1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/logConfiguration.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/instanceKlass.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvm_misc.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "prims/privilegedStack.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/commandLineFlagConstraintList.hpp"
  58 #include "runtime/commandLineFlagRangeList.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/globals.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniPeriodicChecker.hpp"
  68 #include "runtime/memprofiler.hpp"
  69 #include "runtime/mutexLocker.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/osThread.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/statSampler.hpp"
  76 #include "runtime/stubRoutines.hpp"
  77 #include "runtime/sweeper.hpp"
  78 #include "runtime/task.hpp"
  79 #include "runtime/thread.inline.hpp"
  80 #include "runtime/threadCritical.hpp"
  81 #include "runtime/vframe.hpp"
  82 #include "runtime/vframeArray.hpp"
  83 #include "runtime/vframe_hp.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "runtime/vm_operations.hpp"
  86 #include "runtime/vm_version.hpp"
  87 #include "services/attachListener.hpp"
  88 #include "services/management.hpp"
  89 #include "services/memTracker.hpp"
  90 #include "services/threadService.hpp"
  91 #include "trace/traceMacros.hpp"
  92 #include "trace/tracing.hpp"
  93 #include "utilities/defaultStream.hpp"
  94 #include "utilities/dtrace.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/preserveException.hpp"
  98 #if INCLUDE_ALL_GCS
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #if INCLUDE_JVMCI
 104 #include "jvmci/jvmciCompiler.hpp"
 105 #include "jvmci/jvmciRuntime.hpp"
 106 #endif
 107 #ifdef COMPILER1
 108 #include "c1/c1_Compiler.hpp"
 109 #endif
 110 #ifdef COMPILER2
 111 #include "opto/c2compiler.hpp"
 112 #include "opto/idealGraphPrinter.hpp"
 113 #endif
 114 #if INCLUDE_RTM_OPT
 115 #include "runtime/rtmLocking.hpp"
 116 #endif
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 126     {                                                                      \
 127       ResourceMark rm(this);                                               \
 128       int len = 0;                                                         \
 129       const char* name = (javathread)->get_thread_name();                  \
 130       len = strlen(name);                                                  \
 131       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 132         (char *) name, len,                                                \
 133         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 134         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 135         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 136     }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140   #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 // Current thread is maintained as a thread-local variable
 145 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 146 
 147 // Class hierarchy
 148 // - Thread
 149 //   - VMThread
 150 //   - WatcherThread
 151 //   - ConcurrentMarkSweepThread
 152 //   - JavaThread
 153 //     - CompilerThread
 154 
 155 // ======= Thread ========
 156 // Support for forcing alignment of thread objects for biased locking
 157 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 158   if (UseBiasedLocking) {
 159     const int alignment = markOopDesc::biased_lock_alignment;
 160     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 161     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 162                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 163                                                          AllocFailStrategy::RETURN_NULL);
 164     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 165     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 166            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 167            "JavaThread alignment code overflowed allocated storage");
 168     if (TraceBiasedLocking) {
 169       if (aligned_addr != real_malloc_addr) {
 170         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 171                       p2i(real_malloc_addr), p2i(aligned_addr));
 172       }
 173     }
 174     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 175     return aligned_addr;
 176   } else {
 177     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 178                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 179   }
 180 }
 181 
 182 void Thread::operator delete(void* p) {
 183   if (UseBiasedLocking) {
 184     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 185     FreeHeap(real_malloc_addr);
 186   } else {
 187     FreeHeap(p);
 188   }
 189 }
 190 
 191 
 192 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 193 // JavaThread
 194 
 195 
 196 Thread::Thread() {
 197   // stack and get_thread
 198   set_stack_base(NULL);
 199   set_stack_size(0);
 200   set_self_raw_id(0);
 201   set_lgrp_id(-1);
 202   DEBUG_ONLY(clear_suspendible_thread();)
 203 
 204   // allocated data structures
 205   set_osthread(NULL);
 206   set_resource_area(new (mtThread)ResourceArea());
 207   DEBUG_ONLY(_current_resource_mark = NULL;)
 208   set_handle_area(new (mtThread) HandleArea(NULL));
 209   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 210   set_active_handles(NULL);
 211   set_free_handle_block(NULL);
 212   set_last_handle_mark(NULL);
 213 
 214   // This initial value ==> never claimed.
 215   _oops_do_parity = 0;
 216 
 217   // the handle mark links itself to last_handle_mark
 218   new HandleMark(this);
 219 
 220   // plain initialization
 221   debug_only(_owned_locks = NULL;)
 222   debug_only(_allow_allocation_count = 0;)
 223   NOT_PRODUCT(_allow_safepoint_count = 0;)
 224   NOT_PRODUCT(_skip_gcalot = false;)
 225   _jvmti_env_iteration_count = 0;
 226   set_allocated_bytes(0);
 227   _vm_operation_started_count = 0;
 228   _vm_operation_completed_count = 0;
 229   _current_pending_monitor = NULL;
 230   _current_pending_monitor_is_from_java = true;
 231   _current_waiting_monitor = NULL;
 232   _num_nested_signal = 0;
 233   omFreeList = NULL;
 234   omFreeCount = 0;
 235   omFreeProvision = 32;
 236   omInUseList = NULL;
 237   omInUseCount = 0;
 238 
 239 #ifdef ASSERT
 240   _visited_for_critical_count = false;
 241 #endif
 242 
 243   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 244                          Monitor::_safepoint_check_sometimes);
 245   _suspend_flags = 0;
 246 
 247   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 248   _hashStateX = os::random();
 249   _hashStateY = 842502087;
 250   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 251   _hashStateW = 273326509;
 252 
 253   _OnTrap   = 0;
 254   _schedctl = NULL;
 255   _Stalled  = 0;
 256   _TypeTag  = 0x2BAD;
 257 
 258   // Many of the following fields are effectively final - immutable
 259   // Note that nascent threads can't use the Native Monitor-Mutex
 260   // construct until the _MutexEvent is initialized ...
 261   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 262   // we might instead use a stack of ParkEvents that we could provision on-demand.
 263   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 264   // and ::Release()
 265   _ParkEvent   = ParkEvent::Allocate(this);
 266   _SleepEvent  = ParkEvent::Allocate(this);
 267   _MutexEvent  = ParkEvent::Allocate(this);
 268   _MuxEvent    = ParkEvent::Allocate(this);
 269 
 270 #ifdef CHECK_UNHANDLED_OOPS
 271   if (CheckUnhandledOops) {
 272     _unhandled_oops = new UnhandledOops(this);
 273   }
 274 #endif // CHECK_UNHANDLED_OOPS
 275 #ifdef ASSERT
 276   if (UseBiasedLocking) {
 277     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 278     assert(this == _real_malloc_address ||
 279            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 280            "bug in forced alignment of thread objects");
 281   }
 282 #endif // ASSERT
 283 }
 284 
 285 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 286 Thread* Thread::current_noinline() {
 287   return Thread::current();
 288 }
 289 
 290 void Thread::initialize_thread_current() {
 291   assert(_thr_current == NULL, "Thread::current already initialized");
 292   _thr_current = this;
 293 }
 294 
 295 void Thread::clear_thread_current() {
 296   _thr_current = NULL;
 297 }
 298 
 299 void Thread::record_stack_base_and_size() {
 300   set_stack_base(os::current_stack_base());
 301   set_stack_size(os::current_stack_size());
 302   if (is_Java_thread()) {
 303     ((JavaThread*) this)->set_stack_overflow_limit();
 304   }
 305   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 306   // in initialize_thread(). Without the adjustment, stack size is
 307   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 308   // So far, only Solaris has real implementation of initialize_thread().
 309   //
 310   // set up any platform-specific state.
 311   os::initialize_thread(this);
 312 
 313 #if INCLUDE_NMT
 314   // record thread's native stack, stack grows downward
 315   address stack_low_addr = stack_base() - stack_size();
 316   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 317 #endif // INCLUDE_NMT
 318 }
 319 
 320 
 321 Thread::~Thread() {
 322   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 323   ObjectSynchronizer::omFlush(this);
 324 
 325   EVENT_THREAD_DESTRUCT(this);
 326 
 327   // stack_base can be NULL if the thread is never started or exited before
 328   // record_stack_base_and_size called. Although, we would like to ensure
 329   // that all started threads do call record_stack_base_and_size(), there is
 330   // not proper way to enforce that.
 331 #if INCLUDE_NMT
 332   if (_stack_base != NULL) {
 333     address low_stack_addr = stack_base() - stack_size();
 334     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 335 #ifdef ASSERT
 336     set_stack_base(NULL);
 337 #endif
 338   }
 339 #endif // INCLUDE_NMT
 340 
 341   // deallocate data structures
 342   delete resource_area();
 343   // since the handle marks are using the handle area, we have to deallocated the root
 344   // handle mark before deallocating the thread's handle area,
 345   assert(last_handle_mark() != NULL, "check we have an element");
 346   delete last_handle_mark();
 347   assert(last_handle_mark() == NULL, "check we have reached the end");
 348 
 349   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 350   // We NULL out the fields for good hygiene.
 351   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 352   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 353   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 354   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 355 
 356   delete handle_area();
 357   delete metadata_handles();
 358 
 359   // osthread() can be NULL, if creation of thread failed.
 360   if (osthread() != NULL) os::free_thread(osthread());
 361 
 362   delete _SR_lock;
 363 
 364   // clear Thread::current if thread is deleting itself.
 365   // Needed to ensure JNI correctly detects non-attached threads.
 366   if (this == Thread::current()) {
 367     clear_thread_current();
 368   }
 369 
 370   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 371 }
 372 
 373 // NOTE: dummy function for assertion purpose.
 374 void Thread::run() {
 375   ShouldNotReachHere();
 376 }
 377 
 378 #ifdef ASSERT
 379 // Private method to check for dangling thread pointer
 380 void check_for_dangling_thread_pointer(Thread *thread) {
 381   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 382          "possibility of dangling Thread pointer");
 383 }
 384 #endif
 385 
 386 ThreadPriority Thread::get_priority(const Thread* const thread) {
 387   ThreadPriority priority;
 388   // Can return an error!
 389   (void)os::get_priority(thread, priority);
 390   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 391   return priority;
 392 }
 393 
 394 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 395   debug_only(check_for_dangling_thread_pointer(thread);)
 396   // Can return an error!
 397   (void)os::set_priority(thread, priority);
 398 }
 399 
 400 
 401 void Thread::start(Thread* thread) {
 402   // Start is different from resume in that its safety is guaranteed by context or
 403   // being called from a Java method synchronized on the Thread object.
 404   if (!DisableStartThread) {
 405     if (thread->is_Java_thread()) {
 406       // Initialize the thread state to RUNNABLE before starting this thread.
 407       // Can not set it after the thread started because we do not know the
 408       // exact thread state at that time. It could be in MONITOR_WAIT or
 409       // in SLEEPING or some other state.
 410       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 411                                           java_lang_Thread::RUNNABLE);
 412     }
 413     os::start_thread(thread);
 414   }
 415 }
 416 
 417 // Enqueue a VM_Operation to do the job for us - sometime later
 418 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 419   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 420   VMThread::execute(vm_stop);
 421 }
 422 
 423 
 424 // Check if an external suspend request has completed (or has been
 425 // cancelled). Returns true if the thread is externally suspended and
 426 // false otherwise.
 427 //
 428 // The bits parameter returns information about the code path through
 429 // the routine. Useful for debugging:
 430 //
 431 // set in is_ext_suspend_completed():
 432 // 0x00000001 - routine was entered
 433 // 0x00000010 - routine return false at end
 434 // 0x00000100 - thread exited (return false)
 435 // 0x00000200 - suspend request cancelled (return false)
 436 // 0x00000400 - thread suspended (return true)
 437 // 0x00001000 - thread is in a suspend equivalent state (return true)
 438 // 0x00002000 - thread is native and walkable (return true)
 439 // 0x00004000 - thread is native_trans and walkable (needed retry)
 440 //
 441 // set in wait_for_ext_suspend_completion():
 442 // 0x00010000 - routine was entered
 443 // 0x00020000 - suspend request cancelled before loop (return false)
 444 // 0x00040000 - thread suspended before loop (return true)
 445 // 0x00080000 - suspend request cancelled in loop (return false)
 446 // 0x00100000 - thread suspended in loop (return true)
 447 // 0x00200000 - suspend not completed during retry loop (return false)
 448 
 449 // Helper class for tracing suspend wait debug bits.
 450 //
 451 // 0x00000100 indicates that the target thread exited before it could
 452 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 453 // 0x00080000 each indicate a cancelled suspend request so they don't
 454 // count as wait failures either.
 455 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 456 
 457 class TraceSuspendDebugBits : public StackObj {
 458  private:
 459   JavaThread * jt;
 460   bool         is_wait;
 461   bool         called_by_wait;  // meaningful when !is_wait
 462   uint32_t *   bits;
 463 
 464  public:
 465   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 466                         uint32_t *_bits) {
 467     jt             = _jt;
 468     is_wait        = _is_wait;
 469     called_by_wait = _called_by_wait;
 470     bits           = _bits;
 471   }
 472 
 473   ~TraceSuspendDebugBits() {
 474     if (!is_wait) {
 475 #if 1
 476       // By default, don't trace bits for is_ext_suspend_completed() calls.
 477       // That trace is very chatty.
 478       return;
 479 #else
 480       if (!called_by_wait) {
 481         // If tracing for is_ext_suspend_completed() is enabled, then only
 482         // trace calls to it from wait_for_ext_suspend_completion()
 483         return;
 484       }
 485 #endif
 486     }
 487 
 488     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 489       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 490         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 491         ResourceMark rm;
 492 
 493         tty->print_cr(
 494                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 495                       jt->get_thread_name(), *bits);
 496 
 497         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 498       }
 499     }
 500   }
 501 };
 502 #undef DEBUG_FALSE_BITS
 503 
 504 
 505 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 506                                           uint32_t *bits) {
 507   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 508 
 509   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 510   bool do_trans_retry;           // flag to force the retry
 511 
 512   *bits |= 0x00000001;
 513 
 514   do {
 515     do_trans_retry = false;
 516 
 517     if (is_exiting()) {
 518       // Thread is in the process of exiting. This is always checked
 519       // first to reduce the risk of dereferencing a freed JavaThread.
 520       *bits |= 0x00000100;
 521       return false;
 522     }
 523 
 524     if (!is_external_suspend()) {
 525       // Suspend request is cancelled. This is always checked before
 526       // is_ext_suspended() to reduce the risk of a rogue resume
 527       // confusing the thread that made the suspend request.
 528       *bits |= 0x00000200;
 529       return false;
 530     }
 531 
 532     if (is_ext_suspended()) {
 533       // thread is suspended
 534       *bits |= 0x00000400;
 535       return true;
 536     }
 537 
 538     // Now that we no longer do hard suspends of threads running
 539     // native code, the target thread can be changing thread state
 540     // while we are in this routine:
 541     //
 542     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 543     //
 544     // We save a copy of the thread state as observed at this moment
 545     // and make our decision about suspend completeness based on the
 546     // copy. This closes the race where the thread state is seen as
 547     // _thread_in_native_trans in the if-thread_blocked check, but is
 548     // seen as _thread_blocked in if-thread_in_native_trans check.
 549     JavaThreadState save_state = thread_state();
 550 
 551     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 552       // If the thread's state is _thread_blocked and this blocking
 553       // condition is known to be equivalent to a suspend, then we can
 554       // consider the thread to be externally suspended. This means that
 555       // the code that sets _thread_blocked has been modified to do
 556       // self-suspension if the blocking condition releases. We also
 557       // used to check for CONDVAR_WAIT here, but that is now covered by
 558       // the _thread_blocked with self-suspension check.
 559       //
 560       // Return true since we wouldn't be here unless there was still an
 561       // external suspend request.
 562       *bits |= 0x00001000;
 563       return true;
 564     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 565       // Threads running native code will self-suspend on native==>VM/Java
 566       // transitions. If its stack is walkable (should always be the case
 567       // unless this function is called before the actual java_suspend()
 568       // call), then the wait is done.
 569       *bits |= 0x00002000;
 570       return true;
 571     } else if (!called_by_wait && !did_trans_retry &&
 572                save_state == _thread_in_native_trans &&
 573                frame_anchor()->walkable()) {
 574       // The thread is transitioning from thread_in_native to another
 575       // thread state. check_safepoint_and_suspend_for_native_trans()
 576       // will force the thread to self-suspend. If it hasn't gotten
 577       // there yet we may have caught the thread in-between the native
 578       // code check above and the self-suspend. Lucky us. If we were
 579       // called by wait_for_ext_suspend_completion(), then it
 580       // will be doing the retries so we don't have to.
 581       //
 582       // Since we use the saved thread state in the if-statement above,
 583       // there is a chance that the thread has already transitioned to
 584       // _thread_blocked by the time we get here. In that case, we will
 585       // make a single unnecessary pass through the logic below. This
 586       // doesn't hurt anything since we still do the trans retry.
 587 
 588       *bits |= 0x00004000;
 589 
 590       // Once the thread leaves thread_in_native_trans for another
 591       // thread state, we break out of this retry loop. We shouldn't
 592       // need this flag to prevent us from getting back here, but
 593       // sometimes paranoia is good.
 594       did_trans_retry = true;
 595 
 596       // We wait for the thread to transition to a more usable state.
 597       for (int i = 1; i <= SuspendRetryCount; i++) {
 598         // We used to do an "os::yield_all(i)" call here with the intention
 599         // that yielding would increase on each retry. However, the parameter
 600         // is ignored on Linux which means the yield didn't scale up. Waiting
 601         // on the SR_lock below provides a much more predictable scale up for
 602         // the delay. It also provides a simple/direct point to check for any
 603         // safepoint requests from the VMThread
 604 
 605         // temporarily drops SR_lock while doing wait with safepoint check
 606         // (if we're a JavaThread - the WatcherThread can also call this)
 607         // and increase delay with each retry
 608         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 609 
 610         // check the actual thread state instead of what we saved above
 611         if (thread_state() != _thread_in_native_trans) {
 612           // the thread has transitioned to another thread state so
 613           // try all the checks (except this one) one more time.
 614           do_trans_retry = true;
 615           break;
 616         }
 617       } // end retry loop
 618 
 619 
 620     }
 621   } while (do_trans_retry);
 622 
 623   *bits |= 0x00000010;
 624   return false;
 625 }
 626 
 627 // Wait for an external suspend request to complete (or be cancelled).
 628 // Returns true if the thread is externally suspended and false otherwise.
 629 //
 630 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 631                                                  uint32_t *bits) {
 632   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 633                              false /* !called_by_wait */, bits);
 634 
 635   // local flag copies to minimize SR_lock hold time
 636   bool is_suspended;
 637   bool pending;
 638   uint32_t reset_bits;
 639 
 640   // set a marker so is_ext_suspend_completed() knows we are the caller
 641   *bits |= 0x00010000;
 642 
 643   // We use reset_bits to reinitialize the bits value at the top of
 644   // each retry loop. This allows the caller to make use of any
 645   // unused bits for their own marking purposes.
 646   reset_bits = *bits;
 647 
 648   {
 649     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 650     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 651                                             delay, bits);
 652     pending = is_external_suspend();
 653   }
 654   // must release SR_lock to allow suspension to complete
 655 
 656   if (!pending) {
 657     // A cancelled suspend request is the only false return from
 658     // is_ext_suspend_completed() that keeps us from entering the
 659     // retry loop.
 660     *bits |= 0x00020000;
 661     return false;
 662   }
 663 
 664   if (is_suspended) {
 665     *bits |= 0x00040000;
 666     return true;
 667   }
 668 
 669   for (int i = 1; i <= retries; i++) {
 670     *bits = reset_bits;  // reinit to only track last retry
 671 
 672     // We used to do an "os::yield_all(i)" call here with the intention
 673     // that yielding would increase on each retry. However, the parameter
 674     // is ignored on Linux which means the yield didn't scale up. Waiting
 675     // on the SR_lock below provides a much more predictable scale up for
 676     // the delay. It also provides a simple/direct point to check for any
 677     // safepoint requests from the VMThread
 678 
 679     {
 680       MutexLocker ml(SR_lock());
 681       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 682       // can also call this)  and increase delay with each retry
 683       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 684 
 685       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 686                                               delay, bits);
 687 
 688       // It is possible for the external suspend request to be cancelled
 689       // (by a resume) before the actual suspend operation is completed.
 690       // Refresh our local copy to see if we still need to wait.
 691       pending = is_external_suspend();
 692     }
 693 
 694     if (!pending) {
 695       // A cancelled suspend request is the only false return from
 696       // is_ext_suspend_completed() that keeps us from staying in the
 697       // retry loop.
 698       *bits |= 0x00080000;
 699       return false;
 700     }
 701 
 702     if (is_suspended) {
 703       *bits |= 0x00100000;
 704       return true;
 705     }
 706   } // end retry loop
 707 
 708   // thread did not suspend after all our retries
 709   *bits |= 0x00200000;
 710   return false;
 711 }
 712 
 713 #ifndef PRODUCT
 714 void JavaThread::record_jump(address target, address instr, const char* file,
 715                              int line) {
 716 
 717   // This should not need to be atomic as the only way for simultaneous
 718   // updates is via interrupts. Even then this should be rare or non-existent
 719   // and we don't care that much anyway.
 720 
 721   int index = _jmp_ring_index;
 722   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 723   _jmp_ring[index]._target = (intptr_t) target;
 724   _jmp_ring[index]._instruction = (intptr_t) instr;
 725   _jmp_ring[index]._file = file;
 726   _jmp_ring[index]._line = line;
 727 }
 728 #endif // PRODUCT
 729 
 730 // Called by flat profiler
 731 // Callers have already called wait_for_ext_suspend_completion
 732 // The assertion for that is currently too complex to put here:
 733 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 734   bool gotframe = false;
 735   // self suspension saves needed state.
 736   if (has_last_Java_frame() && _anchor.walkable()) {
 737     *_fr = pd_last_frame();
 738     gotframe = true;
 739   }
 740   return gotframe;
 741 }
 742 
 743 void Thread::interrupt(Thread* thread) {
 744   debug_only(check_for_dangling_thread_pointer(thread);)
 745   os::interrupt(thread);
 746 }
 747 
 748 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   // Note:  If clear_interrupted==false, this simply fetches and
 751   // returns the value of the field osthread()->interrupted().
 752   return os::is_interrupted(thread, clear_interrupted);
 753 }
 754 
 755 
 756 // GC Support
 757 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 758   jint thread_parity = _oops_do_parity;
 759   if (thread_parity != strong_roots_parity) {
 760     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 761     if (res == thread_parity) {
 762       return true;
 763     } else {
 764       guarantee(res == strong_roots_parity, "Or else what?");
 765       return false;
 766     }
 767   }
 768   return false;
 769 }
 770 
 771 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 772   active_handles()->oops_do(f);
 773   // Do oop for ThreadShadow
 774   f->do_oop((oop*)&_pending_exception);
 775   handle_area()->oops_do(f);
 776 }
 777 
 778 void Thread::nmethods_do(CodeBlobClosure* cf) {
 779   // no nmethods in a generic thread...
 780 }
 781 
 782 void Thread::metadata_handles_do(void f(Metadata*)) {
 783   // Only walk the Handles in Thread.
 784   if (metadata_handles() != NULL) {
 785     for (int i = 0; i< metadata_handles()->length(); i++) {
 786       f(metadata_handles()->at(i));
 787     }
 788   }
 789 }
 790 
 791 void Thread::print_on(outputStream* st) const {
 792   // get_priority assumes osthread initialized
 793   if (osthread() != NULL) {
 794     int os_prio;
 795     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 796       st->print("os_prio=%d ", os_prio);
 797     }
 798     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 799     ext().print_on(st);
 800     osthread()->print_on(st);
 801   }
 802   debug_only(if (WizardMode) print_owned_locks_on(st);)
 803 }
 804 
 805 // Thread::print_on_error() is called by fatal error handler. Don't use
 806 // any lock or allocate memory.
 807 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 808   if (is_VM_thread())                 st->print("VMThread");
 809   else if (is_Compiler_thread())      st->print("CompilerThread");
 810   else if (is_Java_thread())          st->print("JavaThread");
 811   else if (is_GC_task_thread())       st->print("GCTaskThread");
 812   else if (is_Watcher_thread())       st->print("WatcherThread");
 813   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 814   else                                st->print("Thread");
 815 
 816   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 817             p2i(_stack_base - _stack_size), p2i(_stack_base));
 818 
 819   if (osthread()) {
 820     st->print(" [id=%d]", osthread()->thread_id());
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 void Thread::print_owned_locks_on(outputStream* st) const {
 826   Monitor *cur = _owned_locks;
 827   if (cur == NULL) {
 828     st->print(" (no locks) ");
 829   } else {
 830     st->print_cr(" Locks owned:");
 831     while (cur) {
 832       cur->print_on(st);
 833       cur = cur->next();
 834     }
 835   }
 836 }
 837 
 838 static int ref_use_count  = 0;
 839 
 840 bool Thread::owns_locks_but_compiled_lock() const {
 841   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 842     if (cur != Compile_lock) return true;
 843   }
 844   return false;
 845 }
 846 
 847 
 848 #endif
 849 
 850 #ifndef PRODUCT
 851 
 852 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 853 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 854 // no threads which allow_vm_block's are held
 855 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 856   // Check if current thread is allowed to block at a safepoint
 857   if (!(_allow_safepoint_count == 0)) {
 858     fatal("Possible safepoint reached by thread that does not allow it");
 859   }
 860   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 861     fatal("LEAF method calling lock?");
 862   }
 863 
 864 #ifdef ASSERT
 865   if (potential_vm_operation && is_Java_thread()
 866       && !Universe::is_bootstrapping()) {
 867     // Make sure we do not hold any locks that the VM thread also uses.
 868     // This could potentially lead to deadlocks
 869     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 870       // Threads_lock is special, since the safepoint synchronization will not start before this is
 871       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 872       // since it is used to transfer control between JavaThreads and the VMThread
 873       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 874       if ((cur->allow_vm_block() &&
 875            cur != Threads_lock &&
 876            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 877            cur != VMOperationRequest_lock &&
 878            cur != VMOperationQueue_lock) ||
 879            cur->rank() == Mutex::special) {
 880         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 881       }
 882     }
 883   }
 884 
 885   if (GCALotAtAllSafepoints) {
 886     // We could enter a safepoint here and thus have a gc
 887     InterfaceSupport::check_gc_alot();
 888   }
 889 #endif
 890 }
 891 #endif
 892 
 893 bool Thread::is_in_stack(address adr) const {
 894   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 895   address end = os::current_stack_pointer();
 896   // Allow non Java threads to call this without stack_base
 897   if (_stack_base == NULL) return true;
 898   if (stack_base() >= adr && adr >= end) return true;
 899 
 900   return false;
 901 }
 902 
 903 
 904 bool Thread::is_in_usable_stack(address adr) const {
 905   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 906   size_t usable_stack_size = _stack_size - stack_guard_size;
 907 
 908   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 909 }
 910 
 911 
 912 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 913 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 914 // used for compilation in the future. If that change is made, the need for these methods
 915 // should be revisited, and they should be removed if possible.
 916 
 917 bool Thread::is_lock_owned(address adr) const {
 918   return on_local_stack(adr);
 919 }
 920 
 921 bool Thread::set_as_starting_thread() {
 922   // NOTE: this must be called inside the main thread.
 923   return os::create_main_thread((JavaThread*)this);
 924 }
 925 
 926 static void initialize_class(Symbol* class_name, TRAPS) {
 927   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 928   InstanceKlass::cast(klass)->initialize(CHECK);
 929 }
 930 
 931 
 932 // Creates the initial ThreadGroup
 933 static Handle create_initial_thread_group(TRAPS) {
 934   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 935   instanceKlassHandle klass (THREAD, k);
 936 
 937   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 938   {
 939     JavaValue result(T_VOID);
 940     JavaCalls::call_special(&result,
 941                             system_instance,
 942                             klass,
 943                             vmSymbols::object_initializer_name(),
 944                             vmSymbols::void_method_signature(),
 945                             CHECK_NH);
 946   }
 947   Universe::set_system_thread_group(system_instance());
 948 
 949   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 950   {
 951     JavaValue result(T_VOID);
 952     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 953     JavaCalls::call_special(&result,
 954                             main_instance,
 955                             klass,
 956                             vmSymbols::object_initializer_name(),
 957                             vmSymbols::threadgroup_string_void_signature(),
 958                             system_instance,
 959                             string,
 960                             CHECK_NH);
 961   }
 962   return main_instance;
 963 }
 964 
 965 // Creates the initial Thread
 966 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 967                                  TRAPS) {
 968   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 969   instanceKlassHandle klass (THREAD, k);
 970   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 971 
 972   java_lang_Thread::set_thread(thread_oop(), thread);
 973   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 974   thread->set_threadObj(thread_oop());
 975 
 976   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 977 
 978   JavaValue result(T_VOID);
 979   JavaCalls::call_special(&result, thread_oop,
 980                           klass,
 981                           vmSymbols::object_initializer_name(),
 982                           vmSymbols::threadgroup_string_void_signature(),
 983                           thread_group,
 984                           string,
 985                           CHECK_NULL);
 986   return thread_oop();
 987 }
 988 
 989 static void call_initializeSystemClass(TRAPS) {
 990   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 991   instanceKlassHandle klass (THREAD, k);
 992 
 993   JavaValue result(T_VOID);
 994   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 995                          vmSymbols::void_method_signature(), CHECK);
 996 }
 997 
 998 char java_runtime_name[128] = "";
 999 char java_runtime_version[128] = "";
1000 
1001 // extract the JRE name from sun.misc.Version.java_runtime_name
1002 static const char* get_java_runtime_name(TRAPS) {
1003   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1004                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1005   fieldDescriptor fd;
1006   bool found = k != NULL &&
1007                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1008                                                         vmSymbols::string_signature(), &fd);
1009   if (found) {
1010     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1011     if (name_oop == NULL) {
1012       return NULL;
1013     }
1014     const char* name = java_lang_String::as_utf8_string(name_oop,
1015                                                         java_runtime_name,
1016                                                         sizeof(java_runtime_name));
1017     return name;
1018   } else {
1019     return NULL;
1020   }
1021 }
1022 
1023 // extract the JRE version from sun.misc.Version.java_runtime_version
1024 static const char* get_java_runtime_version(TRAPS) {
1025   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1026                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1027   fieldDescriptor fd;
1028   bool found = k != NULL &&
1029                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1030                                                         vmSymbols::string_signature(), &fd);
1031   if (found) {
1032     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1033     if (name_oop == NULL) {
1034       return NULL;
1035     }
1036     const char* name = java_lang_String::as_utf8_string(name_oop,
1037                                                         java_runtime_version,
1038                                                         sizeof(java_runtime_version));
1039     return name;
1040   } else {
1041     return NULL;
1042   }
1043 }
1044 
1045 // General purpose hook into Java code, run once when the VM is initialized.
1046 // The Java library method itself may be changed independently from the VM.
1047 static void call_postVMInitHook(TRAPS) {
1048   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1049   instanceKlassHandle klass (THREAD, k);
1050   if (klass.not_null()) {
1051     JavaValue result(T_VOID);
1052     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1053                            vmSymbols::void_method_signature(),
1054                            CHECK);
1055   }
1056 }
1057 
1058 static void reset_vm_info_property(TRAPS) {
1059   // the vm info string
1060   ResourceMark rm(THREAD);
1061   const char *vm_info = VM_Version::vm_info_string();
1062 
1063   // java.lang.System class
1064   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1065   instanceKlassHandle klass (THREAD, k);
1066 
1067   // setProperty arguments
1068   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1069   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1070 
1071   // return value
1072   JavaValue r(T_OBJECT);
1073 
1074   // public static String setProperty(String key, String value);
1075   JavaCalls::call_static(&r,
1076                          klass,
1077                          vmSymbols::setProperty_name(),
1078                          vmSymbols::string_string_string_signature(),
1079                          key_str,
1080                          value_str,
1081                          CHECK);
1082 }
1083 
1084 
1085 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1086                                     bool daemon, TRAPS) {
1087   assert(thread_group.not_null(), "thread group should be specified");
1088   assert(threadObj() == NULL, "should only create Java thread object once");
1089 
1090   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1091   instanceKlassHandle klass (THREAD, k);
1092   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1093 
1094   java_lang_Thread::set_thread(thread_oop(), this);
1095   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1096   set_threadObj(thread_oop());
1097 
1098   JavaValue result(T_VOID);
1099   if (thread_name != NULL) {
1100     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1101     // Thread gets assigned specified name and null target
1102     JavaCalls::call_special(&result,
1103                             thread_oop,
1104                             klass,
1105                             vmSymbols::object_initializer_name(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             thread_group, // Argument 1
1108                             name,         // Argument 2
1109                             THREAD);
1110   } else {
1111     // Thread gets assigned name "Thread-nnn" and null target
1112     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1113     JavaCalls::call_special(&result,
1114                             thread_oop,
1115                             klass,
1116                             vmSymbols::object_initializer_name(),
1117                             vmSymbols::threadgroup_runnable_void_signature(),
1118                             thread_group, // Argument 1
1119                             Handle(),     // Argument 2
1120                             THREAD);
1121   }
1122 
1123 
1124   if (daemon) {
1125     java_lang_Thread::set_daemon(thread_oop());
1126   }
1127 
1128   if (HAS_PENDING_EXCEPTION) {
1129     return;
1130   }
1131 
1132   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1133   Handle threadObj(THREAD, this->threadObj());
1134 
1135   JavaCalls::call_special(&result,
1136                           thread_group,
1137                           group,
1138                           vmSymbols::add_method_name(),
1139                           vmSymbols::thread_void_signature(),
1140                           threadObj,          // Arg 1
1141                           THREAD);
1142 }
1143 
1144 // NamedThread --  non-JavaThread subclasses with multiple
1145 // uniquely named instances should derive from this.
1146 NamedThread::NamedThread() : Thread() {
1147   _name = NULL;
1148   _processed_thread = NULL;
1149   _gc_id = GCId::undefined();
1150 }
1151 
1152 NamedThread::~NamedThread() {
1153   if (_name != NULL) {
1154     FREE_C_HEAP_ARRAY(char, _name);
1155     _name = NULL;
1156   }
1157 }
1158 
1159 void NamedThread::set_name(const char* format, ...) {
1160   guarantee(_name == NULL, "Only get to set name once.");
1161   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1162   guarantee(_name != NULL, "alloc failure");
1163   va_list ap;
1164   va_start(ap, format);
1165   jio_vsnprintf(_name, max_name_len, format, ap);
1166   va_end(ap);
1167 }
1168 
1169 void NamedThread::initialize_named_thread() {
1170   set_native_thread_name(name());
1171 }
1172 
1173 void NamedThread::print_on(outputStream* st) const {
1174   st->print("\"%s\" ", name());
1175   Thread::print_on(st);
1176   st->cr();
1177 }
1178 
1179 
1180 // ======= WatcherThread ========
1181 
1182 // The watcher thread exists to simulate timer interrupts.  It should
1183 // be replaced by an abstraction over whatever native support for
1184 // timer interrupts exists on the platform.
1185 
1186 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1187 bool WatcherThread::_startable = false;
1188 volatile bool  WatcherThread::_should_terminate = false;
1189 
1190 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1191   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1192   if (os::create_thread(this, os::watcher_thread)) {
1193     _watcher_thread = this;
1194 
1195     // Set the watcher thread to the highest OS priority which should not be
1196     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1197     // is created. The only normal thread using this priority is the reference
1198     // handler thread, which runs for very short intervals only.
1199     // If the VMThread's priority is not lower than the WatcherThread profiling
1200     // will be inaccurate.
1201     os::set_priority(this, MaxPriority);
1202     if (!DisableStartThread) {
1203       os::start_thread(this);
1204     }
1205   }
1206 }
1207 
1208 int WatcherThread::sleep() const {
1209   // The WatcherThread does not participate in the safepoint protocol
1210   // for the PeriodicTask_lock because it is not a JavaThread.
1211   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1212 
1213   if (_should_terminate) {
1214     // check for termination before we do any housekeeping or wait
1215     return 0;  // we did not sleep.
1216   }
1217 
1218   // remaining will be zero if there are no tasks,
1219   // causing the WatcherThread to sleep until a task is
1220   // enrolled
1221   int remaining = PeriodicTask::time_to_wait();
1222   int time_slept = 0;
1223 
1224   // we expect this to timeout - we only ever get unparked when
1225   // we should terminate or when a new task has been enrolled
1226   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1227 
1228   jlong time_before_loop = os::javaTimeNanos();
1229 
1230   while (true) {
1231     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1232                                             remaining);
1233     jlong now = os::javaTimeNanos();
1234 
1235     if (remaining == 0) {
1236       // if we didn't have any tasks we could have waited for a long time
1237       // consider the time_slept zero and reset time_before_loop
1238       time_slept = 0;
1239       time_before_loop = now;
1240     } else {
1241       // need to recalculate since we might have new tasks in _tasks
1242       time_slept = (int) ((now - time_before_loop) / 1000000);
1243     }
1244 
1245     // Change to task list or spurious wakeup of some kind
1246     if (timedout || _should_terminate) {
1247       break;
1248     }
1249 
1250     remaining = PeriodicTask::time_to_wait();
1251     if (remaining == 0) {
1252       // Last task was just disenrolled so loop around and wait until
1253       // another task gets enrolled
1254       continue;
1255     }
1256 
1257     remaining -= time_slept;
1258     if (remaining <= 0) {
1259       break;
1260     }
1261   }
1262 
1263   return time_slept;
1264 }
1265 
1266 void WatcherThread::run() {
1267   assert(this == watcher_thread(), "just checking");
1268 
1269   this->record_stack_base_and_size();
1270   this->set_native_thread_name(this->name());
1271   this->set_active_handles(JNIHandleBlock::allocate_block());
1272   while (true) {
1273     assert(watcher_thread() == Thread::current(), "thread consistency check");
1274     assert(watcher_thread() == this, "thread consistency check");
1275 
1276     // Calculate how long it'll be until the next PeriodicTask work
1277     // should be done, and sleep that amount of time.
1278     int time_waited = sleep();
1279 
1280     if (is_error_reported()) {
1281       // A fatal error has happened, the error handler(VMError::report_and_die)
1282       // should abort JVM after creating an error log file. However in some
1283       // rare cases, the error handler itself might deadlock. Here we try to
1284       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1285       //
1286       // This code is in WatcherThread because WatcherThread wakes up
1287       // periodically so the fatal error handler doesn't need to do anything;
1288       // also because the WatcherThread is less likely to crash than other
1289       // threads.
1290 
1291       for (;;) {
1292         if (!ShowMessageBoxOnError
1293             && (OnError == NULL || OnError[0] == '\0')
1294             && Arguments::abort_hook() == NULL) {
1295           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1296           fdStream err(defaultStream::output_fd());
1297           err.print_raw_cr("# [ timer expired, abort... ]");
1298           // skip atexit/vm_exit/vm_abort hooks
1299           os::die();
1300         }
1301 
1302         // Wake up 5 seconds later, the fatal handler may reset OnError or
1303         // ShowMessageBoxOnError when it is ready to abort.
1304         os::sleep(this, 5 * 1000, false);
1305       }
1306     }
1307 
1308     if (_should_terminate) {
1309       // check for termination before posting the next tick
1310       break;
1311     }
1312 
1313     PeriodicTask::real_time_tick(time_waited);
1314   }
1315 
1316   // Signal that it is terminated
1317   {
1318     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1319     _watcher_thread = NULL;
1320     Terminator_lock->notify();
1321   }
1322 }
1323 
1324 void WatcherThread::start() {
1325   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1326 
1327   if (watcher_thread() == NULL && _startable) {
1328     _should_terminate = false;
1329     // Create the single instance of WatcherThread
1330     new WatcherThread();
1331   }
1332 }
1333 
1334 void WatcherThread::make_startable() {
1335   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1336   _startable = true;
1337 }
1338 
1339 void WatcherThread::stop() {
1340   {
1341     // Follow normal safepoint aware lock enter protocol since the
1342     // WatcherThread is stopped by another JavaThread.
1343     MutexLocker ml(PeriodicTask_lock);
1344     _should_terminate = true;
1345 
1346     WatcherThread* watcher = watcher_thread();
1347     if (watcher != NULL) {
1348       // unpark the WatcherThread so it can see that it should terminate
1349       watcher->unpark();
1350     }
1351   }
1352 
1353   MutexLocker mu(Terminator_lock);
1354 
1355   while (watcher_thread() != NULL) {
1356     // This wait should make safepoint checks, wait without a timeout,
1357     // and wait as a suspend-equivalent condition.
1358     //
1359     // Note: If the FlatProfiler is running, then this thread is waiting
1360     // for the WatcherThread to terminate and the WatcherThread, via the
1361     // FlatProfiler task, is waiting for the external suspend request on
1362     // this thread to complete. wait_for_ext_suspend_completion() will
1363     // eventually timeout, but that takes time. Making this wait a
1364     // suspend-equivalent condition solves that timeout problem.
1365     //
1366     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1367                           Mutex::_as_suspend_equivalent_flag);
1368   }
1369 }
1370 
1371 void WatcherThread::unpark() {
1372   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1373   PeriodicTask_lock->notify();
1374 }
1375 
1376 void WatcherThread::print_on(outputStream* st) const {
1377   st->print("\"%s\" ", name());
1378   Thread::print_on(st);
1379   st->cr();
1380 }
1381 
1382 // ======= JavaThread ========
1383 
1384 #if INCLUDE_JVMCI
1385 
1386 jlong* JavaThread::_jvmci_old_thread_counters;
1387 
1388 bool jvmci_counters_include(JavaThread* thread) {
1389   oop threadObj = thread->threadObj();
1390   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1391 }
1392 
1393 void JavaThread::collect_counters(typeArrayOop array) {
1394   if (JVMCICounterSize > 0) {
1395     MutexLocker tl(Threads_lock);
1396     for (int i = 0; i < array->length(); i++) {
1397       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1398     }
1399     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1400       if (jvmci_counters_include(tp)) {
1401         for (int i = 0; i < array->length(); i++) {
1402           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1403         }
1404       }
1405     }
1406   }
1407 }
1408 
1409 #endif // INCLUDE_JVMCI
1410 
1411 // A JavaThread is a normal Java thread
1412 
1413 void JavaThread::initialize() {
1414   // Initialize fields
1415 
1416   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1417   set_claimed_par_id(UINT_MAX);
1418 
1419   set_saved_exception_pc(NULL);
1420   set_threadObj(NULL);
1421   _anchor.clear();
1422   set_entry_point(NULL);
1423   set_jni_functions(jni_functions());
1424   set_callee_target(NULL);
1425   set_vm_result(NULL);
1426   set_vm_result_2(NULL);
1427   set_vframe_array_head(NULL);
1428   set_vframe_array_last(NULL);
1429   set_deferred_locals(NULL);
1430   set_deopt_mark(NULL);
1431   set_deopt_nmethod(NULL);
1432   clear_must_deopt_id();
1433   set_monitor_chunks(NULL);
1434   set_next(NULL);
1435   set_thread_state(_thread_new);
1436   _terminated = _not_terminated;
1437   _privileged_stack_top = NULL;
1438   _array_for_gc = NULL;
1439   _suspend_equivalent = false;
1440   _in_deopt_handler = 0;
1441   _doing_unsafe_access = false;
1442   _stack_guard_state = stack_guard_unused;
1443 #if INCLUDE_JVMCI
1444   _pending_monitorenter = false;
1445   _pending_deoptimization = -1;
1446   _pending_failed_speculation = NULL;
1447   _pending_transfer_to_interpreter = false;
1448   _jvmci._alternate_call_target = NULL;
1449   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1450   if (JVMCICounterSize > 0) {
1451     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1452     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1453   } else {
1454     _jvmci_counters = NULL;
1455   }
1456 #endif // INCLUDE_JVMCI
1457   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1458   _exception_pc  = 0;
1459   _exception_handler_pc = 0;
1460   _is_method_handle_return = 0;
1461   _jvmti_thread_state= NULL;
1462   _should_post_on_exceptions_flag = JNI_FALSE;
1463   _jvmti_get_loaded_classes_closure = NULL;
1464   _interp_only_mode    = 0;
1465   _special_runtime_exit_condition = _no_async_condition;
1466   _pending_async_exception = NULL;
1467   _thread_stat = NULL;
1468   _thread_stat = new ThreadStatistics();
1469   _blocked_on_compilation = false;
1470   _jni_active_critical = 0;
1471   _pending_jni_exception_check_fn = NULL;
1472   _do_not_unlock_if_synchronized = false;
1473   _cached_monitor_info = NULL;
1474   _parker = Parker::Allocate(this);
1475 
1476 #ifndef PRODUCT
1477   _jmp_ring_index = 0;
1478   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1479     record_jump(NULL, NULL, NULL, 0);
1480   }
1481 #endif // PRODUCT
1482 
1483   set_thread_profiler(NULL);
1484   if (FlatProfiler::is_active()) {
1485     // This is where we would decide to either give each thread it's own profiler
1486     // or use one global one from FlatProfiler,
1487     // or up to some count of the number of profiled threads, etc.
1488     ThreadProfiler* pp = new ThreadProfiler();
1489     pp->engage();
1490     set_thread_profiler(pp);
1491   }
1492 
1493   // Setup safepoint state info for this thread
1494   ThreadSafepointState::create(this);
1495 
1496   debug_only(_java_call_counter = 0);
1497 
1498   // JVMTI PopFrame support
1499   _popframe_condition = popframe_inactive;
1500   _popframe_preserved_args = NULL;
1501   _popframe_preserved_args_size = 0;
1502   _frames_to_pop_failed_realloc = 0;
1503 
1504   pd_initialize();
1505 }
1506 
1507 #if INCLUDE_ALL_GCS
1508 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1509 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1510 #endif // INCLUDE_ALL_GCS
1511 
1512 JavaThread::JavaThread(bool is_attaching_via_jni) :
1513                        Thread()
1514 #if INCLUDE_ALL_GCS
1515                        , _satb_mark_queue(&_satb_mark_queue_set),
1516                        _dirty_card_queue(&_dirty_card_queue_set)
1517 #endif // INCLUDE_ALL_GCS
1518 {
1519   initialize();
1520   if (is_attaching_via_jni) {
1521     _jni_attach_state = _attaching_via_jni;
1522   } else {
1523     _jni_attach_state = _not_attaching_via_jni;
1524   }
1525   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1526 }
1527 
1528 bool JavaThread::reguard_stack(address cur_sp) {
1529   if (_stack_guard_state != stack_guard_yellow_disabled) {
1530     return true; // Stack already guarded or guard pages not needed.
1531   }
1532 
1533   if (register_stack_overflow()) {
1534     // For those architectures which have separate register and
1535     // memory stacks, we must check the register stack to see if
1536     // it has overflowed.
1537     return false;
1538   }
1539 
1540   // Java code never executes within the yellow zone: the latter is only
1541   // there to provoke an exception during stack banging.  If java code
1542   // is executing there, either StackShadowPages should be larger, or
1543   // some exception code in c1, c2 or the interpreter isn't unwinding
1544   // when it should.
1545   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1546 
1547   enable_stack_yellow_zone();
1548   return true;
1549 }
1550 
1551 bool JavaThread::reguard_stack(void) {
1552   return reguard_stack(os::current_stack_pointer());
1553 }
1554 
1555 
1556 void JavaThread::block_if_vm_exited() {
1557   if (_terminated == _vm_exited) {
1558     // _vm_exited is set at safepoint, and Threads_lock is never released
1559     // we will block here forever
1560     Threads_lock->lock_without_safepoint_check();
1561     ShouldNotReachHere();
1562   }
1563 }
1564 
1565 
1566 // Remove this ifdef when C1 is ported to the compiler interface.
1567 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1568 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1569 
1570 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1571                        Thread()
1572 #if INCLUDE_ALL_GCS
1573                        , _satb_mark_queue(&_satb_mark_queue_set),
1574                        _dirty_card_queue(&_dirty_card_queue_set)
1575 #endif // INCLUDE_ALL_GCS
1576 {
1577   initialize();
1578   _jni_attach_state = _not_attaching_via_jni;
1579   set_entry_point(entry_point);
1580   // Create the native thread itself.
1581   // %note runtime_23
1582   os::ThreadType thr_type = os::java_thread;
1583   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1584                                                      os::java_thread;
1585   os::create_thread(this, thr_type, stack_sz);
1586   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1587   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1588   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1589   // the exception consists of creating the exception object & initializing it, initialization
1590   // will leave the VM via a JavaCall and then all locks must be unlocked).
1591   //
1592   // The thread is still suspended when we reach here. Thread must be explicit started
1593   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1594   // by calling Threads:add. The reason why this is not done here, is because the thread
1595   // object must be fully initialized (take a look at JVM_Start)
1596 }
1597 
1598 JavaThread::~JavaThread() {
1599 
1600   // JSR166 -- return the parker to the free list
1601   Parker::Release(_parker);
1602   _parker = NULL;
1603 
1604   // Free any remaining  previous UnrollBlock
1605   vframeArray* old_array = vframe_array_last();
1606 
1607   if (old_array != NULL) {
1608     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1609     old_array->set_unroll_block(NULL);
1610     delete old_info;
1611     delete old_array;
1612   }
1613 
1614   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1615   if (deferred != NULL) {
1616     // This can only happen if thread is destroyed before deoptimization occurs.
1617     assert(deferred->length() != 0, "empty array!");
1618     do {
1619       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1620       deferred->remove_at(0);
1621       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1622       delete dlv;
1623     } while (deferred->length() != 0);
1624     delete deferred;
1625   }
1626 
1627   // All Java related clean up happens in exit
1628   ThreadSafepointState::destroy(this);
1629   if (_thread_profiler != NULL) delete _thread_profiler;
1630   if (_thread_stat != NULL) delete _thread_stat;
1631 
1632 #if INCLUDE_JVMCI
1633   if (JVMCICounterSize > 0) {
1634     if (jvmci_counters_include(this)) {
1635       for (int i = 0; i < JVMCICounterSize; i++) {
1636         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1637       }
1638     }
1639     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1640   }
1641 #endif // INCLUDE_JVMCI
1642 }
1643 
1644 
1645 // The first routine called by a new Java thread
1646 void JavaThread::run() {
1647   // initialize thread-local alloc buffer related fields
1648   this->initialize_tlab();
1649 
1650   // used to test validity of stack trace backs
1651   this->record_base_of_stack_pointer();
1652 
1653   // Record real stack base and size.
1654   this->record_stack_base_and_size();
1655 
1656   this->create_stack_guard_pages();
1657 
1658   this->cache_global_variables();
1659 
1660   // Thread is now sufficient initialized to be handled by the safepoint code as being
1661   // in the VM. Change thread state from _thread_new to _thread_in_vm
1662   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1663 
1664   assert(JavaThread::current() == this, "sanity check");
1665   assert(!Thread::current()->owns_locks(), "sanity check");
1666 
1667   DTRACE_THREAD_PROBE(start, this);
1668 
1669   // This operation might block. We call that after all safepoint checks for a new thread has
1670   // been completed.
1671   this->set_active_handles(JNIHandleBlock::allocate_block());
1672 
1673   if (JvmtiExport::should_post_thread_life()) {
1674     JvmtiExport::post_thread_start(this);
1675   }
1676 
1677   EventThreadStart event;
1678   if (event.should_commit()) {
1679     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1680     event.commit();
1681   }
1682 
1683   // We call another function to do the rest so we are sure that the stack addresses used
1684   // from there will be lower than the stack base just computed
1685   thread_main_inner();
1686 
1687   // Note, thread is no longer valid at this point!
1688 }
1689 
1690 
1691 void JavaThread::thread_main_inner() {
1692   assert(JavaThread::current() == this, "sanity check");
1693   assert(this->threadObj() != NULL, "just checking");
1694 
1695   // Execute thread entry point unless this thread has a pending exception
1696   // or has been stopped before starting.
1697   // Note: Due to JVM_StopThread we can have pending exceptions already!
1698   if (!this->has_pending_exception() &&
1699       !java_lang_Thread::is_stillborn(this->threadObj())) {
1700     {
1701       ResourceMark rm(this);
1702       this->set_native_thread_name(this->get_thread_name());
1703     }
1704     HandleMark hm(this);
1705     this->entry_point()(this, this);
1706   }
1707 
1708   DTRACE_THREAD_PROBE(stop, this);
1709 
1710   this->exit(false);
1711   delete this;
1712 }
1713 
1714 
1715 static void ensure_join(JavaThread* thread) {
1716   // We do not need to grap the Threads_lock, since we are operating on ourself.
1717   Handle threadObj(thread, thread->threadObj());
1718   assert(threadObj.not_null(), "java thread object must exist");
1719   ObjectLocker lock(threadObj, thread);
1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1721   thread->clear_pending_exception();
1722   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1723   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1724   // Clear the native thread instance - this makes isAlive return false and allows the join()
1725   // to complete once we've done the notify_all below
1726   java_lang_Thread::set_thread(threadObj(), NULL);
1727   lock.notify_all(thread);
1728   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1729   thread->clear_pending_exception();
1730 }
1731 
1732 
1733 // For any new cleanup additions, please check to see if they need to be applied to
1734 // cleanup_failed_attach_current_thread as well.
1735 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1736   assert(this == JavaThread::current(), "thread consistency check");
1737 
1738   HandleMark hm(this);
1739   Handle uncaught_exception(this, this->pending_exception());
1740   this->clear_pending_exception();
1741   Handle threadObj(this, this->threadObj());
1742   assert(threadObj.not_null(), "Java thread object should be created");
1743 
1744   if (get_thread_profiler() != NULL) {
1745     get_thread_profiler()->disengage();
1746     ResourceMark rm;
1747     get_thread_profiler()->print(get_thread_name());
1748   }
1749 
1750 
1751   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1752   {
1753     EXCEPTION_MARK;
1754 
1755     CLEAR_PENDING_EXCEPTION;
1756   }
1757   if (!destroy_vm) {
1758     if (uncaught_exception.not_null()) {
1759       EXCEPTION_MARK;
1760       // Call method Thread.dispatchUncaughtException().
1761       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1762       JavaValue result(T_VOID);
1763       JavaCalls::call_virtual(&result,
1764                               threadObj, thread_klass,
1765                               vmSymbols::dispatchUncaughtException_name(),
1766                               vmSymbols::throwable_void_signature(),
1767                               uncaught_exception,
1768                               THREAD);
1769       if (HAS_PENDING_EXCEPTION) {
1770         ResourceMark rm(this);
1771         jio_fprintf(defaultStream::error_stream(),
1772                     "\nException: %s thrown from the UncaughtExceptionHandler"
1773                     " in thread \"%s\"\n",
1774                     pending_exception()->klass()->external_name(),
1775                     get_thread_name());
1776         CLEAR_PENDING_EXCEPTION;
1777       }
1778     }
1779 
1780     // Called before the java thread exit since we want to read info
1781     // from java_lang_Thread object
1782     EventThreadEnd event;
1783     if (event.should_commit()) {
1784       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1785       event.commit();
1786     }
1787 
1788     // Call after last event on thread
1789     EVENT_THREAD_EXIT(this);
1790 
1791     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1792     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1793     // is deprecated anyhow.
1794     if (!is_Compiler_thread()) {
1795       int count = 3;
1796       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1797         EXCEPTION_MARK;
1798         JavaValue result(T_VOID);
1799         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1800         JavaCalls::call_virtual(&result,
1801                                 threadObj, thread_klass,
1802                                 vmSymbols::exit_method_name(),
1803                                 vmSymbols::void_method_signature(),
1804                                 THREAD);
1805         CLEAR_PENDING_EXCEPTION;
1806       }
1807     }
1808     // notify JVMTI
1809     if (JvmtiExport::should_post_thread_life()) {
1810       JvmtiExport::post_thread_end(this);
1811     }
1812 
1813     // We have notified the agents that we are exiting, before we go on,
1814     // we must check for a pending external suspend request and honor it
1815     // in order to not surprise the thread that made the suspend request.
1816     while (true) {
1817       {
1818         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1819         if (!is_external_suspend()) {
1820           set_terminated(_thread_exiting);
1821           ThreadService::current_thread_exiting(this);
1822           break;
1823         }
1824         // Implied else:
1825         // Things get a little tricky here. We have a pending external
1826         // suspend request, but we are holding the SR_lock so we
1827         // can't just self-suspend. So we temporarily drop the lock
1828         // and then self-suspend.
1829       }
1830 
1831       ThreadBlockInVM tbivm(this);
1832       java_suspend_self();
1833 
1834       // We're done with this suspend request, but we have to loop around
1835       // and check again. Eventually we will get SR_lock without a pending
1836       // external suspend request and will be able to mark ourselves as
1837       // exiting.
1838     }
1839     // no more external suspends are allowed at this point
1840   } else {
1841     // before_exit() has already posted JVMTI THREAD_END events
1842   }
1843 
1844   // Notify waiters on thread object. This has to be done after exit() is called
1845   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1846   // group should have the destroyed bit set before waiters are notified).
1847   ensure_join(this);
1848   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1849 
1850   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1851   // held by this thread must be released. The spec does not distinguish
1852   // between JNI-acquired and regular Java monitors. We can only see
1853   // regular Java monitors here if monitor enter-exit matching is broken.
1854   //
1855   // Optionally release any monitors for regular JavaThread exits. This
1856   // is provided as a work around for any bugs in monitor enter-exit
1857   // matching. This can be expensive so it is not enabled by default.
1858   //
1859   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1860   // ObjectSynchronizer::release_monitors_owned_by_thread().
1861   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1862     // Sanity check even though JNI DetachCurrentThread() would have
1863     // returned JNI_ERR if there was a Java frame. JavaThread exit
1864     // should be done executing Java code by the time we get here.
1865     assert(!this->has_last_Java_frame(),
1866            "should not have a Java frame when detaching or exiting");
1867     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1868     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1869   }
1870 
1871   // These things needs to be done while we are still a Java Thread. Make sure that thread
1872   // is in a consistent state, in case GC happens
1873   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1874 
1875   if (active_handles() != NULL) {
1876     JNIHandleBlock* block = active_handles();
1877     set_active_handles(NULL);
1878     JNIHandleBlock::release_block(block);
1879   }
1880 
1881   if (free_handle_block() != NULL) {
1882     JNIHandleBlock* block = free_handle_block();
1883     set_free_handle_block(NULL);
1884     JNIHandleBlock::release_block(block);
1885   }
1886 
1887   // These have to be removed while this is still a valid thread.
1888   remove_stack_guard_pages();
1889 
1890   if (UseTLAB) {
1891     tlab().make_parsable(true);  // retire TLAB
1892   }
1893 
1894   if (JvmtiEnv::environments_might_exist()) {
1895     JvmtiExport::cleanup_thread(this);
1896   }
1897 
1898   // We must flush any deferred card marks before removing a thread from
1899   // the list of active threads.
1900   Universe::heap()->flush_deferred_store_barrier(this);
1901   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1902 
1903 #if INCLUDE_ALL_GCS
1904   // We must flush the G1-related buffers before removing a thread
1905   // from the list of active threads. We must do this after any deferred
1906   // card marks have been flushed (above) so that any entries that are
1907   // added to the thread's dirty card queue as a result are not lost.
1908   if (UseG1GC) {
1909     flush_barrier_queues();
1910   }
1911 #endif // INCLUDE_ALL_GCS
1912 
1913   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1914   Threads::remove(this);
1915 }
1916 
1917 #if INCLUDE_ALL_GCS
1918 // Flush G1-related queues.
1919 void JavaThread::flush_barrier_queues() {
1920   satb_mark_queue().flush();
1921   dirty_card_queue().flush();
1922 }
1923 
1924 void JavaThread::initialize_queues() {
1925   assert(!SafepointSynchronize::is_at_safepoint(),
1926          "we should not be at a safepoint");
1927 
1928   ObjPtrQueue& satb_queue = satb_mark_queue();
1929   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1930   // The SATB queue should have been constructed with its active
1931   // field set to false.
1932   assert(!satb_queue.is_active(), "SATB queue should not be active");
1933   assert(satb_queue.is_empty(), "SATB queue should be empty");
1934   // If we are creating the thread during a marking cycle, we should
1935   // set the active field of the SATB queue to true.
1936   if (satb_queue_set.is_active()) {
1937     satb_queue.set_active(true);
1938   }
1939 
1940   DirtyCardQueue& dirty_queue = dirty_card_queue();
1941   // The dirty card queue should have been constructed with its
1942   // active field set to true.
1943   assert(dirty_queue.is_active(), "dirty card queue should be active");
1944 }
1945 #endif // INCLUDE_ALL_GCS
1946 
1947 void JavaThread::cleanup_failed_attach_current_thread() {
1948   if (get_thread_profiler() != NULL) {
1949     get_thread_profiler()->disengage();
1950     ResourceMark rm;
1951     get_thread_profiler()->print(get_thread_name());
1952   }
1953 
1954   if (active_handles() != NULL) {
1955     JNIHandleBlock* block = active_handles();
1956     set_active_handles(NULL);
1957     JNIHandleBlock::release_block(block);
1958   }
1959 
1960   if (free_handle_block() != NULL) {
1961     JNIHandleBlock* block = free_handle_block();
1962     set_free_handle_block(NULL);
1963     JNIHandleBlock::release_block(block);
1964   }
1965 
1966   // These have to be removed while this is still a valid thread.
1967   remove_stack_guard_pages();
1968 
1969   if (UseTLAB) {
1970     tlab().make_parsable(true);  // retire TLAB, if any
1971   }
1972 
1973 #if INCLUDE_ALL_GCS
1974   if (UseG1GC) {
1975     flush_barrier_queues();
1976   }
1977 #endif // INCLUDE_ALL_GCS
1978 
1979   Threads::remove(this);
1980   delete this;
1981 }
1982 
1983 
1984 
1985 
1986 JavaThread* JavaThread::active() {
1987   Thread* thread = Thread::current();
1988   assert(thread != NULL, "just checking");
1989   if (thread->is_Java_thread()) {
1990     return (JavaThread*) thread;
1991   } else {
1992     assert(thread->is_VM_thread(), "this must be a vm thread");
1993     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1994     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1995     assert(ret->is_Java_thread(), "must be a Java thread");
1996     return ret;
1997   }
1998 }
1999 
2000 bool JavaThread::is_lock_owned(address adr) const {
2001   if (Thread::is_lock_owned(adr)) return true;
2002 
2003   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2004     if (chunk->contains(adr)) return true;
2005   }
2006 
2007   return false;
2008 }
2009 
2010 
2011 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2012   chunk->set_next(monitor_chunks());
2013   set_monitor_chunks(chunk);
2014 }
2015 
2016 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2017   guarantee(monitor_chunks() != NULL, "must be non empty");
2018   if (monitor_chunks() == chunk) {
2019     set_monitor_chunks(chunk->next());
2020   } else {
2021     MonitorChunk* prev = monitor_chunks();
2022     while (prev->next() != chunk) prev = prev->next();
2023     prev->set_next(chunk->next());
2024   }
2025 }
2026 
2027 // JVM support.
2028 
2029 // Note: this function shouldn't block if it's called in
2030 // _thread_in_native_trans state (such as from
2031 // check_special_condition_for_native_trans()).
2032 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2033 
2034   if (has_last_Java_frame() && has_async_condition()) {
2035     // If we are at a polling page safepoint (not a poll return)
2036     // then we must defer async exception because live registers
2037     // will be clobbered by the exception path. Poll return is
2038     // ok because the call we a returning from already collides
2039     // with exception handling registers and so there is no issue.
2040     // (The exception handling path kills call result registers but
2041     //  this is ok since the exception kills the result anyway).
2042 
2043     if (is_at_poll_safepoint()) {
2044       // if the code we are returning to has deoptimized we must defer
2045       // the exception otherwise live registers get clobbered on the
2046       // exception path before deoptimization is able to retrieve them.
2047       //
2048       RegisterMap map(this, false);
2049       frame caller_fr = last_frame().sender(&map);
2050       assert(caller_fr.is_compiled_frame(), "what?");
2051       if (caller_fr.is_deoptimized_frame()) {
2052         if (TraceExceptions) {
2053           ResourceMark rm;
2054           tty->print_cr("deferred async exception at compiled safepoint");
2055         }
2056         return;
2057       }
2058     }
2059   }
2060 
2061   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2062   if (condition == _no_async_condition) {
2063     // Conditions have changed since has_special_runtime_exit_condition()
2064     // was called:
2065     // - if we were here only because of an external suspend request,
2066     //   then that was taken care of above (or cancelled) so we are done
2067     // - if we were here because of another async request, then it has
2068     //   been cleared between the has_special_runtime_exit_condition()
2069     //   and now so again we are done
2070     return;
2071   }
2072 
2073   // Check for pending async. exception
2074   if (_pending_async_exception != NULL) {
2075     // Only overwrite an already pending exception, if it is not a threadDeath.
2076     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2077 
2078       // We cannot call Exceptions::_throw(...) here because we cannot block
2079       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2080 
2081       if (TraceExceptions) {
2082         ResourceMark rm;
2083         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2084         if (has_last_Java_frame()) {
2085           frame f = last_frame();
2086           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2087         }
2088         tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2089       }
2090       _pending_async_exception = NULL;
2091       clear_has_async_exception();
2092     }
2093   }
2094 
2095   if (check_unsafe_error &&
2096       condition == _async_unsafe_access_error && !has_pending_exception()) {
2097     condition = _no_async_condition;  // done
2098     switch (thread_state()) {
2099     case _thread_in_vm: {
2100       JavaThread* THREAD = this;
2101       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2102     }
2103     case _thread_in_native: {
2104       ThreadInVMfromNative tiv(this);
2105       JavaThread* THREAD = this;
2106       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2107     }
2108     case _thread_in_Java: {
2109       ThreadInVMfromJava tiv(this);
2110       JavaThread* THREAD = this;
2111       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2112     }
2113     default:
2114       ShouldNotReachHere();
2115     }
2116   }
2117 
2118   assert(condition == _no_async_condition || has_pending_exception() ||
2119          (!check_unsafe_error && condition == _async_unsafe_access_error),
2120          "must have handled the async condition, if no exception");
2121 }
2122 
2123 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2124   //
2125   // Check for pending external suspend. Internal suspend requests do
2126   // not use handle_special_runtime_exit_condition().
2127   // If JNIEnv proxies are allowed, don't self-suspend if the target
2128   // thread is not the current thread. In older versions of jdbx, jdbx
2129   // threads could call into the VM with another thread's JNIEnv so we
2130   // can be here operating on behalf of a suspended thread (4432884).
2131   bool do_self_suspend = is_external_suspend_with_lock();
2132   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2133     //
2134     // Because thread is external suspended the safepoint code will count
2135     // thread as at a safepoint. This can be odd because we can be here
2136     // as _thread_in_Java which would normally transition to _thread_blocked
2137     // at a safepoint. We would like to mark the thread as _thread_blocked
2138     // before calling java_suspend_self like all other callers of it but
2139     // we must then observe proper safepoint protocol. (We can't leave
2140     // _thread_blocked with a safepoint in progress). However we can be
2141     // here as _thread_in_native_trans so we can't use a normal transition
2142     // constructor/destructor pair because they assert on that type of
2143     // transition. We could do something like:
2144     //
2145     // JavaThreadState state = thread_state();
2146     // set_thread_state(_thread_in_vm);
2147     // {
2148     //   ThreadBlockInVM tbivm(this);
2149     //   java_suspend_self()
2150     // }
2151     // set_thread_state(_thread_in_vm_trans);
2152     // if (safepoint) block;
2153     // set_thread_state(state);
2154     //
2155     // but that is pretty messy. Instead we just go with the way the
2156     // code has worked before and note that this is the only path to
2157     // java_suspend_self that doesn't put the thread in _thread_blocked
2158     // mode.
2159 
2160     frame_anchor()->make_walkable(this);
2161     java_suspend_self();
2162 
2163     // We might be here for reasons in addition to the self-suspend request
2164     // so check for other async requests.
2165   }
2166 
2167   if (check_asyncs) {
2168     check_and_handle_async_exceptions();
2169   }
2170 }
2171 
2172 void JavaThread::send_thread_stop(oop java_throwable)  {
2173   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2174   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2175   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2176 
2177   // Do not throw asynchronous exceptions against the compiler thread
2178   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2179   if (!can_call_java()) return;
2180 
2181   {
2182     // Actually throw the Throwable against the target Thread - however
2183     // only if there is no thread death exception installed already.
2184     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2185       // If the topmost frame is a runtime stub, then we are calling into
2186       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2187       // must deoptimize the caller before continuing, as the compiled  exception handler table
2188       // may not be valid
2189       if (has_last_Java_frame()) {
2190         frame f = last_frame();
2191         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2192           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2193           RegisterMap reg_map(this, UseBiasedLocking);
2194           frame compiled_frame = f.sender(&reg_map);
2195           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2196             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2197           }
2198         }
2199       }
2200 
2201       // Set async. pending exception in thread.
2202       set_pending_async_exception(java_throwable);
2203 
2204       if (TraceExceptions) {
2205         ResourceMark rm;
2206         tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2207       }
2208       // for AbortVMOnException flag
2209       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2210     }
2211   }
2212 
2213 
2214   // Interrupt thread so it will wake up from a potential wait()
2215   Thread::interrupt(this);
2216 }
2217 
2218 // External suspension mechanism.
2219 //
2220 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2221 // to any VM_locks and it is at a transition
2222 // Self-suspension will happen on the transition out of the vm.
2223 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2224 //
2225 // Guarantees on return:
2226 //   + Target thread will not execute any new bytecode (that's why we need to
2227 //     force a safepoint)
2228 //   + Target thread will not enter any new monitors
2229 //
2230 void JavaThread::java_suspend() {
2231   { MutexLocker mu(Threads_lock);
2232     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2233       return;
2234     }
2235   }
2236 
2237   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2238     if (!is_external_suspend()) {
2239       // a racing resume has cancelled us; bail out now
2240       return;
2241     }
2242 
2243     // suspend is done
2244     uint32_t debug_bits = 0;
2245     // Warning: is_ext_suspend_completed() may temporarily drop the
2246     // SR_lock to allow the thread to reach a stable thread state if
2247     // it is currently in a transient thread state.
2248     if (is_ext_suspend_completed(false /* !called_by_wait */,
2249                                  SuspendRetryDelay, &debug_bits)) {
2250       return;
2251     }
2252   }
2253 
2254   VM_ForceSafepoint vm_suspend;
2255   VMThread::execute(&vm_suspend);
2256 }
2257 
2258 // Part II of external suspension.
2259 // A JavaThread self suspends when it detects a pending external suspend
2260 // request. This is usually on transitions. It is also done in places
2261 // where continuing to the next transition would surprise the caller,
2262 // e.g., monitor entry.
2263 //
2264 // Returns the number of times that the thread self-suspended.
2265 //
2266 // Note: DO NOT call java_suspend_self() when you just want to block current
2267 //       thread. java_suspend_self() is the second stage of cooperative
2268 //       suspension for external suspend requests and should only be used
2269 //       to complete an external suspend request.
2270 //
2271 int JavaThread::java_suspend_self() {
2272   int ret = 0;
2273 
2274   // we are in the process of exiting so don't suspend
2275   if (is_exiting()) {
2276     clear_external_suspend();
2277     return ret;
2278   }
2279 
2280   assert(_anchor.walkable() ||
2281          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2282          "must have walkable stack");
2283 
2284   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2285 
2286   assert(!this->is_ext_suspended(),
2287          "a thread trying to self-suspend should not already be suspended");
2288 
2289   if (this->is_suspend_equivalent()) {
2290     // If we are self-suspending as a result of the lifting of a
2291     // suspend equivalent condition, then the suspend_equivalent
2292     // flag is not cleared until we set the ext_suspended flag so
2293     // that wait_for_ext_suspend_completion() returns consistent
2294     // results.
2295     this->clear_suspend_equivalent();
2296   }
2297 
2298   // A racing resume may have cancelled us before we grabbed SR_lock
2299   // above. Or another external suspend request could be waiting for us
2300   // by the time we return from SR_lock()->wait(). The thread
2301   // that requested the suspension may already be trying to walk our
2302   // stack and if we return now, we can change the stack out from under
2303   // it. This would be a "bad thing (TM)" and cause the stack walker
2304   // to crash. We stay self-suspended until there are no more pending
2305   // external suspend requests.
2306   while (is_external_suspend()) {
2307     ret++;
2308     this->set_ext_suspended();
2309 
2310     // _ext_suspended flag is cleared by java_resume()
2311     while (is_ext_suspended()) {
2312       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2313     }
2314   }
2315 
2316   return ret;
2317 }
2318 
2319 #ifdef ASSERT
2320 // verify the JavaThread has not yet been published in the Threads::list, and
2321 // hence doesn't need protection from concurrent access at this stage
2322 void JavaThread::verify_not_published() {
2323   if (!Threads_lock->owned_by_self()) {
2324     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2325     assert(!Threads::includes(this),
2326            "java thread shouldn't have been published yet!");
2327   } else {
2328     assert(!Threads::includes(this),
2329            "java thread shouldn't have been published yet!");
2330   }
2331 }
2332 #endif
2333 
2334 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2335 // progress or when _suspend_flags is non-zero.
2336 // Current thread needs to self-suspend if there is a suspend request and/or
2337 // block if a safepoint is in progress.
2338 // Async exception ISN'T checked.
2339 // Note only the ThreadInVMfromNative transition can call this function
2340 // directly and when thread state is _thread_in_native_trans
2341 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2342   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2343 
2344   JavaThread *curJT = JavaThread::current();
2345   bool do_self_suspend = thread->is_external_suspend();
2346 
2347   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2348 
2349   // If JNIEnv proxies are allowed, don't self-suspend if the target
2350   // thread is not the current thread. In older versions of jdbx, jdbx
2351   // threads could call into the VM with another thread's JNIEnv so we
2352   // can be here operating on behalf of a suspended thread (4432884).
2353   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2354     JavaThreadState state = thread->thread_state();
2355 
2356     // We mark this thread_blocked state as a suspend-equivalent so
2357     // that a caller to is_ext_suspend_completed() won't be confused.
2358     // The suspend-equivalent state is cleared by java_suspend_self().
2359     thread->set_suspend_equivalent();
2360 
2361     // If the safepoint code sees the _thread_in_native_trans state, it will
2362     // wait until the thread changes to other thread state. There is no
2363     // guarantee on how soon we can obtain the SR_lock and complete the
2364     // self-suspend request. It would be a bad idea to let safepoint wait for
2365     // too long. Temporarily change the state to _thread_blocked to
2366     // let the VM thread know that this thread is ready for GC. The problem
2367     // of changing thread state is that safepoint could happen just after
2368     // java_suspend_self() returns after being resumed, and VM thread will
2369     // see the _thread_blocked state. We must check for safepoint
2370     // after restoring the state and make sure we won't leave while a safepoint
2371     // is in progress.
2372     thread->set_thread_state(_thread_blocked);
2373     thread->java_suspend_self();
2374     thread->set_thread_state(state);
2375     // Make sure new state is seen by VM thread
2376     if (os::is_MP()) {
2377       if (UseMembar) {
2378         // Force a fence between the write above and read below
2379         OrderAccess::fence();
2380       } else {
2381         // Must use this rather than serialization page in particular on Windows
2382         InterfaceSupport::serialize_memory(thread);
2383       }
2384     }
2385   }
2386 
2387   if (SafepointSynchronize::do_call_back()) {
2388     // If we are safepointing, then block the caller which may not be
2389     // the same as the target thread (see above).
2390     SafepointSynchronize::block(curJT);
2391   }
2392 
2393   if (thread->is_deopt_suspend()) {
2394     thread->clear_deopt_suspend();
2395     RegisterMap map(thread, false);
2396     frame f = thread->last_frame();
2397     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2398       f = f.sender(&map);
2399     }
2400     if (f.id() == thread->must_deopt_id()) {
2401       thread->clear_must_deopt_id();
2402       f.deoptimize(thread);
2403     } else {
2404       fatal("missed deoptimization!");
2405     }
2406   }
2407 }
2408 
2409 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2410 // progress or when _suspend_flags is non-zero.
2411 // Current thread needs to self-suspend if there is a suspend request and/or
2412 // block if a safepoint is in progress.
2413 // Also check for pending async exception (not including unsafe access error).
2414 // Note only the native==>VM/Java barriers can call this function and when
2415 // thread state is _thread_in_native_trans.
2416 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2417   check_safepoint_and_suspend_for_native_trans(thread);
2418 
2419   if (thread->has_async_exception()) {
2420     // We are in _thread_in_native_trans state, don't handle unsafe
2421     // access error since that may block.
2422     thread->check_and_handle_async_exceptions(false);
2423   }
2424 }
2425 
2426 // This is a variant of the normal
2427 // check_special_condition_for_native_trans with slightly different
2428 // semantics for use by critical native wrappers.  It does all the
2429 // normal checks but also performs the transition back into
2430 // thread_in_Java state.  This is required so that critical natives
2431 // can potentially block and perform a GC if they are the last thread
2432 // exiting the GC_locker.
2433 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2434   check_special_condition_for_native_trans(thread);
2435 
2436   // Finish the transition
2437   thread->set_thread_state(_thread_in_Java);
2438 
2439   if (thread->do_critical_native_unlock()) {
2440     ThreadInVMfromJavaNoAsyncException tiv(thread);
2441     GC_locker::unlock_critical(thread);
2442     thread->clear_critical_native_unlock();
2443   }
2444 }
2445 
2446 // We need to guarantee the Threads_lock here, since resumes are not
2447 // allowed during safepoint synchronization
2448 // Can only resume from an external suspension
2449 void JavaThread::java_resume() {
2450   assert_locked_or_safepoint(Threads_lock);
2451 
2452   // Sanity check: thread is gone, has started exiting or the thread
2453   // was not externally suspended.
2454   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2455     return;
2456   }
2457 
2458   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2459 
2460   clear_external_suspend();
2461 
2462   if (is_ext_suspended()) {
2463     clear_ext_suspended();
2464     SR_lock()->notify_all();
2465   }
2466 }
2467 
2468 void JavaThread::create_stack_guard_pages() {
2469   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2470   address low_addr = stack_base() - stack_size();
2471   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2472 
2473   int allocate = os::allocate_stack_guard_pages();
2474   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2475 
2476   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2477     warning("Attempt to allocate stack guard pages failed.");
2478     return;
2479   }
2480 
2481   if (os::guard_memory((char *) low_addr, len)) {
2482     _stack_guard_state = stack_guard_enabled;
2483   } else {
2484     warning("Attempt to protect stack guard pages failed.");
2485     if (os::uncommit_memory((char *) low_addr, len)) {
2486       warning("Attempt to deallocate stack guard pages failed.");
2487     }
2488   }
2489 }
2490 
2491 void JavaThread::remove_stack_guard_pages() {
2492   assert(Thread::current() == this, "from different thread");
2493   if (_stack_guard_state == stack_guard_unused) return;
2494   address low_addr = stack_base() - stack_size();
2495   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2496 
2497   if (os::allocate_stack_guard_pages()) {
2498     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2499       _stack_guard_state = stack_guard_unused;
2500     } else {
2501       warning("Attempt to deallocate stack guard pages failed.");
2502     }
2503   } else {
2504     if (_stack_guard_state == stack_guard_unused) return;
2505     if (os::unguard_memory((char *) low_addr, len)) {
2506       _stack_guard_state = stack_guard_unused;
2507     } else {
2508       warning("Attempt to unprotect stack guard pages failed.");
2509     }
2510   }
2511 }
2512 
2513 void JavaThread::enable_stack_yellow_zone() {
2514   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2515   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2516 
2517   // The base notation is from the stacks point of view, growing downward.
2518   // We need to adjust it to work correctly with guard_memory()
2519   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2520 
2521   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2522   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2523 
2524   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2525     _stack_guard_state = stack_guard_enabled;
2526   } else {
2527     warning("Attempt to guard stack yellow zone failed.");
2528   }
2529   enable_register_stack_guard();
2530 }
2531 
2532 void JavaThread::disable_stack_yellow_zone() {
2533   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2535 
2536   // Simply return if called for a thread that does not use guard pages.
2537   if (_stack_guard_state == stack_guard_unused) return;
2538 
2539   // The base notation is from the stacks point of view, growing downward.
2540   // We need to adjust it to work correctly with guard_memory()
2541   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2542 
2543   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2544     _stack_guard_state = stack_guard_yellow_disabled;
2545   } else {
2546     warning("Attempt to unguard stack yellow zone failed.");
2547   }
2548   disable_register_stack_guard();
2549 }
2550 
2551 void JavaThread::enable_stack_red_zone() {
2552   // The base notation is from the stacks point of view, growing downward.
2553   // We need to adjust it to work correctly with guard_memory()
2554   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2555   address base = stack_red_zone_base() - stack_red_zone_size();
2556 
2557   guarantee(base < stack_base(), "Error calculating stack red zone");
2558   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2559 
2560   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2561     warning("Attempt to guard stack red zone failed.");
2562   }
2563 }
2564 
2565 void JavaThread::disable_stack_red_zone() {
2566   // The base notation is from the stacks point of view, growing downward.
2567   // We need to adjust it to work correctly with guard_memory()
2568   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2569   address base = stack_red_zone_base() - stack_red_zone_size();
2570   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2571     warning("Attempt to unguard stack red zone failed.");
2572   }
2573 }
2574 
2575 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2576   // ignore is there is no stack
2577   if (!has_last_Java_frame()) return;
2578   // traverse the stack frames. Starts from top frame.
2579   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2580     frame* fr = fst.current();
2581     f(fr, fst.register_map());
2582   }
2583 }
2584 
2585 
2586 #ifndef PRODUCT
2587 // Deoptimization
2588 // Function for testing deoptimization
2589 void JavaThread::deoptimize() {
2590   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2591   StackFrameStream fst(this, UseBiasedLocking);
2592   bool deopt = false;           // Dump stack only if a deopt actually happens.
2593   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2594   // Iterate over all frames in the thread and deoptimize
2595   for (; !fst.is_done(); fst.next()) {
2596     if (fst.current()->can_be_deoptimized()) {
2597 
2598       if (only_at) {
2599         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2600         // consists of comma or carriage return separated numbers so
2601         // search for the current bci in that string.
2602         address pc = fst.current()->pc();
2603         nmethod* nm =  (nmethod*) fst.current()->cb();
2604         ScopeDesc* sd = nm->scope_desc_at(pc);
2605         char buffer[8];
2606         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2607         size_t len = strlen(buffer);
2608         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2609         while (found != NULL) {
2610           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2611               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2612             // Check that the bci found is bracketed by terminators.
2613             break;
2614           }
2615           found = strstr(found + 1, buffer);
2616         }
2617         if (!found) {
2618           continue;
2619         }
2620       }
2621 
2622       if (DebugDeoptimization && !deopt) {
2623         deopt = true; // One-time only print before deopt
2624         tty->print_cr("[BEFORE Deoptimization]");
2625         trace_frames();
2626         trace_stack();
2627       }
2628       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2629     }
2630   }
2631 
2632   if (DebugDeoptimization && deopt) {
2633     tty->print_cr("[AFTER Deoptimization]");
2634     trace_frames();
2635   }
2636 }
2637 
2638 
2639 // Make zombies
2640 void JavaThread::make_zombies() {
2641   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2642     if (fst.current()->can_be_deoptimized()) {
2643       // it is a Java nmethod
2644       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2645       nm->make_not_entrant();
2646     }
2647   }
2648 }
2649 #endif // PRODUCT
2650 
2651 
2652 void JavaThread::deoptimized_wrt_marked_nmethods() {
2653   if (!has_last_Java_frame()) return;
2654   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2655   StackFrameStream fst(this, UseBiasedLocking);
2656   for (; !fst.is_done(); fst.next()) {
2657     if (fst.current()->should_be_deoptimized()) {
2658       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2659     }
2660   }
2661 }
2662 
2663 
2664 // If the caller is a NamedThread, then remember, in the current scope,
2665 // the given JavaThread in its _processed_thread field.
2666 class RememberProcessedThread: public StackObj {
2667   NamedThread* _cur_thr;
2668  public:
2669   RememberProcessedThread(JavaThread* jthr) {
2670     Thread* thread = Thread::current();
2671     if (thread->is_Named_thread()) {
2672       _cur_thr = (NamedThread *)thread;
2673       _cur_thr->set_processed_thread(jthr);
2674     } else {
2675       _cur_thr = NULL;
2676     }
2677   }
2678 
2679   ~RememberProcessedThread() {
2680     if (_cur_thr) {
2681       _cur_thr->set_processed_thread(NULL);
2682     }
2683   }
2684 };
2685 
2686 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2687   // Verify that the deferred card marks have been flushed.
2688   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2689 
2690   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2691   // since there may be more than one thread using each ThreadProfiler.
2692 
2693   // Traverse the GCHandles
2694   Thread::oops_do(f, cld_f, cf);
2695 
2696   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2697 
2698   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2699          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2700 
2701   if (has_last_Java_frame()) {
2702     // Record JavaThread to GC thread
2703     RememberProcessedThread rpt(this);
2704 
2705     // Traverse the privileged stack
2706     if (_privileged_stack_top != NULL) {
2707       _privileged_stack_top->oops_do(f);
2708     }
2709 
2710     // traverse the registered growable array
2711     if (_array_for_gc != NULL) {
2712       for (int index = 0; index < _array_for_gc->length(); index++) {
2713         f->do_oop(_array_for_gc->adr_at(index));
2714       }
2715     }
2716 
2717     // Traverse the monitor chunks
2718     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2719       chunk->oops_do(f);
2720     }
2721 
2722     // Traverse the execution stack
2723     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2724       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2725     }
2726   }
2727 
2728   // callee_target is never live across a gc point so NULL it here should
2729   // it still contain a methdOop.
2730 
2731   set_callee_target(NULL);
2732 
2733   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2734   // If we have deferred set_locals there might be oops waiting to be
2735   // written
2736   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2737   if (list != NULL) {
2738     for (int i = 0; i < list->length(); i++) {
2739       list->at(i)->oops_do(f);
2740     }
2741   }
2742 
2743   // Traverse instance variables at the end since the GC may be moving things
2744   // around using this function
2745   f->do_oop((oop*) &_threadObj);
2746   f->do_oop((oop*) &_vm_result);
2747   f->do_oop((oop*) &_exception_oop);
2748   f->do_oop((oop*) &_pending_async_exception);
2749 
2750   if (jvmti_thread_state() != NULL) {
2751     jvmti_thread_state()->oops_do(f);
2752   }
2753 }
2754 
2755 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2756   Thread::nmethods_do(cf);  // (super method is a no-op)
2757 
2758   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2759          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2760 
2761   if (has_last_Java_frame()) {
2762     // Traverse the execution stack
2763     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764       fst.current()->nmethods_do(cf);
2765     }
2766   }
2767 }
2768 
2769 void JavaThread::metadata_do(void f(Metadata*)) {
2770   if (has_last_Java_frame()) {
2771     // Traverse the execution stack to call f() on the methods in the stack
2772     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2773       fst.current()->metadata_do(f);
2774     }
2775   } else if (is_Compiler_thread()) {
2776     // need to walk ciMetadata in current compile tasks to keep alive.
2777     CompilerThread* ct = (CompilerThread*)this;
2778     if (ct->env() != NULL) {
2779       ct->env()->metadata_do(f);
2780     }
2781     if (ct->task() != NULL) {
2782       ct->task()->metadata_do(f);
2783     }
2784   }
2785 }
2786 
2787 // Printing
2788 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2789   switch (_thread_state) {
2790   case _thread_uninitialized:     return "_thread_uninitialized";
2791   case _thread_new:               return "_thread_new";
2792   case _thread_new_trans:         return "_thread_new_trans";
2793   case _thread_in_native:         return "_thread_in_native";
2794   case _thread_in_native_trans:   return "_thread_in_native_trans";
2795   case _thread_in_vm:             return "_thread_in_vm";
2796   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2797   case _thread_in_Java:           return "_thread_in_Java";
2798   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2799   case _thread_blocked:           return "_thread_blocked";
2800   case _thread_blocked_trans:     return "_thread_blocked_trans";
2801   default:                        return "unknown thread state";
2802   }
2803 }
2804 
2805 #ifndef PRODUCT
2806 void JavaThread::print_thread_state_on(outputStream *st) const {
2807   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2808 };
2809 void JavaThread::print_thread_state() const {
2810   print_thread_state_on(tty);
2811 }
2812 #endif // PRODUCT
2813 
2814 // Called by Threads::print() for VM_PrintThreads operation
2815 void JavaThread::print_on(outputStream *st) const {
2816   st->print("\"%s\" ", get_thread_name());
2817   oop thread_oop = threadObj();
2818   if (thread_oop != NULL) {
2819     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2820     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2821     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2822   }
2823   Thread::print_on(st);
2824   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2825   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2826   if (thread_oop != NULL) {
2827     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2828   }
2829 #ifndef PRODUCT
2830   print_thread_state_on(st);
2831   _safepoint_state->print_on(st);
2832 #endif // PRODUCT
2833 }
2834 
2835 // Called by fatal error handler. The difference between this and
2836 // JavaThread::print() is that we can't grab lock or allocate memory.
2837 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2838   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2839   oop thread_obj = threadObj();
2840   if (thread_obj != NULL) {
2841     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2842   }
2843   st->print(" [");
2844   st->print("%s", _get_thread_state_name(_thread_state));
2845   if (osthread()) {
2846     st->print(", id=%d", osthread()->thread_id());
2847   }
2848   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2849             p2i(_stack_base - _stack_size), p2i(_stack_base));
2850   st->print("]");
2851   return;
2852 }
2853 
2854 // Verification
2855 
2856 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2857 
2858 void JavaThread::verify() {
2859   // Verify oops in the thread.
2860   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2861 
2862   // Verify the stack frames.
2863   frames_do(frame_verify);
2864 }
2865 
2866 // CR 6300358 (sub-CR 2137150)
2867 // Most callers of this method assume that it can't return NULL but a
2868 // thread may not have a name whilst it is in the process of attaching to
2869 // the VM - see CR 6412693, and there are places where a JavaThread can be
2870 // seen prior to having it's threadObj set (eg JNI attaching threads and
2871 // if vm exit occurs during initialization). These cases can all be accounted
2872 // for such that this method never returns NULL.
2873 const char* JavaThread::get_thread_name() const {
2874 #ifdef ASSERT
2875   // early safepoints can hit while current thread does not yet have TLS
2876   if (!SafepointSynchronize::is_at_safepoint()) {
2877     Thread *cur = Thread::current();
2878     if (!(cur->is_Java_thread() && cur == this)) {
2879       // Current JavaThreads are allowed to get their own name without
2880       // the Threads_lock.
2881       assert_locked_or_safepoint(Threads_lock);
2882     }
2883   }
2884 #endif // ASSERT
2885   return get_thread_name_string();
2886 }
2887 
2888 // Returns a non-NULL representation of this thread's name, or a suitable
2889 // descriptive string if there is no set name
2890 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2891   const char* name_str;
2892   oop thread_obj = threadObj();
2893   if (thread_obj != NULL) {
2894     oop name = java_lang_Thread::name(thread_obj);
2895     if (name != NULL) {
2896       if (buf == NULL) {
2897         name_str = java_lang_String::as_utf8_string(name);
2898       } else {
2899         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2900       }
2901     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2902       name_str = "<no-name - thread is attaching>";
2903     } else {
2904       name_str = Thread::name();
2905     }
2906   } else {
2907     name_str = Thread::name();
2908   }
2909   assert(name_str != NULL, "unexpected NULL thread name");
2910   return name_str;
2911 }
2912 
2913 
2914 const char* JavaThread::get_threadgroup_name() const {
2915   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2916   oop thread_obj = threadObj();
2917   if (thread_obj != NULL) {
2918     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2919     if (thread_group != NULL) {
2920       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2921       // ThreadGroup.name can be null
2922       if (name != NULL) {
2923         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924         return str;
2925       }
2926     }
2927   }
2928   return NULL;
2929 }
2930 
2931 const char* JavaThread::get_parent_name() const {
2932   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2933   oop thread_obj = threadObj();
2934   if (thread_obj != NULL) {
2935     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2936     if (thread_group != NULL) {
2937       oop parent = java_lang_ThreadGroup::parent(thread_group);
2938       if (parent != NULL) {
2939         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2940         // ThreadGroup.name can be null
2941         if (name != NULL) {
2942           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2943           return str;
2944         }
2945       }
2946     }
2947   }
2948   return NULL;
2949 }
2950 
2951 ThreadPriority JavaThread::java_priority() const {
2952   oop thr_oop = threadObj();
2953   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2954   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2955   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2956   return priority;
2957 }
2958 
2959 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2960 
2961   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2962   // Link Java Thread object <-> C++ Thread
2963 
2964   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2965   // and put it into a new Handle.  The Handle "thread_oop" can then
2966   // be used to pass the C++ thread object to other methods.
2967 
2968   // Set the Java level thread object (jthread) field of the
2969   // new thread (a JavaThread *) to C++ thread object using the
2970   // "thread_oop" handle.
2971 
2972   // Set the thread field (a JavaThread *) of the
2973   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2974 
2975   Handle thread_oop(Thread::current(),
2976                     JNIHandles::resolve_non_null(jni_thread));
2977   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2978          "must be initialized");
2979   set_threadObj(thread_oop());
2980   java_lang_Thread::set_thread(thread_oop(), this);
2981 
2982   if (prio == NoPriority) {
2983     prio = java_lang_Thread::priority(thread_oop());
2984     assert(prio != NoPriority, "A valid priority should be present");
2985   }
2986 
2987   // Push the Java priority down to the native thread; needs Threads_lock
2988   Thread::set_priority(this, prio);
2989 
2990   prepare_ext();
2991 
2992   // Add the new thread to the Threads list and set it in motion.
2993   // We must have threads lock in order to call Threads::add.
2994   // It is crucial that we do not block before the thread is
2995   // added to the Threads list for if a GC happens, then the java_thread oop
2996   // will not be visited by GC.
2997   Threads::add(this);
2998 }
2999 
3000 oop JavaThread::current_park_blocker() {
3001   // Support for JSR-166 locks
3002   oop thread_oop = threadObj();
3003   if (thread_oop != NULL &&
3004       JDK_Version::current().supports_thread_park_blocker()) {
3005     return java_lang_Thread::park_blocker(thread_oop);
3006   }
3007   return NULL;
3008 }
3009 
3010 
3011 void JavaThread::print_stack_on(outputStream* st) {
3012   if (!has_last_Java_frame()) return;
3013   ResourceMark rm;
3014   HandleMark   hm;
3015 
3016   RegisterMap reg_map(this);
3017   vframe* start_vf = last_java_vframe(&reg_map);
3018   int count = 0;
3019   for (vframe* f = start_vf; f; f = f->sender()) {
3020     if (f->is_java_frame()) {
3021       javaVFrame* jvf = javaVFrame::cast(f);
3022       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3023 
3024       // Print out lock information
3025       if (JavaMonitorsInStackTrace) {
3026         jvf->print_lock_info_on(st, count);
3027       }
3028     } else {
3029       // Ignore non-Java frames
3030     }
3031 
3032     // Bail-out case for too deep stacks
3033     count++;
3034     if (MaxJavaStackTraceDepth == count) return;
3035   }
3036 }
3037 
3038 
3039 // JVMTI PopFrame support
3040 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3041   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3042   if (in_bytes(size_in_bytes) != 0) {
3043     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3044     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3045     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3046   }
3047 }
3048 
3049 void* JavaThread::popframe_preserved_args() {
3050   return _popframe_preserved_args;
3051 }
3052 
3053 ByteSize JavaThread::popframe_preserved_args_size() {
3054   return in_ByteSize(_popframe_preserved_args_size);
3055 }
3056 
3057 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3058   int sz = in_bytes(popframe_preserved_args_size());
3059   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3060   return in_WordSize(sz / wordSize);
3061 }
3062 
3063 void JavaThread::popframe_free_preserved_args() {
3064   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3065   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3066   _popframe_preserved_args = NULL;
3067   _popframe_preserved_args_size = 0;
3068 }
3069 
3070 #ifndef PRODUCT
3071 
3072 void JavaThread::trace_frames() {
3073   tty->print_cr("[Describe stack]");
3074   int frame_no = 1;
3075   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3076     tty->print("  %d. ", frame_no++);
3077     fst.current()->print_value_on(tty, this);
3078     tty->cr();
3079   }
3080 }
3081 
3082 class PrintAndVerifyOopClosure: public OopClosure {
3083  protected:
3084   template <class T> inline void do_oop_work(T* p) {
3085     oop obj = oopDesc::load_decode_heap_oop(p);
3086     if (obj == NULL) return;
3087     tty->print(INTPTR_FORMAT ": ", p2i(p));
3088     if (obj->is_oop_or_null()) {
3089       if (obj->is_objArray()) {
3090         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3091       } else {
3092         obj->print();
3093       }
3094     } else {
3095       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3096     }
3097     tty->cr();
3098   }
3099  public:
3100   virtual void do_oop(oop* p) { do_oop_work(p); }
3101   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3102 };
3103 
3104 
3105 static void oops_print(frame* f, const RegisterMap *map) {
3106   PrintAndVerifyOopClosure print;
3107   f->print_value();
3108   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3109 }
3110 
3111 // Print our all the locations that contain oops and whether they are
3112 // valid or not.  This useful when trying to find the oldest frame
3113 // where an oop has gone bad since the frame walk is from youngest to
3114 // oldest.
3115 void JavaThread::trace_oops() {
3116   tty->print_cr("[Trace oops]");
3117   frames_do(oops_print);
3118 }
3119 
3120 
3121 #ifdef ASSERT
3122 // Print or validate the layout of stack frames
3123 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3124   ResourceMark rm;
3125   PRESERVE_EXCEPTION_MARK;
3126   FrameValues values;
3127   int frame_no = 0;
3128   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3129     fst.current()->describe(values, ++frame_no);
3130     if (depth == frame_no) break;
3131   }
3132   if (validate_only) {
3133     values.validate();
3134   } else {
3135     tty->print_cr("[Describe stack layout]");
3136     values.print(this);
3137   }
3138 }
3139 #endif
3140 
3141 void JavaThread::trace_stack_from(vframe* start_vf) {
3142   ResourceMark rm;
3143   int vframe_no = 1;
3144   for (vframe* f = start_vf; f; f = f->sender()) {
3145     if (f->is_java_frame()) {
3146       javaVFrame::cast(f)->print_activation(vframe_no++);
3147     } else {
3148       f->print();
3149     }
3150     if (vframe_no > StackPrintLimit) {
3151       tty->print_cr("...<more frames>...");
3152       return;
3153     }
3154   }
3155 }
3156 
3157 
3158 void JavaThread::trace_stack() {
3159   if (!has_last_Java_frame()) return;
3160   ResourceMark rm;
3161   HandleMark   hm;
3162   RegisterMap reg_map(this);
3163   trace_stack_from(last_java_vframe(&reg_map));
3164 }
3165 
3166 
3167 #endif // PRODUCT
3168 
3169 
3170 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3171   assert(reg_map != NULL, "a map must be given");
3172   frame f = last_frame();
3173   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3174     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3175   }
3176   return NULL;
3177 }
3178 
3179 
3180 Klass* JavaThread::security_get_caller_class(int depth) {
3181   vframeStream vfst(this);
3182   vfst.security_get_caller_frame(depth);
3183   if (!vfst.at_end()) {
3184     return vfst.method()->method_holder();
3185   }
3186   return NULL;
3187 }
3188 
3189 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3190   assert(thread->is_Compiler_thread(), "must be compiler thread");
3191   CompileBroker::compiler_thread_loop();
3192 }
3193 
3194 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3195   NMethodSweeper::sweeper_loop();
3196 }
3197 
3198 // Create a CompilerThread
3199 CompilerThread::CompilerThread(CompileQueue* queue,
3200                                CompilerCounters* counters)
3201                                : JavaThread(&compiler_thread_entry) {
3202   _env   = NULL;
3203   _log   = NULL;
3204   _task  = NULL;
3205   _queue = queue;
3206   _counters = counters;
3207   _buffer_blob = NULL;
3208   _compiler = NULL;
3209 
3210 #ifndef PRODUCT
3211   _ideal_graph_printer = NULL;
3212 #endif
3213 }
3214 
3215 bool CompilerThread::can_call_java() const {
3216   return _compiler != NULL && _compiler->is_jvmci();
3217 }
3218 
3219 // Create sweeper thread
3220 CodeCacheSweeperThread::CodeCacheSweeperThread()
3221 : JavaThread(&sweeper_thread_entry) {
3222   _scanned_nmethod = NULL;
3223 }
3224 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3225   JavaThread::oops_do(f, cld_f, cf);
3226   if (_scanned_nmethod != NULL && cf != NULL) {
3227     // Safepoints can occur when the sweeper is scanning an nmethod so
3228     // process it here to make sure it isn't unloaded in the middle of
3229     // a scan.
3230     cf->do_code_blob(_scanned_nmethod);
3231   }
3232 }
3233 
3234 
3235 // ======= Threads ========
3236 
3237 // The Threads class links together all active threads, and provides
3238 // operations over all threads.  It is protected by its own Mutex
3239 // lock, which is also used in other contexts to protect thread
3240 // operations from having the thread being operated on from exiting
3241 // and going away unexpectedly (e.g., safepoint synchronization)
3242 
3243 JavaThread* Threads::_thread_list = NULL;
3244 int         Threads::_number_of_threads = 0;
3245 int         Threads::_number_of_non_daemon_threads = 0;
3246 int         Threads::_return_code = 0;
3247 int         Threads::_thread_claim_parity = 0;
3248 size_t      JavaThread::_stack_size_at_create = 0;
3249 #ifdef ASSERT
3250 bool        Threads::_vm_complete = false;
3251 #endif
3252 
3253 // All JavaThreads
3254 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3255 
3256 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3257 void Threads::threads_do(ThreadClosure* tc) {
3258   assert_locked_or_safepoint(Threads_lock);
3259   // ALL_JAVA_THREADS iterates through all JavaThreads
3260   ALL_JAVA_THREADS(p) {
3261     tc->do_thread(p);
3262   }
3263   // Someday we could have a table or list of all non-JavaThreads.
3264   // For now, just manually iterate through them.
3265   tc->do_thread(VMThread::vm_thread());
3266   Universe::heap()->gc_threads_do(tc);
3267   WatcherThread *wt = WatcherThread::watcher_thread();
3268   // Strictly speaking, the following NULL check isn't sufficient to make sure
3269   // the data for WatcherThread is still valid upon being examined. However,
3270   // considering that WatchThread terminates when the VM is on the way to
3271   // exit at safepoint, the chance of the above is extremely small. The right
3272   // way to prevent termination of WatcherThread would be to acquire
3273   // Terminator_lock, but we can't do that without violating the lock rank
3274   // checking in some cases.
3275   if (wt != NULL) {
3276     tc->do_thread(wt);
3277   }
3278 
3279   // If CompilerThreads ever become non-JavaThreads, add them here
3280 }
3281 
3282 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3283   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3284 
3285   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3286     create_vm_init_libraries();
3287   }
3288 
3289   initialize_class(vmSymbols::java_lang_String(), CHECK);
3290 
3291   // Initialize java_lang.System (needed before creating the thread)
3292   initialize_class(vmSymbols::java_lang_System(), CHECK);
3293   // The VM creates & returns objects of this class. Make sure it's initialized.
3294   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3295   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3296   Handle thread_group = create_initial_thread_group(CHECK);
3297   Universe::set_main_thread_group(thread_group());
3298   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3299   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3300   main_thread->set_threadObj(thread_object);
3301   // Set thread status to running since main thread has
3302   // been started and running.
3303   java_lang_Thread::set_thread_status(thread_object,
3304                                       java_lang_Thread::RUNNABLE);
3305 
3306   // The VM preresolves methods to these classes. Make sure that they get initialized
3307   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3308   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3309   call_initializeSystemClass(CHECK);
3310 
3311   // get the Java runtime name after java.lang.System is initialized
3312   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3313   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3314 
3315   // an instance of OutOfMemory exception has been allocated earlier
3316   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3317   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3318   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3319   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3320   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3321   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3322   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3323   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3324 }
3325 
3326 void Threads::initialize_jsr292_core_classes(TRAPS) {
3327   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3328   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3329   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3330 }
3331 
3332 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3333   extern void JDK_Version_init();
3334 
3335   // Preinitialize version info.
3336   VM_Version::early_initialize();
3337 
3338   // Check version
3339   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3340 
3341   // Initialize the output stream module
3342   ostream_init();
3343 
3344   // Process java launcher properties.
3345   Arguments::process_sun_java_launcher_properties(args);
3346 
3347   // Initialize the os module before using TLS
3348   os::init();
3349 
3350   // Record VM creation timing statistics
3351   TraceVmCreationTime create_vm_timer;
3352   create_vm_timer.start();
3353 
3354   // Initialize system properties.
3355   Arguments::init_system_properties();
3356 
3357   // So that JDK version can be used as a discriminator when parsing arguments
3358   JDK_Version_init();
3359 
3360   // Update/Initialize System properties after JDK version number is known
3361   Arguments::init_version_specific_system_properties();
3362 
3363   // Make sure to initialize log configuration *before* parsing arguments
3364   LogConfiguration::initialize(create_vm_timer.begin_time());
3365 
3366   // Parse arguments
3367   jint parse_result = Arguments::parse(args);
3368   if (parse_result != JNI_OK) return parse_result;
3369 
3370   os::init_before_ergo();
3371 
3372   jint ergo_result = Arguments::apply_ergo();
3373   if (ergo_result != JNI_OK) return ergo_result;
3374 
3375   // Final check of all ranges after ergonomics which may change values.
3376   if (!CommandLineFlagRangeList::check_ranges()) {
3377     return JNI_EINVAL;
3378   }
3379 
3380   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3381   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3382   if (!constraint_result) {
3383     return JNI_EINVAL;
3384   }
3385 
3386   if (PauseAtStartup) {
3387     os::pause();
3388   }
3389 
3390   HOTSPOT_VM_INIT_BEGIN();
3391 
3392   // Timing (must come after argument parsing)
3393   TraceTime timer("Create VM", TraceStartupTime);
3394 
3395   // Initialize the os module after parsing the args
3396   jint os_init_2_result = os::init_2();
3397   if (os_init_2_result != JNI_OK) return os_init_2_result;
3398 
3399   jint adjust_after_os_result = Arguments::adjust_after_os();
3400   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3401 
3402   // Initialize output stream logging
3403   ostream_init_log();
3404 
3405   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3406   // Must be before create_vm_init_agents()
3407   if (Arguments::init_libraries_at_startup()) {
3408     convert_vm_init_libraries_to_agents();
3409   }
3410 
3411   // Launch -agentlib/-agentpath and converted -Xrun agents
3412   if (Arguments::init_agents_at_startup()) {
3413     create_vm_init_agents();
3414   }
3415 
3416   // Initialize Threads state
3417   _thread_list = NULL;
3418   _number_of_threads = 0;
3419   _number_of_non_daemon_threads = 0;
3420 
3421   // Initialize global data structures and create system classes in heap
3422   vm_init_globals();
3423 
3424 #if INCLUDE_JVMCI
3425   if (JVMCICounterSize > 0) {
3426     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3427     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3428   } else {
3429     JavaThread::_jvmci_old_thread_counters = NULL;
3430   }
3431 #endif // INCLUDE_JVMCI
3432 
3433   // Attach the main thread to this os thread
3434   JavaThread* main_thread = new JavaThread();
3435   main_thread->set_thread_state(_thread_in_vm);
3436   main_thread->initialize_thread_current();
3437   // must do this before set_active_handles
3438   main_thread->record_stack_base_and_size();
3439   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3440 
3441   if (!main_thread->set_as_starting_thread()) {
3442     vm_shutdown_during_initialization(
3443                                       "Failed necessary internal allocation. Out of swap space");
3444     delete main_thread;
3445     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3446     return JNI_ENOMEM;
3447   }
3448 
3449   // Enable guard page *after* os::create_main_thread(), otherwise it would
3450   // crash Linux VM, see notes in os_linux.cpp.
3451   main_thread->create_stack_guard_pages();
3452 
3453   // Initialize Java-Level synchronization subsystem
3454   ObjectMonitor::Initialize();
3455 
3456   // Initialize global modules
3457   jint status = init_globals();
3458   if (status != JNI_OK) {
3459     delete main_thread;
3460     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3461     return status;
3462   }
3463 
3464   // Should be done after the heap is fully created
3465   main_thread->cache_global_variables();
3466 
3467   HandleMark hm;
3468 
3469   { MutexLocker mu(Threads_lock);
3470     Threads::add(main_thread);
3471   }
3472 
3473   // Any JVMTI raw monitors entered in onload will transition into
3474   // real raw monitor. VM is setup enough here for raw monitor enter.
3475   JvmtiExport::transition_pending_onload_raw_monitors();
3476 
3477   // Create the VMThread
3478   { TraceTime timer("Start VMThread", TraceStartupTime);
3479     VMThread::create();
3480     Thread* vmthread = VMThread::vm_thread();
3481 
3482     if (!os::create_thread(vmthread, os::vm_thread)) {
3483       vm_exit_during_initialization("Cannot create VM thread. "
3484                                     "Out of system resources.");
3485     }
3486 
3487     // Wait for the VM thread to become ready, and VMThread::run to initialize
3488     // Monitors can have spurious returns, must always check another state flag
3489     {
3490       MutexLocker ml(Notify_lock);
3491       os::start_thread(vmthread);
3492       while (vmthread->active_handles() == NULL) {
3493         Notify_lock->wait();
3494       }
3495     }
3496   }
3497 
3498   assert(Universe::is_fully_initialized(), "not initialized");
3499   if (VerifyDuringStartup) {
3500     // Make sure we're starting with a clean slate.
3501     VM_Verify verify_op;
3502     VMThread::execute(&verify_op);
3503   }
3504 
3505   Thread* THREAD = Thread::current();
3506 
3507   // At this point, the Universe is initialized, but we have not executed
3508   // any byte code.  Now is a good time (the only time) to dump out the
3509   // internal state of the JVM for sharing.
3510   if (DumpSharedSpaces) {
3511     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3512     ShouldNotReachHere();
3513   }
3514 
3515   // Always call even when there are not JVMTI environments yet, since environments
3516   // may be attached late and JVMTI must track phases of VM execution
3517   JvmtiExport::enter_start_phase();
3518 
3519   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3520   JvmtiExport::post_vm_start();
3521 
3522   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3523 
3524   // We need this for ClassDataSharing - the initial vm.info property is set
3525   // with the default value of CDS "sharing" which may be reset through
3526   // command line options.
3527   reset_vm_info_property(CHECK_JNI_ERR);
3528 
3529   quicken_jni_functions();
3530 
3531   // Must be run after init_ft which initializes ft_enabled
3532   if (TRACE_INITIALIZE() != JNI_OK) {
3533     vm_exit_during_initialization("Failed to initialize tracing backend");
3534   }
3535 
3536   // Set flag that basic initialization has completed. Used by exceptions and various
3537   // debug stuff, that does not work until all basic classes have been initialized.
3538   set_init_completed();
3539 
3540   LogConfiguration::post_initialize();
3541   Metaspace::post_initialize();
3542 
3543   HOTSPOT_VM_INIT_END();
3544 
3545   // record VM initialization completion time
3546 #if INCLUDE_MANAGEMENT
3547   Management::record_vm_init_completed();
3548 #endif // INCLUDE_MANAGEMENT
3549 
3550   // Compute system loader. Note that this has to occur after set_init_completed, since
3551   // valid exceptions may be thrown in the process.
3552   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3553   // set_init_completed has just been called, causing exceptions not to be shortcut
3554   // anymore. We call vm_exit_during_initialization directly instead.
3555   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3556 
3557 #if INCLUDE_ALL_GCS
3558   // Support for ConcurrentMarkSweep. This should be cleaned up
3559   // and better encapsulated. The ugly nested if test would go away
3560   // once things are properly refactored. XXX YSR
3561   if (UseConcMarkSweepGC || UseG1GC) {
3562     if (UseConcMarkSweepGC) {
3563       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3564     } else {
3565       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3566     }
3567   }
3568 #endif // INCLUDE_ALL_GCS
3569 
3570   // Always call even when there are not JVMTI environments yet, since environments
3571   // may be attached late and JVMTI must track phases of VM execution
3572   JvmtiExport::enter_live_phase();
3573 
3574   // Signal Dispatcher needs to be started before VMInit event is posted
3575   os::signal_init();
3576 
3577   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3578   if (!DisableAttachMechanism) {
3579     AttachListener::vm_start();
3580     if (StartAttachListener || AttachListener::init_at_startup()) {
3581       AttachListener::init();
3582     }
3583   }
3584 
3585   // Launch -Xrun agents
3586   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3587   // back-end can launch with -Xdebug -Xrunjdwp.
3588   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3589     create_vm_init_libraries();
3590   }
3591 
3592   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3593   JvmtiExport::post_vm_initialized();
3594 
3595   if (TRACE_START() != JNI_OK) {
3596     vm_exit_during_initialization("Failed to start tracing backend.");
3597   }
3598 
3599   if (CleanChunkPoolAsync) {
3600     Chunk::start_chunk_pool_cleaner_task();
3601   }
3602 
3603 #if INCLUDE_JVMCI
3604   if (EnableJVMCI) {
3605     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3606     if (jvmciCompiler != NULL) {
3607       JVMCIRuntime::save_compiler(jvmciCompiler);
3608     }
3609   }
3610 #endif // INCLUDE_JVMCI
3611 
3612   // initialize compiler(s)
3613 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3614   CompileBroker::compilation_init();
3615 #endif
3616 
3617   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3618   // It is done after compilers are initialized, because otherwise compilations of
3619   // signature polymorphic MH intrinsics can be missed
3620   // (see SystemDictionary::find_method_handle_intrinsic).
3621   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3622 
3623 #if INCLUDE_MANAGEMENT
3624   Management::initialize(THREAD);
3625 
3626   if (HAS_PENDING_EXCEPTION) {
3627     // management agent fails to start possibly due to
3628     // configuration problem and is responsible for printing
3629     // stack trace if appropriate. Simply exit VM.
3630     vm_exit(1);
3631   }
3632 #endif // INCLUDE_MANAGEMENT
3633 
3634   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3635   if (MemProfiling)                   MemProfiler::engage();
3636   StatSampler::engage();
3637   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3638 
3639   BiasedLocking::init();
3640 
3641 #if INCLUDE_RTM_OPT
3642   RTMLockingCounters::init();
3643 #endif
3644 
3645   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3646     call_postVMInitHook(THREAD);
3647     // The Java side of PostVMInitHook.run must deal with all
3648     // exceptions and provide means of diagnosis.
3649     if (HAS_PENDING_EXCEPTION) {
3650       CLEAR_PENDING_EXCEPTION;
3651     }
3652   }
3653 
3654   {
3655     MutexLocker ml(PeriodicTask_lock);
3656     // Make sure the WatcherThread can be started by WatcherThread::start()
3657     // or by dynamic enrollment.
3658     WatcherThread::make_startable();
3659     // Start up the WatcherThread if there are any periodic tasks
3660     // NOTE:  All PeriodicTasks should be registered by now. If they
3661     //   aren't, late joiners might appear to start slowly (we might
3662     //   take a while to process their first tick).
3663     if (PeriodicTask::num_tasks() > 0) {
3664       WatcherThread::start();
3665     }
3666   }
3667 
3668   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3669 
3670   create_vm_timer.end();
3671 #ifdef ASSERT
3672   _vm_complete = true;
3673 #endif
3674   return JNI_OK;
3675 }
3676 
3677 // type for the Agent_OnLoad and JVM_OnLoad entry points
3678 extern "C" {
3679   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3680 }
3681 // Find a command line agent library and return its entry point for
3682 //         -agentlib:  -agentpath:   -Xrun
3683 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3684 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3685                                     const char *on_load_symbols[],
3686                                     size_t num_symbol_entries) {
3687   OnLoadEntry_t on_load_entry = NULL;
3688   void *library = NULL;
3689 
3690   if (!agent->valid()) {
3691     char buffer[JVM_MAXPATHLEN];
3692     char ebuf[1024] = "";
3693     const char *name = agent->name();
3694     const char *msg = "Could not find agent library ";
3695 
3696     // First check to see if agent is statically linked into executable
3697     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3698       library = agent->os_lib();
3699     } else if (agent->is_absolute_path()) {
3700       library = os::dll_load(name, ebuf, sizeof ebuf);
3701       if (library == NULL) {
3702         const char *sub_msg = " in absolute path, with error: ";
3703         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3704         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3705         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3706         // If we can't find the agent, exit.
3707         vm_exit_during_initialization(buf, NULL);
3708         FREE_C_HEAP_ARRAY(char, buf);
3709       }
3710     } else {
3711       // Try to load the agent from the standard dll directory
3712       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3713                              name)) {
3714         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3715       }
3716       if (library == NULL) { // Try the local directory
3717         char ns[1] = {0};
3718         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3719           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3720         }
3721         if (library == NULL) {
3722           const char *sub_msg = " on the library path, with error: ";
3723           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3724           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3725           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3726           // If we can't find the agent, exit.
3727           vm_exit_during_initialization(buf, NULL);
3728           FREE_C_HEAP_ARRAY(char, buf);
3729         }
3730       }
3731     }
3732     agent->set_os_lib(library);
3733     agent->set_valid();
3734   }
3735 
3736   // Find the OnLoad function.
3737   on_load_entry =
3738     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3739                                                           false,
3740                                                           on_load_symbols,
3741                                                           num_symbol_entries));
3742   return on_load_entry;
3743 }
3744 
3745 // Find the JVM_OnLoad entry point
3746 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3747   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3748   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3749 }
3750 
3751 // Find the Agent_OnLoad entry point
3752 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3753   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3754   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3755 }
3756 
3757 // For backwards compatibility with -Xrun
3758 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3759 // treated like -agentpath:
3760 // Must be called before agent libraries are created
3761 void Threads::convert_vm_init_libraries_to_agents() {
3762   AgentLibrary* agent;
3763   AgentLibrary* next;
3764 
3765   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3766     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3767     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3768 
3769     // If there is an JVM_OnLoad function it will get called later,
3770     // otherwise see if there is an Agent_OnLoad
3771     if (on_load_entry == NULL) {
3772       on_load_entry = lookup_agent_on_load(agent);
3773       if (on_load_entry != NULL) {
3774         // switch it to the agent list -- so that Agent_OnLoad will be called,
3775         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3776         Arguments::convert_library_to_agent(agent);
3777       } else {
3778         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3779       }
3780     }
3781   }
3782 }
3783 
3784 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3785 // Invokes Agent_OnLoad
3786 // Called very early -- before JavaThreads exist
3787 void Threads::create_vm_init_agents() {
3788   extern struct JavaVM_ main_vm;
3789   AgentLibrary* agent;
3790 
3791   JvmtiExport::enter_onload_phase();
3792 
3793   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3794     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3795 
3796     if (on_load_entry != NULL) {
3797       // Invoke the Agent_OnLoad function
3798       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3799       if (err != JNI_OK) {
3800         vm_exit_during_initialization("agent library failed to init", agent->name());
3801       }
3802     } else {
3803       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3804     }
3805   }
3806   JvmtiExport::enter_primordial_phase();
3807 }
3808 
3809 extern "C" {
3810   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3811 }
3812 
3813 void Threads::shutdown_vm_agents() {
3814   // Send any Agent_OnUnload notifications
3815   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3816   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3817   extern struct JavaVM_ main_vm;
3818   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3819 
3820     // Find the Agent_OnUnload function.
3821     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3822                                                    os::find_agent_function(agent,
3823                                                    false,
3824                                                    on_unload_symbols,
3825                                                    num_symbol_entries));
3826 
3827     // Invoke the Agent_OnUnload function
3828     if (unload_entry != NULL) {
3829       JavaThread* thread = JavaThread::current();
3830       ThreadToNativeFromVM ttn(thread);
3831       HandleMark hm(thread);
3832       (*unload_entry)(&main_vm);
3833     }
3834   }
3835 }
3836 
3837 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3838 // Invokes JVM_OnLoad
3839 void Threads::create_vm_init_libraries() {
3840   extern struct JavaVM_ main_vm;
3841   AgentLibrary* agent;
3842 
3843   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3844     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3845 
3846     if (on_load_entry != NULL) {
3847       // Invoke the JVM_OnLoad function
3848       JavaThread* thread = JavaThread::current();
3849       ThreadToNativeFromVM ttn(thread);
3850       HandleMark hm(thread);
3851       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3852       if (err != JNI_OK) {
3853         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3854       }
3855     } else {
3856       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3857     }
3858   }
3859 }
3860 
3861 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3862   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3863 
3864   JavaThread* java_thread = NULL;
3865   // Sequential search for now.  Need to do better optimization later.
3866   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3867     oop tobj = thread->threadObj();
3868     if (!thread->is_exiting() &&
3869         tobj != NULL &&
3870         java_tid == java_lang_Thread::thread_id(tobj)) {
3871       java_thread = thread;
3872       break;
3873     }
3874   }
3875   return java_thread;
3876 }
3877 
3878 
3879 // Last thread running calls java.lang.Shutdown.shutdown()
3880 void JavaThread::invoke_shutdown_hooks() {
3881   HandleMark hm(this);
3882 
3883   // We could get here with a pending exception, if so clear it now.
3884   if (this->has_pending_exception()) {
3885     this->clear_pending_exception();
3886   }
3887 
3888   EXCEPTION_MARK;
3889   Klass* k =
3890     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3891                                       THREAD);
3892   if (k != NULL) {
3893     // SystemDictionary::resolve_or_null will return null if there was
3894     // an exception.  If we cannot load the Shutdown class, just don't
3895     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3896     // and finalizers (if runFinalizersOnExit is set) won't be run.
3897     // Note that if a shutdown hook was registered or runFinalizersOnExit
3898     // was called, the Shutdown class would have already been loaded
3899     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3900     instanceKlassHandle shutdown_klass (THREAD, k);
3901     JavaValue result(T_VOID);
3902     JavaCalls::call_static(&result,
3903                            shutdown_klass,
3904                            vmSymbols::shutdown_method_name(),
3905                            vmSymbols::void_method_signature(),
3906                            THREAD);
3907   }
3908   CLEAR_PENDING_EXCEPTION;
3909 }
3910 
3911 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3912 // the program falls off the end of main(). Another VM exit path is through
3913 // vm_exit() when the program calls System.exit() to return a value or when
3914 // there is a serious error in VM. The two shutdown paths are not exactly
3915 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3916 // and VM_Exit op at VM level.
3917 //
3918 // Shutdown sequence:
3919 //   + Shutdown native memory tracking if it is on
3920 //   + Wait until we are the last non-daemon thread to execute
3921 //     <-- every thing is still working at this moment -->
3922 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3923 //        shutdown hooks, run finalizers if finalization-on-exit
3924 //   + Call before_exit(), prepare for VM exit
3925 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3926 //        currently the only user of this mechanism is File.deleteOnExit())
3927 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3928 //        post thread end and vm death events to JVMTI,
3929 //        stop signal thread
3930 //   + Call JavaThread::exit(), it will:
3931 //      > release JNI handle blocks, remove stack guard pages
3932 //      > remove this thread from Threads list
3933 //     <-- no more Java code from this thread after this point -->
3934 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3935 //     the compiler threads at safepoint
3936 //     <-- do not use anything that could get blocked by Safepoint -->
3937 //   + Disable tracing at JNI/JVM barriers
3938 //   + Set _vm_exited flag for threads that are still running native code
3939 //   + Delete this thread
3940 //   + Call exit_globals()
3941 //      > deletes tty
3942 //      > deletes PerfMemory resources
3943 //   + Return to caller
3944 
3945 bool Threads::destroy_vm() {
3946   JavaThread* thread = JavaThread::current();
3947 
3948 #ifdef ASSERT
3949   _vm_complete = false;
3950 #endif
3951   // Wait until we are the last non-daemon thread to execute
3952   { MutexLocker nu(Threads_lock);
3953     while (Threads::number_of_non_daemon_threads() > 1)
3954       // This wait should make safepoint checks, wait without a timeout,
3955       // and wait as a suspend-equivalent condition.
3956       //
3957       // Note: If the FlatProfiler is running and this thread is waiting
3958       // for another non-daemon thread to finish, then the FlatProfiler
3959       // is waiting for the external suspend request on this thread to
3960       // complete. wait_for_ext_suspend_completion() will eventually
3961       // timeout, but that takes time. Making this wait a suspend-
3962       // equivalent condition solves that timeout problem.
3963       //
3964       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3965                          Mutex::_as_suspend_equivalent_flag);
3966   }
3967 
3968   // Hang forever on exit if we are reporting an error.
3969   if (ShowMessageBoxOnError && is_error_reported()) {
3970     os::infinite_sleep();
3971   }
3972   os::wait_for_keypress_at_exit();
3973 
3974   // run Java level shutdown hooks
3975   thread->invoke_shutdown_hooks();
3976 
3977   before_exit(thread);
3978 
3979   thread->exit(true);
3980 
3981   // Stop VM thread.
3982   {
3983     // 4945125 The vm thread comes to a safepoint during exit.
3984     // GC vm_operations can get caught at the safepoint, and the
3985     // heap is unparseable if they are caught. Grab the Heap_lock
3986     // to prevent this. The GC vm_operations will not be able to
3987     // queue until after the vm thread is dead. After this point,
3988     // we'll never emerge out of the safepoint before the VM exits.
3989 
3990     MutexLocker ml(Heap_lock);
3991 
3992     VMThread::wait_for_vm_thread_exit();
3993     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3994     VMThread::destroy();
3995   }
3996 
3997   // clean up ideal graph printers
3998 #if defined(COMPILER2) && !defined(PRODUCT)
3999   IdealGraphPrinter::clean_up();
4000 #endif
4001 
4002   // Now, all Java threads are gone except daemon threads. Daemon threads
4003   // running Java code or in VM are stopped by the Safepoint. However,
4004   // daemon threads executing native code are still running.  But they
4005   // will be stopped at native=>Java/VM barriers. Note that we can't
4006   // simply kill or suspend them, as it is inherently deadlock-prone.
4007 
4008 #ifndef PRODUCT
4009   // disable function tracing at JNI/JVM barriers
4010   TraceJNICalls = false;
4011   TraceJVMCalls = false;
4012   TraceRuntimeCalls = false;
4013 #endif
4014 
4015   VM_Exit::set_vm_exited();
4016 
4017   notify_vm_shutdown();
4018 
4019   delete thread;
4020 
4021 #if INCLUDE_JVMCI
4022   if (JVMCICounterSize > 0) {
4023     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4024   }
4025 #endif
4026 
4027   // exit_globals() will delete tty
4028   exit_globals();
4029 
4030   LogConfiguration::finalize();
4031 
4032   return true;
4033 }
4034 
4035 
4036 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4037   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4038   return is_supported_jni_version(version);
4039 }
4040 
4041 
4042 jboolean Threads::is_supported_jni_version(jint version) {
4043   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4044   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4045   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4046   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4047   return JNI_FALSE;
4048 }
4049 
4050 
4051 void Threads::add(JavaThread* p, bool force_daemon) {
4052   // The threads lock must be owned at this point
4053   assert_locked_or_safepoint(Threads_lock);
4054 
4055   // See the comment for this method in thread.hpp for its purpose and
4056   // why it is called here.
4057   p->initialize_queues();
4058   p->set_next(_thread_list);
4059   _thread_list = p;
4060   _number_of_threads++;
4061   oop threadObj = p->threadObj();
4062   bool daemon = true;
4063   // Bootstrapping problem: threadObj can be null for initial
4064   // JavaThread (or for threads attached via JNI)
4065   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4066     _number_of_non_daemon_threads++;
4067     daemon = false;
4068   }
4069 
4070   ThreadService::add_thread(p, daemon);
4071 
4072   // Possible GC point.
4073   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4074 }
4075 
4076 void Threads::remove(JavaThread* p) {
4077   // Extra scope needed for Thread_lock, so we can check
4078   // that we do not remove thread without safepoint code notice
4079   { MutexLocker ml(Threads_lock);
4080 
4081     assert(includes(p), "p must be present");
4082 
4083     JavaThread* current = _thread_list;
4084     JavaThread* prev    = NULL;
4085 
4086     while (current != p) {
4087       prev    = current;
4088       current = current->next();
4089     }
4090 
4091     if (prev) {
4092       prev->set_next(current->next());
4093     } else {
4094       _thread_list = p->next();
4095     }
4096     _number_of_threads--;
4097     oop threadObj = p->threadObj();
4098     bool daemon = true;
4099     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4100       _number_of_non_daemon_threads--;
4101       daemon = false;
4102 
4103       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4104       // on destroy_vm will wake up.
4105       if (number_of_non_daemon_threads() == 1) {
4106         Threads_lock->notify_all();
4107       }
4108     }
4109     ThreadService::remove_thread(p, daemon);
4110 
4111     // Make sure that safepoint code disregard this thread. This is needed since
4112     // the thread might mess around with locks after this point. This can cause it
4113     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4114     // of this thread since it is removed from the queue.
4115     p->set_terminated_value();
4116   } // unlock Threads_lock
4117 
4118   // Since Events::log uses a lock, we grab it outside the Threads_lock
4119   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4120 }
4121 
4122 // Threads_lock must be held when this is called (or must be called during a safepoint)
4123 bool Threads::includes(JavaThread* p) {
4124   assert(Threads_lock->is_locked(), "sanity check");
4125   ALL_JAVA_THREADS(q) {
4126     if (q == p) {
4127       return true;
4128     }
4129   }
4130   return false;
4131 }
4132 
4133 // Operations on the Threads list for GC.  These are not explicitly locked,
4134 // but the garbage collector must provide a safe context for them to run.
4135 // In particular, these things should never be called when the Threads_lock
4136 // is held by some other thread. (Note: the Safepoint abstraction also
4137 // uses the Threads_lock to guarantee this property. It also makes sure that
4138 // all threads gets blocked when exiting or starting).
4139 
4140 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4141   ALL_JAVA_THREADS(p) {
4142     p->oops_do(f, cld_f, cf);
4143   }
4144   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4145 }
4146 
4147 void Threads::change_thread_claim_parity() {
4148   // Set the new claim parity.
4149   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4150          "Not in range.");
4151   _thread_claim_parity++;
4152   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4153   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4154          "Not in range.");
4155 }
4156 
4157 #ifdef ASSERT
4158 void Threads::assert_all_threads_claimed() {
4159   ALL_JAVA_THREADS(p) {
4160     const int thread_parity = p->oops_do_parity();
4161     assert((thread_parity == _thread_claim_parity),
4162            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4163   }
4164 }
4165 #endif // ASSERT
4166 
4167 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4168   int cp = Threads::thread_claim_parity();
4169   ALL_JAVA_THREADS(p) {
4170     if (p->claim_oops_do(is_par, cp)) {
4171       p->oops_do(f, cld_f, cf);
4172     }
4173   }
4174   VMThread* vmt = VMThread::vm_thread();
4175   if (vmt->claim_oops_do(is_par, cp)) {
4176     vmt->oops_do(f, cld_f, cf);
4177   }
4178 }
4179 
4180 #if INCLUDE_ALL_GCS
4181 // Used by ParallelScavenge
4182 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4183   ALL_JAVA_THREADS(p) {
4184     q->enqueue(new ThreadRootsTask(p));
4185   }
4186   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4187 }
4188 
4189 // Used by Parallel Old
4190 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4191   ALL_JAVA_THREADS(p) {
4192     q->enqueue(new ThreadRootsMarkingTask(p));
4193   }
4194   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4195 }
4196 #endif // INCLUDE_ALL_GCS
4197 
4198 void Threads::nmethods_do(CodeBlobClosure* cf) {
4199   ALL_JAVA_THREADS(p) {
4200     p->nmethods_do(cf);
4201   }
4202   VMThread::vm_thread()->nmethods_do(cf);
4203 }
4204 
4205 void Threads::metadata_do(void f(Metadata*)) {
4206   ALL_JAVA_THREADS(p) {
4207     p->metadata_do(f);
4208   }
4209 }
4210 
4211 class ThreadHandlesClosure : public ThreadClosure {
4212   void (*_f)(Metadata*);
4213  public:
4214   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4215   virtual void do_thread(Thread* thread) {
4216     thread->metadata_handles_do(_f);
4217   }
4218 };
4219 
4220 void Threads::metadata_handles_do(void f(Metadata*)) {
4221   // Only walk the Handles in Thread.
4222   ThreadHandlesClosure handles_closure(f);
4223   threads_do(&handles_closure);
4224 }
4225 
4226 void Threads::deoptimized_wrt_marked_nmethods() {
4227   ALL_JAVA_THREADS(p) {
4228     p->deoptimized_wrt_marked_nmethods();
4229   }
4230 }
4231 
4232 
4233 // Get count Java threads that are waiting to enter the specified monitor.
4234 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4235                                                          address monitor,
4236                                                          bool doLock) {
4237   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4238          "must grab Threads_lock or be at safepoint");
4239   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4240 
4241   int i = 0;
4242   {
4243     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4244     ALL_JAVA_THREADS(p) {
4245       if (!p->can_call_java()) continue;
4246 
4247       address pending = (address)p->current_pending_monitor();
4248       if (pending == monitor) {             // found a match
4249         if (i < count) result->append(p);   // save the first count matches
4250         i++;
4251       }
4252     }
4253   }
4254   return result;
4255 }
4256 
4257 
4258 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4259                                                       bool doLock) {
4260   assert(doLock ||
4261          Threads_lock->owned_by_self() ||
4262          SafepointSynchronize::is_at_safepoint(),
4263          "must grab Threads_lock or be at safepoint");
4264 
4265   // NULL owner means not locked so we can skip the search
4266   if (owner == NULL) return NULL;
4267 
4268   {
4269     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4270     ALL_JAVA_THREADS(p) {
4271       // first, see if owner is the address of a Java thread
4272       if (owner == (address)p) return p;
4273     }
4274   }
4275   // Cannot assert on lack of success here since this function may be
4276   // used by code that is trying to report useful problem information
4277   // like deadlock detection.
4278   if (UseHeavyMonitors) return NULL;
4279 
4280   // If we didn't find a matching Java thread and we didn't force use of
4281   // heavyweight monitors, then the owner is the stack address of the
4282   // Lock Word in the owning Java thread's stack.
4283   //
4284   JavaThread* the_owner = NULL;
4285   {
4286     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4287     ALL_JAVA_THREADS(q) {
4288       if (q->is_lock_owned(owner)) {
4289         the_owner = q;
4290         break;
4291       }
4292     }
4293   }
4294   // cannot assert on lack of success here; see above comment
4295   return the_owner;
4296 }
4297 
4298 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4299 void Threads::print_on(outputStream* st, bool print_stacks,
4300                        bool internal_format, bool print_concurrent_locks) {
4301   char buf[32];
4302   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4303 
4304   st->print_cr("Full thread dump %s (%s %s):",
4305                Abstract_VM_Version::vm_name(),
4306                Abstract_VM_Version::vm_release(),
4307                Abstract_VM_Version::vm_info_string());
4308   st->cr();
4309 
4310 #if INCLUDE_SERVICES
4311   // Dump concurrent locks
4312   ConcurrentLocksDump concurrent_locks;
4313   if (print_concurrent_locks) {
4314     concurrent_locks.dump_at_safepoint();
4315   }
4316 #endif // INCLUDE_SERVICES
4317 
4318   ALL_JAVA_THREADS(p) {
4319     ResourceMark rm;
4320     p->print_on(st);
4321     if (print_stacks) {
4322       if (internal_format) {
4323         p->trace_stack();
4324       } else {
4325         p->print_stack_on(st);
4326       }
4327     }
4328     st->cr();
4329 #if INCLUDE_SERVICES
4330     if (print_concurrent_locks) {
4331       concurrent_locks.print_locks_on(p, st);
4332     }
4333 #endif // INCLUDE_SERVICES
4334   }
4335 
4336   VMThread::vm_thread()->print_on(st);
4337   st->cr();
4338   Universe::heap()->print_gc_threads_on(st);
4339   WatcherThread* wt = WatcherThread::watcher_thread();
4340   if (wt != NULL) {
4341     wt->print_on(st);
4342     st->cr();
4343   }
4344   CompileBroker::print_compiler_threads_on(st);
4345   st->flush();
4346 }
4347 
4348 // Threads::print_on_error() is called by fatal error handler. It's possible
4349 // that VM is not at safepoint and/or current thread is inside signal handler.
4350 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4351 // memory (even in resource area), it might deadlock the error handler.
4352 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4353                              int buflen) {
4354   bool found_current = false;
4355   st->print_cr("Java Threads: ( => current thread )");
4356   ALL_JAVA_THREADS(thread) {
4357     bool is_current = (current == thread);
4358     found_current = found_current || is_current;
4359 
4360     st->print("%s", is_current ? "=>" : "  ");
4361 
4362     st->print(PTR_FORMAT, p2i(thread));
4363     st->print(" ");
4364     thread->print_on_error(st, buf, buflen);
4365     st->cr();
4366   }
4367   st->cr();
4368 
4369   st->print_cr("Other Threads:");
4370   if (VMThread::vm_thread()) {
4371     bool is_current = (current == VMThread::vm_thread());
4372     found_current = found_current || is_current;
4373     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4374 
4375     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4376     st->print(" ");
4377     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4378     st->cr();
4379   }
4380   WatcherThread* wt = WatcherThread::watcher_thread();
4381   if (wt != NULL) {
4382     bool is_current = (current == wt);
4383     found_current = found_current || is_current;
4384     st->print("%s", is_current ? "=>" : "  ");
4385 
4386     st->print(PTR_FORMAT, p2i(wt));
4387     st->print(" ");
4388     wt->print_on_error(st, buf, buflen);
4389     st->cr();
4390   }
4391   if (!found_current) {
4392     st->cr();
4393     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4394     current->print_on_error(st, buf, buflen);
4395     st->cr();
4396   }
4397 }
4398 
4399 // Internal SpinLock and Mutex
4400 // Based on ParkEvent
4401 
4402 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4403 //
4404 // We employ SpinLocks _only for low-contention, fixed-length
4405 // short-duration critical sections where we're concerned
4406 // about native mutex_t or HotSpot Mutex:: latency.
4407 // The mux construct provides a spin-then-block mutual exclusion
4408 // mechanism.
4409 //
4410 // Testing has shown that contention on the ListLock guarding gFreeList
4411 // is common.  If we implement ListLock as a simple SpinLock it's common
4412 // for the JVM to devolve to yielding with little progress.  This is true
4413 // despite the fact that the critical sections protected by ListLock are
4414 // extremely short.
4415 //
4416 // TODO-FIXME: ListLock should be of type SpinLock.
4417 // We should make this a 1st-class type, integrated into the lock
4418 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4419 // should have sufficient padding to avoid false-sharing and excessive
4420 // cache-coherency traffic.
4421 
4422 
4423 typedef volatile int SpinLockT;
4424 
4425 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4426   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4427     return;   // normal fast-path return
4428   }
4429 
4430   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4431   TEVENT(SpinAcquire - ctx);
4432   int ctr = 0;
4433   int Yields = 0;
4434   for (;;) {
4435     while (*adr != 0) {
4436       ++ctr;
4437       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4438         if (Yields > 5) {
4439           os::naked_short_sleep(1);
4440         } else {
4441           os::naked_yield();
4442           ++Yields;
4443         }
4444       } else {
4445         SpinPause();
4446       }
4447     }
4448     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4449   }
4450 }
4451 
4452 void Thread::SpinRelease(volatile int * adr) {
4453   assert(*adr != 0, "invariant");
4454   OrderAccess::fence();      // guarantee at least release consistency.
4455   // Roach-motel semantics.
4456   // It's safe if subsequent LDs and STs float "up" into the critical section,
4457   // but prior LDs and STs within the critical section can't be allowed
4458   // to reorder or float past the ST that releases the lock.
4459   // Loads and stores in the critical section - which appear in program
4460   // order before the store that releases the lock - must also appear
4461   // before the store that releases the lock in memory visibility order.
4462   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4463   // the ST of 0 into the lock-word which releases the lock, so fence
4464   // more than covers this on all platforms.
4465   *adr = 0;
4466 }
4467 
4468 // muxAcquire and muxRelease:
4469 //
4470 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4471 //    The LSB of the word is set IFF the lock is held.
4472 //    The remainder of the word points to the head of a singly-linked list
4473 //    of threads blocked on the lock.
4474 //
4475 // *  The current implementation of muxAcquire-muxRelease uses its own
4476 //    dedicated Thread._MuxEvent instance.  If we're interested in
4477 //    minimizing the peak number of extant ParkEvent instances then
4478 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4479 //    as certain invariants were satisfied.  Specifically, care would need
4480 //    to be taken with regards to consuming unpark() "permits".
4481 //    A safe rule of thumb is that a thread would never call muxAcquire()
4482 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4483 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4484 //    consume an unpark() permit intended for monitorenter, for instance.
4485 //    One way around this would be to widen the restricted-range semaphore
4486 //    implemented in park().  Another alternative would be to provide
4487 //    multiple instances of the PlatformEvent() for each thread.  One
4488 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4489 //
4490 // *  Usage:
4491 //    -- Only as leaf locks
4492 //    -- for short-term locking only as muxAcquire does not perform
4493 //       thread state transitions.
4494 //
4495 // Alternatives:
4496 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4497 //    but with parking or spin-then-park instead of pure spinning.
4498 // *  Use Taura-Oyama-Yonenzawa locks.
4499 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4500 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4501 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4502 //    acquiring threads use timers (ParkTimed) to detect and recover from
4503 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4504 //    boundaries by using placement-new.
4505 // *  Augment MCS with advisory back-link fields maintained with CAS().
4506 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4507 //    The validity of the backlinks must be ratified before we trust the value.
4508 //    If the backlinks are invalid the exiting thread must back-track through the
4509 //    the forward links, which are always trustworthy.
4510 // *  Add a successor indication.  The LockWord is currently encoded as
4511 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4512 //    to provide the usual futile-wakeup optimization.
4513 //    See RTStt for details.
4514 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4515 //
4516 
4517 
4518 typedef volatile intptr_t MutexT;      // Mux Lock-word
4519 enum MuxBits { LOCKBIT = 1 };
4520 
4521 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4522   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4523   if (w == 0) return;
4524   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4525     return;
4526   }
4527 
4528   TEVENT(muxAcquire - Contention);
4529   ParkEvent * const Self = Thread::current()->_MuxEvent;
4530   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4531   for (;;) {
4532     int its = (os::is_MP() ? 100 : 0) + 1;
4533 
4534     // Optional spin phase: spin-then-park strategy
4535     while (--its >= 0) {
4536       w = *Lock;
4537       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4538         return;
4539       }
4540     }
4541 
4542     Self->reset();
4543     Self->OnList = intptr_t(Lock);
4544     // The following fence() isn't _strictly necessary as the subsequent
4545     // CAS() both serializes execution and ratifies the fetched *Lock value.
4546     OrderAccess::fence();
4547     for (;;) {
4548       w = *Lock;
4549       if ((w & LOCKBIT) == 0) {
4550         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4551           Self->OnList = 0;   // hygiene - allows stronger asserts
4552           return;
4553         }
4554         continue;      // Interference -- *Lock changed -- Just retry
4555       }
4556       assert(w & LOCKBIT, "invariant");
4557       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4558       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4559     }
4560 
4561     while (Self->OnList != 0) {
4562       Self->park();
4563     }
4564   }
4565 }
4566 
4567 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4568   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4569   if (w == 0) return;
4570   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4571     return;
4572   }
4573 
4574   TEVENT(muxAcquire - Contention);
4575   ParkEvent * ReleaseAfter = NULL;
4576   if (ev == NULL) {
4577     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4578   }
4579   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4580   for (;;) {
4581     guarantee(ev->OnList == 0, "invariant");
4582     int its = (os::is_MP() ? 100 : 0) + 1;
4583 
4584     // Optional spin phase: spin-then-park strategy
4585     while (--its >= 0) {
4586       w = *Lock;
4587       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588         if (ReleaseAfter != NULL) {
4589           ParkEvent::Release(ReleaseAfter);
4590         }
4591         return;
4592       }
4593     }
4594 
4595     ev->reset();
4596     ev->OnList = intptr_t(Lock);
4597     // The following fence() isn't _strictly necessary as the subsequent
4598     // CAS() both serializes execution and ratifies the fetched *Lock value.
4599     OrderAccess::fence();
4600     for (;;) {
4601       w = *Lock;
4602       if ((w & LOCKBIT) == 0) {
4603         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4604           ev->OnList = 0;
4605           // We call ::Release while holding the outer lock, thus
4606           // artificially lengthening the critical section.
4607           // Consider deferring the ::Release() until the subsequent unlock(),
4608           // after we've dropped the outer lock.
4609           if (ReleaseAfter != NULL) {
4610             ParkEvent::Release(ReleaseAfter);
4611           }
4612           return;
4613         }
4614         continue;      // Interference -- *Lock changed -- Just retry
4615       }
4616       assert(w & LOCKBIT, "invariant");
4617       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4618       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4619     }
4620 
4621     while (ev->OnList != 0) {
4622       ev->park();
4623     }
4624   }
4625 }
4626 
4627 // Release() must extract a successor from the list and then wake that thread.
4628 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4629 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4630 // Release() would :
4631 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4632 // (B) Extract a successor from the private list "in-hand"
4633 // (C) attempt to CAS() the residual back into *Lock over null.
4634 //     If there were any newly arrived threads and the CAS() would fail.
4635 //     In that case Release() would detach the RATs, re-merge the list in-hand
4636 //     with the RATs and repeat as needed.  Alternately, Release() might
4637 //     detach and extract a successor, but then pass the residual list to the wakee.
4638 //     The wakee would be responsible for reattaching and remerging before it
4639 //     competed for the lock.
4640 //
4641 // Both "pop" and DMR are immune from ABA corruption -- there can be
4642 // multiple concurrent pushers, but only one popper or detacher.
4643 // This implementation pops from the head of the list.  This is unfair,
4644 // but tends to provide excellent throughput as hot threads remain hot.
4645 // (We wake recently run threads first).
4646 //
4647 // All paths through muxRelease() will execute a CAS.
4648 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4649 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4650 // executed within the critical section are complete and globally visible before the
4651 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4652 void Thread::muxRelease(volatile intptr_t * Lock)  {
4653   for (;;) {
4654     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4655     assert(w & LOCKBIT, "invariant");
4656     if (w == LOCKBIT) return;
4657     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4658     assert(List != NULL, "invariant");
4659     assert(List->OnList == intptr_t(Lock), "invariant");
4660     ParkEvent * const nxt = List->ListNext;
4661     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4662 
4663     // The following CAS() releases the lock and pops the head element.
4664     // The CAS() also ratifies the previously fetched lock-word value.
4665     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4666       continue;
4667     }
4668     List->OnList = 0;
4669     OrderAccess::fence();
4670     List->unpark();
4671     return;
4672   }
4673 }
4674 
4675 
4676 void Threads::verify() {
4677   ALL_JAVA_THREADS(p) {
4678     p->verify();
4679   }
4680   VMThread* thread = VMThread::vm_thread();
4681   if (thread != NULL) thread->verify();
4682 }