1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 # include <fpu_control.h>
  77 
  78 #ifdef AMD64
  79 #define REG_SP REG_RSP
  80 #define REG_PC REG_RIP
  81 #define REG_FP REG_RBP
  82 #define SPELL_REG_SP "rsp"
  83 #define SPELL_REG_FP "rbp"
  84 #else
  85 #define REG_SP REG_UESP
  86 #define REG_PC REG_EIP
  87 #define REG_FP REG_EBP
  88 #define SPELL_REG_SP "esp"
  89 #define SPELL_REG_FP "ebp"
  90 #endif // AMD64
  91 
  92 address os::current_stack_pointer() {
  93 #ifdef SPARC_WORKS
  94   register void *esp;
  95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  96   return (address) ((char*)esp + sizeof(long)*2);
  97 #elif defined(__clang__)
  98   intptr_t* esp;
  99   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 100   return (address) esp;
 101 #else
 102   register void *esp __asm__ (SPELL_REG_SP);
 103   return (address) esp;
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 void os::initialize_thread(Thread* thr) {
 116 // Nothing to do.
 117 }
 118 
 119 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 120   return (address)uc->uc_mcontext.gregs[REG_PC];
 121 }
 122 
 123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 124   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 129 }
 130 
 131 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 133 }
 134 
 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 136 // is currently interrupted by SIGPROF.
 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 138 // frames. Currently we don't do that on Linux, so it's the same as
 139 // os::fetch_frame_from_context().
 140 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 141   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 142 
 143   assert(thread != NULL, "just checking");
 144   assert(ret_sp != NULL, "just checking");
 145   assert(ret_fp != NULL, "just checking");
 146 
 147   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 148 }
 149 
 150 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 151                     intptr_t** ret_sp, intptr_t** ret_fp) {
 152 
 153   ExtendedPC  epc;
 154   ucontext_t* uc = (ucontext_t*)ucVoid;
 155 
 156   if (uc != NULL) {
 157     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 158     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 159     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 160   } else {
 161     // construct empty ExtendedPC for return value checking
 162     epc = ExtendedPC(NULL);
 163     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 164     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 165   }
 166 
 167   return epc;
 168 }
 169 
 170 frame os::fetch_frame_from_context(void* ucVoid) {
 171   intptr_t* sp;
 172   intptr_t* fp;
 173   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 174   return frame(sp, fp, epc.pc());
 175 }
 176 
 177 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 178 // turned off by -fomit-frame-pointer,
 179 frame os::get_sender_for_C_frame(frame* fr) {
 180   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 181 }
 182 
 183 intptr_t* _get_previous_fp() {
 184 #ifdef SPARC_WORKS
 185   register intptr_t **ebp;
 186   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 187 #elif defined(__clang__)
 188   intptr_t **ebp;
 189   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 190 #else
 191   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 192 #endif
 193   return (intptr_t*) *ebp;   // we want what it points to.
 194 }
 195 
 196 
 197 frame os::current_frame() {
 198   intptr_t* fp = _get_previous_fp();
 199   frame myframe((intptr_t*)os::current_stack_pointer(),
 200                 (intptr_t*)fp,
 201                 CAST_FROM_FN_PTR(address, os::current_frame));
 202   if (os::is_first_C_frame(&myframe)) {
 203     // stack is not walkable
 204     return frame();
 205   } else {
 206     return os::get_sender_for_C_frame(&myframe);
 207   }
 208 }
 209 
 210 // Utility functions
 211 
 212 // From IA32 System Programming Guide
 213 enum {
 214   trap_page_fault = 0xE
 215 };
 216 
 217 extern "C" JNIEXPORT int
 218 JVM_handle_linux_signal(int sig,
 219                         siginfo_t* info,
 220                         void* ucVoid,
 221                         int abort_if_unrecognized) {
 222   ucontext_t* uc = (ucontext_t*) ucVoid;
 223 
 224   Thread* t = ThreadLocalStorage::get_thread_slow();
 225 
 226   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 227   // (no destructors can be run)
 228   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 229 
 230   SignalHandlerMark shm(t);
 231 
 232   // Note: it's not uncommon that JNI code uses signal/sigset to install
 233   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 234   // or have a SIGILL handler when detecting CPU type). When that happens,
 235   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 236   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 237   // that do not require siginfo/ucontext first.
 238 
 239   if (sig == SIGPIPE || sig == SIGXFSZ) {
 240     // allow chained handler to go first
 241     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 242       return true;
 243     } else {
 244       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 245         char buf[64];
 246         warning("Ignoring %s - see bugs 4229104 or 646499219",
 247                 os::exception_name(sig, buf, sizeof(buf)));
 248       }
 249       return true;
 250     }
 251   }
 252 
 253   JavaThread* thread = NULL;
 254   VMThread* vmthread = NULL;
 255   if (os::Linux::signal_handlers_are_installed) {
 256     if (t != NULL ){
 257       if(t->is_Java_thread()) {
 258         thread = (JavaThread*)t;
 259       }
 260       else if(t->is_VM_thread()){
 261         vmthread = (VMThread *)t;
 262       }
 263     }
 264   }
 265 /*
 266   NOTE: does not seem to work on linux.
 267   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 268     // can't decode this kind of signal
 269     info = NULL;
 270   } else {
 271     assert(sig == info->si_signo, "bad siginfo");
 272   }
 273 */
 274   // decide if this trap can be handled by a stub
 275   address stub = NULL;
 276 
 277   address pc          = NULL;
 278 
 279   //%note os_trap_1
 280   if (info != NULL && uc != NULL && thread != NULL) {
 281     pc = (address) os::Linux::ucontext_get_pc(uc);
 282 
 283     if (StubRoutines::is_safefetch_fault(pc)) {
 284       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 285       return 1;
 286     }
 287 
 288 #ifndef AMD64
 289     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 290     // This can happen in any running code (currently more frequently in
 291     // interpreter code but has been seen in compiled code)
 292     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 293       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 294             "to unstable signal handling in this distribution.");
 295     }
 296 #endif // AMD64
 297 
 298     // Handle ALL stack overflow variations here
 299     if (sig == SIGSEGV) {
 300       address addr = (address) info->si_addr;
 301 
 302       // check if fault address is within thread stack
 303       if (addr < thread->stack_base() &&
 304           addr >= thread->stack_base() - thread->stack_size()) {
 305         // stack overflow
 306         if (thread->in_stack_yellow_zone(addr)) {
 307           thread->disable_stack_yellow_zone();
 308           if (thread->thread_state() == _thread_in_Java) {
 309             // Throw a stack overflow exception.  Guard pages will be reenabled
 310             // while unwinding the stack.
 311             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 312           } else {
 313             // Thread was in the vm or native code.  Return and try to finish.
 314             return 1;
 315           }
 316         } else if (thread->in_stack_red_zone(addr)) {
 317           // Fatal red zone violation.  Disable the guard pages and fall through
 318           // to handle_unexpected_exception way down below.
 319           thread->disable_stack_red_zone();
 320           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 321 
 322           // This is a likely cause, but hard to verify. Let's just print
 323           // it as a hint.
 324           tty->print_raw_cr("Please check if any of your loaded .so files has "
 325                             "enabled executable stack (see man page execstack(8))");
 326         } else {
 327           // Accessing stack address below sp may cause SEGV if current
 328           // thread has MAP_GROWSDOWN stack. This should only happen when
 329           // current thread was created by user code with MAP_GROWSDOWN flag
 330           // and then attached to VM. See notes in os_linux.cpp.
 331           if (thread->osthread()->expanding_stack() == 0) {
 332              thread->osthread()->set_expanding_stack();
 333              if (os::Linux::manually_expand_stack(thread, addr)) {
 334                thread->osthread()->clear_expanding_stack();
 335                return 1;
 336              }
 337              thread->osthread()->clear_expanding_stack();
 338           } else {
 339              fatal("recursive segv. expanding stack.");
 340           }
 341         }
 342       }
 343     }
 344 
 345     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 346       // Verify that OS save/restore AVX registers.
 347       stub = VM_Version::cpuinfo_cont_addr();
 348     }
 349 
 350     if (thread->thread_state() == _thread_in_Java) {
 351       // Java thread running in Java code => find exception handler if any
 352       // a fault inside compiled code, the interpreter, or a stub
 353 
 354       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 355         stub = SharedRuntime::get_poll_stub(pc);
 356       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 357         // BugId 4454115: A read from a MappedByteBuffer can fault
 358         // here if the underlying file has been truncated.
 359         // Do not crash the VM in such a case.
 360         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 361         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 362         if (nm != NULL && nm->has_unsafe_access()) {
 363           stub = StubRoutines::handler_for_unsafe_access();
 364         }
 365       }
 366       else
 367 
 368 #ifdef AMD64
 369       if (sig == SIGFPE  &&
 370           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 371         stub =
 372           SharedRuntime::
 373           continuation_for_implicit_exception(thread,
 374                                               pc,
 375                                               SharedRuntime::
 376                                               IMPLICIT_DIVIDE_BY_ZERO);
 377 #else
 378       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 379         // HACK: si_code does not work on linux 2.2.12-20!!!
 380         int op = pc[0];
 381         if (op == 0xDB) {
 382           // FIST
 383           // TODO: The encoding of D2I in i486.ad can cause an exception
 384           // prior to the fist instruction if there was an invalid operation
 385           // pending. We want to dismiss that exception. From the win_32
 386           // side it also seems that if it really was the fist causing
 387           // the exception that we do the d2i by hand with different
 388           // rounding. Seems kind of weird.
 389           // NOTE: that we take the exception at the NEXT floating point instruction.
 390           assert(pc[0] == 0xDB, "not a FIST opcode");
 391           assert(pc[1] == 0x14, "not a FIST opcode");
 392           assert(pc[2] == 0x24, "not a FIST opcode");
 393           return true;
 394         } else if (op == 0xF7) {
 395           // IDIV
 396           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 397         } else {
 398           // TODO: handle more cases if we are using other x86 instructions
 399           //   that can generate SIGFPE signal on linux.
 400           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 401           fatal("please update this code.");
 402         }
 403 #endif // AMD64
 404       } else if (sig == SIGSEGV &&
 405                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 406           // Determination of interpreter/vtable stub/compiled code null exception
 407           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 408       }
 409     } else if (thread->thread_state() == _thread_in_vm &&
 410                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 411                thread->doing_unsafe_access()) {
 412         stub = StubRoutines::handler_for_unsafe_access();
 413     }
 414 
 415     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 416     // and the heap gets shrunk before the field access.
 417     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 418       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 419       if (addr != (address)-1) {
 420         stub = addr;
 421       }
 422     }
 423 
 424     // Check to see if we caught the safepoint code in the
 425     // process of write protecting the memory serialization page.
 426     // It write enables the page immediately after protecting it
 427     // so we can just return to retry the write.
 428     if ((sig == SIGSEGV) &&
 429         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 430       // Block current thread until the memory serialize page permission restored.
 431       os::block_on_serialize_page_trap();
 432       return true;
 433     }
 434   }
 435 
 436 #ifndef AMD64
 437   // Execution protection violation
 438   //
 439   // This should be kept as the last step in the triage.  We don't
 440   // have a dedicated trap number for a no-execute fault, so be
 441   // conservative and allow other handlers the first shot.
 442   //
 443   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 444   // this si_code is so generic that it is almost meaningless; and
 445   // the si_code for this condition may change in the future.
 446   // Furthermore, a false-positive should be harmless.
 447   if (UnguardOnExecutionViolation > 0 &&
 448       (sig == SIGSEGV || sig == SIGBUS) &&
 449       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 450     int page_size = os::vm_page_size();
 451     address addr = (address) info->si_addr;
 452     address pc = os::Linux::ucontext_get_pc(uc);
 453     // Make sure the pc and the faulting address are sane.
 454     //
 455     // If an instruction spans a page boundary, and the page containing
 456     // the beginning of the instruction is executable but the following
 457     // page is not, the pc and the faulting address might be slightly
 458     // different - we still want to unguard the 2nd page in this case.
 459     //
 460     // 15 bytes seems to be a (very) safe value for max instruction size.
 461     bool pc_is_near_addr =
 462       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 463     bool instr_spans_page_boundary =
 464       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 465                        (intptr_t) page_size) > 0);
 466 
 467     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 468       static volatile address last_addr =
 469         (address) os::non_memory_address_word();
 470 
 471       // In conservative mode, don't unguard unless the address is in the VM
 472       if (addr != last_addr &&
 473           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 474 
 475         // Set memory to RWX and retry
 476         address page_start =
 477           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 478         bool res = os::protect_memory((char*) page_start, page_size,
 479                                       os::MEM_PROT_RWX);
 480 
 481         if (PrintMiscellaneous && Verbose) {
 482           char buf[256];
 483           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 484                        "at " INTPTR_FORMAT
 485                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 486                        page_start, (res ? "success" : "failed"), errno);
 487           tty->print_raw_cr(buf);
 488         }
 489         stub = pc;
 490 
 491         // Set last_addr so if we fault again at the same address, we don't end
 492         // up in an endless loop.
 493         //
 494         // There are two potential complications here.  Two threads trapping at
 495         // the same address at the same time could cause one of the threads to
 496         // think it already unguarded, and abort the VM.  Likely very rare.
 497         //
 498         // The other race involves two threads alternately trapping at
 499         // different addresses and failing to unguard the page, resulting in
 500         // an endless loop.  This condition is probably even more unlikely than
 501         // the first.
 502         //
 503         // Although both cases could be avoided by using locks or thread local
 504         // last_addr, these solutions are unnecessary complication: this
 505         // handler is a best-effort safety net, not a complete solution.  It is
 506         // disabled by default and should only be used as a workaround in case
 507         // we missed any no-execute-unsafe VM code.
 508 
 509         last_addr = addr;
 510       }
 511     }
 512   }
 513 #endif // !AMD64
 514 
 515   if (stub != NULL) {
 516     // save all thread context in case we need to restore it
 517     if (thread != NULL) thread->set_saved_exception_pc(pc);
 518 
 519     os::Linux::ucontext_set_pc(uc, stub);
 520     return true;
 521   }
 522 
 523   // signal-chaining
 524   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 525      return true;
 526   }
 527 
 528   if (!abort_if_unrecognized) {
 529     // caller wants another chance, so give it to him
 530     return false;
 531   }
 532 
 533   if (pc == NULL && uc != NULL) {
 534     pc = os::Linux::ucontext_get_pc(uc);
 535   }
 536 
 537   // unmask current signal
 538   sigset_t newset;
 539   sigemptyset(&newset);
 540   sigaddset(&newset, sig);
 541   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 542 
 543   VMError::report_and_die(t, sig, pc, info, ucVoid);
 544 
 545   ShouldNotReachHere();
 546   return true; // Mute compiler
 547 }
 548 
 549 void os::Linux::init_thread_fpu_state(void) {
 550 #ifndef AMD64
 551   // set fpu to 53 bit precision
 552   set_fpu_control_word(0x27f);
 553 #endif // !AMD64
 554 }
 555 
 556 int os::Linux::get_fpu_control_word(void) {
 557 #ifdef AMD64
 558   return 0;
 559 #else
 560   int fpu_control;
 561   _FPU_GETCW(fpu_control);
 562   return fpu_control & 0xffff;
 563 #endif // AMD64
 564 }
 565 
 566 void os::Linux::set_fpu_control_word(int fpu_control) {
 567 #ifndef AMD64
 568   _FPU_SETCW(fpu_control);
 569 #endif // !AMD64
 570 }
 571 
 572 // Check that the linux kernel version is 2.4 or higher since earlier
 573 // versions do not support SSE without patches.
 574 bool os::supports_sse() {
 575 #ifdef AMD64
 576   return true;
 577 #else
 578   struct utsname uts;
 579   if( uname(&uts) != 0 ) return false; // uname fails?
 580   char *minor_string;
 581   int major = strtol(uts.release,&minor_string,10);
 582   int minor = strtol(minor_string+1,NULL,10);
 583   bool result = (major > 2 || (major==2 && minor >= 4));
 584 #ifndef PRODUCT
 585   if (PrintMiscellaneous && Verbose) {
 586     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 587                major,minor, result ? "DOES" : "does NOT");
 588   }
 589 #endif
 590   return result;
 591 #endif // AMD64
 592 }
 593 
 594 bool os::is_allocatable(size_t bytes) {
 595 #ifdef AMD64
 596   // unused on amd64?
 597   return true;
 598 #else
 599 
 600   if (bytes < 2 * G) {
 601     return true;
 602   }
 603 
 604   char* addr = reserve_memory(bytes, NULL);
 605 
 606   if (addr != NULL) {
 607     release_memory(addr, bytes);
 608   }
 609 
 610   return addr != NULL;
 611 #endif // AMD64
 612 }
 613 
 614 ////////////////////////////////////////////////////////////////////////////////
 615 // thread stack
 616 
 617 #ifdef AMD64
 618 size_t os::Linux::min_stack_allowed  = 64 * K;
 619 #else
 620 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 621 #endif // AMD64
 622 
 623 // return default stack size for thr_type
 624 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 625   // default stack size (compiler thread needs larger stack)
 626 #ifdef AMD64
 627   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 628 #else
 629   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 630 #endif // AMD64
 631   return s;
 632 }
 633 
 634 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 635   // Creating guard page is very expensive. Java thread has HotSpot
 636   // guard page, only enable glibc guard page for non-Java threads.
 637   return (thr_type == java_thread ? 0 : page_size());
 638 }
 639 
 640 // Java thread:
 641 //
 642 //   Low memory addresses
 643 //    +------------------------+
 644 //    |                        |\  JavaThread created by VM does not have glibc
 645 //    |    glibc guard page    | - guard, attached Java thread usually has
 646 //    |                        |/  1 page glibc guard.
 647 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 648 //    |                        |\
 649 //    |  HotSpot Guard Pages   | - red and yellow pages
 650 //    |                        |/
 651 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 652 //    |                        |\
 653 //    |      Normal Stack      | -
 654 //    |                        |/
 655 // P2 +------------------------+ Thread::stack_base()
 656 //
 657 // Non-Java thread:
 658 //
 659 //   Low memory addresses
 660 //    +------------------------+
 661 //    |                        |\
 662 //    |  glibc guard page      | - usually 1 page
 663 //    |                        |/
 664 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 665 //    |                        |\
 666 //    |      Normal Stack      | -
 667 //    |                        |/
 668 // P2 +------------------------+ Thread::stack_base()
 669 //
 670 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 671 //    pthread_attr_getstack()
 672 
 673 static void current_stack_region(address * bottom, size_t * size) {
 674   if (os::Linux::is_initial_thread()) {
 675      // initial thread needs special handling because pthread_getattr_np()
 676      // may return bogus value.
 677      *bottom = os::Linux::initial_thread_stack_bottom();
 678      *size   = os::Linux::initial_thread_stack_size();
 679   } else {
 680      pthread_attr_t attr;
 681 
 682      int rslt = pthread_getattr_np(pthread_self(), &attr);
 683 
 684      // JVM needs to know exact stack location, abort if it fails
 685      if (rslt != 0) {
 686        if (rslt == ENOMEM) {
 687          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 688        } else {
 689          fatal("pthread_getattr_np failed with errno = %d", rslt);
 690        }
 691      }
 692 
 693      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 694          fatal("Can not locate current stack attributes!");
 695      }
 696 
 697      pthread_attr_destroy(&attr);
 698 
 699   }
 700   assert(os::current_stack_pointer() >= *bottom &&
 701          os::current_stack_pointer() < *bottom + *size, "just checking");
 702 }
 703 
 704 address os::current_stack_base() {
 705   address bottom;
 706   size_t size;
 707   current_stack_region(&bottom, &size);
 708   return (bottom + size);
 709 }
 710 
 711 size_t os::current_stack_size() {
 712   // stack size includes normal stack and HotSpot guard pages
 713   address bottom;
 714   size_t size;
 715   current_stack_region(&bottom, &size);
 716   return size;
 717 }
 718 
 719 /////////////////////////////////////////////////////////////////////////////
 720 // helper functions for fatal error handler
 721 
 722 void os::print_context(outputStream *st, void *context) {
 723   if (context == NULL) return;
 724 
 725   ucontext_t *uc = (ucontext_t*)context;
 726   st->print_cr("Registers:");
 727 #ifdef AMD64
 728   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 729   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 730   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 731   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 732   st->cr();
 733   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 734   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 735   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 736   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 737   st->cr();
 738   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 739   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 740   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 741   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 742   st->cr();
 743   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 744   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 745   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 746   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 747   st->cr();
 748   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 749   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 750   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 751   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 752   st->cr();
 753   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 754 #else
 755   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 756   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 757   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 758   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 759   st->cr();
 760   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 761   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 762   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 763   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 764   st->cr();
 765   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 766   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 767   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 768 #endif // AMD64
 769   st->cr();
 770   st->cr();
 771 
 772   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 773   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 774   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 775   st->cr();
 776 
 777   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 778   // point to garbage if entry point in an nmethod is corrupted. Leave
 779   // this at the end, and hope for the best.
 780   address pc = os::Linux::ucontext_get_pc(uc);
 781   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 782   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 783 }
 784 
 785 void os::print_register_info(outputStream *st, void *context) {
 786   if (context == NULL) return;
 787 
 788   ucontext_t *uc = (ucontext_t*)context;
 789 
 790   st->print_cr("Register to memory mapping:");
 791   st->cr();
 792 
 793   // this is horrendously verbose but the layout of the registers in the
 794   // context does not match how we defined our abstract Register set, so
 795   // we can't just iterate through the gregs area
 796 
 797   // this is only for the "general purpose" registers
 798 
 799 #ifdef AMD64
 800   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 801   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 802   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 803   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 804   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 805   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 806   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 807   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 808   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 809   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 810   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 811   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 812   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 813   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 814   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 815   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 816 #else
 817   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 818   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 819   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 820   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 821   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 822   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 823   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 824   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 825 #endif // AMD64
 826 
 827   st->cr();
 828 }
 829 
 830 void os::setup_fpu() {
 831 #ifndef AMD64
 832   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 833   __asm__ volatile (  "fldcw (%0)" :
 834                       : "r" (fpu_cntrl) : "memory");
 835 #endif // !AMD64
 836 }
 837 
 838 #ifndef PRODUCT
 839 void os::verify_stack_alignment() {
 840 #ifdef AMD64
 841   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 842 #endif
 843 }
 844 #endif
 845 
 846 
 847 /*
 848  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 849  * updates (JDK-8023956).
 850  */
 851 void os::workaround_expand_exec_shield_cs_limit() {
 852 #if defined(IA32)
 853   size_t page_size = os::vm_page_size();
 854   /*
 855    * Take the highest VA the OS will give us and exec
 856    *
 857    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 858    * think, older variants affected by this work-around don't (search forward only).
 859    *
 860    * On the affected distributions, we understand the memory layout to be:
 861    *
 862    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 863    *
 864    * A few pages south main stack will do it.
 865    *
 866    * If we are embedded in an app other than launcher (initial != main stack),
 867    * we don't have much control or understanding of the address space, just let it slide.
 868    */
 869   char* hint = (char*) (Linux::initial_thread_stack_bottom() -
 870                         ((StackYellowPages + StackRedPages + 1) * page_size));
 871   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 872   if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
 873     return; // No matter, we tried, best effort.
 874   }
 875 
 876   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 877 
 878   if (PrintMiscellaneous && (Verbose || WizardMode)) {
 879      tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 880   }
 881 
 882   // Some code to exec: the 'ret' instruction
 883   codebuf[0] = 0xC3;
 884 
 885   // Call the code in the codebuf
 886   __asm__ volatile("call *%0" : : "r"(codebuf));
 887 
 888   // keep the page mapped so CS limit isn't reduced.
 889 #endif
 890 }
 891 
 892 int os::extra_bang_size_in_bytes() {
 893   // JDK-8050147 requires the full cache line bang for x86.
 894   return VM_Version::L1_line_size();
 895 }