This routine may be used by user applications as a "hook" to catch signals.
2928 // The user-defined signal handler must pass unrecognized signals to this
2929 // routine, and if it returns true (non-zero), then the signal handler must
2930 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2931 // routine will never retun false (zero), but instead will execute a VM panic
2932 // routine kill the process.
2933 //
2934 // If this routine returns false, it is OK to call it again. This allows
2935 // the user-defined signal handler to perform checks either before or after
2936 // the VM performs its own checks. Naturally, the user code would be making
2937 // a serious error if it tried to handle an exception (such as a null check
2938 // or breakpoint) that the VM was generating for its own correct operation.
2939 //
2940 // This routine may recognize any of the following kinds of signals:
2941 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2942 // It should be consulted by handlers for any of those signals.
2943 //
2944 // The caller of this routine must pass in the three arguments supplied
2945 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2946 // field of the structure passed to sigaction(). This routine assumes that
2947 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2948 //
2949 // Note that the VM will print warnings if it detects conflicting signal
2950 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2951 //
2952 extern "C" JNIEXPORT int
2953 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2954 
2955 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2956 // to be the thing to call; documentation is not terribly clear about whether
2957 // pthread_sigmask also works, and if it does, whether it does the same.
2958 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2959   const int rc = ::pthread_sigmask(how, set, oset);
2960   // return value semantics differ slightly for error case:
2961   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2962   // (so, pthread_sigmask is more theadsafe for error handling)
2963   // But success is always 0.
2964   return rc == 0 ? true : false;
2965 }
2966 
2967 // Function to unblock all signals which are, according
2968 // to POSIX, typical program error signals. If they happen while being blocked,
2969 // they typically will bring down the process immediately.
2970 bool unblock_program_error_signals() {
2971   sigset_t set;
2972   ::sigemptyset(&set);
2973   ::sigaddset(&set, SIGILL);
2974   ::sigaddset(&set, SIGBUS);
2975   ::sigaddset(&set, SIGFPE);
2976   ::sigaddset(&set, SIGSEGV);
2977   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2978 }
2979 
2980 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2981 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2982   assert(info != NULL && uc != NULL, "it must be old kernel");
2983 
2984   // Never leave program error signals blocked;
2985   // on all our platforms they would bring down the process immediately when
2986   // getting raised while being blocked.
2987   unblock_program_error_signals();
2988 
2989   JVM_handle_aix_signal(sig, info, uc, true);
2990 }
2991 
2992 // This boolean allows users to forward their own non-matching signals
2993 // to JVM_handle_aix_signal, harmlessly.
2994 bool os::Aix::signal_handlers_are_installed = false;
2995 
2996 // For signal-chaining
2997 struct sigaction os::Aix::sigact[MAXSIGNUM];
2998 unsigned int os::Aix::sigs = 0;
2999 bool os::Aix::libjsig_is_loaded = false;
3000 typedef struct sigaction *(*get_signal_t)(int);
3001 get_signal_t os::Aix::get_signal_action = NULL;
3002 
3003 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3004   struct sigaction *actp = NULL;
3005 
3006   if (libjsig_is_loaded) {
3007     // Retrieve the old signal handler from libjsig
3008     actp = (*get_signal_action)(sig);
3009   }
3010   if (actp == NULL) {
3011     // Retrieve the preinstalled signal handler from jvm
3012     actp = get_preinstalled_handler(sig);
3013   }
3014 
3015   return actp;
3016 }
3017 
3018 static bool call_chained_handler(struct sigaction *actp, int sig,
3019                                  siginfo_t *siginfo, void *context) {
3020   // Call the old signal handler
3021   if (actp->sa_handler == SIG_DFL) {
3022     // It's more reasonable to let jvm treat it as an unexpected exception
3023     // instead of taking the default action.
3024     return false;
3025   } else if (actp->sa_handler != SIG_IGN) {
3026     if ((actp->sa_flags & SA_NODEFER) == 0) {
3027       // automaticlly block the signal
3028       sigaddset(&(actp->sa_mask), sig);
3029     }
3030 
3031     sa_handler_t hand = NULL;
3032     sa_sigaction_t sa = NULL;
3033     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3034     // retrieve the chained handler
3035     if (siginfo_flag_set) {
3036       sa = actp->sa_sigaction;
3037     } else {
3038       hand = actp->sa_handler;
3039     }
3040 
3041     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3042       actp->sa_handler = SIG_DFL;
3043     }
3044 
3045     // try to honor the signal mask
3046     sigset_t oset;
3047     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3048 
3049     // call into the chained handler
3050     if (siginfo_flag_set) {
3051       (*sa)(sig, siginfo, context);
3052     } else {
3053       (*hand)(sig);
3054     }
3055 
3056     // restore the signal mask
3057     pthread_sigmask(SIG_SETMASK, &oset, 0);
3058   }
3059   // Tell jvm's signal handler the signal is taken care of.
3060   return true;
3061 }
3062 
3063 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3064   bool chained = false;
3065   // signal-chaining
3066   if (UseSignalChaining) {
3067     struct sigaction *actp = get_chained_signal_action(sig);
3068     if (actp != NULL) {
3069       chained = call_chained_handler(actp, sig, siginfo, context);
3070     }
3071   }
3072   return chained;
3073 }
3074 
3075 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3076   if ((((unsigned int)1 << sig) & sigs) != 0) {
3077     return &sigact[sig];
3078   }
3079   return NULL;
3080 }
3081 
3082 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3083   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3084   sigact[sig] = oldAct;
3085   sigs |= (unsigned int)1 << sig;
3086 }
3087 
3088 // for diagnostic
3089 int os::Aix::sigflags[MAXSIGNUM];
3090 
3091 int os::Aix::get_our_sigflags(int sig) {
3092   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3093   return sigflags[sig];
3094 }
3095 
3096 void os::Aix::set_our_sigflags(int sig, int flags) {
3097   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3098   sigflags[sig] = flags;
3099 }
3100 
3101 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3102   // Check for overwrite.
3103   struct sigaction oldAct;
3104   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3105 
3106   void* oldhand = oldAct.sa_sigaction
3107     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3108     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3109   // Renamed 'signalHandler' to avoid collision with other shared libs.
3110   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3111       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3112       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3113     if (AllowUserSignalHandlers || !set_installed) {
3114       // Do not overwrite; user takes responsibility to forward to us.
3115       return;
3116     } else if (UseSignalChaining) {
3117       // save the old handler in jvm
3118       save_preinstalled_handler(sig, oldAct);
3119       // libjsig also interposes the sigaction() call below and saves the
3120       // old sigaction on it own.
3121     } else {
3122       fatal("Encountered unexpected pre-existing sigaction handler "
3123             "%#lx for signal %d.", (long)oldhand, sig);
3124     }
3125   }
3126 
3127   struct sigaction sigAct;
3128   sigfillset(&(sigAct.sa_mask));
3129   if (!set_installed) {
3130     sigAct.sa_handler = SIG_DFL;
3131     sigAct.sa_flags = SA_RESTART;
3132   } else {
3133     // Renamed 'signalHandler' to avoid collision with other shared libs.
3134     sigAct.sa_sigaction = javaSignalHandler;
3135     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3136   }
3137   // Save flags, which are set by ours
3138   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3139   sigflags[sig] = sigAct.sa_flags;
3140 
3141   int ret = sigaction(sig, &sigAct, &oldAct);
3142   assert(ret == 0, "check");
3143 
3144   void* oldhand2 = oldAct.sa_sigaction
3145                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3146                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3147   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3148 }
3149 
3150 // install signal handlers for signals that HotSpot needs to
3151 // handle in order to support Java-level exception handling.
3152 void os::Aix::install_signal_handlers() {
3153   if (!signal_handlers_are_installed) {
3154     signal_handlers_are_installed = true;
3155 
3156     // signal-chaining
3157     typedef void (*signal_setting_t)();
3158     signal_setting_t begin_signal_setting = NULL;
3159     signal_setting_t end_signal_setting = NULL;
3160     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3161                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3162     if (begin_signal_setting != NULL) {
3163       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3164                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3165       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3166                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3167       libjsig_is_loaded = true;
3168       assert(UseSignalChaining, "should enable signal-chaining");
3169     }
3170     if (libjsig_is_loaded) {
3171       // Tell libjsig jvm is setting signal handlers
3172       (*begin_signal_setting)();
3173     }
3174 
3175     set_signal_handler(SIGSEGV, true);
3176     set_signal_handler(SIGPIPE, true);
3177     set_signal_handler(SIGBUS, true);
3178     set_signal_handler(SIGILL, true);
3179     set_signal_handler(SIGFPE, true);
3180     set_signal_handler(SIGTRAP, true);
3181     set_signal_handler(SIGXFSZ, true);
3182     set_signal_handler(SIGDANGER, true);
3183 
3184     if (libjsig_is_loaded) {
3185       // Tell libjsig jvm finishes setting signal handlers.
3186       (*end_signal_setting)();
3187     }
3188 
3189     // We don't activate signal checker if libjsig is in place, we trust ourselves
3190     // and if UserSignalHandler is installed all bets are off.
3191     // Log that signal checking is off only if -verbose:jni is specified.
3192     if (CheckJNICalls) {
3193       if (libjsig_is_loaded) {
3194         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3195         check_signals = false;
3196       }
3197       if (AllowUserSignalHandlers) {
3198         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3199         check_signals = false;
3200       }
3201       // Need to initialize check_signal_done.
3202       ::sigemptyset(&check_signal_done);
3203     }
3204   }
3205 }
3206 
3207 static const char* get_signal_handler_name(address handler,
3208                                            char* buf, int buflen) {
3209   int offset;
3210   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3211   if (found) {
3212     // skip directory names
3213     const char *p1, *p2;
3214     p1 = buf;
3215     size_t len = strlen(os::file_separator());
3216     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3217     // The way os::dll_address_to_library_name is implemented on Aix
3218     // right now, it always returns -1 for the offset which is not
3219     // terribly informative.
3220     // Will fix that. For now, omit the offset.
3221     jio_snprintf(buf, buflen, "%s", p1);
3222   } else {
3223     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3224   }
3225   return buf;
3226 }
3227 
3228 static void print_signal_handler(outputStream* st, int sig,
3229                                  char* buf, size_t buflen) {
3230   struct sigaction sa;
3231   sigaction(sig, NULL, &sa);
3232 
3233   st->print("%s: ", os::exception_name(sig, buf, buflen));
3234 
3235   address handler = (sa.sa_flags & SA_SIGINFO)
3236     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3237     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3238 
3239   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3240     st->print("SIG_DFL");
3241   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3242     st->print("SIG_IGN");
3243   } else {
3244     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3245   }
3246 
3247   // Print readable mask.
3248   st->print(", sa_mask[0]=");
3249   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3250 
3251   address rh = VMError::get_resetted_sighandler(sig);
3252   // May be, handler was resetted by VMError?
3253   if (rh != NULL) {
3254     handler = rh;
3255     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3256   }
3257 
3258   // Print textual representation of sa_flags.
3259   st->print(", sa_flags=");
3260   os::Posix::print_sa_flags(st, sa.sa_flags);
3261 
3262   // Check: is it our handler?
3263   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3264       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3265     // It is our signal handler.
3266     // Check for flags, reset system-used one!
3267     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3268       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3269                 os::Aix::get_our_sigflags(sig));
3270     }
3271   }
3272   st->cr();
3273 }
3274 
3275 #define DO_SIGNAL_CHECK(sig) \
3276   if (!sigismember(&check_signal_done, sig)) \
3277     os::Aix::check_signal_handler(sig)
3278 
3279 // This method is a periodic task to check for misbehaving JNI applications
3280 // under CheckJNI, we can add any periodic checks here
3281 
3282 void os::run_periodic_checks() {
3283 
3284   if (check_signals == false) return;
3285 
3286   // SEGV and BUS if overridden could potentially prevent
3287   // generation of hs*.log in the event of a crash, debugging
3288   // such a case can be very challenging, so we absolutely
3289   // check the following for a good measure:
3290   DO_SIGNAL_CHECK(SIGSEGV);
3291   DO_SIGNAL_CHECK(SIGILL);
3292   DO_SIGNAL_CHECK(SIGFPE);
3293   DO_SIGNAL_CHECK(SIGBUS);
3294   DO_SIGNAL_CHECK(SIGPIPE);
3295   DO_SIGNAL_CHECK(SIGXFSZ);
3296   if (UseSIGTRAP) {
3297     DO_SIGNAL_CHECK(SIGTRAP);
3298   }
3299   DO_SIGNAL_CHECK(SIGDANGER);
3300 
3301   // ReduceSignalUsage allows the user to override these handlers
3302   // see comments at the very top and jvm_solaris.h
3303   if (!ReduceSignalUsage) {
3304     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3305     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3306     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3307     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3308   }
3309 
3310   DO_SIGNAL_CHECK(SR_signum);
3311 }
3312 
3313 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3314 
3315 static os_sigaction_t os_sigaction = NULL;
3316 
3317 void os::Aix::check_signal_handler(int sig) {
3318   char buf[O_BUFLEN];
3319   address jvmHandler = NULL;
3320 
3321   struct sigaction act;
3322   if (os_sigaction == NULL) {
3323     // only trust the default sigaction, in case it has been interposed
3324     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3325     if (os_sigaction == NULL) return;
3326   }
3327 
3328   os_sigaction(sig, (struct sigaction*)NULL, &act);
3329 
3330   address thisHandler = (act.sa_flags & SA_SIGINFO)
3331     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3332     : CAST_FROM_FN_PTR(address, act.sa_handler);
3333 
3334   switch(sig) {
3335   case SIGSEGV:
3336   case SIGBUS:
3337   case SIGFPE:
3338   case SIGPIPE:
3339   case SIGILL:
3340   case SIGXFSZ:
3341     // Renamed 'signalHandler' to avoid collision with other shared libs.
3342     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3343     break;
3344 
3345   case SHUTDOWN1_SIGNAL:
3346   case SHUTDOWN2_SIGNAL:
3347   case SHUTDOWN3_SIGNAL:
3348   case BREAK_SIGNAL:
3349     jvmHandler = (address)user_handler();
3350     break;
3351 
3352   default:
3353     if (sig == SR_signum) {
3354       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3355     } else {
3356       return;
3357     }
3358     break;
3359   }
3360 
3361   if (thisHandler != jvmHandler) {
3362     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3363     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3364     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3365     // No need to check this sig any longer
3366     sigaddset(&check_signal_done, sig);
3367     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3368     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3369       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3370                     exception_name(sig, buf, O_BUFLEN));
3371     }
3372   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3373     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3374     tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));
3375     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3376     // No need to check this sig any longer
3377     sigaddset(&check_signal_done, sig);
3378   }
3379 
3380   // Dump all the signal
3381   if (sigismember(&check_signal_done, sig)) {
3382     print_signal_handlers(tty, buf, O_BUFLEN);
3383   }
3384 }
3385 
3386 extern bool signal_name(int signo, char* buf, size_t len);
3387 
3388 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3389   if (0 < exception_code && exception_code <= SIGRTMAX) {
3390     // signal
3391     if (!signal_name(exception_code, buf, size)) {
3392       jio_snprintf(buf, size, "SIG%d", exception_code);
3393     }
3394     return buf;
3395   } else {
3396     return NULL;
3397   }
3398 }
3399 
3400 // To install functions for atexit system call
3401 extern "C" {
3402   static void perfMemory_exit_helper() {
3403     perfMemory_exit();
3404   }
3405 }
3406 
3407 // This is called _before_ the most of global arguments have been parsed.
3408 void os::init(void) {
3409   // This is basic, we want to know if that ever changes.
3410   // (Shared memory boundary is supposed to be a 256M aligned.)
3411   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3412 
3413   // First off, we need to know whether we run on AIX or PASE, and
3414   // the OS level we run on.
3415   os::Aix::initialize_os_info();
3416 
3417   // Scan environment (SPEC1170 behaviour, etc).
3418   os::Aix::scan_environment();
3419 
3420   // Check which pages are supported by AIX.
3421   query_multipage_support();
3422 
3423   // Act like we only have one page size by eliminating corner cases which
3424   // we did not support very well anyway.
3425   // We have two input conditions:
3426   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3427   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3428   //    setting.
3429   //    Data segment page size is important for us because it defines the thread stack page
3430   //    size, which is needed for guard page handling, stack banging etc.
3431   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3432   //    and should be allocated with 64k pages.
3433   //
3434   // So, we do the following:
3435   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3436   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3437   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3438   // 64k          no              --- AIX 5.2 ? ---
3439   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3440 
3441   // We explicitly leave no option to change page size, because only upgrading would work,
3442   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3443 
3444   if (g_multipage_support.datapsize == SIZE_4K) {
3445     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3446     if (g_multipage_support.can_use_64K_pages) {
3447       // .. but we are able to use 64K pages dynamically.
3448       // This would be typical for java launchers which are not linked
3449       // with datapsize=64K (like, any other launcher but our own).
3450       //
3451       // In this case it would be smart to allocate the java heap with 64K
3452       // to get the performance benefit, and to fake 64k pages for the
3453       // data segment (when dealing with thread stacks).
3454       //
3455       // However, leave a possibility to downgrade to 4K, using
3456       // -XX:-Use64KPages.
3457       if (Use64KPages) {
3458         trcVerbose("64K page mode (faked for data segment)");
3459         Aix::_page_size = SIZE_64K;
3460       } else {
3461         trcVerbose("4K page mode (Use64KPages=off)");
3462         Aix::_page_size = SIZE_4K;
3463       }
3464     } else {
3465       // .. and not able to allocate 64k pages dynamically. Here, just
3466       // fall back to 4K paged mode and use mmap for everything.
3467       trcVerbose("4K page mode");
3468       Aix::_page_size = SIZE_4K;
3469       FLAG_SET_ERGO(bool, Use64KPages, false);
3470     }
3471   } else {
3472     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3473     //   This normally means that we can allocate 64k pages dynamically.
3474     //   (There is one special case where this may be false: EXTSHM=on.
3475     //    but we decided to not support that mode).
3476     assert0(g_multipage_support.can_use_64K_pages);
3477     Aix::_page_size = SIZE_64K;
3478     trcVerbose("64K page mode");
3479     FLAG_SET_ERGO(bool, Use64KPages, true);
3480   }
3481 
3482   // Short-wire stack page size to base page size; if that works, we just remove
3483   // that stack page size altogether.
3484   Aix::_stack_page_size = Aix::_page_size;
3485 
3486   // For now UseLargePages is just ignored.
3487   FLAG_SET_ERGO(bool, UseLargePages, false);
3488   _page_sizes[0] = 0;
3489 
3490   // debug trace
3491   trcVerbose("os::vm_page_size %s\n", describe_pagesize(os::vm_page_size()));
3492 
3493   // Next, we need to initialize libo4 and libperfstat libraries.
3494   if (os::Aix::on_pase()) {
3495     os::Aix::initialize_libo4();
3496   } else {
3497     os::Aix::initialize_libperfstat();
3498   }
3499 
3500   // Reset the perfstat information provided by ODM.
3501   if (os::Aix::on_aix()) {
3502     libperfstat::perfstat_reset();
3503   }
3504 
3505   // Now initialze basic system properties. Note that for some of the values we
3506   // need libperfstat etc.
3507   os::Aix::initialize_system_info();
3508 
3509   _initial_pid = getpid();
3510 
3511   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3512 
3513   init_random(1234567);
3514 
3515   ThreadCritical::initialize();
3516 
3517   // Main_thread points to the aboriginal thread.
3518   Aix::_main_thread = pthread_self();
3519 
3520   initial_time_count = os::elapsed_counter();
3521 
3522   // If the pagesize of the VM is greater than 8K determine the appropriate
3523   // number of initial guard pages. The user can change this with the
3524   // command line arguments, if needed.
3525   if (vm_page_size() > (int)Aix::vm_default_page_size()) {
3526     StackYellowPages = 1;
3527     StackRedPages = 1;
3528     StackShadowPages = round_to((StackShadowPages*Aix::vm_default_page_size()), vm_page_size()) / vm_page_size();
3529   }
3530 }
3531 
3532 // This is called _after_ the global arguments have been parsed.
3533 jint os::init_2(void) {
3534 
3535   trcVerbose("processor count: %d", os::_processor_count);
3536   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3537 
3538   // Initially build up the loaded dll map.
3539   LoadedLibraries::reload();
3540 
3541   const int page_size = Aix::page_size();
3542   const int map_size = page_size;
3543 
3544   address map_address = (address) MAP_FAILED;
3545   const int prot  = PROT_READ;
3546   const int flags = MAP_PRIVATE|MAP_ANONYMOUS;
3547 
3548   // Use optimized addresses for the polling page,
3549   // e.g. map it to a special 32-bit address.
3550   if (OptimizePollingPageLocation) {
3551     // architecture-specific list of address wishes:
3552     address address_wishes[] = {
3553       // AIX: addresses lower than 0x30000000 don't seem to work on AIX.
3554       // PPC64: all address wishes are non-negative 32 bit values where
3555       // the lower 16 bits are all zero. we can load these addresses
3556       // with a single ppc_lis instruction.
3557       (address) 0x30000000, (address) 0x31000000,
3558       (address) 0x32000000, (address) 0x33000000,
3559       (address) 0x40000000, (address) 0x41000000,
3560       (address) 0x42000000, (address) 0x43000000,
3561       (address) 0x50000000, (address) 0x51000000,
3562       (address) 0x52000000, (address) 0x53000000,
3563       (address) 0x60000000, (address) 0x61000000,
3564       (address) 0x62000000, (address) 0x63000000
3565     };
3566     int address_wishes_length = sizeof(address_wishes)/sizeof(address);
3567 
3568     // iterate over the list of address wishes:
3569     for (int i=0; i<address_wishes_length; i++) {
3570       // Try to map with current address wish.
3571       // AIX: AIX needs MAP_FIXED if we provide an address and mmap will
3572       // fail if the address is already mapped.
3573       map_address = (address) ::mmap(address_wishes[i] - (ssize_t)page_size,
3574                                      map_size, prot,
3575                                      flags | MAP_FIXED,
3576                                      -1, 0);
3577       if (Verbose) {
3578         fprintf(stderr, "SafePoint Polling Page address: %p (wish) => %p\n",
3579                 address_wishes[i], map_address + (ssize_t)page_size);
3580       }
3581 
3582       if (map_address + (ssize_t)page_size == address_wishes[i]) {
3583         // Map succeeded and map_address is at wished address, exit loop.
3584         break;
3585       }
3586 
3587       if (map_address != (address) MAP_FAILED) {
3588         // Map succeeded, but polling_page is not at wished address, unmap and continue.
3589         ::munmap(map_address, map_size);
3590         map_address = (address) MAP_FAILED;
3591       }
3592       // Map failed, continue loop.
3593     }
3594   } // end OptimizePollingPageLocation
3595 
3596   if (map_address == (address) MAP_FAILED) {
3597     map_address = (address) ::mmap(NULL, map_size, prot, flags, -1, 0);
3598   }
3599   guarantee(map_address != MAP_FAILED, "os::init_2: failed to allocate polling page");
3600   os::set_polling_page(map_address);
3601 
3602   if (!UseMembar) {
3603     address mem_serialize_page = (address) ::mmap(NULL, Aix::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3604     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3605     os::set_memory_serialize_page(mem_serialize_page);
3606 
3607 #ifndef PRODUCT
3608     if (Verbose && PrintMiscellaneous) {
3609       tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3610     }
3611 #endif
3612   }
3613 
3614   // initialize suspend/resume support - must do this before signal_sets_init()
3615   if (SR_initialize() != 0) {
3616     perror("SR_initialize failed");
3617     return JNI_ERR;
3618   }
3619 
3620   Aix::signal_sets_init();
3621   Aix::install_signal_handlers();
3622 
3623   // Check minimum allowable stack size for thread creation and to initialize
3624   // the java system classes, including StackOverflowError - depends on page
3625   // size. Add a page for compiler2 recursion in main thread.
3626   // Add in 2*BytesPerWord times page size to account for VM stack during
3627   // class initialization depending on 32 or 64 bit VM.
3628   os::Aix::min_stack_allowed = MAX2(os::Aix::min_stack_allowed,
3629             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Aix::page_size() +
3630                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Aix::vm_default_page_size());
3631 
3632   os::Aix::min_stack_allowed = align_size_up(os::Aix::min_stack_allowed, os::Aix::page_size());
3633 
3634   size_t threadStackSizeInBytes = ThreadStackSize * K;
3635   if (threadStackSizeInBytes != 0 &&
3636       threadStackSizeInBytes < os::Aix::min_stack_allowed) {
3637     tty->print_cr("\nThe stack size specified is too small, "
3638                   "Specify at least %dk",
3639                   os::Aix::min_stack_allowed / K);
3640     return JNI_ERR;
3641   }
3642 
3643   // Make the stack size a multiple of the page size so that
3644   // the yellow/red zones can be guarded.
3645   // Note that this can be 0, if no default stacksize was set.
3646   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size()));
3647 
3648   Aix::libpthread_init();
3649 
3650   if (MaxFDLimit) {
3651     // Set the number of file descriptors to max. print out error
3652     // if getrlimit/setrlimit fails but continue regardless.
3653     struct rlimit nbr_files;
3654     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3655     if (status != 0) {
3656       if (PrintMiscellaneous && (Verbose || WizardMode))
3657         perror("os::init_2 getrlimit failed");
3658     } else {
3659       nbr_files.rlim_cur = nbr_files.rlim_max;
3660       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3661       if (status != 0) {
3662         if (PrintMiscellaneous && (Verbose || WizardMode))
3663           perror("os::init_2 setrlimit failed");
3664       }
3665     }
3666   }
3667 
3668   if (PerfAllowAtExitRegistration) {
3669     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3670     // Atexit functions can be delayed until process exit time, which
3671     // can be problematic for embedded VM situations. Embedded VMs should
3672     // call DestroyJavaVM() to assure that VM resources are released.
3673 
3674     // Note: perfMemory_exit_helper atexit function may be removed in
3675     // the future if the appropriate cleanup code can be added to the
3676     // VM_Exit VMOperation's doit method.
3677     if (atexit(perfMemory_exit_helper) != 0) {
3678       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3679     }
3680   }
3681 
3682   return JNI_OK;
3683 }
3684 
3685 // Mark the polling page as unreadable
3686 void os::make_polling_page_unreadable(void) {
3687   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3688     fatal("Could not disable polling page");
3689   }
3690 };
3691 
3692 // Mark the polling page as readable
3693 void os::make_polling_page_readable(void) {
3694   // Changed according to os_linux.cpp.
3695   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3696     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3697   }
3698 };
3699 
3700 int os::active_processor_count() {
3701   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3702   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3703   return online_cpus;
3704 }
3705 
3706 void os::set_native_thread_name(const char *name) {
3707   // Not yet implemented.
3708   return;
3709 }
3710 
3711 bool os::distribute_processes(uint length, uint* distribution) {
3712   // Not yet implemented.
3713   return false;
3714 }
3715 
3716 bool os::bind_to_processor(uint processor_id) {
3717   // Not yet implemented.
3718   return false;
3719 }
3720 
3721 void os::SuspendedThreadTask::internal_do_task() {
3722   if (do_suspend(_thread->osthread())) {
3723     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3724     do_task(context);
3725     do_resume(_thread->osthread());
3726   }
3727 }
3728 
3729 class PcFetcher : public os::SuspendedThreadTask {
3730 public:
3731   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3732   ExtendedPC result();
3733 protected:
3734   void do_task(const os::SuspendedThreadTaskContext& context);
3735 private:
3736   ExtendedPC _epc;
3737 };
3738 
3739 ExtendedPC PcFetcher::result() {
3740   guarantee(is_done(), "task is not done yet.");
3741   return _epc;
3742 }
3743 
3744 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3745   Thread* thread = context.thread();
3746   OSThread* osthread = thread->osthread();
3747   if (osthread->ucontext() != NULL) {
3748     _epc = os::Aix::ucontext_get_pc((ucontext_t *) context.ucontext());
3749   } else {
3750     // NULL context is unexpected, double-check this is the VMThread.
3751     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3752   }
3753 }
3754 
3755 // Suspends the target using the signal mechanism and then grabs the PC before
3756 // resuming the target. Used by the flat-profiler only
3757 ExtendedPC os::get_thread_pc(Thread* thread) {
3758   // Make sure that it is called by the watcher for the VMThread.
3759   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3760   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3761 
3762   PcFetcher fetcher(thread);
3763   fetcher.run();
3764   return fetcher.result();
3765 }
3766 
3767 ////////////////////////////////////////////////////////////////////////////////
3768 // debug support
3769 
3770 static address same_page(address x, address y) {
3771   intptr_t page_bits = -os::vm_page_size();
3772   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3773     return x;
3774   else if (x > y)
3775     return (address)(intptr_t(y) | ~page_bits) + 1;
3776   else
3777     return (address)(intptr_t(y) & page_bits);
3778 }
3779 
3780 bool os::find(address addr, outputStream* st) {
3781 
3782   st->print(PTR_FORMAT ": ", addr);
3783 
3784   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
3785   if (lib) {
3786     lib->print(st);
3787     return true;
3788   } else {
3789     lib = LoadedLibraries::find_for_data_address(addr);
3790     if (lib) {
3791       lib->print(st);
3792       return true;
3793     } else {
3794       st->print_cr("(outside any module)");
3795     }
3796   }
3797 
3798   return false;
3799 }
3800 
3801 ////////////////////////////////////////////////////////////////////////////////
3802 // misc
3803 
3804 // This does not do anything on Aix. This is basically a hook for being
3805 // able to use structured exception handling (thread-local exception filters)
3806 // on, e.g., Win32.
3807 void
3808 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3809                          JavaCallArguments* args, Thread* thread) {
3810   f(value, method, args, thread);
3811 }
3812 
3813 void os::print_statistics() {
3814 }
3815 
3816 int os::message_box(const char* title, const char* message) {
3817   int i;
3818   fdStream err(defaultStream::error_fd());
3819   for (i = 0; i < 78; i++) err.print_raw("=");
3820   err.cr();
3821   err.print_raw_cr(title);
3822   for (i = 0; i < 78; i++) err.print_raw("-");
3823   err.cr();
3824   err.print_raw_cr(message);
3825   for (i = 0; i < 78; i++) err.print_raw("=");
3826   err.cr();
3827 
3828   char buf[16];
3829   // Prevent process from exiting upon "read error" without consuming all CPU
3830   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3831 
3832   return buf[0] == 'y' || buf[0] == 'Y';
3833 }
3834 
3835 int os::stat(const char *path, struct stat *sbuf) {
3836   char pathbuf[MAX_PATH];
3837   if (strlen(path) > MAX_PATH - 1) {
3838     errno = ENAMETOOLONG;
3839     return -1;
3840   }
3841   os::native_path(strcpy(pathbuf, path));
3842   return ::stat(pathbuf, sbuf);
3843 }
3844 
3845 bool os::check_heap(bool force) {
3846   return true;
3847 }
3848 
3849 // Is a (classpath) directory empty?
3850 bool os::dir_is_empty(const char* path) {
3851   DIR *dir = NULL;
3852   struct dirent *ptr;
3853 
3854   dir = opendir(path);
3855   if (dir == NULL) return true;
3856 
3857   /* Scan the directory */
3858   bool result = true;
3859   char buf[sizeof(struct dirent) + MAX_PATH];
3860   while (result && (ptr = ::readdir(dir)) != NULL) {
3861     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3862       result = false;
3863     }
3864   }
3865   closedir(dir);
3866   return result;
3867 }
3868 
3869 // This code originates from JDK's sysOpen and open64_w
3870 // from src/solaris/hpi/src/system_md.c
3871 
3872 int os::open(const char *path, int oflag, int mode) {
3873 
3874   if (strlen(path) > MAX_PATH - 1) {
3875     errno = ENAMETOOLONG;
3876     return -1;
3877   }
3878   int fd;
3879 
3880   fd = ::open64(path, oflag, mode);
3881   if (fd == -1) return -1;
3882 
3883   // If the open succeeded, the file might still be a directory.
3884   {
3885     struct stat64 buf64;
3886     int ret = ::fstat64(fd, &buf64);
3887     int st_mode = buf64.st_mode;
3888 
3889     if (ret != -1) {
3890       if ((st_mode & S_IFMT) == S_IFDIR) {
3891         errno = EISDIR;
3892         ::close(fd);
3893         return -1;
3894       }
3895     } else {
3896       ::close(fd);
3897       return -1;
3898     }
3899   }
3900 
3901   // All file descriptors that are opened in the JVM and not
3902   // specifically destined for a subprocess should have the
3903   // close-on-exec flag set. If we don't set it, then careless 3rd
3904   // party native code might fork and exec without closing all
3905   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3906   // UNIXProcess.c), and this in turn might:
3907   //
3908   // - cause end-of-file to fail to be detected on some file
3909   //   descriptors, resulting in mysterious hangs, or
3910   //
3911   // - might cause an fopen in the subprocess to fail on a system
3912   //   suffering from bug 1085341.
3913   //
3914   // (Yes, the default setting of the close-on-exec flag is a Unix
3915   // design flaw.)
3916   //
3917   // See:
3918   // 1085341: 32-bit stdio routines should support file descriptors >255
3919   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3920   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3921 #ifdef FD_CLOEXEC
3922   {
3923     int flags = ::fcntl(fd, F_GETFD);
3924     if (flags != -1)
3925       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3926   }
3927 #endif
3928 
3929   return fd;
3930 }
3931 
3932 // create binary file, rewriting existing file if required
3933 int os::create_binary_file(const char* path, bool rewrite_existing) {
3934   int oflags = O_WRONLY | O_CREAT;
3935   if (!rewrite_existing) {
3936     oflags |= O_EXCL;
3937   }
3938   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3939 }
3940 
3941 // return current position of file pointer
3942 jlong os::current_file_offset(int fd) {
3943   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3944 }
3945 
3946 // move file pointer to the specified offset
3947 jlong os::seek_to_file_offset(int fd, jlong offset) {
3948   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3949 }
3950 
3951 // This code originates from JDK's sysAvailable
3952 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3953 
3954 int os::available(int fd, jlong *bytes) {
3955   jlong cur, end;
3956   int mode;
3957   struct stat64 buf64;
3958 
3959   if (::fstat64(fd, &buf64) >= 0) {
3960     mode = buf64.st_mode;
3961     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3962       int n;
3963       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3964         *bytes = n;
3965         return 1;
3966       }
3967     }
3968   }
3969   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3970     return 0;
3971   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3972     return 0;
3973   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3974     return 0;
3975   }
3976   *bytes = end - cur;
3977   return 1;
3978 }
3979 
3980 // Map a block of memory.
3981 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3982                         char *addr, size_t bytes, bool read_only,
3983                         bool allow_exec) {
3984   int prot;
3985   int flags = MAP_PRIVATE;
3986 
3987   if (read_only) {
3988     prot = PROT_READ;
3989     flags = MAP_SHARED;
3990   } else {
3991     prot = PROT_READ | PROT_WRITE;
3992     flags = MAP_PRIVATE;
3993   }
3994 
3995   if (allow_exec) {
3996     prot |= PROT_EXEC;
3997   }
3998 
3999   if (addr != NULL) {
4000     flags |= MAP_FIXED;
4001   }
4002 
4003   // Allow anonymous mappings if 'fd' is -1.
4004   if (fd == -1) {
4005     flags |= MAP_ANONYMOUS;
4006   }
4007 
4008   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
4009                                      fd, file_offset);
4010   if (mapped_address == MAP_FAILED) {
4011     return NULL;
4012   }
4013   return mapped_address;
4014 }
4015 
4016 // Remap a block of memory.
4017 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4018                           char *addr, size_t bytes, bool read_only,
4019                           bool allow_exec) {
4020   // same as map_memory() on this OS
4021   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4022                         allow_exec);
4023 }
4024 
4025 // Unmap a block of memory.
4026 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4027   return munmap(addr, bytes) == 0;
4028 }
4029 
4030 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4031 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4032 // of a thread.
4033 //
4034 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4035 // the fast estimate available on the platform.
4036 
4037 jlong os::current_thread_cpu_time() {
4038   // return user + sys since the cost is the same
4039   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
4040   assert(n >= 0, "negative CPU time");
4041   return n;
4042 }
4043 
4044 jlong os::thread_cpu_time(Thread* thread) {
4045   // consistent with what current_thread_cpu_time() returns
4046   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
4047   assert(n >= 0, "negative CPU time");
4048   return n;
4049 }
4050 
4051 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4052   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4053   assert(n >= 0, "negative CPU time");
4054   return n;
4055 }
4056 
4057 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
4058   bool error = false;
4059 
4060   jlong sys_time = 0;
4061   jlong user_time = 0;
4062 
4063   // Reimplemented using getthrds64().
4064   //
4065   // Works like this:
4066   // For the thread in question, get the kernel thread id. Then get the
4067   // kernel thread statistics using that id.
4068   //
4069   // This only works of course when no pthread scheduling is used,
4070   // i.e. there is a 1:1 relationship to kernel threads.
4071   // On AIX, see AIXTHREAD_SCOPE variable.
4072 
4073   pthread_t pthtid = thread->osthread()->pthread_id();
4074 
4075   // retrieve kernel thread id for the pthread:
4076   tid64_t tid = 0;
4077   struct __pthrdsinfo pinfo;
4078   // I just love those otherworldly IBM APIs which force me to hand down
4079   // dummy buffers for stuff I dont care for...
4080   char dummy[1];
4081   int dummy_size = sizeof(dummy);
4082   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
4083                           dummy, &dummy_size) == 0) {
4084     tid = pinfo.__pi_tid;
4085   } else {
4086     tty->print_cr("pthread_getthrds_np failed.");
4087     error = true;
4088   }
4089 
4090   // retrieve kernel timing info for that kernel thread
4091   if (!error) {
4092     struct thrdentry64 thrdentry;
4093     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
4094       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
4095       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
4096     } else {
4097       tty->print_cr("pthread_getthrds_np failed.");
4098       error = true;
4099     }
4100   }
4101 
4102   if (p_sys_time) {
4103     *p_sys_time = sys_time;
4104   }
4105 
4106   if (p_user_time) {
4107     *p_user_time = user_time;
4108   }
4109 
4110   if (error) {
4111     return false;
4112   }
4113 
4114   return true;
4115 }
4116 
4117 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4118   jlong sys_time;
4119   jlong user_time;
4120 
4121   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
4122     return -1;
4123   }
4124 
4125   return user_sys_cpu_time ? sys_time + user_time : user_time;
4126 }
4127 
4128 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4129   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4130   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4131   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4132   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4133 }
4134 
4135 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4136   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4137   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4138   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4139   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4140 }
4141 
4142 bool os::is_thread_cpu_time_supported() {
4143   return true;
4144 }
4145 
4146 // System loadavg support. Returns -1 if load average cannot be obtained.
4147 // For now just return the system wide load average (no processor sets).
4148 int os::loadavg(double values[], int nelem) {
4149 
4150   // Implemented using libperfstat on AIX.
4151 
4152   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4153   guarantee(values, "argument error");
4154 
4155   if (os::Aix::on_pase()) {
4156     Unimplemented();
4157     return -1;
4158   } else {
4159     // AIX: use libperfstat
4160     //
4161     // See also:
4162     // http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_cputot.htm
4163     // /usr/include/libperfstat.h:
4164 
4165     // Use the already AIX version independent get_cpuinfo.
4166     os::Aix::cpuinfo_t ci;
4167     if (os::Aix::get_cpuinfo(&ci)) {
4168       for (int i = 0; i < nelem; i++) {
4169         values[i] = ci.loadavg[i];
4170       }
4171     } else {
4172       return -1;
4173     }
4174     return nelem;
4175   }
4176 }
4177 
4178 void os::pause() {
4179   char filename[MAX_PATH];
4180   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4181     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4182   } else {
4183     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4184   }
4185 
4186   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4187   if (fd != -1) {
4188     struct stat buf;
4189     ::close(fd);
4190     while (::stat(filename, &buf) == 0) {
4191       (void)::poll(NULL, 0, 100);
4192     }
4193   } else {
4194     jio_fprintf(stderr,
4195       "Could not open pause file '%s', continuing immediately.\n", filename);
4196   }
4197 }
4198 
4199 bool os::Aix::is_primordial_thread() {
4200   if (pthread_self() == (pthread_t)1) {
4201     return true;
4202   } else {
4203     return false;
4204   }
4205 }
4206 
4207 // OS recognitions (PASE/AIX, OS level) call this before calling any
4208 // one of Aix::on_pase(), Aix::os_version() static
4209 void os::Aix::initialize_os_info() {
4210 
4211   assert(_on_pase == -1 && _os_version == -1, "already called.");
4212 
4213   struct utsname uts;
4214   memset(&uts, 0, sizeof(uts));
4215   strcpy(uts.sysname, "?");
4216   if (::uname(&uts) == -1) {
4217     trc("uname failed (%d)", errno);
4218     guarantee(0, "Could not determine whether we run on AIX or PASE");
4219   } else {
4220     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4221                "node \"%s\" machine \"%s\"\n",
4222                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4223     const int major = atoi(uts.version);
4224     assert(major > 0, "invalid OS version");
4225     const int minor = atoi(uts.release);
4226     assert(minor > 0, "invalid OS release");
4227     _os_version = (major << 8) | minor;
4228     if (strcmp(uts.sysname, "OS400") == 0) {
4229       Unimplemented();
4230     } else if (strcmp(uts.sysname, "AIX") == 0) {
4231       // We run on AIX. We do not support versions older than AIX 5.3.
4232       _on_pase = 0;
4233       if (_os_version < 0x0503) {
4234         trc("AIX release older than AIX 5.3 not supported.");
4235         assert(false, "AIX release too old.");
4236       } else {
4237         trcVerbose("We run on AIX %d.%d\n", major, minor);
4238       }
4239     } else {
4240       assert(false, "unknown OS");
4241     }
4242   }
4243 
4244   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4245 } // end: os::Aix::initialize_os_info()
4246 
4247 // Scan environment for important settings which might effect the VM.
4248 // Trace out settings. Warn about invalid settings and/or correct them.
4249 //
4250 // Must run after os::Aix::initialue_os_info().
4251 void os::Aix::scan_environment() {
4252 
4253   char* p;
4254   int rc;
4255 
4256   // Warn explicity if EXTSHM=ON is used. That switch changes how
4257   // System V shared memory behaves. One effect is that page size of
4258   // shared memory cannot be change dynamically, effectivly preventing
4259   // large pages from working.
4260   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4261   // recommendation is (in OSS notes) to switch it off.
4262   p = ::getenv("EXTSHM");
4263   if (Verbose) {
4264     fprintf(stderr, "EXTSHM=%s.\n", p ? p : "<unset>");
4265   }
4266   if (p && strcasecmp(p, "ON") == 0) {
4267     fprintf(stderr, "Unsupported setting: EXTSHM=ON. Large Page support will be disabled.\n");
4268     _extshm = 1;
4269   } else {
4270     _extshm = 0;
4271   }
4272 
4273   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4274   // Not tested, not supported.
4275   //
4276   // Note that it might be worth the trouble to test and to require it, if only to
4277   // get useful return codes for mprotect.
4278   //
4279   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4280   // exec() ? before loading the libjvm ? ....)
4281   p = ::getenv("XPG_SUS_ENV");
4282   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4283   if (p && strcmp(p, "ON") == 0) {
4284     _xpg_sus_mode = 1;
4285     trc("Unsupported setting: XPG_SUS_ENV=ON");
4286     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4287     // clobber address ranges. If we ever want to support that, we have to do some
4288     // testing first.
4289     guarantee(false, "XPG_SUS_ENV=ON not supported");
4290   } else {
4291     _xpg_sus_mode = 0;
4292   }
4293 
4294   // Switch off AIX internal (pthread) guard pages. This has
4295   // immediate effect for any pthread_create calls which follow.
4296   p = ::getenv("AIXTHREAD_GUARDPAGES");
4297   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4298   rc = ::putenv("AIXTHREAD_GUARDPAGES=0");
4299   guarantee(rc == 0, "");
4300 
4301 } // end: os::Aix::scan_environment()
4302 
4303 // PASE: initialize the libo4 library (AS400 PASE porting library).
4304 void os::Aix::initialize_libo4() {
4305   Unimplemented();
4306 }
4307 
4308 // AIX: initialize the libperfstat library (we load this dynamically
4309 // because it is only available on AIX.
4310 void os::Aix::initialize_libperfstat() {
4311 
4312   assert(os::Aix::on_aix(), "AIX only");
4313 
4314   if (!libperfstat::init()) {
4315     trc("libperfstat initialization failed.");
4316     assert(false, "libperfstat initialization failed");
4317   } else {
4318     if (Verbose) {
4319       fprintf(stderr, "libperfstat initialized.\n");
4320     }
4321   }
4322 } // end: os::Aix::initialize_libperfstat
4323 
4324 /////////////////////////////////////////////////////////////////////////////
4325 // thread stack
4326 
4327 // Function to query the current stack size using pthread_getthrds_np.
4328 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size) {
4329   // This only works when invoked on a pthread. As we agreed not to use
4330   // primordial threads anyway, I assert here.
4331   guarantee(!os::Aix::is_primordial_thread(), "not allowed on the primordial thread");
4332 
4333   // Information about this api can be found (a) in the pthread.h header and
4334   // (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm
4335   //
4336   // The use of this API to find out the current stack is kind of undefined.
4337   // But after a lot of tries and asking IBM about it, I concluded that it is safe
4338   // enough for cases where I let the pthread library create its stacks. For cases
4339   // where I create an own stack and pass this to pthread_create, it seems not to
4340   // work (the returned stack size in that case is 0).
4341 
4342   pthread_t tid = pthread_self();
4343   struct __pthrdsinfo pinfo;
4344   char dummy[1]; // We only need this to satisfy the api and to not get E.
4345   int dummy_size = sizeof(dummy);
4346 
4347   memset(&pinfo, 0, sizeof(pinfo));
4348 
4349   const int rc = pthread_getthrds_np(&tid, PTHRDSINFO_QUERY_ALL, &pinfo,
4350                                      sizeof(pinfo), dummy, &dummy_size);
4351 
4352   if (rc != 0) {
4353     assert0(false);
4354     trcVerbose("pthread_getthrds_np failed (%d)", rc);
4355     return false;
4356   }
4357   guarantee0(pinfo.__pi_stackend);
4358 
4359   // The following can happen when invoking pthread_getthrds_np on a pthread running
4360   // on a user provided stack (when handing down a stack to pthread create, see
4361   // pthread_attr_setstackaddr).
4362   // Not sure what to do here - I feel inclined to forbid this use case completely.
4363   guarantee0(pinfo.__pi_stacksize);
4364 
4365   // Note: the pthread stack on AIX seems to look like this:
4366   //
4367   // ---------------------   real base ? at page border ?
4368   //
4369   //     pthread internal data, like ~2K, see also
4370   //     http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/thread_supp_tun_params.htm
4371   //
4372   // ---------------------   __pi_stackend - not page aligned, (xxxxF890)
4373   //
4374   //     stack
4375   //      ....
4376   //
4377   //     stack
4378   //
4379   // ---------------------   __pi_stackend  - __pi_stacksize
4380   //
4381   //     padding due to AIX guard pages (?) see AIXTHREAD_GUARDPAGES
4382   // ---------------------   __pi_stackaddr  (page aligned if AIXTHREAD_GUARDPAGES > 0)
4383   //
4384   //   AIX guard pages (?)
4385   //
4386 
4387   // So, the safe thing to do is to use the area from __pi_stackend to __pi_stackaddr;
4388   // __pi_stackend however is almost never page aligned.
4389   //
4390 
4391   if (p_stack_base) {
4392     (*p_stack_base) = (address) (pinfo.__pi_stackend);
4393   }
4394 
4395   if (p_stack_size) {
4396     (*p_stack_size) = pinfo.__pi_stackend - pinfo.__pi_stackaddr;
4397   }
4398 
4399   return true;
4400 }
4401 
4402 // Get the current stack base from the OS (actually, the pthread library).
4403 address os::current_stack_base() {
4404   address p;
4405   query_stack_dimensions(&p, 0);
4406   return p;
4407 }
4408 
4409 // Get the current stack size from the OS (actually, the pthread library).
4410 size_t os::current_stack_size() {
4411   size_t s;
4412   query_stack_dimensions(0, &s);
4413   return s;
4414 }
4415 
4416 // Refer to the comments in os_solaris.cpp park-unpark.
4417 //
4418 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4419 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4420 // For specifics regarding the bug see GLIBC BUGID 261237 :
4421 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4422 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4423 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4424 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
4425 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4426 // and monitorenter when we're using 1-0 locking. All those operations may result in
4427 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
4428 // of libpthread avoids the problem, but isn't practical.
4429 //
4430 // Possible remedies:
4431 //
4432 // 1.   Establish a minimum relative wait time. 50 to 100 msecs seems to work.
4433 //      This is palliative and probabilistic, however. If the thread is preempted
4434 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4435 //      than the minimum period may have passed, and the abstime may be stale (in the
4436 //      past) resultin in a hang. Using this technique reduces the odds of a hang
4437 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4438 //
4439 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4440 //      of the usual flag-condvar-mutex idiom. The write side of the pipe is set
4441 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4442 //      reduces to poll()+read(). This works well, but consumes 2 FDs per extant
4443 //      thread.
4444 //
4445 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4446 //      that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
4447 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4448 //      This also works well. In fact it avoids kernel-level scalability impediments
4449 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4450 //      timers in a graceful fashion.
4451 //
4452 // 4.   When the abstime value is in the past it appears that control returns
4453 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4454 //      Subsequent timedwait/wait calls may hang indefinitely. Given that, we
4455 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4456 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4457 //      It may be possible to avoid reinitialization by checking the return
4458 //      value from pthread_cond_timedwait(). In addition to reinitializing the
4459 //      condvar we must establish the invariant that cond_signal() is only called
4460 //      within critical sections protected by the adjunct mutex. This prevents
4461 //      cond_signal() from "seeing" a condvar that's in the midst of being
4462 //      reinitialized or that is corrupt. Sadly, this invariant obviates the
4463 //      desirable signal-after-unlock optimization that avoids futile context switching.
4464 //
4465 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4466 //      structure when a condvar is used or initialized. cond_destroy() would
4467 //      release the helper structure. Our reinitialize-after-timedwait fix
4468 //      put excessive stress on malloc/free and locks protecting the c-heap.
4469 //
4470 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
4471 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4472 // and only enabling the work-around for vulnerable environments.
4473 
4474 // utility to compute the abstime argument to timedwait:
4475 // millis is the relative timeout time
4476 // abstime will be the absolute timeout time
4477 // TODO: replace compute_abstime() with unpackTime()
4478 
4479 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4480   if (millis < 0) millis = 0;
4481   struct timeval now;
4482   int status = gettimeofday(&now, NULL);
4483   assert(status == 0, "gettimeofday");
4484   jlong seconds = millis / 1000;
4485   millis %= 1000;
4486   if (seconds > 50000000) { // see man cond_timedwait(3T)
4487     seconds = 50000000;
4488   }
4489   abstime->tv_sec = now.tv_sec  + seconds;
4490   long       usec = now.tv_usec + millis * 1000;
4491   if (usec >= 1000000) {
4492     abstime->tv_sec += 1;
4493     usec -= 1000000;
4494   }
4495   abstime->tv_nsec = usec * 1000;
4496   return abstime;
4497 }
4498 
4499 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4500 // Conceptually TryPark() should be equivalent to park(0).
4501 
4502 int os::PlatformEvent::TryPark() {
4503   for (;;) {
4504     const int v = _Event;
4505     guarantee ((v == 0) || (v == 1), "invariant");
4506     if (Atomic::cmpxchg (0, &_Event, v) == v) return v;
4507   }
4508 }
4509 
4510 void os::PlatformEvent::park() {       // AKA "down()"
4511   // Invariant: Only the thread associated with the Event/PlatformEvent
4512   // may call park().
4513   // TODO: assert that _Assoc != NULL or _Assoc == Self
4514   int v;
4515   for (;;) {
4516     v = _Event;
4517     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4518   }
4519   guarantee (v >= 0, "invariant");
4520   if (v == 0) {
4521     // Do this the hard way by blocking ...
4522     int status = pthread_mutex_lock(_mutex);
4523     assert_status(status == 0, status, "mutex_lock");
4524     guarantee (_nParked == 0, "invariant");
4525     ++ _nParked;
4526     while (_Event < 0) {
4527       status = pthread_cond_wait(_cond, _mutex);
4528       assert_status(status == 0 || status == ETIMEDOUT, status, "cond_timedwait");
4529     }
4530     -- _nParked;
4531 
4532     // In theory we could move the ST of 0 into _Event past the unlock(),
4533     // but then we'd need a MEMBAR after the ST.
4534     _Event = 0;
4535     status = pthread_mutex_unlock(_mutex);
4536     assert_status(status == 0, status, "mutex_unlock");
4537   }
4538   guarantee (_Event >= 0, "invariant");
4539 }
4540 
4541 int os::PlatformEvent::park(jlong millis) {
4542   guarantee (_nParked == 0, "invariant");
4543 
4544   int v;
4545   for (;;) {
4546     v = _Event;
4547     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4548   }
4549   guarantee (v >= 0, "invariant");
4550   if (v != 0) return OS_OK;
4551 
4552   // We do this the hard way, by blocking the thread.
4553   // Consider enforcing a minimum timeout value.
4554   struct timespec abst;
4555   compute_abstime(&abst, millis);
4556 
4557   int ret = OS_TIMEOUT;
4558   int status = pthread_mutex_lock(_mutex);
4559   assert_status(status == 0, status, "mutex_lock");
4560   guarantee (_nParked == 0, "invariant");
4561   ++_nParked;
4562 
4563   // Object.wait(timo) will return because of
4564   // (a) notification
4565   // (b) timeout
4566   // (c) thread.interrupt
4567   //
4568   // Thread.interrupt and object.notify{All} both call Event::set.
4569   // That is, we treat thread.interrupt as a special case of notification.
4570   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4571   // We assume all ETIME returns are valid.
4572   //
4573   // TODO: properly differentiate simultaneous notify+interrupt.
4574   // In that case, we should propagate the notify to another waiter.
4575 
4576   while (_Event < 0) {
4577     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4578     assert_status(status == 0 || status == ETIMEDOUT,
4579                   status, "cond_timedwait");
4580     if (!FilterSpuriousWakeups) break;         // previous semantics
4581     if (status == ETIMEDOUT) break;
4582     // We consume and ignore EINTR and spurious wakeups.
4583   }
4584   --_nParked;
4585   if (_Event >= 0) {
4586      ret = OS_OK;
4587   }
4588   _Event = 0;
4589   status = pthread_mutex_unlock(_mutex);
4590   assert_status(status == 0, status, "mutex_unlock");
4591   assert (_nParked == 0, "invariant");
4592   return ret;
4593 }
4594 
4595 void os::PlatformEvent::unpark() {
4596   int v, AnyWaiters;
4597   for (;;) {
4598     v = _Event;
4599     if (v > 0) {
4600       // The LD of _Event could have reordered or be satisfied
4601       // by a read-aside from this processor's write buffer.
4602       // To avoid problems execute a barrier and then
4603       // ratify the value.
4604       OrderAccess::fence();
4605       if (_Event == v) return;
4606       continue;
4607     }
4608     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break;
4609   }
4610   if (v < 0) {
4611     // Wait for the thread associated with the event to vacate
4612     int status = pthread_mutex_lock(_mutex);
4613     assert_status(status == 0, status, "mutex_lock");
4614     AnyWaiters = _nParked;
4615 
4616     if (AnyWaiters != 0) {
4617       // We intentional signal *after* dropping the lock
4618       // to avoid a common class of futile wakeups.
4619       status = pthread_cond_signal(_cond);
4620       assert_status(status == 0, status, "cond_signal");
4621     }
4622     // Mutex should be locked for pthread_cond_signal(_cond).
4623     status = pthread_mutex_unlock(_mutex);
4624     assert_status(status == 0, status, "mutex_unlock");
4625   }
4626 
4627   // Note that we signal() _after dropping the lock for "immortal" Events.
4628   // This is safe and avoids a common class of futile wakeups. In rare
4629   // circumstances this can cause a thread to return prematurely from
4630   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4631   // simply re-test the condition and re-park itself.
4632 }
4633 
4634 
4635 // JSR166
4636 // -------------------------------------------------------
4637 
4638 //
4639 // The solaris and linux implementations of park/unpark are fairly
4640 // conservative for now, but can be improved. They currently use a
4641 // mutex/condvar pair, plus a a count.
4642 // Park decrements count if > 0, else does a condvar wait. Unpark
4643 // sets count to 1 and signals condvar. Only one thread ever waits
4644 // on the condvar. Contention seen when trying to park implies that someone
4645 // is unparking you, so don't wait. And spurious returns are fine, so there
4646 // is no need to track notifications.
4647 //
4648 
4649 #define MAX_SECS 100000000
4650 //
4651 // This code is common to linux and solaris and will be moved to a
4652 // common place in dolphin.
4653 //
4654 // The passed in time value is either a relative time in nanoseconds
4655 // or an absolute time in milliseconds. Either way it has to be unpacked
4656 // into suitable seconds and nanoseconds components and stored in the
4657 // given timespec structure.
4658 // Given time is a 64-bit value and the time_t used in the timespec is only
4659 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4660 // overflow if times way in the future are given. Further on Solaris versions
4661 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4662 // number of seconds, in abstime, is less than current_time + 100,000,000.
4663 // As it will be 28 years before "now + 100000000" will overflow we can
4664 // ignore overflow and just impose a hard-limit on seconds using the value
4665 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4666 // years from "now".
4667 //
4668 
4669 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4670   assert (time > 0, "convertTime");
4671 
4672   struct timeval now;
4673   int status = gettimeofday(&now, NULL);
4674   assert(status == 0, "gettimeofday");
4675 
4676   time_t max_secs = now.tv_sec + MAX_SECS;
4677 
4678   if (isAbsolute) {
4679     jlong secs = time / 1000;
4680     if (secs > max_secs) {
4681       absTime->tv_sec = max_secs;
4682     }
4683     else {
4684       absTime->tv_sec = secs;
4685     }
4686     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4687   }
4688   else {
4689     jlong secs = time / NANOSECS_PER_SEC;
4690     if (secs >= MAX_SECS) {
4691       absTime->tv_sec = max_secs;
4692       absTime->tv_nsec = 0;
4693     }
4694     else {
4695       absTime->tv_sec = now.tv_sec + secs;
4696       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4697       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4698         absTime->tv_nsec -= NANOSECS_PER_SEC;
4699         ++absTime->tv_sec; // note: this must be <= max_secs
4700       }
4701     }
4702   }
4703   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4704   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4705   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4706   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4707 }
4708 
4709 void Parker::park(bool isAbsolute, jlong time) {
4710   // Optional fast-path check:
4711   // Return immediately if a permit is available.
4712   if (_counter > 0) {
4713     _counter = 0;
4714     OrderAccess::fence();
4715     return;
4716   }
4717 
4718   Thread* thread = Thread::current();
4719   assert(thread->is_Java_thread(), "Must be JavaThread");
4720   JavaThread *jt = (JavaThread *)thread;
4721 
4722   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4723   // Check interrupt before trying to wait
4724   if (Thread::is_interrupted(thread, false)) {
4725     return;
4726   }
4727 
4728   // Next, demultiplex/decode time arguments
4729   timespec absTime;
4730   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4731     return;
4732   }
4733   if (time > 0) {
4734     unpackTime(&absTime, isAbsolute, time);
4735   }
4736 
4737   // Enter safepoint region
4738   // Beware of deadlocks such as 6317397.
4739   // The per-thread Parker:: mutex is a classic leaf-lock.
4740   // In particular a thread must never block on the Threads_lock while
4741   // holding the Parker:: mutex. If safepoints are pending both the
4742   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4743   ThreadBlockInVM tbivm(jt);
4744 
4745   // Don't wait if cannot get lock since interference arises from
4746   // unblocking. Also. check interrupt before trying wait
4747   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4748     return;
4749   }
4750 
4751   int status;
4752   if (_counter > 0) { // no wait needed
4753     _counter = 0;
4754     status = pthread_mutex_unlock(_mutex);
4755     assert (status == 0, "invariant");
4756     OrderAccess::fence();
4757     return;
4758   }
4759 
4760 #ifdef ASSERT
4761   // Don't catch signals while blocked; let the running threads have the signals.
4762   // (This allows a debugger to break into the running thread.)
4763   sigset_t oldsigs;
4764   sigset_t* allowdebug_blocked = os::Aix::allowdebug_blocked_signals();
4765   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4766 #endif
4767 
4768   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4769   jt->set_suspend_equivalent();
4770   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4771 
4772   if (time == 0) {
4773     status = pthread_cond_wait (_cond, _mutex);
4774   } else {
4775     status = pthread_cond_timedwait (_cond, _mutex, &absTime);
4776     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4777       pthread_cond_destroy (_cond);
4778       pthread_cond_init    (_cond, NULL);
4779     }
4780   }
4781   assert_status(status == 0 || status == EINTR ||
4782                 status == ETIME || status == ETIMEDOUT,
4783                 status, "cond_timedwait");
4784 
4785 #ifdef ASSERT
4786   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4787 #endif
4788 
4789   _counter = 0;
4790   status = pthread_mutex_unlock(_mutex);
4791   assert_status(status == 0, status, "invariant");
4792   // If externally suspended while waiting, re-suspend
4793   if (jt->handle_special_suspend_equivalent_condition()) {
4794     jt->java_suspend_self();
4795   }
4796 
4797   OrderAccess::fence();
4798 }
4799 
4800 void Parker::unpark() {
4801   int s, status;
4802   status = pthread_mutex_lock(_mutex);
4803   assert (status == 0, "invariant");
4804   s = _counter;
4805   _counter = 1;
4806   if (s < 1) {
4807     if (WorkAroundNPTLTimedWaitHang) {
4808       status = pthread_cond_signal (_cond);
4809       assert (status == 0, "invariant");
4810       status = pthread_mutex_unlock(_mutex);
4811       assert (status == 0, "invariant");
4812     } else {
4813       status = pthread_mutex_unlock(_mutex);
4814       assert (status == 0, "invariant");
4815       status = pthread_cond_signal (_cond);
4816       assert (status == 0, "invariant");
4817     }
4818   } else {
4819     pthread_mutex_unlock(_mutex);
4820     assert (status == 0, "invariant");
4821   }
4822 }
4823 
4824 extern char** environ;
4825 
4826 // Run the specified command in a separate process. Return its exit value,
4827 // or -1 on failure (e.g. can't fork a new process).
4828 // Unlike system(), this function can be called from signal handler. It
4829 // doesn't block SIGINT et al.
4830 int os::fork_and_exec(char* cmd) {
4831   char * argv[4] = {"sh", "-c", cmd, NULL};
4832 
4833   pid_t pid = fork();
4834 
4835   if (pid < 0) {
4836     // fork failed
4837     return -1;
4838 
4839   } else if (pid == 0) {
4840     // child process
4841 
4842     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4843     execve("/usr/bin/sh", argv, environ);
4844 
4845     // execve failed
4846     _exit(-1);
4847 
4848   } else {
4849     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4850     // care about the actual exit code, for now.
4851 
4852     int status;
4853 
4854     // Wait for the child process to exit. This returns immediately if
4855     // the child has already exited. */
4856     while (waitpid(pid, &status, 0) < 0) {
4857       switch (errno) {
4858         case ECHILD: return 0;
4859         case EINTR: break;
4860         default: return -1;
4861       }
4862     }
4863 
4864     if (WIFEXITED(status)) {
4865       // The child exited normally; get its exit code.
4866       return WEXITSTATUS(status);
4867     } else if (WIFSIGNALED(status)) {
4868       // The child exited because of a signal.
4869       // The best value to return is 0x80 + signal number,
4870       // because that is what all Unix shells do, and because
4871       // it allows callers to distinguish between process exit and
4872       // process death by signal.
4873       return 0x80 + WTERMSIG(status);
4874     } else {
4875       // Unknown exit code; pass it through.
4876       return status;
4877     }
4878   }
4879   return -1;
4880 }
4881 
4882 // is_headless_jre()
4883 //
4884 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4885 // in order to report if we are running in a headless jre.
4886 //
4887 // Since JDK8 xawt/libmawt.so is moved into the same directory
4888 // as libawt.so, and renamed libawt_xawt.so
4889 bool os::is_headless_jre() {
4890   struct stat statbuf;
4891   char buf[MAXPATHLEN];
4892   char libmawtpath[MAXPATHLEN];
4893   const char *xawtstr = "/xawt/libmawt.so";
4894   const char *new_xawtstr = "/libawt_xawt.so";
4895 
4896   char *p;
4897 
4898   // Get path to libjvm.so
4899   os::jvm_path(buf, sizeof(buf));
4900 
4901   // Get rid of libjvm.so
4902   p = strrchr(buf, '/');
4903   if (p == NULL) return false;
4904   else *p = '\0';
4905 
4906   // Get rid of client or server
4907   p = strrchr(buf, '/');
4908   if (p == NULL) return false;
4909   else *p = '\0';
4910 
4911   // check xawt/libmawt.so
4912   strcpy(libmawtpath, buf);
4913   strcat(libmawtpath, xawtstr);
4914   if (::stat(libmawtpath, &statbuf) == 0) return false;
4915 
4916   // check libawt_xawt.so
4917   strcpy(libmawtpath, buf);
4918   strcat(libmawtpath, new_xawtstr);
4919   if (::stat(libmawtpath, &statbuf) == 0) return false;
4920 
4921   return true;
4922 }
4923 
4924 // Get the default path to the core file
4925 // Returns the length of the string
4926 int os::get_core_path(char* buffer, size_t bufferSize) {
4927   const char* p = get_current_directory(buffer, bufferSize);
4928 
4929   if (p == NULL) {
4930     assert(p != NULL, "failed to get current directory");
4931     return 0;
4932   }
4933 
4934   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4935                                                p, current_process_id());
4936 
4937   return strlen(buffer);
4938 }
4939 
4940 #ifndef PRODUCT
4941 void TestReserveMemorySpecial_test() {
4942   // No tests available for this platform
4943 }
4944 #endif