1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_bsd.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <time.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <sys/param.h>
  98 # include <sys/sysctl.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 #ifndef __APPLE__
 102 # include <link.h>
 103 #endif
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 # include <sys/syscall.h>
 108 
 109 #if defined(__FreeBSD__) || defined(__NetBSD__)
 110   #include <elf.h>
 111 #endif
 112 
 113 #ifdef __APPLE__
 114   #include <mach/mach.h> // semaphore_* API
 115   #include <mach-o/dyld.h>
 116   #include <sys/proc_info.h>
 117   #include <objc/objc-auto.h>
 118 #endif
 119 
 120 #ifndef MAP_ANONYMOUS
 121   #define MAP_ANONYMOUS MAP_ANON
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Bsd::_physical_memory = 0;
 134 
 135 #ifdef __APPLE__
 136 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 137 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 138 #else
 139 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 #endif
 141 pthread_t os::Bsd::_main_thread;
 142 int os::Bsd::_page_size = -1;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 
 161 ////////////////////////////////////////////////////////////////////////////////
 162 // utility functions
 163 
 164 static int SR_initialize();
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 julong os::available_memory() {
 168   return Bsd::available_memory();
 169 }
 170 
 171 // available here means free
 172 julong os::Bsd::available_memory() {
 173   uint64_t available = physical_memory() >> 2;
 174 #ifdef __APPLE__
 175   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 176   vm_statistics64_data_t vmstat;
 177   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 178                                          (host_info64_t)&vmstat, &count);
 179   assert(kerr == KERN_SUCCESS,
 180          "host_statistics64 failed - check mach_host_self() and count");
 181   if (kerr == KERN_SUCCESS) {
 182     available = vmstat.free_count * os::vm_page_size();
 183   }
 184 #endif
 185   return available;
 186 }
 187 
 188 julong os::physical_memory() {
 189   return Bsd::physical_memory();
 190 }
 191 
 192 // Return true if user is running as root.
 193 
 194 bool os::have_special_privileges() {
 195   static bool init = false;
 196   static bool privileges = false;
 197   if (!init) {
 198     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 199     init = true;
 200   }
 201   return privileges;
 202 }
 203 
 204 
 205 
 206 // Cpu architecture string
 207 #if   defined(ZERO)
 208 static char cpu_arch[] = ZERO_LIBARCH;
 209 #elif defined(IA64)
 210 static char cpu_arch[] = "ia64";
 211 #elif defined(IA32)
 212 static char cpu_arch[] = "i386";
 213 #elif defined(AMD64)
 214 static char cpu_arch[] = "amd64";
 215 #elif defined(ARM)
 216 static char cpu_arch[] = "arm";
 217 #elif defined(PPC32)
 218 static char cpu_arch[] = "ppc";
 219 #elif defined(SPARC)
 220   #ifdef _LP64
 221 static char cpu_arch[] = "sparcv9";
 222   #else
 223 static char cpu_arch[] = "sparc";
 224   #endif
 225 #else
 226   #error Add appropriate cpu_arch setting
 227 #endif
 228 
 229 // Compiler variant
 230 #ifdef COMPILER2
 231   #define COMPILER_VARIANT "server"
 232 #else
 233   #define COMPILER_VARIANT "client"
 234 #endif
 235 
 236 
 237 void os::Bsd::initialize_system_info() {
 238   int mib[2];
 239   size_t len;
 240   int cpu_val;
 241   julong mem_val;
 242 
 243   // get processors count via hw.ncpus sysctl
 244   mib[0] = CTL_HW;
 245   mib[1] = HW_NCPU;
 246   len = sizeof(cpu_val);
 247   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 248     assert(len == sizeof(cpu_val), "unexpected data size");
 249     set_processor_count(cpu_val);
 250   } else {
 251     set_processor_count(1);   // fallback
 252   }
 253 
 254   // get physical memory via hw.memsize sysctl (hw.memsize is used
 255   // since it returns a 64 bit value)
 256   mib[0] = CTL_HW;
 257 
 258 #if defined (HW_MEMSIZE) // Apple
 259   mib[1] = HW_MEMSIZE;
 260 #elif defined(HW_PHYSMEM) // Most of BSD
 261   mib[1] = HW_PHYSMEM;
 262 #elif defined(HW_REALMEM) // Old FreeBSD
 263   mib[1] = HW_REALMEM;
 264 #else
 265   #error No ways to get physmem
 266 #endif
 267 
 268   len = sizeof(mem_val);
 269   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 270     assert(len == sizeof(mem_val), "unexpected data size");
 271     _physical_memory = mem_val;
 272   } else {
 273     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 274   }
 275 
 276 #ifdef __OpenBSD__
 277   {
 278     // limit _physical_memory memory view on OpenBSD since
 279     // datasize rlimit restricts us anyway.
 280     struct rlimit limits;
 281     getrlimit(RLIMIT_DATA, &limits);
 282     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 283   }
 284 #endif
 285 }
 286 
 287 #ifdef __APPLE__
 288 static const char *get_home() {
 289   const char *home_dir = ::getenv("HOME");
 290   if ((home_dir == NULL) || (*home_dir == '\0')) {
 291     struct passwd *passwd_info = getpwuid(geteuid());
 292     if (passwd_info != NULL) {
 293       home_dir = passwd_info->pw_dir;
 294     }
 295   }
 296 
 297   return home_dir;
 298 }
 299 #endif
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #ifndef DEFAULT_LIBPATH
 335   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336 #endif
 337 
 338 // Base path of extensions installed on the system.
 339 #define SYS_EXT_DIR     "/usr/java/packages"
 340 #define EXTENSIONS_DIR  "/lib/ext"
 341 
 342 #ifndef __APPLE__
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 363     }
 364     Arguments::set_dll_dir(buf);
 365 
 366     if (pslash != NULL) {
 367       pslash = strrchr(buf, '/');
 368       if (pslash != NULL) {
 369         *pslash = '\0';          // Get rid of /<arch>.
 370         pslash = strrchr(buf, '/');
 371         if (pslash != NULL) {
 372           *pslash = '\0';        // Get rid of /lib.
 373         }
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     set_boot_path('/', ':');
 378   }
 379 
 380   // Where to look for native libraries.
 381   //
 382   // Note: Due to a legacy implementation, most of the library path
 383   // is set in the launcher. This was to accomodate linking restrictions
 384   // on legacy Bsd implementations (which are no longer supported).
 385   // Eventually, all the library path setting will be done here.
 386   //
 387   // However, to prevent the proliferation of improperly built native
 388   // libraries, the new path component /usr/java/packages is added here.
 389   // Eventually, all the library path setting will be done here.
 390   {
 391     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 392     // should always exist (until the legacy problem cited above is
 393     // addressed).
 394     const char *v = ::getenv("LD_LIBRARY_PATH");
 395     const char *v_colon = ":";
 396     if (v == NULL) { v = ""; v_colon = ""; }
 397     // That's +1 for the colon and +1 for the trailing '\0'.
 398     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 399                                                      strlen(v) + 1 +
 400                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 401                                                      mtInternal);
 402     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 403     Arguments::set_library_path(ld_library_path);
 404     FREE_C_HEAP_ARRAY(char, ld_library_path);
 405   }
 406 
 407   // Extensions directories.
 408   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 409   Arguments::set_ext_dirs(buf);
 410 
 411   FREE_C_HEAP_ARRAY(char, buf);
 412 
 413 #else // __APPLE__
 414 
 415   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 416   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 417 
 418   const char *user_home_dir = get_home();
 419   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 420   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 421     sizeof(SYS_EXTENSIONS_DIRS);
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 429   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443 #ifdef STATIC_BUILD
 444     strcat(buf, "/lib");
 445 #endif
 446 
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';          // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     set_boot_path('/', ':');
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Bsd implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 474     // can specify a directory inside an app wrapper
 475     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 476     const char *l_colon = ":";
 477     if (l == NULL) { l = ""; l_colon = ""; }
 478 
 479     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 480     const char *v_colon = ":";
 481     if (v == NULL) { v = ""; v_colon = ""; }
 482 
 483     // Apple's Java6 has "." at the beginning of java.library.path.
 484     // OpenJDK on Windows has "." at the end of java.library.path.
 485     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 486     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 487     // "." is appended to the end of java.library.path. Yes, this
 488     // could cause a change in behavior, but Apple's Java6 behavior
 489     // can be achieved by putting "." at the beginning of the
 490     // JAVA_LIBRARY_PATH environment variable.
 491     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 492                                                      strlen(v) + 1 + strlen(l) + 1 +
 493                                                      system_ext_size + 3,
 494                                                      mtInternal);
 495     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 496             v, v_colon, l, l_colon, user_home_dir);
 497     Arguments::set_library_path(ld_library_path);
 498     FREE_C_HEAP_ARRAY(char, ld_library_path);
 499   }
 500 
 501   // Extensions directories.
 502   //
 503   // Note that the space for the colon and the trailing null are provided
 504   // by the nulls included by the sizeof operator (so actually one byte more
 505   // than necessary is allocated).
 506   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 507           user_home_dir, Arguments::get_java_home());
 508   Arguments::set_ext_dirs(buf);
 509 
 510   FREE_C_HEAP_ARRAY(char, buf);
 511 
 512 #undef SYS_EXTENSIONS_DIR
 513 #undef SYS_EXTENSIONS_DIRS
 514 
 515 #endif // __APPLE__
 516 
 517 #undef SYS_EXT_DIR
 518 #undef EXTENSIONS_DIR
 519 }
 520 
 521 ////////////////////////////////////////////////////////////////////////////////
 522 // breakpoint support
 523 
 524 void os::breakpoint() {
 525   BREAKPOINT;
 526 }
 527 
 528 extern "C" void breakpoint() {
 529   // use debugger to set breakpoint here
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // signal support
 534 
 535 debug_only(static bool signal_sets_initialized = false);
 536 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 537 
 538 bool os::Bsd::is_sig_ignored(int sig) {
 539   struct sigaction oact;
 540   sigaction(sig, (struct sigaction*)NULL, &oact);
 541   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 542                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 543   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 544     return true;
 545   } else {
 546     return false;
 547   }
 548 }
 549 
 550 void os::Bsd::signal_sets_init() {
 551   // Should also have an assertion stating we are still single-threaded.
 552   assert(!signal_sets_initialized, "Already initialized");
 553   // Fill in signals that are necessarily unblocked for all threads in
 554   // the VM. Currently, we unblock the following signals:
 555   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 556   //                         by -Xrs (=ReduceSignalUsage));
 557   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 558   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 559   // the dispositions or masks wrt these signals.
 560   // Programs embedding the VM that want to use the above signals for their
 561   // own purposes must, at this time, use the "-Xrs" option to prevent
 562   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 563   // (See bug 4345157, and other related bugs).
 564   // In reality, though, unblocking these signals is really a nop, since
 565   // these signals are not blocked by default.
 566   sigemptyset(&unblocked_sigs);
 567   sigemptyset(&allowdebug_blocked_sigs);
 568   sigaddset(&unblocked_sigs, SIGILL);
 569   sigaddset(&unblocked_sigs, SIGSEGV);
 570   sigaddset(&unblocked_sigs, SIGBUS);
 571   sigaddset(&unblocked_sigs, SIGFPE);
 572   sigaddset(&unblocked_sigs, SR_signum);
 573 
 574   if (!ReduceSignalUsage) {
 575     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 576       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 577       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 578     }
 579     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 580       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 581       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 582     }
 583     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 584       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 585       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 586     }
 587   }
 588   // Fill in signals that are blocked by all but the VM thread.
 589   sigemptyset(&vm_sigs);
 590   if (!ReduceSignalUsage) {
 591     sigaddset(&vm_sigs, BREAK_SIGNAL);
 592   }
 593   debug_only(signal_sets_initialized = true);
 594 
 595 }
 596 
 597 // These are signals that are unblocked while a thread is running Java.
 598 // (For some reason, they get blocked by default.)
 599 sigset_t* os::Bsd::unblocked_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &unblocked_sigs;
 602 }
 603 
 604 // These are the signals that are blocked while a (non-VM) thread is
 605 // running Java. Only the VM thread handles these signals.
 606 sigset_t* os::Bsd::vm_signals() {
 607   assert(signal_sets_initialized, "Not initialized");
 608   return &vm_sigs;
 609 }
 610 
 611 // These are signals that are blocked during cond_wait to allow debugger in
 612 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 613   assert(signal_sets_initialized, "Not initialized");
 614   return &allowdebug_blocked_sigs;
 615 }
 616 
 617 void os::Bsd::hotspot_sigmask(Thread* thread) {
 618 
 619   //Save caller's signal mask before setting VM signal mask
 620   sigset_t caller_sigmask;
 621   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 622 
 623   OSThread* osthread = thread->osthread();
 624   osthread->set_caller_sigmask(caller_sigmask);
 625 
 626   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 627 
 628   if (!ReduceSignalUsage) {
 629     if (thread->is_VM_thread()) {
 630       // Only the VM thread handles BREAK_SIGNAL ...
 631       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 632     } else {
 633       // ... all other threads block BREAK_SIGNAL
 634       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 635     }
 636   }
 637 }
 638 
 639 
 640 //////////////////////////////////////////////////////////////////////////////
 641 // create new thread
 642 
 643 #ifdef __APPLE__
 644 // library handle for calling objc_registerThreadWithCollector()
 645 // without static linking to the libobjc library
 646   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 647   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 648 typedef void (*objc_registerThreadWithCollector_t)();
 649 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 650 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 651 #endif
 652 
 653 #ifdef __APPLE__
 654 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 655   // Additional thread_id used to correlate threads in SA
 656   thread_identifier_info_data_t     m_ident_info;
 657   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 658 
 659   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 660               (thread_info_t) &m_ident_info, &count);
 661 
 662   return m_ident_info.thread_id;
 663 }
 664 #endif
 665 
 666 // Thread start routine for all newly created threads
 667 static void *java_start(Thread *thread) {
 668   // Try to randomize the cache line index of hot stack frames.
 669   // This helps when threads of the same stack traces evict each other's
 670   // cache lines. The threads can be either from the same JVM instance, or
 671   // from different JVM instances. The benefit is especially true for
 672   // processors with hyperthreading technology.
 673   static int counter = 0;
 674   int pid = os::current_process_id();
 675   alloca(((pid ^ counter++) & 7) * 128);
 676 
 677   thread->initialize_thread_current();
 678 
 679   OSThread* osthread = thread->osthread();
 680   Monitor* sync = osthread->startThread_lock();
 681 
 682   osthread->set_thread_id(os::Bsd::gettid());
 683 
 684 #ifdef __APPLE__
 685   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 686   guarantee(unique_thread_id != 0, "unique thread id was not found");
 687   osthread->set_unique_thread_id(unique_thread_id);
 688 #endif
 689   // initialize signal mask for this thread
 690   os::Bsd::hotspot_sigmask(thread);
 691 
 692   // initialize floating point control register
 693   os::Bsd::init_thread_fpu_state();
 694 
 695 #ifdef __APPLE__
 696   // register thread with objc gc
 697   if (objc_registerThreadWithCollectorFunction != NULL) {
 698     objc_registerThreadWithCollectorFunction();
 699   }
 700 #endif
 701 
 702   // handshaking with parent thread
 703   {
 704     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 705 
 706     // notify parent thread
 707     osthread->set_state(INITIALIZED);
 708     sync->notify_all();
 709 
 710     // wait until os::start_thread()
 711     while (osthread->get_state() == INITIALIZED) {
 712       sync->wait(Mutex::_no_safepoint_check_flag);
 713     }
 714   }
 715 
 716   // call one more level start routine
 717   thread->run();
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 723   assert(thread->osthread() == NULL, "caller responsible");
 724 
 725   // Allocate the OSThread object
 726   OSThread* osthread = new OSThread(NULL, NULL);
 727   if (osthread == NULL) {
 728     return false;
 729   }
 730 
 731   // set the correct thread state
 732   osthread->set_thread_type(thr_type);
 733 
 734   // Initial state is ALLOCATED but not INITIALIZED
 735   osthread->set_state(ALLOCATED);
 736 
 737   thread->set_osthread(osthread);
 738 
 739   // init thread attributes
 740   pthread_attr_t attr;
 741   pthread_attr_init(&attr);
 742   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 743 
 744   // calculate stack size if it's not specified by caller
 745   if (stack_size == 0) {
 746     stack_size = os::Bsd::default_stack_size(thr_type);
 747 
 748     switch (thr_type) {
 749     case os::java_thread:
 750       // Java threads use ThreadStackSize which default value can be
 751       // changed with the flag -Xss
 752       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 753       stack_size = JavaThread::stack_size_at_create();
 754       break;
 755     case os::compiler_thread:
 756       if (CompilerThreadStackSize > 0) {
 757         stack_size = (size_t)(CompilerThreadStackSize * K);
 758         break;
 759       } // else fall through:
 760         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 761     case os::vm_thread:
 762     case os::pgc_thread:
 763     case os::cgc_thread:
 764     case os::watcher_thread:
 765       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 766       break;
 767     }
 768   }
 769 
 770   stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 771   pthread_attr_setstacksize(&attr, stack_size);
 772 
 773   ThreadState state;
 774 
 775   {
 776     pthread_t tid;
 777     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 778 
 779     pthread_attr_destroy(&attr);
 780 
 781     if (ret != 0) {
 782       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 783         perror("pthread_create()");
 784       }
 785       // Need to clean up stuff we've allocated so far
 786       thread->set_osthread(NULL);
 787       delete osthread;
 788       return false;
 789     }
 790 
 791     // Store pthread info into the OSThread
 792     osthread->set_pthread_id(tid);
 793 
 794     // Wait until child thread is either initialized or aborted
 795     {
 796       Monitor* sync_with_child = osthread->startThread_lock();
 797       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 798       while ((state = osthread->get_state()) == ALLOCATED) {
 799         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 800       }
 801     }
 802 
 803   }
 804 
 805   // Aborted due to thread limit being reached
 806   if (state == ZOMBIE) {
 807     thread->set_osthread(NULL);
 808     delete osthread;
 809     return false;
 810   }
 811 
 812   // The thread is returned suspended (in state INITIALIZED),
 813   // and is started higher up in the call chain
 814   assert(state == INITIALIZED, "race condition");
 815   return true;
 816 }
 817 
 818 /////////////////////////////////////////////////////////////////////////////
 819 // attach existing thread
 820 
 821 // bootstrap the main thread
 822 bool os::create_main_thread(JavaThread* thread) {
 823   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 824   return create_attached_thread(thread);
 825 }
 826 
 827 bool os::create_attached_thread(JavaThread* thread) {
 828 #ifdef ASSERT
 829   thread->verify_not_published();
 830 #endif
 831 
 832   // Allocate the OSThread object
 833   OSThread* osthread = new OSThread(NULL, NULL);
 834 
 835   if (osthread == NULL) {
 836     return false;
 837   }
 838 
 839   osthread->set_thread_id(os::Bsd::gettid());
 840 
 841   // Store pthread info into the OSThread
 842 #ifdef __APPLE__
 843   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 844   guarantee(unique_thread_id != 0, "just checking");
 845   osthread->set_unique_thread_id(unique_thread_id);
 846 #endif
 847   osthread->set_pthread_id(::pthread_self());
 848 
 849   // initialize floating point control register
 850   os::Bsd::init_thread_fpu_state();
 851 
 852   // Initial thread state is RUNNABLE
 853   osthread->set_state(RUNNABLE);
 854 
 855   thread->set_osthread(osthread);
 856 
 857   // initialize signal mask for this thread
 858   // and save the caller's signal mask
 859   os::Bsd::hotspot_sigmask(thread);
 860 
 861   return true;
 862 }
 863 
 864 void os::pd_start_thread(Thread* thread) {
 865   OSThread * osthread = thread->osthread();
 866   assert(osthread->get_state() != INITIALIZED, "just checking");
 867   Monitor* sync_with_child = osthread->startThread_lock();
 868   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 869   sync_with_child->notify();
 870 }
 871 
 872 // Free Bsd resources related to the OSThread
 873 void os::free_thread(OSThread* osthread) {
 874   assert(osthread != NULL, "osthread not set");
 875 
 876   if (Thread::current()->osthread() == osthread) {
 877     // Restore caller's signal mask
 878     sigset_t sigmask = osthread->caller_sigmask();
 879     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 880   }
 881 
 882   delete osthread;
 883 }
 884 
 885 ////////////////////////////////////////////////////////////////////////////////
 886 // time support
 887 
 888 // Time since start-up in seconds to a fine granularity.
 889 // Used by VMSelfDestructTimer and the MemProfiler.
 890 double os::elapsedTime() {
 891 
 892   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 893 }
 894 
 895 jlong os::elapsed_counter() {
 896   return javaTimeNanos() - initial_time_count;
 897 }
 898 
 899 jlong os::elapsed_frequency() {
 900   return NANOSECS_PER_SEC; // nanosecond resolution
 901 }
 902 
 903 bool os::supports_vtime() { return true; }
 904 bool os::enable_vtime()   { return false; }
 905 bool os::vtime_enabled()  { return false; }
 906 
 907 double os::elapsedVTime() {
 908   // better than nothing, but not much
 909   return elapsedTime();
 910 }
 911 
 912 jlong os::javaTimeMillis() {
 913   timeval time;
 914   int status = gettimeofday(&time, NULL);
 915   assert(status != -1, "bsd error");
 916   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 917 }
 918 
 919 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 920   timeval time;
 921   int status = gettimeofday(&time, NULL);
 922   assert(status != -1, "bsd error");
 923   seconds = jlong(time.tv_sec);
 924   nanos = jlong(time.tv_usec) * 1000;
 925 }
 926 
 927 #ifndef __APPLE__
 928   #ifndef CLOCK_MONOTONIC
 929     #define CLOCK_MONOTONIC (1)
 930   #endif
 931 #endif
 932 
 933 #ifdef __APPLE__
 934 void os::Bsd::clock_init() {
 935   mach_timebase_info(&_timebase_info);
 936 }
 937 #else
 938 void os::Bsd::clock_init() {
 939   struct timespec res;
 940   struct timespec tp;
 941   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 942       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 943     // yes, monotonic clock is supported
 944     _clock_gettime = ::clock_gettime;
 945   }
 946 }
 947 #endif
 948 
 949 
 950 
 951 #ifdef __APPLE__
 952 
 953 jlong os::javaTimeNanos() {
 954   const uint64_t tm = mach_absolute_time();
 955   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 956   const uint64_t prev = Bsd::_max_abstime;
 957   if (now <= prev) {
 958     return prev;   // same or retrograde time;
 959   }
 960   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 961   assert(obsv >= prev, "invariant");   // Monotonicity
 962   // If the CAS succeeded then we're done and return "now".
 963   // If the CAS failed and the observed value "obsv" is >= now then
 964   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 965   // some other thread raced this thread and installed a new value, in which case
 966   // we could either (a) retry the entire operation, (b) retry trying to install now
 967   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 968   // we might discard a higher "now" value in deference to a slightly lower but freshly
 969   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 970   // to (a) or (b) -- and greatly reduces coherence traffic.
 971   // We might also condition (c) on the magnitude of the delta between obsv and now.
 972   // Avoiding excessive CAS operations to hot RW locations is critical.
 973   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 974   return (prev == obsv) ? now : obsv;
 975 }
 976 
 977 #else // __APPLE__
 978 
 979 jlong os::javaTimeNanos() {
 980   if (os::supports_monotonic_clock()) {
 981     struct timespec tp;
 982     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 983     assert(status == 0, "gettime error");
 984     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 985     return result;
 986   } else {
 987     timeval time;
 988     int status = gettimeofday(&time, NULL);
 989     assert(status != -1, "bsd error");
 990     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 991     return 1000 * usecs;
 992   }
 993 }
 994 
 995 #endif // __APPLE__
 996 
 997 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 998   if (os::supports_monotonic_clock()) {
 999     info_ptr->max_value = ALL_64_BITS;
1000 
1001     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1002     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1003     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1004   } else {
1005     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1006     info_ptr->max_value = ALL_64_BITS;
1007 
1008     // gettimeofday is a real time clock so it skips
1009     info_ptr->may_skip_backward = true;
1010     info_ptr->may_skip_forward = true;
1011   }
1012 
1013   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1014 }
1015 
1016 // Return the real, user, and system times in seconds from an
1017 // arbitrary fixed point in the past.
1018 bool os::getTimesSecs(double* process_real_time,
1019                       double* process_user_time,
1020                       double* process_system_time) {
1021   struct tms ticks;
1022   clock_t real_ticks = times(&ticks);
1023 
1024   if (real_ticks == (clock_t) (-1)) {
1025     return false;
1026   } else {
1027     double ticks_per_second = (double) clock_tics_per_sec;
1028     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1029     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1030     *process_real_time = ((double) real_ticks) / ticks_per_second;
1031 
1032     return true;
1033   }
1034 }
1035 
1036 
1037 char * os::local_time_string(char *buf, size_t buflen) {
1038   struct tm t;
1039   time_t long_time;
1040   time(&long_time);
1041   localtime_r(&long_time, &t);
1042   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1043                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1044                t.tm_hour, t.tm_min, t.tm_sec);
1045   return buf;
1046 }
1047 
1048 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1049   return localtime_r(clock, res);
1050 }
1051 
1052 ////////////////////////////////////////////////////////////////////////////////
1053 // runtime exit support
1054 
1055 // Note: os::shutdown() might be called very early during initialization, or
1056 // called from signal handler. Before adding something to os::shutdown(), make
1057 // sure it is async-safe and can handle partially initialized VM.
1058 void os::shutdown() {
1059 
1060   // allow PerfMemory to attempt cleanup of any persistent resources
1061   perfMemory_exit();
1062 
1063   // needs to remove object in file system
1064   AttachListener::abort();
1065 
1066   // flush buffered output, finish log files
1067   ostream_abort();
1068 
1069   // Check for abort hook
1070   abort_hook_t abort_hook = Arguments::abort_hook();
1071   if (abort_hook != NULL) {
1072     abort_hook();
1073   }
1074 
1075 }
1076 
1077 // Note: os::abort() might be called very early during initialization, or
1078 // called from signal handler. Before adding something to os::abort(), make
1079 // sure it is async-safe and can handle partially initialized VM.
1080 void os::abort(bool dump_core, void* siginfo, void* context) {
1081   os::shutdown();
1082   if (dump_core) {
1083 #ifndef PRODUCT
1084     fdStream out(defaultStream::output_fd());
1085     out.print_raw("Current thread is ");
1086     char buf[16];
1087     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1088     out.print_raw_cr(buf);
1089     out.print_raw_cr("Dumping core ...");
1090 #endif
1091     ::abort(); // dump core
1092   }
1093 
1094   ::exit(1);
1095 }
1096 
1097 // Die immediately, no exit hook, no abort hook, no cleanup.
1098 void os::die() {
1099   // _exit() on BsdThreads only kills current thread
1100   ::abort();
1101 }
1102 
1103 // This method is a copy of JDK's sysGetLastErrorString
1104 // from src/solaris/hpi/src/system_md.c
1105 
1106 size_t os::lasterror(char *buf, size_t len) {
1107   if (errno == 0)  return 0;
1108 
1109   const char *s = ::strerror(errno);
1110   size_t n = ::strlen(s);
1111   if (n >= len) {
1112     n = len - 1;
1113   }
1114   ::strncpy(buf, s, n);
1115   buf[n] = '\0';
1116   return n;
1117 }
1118 
1119 // Information of current thread in variety of formats
1120 pid_t os::Bsd::gettid() {
1121   int retval = -1;
1122 
1123 #ifdef __APPLE__ //XNU kernel
1124   // despite the fact mach port is actually not a thread id use it
1125   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1126   retval = ::pthread_mach_thread_np(::pthread_self());
1127   guarantee(retval != 0, "just checking");
1128   return retval;
1129 
1130 #else
1131   #ifdef __FreeBSD__
1132   retval = syscall(SYS_thr_self);
1133   #else
1134     #ifdef __OpenBSD__
1135   retval = syscall(SYS_getthrid);
1136     #else
1137       #ifdef __NetBSD__
1138   retval = (pid_t) syscall(SYS__lwp_self);
1139       #endif
1140     #endif
1141   #endif
1142 #endif
1143 
1144   if (retval == -1) {
1145     return getpid();
1146   }
1147 }
1148 
1149 intx os::current_thread_id() {
1150 #ifdef __APPLE__
1151   return (intx)::pthread_mach_thread_np(::pthread_self());
1152 #else
1153   return (intx)::pthread_self();
1154 #endif
1155 }
1156 
1157 int os::current_process_id() {
1158 
1159   // Under the old bsd thread library, bsd gives each thread
1160   // its own process id. Because of this each thread will return
1161   // a different pid if this method were to return the result
1162   // of getpid(2). Bsd provides no api that returns the pid
1163   // of the launcher thread for the vm. This implementation
1164   // returns a unique pid, the pid of the launcher thread
1165   // that starts the vm 'process'.
1166 
1167   // Under the NPTL, getpid() returns the same pid as the
1168   // launcher thread rather than a unique pid per thread.
1169   // Use gettid() if you want the old pre NPTL behaviour.
1170 
1171   // if you are looking for the result of a call to getpid() that
1172   // returns a unique pid for the calling thread, then look at the
1173   // OSThread::thread_id() method in osThread_bsd.hpp file
1174 
1175   return (int)(_initial_pid ? _initial_pid : getpid());
1176 }
1177 
1178 // DLL functions
1179 
1180 #define JNI_LIB_PREFIX "lib"
1181 #ifdef __APPLE__
1182   #define JNI_LIB_SUFFIX ".dylib"
1183 #else
1184   #define JNI_LIB_SUFFIX ".so"
1185 #endif
1186 
1187 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1188 
1189 // This must be hard coded because it's the system's temporary
1190 // directory not the java application's temp directory, ala java.io.tmpdir.
1191 #ifdef __APPLE__
1192 // macosx has a secure per-user temporary directory
1193 char temp_path_storage[PATH_MAX];
1194 const char* os::get_temp_directory() {
1195   static char *temp_path = NULL;
1196   if (temp_path == NULL) {
1197     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1198     if (pathSize == 0 || pathSize > PATH_MAX) {
1199       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1200     }
1201     temp_path = temp_path_storage;
1202   }
1203   return temp_path;
1204 }
1205 #else // __APPLE__
1206 const char* os::get_temp_directory() { return "/tmp"; }
1207 #endif // __APPLE__
1208 
1209 static bool file_exists(const char* filename) {
1210   struct stat statbuf;
1211   if (filename == NULL || strlen(filename) == 0) {
1212     return false;
1213   }
1214   return os::stat(filename, &statbuf) == 0;
1215 }
1216 
1217 bool os::dll_build_name(char* buffer, size_t buflen,
1218                         const char* pname, const char* fname) {
1219   bool retval = false;
1220   // Copied from libhpi
1221   const size_t pnamelen = pname ? strlen(pname) : 0;
1222 
1223   // Return error on buffer overflow.
1224   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1225     return retval;
1226   }
1227 
1228   if (pnamelen == 0) {
1229     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1230     retval = true;
1231   } else if (strchr(pname, *os::path_separator()) != NULL) {
1232     int n;
1233     char** pelements = split_path(pname, &n);
1234     if (pelements == NULL) {
1235       return false;
1236     }
1237     for (int i = 0; i < n; i++) {
1238       // Really shouldn't be NULL, but check can't hurt
1239       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1240         continue; // skip the empty path values
1241       }
1242       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1243                pelements[i], fname);
1244       if (file_exists(buffer)) {
1245         retval = true;
1246         break;
1247       }
1248     }
1249     // release the storage
1250     for (int i = 0; i < n; i++) {
1251       if (pelements[i] != NULL) {
1252         FREE_C_HEAP_ARRAY(char, pelements[i]);
1253       }
1254     }
1255     if (pelements != NULL) {
1256       FREE_C_HEAP_ARRAY(char*, pelements);
1257     }
1258   } else {
1259     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1260     retval = true;
1261   }
1262   return retval;
1263 }
1264 
1265 // check if addr is inside libjvm.so
1266 bool os::address_is_in_vm(address addr) {
1267   static address libjvm_base_addr;
1268   Dl_info dlinfo;
1269 
1270   if (libjvm_base_addr == NULL) {
1271     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1272       libjvm_base_addr = (address)dlinfo.dli_fbase;
1273     }
1274     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1275   }
1276 
1277   if (dladdr((void *)addr, &dlinfo) != 0) {
1278     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1279   }
1280 
1281   return false;
1282 }
1283 
1284 
1285 #define MACH_MAXSYMLEN 256
1286 
1287 bool os::dll_address_to_function_name(address addr, char *buf,
1288                                       int buflen, int *offset,
1289                                       bool demangle) {
1290   // buf is not optional, but offset is optional
1291   assert(buf != NULL, "sanity check");
1292 
1293   Dl_info dlinfo;
1294   char localbuf[MACH_MAXSYMLEN];
1295 
1296   if (dladdr((void*)addr, &dlinfo) != 0) {
1297     // see if we have a matching symbol
1298     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1299       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1300         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1301       }
1302       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1303       return true;
1304     }
1305     // no matching symbol so try for just file info
1306     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1307       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1308                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1309         return true;
1310       }
1311     }
1312 
1313     // Handle non-dynamic manually:
1314     if (dlinfo.dli_fbase != NULL &&
1315         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1316                         dlinfo.dli_fbase)) {
1317       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1318         jio_snprintf(buf, buflen, "%s", localbuf);
1319       }
1320       return true;
1321     }
1322   }
1323   buf[0] = '\0';
1324   if (offset != NULL) *offset = -1;
1325   return false;
1326 }
1327 
1328 // ported from solaris version
1329 bool os::dll_address_to_library_name(address addr, char* buf,
1330                                      int buflen, int* offset) {
1331   // buf is not optional, but offset is optional
1332   assert(buf != NULL, "sanity check");
1333 
1334   Dl_info dlinfo;
1335 
1336   if (dladdr((void*)addr, &dlinfo) != 0) {
1337     if (dlinfo.dli_fname != NULL) {
1338       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1339     }
1340     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1341       *offset = addr - (address)dlinfo.dli_fbase;
1342     }
1343     return true;
1344   }
1345 
1346   buf[0] = '\0';
1347   if (offset) *offset = -1;
1348   return false;
1349 }
1350 
1351 // Loads .dll/.so and
1352 // in case of error it checks if .dll/.so was built for the
1353 // same architecture as Hotspot is running on
1354 
1355 #ifdef __APPLE__
1356 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1357 #ifdef STATIC_BUILD
1358   return os::get_default_process_handle();
1359 #else
1360   void * result= ::dlopen(filename, RTLD_LAZY);
1361   if (result != NULL) {
1362     // Successful loading
1363     return result;
1364   }
1365 
1366   // Read system error message into ebuf
1367   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1368   ebuf[ebuflen-1]='\0';
1369 
1370   return NULL;
1371 #endif // STATIC_BUILD
1372 }
1373 #else
1374 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1375 #ifdef STATIC_BUILD
1376   return os::get_default_process_handle();
1377 #else
1378   void * result= ::dlopen(filename, RTLD_LAZY);
1379   if (result != NULL) {
1380     // Successful loading
1381     return result;
1382   }
1383 
1384   Elf32_Ehdr elf_head;
1385 
1386   // Read system error message into ebuf
1387   // It may or may not be overwritten below
1388   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1389   ebuf[ebuflen-1]='\0';
1390   int diag_msg_max_length=ebuflen-strlen(ebuf);
1391   char* diag_msg_buf=ebuf+strlen(ebuf);
1392 
1393   if (diag_msg_max_length==0) {
1394     // No more space in ebuf for additional diagnostics message
1395     return NULL;
1396   }
1397 
1398 
1399   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1400 
1401   if (file_descriptor < 0) {
1402     // Can't open library, report dlerror() message
1403     return NULL;
1404   }
1405 
1406   bool failed_to_read_elf_head=
1407     (sizeof(elf_head)!=
1408      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1409 
1410   ::close(file_descriptor);
1411   if (failed_to_read_elf_head) {
1412     // file i/o error - report dlerror() msg
1413     return NULL;
1414   }
1415 
1416   typedef struct {
1417     Elf32_Half  code;         // Actual value as defined in elf.h
1418     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1419     char        elf_class;    // 32 or 64 bit
1420     char        endianess;    // MSB or LSB
1421     char*       name;         // String representation
1422   } arch_t;
1423 
1424   #ifndef EM_486
1425     #define EM_486          6               /* Intel 80486 */
1426   #endif
1427 
1428   #ifndef EM_MIPS_RS3_LE
1429     #define EM_MIPS_RS3_LE  10              /* MIPS */
1430   #endif
1431 
1432   #ifndef EM_PPC64
1433     #define EM_PPC64        21              /* PowerPC64 */
1434   #endif
1435 
1436   #ifndef EM_S390
1437     #define EM_S390         22              /* IBM System/390 */
1438   #endif
1439 
1440   #ifndef EM_IA_64
1441     #define EM_IA_64        50              /* HP/Intel IA-64 */
1442   #endif
1443 
1444   #ifndef EM_X86_64
1445     #define EM_X86_64       62              /* AMD x86-64 */
1446   #endif
1447 
1448   static const arch_t arch_array[]={
1449     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1450     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1451     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1452     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1453     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1454     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1455     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1456     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1457     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1458     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1459     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1460     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1461     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1462     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1463     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1464     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1465   };
1466 
1467   #if  (defined IA32)
1468   static  Elf32_Half running_arch_code=EM_386;
1469   #elif   (defined AMD64)
1470   static  Elf32_Half running_arch_code=EM_X86_64;
1471   #elif  (defined IA64)
1472   static  Elf32_Half running_arch_code=EM_IA_64;
1473   #elif  (defined __sparc) && (defined _LP64)
1474   static  Elf32_Half running_arch_code=EM_SPARCV9;
1475   #elif  (defined __sparc) && (!defined _LP64)
1476   static  Elf32_Half running_arch_code=EM_SPARC;
1477   #elif  (defined __powerpc64__)
1478   static  Elf32_Half running_arch_code=EM_PPC64;
1479   #elif  (defined __powerpc__)
1480   static  Elf32_Half running_arch_code=EM_PPC;
1481   #elif  (defined ARM)
1482   static  Elf32_Half running_arch_code=EM_ARM;
1483   #elif  (defined S390)
1484   static  Elf32_Half running_arch_code=EM_S390;
1485   #elif  (defined ALPHA)
1486   static  Elf32_Half running_arch_code=EM_ALPHA;
1487   #elif  (defined MIPSEL)
1488   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1489   #elif  (defined PARISC)
1490   static  Elf32_Half running_arch_code=EM_PARISC;
1491   #elif  (defined MIPS)
1492   static  Elf32_Half running_arch_code=EM_MIPS;
1493   #elif  (defined M68K)
1494   static  Elf32_Half running_arch_code=EM_68K;
1495   #else
1496     #error Method os::dll_load requires that one of following is defined:\
1497          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1498   #endif
1499 
1500   // Identify compatability class for VM's architecture and library's architecture
1501   // Obtain string descriptions for architectures
1502 
1503   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1504   int running_arch_index=-1;
1505 
1506   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1507     if (running_arch_code == arch_array[i].code) {
1508       running_arch_index    = i;
1509     }
1510     if (lib_arch.code == arch_array[i].code) {
1511       lib_arch.compat_class = arch_array[i].compat_class;
1512       lib_arch.name         = arch_array[i].name;
1513     }
1514   }
1515 
1516   assert(running_arch_index != -1,
1517          "Didn't find running architecture code (running_arch_code) in arch_array");
1518   if (running_arch_index == -1) {
1519     // Even though running architecture detection failed
1520     // we may still continue with reporting dlerror() message
1521     return NULL;
1522   }
1523 
1524   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1525     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1526     return NULL;
1527   }
1528 
1529 #ifndef S390
1530   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1531     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1532     return NULL;
1533   }
1534 #endif // !S390
1535 
1536   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1537     if (lib_arch.name!=NULL) {
1538       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1539                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1540                  lib_arch.name, arch_array[running_arch_index].name);
1541     } else {
1542       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1544                  lib_arch.code,
1545                  arch_array[running_arch_index].name);
1546     }
1547   }
1548 
1549   return NULL;
1550 #endif // STATIC_BUILD
1551 }
1552 #endif // !__APPLE__
1553 
1554 void* os::get_default_process_handle() {
1555 #ifdef __APPLE__
1556   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1557   // to avoid finding unexpected symbols on second (or later)
1558   // loads of a library.
1559   return (void*)::dlopen(NULL, RTLD_FIRST);
1560 #else
1561   return (void*)::dlopen(NULL, RTLD_LAZY);
1562 #endif
1563 }
1564 
1565 // XXX: Do we need a lock around this as per Linux?
1566 void* os::dll_lookup(void* handle, const char* name) {
1567   return dlsym(handle, name);
1568 }
1569 
1570 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1571   outputStream * out = (outputStream *) param;
1572   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1573   return 0;
1574 }
1575 
1576 void os::print_dll_info(outputStream *st) {
1577   st->print_cr("Dynamic libraries:");
1578   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1579     st->print_cr("Error: Cannot print dynamic libraries.");
1580   }
1581 }
1582 
1583 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1584 #ifdef RTLD_DI_LINKMAP
1585   Dl_info dli;
1586   void *handle;
1587   Link_map *map;
1588   Link_map *p;
1589 
1590   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1591       dli.dli_fname == NULL) {
1592     return 1;
1593   }
1594   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1595   if (handle == NULL) {
1596     return 1;
1597   }
1598   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599   if (map == NULL) {
1600     dlclose(handle);
1601     return 1;
1602   }
1603 
1604   while (map->l_prev != NULL)
1605     map = map->l_prev;
1606 
1607   while (map != NULL) {
1608     // Value for top_address is returned as 0 since we don't have any information about module size
1609     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1610       dlclose(handle);
1611       return 1;
1612     }
1613     map = map->l_next;
1614   }
1615 
1616   dlclose(handle);
1617 #elif defined(__APPLE__)
1618   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1619     // Value for top_address is returned as 0 since we don't have any information about module size
1620     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1621       return 1;
1622     }
1623   }
1624   return 0;
1625 #else
1626   return 1;
1627 #endif
1628 }
1629 
1630 void os::get_summary_os_info(char* buf, size_t buflen) {
1631   // These buffers are small because we want this to be brief
1632   // and not use a lot of stack while generating the hs_err file.
1633   char os[100];
1634   size_t size = sizeof(os);
1635   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1636   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1637 #ifdef __APPLE__
1638       strncpy(os, "Darwin", sizeof(os));
1639 #elif __OpenBSD__
1640       strncpy(os, "OpenBSD", sizeof(os));
1641 #else
1642       strncpy(os, "BSD", sizeof(os));
1643 #endif
1644   }
1645 
1646   char release[100];
1647   size = sizeof(release);
1648   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1649   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1650       // if error, leave blank
1651       strncpy(release, "", sizeof(release));
1652   }
1653   snprintf(buf, buflen, "%s %s", os, release);
1654 }
1655 
1656 void os::print_os_info_brief(outputStream* st) {
1657   os::Posix::print_uname_info(st);
1658 }
1659 
1660 void os::print_os_info(outputStream* st) {
1661   st->print("OS:");
1662 
1663   os::Posix::print_uname_info(st);
1664 
1665   os::Posix::print_rlimit_info(st);
1666 
1667   os::Posix::print_load_average(st);
1668 }
1669 
1670 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1671   // Nothing to do for now.
1672 }
1673 
1674 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1675   unsigned int mhz;
1676   size_t size = sizeof(mhz);
1677   int mib[] = { CTL_HW, HW_CPU_FREQ };
1678   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1679     mhz = 1;  // looks like an error but can be divided by
1680   } else {
1681     mhz /= 1000000;  // reported in millions
1682   }
1683 
1684   char model[100];
1685   size = sizeof(model);
1686   int mib_model[] = { CTL_HW, HW_MODEL };
1687   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1688     strncpy(model, cpu_arch, sizeof(model));
1689   }
1690 
1691   char machine[100];
1692   size = sizeof(machine);
1693   int mib_machine[] = { CTL_HW, HW_MACHINE };
1694   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1695       strncpy(machine, "", sizeof(machine));
1696   }
1697 
1698   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1699 }
1700 
1701 void os::print_memory_info(outputStream* st) {
1702 
1703   st->print("Memory:");
1704   st->print(" %dk page", os::vm_page_size()>>10);
1705 
1706   st->print(", physical " UINT64_FORMAT "k",
1707             os::physical_memory() >> 10);
1708   st->print("(" UINT64_FORMAT "k free)",
1709             os::available_memory() >> 10);
1710   st->cr();
1711 }
1712 
1713 void os::print_siginfo(outputStream* st, void* siginfo) {
1714   const siginfo_t* si = (const siginfo_t*)siginfo;
1715 
1716   os::Posix::print_siginfo_brief(st, si);
1717 
1718   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1719       UseSharedSpaces) {
1720     FileMapInfo* mapinfo = FileMapInfo::current_info();
1721     if (mapinfo->is_in_shared_space(si->si_addr)) {
1722       st->print("\n\nError accessing class data sharing archive."   \
1723                 " Mapped file inaccessible during execution, "      \
1724                 " possible disk/network problem.");
1725     }
1726   }
1727   st->cr();
1728 }
1729 
1730 
1731 static void print_signal_handler(outputStream* st, int sig,
1732                                  char* buf, size_t buflen);
1733 
1734 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1735   st->print_cr("Signal Handlers:");
1736   print_signal_handler(st, SIGSEGV, buf, buflen);
1737   print_signal_handler(st, SIGBUS , buf, buflen);
1738   print_signal_handler(st, SIGFPE , buf, buflen);
1739   print_signal_handler(st, SIGPIPE, buf, buflen);
1740   print_signal_handler(st, SIGXFSZ, buf, buflen);
1741   print_signal_handler(st, SIGILL , buf, buflen);
1742   print_signal_handler(st, SR_signum, buf, buflen);
1743   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1744   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1745   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1746   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1747 }
1748 
1749 static char saved_jvm_path[MAXPATHLEN] = {0};
1750 
1751 // Find the full path to the current module, libjvm
1752 void os::jvm_path(char *buf, jint buflen) {
1753   // Error checking.
1754   if (buflen < MAXPATHLEN) {
1755     assert(false, "must use a large-enough buffer");
1756     buf[0] = '\0';
1757     return;
1758   }
1759   // Lazy resolve the path to current module.
1760   if (saved_jvm_path[0] != 0) {
1761     strcpy(buf, saved_jvm_path);
1762     return;
1763   }
1764 
1765   char dli_fname[MAXPATHLEN];
1766   bool ret = dll_address_to_library_name(
1767                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1768                                          dli_fname, sizeof(dli_fname), NULL);
1769   assert(ret, "cannot locate libjvm");
1770   char *rp = NULL;
1771   if (ret && dli_fname[0] != '\0') {
1772     rp = realpath(dli_fname, buf);
1773   }
1774   if (rp == NULL) {
1775     return;
1776   }
1777 
1778   if (Arguments::sun_java_launcher_is_altjvm()) {
1779     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1780     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1781     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1782     // appears at the right place in the string, then assume we are
1783     // installed in a JDK and we're done. Otherwise, check for a
1784     // JAVA_HOME environment variable and construct a path to the JVM
1785     // being overridden.
1786 
1787     const char *p = buf + strlen(buf) - 1;
1788     for (int count = 0; p > buf && count < 5; ++count) {
1789       for (--p; p > buf && *p != '/'; --p)
1790         /* empty */ ;
1791     }
1792 
1793     if (strncmp(p, "/jre/lib/", 9) != 0) {
1794       // Look for JAVA_HOME in the environment.
1795       char* java_home_var = ::getenv("JAVA_HOME");
1796       if (java_home_var != NULL && java_home_var[0] != 0) {
1797         char* jrelib_p;
1798         int len;
1799 
1800         // Check the current module name "libjvm"
1801         p = strrchr(buf, '/');
1802         assert(strstr(p, "/libjvm") == p, "invalid library name");
1803 
1804         rp = realpath(java_home_var, buf);
1805         if (rp == NULL) {
1806           return;
1807         }
1808 
1809         // determine if this is a legacy image or modules image
1810         // modules image doesn't have "jre" subdirectory
1811         len = strlen(buf);
1812         assert(len < buflen, "Ran out of buffer space");
1813         jrelib_p = buf + len;
1814 
1815         // Add the appropriate library subdir
1816         snprintf(jrelib_p, buflen-len, "/jre/lib");
1817         if (0 != access(buf, F_OK)) {
1818           snprintf(jrelib_p, buflen-len, "/lib");
1819         }
1820 
1821         // Add the appropriate client or server subdir
1822         len = strlen(buf);
1823         jrelib_p = buf + len;
1824         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1825         if (0 != access(buf, F_OK)) {
1826           snprintf(jrelib_p, buflen-len, "%s", "");
1827         }
1828 
1829         // If the path exists within JAVA_HOME, add the JVM library name
1830         // to complete the path to JVM being overridden.  Otherwise fallback
1831         // to the path to the current library.
1832         if (0 == access(buf, F_OK)) {
1833           // Use current module name "libjvm"
1834           len = strlen(buf);
1835           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1836         } else {
1837           // Fall back to path of current library
1838           rp = realpath(dli_fname, buf);
1839           if (rp == NULL) {
1840             return;
1841           }
1842         }
1843       }
1844     }
1845   }
1846 
1847   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1848   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1849 }
1850 
1851 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1852   // no prefix required, not even "_"
1853 }
1854 
1855 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1856   // no suffix required
1857 }
1858 
1859 ////////////////////////////////////////////////////////////////////////////////
1860 // sun.misc.Signal support
1861 
1862 static volatile jint sigint_count = 0;
1863 
1864 static void UserHandler(int sig, void *siginfo, void *context) {
1865   // 4511530 - sem_post is serialized and handled by the manager thread. When
1866   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1867   // don't want to flood the manager thread with sem_post requests.
1868   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1869     return;
1870   }
1871 
1872   // Ctrl-C is pressed during error reporting, likely because the error
1873   // handler fails to abort. Let VM die immediately.
1874   if (sig == SIGINT && is_error_reported()) {
1875     os::die();
1876   }
1877 
1878   os::signal_notify(sig);
1879 }
1880 
1881 void* os::user_handler() {
1882   return CAST_FROM_FN_PTR(void*, UserHandler);
1883 }
1884 
1885 extern "C" {
1886   typedef void (*sa_handler_t)(int);
1887   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1888 }
1889 
1890 void* os::signal(int signal_number, void* handler) {
1891   struct sigaction sigAct, oldSigAct;
1892 
1893   sigfillset(&(sigAct.sa_mask));
1894   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1895   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1896 
1897   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1898     // -1 means registration failed
1899     return (void *)-1;
1900   }
1901 
1902   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1903 }
1904 
1905 void os::signal_raise(int signal_number) {
1906   ::raise(signal_number);
1907 }
1908 
1909 // The following code is moved from os.cpp for making this
1910 // code platform specific, which it is by its very nature.
1911 
1912 // Will be modified when max signal is changed to be dynamic
1913 int os::sigexitnum_pd() {
1914   return NSIG;
1915 }
1916 
1917 // a counter for each possible signal value
1918 static volatile jint pending_signals[NSIG+1] = { 0 };
1919 
1920 // Bsd(POSIX) specific hand shaking semaphore.
1921 #ifdef __APPLE__
1922 typedef semaphore_t os_semaphore_t;
1923 
1924   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1925   #define SEM_WAIT(sem)           semaphore_wait(sem)
1926   #define SEM_POST(sem)           semaphore_signal(sem)
1927   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1928 #else
1929 typedef sem_t os_semaphore_t;
1930 
1931   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1932   #define SEM_WAIT(sem)           sem_wait(&sem)
1933   #define SEM_POST(sem)           sem_post(&sem)
1934   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1935 #endif
1936 
1937 #ifdef __APPLE__
1938 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1939 
1940 static const char* sem_init_strerror(kern_return_t value) {
1941   switch (value) {
1942     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1943     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1944     default:                     return "Unknown";
1945   }
1946 }
1947 
1948 OSXSemaphore::OSXSemaphore(uint value) {
1949   kern_return_t ret = SEM_INIT(_semaphore, value);
1950 
1951   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1952 }
1953 
1954 OSXSemaphore::~OSXSemaphore() {
1955   SEM_DESTROY(_semaphore);
1956 }
1957 
1958 void OSXSemaphore::signal(uint count) {
1959   for (uint i = 0; i < count; i++) {
1960     kern_return_t ret = SEM_POST(_semaphore);
1961 
1962     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1963   }
1964 }
1965 
1966 void OSXSemaphore::wait() {
1967   kern_return_t ret;
1968   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1969     // Semaphore was interrupted. Retry.
1970   }
1971   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1972 }
1973 
1974 jlong OSXSemaphore::currenttime() {
1975   struct timeval tv;
1976   gettimeofday(&tv, NULL);
1977   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1978 }
1979 
1980 bool OSXSemaphore::trywait() {
1981   return timedwait(0, 0);
1982 }
1983 
1984 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1985   kern_return_t kr = KERN_ABORTED;
1986   mach_timespec_t waitspec;
1987   waitspec.tv_sec = sec;
1988   waitspec.tv_nsec = nsec;
1989 
1990   jlong starttime = currenttime();
1991 
1992   kr = semaphore_timedwait(_semaphore, waitspec);
1993   while (kr == KERN_ABORTED) {
1994     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1995 
1996     jlong current = currenttime();
1997     jlong passedtime = current - starttime;
1998 
1999     if (passedtime >= totalwait) {
2000       waitspec.tv_sec = 0;
2001       waitspec.tv_nsec = 0;
2002     } else {
2003       jlong waittime = totalwait - (current - starttime);
2004       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2005       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2006     }
2007 
2008     kr = semaphore_timedwait(_semaphore, waitspec);
2009   }
2010 
2011   return kr == KERN_SUCCESS;
2012 }
2013 
2014 #else
2015 // Use POSIX implementation of semaphores.
2016 
2017 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2018   struct timespec ts;
2019   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2020 
2021   return ts;
2022 }
2023 
2024 #endif // __APPLE__
2025 
2026 static os_semaphore_t sig_sem;
2027 
2028 #ifdef __APPLE__
2029 static OSXSemaphore sr_semaphore;
2030 #else
2031 static PosixSemaphore sr_semaphore;
2032 #endif
2033 
2034 void os::signal_init_pd() {
2035   // Initialize signal structures
2036   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2037 
2038   // Initialize signal semaphore
2039   ::SEM_INIT(sig_sem, 0);
2040 }
2041 
2042 void os::signal_notify(int sig) {
2043   Atomic::inc(&pending_signals[sig]);
2044   ::SEM_POST(sig_sem);
2045 }
2046 
2047 static int check_pending_signals(bool wait) {
2048   Atomic::store(0, &sigint_count);
2049   for (;;) {
2050     for (int i = 0; i < NSIG + 1; i++) {
2051       jint n = pending_signals[i];
2052       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2053         return i;
2054       }
2055     }
2056     if (!wait) {
2057       return -1;
2058     }
2059     JavaThread *thread = JavaThread::current();
2060     ThreadBlockInVM tbivm(thread);
2061 
2062     bool threadIsSuspended;
2063     do {
2064       thread->set_suspend_equivalent();
2065       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2066       ::SEM_WAIT(sig_sem);
2067 
2068       // were we externally suspended while we were waiting?
2069       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2070       if (threadIsSuspended) {
2071         // The semaphore has been incremented, but while we were waiting
2072         // another thread suspended us. We don't want to continue running
2073         // while suspended because that would surprise the thread that
2074         // suspended us.
2075         ::SEM_POST(sig_sem);
2076 
2077         thread->java_suspend_self();
2078       }
2079     } while (threadIsSuspended);
2080   }
2081 }
2082 
2083 int os::signal_lookup() {
2084   return check_pending_signals(false);
2085 }
2086 
2087 int os::signal_wait() {
2088   return check_pending_signals(true);
2089 }
2090 
2091 ////////////////////////////////////////////////////////////////////////////////
2092 // Virtual Memory
2093 
2094 int os::vm_page_size() {
2095   // Seems redundant as all get out
2096   assert(os::Bsd::page_size() != -1, "must call os::init");
2097   return os::Bsd::page_size();
2098 }
2099 
2100 // Solaris allocates memory by pages.
2101 int os::vm_allocation_granularity() {
2102   assert(os::Bsd::page_size() != -1, "must call os::init");
2103   return os::Bsd::page_size();
2104 }
2105 
2106 // Rationale behind this function:
2107 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2108 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2109 //  samples for JITted code. Here we create private executable mapping over the code cache
2110 //  and then we can use standard (well, almost, as mapping can change) way to provide
2111 //  info for the reporting script by storing timestamp and location of symbol
2112 void bsd_wrap_code(char* base, size_t size) {
2113   static volatile jint cnt = 0;
2114 
2115   if (!UseOprofile) {
2116     return;
2117   }
2118 
2119   char buf[PATH_MAX + 1];
2120   int num = Atomic::add(1, &cnt);
2121 
2122   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2123            os::get_temp_directory(), os::current_process_id(), num);
2124   unlink(buf);
2125 
2126   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2127 
2128   if (fd != -1) {
2129     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2130     if (rv != (off_t)-1) {
2131       if (::write(fd, "", 1) == 1) {
2132         mmap(base, size,
2133              PROT_READ|PROT_WRITE|PROT_EXEC,
2134              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2135       }
2136     }
2137     ::close(fd);
2138     unlink(buf);
2139   }
2140 }
2141 
2142 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2143                                     int err) {
2144   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2145           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2146           strerror(err), err);
2147 }
2148 
2149 // NOTE: Bsd kernel does not really reserve the pages for us.
2150 //       All it does is to check if there are enough free pages
2151 //       left at the time of mmap(). This could be a potential
2152 //       problem.
2153 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2154   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2155 #ifdef __OpenBSD__
2156   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2157   if (::mprotect(addr, size, prot) == 0) {
2158     return true;
2159   }
2160 #else
2161   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2162                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2163   if (res != (uintptr_t) MAP_FAILED) {
2164     return true;
2165   }
2166 #endif
2167 
2168   // Warn about any commit errors we see in non-product builds just
2169   // in case mmap() doesn't work as described on the man page.
2170   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2171 
2172   return false;
2173 }
2174 
2175 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2176                           bool exec) {
2177   // alignment_hint is ignored on this OS
2178   return pd_commit_memory(addr, size, exec);
2179 }
2180 
2181 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2182                                   const char* mesg) {
2183   assert(mesg != NULL, "mesg must be specified");
2184   if (!pd_commit_memory(addr, size, exec)) {
2185     // add extra info in product mode for vm_exit_out_of_memory():
2186     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2187     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2188   }
2189 }
2190 
2191 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2192                                   size_t alignment_hint, bool exec,
2193                                   const char* mesg) {
2194   // alignment_hint is ignored on this OS
2195   pd_commit_memory_or_exit(addr, size, exec, mesg);
2196 }
2197 
2198 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2199 }
2200 
2201 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2202   ::madvise(addr, bytes, MADV_DONTNEED);
2203 }
2204 
2205 void os::numa_make_global(char *addr, size_t bytes) {
2206 }
2207 
2208 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2209 }
2210 
2211 bool os::numa_topology_changed()   { return false; }
2212 
2213 size_t os::numa_get_groups_num() {
2214   return 1;
2215 }
2216 
2217 int os::numa_get_group_id() {
2218   return 0;
2219 }
2220 
2221 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2222   if (size > 0) {
2223     ids[0] = 0;
2224     return 1;
2225   }
2226   return 0;
2227 }
2228 
2229 bool os::get_page_info(char *start, page_info* info) {
2230   return false;
2231 }
2232 
2233 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2234   return end;
2235 }
2236 
2237 
2238 bool os::pd_uncommit_memory(char* addr, size_t size) {
2239 #ifdef __OpenBSD__
2240   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2241   return ::mprotect(addr, size, PROT_NONE) == 0;
2242 #else
2243   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2244                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2245   return res  != (uintptr_t) MAP_FAILED;
2246 #endif
2247 }
2248 
2249 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2250   return os::commit_memory(addr, size, !ExecMem);
2251 }
2252 
2253 // If this is a growable mapping, remove the guard pages entirely by
2254 // munmap()ping them.  If not, just call uncommit_memory().
2255 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2256   return os::uncommit_memory(addr, size);
2257 }
2258 
2259 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2260 // at 'requested_addr'. If there are existing memory mappings at the same
2261 // location, however, they will be overwritten. If 'fixed' is false,
2262 // 'requested_addr' is only treated as a hint, the return value may or
2263 // may not start from the requested address. Unlike Bsd mmap(), this
2264 // function returns NULL to indicate failure.
2265 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2266   char * addr;
2267   int flags;
2268 
2269   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2270   if (fixed) {
2271     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2272     flags |= MAP_FIXED;
2273   }
2274 
2275   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2276   // touch an uncommitted page. Otherwise, the read/write might
2277   // succeed if we have enough swap space to back the physical page.
2278   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2279                        flags, -1, 0);
2280 
2281   return addr == MAP_FAILED ? NULL : addr;
2282 }
2283 
2284 static int anon_munmap(char * addr, size_t size) {
2285   return ::munmap(addr, size) == 0;
2286 }
2287 
2288 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2289                             size_t alignment_hint) {
2290   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2291 }
2292 
2293 bool os::pd_release_memory(char* addr, size_t size) {
2294   return anon_munmap(addr, size);
2295 }
2296 
2297 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2298   // Bsd wants the mprotect address argument to be page aligned.
2299   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2300 
2301   // According to SUSv3, mprotect() should only be used with mappings
2302   // established by mmap(), and mmap() always maps whole pages. Unaligned
2303   // 'addr' likely indicates problem in the VM (e.g. trying to change
2304   // protection of malloc'ed or statically allocated memory). Check the
2305   // caller if you hit this assert.
2306   assert(addr == bottom, "sanity check");
2307 
2308   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2309   return ::mprotect(bottom, size, prot) == 0;
2310 }
2311 
2312 // Set protections specified
2313 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2314                         bool is_committed) {
2315   unsigned int p = 0;
2316   switch (prot) {
2317   case MEM_PROT_NONE: p = PROT_NONE; break;
2318   case MEM_PROT_READ: p = PROT_READ; break;
2319   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2320   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2321   default:
2322     ShouldNotReachHere();
2323   }
2324   // is_committed is unused.
2325   return bsd_mprotect(addr, bytes, p);
2326 }
2327 
2328 bool os::guard_memory(char* addr, size_t size) {
2329   return bsd_mprotect(addr, size, PROT_NONE);
2330 }
2331 
2332 bool os::unguard_memory(char* addr, size_t size) {
2333   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2334 }
2335 
2336 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2337   return false;
2338 }
2339 
2340 // Large page support
2341 
2342 static size_t _large_page_size = 0;
2343 
2344 void os::large_page_init() {
2345 }
2346 
2347 
2348 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2349   fatal("This code is not used or maintained.");
2350 
2351   // "exec" is passed in but not used.  Creating the shared image for
2352   // the code cache doesn't have an SHM_X executable permission to check.
2353   assert(UseLargePages && UseSHM, "only for SHM large pages");
2354 
2355   key_t key = IPC_PRIVATE;
2356   char *addr;
2357 
2358   bool warn_on_failure = UseLargePages &&
2359                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2360                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2361 
2362   // Create a large shared memory region to attach to based on size.
2363   // Currently, size is the total size of the heap
2364   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2365   if (shmid == -1) {
2366     // Possible reasons for shmget failure:
2367     // 1. shmmax is too small for Java heap.
2368     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2369     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2370     // 2. not enough large page memory.
2371     //    > check available large pages: cat /proc/meminfo
2372     //    > increase amount of large pages:
2373     //          echo new_value > /proc/sys/vm/nr_hugepages
2374     //      Note 1: different Bsd may use different name for this property,
2375     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2376     //      Note 2: it's possible there's enough physical memory available but
2377     //            they are so fragmented after a long run that they can't
2378     //            coalesce into large pages. Try to reserve large pages when
2379     //            the system is still "fresh".
2380     if (warn_on_failure) {
2381       warning("Failed to reserve shared memory (errno = %d).", errno);
2382     }
2383     return NULL;
2384   }
2385 
2386   // attach to the region
2387   addr = (char*)shmat(shmid, req_addr, 0);
2388   int err = errno;
2389 
2390   // Remove shmid. If shmat() is successful, the actual shared memory segment
2391   // will be deleted when it's detached by shmdt() or when the process
2392   // terminates. If shmat() is not successful this will remove the shared
2393   // segment immediately.
2394   shmctl(shmid, IPC_RMID, NULL);
2395 
2396   if ((intptr_t)addr == -1) {
2397     if (warn_on_failure) {
2398       warning("Failed to attach shared memory (errno = %d).", err);
2399     }
2400     return NULL;
2401   }
2402 
2403   // The memory is committed
2404   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2405 
2406   return addr;
2407 }
2408 
2409 bool os::release_memory_special(char* base, size_t bytes) {
2410   if (MemTracker::tracking_level() > NMT_minimal) {
2411     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2412     // detaching the SHM segment will also delete it, see reserve_memory_special()
2413     int rslt = shmdt(base);
2414     if (rslt == 0) {
2415       tkr.record((address)base, bytes);
2416       return true;
2417     } else {
2418       return false;
2419     }
2420   } else {
2421     return shmdt(base) == 0;
2422   }
2423 }
2424 
2425 size_t os::large_page_size() {
2426   return _large_page_size;
2427 }
2428 
2429 // HugeTLBFS allows application to commit large page memory on demand;
2430 // with SysV SHM the entire memory region must be allocated as shared
2431 // memory.
2432 bool os::can_commit_large_page_memory() {
2433   return UseHugeTLBFS;
2434 }
2435 
2436 bool os::can_execute_large_page_memory() {
2437   return UseHugeTLBFS;
2438 }
2439 
2440 // Reserve memory at an arbitrary address, only if that area is
2441 // available (and not reserved for something else).
2442 
2443 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2444   const int max_tries = 10;
2445   char* base[max_tries];
2446   size_t size[max_tries];
2447   const size_t gap = 0x000000;
2448 
2449   // Assert only that the size is a multiple of the page size, since
2450   // that's all that mmap requires, and since that's all we really know
2451   // about at this low abstraction level.  If we need higher alignment,
2452   // we can either pass an alignment to this method or verify alignment
2453   // in one of the methods further up the call chain.  See bug 5044738.
2454   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2455 
2456   // Repeatedly allocate blocks until the block is allocated at the
2457   // right spot.
2458 
2459   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2460   // if kernel honors the hint then we can return immediately.
2461   char * addr = anon_mmap(requested_addr, bytes, false);
2462   if (addr == requested_addr) {
2463     return requested_addr;
2464   }
2465 
2466   if (addr != NULL) {
2467     // mmap() is successful but it fails to reserve at the requested address
2468     anon_munmap(addr, bytes);
2469   }
2470 
2471   int i;
2472   for (i = 0; i < max_tries; ++i) {
2473     base[i] = reserve_memory(bytes);
2474 
2475     if (base[i] != NULL) {
2476       // Is this the block we wanted?
2477       if (base[i] == requested_addr) {
2478         size[i] = bytes;
2479         break;
2480       }
2481 
2482       // Does this overlap the block we wanted? Give back the overlapped
2483       // parts and try again.
2484 
2485       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2486       if (top_overlap >= 0 && top_overlap < bytes) {
2487         unmap_memory(base[i], top_overlap);
2488         base[i] += top_overlap;
2489         size[i] = bytes - top_overlap;
2490       } else {
2491         size_t bottom_overlap = base[i] + bytes - requested_addr;
2492         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2493           unmap_memory(requested_addr, bottom_overlap);
2494           size[i] = bytes - bottom_overlap;
2495         } else {
2496           size[i] = bytes;
2497         }
2498       }
2499     }
2500   }
2501 
2502   // Give back the unused reserved pieces.
2503 
2504   for (int j = 0; j < i; ++j) {
2505     if (base[j] != NULL) {
2506       unmap_memory(base[j], size[j]);
2507     }
2508   }
2509 
2510   if (i < max_tries) {
2511     return requested_addr;
2512   } else {
2513     return NULL;
2514   }
2515 }
2516 
2517 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2518   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2519 }
2520 
2521 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2522   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2523 }
2524 
2525 void os::naked_short_sleep(jlong ms) {
2526   struct timespec req;
2527 
2528   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2529   req.tv_sec = 0;
2530   if (ms > 0) {
2531     req.tv_nsec = (ms % 1000) * 1000000;
2532   } else {
2533     req.tv_nsec = 1;
2534   }
2535 
2536   nanosleep(&req, NULL);
2537 
2538   return;
2539 }
2540 
2541 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2542 void os::infinite_sleep() {
2543   while (true) {    // sleep forever ...
2544     ::sleep(100);   // ... 100 seconds at a time
2545   }
2546 }
2547 
2548 // Used to convert frequent JVM_Yield() to nops
2549 bool os::dont_yield() {
2550   return DontYieldALot;
2551 }
2552 
2553 void os::naked_yield() {
2554   sched_yield();
2555 }
2556 
2557 ////////////////////////////////////////////////////////////////////////////////
2558 // thread priority support
2559 
2560 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2561 // only supports dynamic priority, static priority must be zero. For real-time
2562 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2563 // However, for large multi-threaded applications, SCHED_RR is not only slower
2564 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2565 // of 5 runs - Sep 2005).
2566 //
2567 // The following code actually changes the niceness of kernel-thread/LWP. It
2568 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2569 // not the entire user process, and user level threads are 1:1 mapped to kernel
2570 // threads. It has always been the case, but could change in the future. For
2571 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2572 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2573 
2574 #if !defined(__APPLE__)
2575 int os::java_to_os_priority[CriticalPriority + 1] = {
2576   19,              // 0 Entry should never be used
2577 
2578    0,              // 1 MinPriority
2579    3,              // 2
2580    6,              // 3
2581 
2582   10,              // 4
2583   15,              // 5 NormPriority
2584   18,              // 6
2585 
2586   21,              // 7
2587   25,              // 8
2588   28,              // 9 NearMaxPriority
2589 
2590   31,              // 10 MaxPriority
2591 
2592   31               // 11 CriticalPriority
2593 };
2594 #else
2595 // Using Mach high-level priority assignments
2596 int os::java_to_os_priority[CriticalPriority + 1] = {
2597    0,              // 0 Entry should never be used (MINPRI_USER)
2598 
2599   27,              // 1 MinPriority
2600   28,              // 2
2601   29,              // 3
2602 
2603   30,              // 4
2604   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2605   32,              // 6
2606 
2607   33,              // 7
2608   34,              // 8
2609   35,              // 9 NearMaxPriority
2610 
2611   36,              // 10 MaxPriority
2612 
2613   36               // 11 CriticalPriority
2614 };
2615 #endif
2616 
2617 static int prio_init() {
2618   if (ThreadPriorityPolicy == 1) {
2619     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2620     // if effective uid is not root. Perhaps, a more elegant way of doing
2621     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2622     if (geteuid() != 0) {
2623       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2624         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2625       }
2626       ThreadPriorityPolicy = 0;
2627     }
2628   }
2629   if (UseCriticalJavaThreadPriority) {
2630     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2631   }
2632   return 0;
2633 }
2634 
2635 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2636   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2637 
2638 #ifdef __OpenBSD__
2639   // OpenBSD pthread_setprio starves low priority threads
2640   return OS_OK;
2641 #elif defined(__FreeBSD__)
2642   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2643 #elif defined(__APPLE__) || defined(__NetBSD__)
2644   struct sched_param sp;
2645   int policy;
2646   pthread_t self = pthread_self();
2647 
2648   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2649     return OS_ERR;
2650   }
2651 
2652   sp.sched_priority = newpri;
2653   if (pthread_setschedparam(self, policy, &sp) != 0) {
2654     return OS_ERR;
2655   }
2656 
2657   return OS_OK;
2658 #else
2659   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2660   return (ret == 0) ? OS_OK : OS_ERR;
2661 #endif
2662 }
2663 
2664 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2665   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2666     *priority_ptr = java_to_os_priority[NormPriority];
2667     return OS_OK;
2668   }
2669 
2670   errno = 0;
2671 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2672   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2673 #elif defined(__APPLE__) || defined(__NetBSD__)
2674   int policy;
2675   struct sched_param sp;
2676 
2677   pthread_getschedparam(pthread_self(), &policy, &sp);
2678   *priority_ptr = sp.sched_priority;
2679 #else
2680   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2681 #endif
2682   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2683 }
2684 
2685 // Hint to the underlying OS that a task switch would not be good.
2686 // Void return because it's a hint and can fail.
2687 void os::hint_no_preempt() {}
2688 
2689 ////////////////////////////////////////////////////////////////////////////////
2690 // suspend/resume support
2691 
2692 //  the low-level signal-based suspend/resume support is a remnant from the
2693 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2694 //  within hotspot. Now there is a single use-case for this:
2695 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2696 //      that runs in the watcher thread.
2697 //  The remaining code is greatly simplified from the more general suspension
2698 //  code that used to be used.
2699 //
2700 //  The protocol is quite simple:
2701 //  - suspend:
2702 //      - sends a signal to the target thread
2703 //      - polls the suspend state of the osthread using a yield loop
2704 //      - target thread signal handler (SR_handler) sets suspend state
2705 //        and blocks in sigsuspend until continued
2706 //  - resume:
2707 //      - sets target osthread state to continue
2708 //      - sends signal to end the sigsuspend loop in the SR_handler
2709 //
2710 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2711 
2712 static void resume_clear_context(OSThread *osthread) {
2713   osthread->set_ucontext(NULL);
2714   osthread->set_siginfo(NULL);
2715 }
2716 
2717 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2718   osthread->set_ucontext(context);
2719   osthread->set_siginfo(siginfo);
2720 }
2721 
2722 // Handler function invoked when a thread's execution is suspended or
2723 // resumed. We have to be careful that only async-safe functions are
2724 // called here (Note: most pthread functions are not async safe and
2725 // should be avoided.)
2726 //
2727 // Note: sigwait() is a more natural fit than sigsuspend() from an
2728 // interface point of view, but sigwait() prevents the signal hander
2729 // from being run. libpthread would get very confused by not having
2730 // its signal handlers run and prevents sigwait()'s use with the
2731 // mutex granting granting signal.
2732 //
2733 // Currently only ever called on the VMThread or JavaThread
2734 //
2735 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2736   // Save and restore errno to avoid confusing native code with EINTR
2737   // after sigsuspend.
2738   int old_errno = errno;
2739 
2740   Thread* thread = Thread::current();
2741   OSThread* osthread = thread->osthread();
2742   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2743 
2744   os::SuspendResume::State current = osthread->sr.state();
2745   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2746     suspend_save_context(osthread, siginfo, context);
2747 
2748     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2749     os::SuspendResume::State state = osthread->sr.suspended();
2750     if (state == os::SuspendResume::SR_SUSPENDED) {
2751       sigset_t suspend_set;  // signals for sigsuspend()
2752 
2753       // get current set of blocked signals and unblock resume signal
2754       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2755       sigdelset(&suspend_set, SR_signum);
2756 
2757       sr_semaphore.signal();
2758       // wait here until we are resumed
2759       while (1) {
2760         sigsuspend(&suspend_set);
2761 
2762         os::SuspendResume::State result = osthread->sr.running();
2763         if (result == os::SuspendResume::SR_RUNNING) {
2764           sr_semaphore.signal();
2765           break;
2766         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2767           ShouldNotReachHere();
2768         }
2769       }
2770 
2771     } else if (state == os::SuspendResume::SR_RUNNING) {
2772       // request was cancelled, continue
2773     } else {
2774       ShouldNotReachHere();
2775     }
2776 
2777     resume_clear_context(osthread);
2778   } else if (current == os::SuspendResume::SR_RUNNING) {
2779     // request was cancelled, continue
2780   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2781     // ignore
2782   } else {
2783     // ignore
2784   }
2785 
2786   errno = old_errno;
2787 }
2788 
2789 
2790 static int SR_initialize() {
2791   struct sigaction act;
2792   char *s;
2793   // Get signal number to use for suspend/resume
2794   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2795     int sig = ::strtol(s, 0, 10);
2796     if (sig > 0 || sig < NSIG) {
2797       SR_signum = sig;
2798     }
2799   }
2800 
2801   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2802          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2803 
2804   sigemptyset(&SR_sigset);
2805   sigaddset(&SR_sigset, SR_signum);
2806 
2807   // Set up signal handler for suspend/resume
2808   act.sa_flags = SA_RESTART|SA_SIGINFO;
2809   act.sa_handler = (void (*)(int)) SR_handler;
2810 
2811   // SR_signum is blocked by default.
2812   // 4528190 - We also need to block pthread restart signal (32 on all
2813   // supported Bsd platforms). Note that BsdThreads need to block
2814   // this signal for all threads to work properly. So we don't have
2815   // to use hard-coded signal number when setting up the mask.
2816   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2817 
2818   if (sigaction(SR_signum, &act, 0) == -1) {
2819     return -1;
2820   }
2821 
2822   // Save signal flag
2823   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2824   return 0;
2825 }
2826 
2827 static int sr_notify(OSThread* osthread) {
2828   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2829   assert_status(status == 0, status, "pthread_kill");
2830   return status;
2831 }
2832 
2833 // "Randomly" selected value for how long we want to spin
2834 // before bailing out on suspending a thread, also how often
2835 // we send a signal to a thread we want to resume
2836 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2837 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2838 
2839 // returns true on success and false on error - really an error is fatal
2840 // but this seems the normal response to library errors
2841 static bool do_suspend(OSThread* osthread) {
2842   assert(osthread->sr.is_running(), "thread should be running");
2843   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2844 
2845   // mark as suspended and send signal
2846   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2847     // failed to switch, state wasn't running?
2848     ShouldNotReachHere();
2849     return false;
2850   }
2851 
2852   if (sr_notify(osthread) != 0) {
2853     ShouldNotReachHere();
2854   }
2855 
2856   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2857   while (true) {
2858     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2859       break;
2860     } else {
2861       // timeout
2862       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2863       if (cancelled == os::SuspendResume::SR_RUNNING) {
2864         return false;
2865       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2866         // make sure that we consume the signal on the semaphore as well
2867         sr_semaphore.wait();
2868         break;
2869       } else {
2870         ShouldNotReachHere();
2871         return false;
2872       }
2873     }
2874   }
2875 
2876   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2877   return true;
2878 }
2879 
2880 static void do_resume(OSThread* osthread) {
2881   assert(osthread->sr.is_suspended(), "thread should be suspended");
2882   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2883 
2884   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2885     // failed to switch to WAKEUP_REQUEST
2886     ShouldNotReachHere();
2887     return;
2888   }
2889 
2890   while (true) {
2891     if (sr_notify(osthread) == 0) {
2892       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2893         if (osthread->sr.is_running()) {
2894           return;
2895         }
2896       }
2897     } else {
2898       ShouldNotReachHere();
2899     }
2900   }
2901 
2902   guarantee(osthread->sr.is_running(), "Must be running!");
2903 }
2904 
2905 ///////////////////////////////////////////////////////////////////////////////////
2906 // signal handling (except suspend/resume)
2907 
2908 // This routine may be used by user applications as a "hook" to catch signals.
2909 // The user-defined signal handler must pass unrecognized signals to this
2910 // routine, and if it returns true (non-zero), then the signal handler must
2911 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2912 // routine will never retun false (zero), but instead will execute a VM panic
2913 // routine kill the process.
2914 //
2915 // If this routine returns false, it is OK to call it again.  This allows
2916 // the user-defined signal handler to perform checks either before or after
2917 // the VM performs its own checks.  Naturally, the user code would be making
2918 // a serious error if it tried to handle an exception (such as a null check
2919 // or breakpoint) that the VM was generating for its own correct operation.
2920 //
2921 // This routine may recognize any of the following kinds of signals:
2922 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2923 // It should be consulted by handlers for any of those signals.
2924 //
2925 // The caller of this routine must pass in the three arguments supplied
2926 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2927 // field of the structure passed to sigaction().  This routine assumes that
2928 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2929 //
2930 // Note that the VM will print warnings if it detects conflicting signal
2931 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2932 //
2933 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2934                                                void* ucontext,
2935                                                int abort_if_unrecognized);
2936 
2937 void signalHandler(int sig, siginfo_t* info, void* uc) {
2938   assert(info != NULL && uc != NULL, "it must be old kernel");
2939   int orig_errno = errno;  // Preserve errno value over signal handler.
2940   JVM_handle_bsd_signal(sig, info, uc, true);
2941   errno = orig_errno;
2942 }
2943 
2944 
2945 // This boolean allows users to forward their own non-matching signals
2946 // to JVM_handle_bsd_signal, harmlessly.
2947 bool os::Bsd::signal_handlers_are_installed = false;
2948 
2949 // For signal-chaining
2950 struct sigaction os::Bsd::sigact[MAXSIGNUM];
2951 unsigned int os::Bsd::sigs = 0;
2952 bool os::Bsd::libjsig_is_loaded = false;
2953 typedef struct sigaction *(*get_signal_t)(int);
2954 get_signal_t os::Bsd::get_signal_action = NULL;
2955 
2956 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2957   struct sigaction *actp = NULL;
2958 
2959   if (libjsig_is_loaded) {
2960     // Retrieve the old signal handler from libjsig
2961     actp = (*get_signal_action)(sig);
2962   }
2963   if (actp == NULL) {
2964     // Retrieve the preinstalled signal handler from jvm
2965     actp = get_preinstalled_handler(sig);
2966   }
2967 
2968   return actp;
2969 }
2970 
2971 static bool call_chained_handler(struct sigaction *actp, int sig,
2972                                  siginfo_t *siginfo, void *context) {
2973   // Call the old signal handler
2974   if (actp->sa_handler == SIG_DFL) {
2975     // It's more reasonable to let jvm treat it as an unexpected exception
2976     // instead of taking the default action.
2977     return false;
2978   } else if (actp->sa_handler != SIG_IGN) {
2979     if ((actp->sa_flags & SA_NODEFER) == 0) {
2980       // automaticlly block the signal
2981       sigaddset(&(actp->sa_mask), sig);
2982     }
2983 
2984     sa_handler_t hand;
2985     sa_sigaction_t sa;
2986     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2987     // retrieve the chained handler
2988     if (siginfo_flag_set) {
2989       sa = actp->sa_sigaction;
2990     } else {
2991       hand = actp->sa_handler;
2992     }
2993 
2994     if ((actp->sa_flags & SA_RESETHAND) != 0) {
2995       actp->sa_handler = SIG_DFL;
2996     }
2997 
2998     // try to honor the signal mask
2999     sigset_t oset;
3000     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3001 
3002     // call into the chained handler
3003     if (siginfo_flag_set) {
3004       (*sa)(sig, siginfo, context);
3005     } else {
3006       (*hand)(sig);
3007     }
3008 
3009     // restore the signal mask
3010     pthread_sigmask(SIG_SETMASK, &oset, 0);
3011   }
3012   // Tell jvm's signal handler the signal is taken care of.
3013   return true;
3014 }
3015 
3016 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3017   bool chained = false;
3018   // signal-chaining
3019   if (UseSignalChaining) {
3020     struct sigaction *actp = get_chained_signal_action(sig);
3021     if (actp != NULL) {
3022       chained = call_chained_handler(actp, sig, siginfo, context);
3023     }
3024   }
3025   return chained;
3026 }
3027 
3028 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3029   if ((((unsigned int)1 << sig) & sigs) != 0) {
3030     return &sigact[sig];
3031   }
3032   return NULL;
3033 }
3034 
3035 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3036   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3037   sigact[sig] = oldAct;
3038   sigs |= (unsigned int)1 << sig;
3039 }
3040 
3041 // for diagnostic
3042 int os::Bsd::sigflags[MAXSIGNUM];
3043 
3044 int os::Bsd::get_our_sigflags(int sig) {
3045   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3046   return sigflags[sig];
3047 }
3048 
3049 void os::Bsd::set_our_sigflags(int sig, int flags) {
3050   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3051   sigflags[sig] = flags;
3052 }
3053 
3054 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3055   // Check for overwrite.
3056   struct sigaction oldAct;
3057   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3058 
3059   void* oldhand = oldAct.sa_sigaction
3060                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3061                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3062   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3063       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3064       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3065     if (AllowUserSignalHandlers || !set_installed) {
3066       // Do not overwrite; user takes responsibility to forward to us.
3067       return;
3068     } else if (UseSignalChaining) {
3069       // save the old handler in jvm
3070       save_preinstalled_handler(sig, oldAct);
3071       // libjsig also interposes the sigaction() call below and saves the
3072       // old sigaction on it own.
3073     } else {
3074       fatal("Encountered unexpected pre-existing sigaction handler "
3075             "%#lx for signal %d.", (long)oldhand, sig);
3076     }
3077   }
3078 
3079   struct sigaction sigAct;
3080   sigfillset(&(sigAct.sa_mask));
3081   sigAct.sa_handler = SIG_DFL;
3082   if (!set_installed) {
3083     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3084   } else {
3085     sigAct.sa_sigaction = signalHandler;
3086     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3087   }
3088 #ifdef __APPLE__
3089   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3090   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3091   // if the signal handler declares it will handle it on alternate stack.
3092   // Notice we only declare we will handle it on alt stack, but we are not
3093   // actually going to use real alt stack - this is just a workaround.
3094   // Please see ux_exception.c, method catch_mach_exception_raise for details
3095   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3096   if (sig == SIGSEGV) {
3097     sigAct.sa_flags |= SA_ONSTACK;
3098   }
3099 #endif
3100 
3101   // Save flags, which are set by ours
3102   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3103   sigflags[sig] = sigAct.sa_flags;
3104 
3105   int ret = sigaction(sig, &sigAct, &oldAct);
3106   assert(ret == 0, "check");
3107 
3108   void* oldhand2  = oldAct.sa_sigaction
3109                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3110                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3111   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3112 }
3113 
3114 // install signal handlers for signals that HotSpot needs to
3115 // handle in order to support Java-level exception handling.
3116 
3117 void os::Bsd::install_signal_handlers() {
3118   if (!signal_handlers_are_installed) {
3119     signal_handlers_are_installed = true;
3120 
3121     // signal-chaining
3122     typedef void (*signal_setting_t)();
3123     signal_setting_t begin_signal_setting = NULL;
3124     signal_setting_t end_signal_setting = NULL;
3125     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3126                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3127     if (begin_signal_setting != NULL) {
3128       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3129                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3130       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3131                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3132       libjsig_is_loaded = true;
3133       assert(UseSignalChaining, "should enable signal-chaining");
3134     }
3135     if (libjsig_is_loaded) {
3136       // Tell libjsig jvm is setting signal handlers
3137       (*begin_signal_setting)();
3138     }
3139 
3140     set_signal_handler(SIGSEGV, true);
3141     set_signal_handler(SIGPIPE, true);
3142     set_signal_handler(SIGBUS, true);
3143     set_signal_handler(SIGILL, true);
3144     set_signal_handler(SIGFPE, true);
3145     set_signal_handler(SIGXFSZ, true);
3146 
3147 #if defined(__APPLE__)
3148     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3149     // signals caught and handled by the JVM. To work around this, we reset the mach task
3150     // signal handler that's placed on our process by CrashReporter. This disables
3151     // CrashReporter-based reporting.
3152     //
3153     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3154     // on caught fatal signals.
3155     //
3156     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3157     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3158     // exception handling, while leaving the standard BSD signal handlers functional.
3159     kern_return_t kr;
3160     kr = task_set_exception_ports(mach_task_self(),
3161                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3162                                   MACH_PORT_NULL,
3163                                   EXCEPTION_STATE_IDENTITY,
3164                                   MACHINE_THREAD_STATE);
3165 
3166     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3167 #endif
3168 
3169     if (libjsig_is_loaded) {
3170       // Tell libjsig jvm finishes setting signal handlers
3171       (*end_signal_setting)();
3172     }
3173 
3174     // We don't activate signal checker if libjsig is in place, we trust ourselves
3175     // and if UserSignalHandler is installed all bets are off
3176     if (CheckJNICalls) {
3177       if (libjsig_is_loaded) {
3178         if (PrintJNIResolving) {
3179           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3180         }
3181         check_signals = false;
3182       }
3183       if (AllowUserSignalHandlers) {
3184         if (PrintJNIResolving) {
3185           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3186         }
3187         check_signals = false;
3188       }
3189     }
3190   }
3191 }
3192 
3193 
3194 /////
3195 // glibc on Bsd platform uses non-documented flag
3196 // to indicate, that some special sort of signal
3197 // trampoline is used.
3198 // We will never set this flag, and we should
3199 // ignore this flag in our diagnostic
3200 #ifdef SIGNIFICANT_SIGNAL_MASK
3201   #undef SIGNIFICANT_SIGNAL_MASK
3202 #endif
3203 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3204 
3205 static const char* get_signal_handler_name(address handler,
3206                                            char* buf, int buflen) {
3207   int offset;
3208   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3209   if (found) {
3210     // skip directory names
3211     const char *p1, *p2;
3212     p1 = buf;
3213     size_t len = strlen(os::file_separator());
3214     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3215     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3216   } else {
3217     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3218   }
3219   return buf;
3220 }
3221 
3222 static void print_signal_handler(outputStream* st, int sig,
3223                                  char* buf, size_t buflen) {
3224   struct sigaction sa;
3225 
3226   sigaction(sig, NULL, &sa);
3227 
3228   // See comment for SIGNIFICANT_SIGNAL_MASK define
3229   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3230 
3231   st->print("%s: ", os::exception_name(sig, buf, buflen));
3232 
3233   address handler = (sa.sa_flags & SA_SIGINFO)
3234     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3235     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3236 
3237   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3238     st->print("SIG_DFL");
3239   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3240     st->print("SIG_IGN");
3241   } else {
3242     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3243   }
3244 
3245   st->print(", sa_mask[0]=");
3246   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3247 
3248   address rh = VMError::get_resetted_sighandler(sig);
3249   // May be, handler was resetted by VMError?
3250   if (rh != NULL) {
3251     handler = rh;
3252     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3253   }
3254 
3255   st->print(", sa_flags=");
3256   os::Posix::print_sa_flags(st, sa.sa_flags);
3257 
3258   // Check: is it our handler?
3259   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3260       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3261     // It is our signal handler
3262     // check for flags, reset system-used one!
3263     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3264       st->print(
3265                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3266                 os::Bsd::get_our_sigflags(sig));
3267     }
3268   }
3269   st->cr();
3270 }
3271 
3272 
3273 #define DO_SIGNAL_CHECK(sig)                      \
3274   do {                                            \
3275     if (!sigismember(&check_signal_done, sig)) {  \
3276       os::Bsd::check_signal_handler(sig);         \
3277     }                                             \
3278   } while (0)
3279 
3280 // This method is a periodic task to check for misbehaving JNI applications
3281 // under CheckJNI, we can add any periodic checks here
3282 
3283 void os::run_periodic_checks() {
3284 
3285   if (check_signals == false) return;
3286 
3287   // SEGV and BUS if overridden could potentially prevent
3288   // generation of hs*.log in the event of a crash, debugging
3289   // such a case can be very challenging, so we absolutely
3290   // check the following for a good measure:
3291   DO_SIGNAL_CHECK(SIGSEGV);
3292   DO_SIGNAL_CHECK(SIGILL);
3293   DO_SIGNAL_CHECK(SIGFPE);
3294   DO_SIGNAL_CHECK(SIGBUS);
3295   DO_SIGNAL_CHECK(SIGPIPE);
3296   DO_SIGNAL_CHECK(SIGXFSZ);
3297 
3298 
3299   // ReduceSignalUsage allows the user to override these handlers
3300   // see comments at the very top and jvm_solaris.h
3301   if (!ReduceSignalUsage) {
3302     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3303     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3304     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3305     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3306   }
3307 
3308   DO_SIGNAL_CHECK(SR_signum);
3309 }
3310 
3311 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3312 
3313 static os_sigaction_t os_sigaction = NULL;
3314 
3315 void os::Bsd::check_signal_handler(int sig) {
3316   char buf[O_BUFLEN];
3317   address jvmHandler = NULL;
3318 
3319 
3320   struct sigaction act;
3321   if (os_sigaction == NULL) {
3322     // only trust the default sigaction, in case it has been interposed
3323     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3324     if (os_sigaction == NULL) return;
3325   }
3326 
3327   os_sigaction(sig, (struct sigaction*)NULL, &act);
3328 
3329 
3330   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3331 
3332   address thisHandler = (act.sa_flags & SA_SIGINFO)
3333     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3334     : CAST_FROM_FN_PTR(address, act.sa_handler);
3335 
3336 
3337   switch (sig) {
3338   case SIGSEGV:
3339   case SIGBUS:
3340   case SIGFPE:
3341   case SIGPIPE:
3342   case SIGILL:
3343   case SIGXFSZ:
3344     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3345     break;
3346 
3347   case SHUTDOWN1_SIGNAL:
3348   case SHUTDOWN2_SIGNAL:
3349   case SHUTDOWN3_SIGNAL:
3350   case BREAK_SIGNAL:
3351     jvmHandler = (address)user_handler();
3352     break;
3353 
3354   default:
3355     if (sig == SR_signum) {
3356       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3357     } else {
3358       return;
3359     }
3360     break;
3361   }
3362 
3363   if (thisHandler != jvmHandler) {
3364     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3365     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3366     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3367     // No need to check this sig any longer
3368     sigaddset(&check_signal_done, sig);
3369     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3370     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3371       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3372                     exception_name(sig, buf, O_BUFLEN));
3373     }
3374   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3375     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3376     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3377     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3378     // No need to check this sig any longer
3379     sigaddset(&check_signal_done, sig);
3380   }
3381 
3382   // Dump all the signal
3383   if (sigismember(&check_signal_done, sig)) {
3384     print_signal_handlers(tty, buf, O_BUFLEN);
3385   }
3386 }
3387 
3388 extern void report_error(char* file_name, int line_no, char* title,
3389                          char* format, ...);
3390 
3391 extern bool signal_name(int signo, char* buf, size_t len);
3392 
3393 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3394   if (0 < exception_code && exception_code <= SIGRTMAX) {
3395     // signal
3396     if (!signal_name(exception_code, buf, size)) {
3397       jio_snprintf(buf, size, "SIG%d", exception_code);
3398     }
3399     return buf;
3400   } else {
3401     return NULL;
3402   }
3403 }
3404 
3405 // this is called _before_ the most of global arguments have been parsed
3406 void os::init(void) {
3407   char dummy;   // used to get a guess on initial stack address
3408 //  first_hrtime = gethrtime();
3409 
3410   // With BsdThreads the JavaMain thread pid (primordial thread)
3411   // is different than the pid of the java launcher thread.
3412   // So, on Bsd, the launcher thread pid is passed to the VM
3413   // via the sun.java.launcher.pid property.
3414   // Use this property instead of getpid() if it was correctly passed.
3415   // See bug 6351349.
3416   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3417 
3418   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3419 
3420   clock_tics_per_sec = CLK_TCK;
3421 
3422   init_random(1234567);
3423 
3424   ThreadCritical::initialize();
3425 
3426   Bsd::set_page_size(getpagesize());
3427   if (Bsd::page_size() == -1) {
3428     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3429   }
3430   init_page_sizes((size_t) Bsd::page_size());
3431 
3432   Bsd::initialize_system_info();
3433 
3434   // main_thread points to the aboriginal thread
3435   Bsd::_main_thread = pthread_self();
3436 
3437   Bsd::clock_init();
3438   initial_time_count = javaTimeNanos();
3439 
3440 #ifdef __APPLE__
3441   // XXXDARWIN
3442   // Work around the unaligned VM callbacks in hotspot's
3443   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3444   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3445   // alignment when doing symbol lookup. To work around this, we force early
3446   // binding of all symbols now, thus binding when alignment is known-good.
3447   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3448 #endif
3449 }
3450 
3451 // To install functions for atexit system call
3452 extern "C" {
3453   static void perfMemory_exit_helper() {
3454     perfMemory_exit();
3455   }
3456 }
3457 
3458 // this is called _after_ the global arguments have been parsed
3459 jint os::init_2(void) {
3460   // Allocate a single page and mark it as readable for safepoint polling
3461   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3462   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3463 
3464   os::set_polling_page(polling_page);
3465 
3466 #ifndef PRODUCT
3467   if (Verbose && PrintMiscellaneous) {
3468     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3469                (intptr_t)polling_page);
3470   }
3471 #endif
3472 
3473   if (!UseMembar) {
3474     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3475     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3476     os::set_memory_serialize_page(mem_serialize_page);
3477 
3478 #ifndef PRODUCT
3479     if (Verbose && PrintMiscellaneous) {
3480       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3481                  (intptr_t)mem_serialize_page);
3482     }
3483 #endif
3484   }
3485 
3486   // initialize suspend/resume support - must do this before signal_sets_init()
3487   if (SR_initialize() != 0) {
3488     perror("SR_initialize failed");
3489     return JNI_ERR;
3490   }
3491 
3492   Bsd::signal_sets_init();
3493   Bsd::install_signal_handlers();
3494 
3495   // Check minimum allowable stack size for thread creation and to initialize
3496   // the java system classes, including StackOverflowError - depends on page
3497   // size.  Add a page for compiler2 recursion in main thread.
3498   // Add in 2*BytesPerWord times page size to account for VM stack during
3499   // class initialization depending on 32 or 64 bit VM.
3500   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3501                                     (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3502                                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3503 
3504   size_t threadStackSizeInBytes = ThreadStackSize * K;
3505   if (threadStackSizeInBytes != 0 &&
3506       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3507     tty->print_cr("\nThe stack size specified is too small, "
3508                   "Specify at least %dk",
3509                   os::Bsd::min_stack_allowed/ K);
3510     return JNI_ERR;
3511   }
3512 
3513   // Make the stack size a multiple of the page size so that
3514   // the yellow/red zones can be guarded.
3515   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3516                                                 vm_page_size()));
3517 
3518   if (MaxFDLimit) {
3519     // set the number of file descriptors to max. print out error
3520     // if getrlimit/setrlimit fails but continue regardless.
3521     struct rlimit nbr_files;
3522     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3523     if (status != 0) {
3524       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3525         perror("os::init_2 getrlimit failed");
3526       }
3527     } else {
3528       nbr_files.rlim_cur = nbr_files.rlim_max;
3529 
3530 #ifdef __APPLE__
3531       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3532       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3533       // be used instead
3534       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3535 #endif
3536 
3537       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3538       if (status != 0) {
3539         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3540           perror("os::init_2 setrlimit failed");
3541         }
3542       }
3543     }
3544   }
3545 
3546   // at-exit methods are called in the reverse order of their registration.
3547   // atexit functions are called on return from main or as a result of a
3548   // call to exit(3C). There can be only 32 of these functions registered
3549   // and atexit() does not set errno.
3550 
3551   if (PerfAllowAtExitRegistration) {
3552     // only register atexit functions if PerfAllowAtExitRegistration is set.
3553     // atexit functions can be delayed until process exit time, which
3554     // can be problematic for embedded VM situations. Embedded VMs should
3555     // call DestroyJavaVM() to assure that VM resources are released.
3556 
3557     // note: perfMemory_exit_helper atexit function may be removed in
3558     // the future if the appropriate cleanup code can be added to the
3559     // VM_Exit VMOperation's doit method.
3560     if (atexit(perfMemory_exit_helper) != 0) {
3561       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3562     }
3563   }
3564 
3565   // initialize thread priority policy
3566   prio_init();
3567 
3568 #ifdef __APPLE__
3569   // dynamically link to objective c gc registration
3570   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3571   if (handleLibObjc != NULL) {
3572     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3573   }
3574 #endif
3575 
3576   return JNI_OK;
3577 }
3578 
3579 // Mark the polling page as unreadable
3580 void os::make_polling_page_unreadable(void) {
3581   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3582     fatal("Could not disable polling page");
3583   }
3584 }
3585 
3586 // Mark the polling page as readable
3587 void os::make_polling_page_readable(void) {
3588   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3589     fatal("Could not enable polling page");
3590   }
3591 }
3592 
3593 int os::active_processor_count() {
3594   return _processor_count;
3595 }
3596 
3597 void os::set_native_thread_name(const char *name) {
3598 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3599   // This is only supported in Snow Leopard and beyond
3600   if (name != NULL) {
3601     // Add a "Java: " prefix to the name
3602     char buf[MAXTHREADNAMESIZE];
3603     snprintf(buf, sizeof(buf), "Java: %s", name);
3604     pthread_setname_np(buf);
3605   }
3606 #endif
3607 }
3608 
3609 bool os::distribute_processes(uint length, uint* distribution) {
3610   // Not yet implemented.
3611   return false;
3612 }
3613 
3614 bool os::bind_to_processor(uint processor_id) {
3615   // Not yet implemented.
3616   return false;
3617 }
3618 
3619 void os::SuspendedThreadTask::internal_do_task() {
3620   if (do_suspend(_thread->osthread())) {
3621     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3622     do_task(context);
3623     do_resume(_thread->osthread());
3624   }
3625 }
3626 
3627 ///
3628 class PcFetcher : public os::SuspendedThreadTask {
3629  public:
3630   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3631   ExtendedPC result();
3632  protected:
3633   void do_task(const os::SuspendedThreadTaskContext& context);
3634  private:
3635   ExtendedPC _epc;
3636 };
3637 
3638 ExtendedPC PcFetcher::result() {
3639   guarantee(is_done(), "task is not done yet.");
3640   return _epc;
3641 }
3642 
3643 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3644   Thread* thread = context.thread();
3645   OSThread* osthread = thread->osthread();
3646   if (osthread->ucontext() != NULL) {
3647     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3648   } else {
3649     // NULL context is unexpected, double-check this is the VMThread
3650     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3651   }
3652 }
3653 
3654 // Suspends the target using the signal mechanism and then grabs the PC before
3655 // resuming the target. Used by the flat-profiler only
3656 ExtendedPC os::get_thread_pc(Thread* thread) {
3657   // Make sure that it is called by the watcher for the VMThread
3658   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3659   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3660 
3661   PcFetcher fetcher(thread);
3662   fetcher.run();
3663   return fetcher.result();
3664 }
3665 
3666 ////////////////////////////////////////////////////////////////////////////////
3667 // debug support
3668 
3669 bool os::find(address addr, outputStream* st) {
3670   Dl_info dlinfo;
3671   memset(&dlinfo, 0, sizeof(dlinfo));
3672   if (dladdr(addr, &dlinfo) != 0) {
3673     st->print(PTR_FORMAT ": ", addr);
3674     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3675       st->print("%s+%#x", dlinfo.dli_sname,
3676                 addr - (intptr_t)dlinfo.dli_saddr);
3677     } else if (dlinfo.dli_fbase != NULL) {
3678       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3679     } else {
3680       st->print("<absolute address>");
3681     }
3682     if (dlinfo.dli_fname != NULL) {
3683       st->print(" in %s", dlinfo.dli_fname);
3684     }
3685     if (dlinfo.dli_fbase != NULL) {
3686       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3687     }
3688     st->cr();
3689 
3690     if (Verbose) {
3691       // decode some bytes around the PC
3692       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3693       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3694       address       lowest = (address) dlinfo.dli_sname;
3695       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3696       if (begin < lowest)  begin = lowest;
3697       Dl_info dlinfo2;
3698       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3699           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3700         end = (address) dlinfo2.dli_saddr;
3701       }
3702       Disassembler::decode(begin, end, st);
3703     }
3704     return true;
3705   }
3706   return false;
3707 }
3708 
3709 ////////////////////////////////////////////////////////////////////////////////
3710 // misc
3711 
3712 // This does not do anything on Bsd. This is basically a hook for being
3713 // able to use structured exception handling (thread-local exception filters)
3714 // on, e.g., Win32.
3715 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3716                               const methodHandle& method, JavaCallArguments* args,
3717                               Thread* thread) {
3718   f(value, method, args, thread);
3719 }
3720 
3721 void os::print_statistics() {
3722 }
3723 
3724 int os::message_box(const char* title, const char* message) {
3725   int i;
3726   fdStream err(defaultStream::error_fd());
3727   for (i = 0; i < 78; i++) err.print_raw("=");
3728   err.cr();
3729   err.print_raw_cr(title);
3730   for (i = 0; i < 78; i++) err.print_raw("-");
3731   err.cr();
3732   err.print_raw_cr(message);
3733   for (i = 0; i < 78; i++) err.print_raw("=");
3734   err.cr();
3735 
3736   char buf[16];
3737   // Prevent process from exiting upon "read error" without consuming all CPU
3738   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3739 
3740   return buf[0] == 'y' || buf[0] == 'Y';
3741 }
3742 
3743 int os::stat(const char *path, struct stat *sbuf) {
3744   char pathbuf[MAX_PATH];
3745   if (strlen(path) > MAX_PATH - 1) {
3746     errno = ENAMETOOLONG;
3747     return -1;
3748   }
3749   os::native_path(strcpy(pathbuf, path));
3750   return ::stat(pathbuf, sbuf);
3751 }
3752 
3753 bool os::check_heap(bool force) {
3754   return true;
3755 }
3756 
3757 // Is a (classpath) directory empty?
3758 bool os::dir_is_empty(const char* path) {
3759   DIR *dir = NULL;
3760   struct dirent *ptr;
3761 
3762   dir = opendir(path);
3763   if (dir == NULL) return true;
3764 
3765   // Scan the directory
3766   bool result = true;
3767   char buf[sizeof(struct dirent) + MAX_PATH];
3768   while (result && (ptr = ::readdir(dir)) != NULL) {
3769     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3770       result = false;
3771     }
3772   }
3773   closedir(dir);
3774   return result;
3775 }
3776 
3777 // This code originates from JDK's sysOpen and open64_w
3778 // from src/solaris/hpi/src/system_md.c
3779 
3780 int os::open(const char *path, int oflag, int mode) {
3781   if (strlen(path) > MAX_PATH - 1) {
3782     errno = ENAMETOOLONG;
3783     return -1;
3784   }
3785   int fd;
3786 
3787   fd = ::open(path, oflag, mode);
3788   if (fd == -1) return -1;
3789 
3790   // If the open succeeded, the file might still be a directory
3791   {
3792     struct stat buf;
3793     int ret = ::fstat(fd, &buf);
3794     int st_mode = buf.st_mode;
3795 
3796     if (ret != -1) {
3797       if ((st_mode & S_IFMT) == S_IFDIR) {
3798         errno = EISDIR;
3799         ::close(fd);
3800         return -1;
3801       }
3802     } else {
3803       ::close(fd);
3804       return -1;
3805     }
3806   }
3807 
3808   // All file descriptors that are opened in the JVM and not
3809   // specifically destined for a subprocess should have the
3810   // close-on-exec flag set.  If we don't set it, then careless 3rd
3811   // party native code might fork and exec without closing all
3812   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3813   // UNIXProcess.c), and this in turn might:
3814   //
3815   // - cause end-of-file to fail to be detected on some file
3816   //   descriptors, resulting in mysterious hangs, or
3817   //
3818   // - might cause an fopen in the subprocess to fail on a system
3819   //   suffering from bug 1085341.
3820   //
3821   // (Yes, the default setting of the close-on-exec flag is a Unix
3822   // design flaw)
3823   //
3824   // See:
3825   // 1085341: 32-bit stdio routines should support file descriptors >255
3826   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3827   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3828   //
3829 #ifdef FD_CLOEXEC
3830   {
3831     int flags = ::fcntl(fd, F_GETFD);
3832     if (flags != -1) {
3833       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3834     }
3835   }
3836 #endif
3837 
3838   return fd;
3839 }
3840 
3841 
3842 // create binary file, rewriting existing file if required
3843 int os::create_binary_file(const char* path, bool rewrite_existing) {
3844   int oflags = O_WRONLY | O_CREAT;
3845   if (!rewrite_existing) {
3846     oflags |= O_EXCL;
3847   }
3848   return ::open(path, oflags, S_IREAD | S_IWRITE);
3849 }
3850 
3851 // return current position of file pointer
3852 jlong os::current_file_offset(int fd) {
3853   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3854 }
3855 
3856 // move file pointer to the specified offset
3857 jlong os::seek_to_file_offset(int fd, jlong offset) {
3858   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3859 }
3860 
3861 // This code originates from JDK's sysAvailable
3862 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3863 
3864 int os::available(int fd, jlong *bytes) {
3865   jlong cur, end;
3866   int mode;
3867   struct stat buf;
3868 
3869   if (::fstat(fd, &buf) >= 0) {
3870     mode = buf.st_mode;
3871     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3872       int n;
3873       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3874         *bytes = n;
3875         return 1;
3876       }
3877     }
3878   }
3879   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3880     return 0;
3881   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3882     return 0;
3883   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3884     return 0;
3885   }
3886   *bytes = end - cur;
3887   return 1;
3888 }
3889 
3890 // Map a block of memory.
3891 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3892                         char *addr, size_t bytes, bool read_only,
3893                         bool allow_exec) {
3894   int prot;
3895   int flags;
3896 
3897   if (read_only) {
3898     prot = PROT_READ;
3899     flags = MAP_SHARED;
3900   } else {
3901     prot = PROT_READ | PROT_WRITE;
3902     flags = MAP_PRIVATE;
3903   }
3904 
3905   if (allow_exec) {
3906     prot |= PROT_EXEC;
3907   }
3908 
3909   if (addr != NULL) {
3910     flags |= MAP_FIXED;
3911   }
3912 
3913   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3914                                      fd, file_offset);
3915   if (mapped_address == MAP_FAILED) {
3916     return NULL;
3917   }
3918   return mapped_address;
3919 }
3920 
3921 
3922 // Remap a block of memory.
3923 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3924                           char *addr, size_t bytes, bool read_only,
3925                           bool allow_exec) {
3926   // same as map_memory() on this OS
3927   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3928                         allow_exec);
3929 }
3930 
3931 
3932 // Unmap a block of memory.
3933 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3934   return munmap(addr, bytes) == 0;
3935 }
3936 
3937 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3938 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3939 // of a thread.
3940 //
3941 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3942 // the fast estimate available on the platform.
3943 
3944 jlong os::current_thread_cpu_time() {
3945 #ifdef __APPLE__
3946   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3947 #else
3948   Unimplemented();
3949   return 0;
3950 #endif
3951 }
3952 
3953 jlong os::thread_cpu_time(Thread* thread) {
3954 #ifdef __APPLE__
3955   return os::thread_cpu_time(thread, true /* user + sys */);
3956 #else
3957   Unimplemented();
3958   return 0;
3959 #endif
3960 }
3961 
3962 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3963 #ifdef __APPLE__
3964   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3965 #else
3966   Unimplemented();
3967   return 0;
3968 #endif
3969 }
3970 
3971 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3972 #ifdef __APPLE__
3973   struct thread_basic_info tinfo;
3974   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3975   kern_return_t kr;
3976   thread_t mach_thread;
3977 
3978   mach_thread = thread->osthread()->thread_id();
3979   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3980   if (kr != KERN_SUCCESS) {
3981     return -1;
3982   }
3983 
3984   if (user_sys_cpu_time) {
3985     jlong nanos;
3986     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3987     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3988     return nanos;
3989   } else {
3990     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3991   }
3992 #else
3993   Unimplemented();
3994   return 0;
3995 #endif
3996 }
3997 
3998 
3999 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4000   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4001   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4002   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4003   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4004 }
4005 
4006 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4007   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4008   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4009   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4010   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4011 }
4012 
4013 bool os::is_thread_cpu_time_supported() {
4014 #ifdef __APPLE__
4015   return true;
4016 #else
4017   return false;
4018 #endif
4019 }
4020 
4021 // System loadavg support.  Returns -1 if load average cannot be obtained.
4022 // Bsd doesn't yet have a (official) notion of processor sets,
4023 // so just return the system wide load average.
4024 int os::loadavg(double loadavg[], int nelem) {
4025   return ::getloadavg(loadavg, nelem);
4026 }
4027 
4028 void os::pause() {
4029   char filename[MAX_PATH];
4030   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4031     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4032   } else {
4033     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4034   }
4035 
4036   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4037   if (fd != -1) {
4038     struct stat buf;
4039     ::close(fd);
4040     while (::stat(filename, &buf) == 0) {
4041       (void)::poll(NULL, 0, 100);
4042     }
4043   } else {
4044     jio_fprintf(stderr,
4045                 "Could not open pause file '%s', continuing immediately.\n", filename);
4046   }
4047 }
4048 
4049 
4050 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4051 // comment paragraphs are worth repeating here:
4052 //
4053 // Assumption:
4054 //    Only one parker can exist on an event, which is why we allocate
4055 //    them per-thread. Multiple unparkers can coexist.
4056 //
4057 // _Event serves as a restricted-range semaphore.
4058 //   -1 : thread is blocked, i.e. there is a waiter
4059 //    0 : neutral: thread is running or ready,
4060 //        could have been signaled after a wait started
4061 //    1 : signaled - thread is running or ready
4062 //
4063 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4064 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4065 // For specifics regarding the bug see GLIBC BUGID 261237 :
4066 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4067 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4068 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4069 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4070 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4071 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4072 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4073 // of libpthread avoids the problem, but isn't practical.
4074 //
4075 // Possible remedies:
4076 //
4077 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4078 //      This is palliative and probabilistic, however.  If the thread is preempted
4079 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4080 //      than the minimum period may have passed, and the abstime may be stale (in the
4081 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4082 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4083 //
4084 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4085 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4086 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4087 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4088 //      thread.
4089 //
4090 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4091 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4092 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4093 //      This also works well.  In fact it avoids kernel-level scalability impediments
4094 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4095 //      timers in a graceful fashion.
4096 //
4097 // 4.   When the abstime value is in the past it appears that control returns
4098 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4099 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4100 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4101 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4102 //      It may be possible to avoid reinitialization by checking the return
4103 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4104 //      condvar we must establish the invariant that cond_signal() is only called
4105 //      within critical sections protected by the adjunct mutex.  This prevents
4106 //      cond_signal() from "seeing" a condvar that's in the midst of being
4107 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4108 //      desirable signal-after-unlock optimization that avoids futile context switching.
4109 //
4110 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4111 //      structure when a condvar is used or initialized.  cond_destroy()  would
4112 //      release the helper structure.  Our reinitialize-after-timedwait fix
4113 //      put excessive stress on malloc/free and locks protecting the c-heap.
4114 //
4115 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4116 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4117 // and only enabling the work-around for vulnerable environments.
4118 
4119 // utility to compute the abstime argument to timedwait:
4120 // millis is the relative timeout time
4121 // abstime will be the absolute timeout time
4122 // TODO: replace compute_abstime() with unpackTime()
4123 
4124 static struct timespec* compute_abstime(struct timespec* abstime,
4125                                         jlong millis) {
4126   if (millis < 0)  millis = 0;
4127   struct timeval now;
4128   int status = gettimeofday(&now, NULL);
4129   assert(status == 0, "gettimeofday");
4130   jlong seconds = millis / 1000;
4131   millis %= 1000;
4132   if (seconds > 50000000) { // see man cond_timedwait(3T)
4133     seconds = 50000000;
4134   }
4135   abstime->tv_sec = now.tv_sec  + seconds;
4136   long       usec = now.tv_usec + millis * 1000;
4137   if (usec >= 1000000) {
4138     abstime->tv_sec += 1;
4139     usec -= 1000000;
4140   }
4141   abstime->tv_nsec = usec * 1000;
4142   return abstime;
4143 }
4144 
4145 void os::PlatformEvent::park() {       // AKA "down()"
4146   // Transitions for _Event:
4147   //   -1 => -1 : illegal
4148   //    1 =>  0 : pass - return immediately
4149   //    0 => -1 : block; then set _Event to 0 before returning
4150 
4151   // Invariant: Only the thread associated with the Event/PlatformEvent
4152   // may call park().
4153   // TODO: assert that _Assoc != NULL or _Assoc == Self
4154   assert(_nParked == 0, "invariant");
4155 
4156   int v;
4157   for (;;) {
4158     v = _Event;
4159     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4160   }
4161   guarantee(v >= 0, "invariant");
4162   if (v == 0) {
4163     // Do this the hard way by blocking ...
4164     int status = pthread_mutex_lock(_mutex);
4165     assert_status(status == 0, status, "mutex_lock");
4166     guarantee(_nParked == 0, "invariant");
4167     ++_nParked;
4168     while (_Event < 0) {
4169       status = pthread_cond_wait(_cond, _mutex);
4170       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4171       // Treat this the same as if the wait was interrupted
4172       if (status == ETIMEDOUT) { status = EINTR; }
4173       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4174     }
4175     --_nParked;
4176 
4177     _Event = 0;
4178     status = pthread_mutex_unlock(_mutex);
4179     assert_status(status == 0, status, "mutex_unlock");
4180     // Paranoia to ensure our locked and lock-free paths interact
4181     // correctly with each other.
4182     OrderAccess::fence();
4183   }
4184   guarantee(_Event >= 0, "invariant");
4185 }
4186 
4187 int os::PlatformEvent::park(jlong millis) {
4188   // Transitions for _Event:
4189   //   -1 => -1 : illegal
4190   //    1 =>  0 : pass - return immediately
4191   //    0 => -1 : block; then set _Event to 0 before returning
4192 
4193   guarantee(_nParked == 0, "invariant");
4194 
4195   int v;
4196   for (;;) {
4197     v = _Event;
4198     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4199   }
4200   guarantee(v >= 0, "invariant");
4201   if (v != 0) return OS_OK;
4202 
4203   // We do this the hard way, by blocking the thread.
4204   // Consider enforcing a minimum timeout value.
4205   struct timespec abst;
4206   compute_abstime(&abst, millis);
4207 
4208   int ret = OS_TIMEOUT;
4209   int status = pthread_mutex_lock(_mutex);
4210   assert_status(status == 0, status, "mutex_lock");
4211   guarantee(_nParked == 0, "invariant");
4212   ++_nParked;
4213 
4214   // Object.wait(timo) will return because of
4215   // (a) notification
4216   // (b) timeout
4217   // (c) thread.interrupt
4218   //
4219   // Thread.interrupt and object.notify{All} both call Event::set.
4220   // That is, we treat thread.interrupt as a special case of notification.
4221   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4222   // We assume all ETIME returns are valid.
4223   //
4224   // TODO: properly differentiate simultaneous notify+interrupt.
4225   // In that case, we should propagate the notify to another waiter.
4226 
4227   while (_Event < 0) {
4228     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4229     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4230       pthread_cond_destroy(_cond);
4231       pthread_cond_init(_cond, NULL);
4232     }
4233     assert_status(status == 0 || status == EINTR ||
4234                   status == ETIMEDOUT,
4235                   status, "cond_timedwait");
4236     if (!FilterSpuriousWakeups) break;                 // previous semantics
4237     if (status == ETIMEDOUT) break;
4238     // We consume and ignore EINTR and spurious wakeups.
4239   }
4240   --_nParked;
4241   if (_Event >= 0) {
4242     ret = OS_OK;
4243   }
4244   _Event = 0;
4245   status = pthread_mutex_unlock(_mutex);
4246   assert_status(status == 0, status, "mutex_unlock");
4247   assert(_nParked == 0, "invariant");
4248   // Paranoia to ensure our locked and lock-free paths interact
4249   // correctly with each other.
4250   OrderAccess::fence();
4251   return ret;
4252 }
4253 
4254 void os::PlatformEvent::unpark() {
4255   // Transitions for _Event:
4256   //    0 => 1 : just return
4257   //    1 => 1 : just return
4258   //   -1 => either 0 or 1; must signal target thread
4259   //         That is, we can safely transition _Event from -1 to either
4260   //         0 or 1.
4261   // See also: "Semaphores in Plan 9" by Mullender & Cox
4262   //
4263   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4264   // that it will take two back-to-back park() calls for the owning
4265   // thread to block. This has the benefit of forcing a spurious return
4266   // from the first park() call after an unpark() call which will help
4267   // shake out uses of park() and unpark() without condition variables.
4268 
4269   if (Atomic::xchg(1, &_Event) >= 0) return;
4270 
4271   // Wait for the thread associated with the event to vacate
4272   int status = pthread_mutex_lock(_mutex);
4273   assert_status(status == 0, status, "mutex_lock");
4274   int AnyWaiters = _nParked;
4275   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4276   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4277     AnyWaiters = 0;
4278     pthread_cond_signal(_cond);
4279   }
4280   status = pthread_mutex_unlock(_mutex);
4281   assert_status(status == 0, status, "mutex_unlock");
4282   if (AnyWaiters != 0) {
4283     // Note that we signal() *after* dropping the lock for "immortal" Events.
4284     // This is safe and avoids a common class of  futile wakeups.  In rare
4285     // circumstances this can cause a thread to return prematurely from
4286     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4287     // will simply re-test the condition and re-park itself.
4288     // This provides particular benefit if the underlying platform does not
4289     // provide wait morphing.
4290     status = pthread_cond_signal(_cond);
4291     assert_status(status == 0, status, "cond_signal");
4292   }
4293 }
4294 
4295 
4296 // JSR166
4297 // -------------------------------------------------------
4298 
4299 // The solaris and bsd implementations of park/unpark are fairly
4300 // conservative for now, but can be improved. They currently use a
4301 // mutex/condvar pair, plus a a count.
4302 // Park decrements count if > 0, else does a condvar wait.  Unpark
4303 // sets count to 1 and signals condvar.  Only one thread ever waits
4304 // on the condvar. Contention seen when trying to park implies that someone
4305 // is unparking you, so don't wait. And spurious returns are fine, so there
4306 // is no need to track notifications.
4307 
4308 #define MAX_SECS 100000000
4309 
4310 // This code is common to bsd and solaris and will be moved to a
4311 // common place in dolphin.
4312 //
4313 // The passed in time value is either a relative time in nanoseconds
4314 // or an absolute time in milliseconds. Either way it has to be unpacked
4315 // into suitable seconds and nanoseconds components and stored in the
4316 // given timespec structure.
4317 // Given time is a 64-bit value and the time_t used in the timespec is only
4318 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4319 // overflow if times way in the future are given. Further on Solaris versions
4320 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4321 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4322 // As it will be 28 years before "now + 100000000" will overflow we can
4323 // ignore overflow and just impose a hard-limit on seconds using the value
4324 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4325 // years from "now".
4326 
4327 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4328   assert(time > 0, "convertTime");
4329 
4330   struct timeval now;
4331   int status = gettimeofday(&now, NULL);
4332   assert(status == 0, "gettimeofday");
4333 
4334   time_t max_secs = now.tv_sec + MAX_SECS;
4335 
4336   if (isAbsolute) {
4337     jlong secs = time / 1000;
4338     if (secs > max_secs) {
4339       absTime->tv_sec = max_secs;
4340     } else {
4341       absTime->tv_sec = secs;
4342     }
4343     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4344   } else {
4345     jlong secs = time / NANOSECS_PER_SEC;
4346     if (secs >= MAX_SECS) {
4347       absTime->tv_sec = max_secs;
4348       absTime->tv_nsec = 0;
4349     } else {
4350       absTime->tv_sec = now.tv_sec + secs;
4351       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4352       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4353         absTime->tv_nsec -= NANOSECS_PER_SEC;
4354         ++absTime->tv_sec; // note: this must be <= max_secs
4355       }
4356     }
4357   }
4358   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4359   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4360   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4361   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4362 }
4363 
4364 void Parker::park(bool isAbsolute, jlong time) {
4365   // Ideally we'd do something useful while spinning, such
4366   // as calling unpackTime().
4367 
4368   // Optional fast-path check:
4369   // Return immediately if a permit is available.
4370   // We depend on Atomic::xchg() having full barrier semantics
4371   // since we are doing a lock-free update to _counter.
4372   if (Atomic::xchg(0, &_counter) > 0) return;
4373 
4374   Thread* thread = Thread::current();
4375   assert(thread->is_Java_thread(), "Must be JavaThread");
4376   JavaThread *jt = (JavaThread *)thread;
4377 
4378   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4379   // Check interrupt before trying to wait
4380   if (Thread::is_interrupted(thread, false)) {
4381     return;
4382   }
4383 
4384   // Next, demultiplex/decode time arguments
4385   struct timespec absTime;
4386   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4387     return;
4388   }
4389   if (time > 0) {
4390     unpackTime(&absTime, isAbsolute, time);
4391   }
4392 
4393 
4394   // Enter safepoint region
4395   // Beware of deadlocks such as 6317397.
4396   // The per-thread Parker:: mutex is a classic leaf-lock.
4397   // In particular a thread must never block on the Threads_lock while
4398   // holding the Parker:: mutex.  If safepoints are pending both the
4399   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4400   ThreadBlockInVM tbivm(jt);
4401 
4402   // Don't wait if cannot get lock since interference arises from
4403   // unblocking.  Also. check interrupt before trying wait
4404   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4405     return;
4406   }
4407 
4408   int status;
4409   if (_counter > 0)  { // no wait needed
4410     _counter = 0;
4411     status = pthread_mutex_unlock(_mutex);
4412     assert(status == 0, "invariant");
4413     // Paranoia to ensure our locked and lock-free paths interact
4414     // correctly with each other and Java-level accesses.
4415     OrderAccess::fence();
4416     return;
4417   }
4418 
4419 #ifdef ASSERT
4420   // Don't catch signals while blocked; let the running threads have the signals.
4421   // (This allows a debugger to break into the running thread.)
4422   sigset_t oldsigs;
4423   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4424   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4425 #endif
4426 
4427   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4428   jt->set_suspend_equivalent();
4429   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4430 
4431   if (time == 0) {
4432     status = pthread_cond_wait(_cond, _mutex);
4433   } else {
4434     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4435     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4436       pthread_cond_destroy(_cond);
4437       pthread_cond_init(_cond, NULL);
4438     }
4439   }
4440   assert_status(status == 0 || status == EINTR ||
4441                 status == ETIMEDOUT,
4442                 status, "cond_timedwait");
4443 
4444 #ifdef ASSERT
4445   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4446 #endif
4447 
4448   _counter = 0;
4449   status = pthread_mutex_unlock(_mutex);
4450   assert_status(status == 0, status, "invariant");
4451   // Paranoia to ensure our locked and lock-free paths interact
4452   // correctly with each other and Java-level accesses.
4453   OrderAccess::fence();
4454 
4455   // If externally suspended while waiting, re-suspend
4456   if (jt->handle_special_suspend_equivalent_condition()) {
4457     jt->java_suspend_self();
4458   }
4459 }
4460 
4461 void Parker::unpark() {
4462   int status = pthread_mutex_lock(_mutex);
4463   assert(status == 0, "invariant");
4464   const int s = _counter;
4465   _counter = 1;
4466   if (s < 1) {
4467     if (WorkAroundNPTLTimedWaitHang) {
4468       status = pthread_cond_signal(_cond);
4469       assert(status == 0, "invariant");
4470       status = pthread_mutex_unlock(_mutex);
4471       assert(status == 0, "invariant");
4472     } else {
4473       status = pthread_mutex_unlock(_mutex);
4474       assert(status == 0, "invariant");
4475       status = pthread_cond_signal(_cond);
4476       assert(status == 0, "invariant");
4477     }
4478   } else {
4479     pthread_mutex_unlock(_mutex);
4480     assert(status == 0, "invariant");
4481   }
4482 }
4483 
4484 
4485 // Darwin has no "environ" in a dynamic library.
4486 #ifdef __APPLE__
4487   #include <crt_externs.h>
4488   #define environ (*_NSGetEnviron())
4489 #else
4490 extern char** environ;
4491 #endif
4492 
4493 // Run the specified command in a separate process. Return its exit value,
4494 // or -1 on failure (e.g. can't fork a new process).
4495 // Unlike system(), this function can be called from signal handler. It
4496 // doesn't block SIGINT et al.
4497 int os::fork_and_exec(char* cmd) {
4498   const char * argv[4] = {"sh", "-c", cmd, NULL};
4499 
4500   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4501   // pthread_atfork handlers and reset pthread library. All we need is a
4502   // separate process to execve. Make a direct syscall to fork process.
4503   // On IA64 there's no fork syscall, we have to use fork() and hope for
4504   // the best...
4505   pid_t pid = fork();
4506 
4507   if (pid < 0) {
4508     // fork failed
4509     return -1;
4510 
4511   } else if (pid == 0) {
4512     // child process
4513 
4514     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4515     // first to kill every thread on the thread list. Because this list is
4516     // not reset by fork() (see notes above), execve() will instead kill
4517     // every thread in the parent process. We know this is the only thread
4518     // in the new process, so make a system call directly.
4519     // IA64 should use normal execve() from glibc to match the glibc fork()
4520     // above.
4521     execve("/bin/sh", (char* const*)argv, environ);
4522 
4523     // execve failed
4524     _exit(-1);
4525 
4526   } else  {
4527     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4528     // care about the actual exit code, for now.
4529 
4530     int status;
4531 
4532     // Wait for the child process to exit.  This returns immediately if
4533     // the child has already exited. */
4534     while (waitpid(pid, &status, 0) < 0) {
4535       switch (errno) {
4536       case ECHILD: return 0;
4537       case EINTR: break;
4538       default: return -1;
4539       }
4540     }
4541 
4542     if (WIFEXITED(status)) {
4543       // The child exited normally; get its exit code.
4544       return WEXITSTATUS(status);
4545     } else if (WIFSIGNALED(status)) {
4546       // The child exited because of a signal
4547       // The best value to return is 0x80 + signal number,
4548       // because that is what all Unix shells do, and because
4549       // it allows callers to distinguish between process exit and
4550       // process death by signal.
4551       return 0x80 + WTERMSIG(status);
4552     } else {
4553       // Unknown exit code; pass it through
4554       return status;
4555     }
4556   }
4557 }
4558 
4559 // is_headless_jre()
4560 //
4561 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4562 // in order to report if we are running in a headless jre
4563 //
4564 // Since JDK8 xawt/libmawt.so was moved into the same directory
4565 // as libawt.so, and renamed libawt_xawt.so
4566 //
4567 bool os::is_headless_jre() {
4568 #ifdef __APPLE__
4569   // We no longer build headless-only on Mac OS X
4570   return false;
4571 #else
4572   struct stat statbuf;
4573   char buf[MAXPATHLEN];
4574   char libmawtpath[MAXPATHLEN];
4575   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4576   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4577   char *p;
4578 
4579   // Get path to libjvm.so
4580   os::jvm_path(buf, sizeof(buf));
4581 
4582   // Get rid of libjvm.so
4583   p = strrchr(buf, '/');
4584   if (p == NULL) {
4585     return false;
4586   } else {
4587     *p = '\0';
4588   }
4589 
4590   // Get rid of client or server
4591   p = strrchr(buf, '/');
4592   if (p == NULL) {
4593     return false;
4594   } else {
4595     *p = '\0';
4596   }
4597 
4598   // check xawt/libmawt.so
4599   strcpy(libmawtpath, buf);
4600   strcat(libmawtpath, xawtstr);
4601   if (::stat(libmawtpath, &statbuf) == 0) return false;
4602 
4603   // check libawt_xawt.so
4604   strcpy(libmawtpath, buf);
4605   strcat(libmawtpath, new_xawtstr);
4606   if (::stat(libmawtpath, &statbuf) == 0) return false;
4607 
4608   return true;
4609 #endif
4610 }
4611 
4612 // Get the default path to the core file
4613 // Returns the length of the string
4614 int os::get_core_path(char* buffer, size_t bufferSize) {
4615   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4616 
4617   // Truncate if theoretical string was longer than bufferSize
4618   n = MIN2(n, (int)bufferSize);
4619 
4620   return n;
4621 }
4622 
4623 #ifndef PRODUCT
4624 void TestReserveMemorySpecial_test() {
4625   // No tests available for this platform
4626 }
4627 #endif