1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 110 // getrusage() is prepared to handle the associated failure.
 111 #ifndef RUSAGE_THREAD
 112   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 113 #endif
 114 
 115 #define MAX_PATH    (2 * K)
 116 
 117 #define MAX_SECS 100000000
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 #define LARGEPAGES_BIT (1 << 6)
 123 ////////////////////////////////////////////////////////////////////////////////
 124 // global variables
 125 julong os::Linux::_physical_memory = 0;
 126 
 127 address   os::Linux::_initial_thread_stack_bottom = NULL;
 128 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 129 
 130 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 132 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 133 Mutex* os::Linux::_createThread_lock = NULL;
 134 pthread_t os::Linux::_main_thread;
 135 int os::Linux::_page_size = -1;
 136 const int os::Linux::_vm_default_page_size = (8 * K);
 137 bool os::Linux::_supports_fast_thread_cpu_time = false;
 138 const char * os::Linux::_glibc_version = NULL;
 139 const char * os::Linux::_libpthread_version = NULL;
 140 pthread_condattr_t os::Linux::_condattr[1];
 141 
 142 static jlong initial_time_count=0;
 143 
 144 static int clock_tics_per_sec = 100;
 145 
 146 // For diagnostics to print a message once. see run_periodic_checks
 147 static sigset_t check_signal_done;
 148 static bool check_signals = true;
 149 
 150 // Signal number used to suspend/resume a thread
 151 
 152 // do not use any signal number less than SIGSEGV, see 4355769
 153 static int SR_signum = SIGUSR2;
 154 sigset_t SR_sigset;
 155 
 156 // Declarations
 157 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 158 
 159 // utility functions
 160 
 161 static int SR_initialize();
 162 
 163 julong os::available_memory() {
 164   return Linux::available_memory();
 165 }
 166 
 167 julong os::Linux::available_memory() {
 168   // values in struct sysinfo are "unsigned long"
 169   struct sysinfo si;
 170   sysinfo(&si);
 171 
 172   return (julong)si.freeram * si.mem_unit;
 173 }
 174 
 175 julong os::physical_memory() {
 176   return Linux::physical_memory();
 177 }
 178 
 179 // Return true if user is running as root.
 180 
 181 bool os::have_special_privileges() {
 182   static bool init = false;
 183   static bool privileges = false;
 184   if (!init) {
 185     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 186     init = true;
 187   }
 188   return privileges;
 189 }
 190 
 191 
 192 #ifndef SYS_gettid
 193 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 194   #ifdef __ia64__
 195     #define SYS_gettid 1105
 196   #else
 197     #ifdef __i386__
 198       #define SYS_gettid 224
 199     #else
 200       #ifdef __amd64__
 201         #define SYS_gettid 186
 202       #else
 203         #ifdef __sparc__
 204           #define SYS_gettid 143
 205         #else
 206           #error define gettid for the arch
 207         #endif
 208       #endif
 209     #endif
 210   #endif
 211 #endif
 212 
 213 // Cpu architecture string
 214 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 215 
 216 
 217 // pid_t gettid()
 218 //
 219 // Returns the kernel thread id of the currently running thread. Kernel
 220 // thread id is used to access /proc.
 221 pid_t os::Linux::gettid() {
 222   int rslt = syscall(SYS_gettid);
 223   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 224   return (pid_t)rslt;
 225 }
 226 
 227 // Most versions of linux have a bug where the number of processors are
 228 // determined by looking at the /proc file system.  In a chroot environment,
 229 // the system call returns 1.  This causes the VM to act as if it is
 230 // a single processor and elide locking (see is_MP() call).
 231 static bool unsafe_chroot_detected = false;
 232 static const char *unstable_chroot_error = "/proc file system not found.\n"
 233                      "Java may be unstable running multithreaded in a chroot "
 234                      "environment on Linux when /proc filesystem is not mounted.";
 235 
 236 void os::Linux::initialize_system_info() {
 237   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 238   if (processor_count() == 1) {
 239     pid_t pid = os::Linux::gettid();
 240     char fname[32];
 241     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 242     FILE *fp = fopen(fname, "r");
 243     if (fp == NULL) {
 244       unsafe_chroot_detected = true;
 245     } else {
 246       fclose(fp);
 247     }
 248   }
 249   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 250   assert(processor_count() > 0, "linux error");
 251 }
 252 
 253 void os::init_system_properties_values() {
 254   // The next steps are taken in the product version:
 255   //
 256   // Obtain the JAVA_HOME value from the location of libjvm.so.
 257   // This library should be located at:
 258   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 259   //
 260   // If "/jre/lib/" appears at the right place in the path, then we
 261   // assume libjvm.so is installed in a JDK and we use this path.
 262   //
 263   // Otherwise exit with message: "Could not create the Java virtual machine."
 264   //
 265   // The following extra steps are taken in the debugging version:
 266   //
 267   // If "/jre/lib/" does NOT appear at the right place in the path
 268   // instead of exit check for $JAVA_HOME environment variable.
 269   //
 270   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 271   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 272   // it looks like libjvm.so is installed there
 273   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 274   //
 275   // Otherwise exit.
 276   //
 277   // Important note: if the location of libjvm.so changes this
 278   // code needs to be changed accordingly.
 279 
 280   // See ld(1):
 281   //      The linker uses the following search paths to locate required
 282   //      shared libraries:
 283   //        1: ...
 284   //        ...
 285   //        7: The default directories, normally /lib and /usr/lib.
 286 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 287   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 288 #else
 289   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 290 #endif
 291 
 292 // Base path of extensions installed on the system.
 293 #define SYS_EXT_DIR     "/usr/java/packages"
 294 #define EXTENSIONS_DIR  "/lib/ext"
 295 
 296   // Buffer that fits several sprintfs.
 297   // Note that the space for the colon and the trailing null are provided
 298   // by the nulls included by the sizeof operator.
 299   const size_t bufsize =
 300     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 301          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 302   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 303 
 304   // sysclasspath, java_home, dll_dir
 305   {
 306     char *pslash;
 307     os::jvm_path(buf, bufsize);
 308 
 309     // Found the full path to libjvm.so.
 310     // Now cut the path to <java_home>/jre if we can.
 311     pslash = strrchr(buf, '/');
 312     if (pslash != NULL) {
 313       *pslash = '\0';            // Get rid of /libjvm.so.
 314     }
 315     pslash = strrchr(buf, '/');
 316     if (pslash != NULL) {
 317       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 318     }
 319     Arguments::set_dll_dir(buf);
 320 
 321     if (pslash != NULL) {
 322       pslash = strrchr(buf, '/');
 323       if (pslash != NULL) {
 324         *pslash = '\0';          // Get rid of /<arch>.
 325         pslash = strrchr(buf, '/');
 326         if (pslash != NULL) {
 327           *pslash = '\0';        // Get rid of /lib.
 328         }
 329       }
 330     }
 331     Arguments::set_java_home(buf);
 332     set_boot_path('/', ':');
 333   }
 334 
 335   // Where to look for native libraries.
 336   //
 337   // Note: Due to a legacy implementation, most of the library path
 338   // is set in the launcher. This was to accomodate linking restrictions
 339   // on legacy Linux implementations (which are no longer supported).
 340   // Eventually, all the library path setting will be done here.
 341   //
 342   // However, to prevent the proliferation of improperly built native
 343   // libraries, the new path component /usr/java/packages is added here.
 344   // Eventually, all the library path setting will be done here.
 345   {
 346     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 347     // should always exist (until the legacy problem cited above is
 348     // addressed).
 349     const char *v = ::getenv("LD_LIBRARY_PATH");
 350     const char *v_colon = ":";
 351     if (v == NULL) { v = ""; v_colon = ""; }
 352     // That's +1 for the colon and +1 for the trailing '\0'.
 353     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 354                                                      strlen(v) + 1 +
 355                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 356                                                      mtInternal);
 357     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 358     Arguments::set_library_path(ld_library_path);
 359     FREE_C_HEAP_ARRAY(char, ld_library_path);
 360   }
 361 
 362   // Extensions directories.
 363   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 364   Arguments::set_ext_dirs(buf);
 365 
 366   FREE_C_HEAP_ARRAY(char, buf);
 367 
 368 #undef DEFAULT_LIBPATH
 369 #undef SYS_EXT_DIR
 370 #undef EXTENSIONS_DIR
 371 }
 372 
 373 ////////////////////////////////////////////////////////////////////////////////
 374 // breakpoint support
 375 
 376 void os::breakpoint() {
 377   BREAKPOINT;
 378 }
 379 
 380 extern "C" void breakpoint() {
 381   // use debugger to set breakpoint here
 382 }
 383 
 384 ////////////////////////////////////////////////////////////////////////////////
 385 // signal support
 386 
 387 debug_only(static bool signal_sets_initialized = false);
 388 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 389 
 390 bool os::Linux::is_sig_ignored(int sig) {
 391   struct sigaction oact;
 392   sigaction(sig, (struct sigaction*)NULL, &oact);
 393   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 394                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 395   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 396     return true;
 397   } else {
 398     return false;
 399   }
 400 }
 401 
 402 void os::Linux::signal_sets_init() {
 403   // Should also have an assertion stating we are still single-threaded.
 404   assert(!signal_sets_initialized, "Already initialized");
 405   // Fill in signals that are necessarily unblocked for all threads in
 406   // the VM. Currently, we unblock the following signals:
 407   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 408   //                         by -Xrs (=ReduceSignalUsage));
 409   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 410   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 411   // the dispositions or masks wrt these signals.
 412   // Programs embedding the VM that want to use the above signals for their
 413   // own purposes must, at this time, use the "-Xrs" option to prevent
 414   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 415   // (See bug 4345157, and other related bugs).
 416   // In reality, though, unblocking these signals is really a nop, since
 417   // these signals are not blocked by default.
 418   sigemptyset(&unblocked_sigs);
 419   sigemptyset(&allowdebug_blocked_sigs);
 420   sigaddset(&unblocked_sigs, SIGILL);
 421   sigaddset(&unblocked_sigs, SIGSEGV);
 422   sigaddset(&unblocked_sigs, SIGBUS);
 423   sigaddset(&unblocked_sigs, SIGFPE);
 424 #if defined(PPC64)
 425   sigaddset(&unblocked_sigs, SIGTRAP);
 426 #endif
 427   sigaddset(&unblocked_sigs, SR_signum);
 428 
 429   if (!ReduceSignalUsage) {
 430     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 431       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 432       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 436       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 437     }
 438     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 439       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 440       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 441     }
 442   }
 443   // Fill in signals that are blocked by all but the VM thread.
 444   sigemptyset(&vm_sigs);
 445   if (!ReduceSignalUsage) {
 446     sigaddset(&vm_sigs, BREAK_SIGNAL);
 447   }
 448   debug_only(signal_sets_initialized = true);
 449 
 450 }
 451 
 452 // These are signals that are unblocked while a thread is running Java.
 453 // (For some reason, they get blocked by default.)
 454 sigset_t* os::Linux::unblocked_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &unblocked_sigs;
 457 }
 458 
 459 // These are the signals that are blocked while a (non-VM) thread is
 460 // running Java. Only the VM thread handles these signals.
 461 sigset_t* os::Linux::vm_signals() {
 462   assert(signal_sets_initialized, "Not initialized");
 463   return &vm_sigs;
 464 }
 465 
 466 // These are signals that are blocked during cond_wait to allow debugger in
 467 sigset_t* os::Linux::allowdebug_blocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &allowdebug_blocked_sigs;
 470 }
 471 
 472 void os::Linux::hotspot_sigmask(Thread* thread) {
 473 
 474   //Save caller's signal mask before setting VM signal mask
 475   sigset_t caller_sigmask;
 476   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 477 
 478   OSThread* osthread = thread->osthread();
 479   osthread->set_caller_sigmask(caller_sigmask);
 480 
 481   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 482 
 483   if (!ReduceSignalUsage) {
 484     if (thread->is_VM_thread()) {
 485       // Only the VM thread handles BREAK_SIGNAL ...
 486       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 487     } else {
 488       // ... all other threads block BREAK_SIGNAL
 489       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 490     }
 491   }
 492 }
 493 
 494 //////////////////////////////////////////////////////////////////////////////
 495 // detecting pthread library
 496 
 497 void os::Linux::libpthread_init() {
 498   // Save glibc and pthread version strings.
 499 #if !defined(_CS_GNU_LIBC_VERSION) || \
 500     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 501   #error "glibc too old (< 2.3.2)"
 502 #endif
 503 
 504   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 505   assert(n > 0, "cannot retrieve glibc version");
 506   char *str = (char *)malloc(n, mtInternal);
 507   confstr(_CS_GNU_LIBC_VERSION, str, n);
 508   os::Linux::set_glibc_version(str);
 509 
 510   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 511   assert(n > 0, "cannot retrieve pthread version");
 512   str = (char *)malloc(n, mtInternal);
 513   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 514   os::Linux::set_libpthread_version(str);
 515 }
 516 
 517 /////////////////////////////////////////////////////////////////////////////
 518 // thread stack expansion
 519 
 520 // os::Linux::manually_expand_stack() takes care of expanding the thread
 521 // stack. Note that this is normally not needed: pthread stacks allocate
 522 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 523 // committed. Therefore it is not necessary to expand the stack manually.
 524 //
 525 // Manually expanding the stack was historically needed on LinuxThreads
 526 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 527 // it is kept to deal with very rare corner cases:
 528 //
 529 // For one, user may run the VM on an own implementation of threads
 530 // whose stacks are - like the old LinuxThreads - implemented using
 531 // mmap(MAP_GROWSDOWN).
 532 //
 533 // Also, this coding may be needed if the VM is running on the primordial
 534 // thread. Normally we avoid running on the primordial thread; however,
 535 // user may still invoke the VM on the primordial thread.
 536 //
 537 // The following historical comment describes the details about running
 538 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 539 
 540 
 541 // Force Linux kernel to expand current thread stack. If "bottom" is close
 542 // to the stack guard, caller should block all signals.
 543 //
 544 // MAP_GROWSDOWN:
 545 //   A special mmap() flag that is used to implement thread stacks. It tells
 546 //   kernel that the memory region should extend downwards when needed. This
 547 //   allows early versions of LinuxThreads to only mmap the first few pages
 548 //   when creating a new thread. Linux kernel will automatically expand thread
 549 //   stack as needed (on page faults).
 550 //
 551 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 552 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 553 //   region, it's hard to tell if the fault is due to a legitimate stack
 554 //   access or because of reading/writing non-exist memory (e.g. buffer
 555 //   overrun). As a rule, if the fault happens below current stack pointer,
 556 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 557 //   application (see Linux kernel fault.c).
 558 //
 559 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 560 //   stack overflow detection.
 561 //
 562 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 563 //   not use MAP_GROWSDOWN.
 564 //
 565 // To get around the problem and allow stack banging on Linux, we need to
 566 // manually expand thread stack after receiving the SIGSEGV.
 567 //
 568 // There are two ways to expand thread stack to address "bottom", we used
 569 // both of them in JVM before 1.5:
 570 //   1. adjust stack pointer first so that it is below "bottom", and then
 571 //      touch "bottom"
 572 //   2. mmap() the page in question
 573 //
 574 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 575 // if current sp is already near the lower end of page 101, and we need to
 576 // call mmap() to map page 100, it is possible that part of the mmap() frame
 577 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 578 // That will destroy the mmap() frame and cause VM to crash.
 579 //
 580 // The following code works by adjusting sp first, then accessing the "bottom"
 581 // page to force a page fault. Linux kernel will then automatically expand the
 582 // stack mapping.
 583 //
 584 // _expand_stack_to() assumes its frame size is less than page size, which
 585 // should always be true if the function is not inlined.
 586 
 587 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 588   #define NOINLINE
 589 #else
 590   #define NOINLINE __attribute__ ((noinline))
 591 #endif
 592 
 593 static void _expand_stack_to(address bottom) NOINLINE;
 594 
 595 static void _expand_stack_to(address bottom) {
 596   address sp;
 597   size_t size;
 598   volatile char *p;
 599 
 600   // Adjust bottom to point to the largest address within the same page, it
 601   // gives us a one-page buffer if alloca() allocates slightly more memory.
 602   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 603   bottom += os::Linux::page_size() - 1;
 604 
 605   // sp might be slightly above current stack pointer; if that's the case, we
 606   // will alloca() a little more space than necessary, which is OK. Don't use
 607   // os::current_stack_pointer(), as its result can be slightly below current
 608   // stack pointer, causing us to not alloca enough to reach "bottom".
 609   sp = (address)&sp;
 610 
 611   if (sp > bottom) {
 612     size = sp - bottom;
 613     p = (volatile char *)alloca(size);
 614     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 615     p[0] = '\0';
 616   }
 617 }
 618 
 619 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 620   assert(t!=NULL, "just checking");
 621   assert(t->osthread()->expanding_stack(), "expand should be set");
 622   assert(t->stack_base() != NULL, "stack_base was not initialized");
 623 
 624   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 625     sigset_t mask_all, old_sigset;
 626     sigfillset(&mask_all);
 627     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 628     _expand_stack_to(addr);
 629     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 630     return true;
 631   }
 632   return false;
 633 }
 634 
 635 //////////////////////////////////////////////////////////////////////////////
 636 // create new thread
 637 
 638 // Thread start routine for all newly created threads
 639 static void *java_start(Thread *thread) {
 640   // Try to randomize the cache line index of hot stack frames.
 641   // This helps when threads of the same stack traces evict each other's
 642   // cache lines. The threads can be either from the same JVM instance, or
 643   // from different JVM instances. The benefit is especially true for
 644   // processors with hyperthreading technology.
 645   static int counter = 0;
 646   int pid = os::current_process_id();
 647   alloca(((pid ^ counter++) & 7) * 128);
 648 
 649   ThreadLocalStorage::set_thread(thread);
 650 
 651   OSThread* osthread = thread->osthread();
 652   Monitor* sync = osthread->startThread_lock();
 653 
 654   osthread->set_thread_id(os::current_thread_id());
 655 
 656   if (UseNUMA) {
 657     int lgrp_id = os::numa_get_group_id();
 658     if (lgrp_id != -1) {
 659       thread->set_lgrp_id(lgrp_id);
 660     }
 661   }
 662   // initialize signal mask for this thread
 663   os::Linux::hotspot_sigmask(thread);
 664 
 665   // initialize floating point control register
 666   os::Linux::init_thread_fpu_state();
 667 
 668   // handshaking with parent thread
 669   {
 670     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 671 
 672     // notify parent thread
 673     osthread->set_state(INITIALIZED);
 674     sync->notify_all();
 675 
 676     // wait until os::start_thread()
 677     while (osthread->get_state() == INITIALIZED) {
 678       sync->wait(Mutex::_no_safepoint_check_flag);
 679     }
 680   }
 681 
 682   // call one more level start routine
 683   thread->run();
 684 
 685   return 0;
 686 }
 687 
 688 bool os::create_thread(Thread* thread, ThreadType thr_type,
 689                        size_t stack_size) {
 690   assert(thread->osthread() == NULL, "caller responsible");
 691 
 692   // Allocate the OSThread object
 693   OSThread* osthread = new OSThread(NULL, NULL);
 694   if (osthread == NULL) {
 695     return false;
 696   }
 697 
 698   // set the correct thread state
 699   osthread->set_thread_type(thr_type);
 700 
 701   // Initial state is ALLOCATED but not INITIALIZED
 702   osthread->set_state(ALLOCATED);
 703 
 704   thread->set_osthread(osthread);
 705 
 706   // init thread attributes
 707   pthread_attr_t attr;
 708   pthread_attr_init(&attr);
 709   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 710 
 711   // stack size
 712   // calculate stack size if it's not specified by caller
 713   if (stack_size == 0) {
 714     stack_size = os::Linux::default_stack_size(thr_type);
 715 
 716     switch (thr_type) {
 717     case os::java_thread:
 718       // Java threads use ThreadStackSize which default value can be
 719       // changed with the flag -Xss
 720       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 721       stack_size = JavaThread::stack_size_at_create();
 722       break;
 723     case os::compiler_thread:
 724       if (CompilerThreadStackSize > 0) {
 725         stack_size = (size_t)(CompilerThreadStackSize * K);
 726         break;
 727       } // else fall through:
 728         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 729     case os::vm_thread:
 730     case os::pgc_thread:
 731     case os::cgc_thread:
 732     case os::watcher_thread:
 733       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 734       break;
 735     }
 736   }
 737 
 738   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 739   pthread_attr_setstacksize(&attr, stack_size);
 740 
 741   // glibc guard page
 742   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 743 
 744   ThreadState state;
 745 
 746   {
 747     pthread_t tid;
 748     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 749 
 750     pthread_attr_destroy(&attr);
 751 
 752     if (ret != 0) {
 753       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 754         perror("pthread_create()");
 755       }
 756       // Need to clean up stuff we've allocated so far
 757       thread->set_osthread(NULL);
 758       delete osthread;
 759       return false;
 760     }
 761 
 762     // Store pthread info into the OSThread
 763     osthread->set_pthread_id(tid);
 764 
 765     // Wait until child thread is either initialized or aborted
 766     {
 767       Monitor* sync_with_child = osthread->startThread_lock();
 768       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 769       while ((state = osthread->get_state()) == ALLOCATED) {
 770         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 771       }
 772     }
 773   }
 774 
 775   // Aborted due to thread limit being reached
 776   if (state == ZOMBIE) {
 777     thread->set_osthread(NULL);
 778     delete osthread;
 779     return false;
 780   }
 781 
 782   // The thread is returned suspended (in state INITIALIZED),
 783   // and is started higher up in the call chain
 784   assert(state == INITIALIZED, "race condition");
 785   return true;
 786 }
 787 
 788 /////////////////////////////////////////////////////////////////////////////
 789 // attach existing thread
 790 
 791 // bootstrap the main thread
 792 bool os::create_main_thread(JavaThread* thread) {
 793   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 794   return create_attached_thread(thread);
 795 }
 796 
 797 bool os::create_attached_thread(JavaThread* thread) {
 798 #ifdef ASSERT
 799   thread->verify_not_published();
 800 #endif
 801 
 802   // Allocate the OSThread object
 803   OSThread* osthread = new OSThread(NULL, NULL);
 804 
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // Store pthread info into the OSThread
 810   osthread->set_thread_id(os::Linux::gettid());
 811   osthread->set_pthread_id(::pthread_self());
 812 
 813   // initialize floating point control register
 814   os::Linux::init_thread_fpu_state();
 815 
 816   // Initial thread state is RUNNABLE
 817   osthread->set_state(RUNNABLE);
 818 
 819   thread->set_osthread(osthread);
 820 
 821   if (UseNUMA) {
 822     int lgrp_id = os::numa_get_group_id();
 823     if (lgrp_id != -1) {
 824       thread->set_lgrp_id(lgrp_id);
 825     }
 826   }
 827 
 828   if (os::Linux::is_initial_thread()) {
 829     // If current thread is initial thread, its stack is mapped on demand,
 830     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 831     // the entire stack region to avoid SEGV in stack banging.
 832     // It is also useful to get around the heap-stack-gap problem on SuSE
 833     // kernel (see 4821821 for details). We first expand stack to the top
 834     // of yellow zone, then enable stack yellow zone (order is significant,
 835     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 836     // is no gap between the last two virtual memory regions.
 837 
 838     JavaThread *jt = (JavaThread *)thread;
 839     address addr = jt->stack_yellow_zone_base();
 840     assert(addr != NULL, "initialization problem?");
 841     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 842 
 843     osthread->set_expanding_stack();
 844     os::Linux::manually_expand_stack(jt, addr);
 845     osthread->clear_expanding_stack();
 846   }
 847 
 848   // initialize signal mask for this thread
 849   // and save the caller's signal mask
 850   os::Linux::hotspot_sigmask(thread);
 851 
 852   return true;
 853 }
 854 
 855 void os::pd_start_thread(Thread* thread) {
 856   OSThread * osthread = thread->osthread();
 857   assert(osthread->get_state() != INITIALIZED, "just checking");
 858   Monitor* sync_with_child = osthread->startThread_lock();
 859   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 860   sync_with_child->notify();
 861 }
 862 
 863 // Free Linux resources related to the OSThread
 864 void os::free_thread(OSThread* osthread) {
 865   assert(osthread != NULL, "osthread not set");
 866 
 867   if (Thread::current()->osthread() == osthread) {
 868     // Restore caller's signal mask
 869     sigset_t sigmask = osthread->caller_sigmask();
 870     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 871   }
 872 
 873   delete osthread;
 874 }
 875 
 876 //////////////////////////////////////////////////////////////////////////////
 877 // thread local storage
 878 
 879 // Restore the thread pointer if the destructor is called. This is in case
 880 // someone from JNI code sets up a destructor with pthread_key_create to run
 881 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 882 // will hang or crash. When detachCurrentThread is called the key will be set
 883 // to null and we will not be called again. If detachCurrentThread is never
 884 // called we could loop forever depending on the pthread implementation.
 885 static void restore_thread_pointer(void* p) {
 886   Thread* thread = (Thread*) p;
 887   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 888 }
 889 
 890 int os::allocate_thread_local_storage() {
 891   pthread_key_t key;
 892   int rslt = pthread_key_create(&key, restore_thread_pointer);
 893   assert(rslt == 0, "cannot allocate thread local storage");
 894   return (int)key;
 895 }
 896 
 897 // Note: This is currently not used by VM, as we don't destroy TLS key
 898 // on VM exit.
 899 void os::free_thread_local_storage(int index) {
 900   int rslt = pthread_key_delete((pthread_key_t)index);
 901   assert(rslt == 0, "invalid index");
 902 }
 903 
 904 void os::thread_local_storage_at_put(int index, void* value) {
 905   int rslt = pthread_setspecific((pthread_key_t)index, value);
 906   assert(rslt == 0, "pthread_setspecific failed");
 907 }
 908 
 909 extern "C" Thread* get_thread() {
 910   return ThreadLocalStorage::thread();
 911 }
 912 
 913 //////////////////////////////////////////////////////////////////////////////
 914 // initial thread
 915 
 916 // Check if current thread is the initial thread, similar to Solaris thr_main.
 917 bool os::Linux::is_initial_thread(void) {
 918   char dummy;
 919   // If called before init complete, thread stack bottom will be null.
 920   // Can be called if fatal error occurs before initialization.
 921   if (initial_thread_stack_bottom() == NULL) return false;
 922   assert(initial_thread_stack_bottom() != NULL &&
 923          initial_thread_stack_size()   != 0,
 924          "os::init did not locate initial thread's stack region");
 925   if ((address)&dummy >= initial_thread_stack_bottom() &&
 926       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 927     return true;
 928   } else {
 929     return false;
 930   }
 931 }
 932 
 933 // Find the virtual memory area that contains addr
 934 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 935   FILE *fp = fopen("/proc/self/maps", "r");
 936   if (fp) {
 937     address low, high;
 938     while (!feof(fp)) {
 939       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 940         if (low <= addr && addr < high) {
 941           if (vma_low)  *vma_low  = low;
 942           if (vma_high) *vma_high = high;
 943           fclose(fp);
 944           return true;
 945         }
 946       }
 947       for (;;) {
 948         int ch = fgetc(fp);
 949         if (ch == EOF || ch == (int)'\n') break;
 950       }
 951     }
 952     fclose(fp);
 953   }
 954   return false;
 955 }
 956 
 957 // Locate initial thread stack. This special handling of initial thread stack
 958 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 959 // bogus value for initial thread.
 960 void os::Linux::capture_initial_stack(size_t max_size) {
 961   // stack size is the easy part, get it from RLIMIT_STACK
 962   size_t stack_size;
 963   struct rlimit rlim;
 964   getrlimit(RLIMIT_STACK, &rlim);
 965   stack_size = rlim.rlim_cur;
 966 
 967   // 6308388: a bug in ld.so will relocate its own .data section to the
 968   //   lower end of primordial stack; reduce ulimit -s value a little bit
 969   //   so we won't install guard page on ld.so's data section.
 970   stack_size -= 2 * page_size();
 971 
 972   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 973   //   7.1, in both cases we will get 2G in return value.
 974   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 975   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 976   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 977   //   in case other parts in glibc still assumes 2M max stack size.
 978   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 979   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 980   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 981     stack_size = 2 * K * K IA64_ONLY(*2);
 982   }
 983   // Try to figure out where the stack base (top) is. This is harder.
 984   //
 985   // When an application is started, glibc saves the initial stack pointer in
 986   // a global variable "__libc_stack_end", which is then used by system
 987   // libraries. __libc_stack_end should be pretty close to stack top. The
 988   // variable is available since the very early days. However, because it is
 989   // a private interface, it could disappear in the future.
 990   //
 991   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 992   // to __libc_stack_end, it is very close to stack top, but isn't the real
 993   // stack top. Note that /proc may not exist if VM is running as a chroot
 994   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 995   // /proc/<pid>/stat could change in the future (though unlikely).
 996   //
 997   // We try __libc_stack_end first. If that doesn't work, look for
 998   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 999   // as a hint, which should work well in most cases.
1000 
1001   uintptr_t stack_start;
1002 
1003   // try __libc_stack_end first
1004   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1005   if (p && *p) {
1006     stack_start = *p;
1007   } else {
1008     // see if we can get the start_stack field from /proc/self/stat
1009     FILE *fp;
1010     int pid;
1011     char state;
1012     int ppid;
1013     int pgrp;
1014     int session;
1015     int nr;
1016     int tpgrp;
1017     unsigned long flags;
1018     unsigned long minflt;
1019     unsigned long cminflt;
1020     unsigned long majflt;
1021     unsigned long cmajflt;
1022     unsigned long utime;
1023     unsigned long stime;
1024     long cutime;
1025     long cstime;
1026     long prio;
1027     long nice;
1028     long junk;
1029     long it_real;
1030     uintptr_t start;
1031     uintptr_t vsize;
1032     intptr_t rss;
1033     uintptr_t rsslim;
1034     uintptr_t scodes;
1035     uintptr_t ecode;
1036     int i;
1037 
1038     // Figure what the primordial thread stack base is. Code is inspired
1039     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1040     // followed by command name surrounded by parentheses, state, etc.
1041     char stat[2048];
1042     int statlen;
1043 
1044     fp = fopen("/proc/self/stat", "r");
1045     if (fp) {
1046       statlen = fread(stat, 1, 2047, fp);
1047       stat[statlen] = '\0';
1048       fclose(fp);
1049 
1050       // Skip pid and the command string. Note that we could be dealing with
1051       // weird command names, e.g. user could decide to rename java launcher
1052       // to "java 1.4.2 :)", then the stat file would look like
1053       //                1234 (java 1.4.2 :)) R ... ...
1054       // We don't really need to know the command string, just find the last
1055       // occurrence of ")" and then start parsing from there. See bug 4726580.
1056       char * s = strrchr(stat, ')');
1057 
1058       i = 0;
1059       if (s) {
1060         // Skip blank chars
1061         do { s++; } while (s && isspace(*s));
1062 
1063 #define _UFM UINTX_FORMAT
1064 #define _DFM INTX_FORMAT
1065 
1066         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1067         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1068         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1069                    &state,          // 3  %c
1070                    &ppid,           // 4  %d
1071                    &pgrp,           // 5  %d
1072                    &session,        // 6  %d
1073                    &nr,             // 7  %d
1074                    &tpgrp,          // 8  %d
1075                    &flags,          // 9  %lu
1076                    &minflt,         // 10 %lu
1077                    &cminflt,        // 11 %lu
1078                    &majflt,         // 12 %lu
1079                    &cmajflt,        // 13 %lu
1080                    &utime,          // 14 %lu
1081                    &stime,          // 15 %lu
1082                    &cutime,         // 16 %ld
1083                    &cstime,         // 17 %ld
1084                    &prio,           // 18 %ld
1085                    &nice,           // 19 %ld
1086                    &junk,           // 20 %ld
1087                    &it_real,        // 21 %ld
1088                    &start,          // 22 UINTX_FORMAT
1089                    &vsize,          // 23 UINTX_FORMAT
1090                    &rss,            // 24 INTX_FORMAT
1091                    &rsslim,         // 25 UINTX_FORMAT
1092                    &scodes,         // 26 UINTX_FORMAT
1093                    &ecode,          // 27 UINTX_FORMAT
1094                    &stack_start);   // 28 UINTX_FORMAT
1095       }
1096 
1097 #undef _UFM
1098 #undef _DFM
1099 
1100       if (i != 28 - 2) {
1101         assert(false, "Bad conversion from /proc/self/stat");
1102         // product mode - assume we are the initial thread, good luck in the
1103         // embedded case.
1104         warning("Can't detect initial thread stack location - bad conversion");
1105         stack_start = (uintptr_t) &rlim;
1106       }
1107     } else {
1108       // For some reason we can't open /proc/self/stat (for example, running on
1109       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1110       // most cases, so don't abort:
1111       warning("Can't detect initial thread stack location - no /proc/self/stat");
1112       stack_start = (uintptr_t) &rlim;
1113     }
1114   }
1115 
1116   // Now we have a pointer (stack_start) very close to the stack top, the
1117   // next thing to do is to figure out the exact location of stack top. We
1118   // can find out the virtual memory area that contains stack_start by
1119   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1120   // and its upper limit is the real stack top. (again, this would fail if
1121   // running inside chroot, because /proc may not exist.)
1122 
1123   uintptr_t stack_top;
1124   address low, high;
1125   if (find_vma((address)stack_start, &low, &high)) {
1126     // success, "high" is the true stack top. (ignore "low", because initial
1127     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1128     stack_top = (uintptr_t)high;
1129   } else {
1130     // failed, likely because /proc/self/maps does not exist
1131     warning("Can't detect initial thread stack location - find_vma failed");
1132     // best effort: stack_start is normally within a few pages below the real
1133     // stack top, use it as stack top, and reduce stack size so we won't put
1134     // guard page outside stack.
1135     stack_top = stack_start;
1136     stack_size -= 16 * page_size();
1137   }
1138 
1139   // stack_top could be partially down the page so align it
1140   stack_top = align_size_up(stack_top, page_size());
1141 
1142   if (max_size && stack_size > max_size) {
1143     _initial_thread_stack_size = max_size;
1144   } else {
1145     _initial_thread_stack_size = stack_size;
1146   }
1147 
1148   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1149   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1150 }
1151 
1152 ////////////////////////////////////////////////////////////////////////////////
1153 // time support
1154 
1155 // Time since start-up in seconds to a fine granularity.
1156 // Used by VMSelfDestructTimer and the MemProfiler.
1157 double os::elapsedTime() {
1158 
1159   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1160 }
1161 
1162 jlong os::elapsed_counter() {
1163   return javaTimeNanos() - initial_time_count;
1164 }
1165 
1166 jlong os::elapsed_frequency() {
1167   return NANOSECS_PER_SEC; // nanosecond resolution
1168 }
1169 
1170 bool os::supports_vtime() { return true; }
1171 bool os::enable_vtime()   { return false; }
1172 bool os::vtime_enabled()  { return false; }
1173 
1174 double os::elapsedVTime() {
1175   struct rusage usage;
1176   int retval = getrusage(RUSAGE_THREAD, &usage);
1177   if (retval == 0) {
1178     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1179   } else {
1180     // better than nothing, but not much
1181     return elapsedTime();
1182   }
1183 }
1184 
1185 jlong os::javaTimeMillis() {
1186   timeval time;
1187   int status = gettimeofday(&time, NULL);
1188   assert(status != -1, "linux error");
1189   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1190 }
1191 
1192 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1193   timeval time;
1194   int status = gettimeofday(&time, NULL);
1195   assert(status != -1, "linux error");
1196   seconds = jlong(time.tv_sec);
1197   nanos = jlong(time.tv_usec) * 1000;
1198 }
1199 
1200 
1201 #ifndef CLOCK_MONOTONIC
1202   #define CLOCK_MONOTONIC (1)
1203 #endif
1204 
1205 void os::Linux::clock_init() {
1206   // we do dlopen's in this particular order due to bug in linux
1207   // dynamical loader (see 6348968) leading to crash on exit
1208   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1209   if (handle == NULL) {
1210     handle = dlopen("librt.so", RTLD_LAZY);
1211   }
1212 
1213   if (handle) {
1214     int (*clock_getres_func)(clockid_t, struct timespec*) =
1215            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1216     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1217            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1218     if (clock_getres_func && clock_gettime_func) {
1219       // See if monotonic clock is supported by the kernel. Note that some
1220       // early implementations simply return kernel jiffies (updated every
1221       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1222       // for nano time (though the monotonic property is still nice to have).
1223       // It's fixed in newer kernels, however clock_getres() still returns
1224       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1225       // resolution for now. Hopefully as people move to new kernels, this
1226       // won't be a problem.
1227       struct timespec res;
1228       struct timespec tp;
1229       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1230           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1231         // yes, monotonic clock is supported
1232         _clock_gettime = clock_gettime_func;
1233         return;
1234       } else {
1235         // close librt if there is no monotonic clock
1236         dlclose(handle);
1237       }
1238     }
1239   }
1240   warning("No monotonic clock was available - timed services may " \
1241           "be adversely affected if the time-of-day clock changes");
1242 }
1243 
1244 #ifndef SYS_clock_getres
1245   #if defined(IA32) || defined(AMD64)
1246     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1247     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1248   #else
1249     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1250     #define sys_clock_getres(x,y)  -1
1251   #endif
1252 #else
1253   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1254 #endif
1255 
1256 void os::Linux::fast_thread_clock_init() {
1257   if (!UseLinuxPosixThreadCPUClocks) {
1258     return;
1259   }
1260   clockid_t clockid;
1261   struct timespec tp;
1262   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1263       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1264 
1265   // Switch to using fast clocks for thread cpu time if
1266   // the sys_clock_getres() returns 0 error code.
1267   // Note, that some kernels may support the current thread
1268   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1269   // returned by the pthread_getcpuclockid().
1270   // If the fast Posix clocks are supported then the sys_clock_getres()
1271   // must return at least tp.tv_sec == 0 which means a resolution
1272   // better than 1 sec. This is extra check for reliability.
1273 
1274   if (pthread_getcpuclockid_func &&
1275       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1276       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1277     _supports_fast_thread_cpu_time = true;
1278     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1279   }
1280 }
1281 
1282 jlong os::javaTimeNanos() {
1283   if (os::supports_monotonic_clock()) {
1284     struct timespec tp;
1285     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1286     assert(status == 0, "gettime error");
1287     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1288     return result;
1289   } else {
1290     timeval time;
1291     int status = gettimeofday(&time, NULL);
1292     assert(status != -1, "linux error");
1293     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1294     return 1000 * usecs;
1295   }
1296 }
1297 
1298 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1299   if (os::supports_monotonic_clock()) {
1300     info_ptr->max_value = ALL_64_BITS;
1301 
1302     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1303     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1304     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1305   } else {
1306     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1307     info_ptr->max_value = ALL_64_BITS;
1308 
1309     // gettimeofday is a real time clock so it skips
1310     info_ptr->may_skip_backward = true;
1311     info_ptr->may_skip_forward = true;
1312   }
1313 
1314   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1315 }
1316 
1317 // Return the real, user, and system times in seconds from an
1318 // arbitrary fixed point in the past.
1319 bool os::getTimesSecs(double* process_real_time,
1320                       double* process_user_time,
1321                       double* process_system_time) {
1322   struct tms ticks;
1323   clock_t real_ticks = times(&ticks);
1324 
1325   if (real_ticks == (clock_t) (-1)) {
1326     return false;
1327   } else {
1328     double ticks_per_second = (double) clock_tics_per_sec;
1329     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1330     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1331     *process_real_time = ((double) real_ticks) / ticks_per_second;
1332 
1333     return true;
1334   }
1335 }
1336 
1337 
1338 char * os::local_time_string(char *buf, size_t buflen) {
1339   struct tm t;
1340   time_t long_time;
1341   time(&long_time);
1342   localtime_r(&long_time, &t);
1343   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1344                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1345                t.tm_hour, t.tm_min, t.tm_sec);
1346   return buf;
1347 }
1348 
1349 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1350   return localtime_r(clock, res);
1351 }
1352 
1353 ////////////////////////////////////////////////////////////////////////////////
1354 // runtime exit support
1355 
1356 // Note: os::shutdown() might be called very early during initialization, or
1357 // called from signal handler. Before adding something to os::shutdown(), make
1358 // sure it is async-safe and can handle partially initialized VM.
1359 void os::shutdown() {
1360 
1361   // allow PerfMemory to attempt cleanup of any persistent resources
1362   perfMemory_exit();
1363 
1364   // needs to remove object in file system
1365   AttachListener::abort();
1366 
1367   // flush buffered output, finish log files
1368   ostream_abort();
1369 
1370   // Check for abort hook
1371   abort_hook_t abort_hook = Arguments::abort_hook();
1372   if (abort_hook != NULL) {
1373     abort_hook();
1374   }
1375 
1376 }
1377 
1378 // Note: os::abort() might be called very early during initialization, or
1379 // called from signal handler. Before adding something to os::abort(), make
1380 // sure it is async-safe and can handle partially initialized VM.
1381 void os::abort(bool dump_core, void* siginfo, void* context) {
1382   os::shutdown();
1383   if (dump_core) {
1384 #ifndef PRODUCT
1385     fdStream out(defaultStream::output_fd());
1386     out.print_raw("Current thread is ");
1387     char buf[16];
1388     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1389     out.print_raw_cr(buf);
1390     out.print_raw_cr("Dumping core ...");
1391 #endif
1392     ::abort(); // dump core
1393   }
1394 
1395   ::exit(1);
1396 }
1397 
1398 // Die immediately, no exit hook, no abort hook, no cleanup.
1399 void os::die() {
1400   ::abort();
1401 }
1402 
1403 
1404 // This method is a copy of JDK's sysGetLastErrorString
1405 // from src/solaris/hpi/src/system_md.c
1406 
1407 size_t os::lasterror(char *buf, size_t len) {
1408   if (errno == 0)  return 0;
1409 
1410   const char *s = ::strerror(errno);
1411   size_t n = ::strlen(s);
1412   if (n >= len) {
1413     n = len - 1;
1414   }
1415   ::strncpy(buf, s, n);
1416   buf[n] = '\0';
1417   return n;
1418 }
1419 
1420 // thread_id is kernel thread id (similar to Solaris LWP id)
1421 intx os::current_thread_id() { return os::Linux::gettid(); }
1422 int os::current_process_id() {
1423   return ::getpid();
1424 }
1425 
1426 // DLL functions
1427 
1428 const char* os::dll_file_extension() { return ".so"; }
1429 
1430 // This must be hard coded because it's the system's temporary
1431 // directory not the java application's temp directory, ala java.io.tmpdir.
1432 const char* os::get_temp_directory() { return "/tmp"; }
1433 
1434 static bool file_exists(const char* filename) {
1435   struct stat statbuf;
1436   if (filename == NULL || strlen(filename) == 0) {
1437     return false;
1438   }
1439   return os::stat(filename, &statbuf) == 0;
1440 }
1441 
1442 bool os::dll_build_name(char* buffer, size_t buflen,
1443                         const char* pname, const char* fname) {
1444   bool retval = false;
1445   // Copied from libhpi
1446   const size_t pnamelen = pname ? strlen(pname) : 0;
1447 
1448   // Return error on buffer overflow.
1449   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1450     return retval;
1451   }
1452 
1453   if (pnamelen == 0) {
1454     snprintf(buffer, buflen, "lib%s.so", fname);
1455     retval = true;
1456   } else if (strchr(pname, *os::path_separator()) != NULL) {
1457     int n;
1458     char** pelements = split_path(pname, &n);
1459     if (pelements == NULL) {
1460       return false;
1461     }
1462     for (int i = 0; i < n; i++) {
1463       // Really shouldn't be NULL, but check can't hurt
1464       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1465         continue; // skip the empty path values
1466       }
1467       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1468       if (file_exists(buffer)) {
1469         retval = true;
1470         break;
1471       }
1472     }
1473     // release the storage
1474     for (int i = 0; i < n; i++) {
1475       if (pelements[i] != NULL) {
1476         FREE_C_HEAP_ARRAY(char, pelements[i]);
1477       }
1478     }
1479     if (pelements != NULL) {
1480       FREE_C_HEAP_ARRAY(char*, pelements);
1481     }
1482   } else {
1483     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1484     retval = true;
1485   }
1486   return retval;
1487 }
1488 
1489 // check if addr is inside libjvm.so
1490 bool os::address_is_in_vm(address addr) {
1491   static address libjvm_base_addr;
1492   Dl_info dlinfo;
1493 
1494   if (libjvm_base_addr == NULL) {
1495     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1496       libjvm_base_addr = (address)dlinfo.dli_fbase;
1497     }
1498     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1499   }
1500 
1501   if (dladdr((void *)addr, &dlinfo) != 0) {
1502     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1503   }
1504 
1505   return false;
1506 }
1507 
1508 bool os::dll_address_to_function_name(address addr, char *buf,
1509                                       int buflen, int *offset,
1510                                       bool demangle) {
1511   // buf is not optional, but offset is optional
1512   assert(buf != NULL, "sanity check");
1513 
1514   Dl_info dlinfo;
1515 
1516   if (dladdr((void*)addr, &dlinfo) != 0) {
1517     // see if we have a matching symbol
1518     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1519       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1520         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1521       }
1522       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1523       return true;
1524     }
1525     // no matching symbol so try for just file info
1526     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1527       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1528                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1529         return true;
1530       }
1531     }
1532   }
1533 
1534   buf[0] = '\0';
1535   if (offset != NULL) *offset = -1;
1536   return false;
1537 }
1538 
1539 struct _address_to_library_name {
1540   address addr;          // input : memory address
1541   size_t  buflen;        //         size of fname
1542   char*   fname;         // output: library name
1543   address base;          //         library base addr
1544 };
1545 
1546 static int address_to_library_name_callback(struct dl_phdr_info *info,
1547                                             size_t size, void *data) {
1548   int i;
1549   bool found = false;
1550   address libbase = NULL;
1551   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1552 
1553   // iterate through all loadable segments
1554   for (i = 0; i < info->dlpi_phnum; i++) {
1555     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1556     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1557       // base address of a library is the lowest address of its loaded
1558       // segments.
1559       if (libbase == NULL || libbase > segbase) {
1560         libbase = segbase;
1561       }
1562       // see if 'addr' is within current segment
1563       if (segbase <= d->addr &&
1564           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1565         found = true;
1566       }
1567     }
1568   }
1569 
1570   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1571   // so dll_address_to_library_name() can fall through to use dladdr() which
1572   // can figure out executable name from argv[0].
1573   if (found && info->dlpi_name && info->dlpi_name[0]) {
1574     d->base = libbase;
1575     if (d->fname) {
1576       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1577     }
1578     return 1;
1579   }
1580   return 0;
1581 }
1582 
1583 bool os::dll_address_to_library_name(address addr, char* buf,
1584                                      int buflen, int* offset) {
1585   // buf is not optional, but offset is optional
1586   assert(buf != NULL, "sanity check");
1587 
1588   Dl_info dlinfo;
1589   struct _address_to_library_name data;
1590 
1591   // There is a bug in old glibc dladdr() implementation that it could resolve
1592   // to wrong library name if the .so file has a base address != NULL. Here
1593   // we iterate through the program headers of all loaded libraries to find
1594   // out which library 'addr' really belongs to. This workaround can be
1595   // removed once the minimum requirement for glibc is moved to 2.3.x.
1596   data.addr = addr;
1597   data.fname = buf;
1598   data.buflen = buflen;
1599   data.base = NULL;
1600   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1601 
1602   if (rslt) {
1603     // buf already contains library name
1604     if (offset) *offset = addr - data.base;
1605     return true;
1606   }
1607   if (dladdr((void*)addr, &dlinfo) != 0) {
1608     if (dlinfo.dli_fname != NULL) {
1609       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1610     }
1611     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1612       *offset = addr - (address)dlinfo.dli_fbase;
1613     }
1614     return true;
1615   }
1616 
1617   buf[0] = '\0';
1618   if (offset) *offset = -1;
1619   return false;
1620 }
1621 
1622 // Loads .dll/.so and
1623 // in case of error it checks if .dll/.so was built for the
1624 // same architecture as Hotspot is running on
1625 
1626 
1627 // Remember the stack's state. The Linux dynamic linker will change
1628 // the stack to 'executable' at most once, so we must safepoint only once.
1629 bool os::Linux::_stack_is_executable = false;
1630 
1631 // VM operation that loads a library.  This is necessary if stack protection
1632 // of the Java stacks can be lost during loading the library.  If we
1633 // do not stop the Java threads, they can stack overflow before the stacks
1634 // are protected again.
1635 class VM_LinuxDllLoad: public VM_Operation {
1636  private:
1637   const char *_filename;
1638   char *_ebuf;
1639   int _ebuflen;
1640   void *_lib;
1641  public:
1642   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1643     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1644   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1645   void doit() {
1646     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1647     os::Linux::_stack_is_executable = true;
1648   }
1649   void* loaded_library() { return _lib; }
1650 };
1651 
1652 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1653   void * result = NULL;
1654   bool load_attempted = false;
1655 
1656   // Check whether the library to load might change execution rights
1657   // of the stack. If they are changed, the protection of the stack
1658   // guard pages will be lost. We need a safepoint to fix this.
1659   //
1660   // See Linux man page execstack(8) for more info.
1661   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1662     ElfFile ef(filename);
1663     if (!ef.specifies_noexecstack()) {
1664       if (!is_init_completed()) {
1665         os::Linux::_stack_is_executable = true;
1666         // This is OK - No Java threads have been created yet, and hence no
1667         // stack guard pages to fix.
1668         //
1669         // This should happen only when you are building JDK7 using a very
1670         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1671         //
1672         // Dynamic loader will make all stacks executable after
1673         // this function returns, and will not do that again.
1674         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1675       } else {
1676         warning("You have loaded library %s which might have disabled stack guard. "
1677                 "The VM will try to fix the stack guard now.\n"
1678                 "It's highly recommended that you fix the library with "
1679                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1680                 filename);
1681 
1682         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1683         JavaThread *jt = JavaThread::current();
1684         if (jt->thread_state() != _thread_in_native) {
1685           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1686           // that requires ExecStack. Cannot enter safe point. Let's give up.
1687           warning("Unable to fix stack guard. Giving up.");
1688         } else {
1689           if (!LoadExecStackDllInVMThread) {
1690             // This is for the case where the DLL has an static
1691             // constructor function that executes JNI code. We cannot
1692             // load such DLLs in the VMThread.
1693             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1694           }
1695 
1696           ThreadInVMfromNative tiv(jt);
1697           debug_only(VMNativeEntryWrapper vew;)
1698 
1699           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1700           VMThread::execute(&op);
1701           if (LoadExecStackDllInVMThread) {
1702             result = op.loaded_library();
1703           }
1704           load_attempted = true;
1705         }
1706       }
1707     }
1708   }
1709 
1710   if (!load_attempted) {
1711     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1712   }
1713 
1714   if (result != NULL) {
1715     // Successful loading
1716     return result;
1717   }
1718 
1719   Elf32_Ehdr elf_head;
1720   int diag_msg_max_length=ebuflen-strlen(ebuf);
1721   char* diag_msg_buf=ebuf+strlen(ebuf);
1722 
1723   if (diag_msg_max_length==0) {
1724     // No more space in ebuf for additional diagnostics message
1725     return NULL;
1726   }
1727 
1728 
1729   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1730 
1731   if (file_descriptor < 0) {
1732     // Can't open library, report dlerror() message
1733     return NULL;
1734   }
1735 
1736   bool failed_to_read_elf_head=
1737     (sizeof(elf_head)!=
1738      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1739 
1740   ::close(file_descriptor);
1741   if (failed_to_read_elf_head) {
1742     // file i/o error - report dlerror() msg
1743     return NULL;
1744   }
1745 
1746   typedef struct {
1747     Elf32_Half  code;         // Actual value as defined in elf.h
1748     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1749     char        elf_class;    // 32 or 64 bit
1750     char        endianess;    // MSB or LSB
1751     char*       name;         // String representation
1752   } arch_t;
1753 
1754 #ifndef EM_486
1755   #define EM_486          6               /* Intel 80486 */
1756 #endif
1757 #ifndef EM_AARCH64
1758   #define EM_AARCH64    183               /* ARM AARCH64 */
1759 #endif
1760 
1761   static const arch_t arch_array[]={
1762     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1763     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1764     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1765     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1766     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1767     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1768     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1769     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1770 #if defined(VM_LITTLE_ENDIAN)
1771     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1772 #else
1773     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1774 #endif
1775     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1776     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1777     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1778     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1779     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1780     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1781     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1782     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1783   };
1784 
1785 #if  (defined IA32)
1786   static  Elf32_Half running_arch_code=EM_386;
1787 #elif   (defined AMD64)
1788   static  Elf32_Half running_arch_code=EM_X86_64;
1789 #elif  (defined IA64)
1790   static  Elf32_Half running_arch_code=EM_IA_64;
1791 #elif  (defined __sparc) && (defined _LP64)
1792   static  Elf32_Half running_arch_code=EM_SPARCV9;
1793 #elif  (defined __sparc) && (!defined _LP64)
1794   static  Elf32_Half running_arch_code=EM_SPARC;
1795 #elif  (defined __powerpc64__)
1796   static  Elf32_Half running_arch_code=EM_PPC64;
1797 #elif  (defined __powerpc__)
1798   static  Elf32_Half running_arch_code=EM_PPC;
1799 #elif  (defined ARM)
1800   static  Elf32_Half running_arch_code=EM_ARM;
1801 #elif  (defined S390)
1802   static  Elf32_Half running_arch_code=EM_S390;
1803 #elif  (defined ALPHA)
1804   static  Elf32_Half running_arch_code=EM_ALPHA;
1805 #elif  (defined MIPSEL)
1806   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1807 #elif  (defined PARISC)
1808   static  Elf32_Half running_arch_code=EM_PARISC;
1809 #elif  (defined MIPS)
1810   static  Elf32_Half running_arch_code=EM_MIPS;
1811 #elif  (defined M68K)
1812   static  Elf32_Half running_arch_code=EM_68K;
1813 #elif  (defined AARCH64)
1814   static  Elf32_Half running_arch_code=EM_AARCH64;
1815 #else
1816     #error Method os::dll_load requires that one of following is defined:\
1817          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1818 #endif
1819 
1820   // Identify compatability class for VM's architecture and library's architecture
1821   // Obtain string descriptions for architectures
1822 
1823   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1824   int running_arch_index=-1;
1825 
1826   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1827     if (running_arch_code == arch_array[i].code) {
1828       running_arch_index    = i;
1829     }
1830     if (lib_arch.code == arch_array[i].code) {
1831       lib_arch.compat_class = arch_array[i].compat_class;
1832       lib_arch.name         = arch_array[i].name;
1833     }
1834   }
1835 
1836   assert(running_arch_index != -1,
1837          "Didn't find running architecture code (running_arch_code) in arch_array");
1838   if (running_arch_index == -1) {
1839     // Even though running architecture detection failed
1840     // we may still continue with reporting dlerror() message
1841     return NULL;
1842   }
1843 
1844   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1845     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1846     return NULL;
1847   }
1848 
1849 #ifndef S390
1850   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1851     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1852     return NULL;
1853   }
1854 #endif // !S390
1855 
1856   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1857     if (lib_arch.name!=NULL) {
1858       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1859                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1860                  lib_arch.name, arch_array[running_arch_index].name);
1861     } else {
1862       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1863                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1864                  lib_arch.code,
1865                  arch_array[running_arch_index].name);
1866     }
1867   }
1868 
1869   return NULL;
1870 }
1871 
1872 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1873                                 int ebuflen) {
1874   void * result = ::dlopen(filename, RTLD_LAZY);
1875   if (result == NULL) {
1876     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1877     ebuf[ebuflen-1] = '\0';
1878   }
1879   return result;
1880 }
1881 
1882 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1883                                        int ebuflen) {
1884   void * result = NULL;
1885   if (LoadExecStackDllInVMThread) {
1886     result = dlopen_helper(filename, ebuf, ebuflen);
1887   }
1888 
1889   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1890   // library that requires an executable stack, or which does not have this
1891   // stack attribute set, dlopen changes the stack attribute to executable. The
1892   // read protection of the guard pages gets lost.
1893   //
1894   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1895   // may have been queued at the same time.
1896 
1897   if (!_stack_is_executable) {
1898     JavaThread *jt = Threads::first();
1899 
1900     while (jt) {
1901       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1902           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1903         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1904                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1905           warning("Attempt to reguard stack yellow zone failed.");
1906         }
1907       }
1908       jt = jt->next();
1909     }
1910   }
1911 
1912   return result;
1913 }
1914 
1915 void* os::dll_lookup(void* handle, const char* name) {
1916   void* res = dlsym(handle, name);
1917   return res;
1918 }
1919 
1920 void* os::get_default_process_handle() {
1921   return (void*)::dlopen(NULL, RTLD_LAZY);
1922 }
1923 
1924 static bool _print_ascii_file(const char* filename, outputStream* st) {
1925   int fd = ::open(filename, O_RDONLY);
1926   if (fd == -1) {
1927     return false;
1928   }
1929 
1930   char buf[32];
1931   int bytes;
1932   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1933     st->print_raw(buf, bytes);
1934   }
1935 
1936   ::close(fd);
1937 
1938   return true;
1939 }
1940 
1941 void os::print_dll_info(outputStream *st) {
1942   st->print_cr("Dynamic libraries:");
1943 
1944   char fname[32];
1945   pid_t pid = os::Linux::gettid();
1946 
1947   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1948 
1949   if (!_print_ascii_file(fname, st)) {
1950     st->print("Can not get library information for pid = %d\n", pid);
1951   }
1952 }
1953 
1954 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1955   FILE *procmapsFile = NULL;
1956 
1957   // Open the procfs maps file for the current process
1958   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1959     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1960     char line[PATH_MAX + 100];
1961 
1962     // Read line by line from 'file'
1963     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1964       u8 base, top, offset, inode;
1965       char permissions[5];
1966       char device[6];
1967       char name[PATH_MAX + 1];
1968 
1969       // Parse fields from line
1970       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1971              &base, &top, permissions, &offset, device, &inode, name);
1972 
1973       // Filter by device id '00:00' so that we only get file system mapped files.
1974       if (strcmp(device, "00:00") != 0) {
1975 
1976         // Call callback with the fields of interest
1977         if(callback(name, (address)base, (address)top, param)) {
1978           // Oops abort, callback aborted
1979           fclose(procmapsFile);
1980           return 1;
1981         }
1982       }
1983     }
1984     fclose(procmapsFile);
1985   }
1986   return 0;
1987 }
1988 
1989 void os::print_os_info_brief(outputStream* st) {
1990   os::Linux::print_distro_info(st);
1991 
1992   os::Posix::print_uname_info(st);
1993 
1994   os::Linux::print_libversion_info(st);
1995 
1996 }
1997 
1998 void os::print_os_info(outputStream* st) {
1999   st->print("OS:");
2000 
2001   os::Linux::print_distro_info(st);
2002 
2003   os::Posix::print_uname_info(st);
2004 
2005   // Print warning if unsafe chroot environment detected
2006   if (unsafe_chroot_detected) {
2007     st->print("WARNING!! ");
2008     st->print_cr("%s", unstable_chroot_error);
2009   }
2010 
2011   os::Linux::print_libversion_info(st);
2012 
2013   os::Posix::print_rlimit_info(st);
2014 
2015   os::Posix::print_load_average(st);
2016 
2017   os::Linux::print_full_memory_info(st);
2018 }
2019 
2020 // Try to identify popular distros.
2021 // Most Linux distributions have a /etc/XXX-release file, which contains
2022 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2023 // file that also contains the OS version string. Some have more than one
2024 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2025 // /etc/redhat-release.), so the order is important.
2026 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2027 // their own specific XXX-release file as well as a redhat-release file.
2028 // Because of this the XXX-release file needs to be searched for before the
2029 // redhat-release file.
2030 // Since Red Hat has a lsb-release file that is not very descriptive the
2031 // search for redhat-release needs to be before lsb-release.
2032 // Since the lsb-release file is the new standard it needs to be searched
2033 // before the older style release files.
2034 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2035 // next to last resort.  The os-release file is a new standard that contains
2036 // distribution information and the system-release file seems to be an old
2037 // standard that has been replaced by the lsb-release and os-release files.
2038 // Searching for the debian_version file is the last resort.  It contains
2039 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2040 // "Debian " is printed before the contents of the debian_version file.
2041 
2042 const char* distro_files[] = {
2043   "/etc/oracle-release",
2044   "/etc/mandriva-release",
2045   "/etc/mandrake-release",
2046   "/etc/sun-release",
2047   "/etc/redhat-release",
2048   "/etc/lsb-release",
2049   "/etc/SuSE-release",
2050   "/etc/turbolinux-release",
2051   "/etc/gentoo-release",
2052   "/etc/ltib-release",
2053   "/etc/angstrom-version",
2054   "/etc/system-release",
2055   "/etc/os-release",
2056   NULL };
2057 
2058 void os::Linux::print_distro_info(outputStream* st) {
2059   for (int i = 0;; i++) {
2060     const char* file = distro_files[i];
2061     if (file == NULL) {
2062       break;  // done
2063     }
2064     // If file prints, we found it.
2065     if (_print_ascii_file(file, st)) {
2066       return;
2067     }
2068   }
2069 
2070   if (file_exists("/etc/debian_version")) {
2071     st->print("Debian ");
2072     _print_ascii_file("/etc/debian_version", st);
2073   } else {
2074     st->print("Linux");
2075   }
2076   st->cr();
2077 }
2078 
2079 static void parse_os_info(char* distro, size_t length, const char* file) {
2080   FILE* fp = fopen(file, "r");
2081   if (fp != NULL) {
2082     char buf[256];
2083     // get last line of the file.
2084     while (fgets(buf, sizeof(buf), fp)) { }
2085     // Edit out extra stuff in expected ubuntu format
2086     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2087       char* ptr = strstr(buf, "\"");  // the name is in quotes
2088       if (ptr != NULL) {
2089         ptr++; // go beyond first quote
2090         char* nl = strchr(ptr, '\"');
2091         if (nl != NULL) *nl = '\0';
2092         strncpy(distro, ptr, length);
2093       } else {
2094         ptr = strstr(buf, "=");
2095         ptr++; // go beyond equals then
2096         char* nl = strchr(ptr, '\n');
2097         if (nl != NULL) *nl = '\0';
2098         strncpy(distro, ptr, length);
2099       }
2100     } else {
2101       // if not in expected Ubuntu format, print out whole line minus \n
2102       char* nl = strchr(buf, '\n');
2103       if (nl != NULL) *nl = '\0';
2104       strncpy(distro, buf, length);
2105     }
2106     // close distro file
2107     fclose(fp);
2108   }
2109 }
2110 
2111 void os::get_summary_os_info(char* buf, size_t buflen) {
2112   for (int i = 0;; i++) {
2113     const char* file = distro_files[i];
2114     if (file == NULL) {
2115       break; // ran out of distro_files
2116     }
2117     if (file_exists(file)) {
2118       parse_os_info(buf, buflen, file);
2119       return;
2120     }
2121   }
2122   // special case for debian
2123   if (file_exists("/etc/debian_version")) {
2124     strncpy(buf, "Debian ", buflen);
2125     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2126   } else {
2127     strncpy(buf, "Linux", buflen);
2128   }
2129 }
2130 
2131 void os::Linux::print_libversion_info(outputStream* st) {
2132   // libc, pthread
2133   st->print("libc:");
2134   st->print("%s ", os::Linux::glibc_version());
2135   st->print("%s ", os::Linux::libpthread_version());
2136   st->cr();
2137 }
2138 
2139 void os::Linux::print_full_memory_info(outputStream* st) {
2140   st->print("\n/proc/meminfo:\n");
2141   _print_ascii_file("/proc/meminfo", st);
2142   st->cr();
2143 }
2144 
2145 void os::print_memory_info(outputStream* st) {
2146 
2147   st->print("Memory:");
2148   st->print(" %dk page", os::vm_page_size()>>10);
2149 
2150   // values in struct sysinfo are "unsigned long"
2151   struct sysinfo si;
2152   sysinfo(&si);
2153 
2154   st->print(", physical " UINT64_FORMAT "k",
2155             os::physical_memory() >> 10);
2156   st->print("(" UINT64_FORMAT "k free)",
2157             os::available_memory() >> 10);
2158   st->print(", swap " UINT64_FORMAT "k",
2159             ((jlong)si.totalswap * si.mem_unit) >> 10);
2160   st->print("(" UINT64_FORMAT "k free)",
2161             ((jlong)si.freeswap * si.mem_unit) >> 10);
2162   st->cr();
2163 }
2164 
2165 // Print the first "model name" line and the first "flags" line
2166 // that we find and nothing more. We assume "model name" comes
2167 // before "flags" so if we find a second "model name", then the
2168 // "flags" field is considered missing.
2169 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2170 #if defined(IA32) || defined(AMD64)
2171   // Other platforms have less repetitive cpuinfo files
2172   FILE *fp = fopen("/proc/cpuinfo", "r");
2173   if (fp) {
2174     while (!feof(fp)) {
2175       if (fgets(buf, buflen, fp)) {
2176         // Assume model name comes before flags
2177         bool model_name_printed = false;
2178         if (strstr(buf, "model name") != NULL) {
2179           if (!model_name_printed) {
2180             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2181             st->print_raw(buf);
2182             model_name_printed = true;
2183           } else {
2184             // model name printed but not flags?  Odd, just return
2185             fclose(fp);
2186             return true;
2187           }
2188         }
2189         // print the flags line too
2190         if (strstr(buf, "flags") != NULL) {
2191           st->print_raw(buf);
2192           fclose(fp);
2193           return true;
2194         }
2195       }
2196     }
2197     fclose(fp);
2198   }
2199 #endif // x86 platforms
2200   return false;
2201 }
2202 
2203 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2204   // Only print the model name if the platform provides this as a summary
2205   if (!print_model_name_and_flags(st, buf, buflen)) {
2206     st->print("\n/proc/cpuinfo:\n");
2207     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2208       st->print_cr("  <Not Available>");
2209     }
2210   }
2211 }
2212 
2213 #if defined(AMD64) || defined(IA32) || defined(X32)
2214 const char* search_string = "model name";
2215 #elif defined(SPARC)
2216 const char* search_string = "cpu";
2217 #else
2218 const char* search_string = "Processor";
2219 #endif
2220 
2221 // Parses the cpuinfo file for string representing the model name.
2222 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2223   FILE* fp = fopen("/proc/cpuinfo", "r");
2224   if (fp != NULL) {
2225     while (!feof(fp)) {
2226       char buf[256];
2227       if (fgets(buf, sizeof(buf), fp)) {
2228         char* start = strstr(buf, search_string);
2229         if (start != NULL) {
2230           char *ptr = start + strlen(search_string);
2231           char *end = buf + strlen(buf);
2232           while (ptr != end) {
2233              // skip whitespace and colon for the rest of the name.
2234              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2235                break;
2236              }
2237              ptr++;
2238           }
2239           if (ptr != end) {
2240             // reasonable string, get rid of newline and keep the rest
2241             char* nl = strchr(buf, '\n');
2242             if (nl != NULL) *nl = '\0';
2243             strncpy(cpuinfo, ptr, length);
2244             fclose(fp);
2245             return;
2246           }
2247         }
2248       }
2249     }
2250     fclose(fp);
2251   }
2252   // cpuinfo not found or parsing failed, just print generic string.  The entire
2253   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2254 #if defined(AMD64)
2255   strncpy(cpuinfo, "x86_64", length);
2256 #elif defined(IA32)
2257   strncpy(cpuinfo, "x86_32", length);
2258 #elif defined(IA64)
2259   strncpy(cpuinfo, "IA64", length);
2260 #elif defined(SPARC)
2261   strncpy(cpuinfo, "sparcv9", length);
2262 #elif defined(AARCH64)
2263   strncpy(cpuinfo, "AArch64", length);
2264 #elif defined(ARM)
2265   strncpy(cpuinfo, "ARM", length);
2266 #elif defined(PPC)
2267   strncpy(cpuinfo, "PPC64", length);
2268 #elif defined(ZERO_LIBARCH)
2269   strncpy(cpuinfo, ZERO_LIBARCH, length);
2270 #else
2271   strncpy(cpuinfo, "unknown", length);
2272 #endif
2273 }
2274 
2275 void os::print_siginfo(outputStream* st, void* siginfo) {
2276   const siginfo_t* si = (const siginfo_t*)siginfo;
2277 
2278   os::Posix::print_siginfo_brief(st, si);
2279 #if INCLUDE_CDS
2280   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2281       UseSharedSpaces) {
2282     FileMapInfo* mapinfo = FileMapInfo::current_info();
2283     if (mapinfo->is_in_shared_space(si->si_addr)) {
2284       st->print("\n\nError accessing class data sharing archive."   \
2285                 " Mapped file inaccessible during execution, "      \
2286                 " possible disk/network problem.");
2287     }
2288   }
2289 #endif
2290   st->cr();
2291 }
2292 
2293 
2294 static void print_signal_handler(outputStream* st, int sig,
2295                                  char* buf, size_t buflen);
2296 
2297 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2298   st->print_cr("Signal Handlers:");
2299   print_signal_handler(st, SIGSEGV, buf, buflen);
2300   print_signal_handler(st, SIGBUS , buf, buflen);
2301   print_signal_handler(st, SIGFPE , buf, buflen);
2302   print_signal_handler(st, SIGPIPE, buf, buflen);
2303   print_signal_handler(st, SIGXFSZ, buf, buflen);
2304   print_signal_handler(st, SIGILL , buf, buflen);
2305   print_signal_handler(st, SR_signum, buf, buflen);
2306   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2307   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2308   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2309   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2310 #if defined(PPC64)
2311   print_signal_handler(st, SIGTRAP, buf, buflen);
2312 #endif
2313 }
2314 
2315 static char saved_jvm_path[MAXPATHLEN] = {0};
2316 
2317 // Find the full path to the current module, libjvm.so
2318 void os::jvm_path(char *buf, jint buflen) {
2319   // Error checking.
2320   if (buflen < MAXPATHLEN) {
2321     assert(false, "must use a large-enough buffer");
2322     buf[0] = '\0';
2323     return;
2324   }
2325   // Lazy resolve the path to current module.
2326   if (saved_jvm_path[0] != 0) {
2327     strcpy(buf, saved_jvm_path);
2328     return;
2329   }
2330 
2331   char dli_fname[MAXPATHLEN];
2332   bool ret = dll_address_to_library_name(
2333                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2334                                          dli_fname, sizeof(dli_fname), NULL);
2335   assert(ret, "cannot locate libjvm");
2336   char *rp = NULL;
2337   if (ret && dli_fname[0] != '\0') {
2338     rp = realpath(dli_fname, buf);
2339   }
2340   if (rp == NULL) {
2341     return;
2342   }
2343 
2344   if (Arguments::sun_java_launcher_is_altjvm()) {
2345     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2346     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2347     // If "/jre/lib/" appears at the right place in the string, then
2348     // assume we are installed in a JDK and we're done. Otherwise, check
2349     // for a JAVA_HOME environment variable and fix up the path so it
2350     // looks like libjvm.so is installed there (append a fake suffix
2351     // hotspot/libjvm.so).
2352     const char *p = buf + strlen(buf) - 1;
2353     for (int count = 0; p > buf && count < 5; ++count) {
2354       for (--p; p > buf && *p != '/'; --p)
2355         /* empty */ ;
2356     }
2357 
2358     if (strncmp(p, "/jre/lib/", 9) != 0) {
2359       // Look for JAVA_HOME in the environment.
2360       char* java_home_var = ::getenv("JAVA_HOME");
2361       if (java_home_var != NULL && java_home_var[0] != 0) {
2362         char* jrelib_p;
2363         int len;
2364 
2365         // Check the current module name "libjvm.so".
2366         p = strrchr(buf, '/');
2367         if (p == NULL) {
2368           return;
2369         }
2370         assert(strstr(p, "/libjvm") == p, "invalid library name");
2371 
2372         rp = realpath(java_home_var, buf);
2373         if (rp == NULL) {
2374           return;
2375         }
2376 
2377         // determine if this is a legacy image or modules image
2378         // modules image doesn't have "jre" subdirectory
2379         len = strlen(buf);
2380         assert(len < buflen, "Ran out of buffer room");
2381         jrelib_p = buf + len;
2382         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2383         if (0 != access(buf, F_OK)) {
2384           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2385         }
2386 
2387         if (0 == access(buf, F_OK)) {
2388           // Use current module name "libjvm.so"
2389           len = strlen(buf);
2390           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2391         } else {
2392           // Go back to path of .so
2393           rp = realpath(dli_fname, buf);
2394           if (rp == NULL) {
2395             return;
2396           }
2397         }
2398       }
2399     }
2400   }
2401 
2402   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2403   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2404 }
2405 
2406 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2407   // no prefix required, not even "_"
2408 }
2409 
2410 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2411   // no suffix required
2412 }
2413 
2414 ////////////////////////////////////////////////////////////////////////////////
2415 // sun.misc.Signal support
2416 
2417 static volatile jint sigint_count = 0;
2418 
2419 static void UserHandler(int sig, void *siginfo, void *context) {
2420   // 4511530 - sem_post is serialized and handled by the manager thread. When
2421   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2422   // don't want to flood the manager thread with sem_post requests.
2423   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2424     return;
2425   }
2426 
2427   // Ctrl-C is pressed during error reporting, likely because the error
2428   // handler fails to abort. Let VM die immediately.
2429   if (sig == SIGINT && is_error_reported()) {
2430     os::die();
2431   }
2432 
2433   os::signal_notify(sig);
2434 }
2435 
2436 void* os::user_handler() {
2437   return CAST_FROM_FN_PTR(void*, UserHandler);
2438 }
2439 
2440 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2441   struct timespec ts;
2442   // Semaphore's are always associated with CLOCK_REALTIME
2443   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2444   // see unpackTime for discussion on overflow checking
2445   if (sec >= MAX_SECS) {
2446     ts.tv_sec += MAX_SECS;
2447     ts.tv_nsec = 0;
2448   } else {
2449     ts.tv_sec += sec;
2450     ts.tv_nsec += nsec;
2451     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2452       ts.tv_nsec -= NANOSECS_PER_SEC;
2453       ++ts.tv_sec; // note: this must be <= max_secs
2454     }
2455   }
2456 
2457   return ts;
2458 }
2459 
2460 extern "C" {
2461   typedef void (*sa_handler_t)(int);
2462   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2463 }
2464 
2465 void* os::signal(int signal_number, void* handler) {
2466   struct sigaction sigAct, oldSigAct;
2467 
2468   sigfillset(&(sigAct.sa_mask));
2469   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2470   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2471 
2472   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2473     // -1 means registration failed
2474     return (void *)-1;
2475   }
2476 
2477   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2478 }
2479 
2480 void os::signal_raise(int signal_number) {
2481   ::raise(signal_number);
2482 }
2483 
2484 // The following code is moved from os.cpp for making this
2485 // code platform specific, which it is by its very nature.
2486 
2487 // Will be modified when max signal is changed to be dynamic
2488 int os::sigexitnum_pd() {
2489   return NSIG;
2490 }
2491 
2492 // a counter for each possible signal value
2493 static volatile jint pending_signals[NSIG+1] = { 0 };
2494 
2495 // Linux(POSIX) specific hand shaking semaphore.
2496 static sem_t sig_sem;
2497 static PosixSemaphore sr_semaphore;
2498 
2499 void os::signal_init_pd() {
2500   // Initialize signal structures
2501   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2502 
2503   // Initialize signal semaphore
2504   ::sem_init(&sig_sem, 0, 0);
2505 }
2506 
2507 void os::signal_notify(int sig) {
2508   Atomic::inc(&pending_signals[sig]);
2509   ::sem_post(&sig_sem);
2510 }
2511 
2512 static int check_pending_signals(bool wait) {
2513   Atomic::store(0, &sigint_count);
2514   for (;;) {
2515     for (int i = 0; i < NSIG + 1; i++) {
2516       jint n = pending_signals[i];
2517       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2518         return i;
2519       }
2520     }
2521     if (!wait) {
2522       return -1;
2523     }
2524     JavaThread *thread = JavaThread::current();
2525     ThreadBlockInVM tbivm(thread);
2526 
2527     bool threadIsSuspended;
2528     do {
2529       thread->set_suspend_equivalent();
2530       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2531       ::sem_wait(&sig_sem);
2532 
2533       // were we externally suspended while we were waiting?
2534       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2535       if (threadIsSuspended) {
2536         // The semaphore has been incremented, but while we were waiting
2537         // another thread suspended us. We don't want to continue running
2538         // while suspended because that would surprise the thread that
2539         // suspended us.
2540         ::sem_post(&sig_sem);
2541 
2542         thread->java_suspend_self();
2543       }
2544     } while (threadIsSuspended);
2545   }
2546 }
2547 
2548 int os::signal_lookup() {
2549   return check_pending_signals(false);
2550 }
2551 
2552 int os::signal_wait() {
2553   return check_pending_signals(true);
2554 }
2555 
2556 ////////////////////////////////////////////////////////////////////////////////
2557 // Virtual Memory
2558 
2559 int os::vm_page_size() {
2560   // Seems redundant as all get out
2561   assert(os::Linux::page_size() != -1, "must call os::init");
2562   return os::Linux::page_size();
2563 }
2564 
2565 // Solaris allocates memory by pages.
2566 int os::vm_allocation_granularity() {
2567   assert(os::Linux::page_size() != -1, "must call os::init");
2568   return os::Linux::page_size();
2569 }
2570 
2571 // Rationale behind this function:
2572 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2573 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2574 //  samples for JITted code. Here we create private executable mapping over the code cache
2575 //  and then we can use standard (well, almost, as mapping can change) way to provide
2576 //  info for the reporting script by storing timestamp and location of symbol
2577 void linux_wrap_code(char* base, size_t size) {
2578   static volatile jint cnt = 0;
2579 
2580   if (!UseOprofile) {
2581     return;
2582   }
2583 
2584   char buf[PATH_MAX+1];
2585   int num = Atomic::add(1, &cnt);
2586 
2587   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2588            os::get_temp_directory(), os::current_process_id(), num);
2589   unlink(buf);
2590 
2591   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2592 
2593   if (fd != -1) {
2594     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2595     if (rv != (off_t)-1) {
2596       if (::write(fd, "", 1) == 1) {
2597         mmap(base, size,
2598              PROT_READ|PROT_WRITE|PROT_EXEC,
2599              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2600       }
2601     }
2602     ::close(fd);
2603     unlink(buf);
2604   }
2605 }
2606 
2607 static bool recoverable_mmap_error(int err) {
2608   // See if the error is one we can let the caller handle. This
2609   // list of errno values comes from JBS-6843484. I can't find a
2610   // Linux man page that documents this specific set of errno
2611   // values so while this list currently matches Solaris, it may
2612   // change as we gain experience with this failure mode.
2613   switch (err) {
2614   case EBADF:
2615   case EINVAL:
2616   case ENOTSUP:
2617     // let the caller deal with these errors
2618     return true;
2619 
2620   default:
2621     // Any remaining errors on this OS can cause our reserved mapping
2622     // to be lost. That can cause confusion where different data
2623     // structures think they have the same memory mapped. The worst
2624     // scenario is if both the VM and a library think they have the
2625     // same memory mapped.
2626     return false;
2627   }
2628 }
2629 
2630 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2631                                     int err) {
2632   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2633           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2634           strerror(err), err);
2635 }
2636 
2637 static void warn_fail_commit_memory(char* addr, size_t size,
2638                                     size_t alignment_hint, bool exec,
2639                                     int err) {
2640   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2641           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2642           alignment_hint, exec, strerror(err), err);
2643 }
2644 
2645 // NOTE: Linux kernel does not really reserve the pages for us.
2646 //       All it does is to check if there are enough free pages
2647 //       left at the time of mmap(). This could be a potential
2648 //       problem.
2649 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2650   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2651   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2652                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2653   if (res != (uintptr_t) MAP_FAILED) {
2654     if (UseNUMAInterleaving) {
2655       numa_make_global(addr, size);
2656     }
2657     return 0;
2658   }
2659 
2660   int err = errno;  // save errno from mmap() call above
2661 
2662   if (!recoverable_mmap_error(err)) {
2663     warn_fail_commit_memory(addr, size, exec, err);
2664     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2665   }
2666 
2667   return err;
2668 }
2669 
2670 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2671   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2672 }
2673 
2674 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2675                                   const char* mesg) {
2676   assert(mesg != NULL, "mesg must be specified");
2677   int err = os::Linux::commit_memory_impl(addr, size, exec);
2678   if (err != 0) {
2679     // the caller wants all commit errors to exit with the specified mesg:
2680     warn_fail_commit_memory(addr, size, exec, err);
2681     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2682   }
2683 }
2684 
2685 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2686 #ifndef MAP_HUGETLB
2687   #define MAP_HUGETLB 0x40000
2688 #endif
2689 
2690 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2691 #ifndef MADV_HUGEPAGE
2692   #define MADV_HUGEPAGE 14
2693 #endif
2694 
2695 int os::Linux::commit_memory_impl(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec) {
2697   int err = os::Linux::commit_memory_impl(addr, size, exec);
2698   if (err == 0) {
2699     realign_memory(addr, size, alignment_hint);
2700   }
2701   return err;
2702 }
2703 
2704 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2705                           bool exec) {
2706   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2707 }
2708 
2709 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2710                                   size_t alignment_hint, bool exec,
2711                                   const char* mesg) {
2712   assert(mesg != NULL, "mesg must be specified");
2713   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2714   if (err != 0) {
2715     // the caller wants all commit errors to exit with the specified mesg:
2716     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2717     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2718   }
2719 }
2720 
2721 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2722   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2723     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2724     // be supported or the memory may already be backed by huge pages.
2725     ::madvise(addr, bytes, MADV_HUGEPAGE);
2726   }
2727 }
2728 
2729 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2730   // This method works by doing an mmap over an existing mmaping and effectively discarding
2731   // the existing pages. However it won't work for SHM-based large pages that cannot be
2732   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2733   // small pages on top of the SHM segment. This method always works for small pages, so we
2734   // allow that in any case.
2735   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2736     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2737   }
2738 }
2739 
2740 void os::numa_make_global(char *addr, size_t bytes) {
2741   Linux::numa_interleave_memory(addr, bytes);
2742 }
2743 
2744 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2745 // bind policy to MPOL_PREFERRED for the current thread.
2746 #define USE_MPOL_PREFERRED 0
2747 
2748 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2749   // To make NUMA and large pages more robust when both enabled, we need to ease
2750   // the requirements on where the memory should be allocated. MPOL_BIND is the
2751   // default policy and it will force memory to be allocated on the specified
2752   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2753   // the specified node, but will not force it. Using this policy will prevent
2754   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2755   // free large pages.
2756   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2757   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2758 }
2759 
2760 bool os::numa_topology_changed() { return false; }
2761 
2762 size_t os::numa_get_groups_num() {
2763   int max_node = Linux::numa_max_node();
2764   return max_node > 0 ? max_node + 1 : 1;
2765 }
2766 
2767 int os::numa_get_group_id() {
2768   int cpu_id = Linux::sched_getcpu();
2769   if (cpu_id != -1) {
2770     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2771     if (lgrp_id != -1) {
2772       return lgrp_id;
2773     }
2774   }
2775   return 0;
2776 }
2777 
2778 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2779   for (size_t i = 0; i < size; i++) {
2780     ids[i] = i;
2781   }
2782   return size;
2783 }
2784 
2785 bool os::get_page_info(char *start, page_info* info) {
2786   return false;
2787 }
2788 
2789 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2790                      page_info* page_found) {
2791   return end;
2792 }
2793 
2794 
2795 int os::Linux::sched_getcpu_syscall(void) {
2796   unsigned int cpu = 0;
2797   int retval = -1;
2798 
2799 #if defined(IA32)
2800   #ifndef SYS_getcpu
2801     #define SYS_getcpu 318
2802   #endif
2803   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2804 #elif defined(AMD64)
2805 // Unfortunately we have to bring all these macros here from vsyscall.h
2806 // to be able to compile on old linuxes.
2807   #define __NR_vgetcpu 2
2808   #define VSYSCALL_START (-10UL << 20)
2809   #define VSYSCALL_SIZE 1024
2810   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2811   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2812   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2813   retval = vgetcpu(&cpu, NULL, NULL);
2814 #endif
2815 
2816   return (retval == -1) ? retval : cpu;
2817 }
2818 
2819 // Something to do with the numa-aware allocator needs these symbols
2820 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2821 extern "C" JNIEXPORT void numa_error(char *where) { }
2822 extern "C" JNIEXPORT int fork1() { return fork(); }
2823 
2824 
2825 // If we are running with libnuma version > 2, then we should
2826 // be trying to use symbols with versions 1.1
2827 // If we are running with earlier version, which did not have symbol versions,
2828 // we should use the base version.
2829 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2830   void *f = dlvsym(handle, name, "libnuma_1.1");
2831   if (f == NULL) {
2832     f = dlsym(handle, name);
2833   }
2834   return f;
2835 }
2836 
2837 bool os::Linux::libnuma_init() {
2838   // sched_getcpu() should be in libc.
2839   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2840                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2841 
2842   // If it's not, try a direct syscall.
2843   if (sched_getcpu() == -1) {
2844     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2845                                     (void*)&sched_getcpu_syscall));
2846   }
2847 
2848   if (sched_getcpu() != -1) { // Does it work?
2849     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2850     if (handle != NULL) {
2851       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2852                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2853       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2854                                        libnuma_dlsym(handle, "numa_max_node")));
2855       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2856                                         libnuma_dlsym(handle, "numa_available")));
2857       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2858                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2859       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2860                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2861       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2862                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2863 
2864 
2865       if (numa_available() != -1) {
2866         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2867         // Create a cpu -> node mapping
2868         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2869         rebuild_cpu_to_node_map();
2870         return true;
2871       }
2872     }
2873   }
2874   return false;
2875 }
2876 
2877 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2878 // The table is later used in get_node_by_cpu().
2879 void os::Linux::rebuild_cpu_to_node_map() {
2880   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2881                               // in libnuma (possible values are starting from 16,
2882                               // and continuing up with every other power of 2, but less
2883                               // than the maximum number of CPUs supported by kernel), and
2884                               // is a subject to change (in libnuma version 2 the requirements
2885                               // are more reasonable) we'll just hardcode the number they use
2886                               // in the library.
2887   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2888 
2889   size_t cpu_num = os::active_processor_count();
2890   size_t cpu_map_size = NCPUS / BitsPerCLong;
2891   size_t cpu_map_valid_size =
2892     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2893 
2894   cpu_to_node()->clear();
2895   cpu_to_node()->at_grow(cpu_num - 1);
2896   size_t node_num = numa_get_groups_num();
2897 
2898   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2899   for (size_t i = 0; i < node_num; i++) {
2900     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2901       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2902         if (cpu_map[j] != 0) {
2903           for (size_t k = 0; k < BitsPerCLong; k++) {
2904             if (cpu_map[j] & (1UL << k)) {
2905               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2906             }
2907           }
2908         }
2909       }
2910     }
2911   }
2912   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2913 }
2914 
2915 int os::Linux::get_node_by_cpu(int cpu_id) {
2916   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2917     return cpu_to_node()->at(cpu_id);
2918   }
2919   return -1;
2920 }
2921 
2922 GrowableArray<int>* os::Linux::_cpu_to_node;
2923 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2924 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2925 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2926 os::Linux::numa_available_func_t os::Linux::_numa_available;
2927 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2928 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2929 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2930 unsigned long* os::Linux::_numa_all_nodes;
2931 
2932 bool os::pd_uncommit_memory(char* addr, size_t size) {
2933   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2934                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2935   return res  != (uintptr_t) MAP_FAILED;
2936 }
2937 
2938 static address get_stack_commited_bottom(address bottom, size_t size) {
2939   address nbot = bottom;
2940   address ntop = bottom + size;
2941 
2942   size_t page_sz = os::vm_page_size();
2943   unsigned pages = size / page_sz;
2944 
2945   unsigned char vec[1];
2946   unsigned imin = 1, imax = pages + 1, imid;
2947   int mincore_return_value = 0;
2948 
2949   assert(imin <= imax, "Unexpected page size");
2950 
2951   while (imin < imax) {
2952     imid = (imax + imin) / 2;
2953     nbot = ntop - (imid * page_sz);
2954 
2955     // Use a trick with mincore to check whether the page is mapped or not.
2956     // mincore sets vec to 1 if page resides in memory and to 0 if page
2957     // is swapped output but if page we are asking for is unmapped
2958     // it returns -1,ENOMEM
2959     mincore_return_value = mincore(nbot, page_sz, vec);
2960 
2961     if (mincore_return_value == -1) {
2962       // Page is not mapped go up
2963       // to find first mapped page
2964       if (errno != EAGAIN) {
2965         assert(errno == ENOMEM, "Unexpected mincore errno");
2966         imax = imid;
2967       }
2968     } else {
2969       // Page is mapped go down
2970       // to find first not mapped page
2971       imin = imid + 1;
2972     }
2973   }
2974 
2975   nbot = nbot + page_sz;
2976 
2977   // Adjust stack bottom one page up if last checked page is not mapped
2978   if (mincore_return_value == -1) {
2979     nbot = nbot + page_sz;
2980   }
2981 
2982   return nbot;
2983 }
2984 
2985 
2986 // Linux uses a growable mapping for the stack, and if the mapping for
2987 // the stack guard pages is not removed when we detach a thread the
2988 // stack cannot grow beyond the pages where the stack guard was
2989 // mapped.  If at some point later in the process the stack expands to
2990 // that point, the Linux kernel cannot expand the stack any further
2991 // because the guard pages are in the way, and a segfault occurs.
2992 //
2993 // However, it's essential not to split the stack region by unmapping
2994 // a region (leaving a hole) that's already part of the stack mapping,
2995 // so if the stack mapping has already grown beyond the guard pages at
2996 // the time we create them, we have to truncate the stack mapping.
2997 // So, we need to know the extent of the stack mapping when
2998 // create_stack_guard_pages() is called.
2999 
3000 // We only need this for stacks that are growable: at the time of
3001 // writing thread stacks don't use growable mappings (i.e. those
3002 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3003 // only applies to the main thread.
3004 
3005 // If the (growable) stack mapping already extends beyond the point
3006 // where we're going to put our guard pages, truncate the mapping at
3007 // that point by munmap()ping it.  This ensures that when we later
3008 // munmap() the guard pages we don't leave a hole in the stack
3009 // mapping. This only affects the main/initial thread
3010 
3011 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3012   if (os::Linux::is_initial_thread()) {
3013     // As we manually grow stack up to bottom inside create_attached_thread(),
3014     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3015     // we don't need to do anything special.
3016     // Check it first, before calling heavy function.
3017     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3018     unsigned char vec[1];
3019 
3020     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3021       // Fallback to slow path on all errors, including EAGAIN
3022       stack_extent = (uintptr_t) get_stack_commited_bottom(
3023                                                            os::Linux::initial_thread_stack_bottom(),
3024                                                            (size_t)addr - stack_extent);
3025     }
3026 
3027     if (stack_extent < (uintptr_t)addr) {
3028       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3029     }
3030   }
3031 
3032   return os::commit_memory(addr, size, !ExecMem);
3033 }
3034 
3035 // If this is a growable mapping, remove the guard pages entirely by
3036 // munmap()ping them.  If not, just call uncommit_memory(). This only
3037 // affects the main/initial thread, but guard against future OS changes
3038 // It's safe to always unmap guard pages for initial thread because we
3039 // always place it right after end of the mapped region
3040 
3041 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3042   uintptr_t stack_extent, stack_base;
3043 
3044   if (os::Linux::is_initial_thread()) {
3045     return ::munmap(addr, size) == 0;
3046   }
3047 
3048   return os::uncommit_memory(addr, size);
3049 }
3050 
3051 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3052 // at 'requested_addr'. If there are existing memory mappings at the same
3053 // location, however, they will be overwritten. If 'fixed' is false,
3054 // 'requested_addr' is only treated as a hint, the return value may or
3055 // may not start from the requested address. Unlike Linux mmap(), this
3056 // function returns NULL to indicate failure.
3057 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3058   char * addr;
3059   int flags;
3060 
3061   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3062   if (fixed) {
3063     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3064     flags |= MAP_FIXED;
3065   }
3066 
3067   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3068   // touch an uncommitted page. Otherwise, the read/write might
3069   // succeed if we have enough swap space to back the physical page.
3070   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3071                        flags, -1, 0);
3072 
3073   return addr == MAP_FAILED ? NULL : addr;
3074 }
3075 
3076 static int anon_munmap(char * addr, size_t size) {
3077   return ::munmap(addr, size) == 0;
3078 }
3079 
3080 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3081                             size_t alignment_hint) {
3082   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3083 }
3084 
3085 bool os::pd_release_memory(char* addr, size_t size) {
3086   return anon_munmap(addr, size);
3087 }
3088 
3089 static bool linux_mprotect(char* addr, size_t size, int prot) {
3090   // Linux wants the mprotect address argument to be page aligned.
3091   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3092 
3093   // According to SUSv3, mprotect() should only be used with mappings
3094   // established by mmap(), and mmap() always maps whole pages. Unaligned
3095   // 'addr' likely indicates problem in the VM (e.g. trying to change
3096   // protection of malloc'ed or statically allocated memory). Check the
3097   // caller if you hit this assert.
3098   assert(addr == bottom, "sanity check");
3099 
3100   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3101   return ::mprotect(bottom, size, prot) == 0;
3102 }
3103 
3104 // Set protections specified
3105 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3106                         bool is_committed) {
3107   unsigned int p = 0;
3108   switch (prot) {
3109   case MEM_PROT_NONE: p = PROT_NONE; break;
3110   case MEM_PROT_READ: p = PROT_READ; break;
3111   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3112   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3113   default:
3114     ShouldNotReachHere();
3115   }
3116   // is_committed is unused.
3117   return linux_mprotect(addr, bytes, p);
3118 }
3119 
3120 bool os::guard_memory(char* addr, size_t size) {
3121   return linux_mprotect(addr, size, PROT_NONE);
3122 }
3123 
3124 bool os::unguard_memory(char* addr, size_t size) {
3125   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3126 }
3127 
3128 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3129                                                     size_t page_size) {
3130   bool result = false;
3131   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3132                  MAP_ANONYMOUS|MAP_PRIVATE,
3133                  -1, 0);
3134   if (p != MAP_FAILED) {
3135     void *aligned_p = align_ptr_up(p, page_size);
3136 
3137     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3138 
3139     munmap(p, page_size * 2);
3140   }
3141 
3142   if (warn && !result) {
3143     warning("TransparentHugePages is not supported by the operating system.");
3144   }
3145 
3146   return result;
3147 }
3148 
3149 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3150   bool result = false;
3151   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3152                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3153                  -1, 0);
3154 
3155   if (p != MAP_FAILED) {
3156     // We don't know if this really is a huge page or not.
3157     FILE *fp = fopen("/proc/self/maps", "r");
3158     if (fp) {
3159       while (!feof(fp)) {
3160         char chars[257];
3161         long x = 0;
3162         if (fgets(chars, sizeof(chars), fp)) {
3163           if (sscanf(chars, "%lx-%*x", &x) == 1
3164               && x == (long)p) {
3165             if (strstr (chars, "hugepage")) {
3166               result = true;
3167               break;
3168             }
3169           }
3170         }
3171       }
3172       fclose(fp);
3173     }
3174     munmap(p, page_size);
3175   }
3176 
3177   if (warn && !result) {
3178     warning("HugeTLBFS is not supported by the operating system.");
3179   }
3180 
3181   return result;
3182 }
3183 
3184 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3185 //
3186 // From the coredump_filter documentation:
3187 //
3188 // - (bit 0) anonymous private memory
3189 // - (bit 1) anonymous shared memory
3190 // - (bit 2) file-backed private memory
3191 // - (bit 3) file-backed shared memory
3192 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3193 //           effective only if the bit 2 is cleared)
3194 // - (bit 5) hugetlb private memory
3195 // - (bit 6) hugetlb shared memory
3196 //
3197 static void set_coredump_filter(void) {
3198   FILE *f;
3199   long cdm;
3200 
3201   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3202     return;
3203   }
3204 
3205   if (fscanf(f, "%lx", &cdm) != 1) {
3206     fclose(f);
3207     return;
3208   }
3209 
3210   rewind(f);
3211 
3212   if ((cdm & LARGEPAGES_BIT) == 0) {
3213     cdm |= LARGEPAGES_BIT;
3214     fprintf(f, "%#lx", cdm);
3215   }
3216 
3217   fclose(f);
3218 }
3219 
3220 // Large page support
3221 
3222 static size_t _large_page_size = 0;
3223 
3224 size_t os::Linux::find_large_page_size() {
3225   size_t large_page_size = 0;
3226 
3227   // large_page_size on Linux is used to round up heap size. x86 uses either
3228   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3229   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3230   // page as large as 256M.
3231   //
3232   // Here we try to figure out page size by parsing /proc/meminfo and looking
3233   // for a line with the following format:
3234   //    Hugepagesize:     2048 kB
3235   //
3236   // If we can't determine the value (e.g. /proc is not mounted, or the text
3237   // format has been changed), we'll use the largest page size supported by
3238   // the processor.
3239 
3240 #ifndef ZERO
3241   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3242                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3243 #endif // ZERO
3244 
3245   FILE *fp = fopen("/proc/meminfo", "r");
3246   if (fp) {
3247     while (!feof(fp)) {
3248       int x = 0;
3249       char buf[16];
3250       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3251         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3252           large_page_size = x * K;
3253           break;
3254         }
3255       } else {
3256         // skip to next line
3257         for (;;) {
3258           int ch = fgetc(fp);
3259           if (ch == EOF || ch == (int)'\n') break;
3260         }
3261       }
3262     }
3263     fclose(fp);
3264   }
3265 
3266   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3267     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3268             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3269             proper_unit_for_byte_size(large_page_size));
3270   }
3271 
3272   return large_page_size;
3273 }
3274 
3275 size_t os::Linux::setup_large_page_size() {
3276   _large_page_size = Linux::find_large_page_size();
3277   const size_t default_page_size = (size_t)Linux::page_size();
3278   if (_large_page_size > default_page_size) {
3279     _page_sizes[0] = _large_page_size;
3280     _page_sizes[1] = default_page_size;
3281     _page_sizes[2] = 0;
3282   }
3283 
3284   return _large_page_size;
3285 }
3286 
3287 bool os::Linux::setup_large_page_type(size_t page_size) {
3288   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3289       FLAG_IS_DEFAULT(UseSHM) &&
3290       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3291 
3292     // The type of large pages has not been specified by the user.
3293 
3294     // Try UseHugeTLBFS and then UseSHM.
3295     UseHugeTLBFS = UseSHM = true;
3296 
3297     // Don't try UseTransparentHugePages since there are known
3298     // performance issues with it turned on. This might change in the future.
3299     UseTransparentHugePages = false;
3300   }
3301 
3302   if (UseTransparentHugePages) {
3303     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3304     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3305       UseHugeTLBFS = false;
3306       UseSHM = false;
3307       return true;
3308     }
3309     UseTransparentHugePages = false;
3310   }
3311 
3312   if (UseHugeTLBFS) {
3313     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3314     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3315       UseSHM = false;
3316       return true;
3317     }
3318     UseHugeTLBFS = false;
3319   }
3320 
3321   return UseSHM;
3322 }
3323 
3324 void os::large_page_init() {
3325   if (!UseLargePages &&
3326       !UseTransparentHugePages &&
3327       !UseHugeTLBFS &&
3328       !UseSHM) {
3329     // Not using large pages.
3330     return;
3331   }
3332 
3333   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3334     // The user explicitly turned off large pages.
3335     // Ignore the rest of the large pages flags.
3336     UseTransparentHugePages = false;
3337     UseHugeTLBFS = false;
3338     UseSHM = false;
3339     return;
3340   }
3341 
3342   size_t large_page_size = Linux::setup_large_page_size();
3343   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3344 
3345   set_coredump_filter();
3346 }
3347 
3348 #ifndef SHM_HUGETLB
3349   #define SHM_HUGETLB 04000
3350 #endif
3351 
3352 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3353                                             char* req_addr, bool exec) {
3354   // "exec" is passed in but not used.  Creating the shared image for
3355   // the code cache doesn't have an SHM_X executable permission to check.
3356   assert(UseLargePages && UseSHM, "only for SHM large pages");
3357   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3358 
3359   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3360     return NULL; // Fallback to small pages.
3361   }
3362 
3363   key_t key = IPC_PRIVATE;
3364   char *addr;
3365 
3366   bool warn_on_failure = UseLargePages &&
3367                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3368                          !FLAG_IS_DEFAULT(UseSHM) ||
3369                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3370   char msg[128];
3371 
3372   // Create a large shared memory region to attach to based on size.
3373   // Currently, size is the total size of the heap
3374   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3375   if (shmid == -1) {
3376     // Possible reasons for shmget failure:
3377     // 1. shmmax is too small for Java heap.
3378     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3379     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3380     // 2. not enough large page memory.
3381     //    > check available large pages: cat /proc/meminfo
3382     //    > increase amount of large pages:
3383     //          echo new_value > /proc/sys/vm/nr_hugepages
3384     //      Note 1: different Linux may use different name for this property,
3385     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3386     //      Note 2: it's possible there's enough physical memory available but
3387     //            they are so fragmented after a long run that they can't
3388     //            coalesce into large pages. Try to reserve large pages when
3389     //            the system is still "fresh".
3390     if (warn_on_failure) {
3391       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3392       warning("%s", msg);
3393     }
3394     return NULL;
3395   }
3396 
3397   // attach to the region
3398   addr = (char*)shmat(shmid, req_addr, 0);
3399   int err = errno;
3400 
3401   // Remove shmid. If shmat() is successful, the actual shared memory segment
3402   // will be deleted when it's detached by shmdt() or when the process
3403   // terminates. If shmat() is not successful this will remove the shared
3404   // segment immediately.
3405   shmctl(shmid, IPC_RMID, NULL);
3406 
3407   if ((intptr_t)addr == -1) {
3408     if (warn_on_failure) {
3409       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3410       warning("%s", msg);
3411     }
3412     return NULL;
3413   }
3414 
3415   return addr;
3416 }
3417 
3418 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3419                                         int error) {
3420   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3421 
3422   bool warn_on_failure = UseLargePages &&
3423       (!FLAG_IS_DEFAULT(UseLargePages) ||
3424        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3425        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3426 
3427   if (warn_on_failure) {
3428     char msg[128];
3429     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3430                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3431     warning("%s", msg);
3432   }
3433 }
3434 
3435 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3436                                                         char* req_addr,
3437                                                         bool exec) {
3438   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3439   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3440   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3441 
3442   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3443   char* addr = (char*)::mmap(req_addr, bytes, prot,
3444                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3445                              -1, 0);
3446 
3447   if (addr == MAP_FAILED) {
3448     warn_on_large_pages_failure(req_addr, bytes, errno);
3449     return NULL;
3450   }
3451 
3452   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3453 
3454   return addr;
3455 }
3456 
3457 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3458 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3459 //   (req_addr != NULL) or with a given alignment.
3460 //  - bytes shall be a multiple of alignment.
3461 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3462 //  - alignment sets the alignment at which memory shall be allocated.
3463 //     It must be a multiple of allocation granularity.
3464 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3465 //  req_addr or NULL.
3466 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3467 
3468   size_t extra_size = bytes;
3469   if (req_addr == NULL && alignment > 0) {
3470     extra_size += alignment;
3471   }
3472 
3473   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3474     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3475     -1, 0);
3476   if (start == MAP_FAILED) {
3477     start = NULL;
3478   } else {
3479     if (req_addr != NULL) {
3480       if (start != req_addr) {
3481         ::munmap(start, extra_size);
3482         start = NULL;
3483       }
3484     } else {
3485       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3486       char* const end_aligned = start_aligned + bytes;
3487       char* const end = start + extra_size;
3488       if (start_aligned > start) {
3489         ::munmap(start, start_aligned - start);
3490       }
3491       if (end_aligned < end) {
3492         ::munmap(end_aligned, end - end_aligned);
3493       }
3494       start = start_aligned;
3495     }
3496   }
3497   return start;
3498 
3499 }
3500 
3501 // Reserve memory using mmap(MAP_HUGETLB).
3502 //  - bytes shall be a multiple of alignment.
3503 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3504 //  - alignment sets the alignment at which memory shall be allocated.
3505 //     It must be a multiple of allocation granularity.
3506 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3507 //  req_addr or NULL.
3508 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3509                                                          size_t alignment,
3510                                                          char* req_addr,
3511                                                          bool exec) {
3512   size_t large_page_size = os::large_page_size();
3513   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3514 
3515   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3516   assert(is_size_aligned(bytes, alignment), "Must be");
3517 
3518   // First reserve - but not commit - the address range in small pages.
3519   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3520 
3521   if (start == NULL) {
3522     return NULL;
3523   }
3524 
3525   assert(is_ptr_aligned(start, alignment), "Must be");
3526 
3527   char* end = start + bytes;
3528 
3529   // Find the regions of the allocated chunk that can be promoted to large pages.
3530   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3531   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3532 
3533   size_t lp_bytes = lp_end - lp_start;
3534 
3535   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3536 
3537   if (lp_bytes == 0) {
3538     // The mapped region doesn't even span the start and the end of a large page.
3539     // Fall back to allocate a non-special area.
3540     ::munmap(start, end - start);
3541     return NULL;
3542   }
3543 
3544   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3545 
3546   void* result;
3547 
3548   // Commit small-paged leading area.
3549   if (start != lp_start) {
3550     result = ::mmap(start, lp_start - start, prot,
3551                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3552                     -1, 0);
3553     if (result == MAP_FAILED) {
3554       ::munmap(lp_start, end - lp_start);
3555       return NULL;
3556     }
3557   }
3558 
3559   // Commit large-paged area.
3560   result = ::mmap(lp_start, lp_bytes, prot,
3561                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3562                   -1, 0);
3563   if (result == MAP_FAILED) {
3564     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3565     // If the mmap above fails, the large pages region will be unmapped and we
3566     // have regions before and after with small pages. Release these regions.
3567     //
3568     // |  mapped  |  unmapped  |  mapped  |
3569     // ^          ^            ^          ^
3570     // start      lp_start     lp_end     end
3571     //
3572     ::munmap(start, lp_start - start);
3573     ::munmap(lp_end, end - lp_end);
3574     return NULL;
3575   }
3576 
3577   // Commit small-paged trailing area.
3578   if (lp_end != end) {
3579     result = ::mmap(lp_end, end - lp_end, prot,
3580                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3581                     -1, 0);
3582     if (result == MAP_FAILED) {
3583       ::munmap(start, lp_end - start);
3584       return NULL;
3585     }
3586   }
3587 
3588   return start;
3589 }
3590 
3591 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3592                                                    size_t alignment,
3593                                                    char* req_addr,
3594                                                    bool exec) {
3595   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3596   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3597   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3598   assert(is_power_of_2(os::large_page_size()), "Must be");
3599   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3600 
3601   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3602     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3603   } else {
3604     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3605   }
3606 }
3607 
3608 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3609                                  char* req_addr, bool exec) {
3610   assert(UseLargePages, "only for large pages");
3611 
3612   char* addr;
3613   if (UseSHM) {
3614     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3615   } else {
3616     assert(UseHugeTLBFS, "must be");
3617     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3618   }
3619 
3620   if (addr != NULL) {
3621     if (UseNUMAInterleaving) {
3622       numa_make_global(addr, bytes);
3623     }
3624 
3625     // The memory is committed
3626     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3627   }
3628 
3629   return addr;
3630 }
3631 
3632 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3633   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3634   return shmdt(base) == 0;
3635 }
3636 
3637 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3638   return pd_release_memory(base, bytes);
3639 }
3640 
3641 bool os::release_memory_special(char* base, size_t bytes) {
3642   bool res;
3643   if (MemTracker::tracking_level() > NMT_minimal) {
3644     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3645     res = os::Linux::release_memory_special_impl(base, bytes);
3646     if (res) {
3647       tkr.record((address)base, bytes);
3648     }
3649 
3650   } else {
3651     res = os::Linux::release_memory_special_impl(base, bytes);
3652   }
3653   return res;
3654 }
3655 
3656 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3657   assert(UseLargePages, "only for large pages");
3658   bool res;
3659 
3660   if (UseSHM) {
3661     res = os::Linux::release_memory_special_shm(base, bytes);
3662   } else {
3663     assert(UseHugeTLBFS, "must be");
3664     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3665   }
3666   return res;
3667 }
3668 
3669 size_t os::large_page_size() {
3670   return _large_page_size;
3671 }
3672 
3673 // With SysV SHM the entire memory region must be allocated as shared
3674 // memory.
3675 // HugeTLBFS allows application to commit large page memory on demand.
3676 // However, when committing memory with HugeTLBFS fails, the region
3677 // that was supposed to be committed will lose the old reservation
3678 // and allow other threads to steal that memory region. Because of this
3679 // behavior we can't commit HugeTLBFS memory.
3680 bool os::can_commit_large_page_memory() {
3681   return UseTransparentHugePages;
3682 }
3683 
3684 bool os::can_execute_large_page_memory() {
3685   return UseTransparentHugePages || UseHugeTLBFS;
3686 }
3687 
3688 // Reserve memory at an arbitrary address, only if that area is
3689 // available (and not reserved for something else).
3690 
3691 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3692   const int max_tries = 10;
3693   char* base[max_tries];
3694   size_t size[max_tries];
3695   const size_t gap = 0x000000;
3696 
3697   // Assert only that the size is a multiple of the page size, since
3698   // that's all that mmap requires, and since that's all we really know
3699   // about at this low abstraction level.  If we need higher alignment,
3700   // we can either pass an alignment to this method or verify alignment
3701   // in one of the methods further up the call chain.  See bug 5044738.
3702   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3703 
3704   // Repeatedly allocate blocks until the block is allocated at the
3705   // right spot.
3706 
3707   // Linux mmap allows caller to pass an address as hint; give it a try first,
3708   // if kernel honors the hint then we can return immediately.
3709   char * addr = anon_mmap(requested_addr, bytes, false);
3710   if (addr == requested_addr) {
3711     return requested_addr;
3712   }
3713 
3714   if (addr != NULL) {
3715     // mmap() is successful but it fails to reserve at the requested address
3716     anon_munmap(addr, bytes);
3717   }
3718 
3719   int i;
3720   for (i = 0; i < max_tries; ++i) {
3721     base[i] = reserve_memory(bytes);
3722 
3723     if (base[i] != NULL) {
3724       // Is this the block we wanted?
3725       if (base[i] == requested_addr) {
3726         size[i] = bytes;
3727         break;
3728       }
3729 
3730       // Does this overlap the block we wanted? Give back the overlapped
3731       // parts and try again.
3732 
3733       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3734       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3735         unmap_memory(base[i], top_overlap);
3736         base[i] += top_overlap;
3737         size[i] = bytes - top_overlap;
3738       } else {
3739         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3740         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3741           unmap_memory(requested_addr, bottom_overlap);
3742           size[i] = bytes - bottom_overlap;
3743         } else {
3744           size[i] = bytes;
3745         }
3746       }
3747     }
3748   }
3749 
3750   // Give back the unused reserved pieces.
3751 
3752   for (int j = 0; j < i; ++j) {
3753     if (base[j] != NULL) {
3754       unmap_memory(base[j], size[j]);
3755     }
3756   }
3757 
3758   if (i < max_tries) {
3759     return requested_addr;
3760   } else {
3761     return NULL;
3762   }
3763 }
3764 
3765 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3766   return ::read(fd, buf, nBytes);
3767 }
3768 
3769 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3770   return ::pread(fd, buf, nBytes, offset);
3771 }
3772 
3773 // Short sleep, direct OS call.
3774 //
3775 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3776 // sched_yield(2) will actually give up the CPU:
3777 //
3778 //   * Alone on this pariticular CPU, keeps running.
3779 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3780 //     (pre 2.6.39).
3781 //
3782 // So calling this with 0 is an alternative.
3783 //
3784 void os::naked_short_sleep(jlong ms) {
3785   struct timespec req;
3786 
3787   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3788   req.tv_sec = 0;
3789   if (ms > 0) {
3790     req.tv_nsec = (ms % 1000) * 1000000;
3791   } else {
3792     req.tv_nsec = 1;
3793   }
3794 
3795   nanosleep(&req, NULL);
3796 
3797   return;
3798 }
3799 
3800 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3801 void os::infinite_sleep() {
3802   while (true) {    // sleep forever ...
3803     ::sleep(100);   // ... 100 seconds at a time
3804   }
3805 }
3806 
3807 // Used to convert frequent JVM_Yield() to nops
3808 bool os::dont_yield() {
3809   return DontYieldALot;
3810 }
3811 
3812 void os::naked_yield() {
3813   sched_yield();
3814 }
3815 
3816 ////////////////////////////////////////////////////////////////////////////////
3817 // thread priority support
3818 
3819 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3820 // only supports dynamic priority, static priority must be zero. For real-time
3821 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3822 // However, for large multi-threaded applications, SCHED_RR is not only slower
3823 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3824 // of 5 runs - Sep 2005).
3825 //
3826 // The following code actually changes the niceness of kernel-thread/LWP. It
3827 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3828 // not the entire user process, and user level threads are 1:1 mapped to kernel
3829 // threads. It has always been the case, but could change in the future. For
3830 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3831 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3832 
3833 int os::java_to_os_priority[CriticalPriority + 1] = {
3834   19,              // 0 Entry should never be used
3835 
3836    4,              // 1 MinPriority
3837    3,              // 2
3838    2,              // 3
3839 
3840    1,              // 4
3841    0,              // 5 NormPriority
3842   -1,              // 6
3843 
3844   -2,              // 7
3845   -3,              // 8
3846   -4,              // 9 NearMaxPriority
3847 
3848   -5,              // 10 MaxPriority
3849 
3850   -5               // 11 CriticalPriority
3851 };
3852 
3853 static int prio_init() {
3854   if (ThreadPriorityPolicy == 1) {
3855     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3856     // if effective uid is not root. Perhaps, a more elegant way of doing
3857     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3858     if (geteuid() != 0) {
3859       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3860         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3861       }
3862       ThreadPriorityPolicy = 0;
3863     }
3864   }
3865   if (UseCriticalJavaThreadPriority) {
3866     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3867   }
3868   return 0;
3869 }
3870 
3871 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3872   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3873 
3874   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3875   return (ret == 0) ? OS_OK : OS_ERR;
3876 }
3877 
3878 OSReturn os::get_native_priority(const Thread* const thread,
3879                                  int *priority_ptr) {
3880   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3881     *priority_ptr = java_to_os_priority[NormPriority];
3882     return OS_OK;
3883   }
3884 
3885   errno = 0;
3886   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3887   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3888 }
3889 
3890 // Hint to the underlying OS that a task switch would not be good.
3891 // Void return because it's a hint and can fail.
3892 void os::hint_no_preempt() {}
3893 
3894 ////////////////////////////////////////////////////////////////////////////////
3895 // suspend/resume support
3896 
3897 //  the low-level signal-based suspend/resume support is a remnant from the
3898 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3899 //  within hotspot. Now there is a single use-case for this:
3900 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3901 //      that runs in the watcher thread.
3902 //  The remaining code is greatly simplified from the more general suspension
3903 //  code that used to be used.
3904 //
3905 //  The protocol is quite simple:
3906 //  - suspend:
3907 //      - sends a signal to the target thread
3908 //      - polls the suspend state of the osthread using a yield loop
3909 //      - target thread signal handler (SR_handler) sets suspend state
3910 //        and blocks in sigsuspend until continued
3911 //  - resume:
3912 //      - sets target osthread state to continue
3913 //      - sends signal to end the sigsuspend loop in the SR_handler
3914 //
3915 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3916 
3917 static void resume_clear_context(OSThread *osthread) {
3918   osthread->set_ucontext(NULL);
3919   osthread->set_siginfo(NULL);
3920 }
3921 
3922 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3923                                  ucontext_t* context) {
3924   osthread->set_ucontext(context);
3925   osthread->set_siginfo(siginfo);
3926 }
3927 
3928 // Handler function invoked when a thread's execution is suspended or
3929 // resumed. We have to be careful that only async-safe functions are
3930 // called here (Note: most pthread functions are not async safe and
3931 // should be avoided.)
3932 //
3933 // Note: sigwait() is a more natural fit than sigsuspend() from an
3934 // interface point of view, but sigwait() prevents the signal hander
3935 // from being run. libpthread would get very confused by not having
3936 // its signal handlers run and prevents sigwait()'s use with the
3937 // mutex granting granting signal.
3938 //
3939 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3940 //
3941 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3942   // Save and restore errno to avoid confusing native code with EINTR
3943   // after sigsuspend.
3944   int old_errno = errno;
3945 
3946   Thread* thread = Thread::current();
3947   OSThread* osthread = thread->osthread();
3948   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3949 
3950   os::SuspendResume::State current = osthread->sr.state();
3951   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3952     suspend_save_context(osthread, siginfo, context);
3953 
3954     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3955     os::SuspendResume::State state = osthread->sr.suspended();
3956     if (state == os::SuspendResume::SR_SUSPENDED) {
3957       sigset_t suspend_set;  // signals for sigsuspend()
3958 
3959       // get current set of blocked signals and unblock resume signal
3960       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3961       sigdelset(&suspend_set, SR_signum);
3962 
3963       sr_semaphore.signal();
3964       // wait here until we are resumed
3965       while (1) {
3966         sigsuspend(&suspend_set);
3967 
3968         os::SuspendResume::State result = osthread->sr.running();
3969         if (result == os::SuspendResume::SR_RUNNING) {
3970           sr_semaphore.signal();
3971           break;
3972         }
3973       }
3974 
3975     } else if (state == os::SuspendResume::SR_RUNNING) {
3976       // request was cancelled, continue
3977     } else {
3978       ShouldNotReachHere();
3979     }
3980 
3981     resume_clear_context(osthread);
3982   } else if (current == os::SuspendResume::SR_RUNNING) {
3983     // request was cancelled, continue
3984   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3985     // ignore
3986   } else {
3987     // ignore
3988   }
3989 
3990   errno = old_errno;
3991 }
3992 
3993 
3994 static int SR_initialize() {
3995   struct sigaction act;
3996   char *s;
3997   // Get signal number to use for suspend/resume
3998   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3999     int sig = ::strtol(s, 0, 10);
4000     if (sig > 0 || sig < _NSIG) {
4001       SR_signum = sig;
4002     }
4003   }
4004 
4005   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4006          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4007 
4008   sigemptyset(&SR_sigset);
4009   sigaddset(&SR_sigset, SR_signum);
4010 
4011   // Set up signal handler for suspend/resume
4012   act.sa_flags = SA_RESTART|SA_SIGINFO;
4013   act.sa_handler = (void (*)(int)) SR_handler;
4014 
4015   // SR_signum is blocked by default.
4016   // 4528190 - We also need to block pthread restart signal (32 on all
4017   // supported Linux platforms). Note that LinuxThreads need to block
4018   // this signal for all threads to work properly. So we don't have
4019   // to use hard-coded signal number when setting up the mask.
4020   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4021 
4022   if (sigaction(SR_signum, &act, 0) == -1) {
4023     return -1;
4024   }
4025 
4026   // Save signal flag
4027   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4028   return 0;
4029 }
4030 
4031 static int sr_notify(OSThread* osthread) {
4032   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4033   assert_status(status == 0, status, "pthread_kill");
4034   return status;
4035 }
4036 
4037 // "Randomly" selected value for how long we want to spin
4038 // before bailing out on suspending a thread, also how often
4039 // we send a signal to a thread we want to resume
4040 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4041 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4042 
4043 // returns true on success and false on error - really an error is fatal
4044 // but this seems the normal response to library errors
4045 static bool do_suspend(OSThread* osthread) {
4046   assert(osthread->sr.is_running(), "thread should be running");
4047   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4048 
4049   // mark as suspended and send signal
4050   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4051     // failed to switch, state wasn't running?
4052     ShouldNotReachHere();
4053     return false;
4054   }
4055 
4056   if (sr_notify(osthread) != 0) {
4057     ShouldNotReachHere();
4058   }
4059 
4060   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4061   while (true) {
4062     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4063       break;
4064     } else {
4065       // timeout
4066       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4067       if (cancelled == os::SuspendResume::SR_RUNNING) {
4068         return false;
4069       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4070         // make sure that we consume the signal on the semaphore as well
4071         sr_semaphore.wait();
4072         break;
4073       } else {
4074         ShouldNotReachHere();
4075         return false;
4076       }
4077     }
4078   }
4079 
4080   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4081   return true;
4082 }
4083 
4084 static void do_resume(OSThread* osthread) {
4085   assert(osthread->sr.is_suspended(), "thread should be suspended");
4086   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4087 
4088   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4089     // failed to switch to WAKEUP_REQUEST
4090     ShouldNotReachHere();
4091     return;
4092   }
4093 
4094   while (true) {
4095     if (sr_notify(osthread) == 0) {
4096       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4097         if (osthread->sr.is_running()) {
4098           return;
4099         }
4100       }
4101     } else {
4102       ShouldNotReachHere();
4103     }
4104   }
4105 
4106   guarantee(osthread->sr.is_running(), "Must be running!");
4107 }
4108 
4109 ///////////////////////////////////////////////////////////////////////////////////
4110 // signal handling (except suspend/resume)
4111 
4112 // This routine may be used by user applications as a "hook" to catch signals.
4113 // The user-defined signal handler must pass unrecognized signals to this
4114 // routine, and if it returns true (non-zero), then the signal handler must
4115 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4116 // routine will never retun false (zero), but instead will execute a VM panic
4117 // routine kill the process.
4118 //
4119 // If this routine returns false, it is OK to call it again.  This allows
4120 // the user-defined signal handler to perform checks either before or after
4121 // the VM performs its own checks.  Naturally, the user code would be making
4122 // a serious error if it tried to handle an exception (such as a null check
4123 // or breakpoint) that the VM was generating for its own correct operation.
4124 //
4125 // This routine may recognize any of the following kinds of signals:
4126 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4127 // It should be consulted by handlers for any of those signals.
4128 //
4129 // The caller of this routine must pass in the three arguments supplied
4130 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4131 // field of the structure passed to sigaction().  This routine assumes that
4132 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4133 //
4134 // Note that the VM will print warnings if it detects conflicting signal
4135 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4136 //
4137 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4138                                                  siginfo_t* siginfo,
4139                                                  void* ucontext,
4140                                                  int abort_if_unrecognized);
4141 
4142 void signalHandler(int sig, siginfo_t* info, void* uc) {
4143   assert(info != NULL && uc != NULL, "it must be old kernel");
4144   int orig_errno = errno;  // Preserve errno value over signal handler.
4145   JVM_handle_linux_signal(sig, info, uc, true);
4146   errno = orig_errno;
4147 }
4148 
4149 
4150 // This boolean allows users to forward their own non-matching signals
4151 // to JVM_handle_linux_signal, harmlessly.
4152 bool os::Linux::signal_handlers_are_installed = false;
4153 
4154 // For signal-chaining
4155 struct sigaction os::Linux::sigact[MAXSIGNUM];
4156 unsigned int os::Linux::sigs = 0;
4157 bool os::Linux::libjsig_is_loaded = false;
4158 typedef struct sigaction *(*get_signal_t)(int);
4159 get_signal_t os::Linux::get_signal_action = NULL;
4160 
4161 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4162   struct sigaction *actp = NULL;
4163 
4164   if (libjsig_is_loaded) {
4165     // Retrieve the old signal handler from libjsig
4166     actp = (*get_signal_action)(sig);
4167   }
4168   if (actp == NULL) {
4169     // Retrieve the preinstalled signal handler from jvm
4170     actp = get_preinstalled_handler(sig);
4171   }
4172 
4173   return actp;
4174 }
4175 
4176 static bool call_chained_handler(struct sigaction *actp, int sig,
4177                                  siginfo_t *siginfo, void *context) {
4178   // Call the old signal handler
4179   if (actp->sa_handler == SIG_DFL) {
4180     // It's more reasonable to let jvm treat it as an unexpected exception
4181     // instead of taking the default action.
4182     return false;
4183   } else if (actp->sa_handler != SIG_IGN) {
4184     if ((actp->sa_flags & SA_NODEFER) == 0) {
4185       // automaticlly block the signal
4186       sigaddset(&(actp->sa_mask), sig);
4187     }
4188 
4189     sa_handler_t hand = NULL;
4190     sa_sigaction_t sa = NULL;
4191     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4192     // retrieve the chained handler
4193     if (siginfo_flag_set) {
4194       sa = actp->sa_sigaction;
4195     } else {
4196       hand = actp->sa_handler;
4197     }
4198 
4199     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4200       actp->sa_handler = SIG_DFL;
4201     }
4202 
4203     // try to honor the signal mask
4204     sigset_t oset;
4205     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4206 
4207     // call into the chained handler
4208     if (siginfo_flag_set) {
4209       (*sa)(sig, siginfo, context);
4210     } else {
4211       (*hand)(sig);
4212     }
4213 
4214     // restore the signal mask
4215     pthread_sigmask(SIG_SETMASK, &oset, 0);
4216   }
4217   // Tell jvm's signal handler the signal is taken care of.
4218   return true;
4219 }
4220 
4221 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4222   bool chained = false;
4223   // signal-chaining
4224   if (UseSignalChaining) {
4225     struct sigaction *actp = get_chained_signal_action(sig);
4226     if (actp != NULL) {
4227       chained = call_chained_handler(actp, sig, siginfo, context);
4228     }
4229   }
4230   return chained;
4231 }
4232 
4233 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4234   if ((((unsigned int)1 << sig) & sigs) != 0) {
4235     return &sigact[sig];
4236   }
4237   return NULL;
4238 }
4239 
4240 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4241   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4242   sigact[sig] = oldAct;
4243   sigs |= (unsigned int)1 << sig;
4244 }
4245 
4246 // for diagnostic
4247 int os::Linux::sigflags[MAXSIGNUM];
4248 
4249 int os::Linux::get_our_sigflags(int sig) {
4250   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4251   return sigflags[sig];
4252 }
4253 
4254 void os::Linux::set_our_sigflags(int sig, int flags) {
4255   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4256   sigflags[sig] = flags;
4257 }
4258 
4259 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4260   // Check for overwrite.
4261   struct sigaction oldAct;
4262   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4263 
4264   void* oldhand = oldAct.sa_sigaction
4265                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4266                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4267   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4268       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4269       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4270     if (AllowUserSignalHandlers || !set_installed) {
4271       // Do not overwrite; user takes responsibility to forward to us.
4272       return;
4273     } else if (UseSignalChaining) {
4274       // save the old handler in jvm
4275       save_preinstalled_handler(sig, oldAct);
4276       // libjsig also interposes the sigaction() call below and saves the
4277       // old sigaction on it own.
4278     } else {
4279       fatal("Encountered unexpected pre-existing sigaction handler "
4280             "%#lx for signal %d.", (long)oldhand, sig);
4281     }
4282   }
4283 
4284   struct sigaction sigAct;
4285   sigfillset(&(sigAct.sa_mask));
4286   sigAct.sa_handler = SIG_DFL;
4287   if (!set_installed) {
4288     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4289   } else {
4290     sigAct.sa_sigaction = signalHandler;
4291     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4292   }
4293   // Save flags, which are set by ours
4294   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4295   sigflags[sig] = sigAct.sa_flags;
4296 
4297   int ret = sigaction(sig, &sigAct, &oldAct);
4298   assert(ret == 0, "check");
4299 
4300   void* oldhand2  = oldAct.sa_sigaction
4301                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4302                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4303   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4304 }
4305 
4306 // install signal handlers for signals that HotSpot needs to
4307 // handle in order to support Java-level exception handling.
4308 
4309 void os::Linux::install_signal_handlers() {
4310   if (!signal_handlers_are_installed) {
4311     signal_handlers_are_installed = true;
4312 
4313     // signal-chaining
4314     typedef void (*signal_setting_t)();
4315     signal_setting_t begin_signal_setting = NULL;
4316     signal_setting_t end_signal_setting = NULL;
4317     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4318                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4319     if (begin_signal_setting != NULL) {
4320       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4321                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4322       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4323                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4324       libjsig_is_loaded = true;
4325       assert(UseSignalChaining, "should enable signal-chaining");
4326     }
4327     if (libjsig_is_loaded) {
4328       // Tell libjsig jvm is setting signal handlers
4329       (*begin_signal_setting)();
4330     }
4331 
4332     set_signal_handler(SIGSEGV, true);
4333     set_signal_handler(SIGPIPE, true);
4334     set_signal_handler(SIGBUS, true);
4335     set_signal_handler(SIGILL, true);
4336     set_signal_handler(SIGFPE, true);
4337 #if defined(PPC64)
4338     set_signal_handler(SIGTRAP, true);
4339 #endif
4340     set_signal_handler(SIGXFSZ, true);
4341 
4342     if (libjsig_is_loaded) {
4343       // Tell libjsig jvm finishes setting signal handlers
4344       (*end_signal_setting)();
4345     }
4346 
4347     // We don't activate signal checker if libjsig is in place, we trust ourselves
4348     // and if UserSignalHandler is installed all bets are off.
4349     // Log that signal checking is off only if -verbose:jni is specified.
4350     if (CheckJNICalls) {
4351       if (libjsig_is_loaded) {
4352         if (PrintJNIResolving) {
4353           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4354         }
4355         check_signals = false;
4356       }
4357       if (AllowUserSignalHandlers) {
4358         if (PrintJNIResolving) {
4359           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4360         }
4361         check_signals = false;
4362       }
4363     }
4364   }
4365 }
4366 
4367 // This is the fastest way to get thread cpu time on Linux.
4368 // Returns cpu time (user+sys) for any thread, not only for current.
4369 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4370 // It might work on 2.6.10+ with a special kernel/glibc patch.
4371 // For reference, please, see IEEE Std 1003.1-2004:
4372 //   http://www.unix.org/single_unix_specification
4373 
4374 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4375   struct timespec tp;
4376   int rc = os::Linux::clock_gettime(clockid, &tp);
4377   assert(rc == 0, "clock_gettime is expected to return 0 code");
4378 
4379   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4380 }
4381 
4382 /////
4383 // glibc on Linux platform uses non-documented flag
4384 // to indicate, that some special sort of signal
4385 // trampoline is used.
4386 // We will never set this flag, and we should
4387 // ignore this flag in our diagnostic
4388 #ifdef SIGNIFICANT_SIGNAL_MASK
4389   #undef SIGNIFICANT_SIGNAL_MASK
4390 #endif
4391 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4392 
4393 static const char* get_signal_handler_name(address handler,
4394                                            char* buf, int buflen) {
4395   int offset = 0;
4396   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4397   if (found) {
4398     // skip directory names
4399     const char *p1, *p2;
4400     p1 = buf;
4401     size_t len = strlen(os::file_separator());
4402     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4403     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4404   } else {
4405     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4406   }
4407   return buf;
4408 }
4409 
4410 static void print_signal_handler(outputStream* st, int sig,
4411                                  char* buf, size_t buflen) {
4412   struct sigaction sa;
4413 
4414   sigaction(sig, NULL, &sa);
4415 
4416   // See comment for SIGNIFICANT_SIGNAL_MASK define
4417   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4418 
4419   st->print("%s: ", os::exception_name(sig, buf, buflen));
4420 
4421   address handler = (sa.sa_flags & SA_SIGINFO)
4422     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4423     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4424 
4425   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4426     st->print("SIG_DFL");
4427   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4428     st->print("SIG_IGN");
4429   } else {
4430     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4431   }
4432 
4433   st->print(", sa_mask[0]=");
4434   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4435 
4436   address rh = VMError::get_resetted_sighandler(sig);
4437   // May be, handler was resetted by VMError?
4438   if (rh != NULL) {
4439     handler = rh;
4440     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4441   }
4442 
4443   st->print(", sa_flags=");
4444   os::Posix::print_sa_flags(st, sa.sa_flags);
4445 
4446   // Check: is it our handler?
4447   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4448       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4449     // It is our signal handler
4450     // check for flags, reset system-used one!
4451     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4452       st->print(
4453                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4454                 os::Linux::get_our_sigflags(sig));
4455     }
4456   }
4457   st->cr();
4458 }
4459 
4460 
4461 #define DO_SIGNAL_CHECK(sig)                      \
4462   do {                                            \
4463     if (!sigismember(&check_signal_done, sig)) {  \
4464       os::Linux::check_signal_handler(sig);       \
4465     }                                             \
4466   } while (0)
4467 
4468 // This method is a periodic task to check for misbehaving JNI applications
4469 // under CheckJNI, we can add any periodic checks here
4470 
4471 void os::run_periodic_checks() {
4472   if (check_signals == false) return;
4473 
4474   // SEGV and BUS if overridden could potentially prevent
4475   // generation of hs*.log in the event of a crash, debugging
4476   // such a case can be very challenging, so we absolutely
4477   // check the following for a good measure:
4478   DO_SIGNAL_CHECK(SIGSEGV);
4479   DO_SIGNAL_CHECK(SIGILL);
4480   DO_SIGNAL_CHECK(SIGFPE);
4481   DO_SIGNAL_CHECK(SIGBUS);
4482   DO_SIGNAL_CHECK(SIGPIPE);
4483   DO_SIGNAL_CHECK(SIGXFSZ);
4484 #if defined(PPC64)
4485   DO_SIGNAL_CHECK(SIGTRAP);
4486 #endif
4487 
4488   // ReduceSignalUsage allows the user to override these handlers
4489   // see comments at the very top and jvm_solaris.h
4490   if (!ReduceSignalUsage) {
4491     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4492     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4493     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4494     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4495   }
4496 
4497   DO_SIGNAL_CHECK(SR_signum);
4498 }
4499 
4500 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4501 
4502 static os_sigaction_t os_sigaction = NULL;
4503 
4504 void os::Linux::check_signal_handler(int sig) {
4505   char buf[O_BUFLEN];
4506   address jvmHandler = NULL;
4507 
4508 
4509   struct sigaction act;
4510   if (os_sigaction == NULL) {
4511     // only trust the default sigaction, in case it has been interposed
4512     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4513     if (os_sigaction == NULL) return;
4514   }
4515 
4516   os_sigaction(sig, (struct sigaction*)NULL, &act);
4517 
4518 
4519   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4520 
4521   address thisHandler = (act.sa_flags & SA_SIGINFO)
4522     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4523     : CAST_FROM_FN_PTR(address, act.sa_handler);
4524 
4525 
4526   switch (sig) {
4527   case SIGSEGV:
4528   case SIGBUS:
4529   case SIGFPE:
4530   case SIGPIPE:
4531   case SIGILL:
4532   case SIGXFSZ:
4533     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4534     break;
4535 
4536   case SHUTDOWN1_SIGNAL:
4537   case SHUTDOWN2_SIGNAL:
4538   case SHUTDOWN3_SIGNAL:
4539   case BREAK_SIGNAL:
4540     jvmHandler = (address)user_handler();
4541     break;
4542 
4543   default:
4544     if (sig == SR_signum) {
4545       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4546     } else {
4547       return;
4548     }
4549     break;
4550   }
4551 
4552   if (thisHandler != jvmHandler) {
4553     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4554     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4555     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4556     // No need to check this sig any longer
4557     sigaddset(&check_signal_done, sig);
4558     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4559     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4560       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4561                     exception_name(sig, buf, O_BUFLEN));
4562     }
4563   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4564     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4565     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4566     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4567     // No need to check this sig any longer
4568     sigaddset(&check_signal_done, sig);
4569   }
4570 
4571   // Dump all the signal
4572   if (sigismember(&check_signal_done, sig)) {
4573     print_signal_handlers(tty, buf, O_BUFLEN);
4574   }
4575 }
4576 
4577 extern void report_error(char* file_name, int line_no, char* title,
4578                          char* format, ...);
4579 
4580 extern bool signal_name(int signo, char* buf, size_t len);
4581 
4582 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4583   if (0 < exception_code && exception_code <= SIGRTMAX) {
4584     // signal
4585     if (!signal_name(exception_code, buf, size)) {
4586       jio_snprintf(buf, size, "SIG%d", exception_code);
4587     }
4588     return buf;
4589   } else {
4590     return NULL;
4591   }
4592 }
4593 
4594 // this is called _before_ the most of global arguments have been parsed
4595 void os::init(void) {
4596   char dummy;   // used to get a guess on initial stack address
4597 //  first_hrtime = gethrtime();
4598 
4599   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4600 
4601   init_random(1234567);
4602 
4603   ThreadCritical::initialize();
4604 
4605   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4606   if (Linux::page_size() == -1) {
4607     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4608           strerror(errno));
4609   }
4610   init_page_sizes((size_t) Linux::page_size());
4611 
4612   Linux::initialize_system_info();
4613 
4614   // main_thread points to the aboriginal thread
4615   Linux::_main_thread = pthread_self();
4616 
4617   Linux::clock_init();
4618   initial_time_count = javaTimeNanos();
4619 
4620   // pthread_condattr initialization for monotonic clock
4621   int status;
4622   pthread_condattr_t* _condattr = os::Linux::condAttr();
4623   if ((status = pthread_condattr_init(_condattr)) != 0) {
4624     fatal("pthread_condattr_init: %s", strerror(status));
4625   }
4626   // Only set the clock if CLOCK_MONOTONIC is available
4627   if (os::supports_monotonic_clock()) {
4628     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4629       if (status == EINVAL) {
4630         warning("Unable to use monotonic clock with relative timed-waits" \
4631                 " - changes to the time-of-day clock may have adverse affects");
4632       } else {
4633         fatal("pthread_condattr_setclock: %s", strerror(status));
4634       }
4635     }
4636   }
4637   // else it defaults to CLOCK_REALTIME
4638 
4639   // If the pagesize of the VM is greater than 8K determine the appropriate
4640   // number of initial guard pages.  The user can change this with the
4641   // command line arguments, if needed.
4642   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4643     StackYellowPages = 1;
4644     StackRedPages = 1;
4645     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4646   }
4647 
4648   // retrieve entry point for pthread_setname_np
4649   Linux::_pthread_setname_np =
4650     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4651 
4652 }
4653 
4654 // To install functions for atexit system call
4655 extern "C" {
4656   static void perfMemory_exit_helper() {
4657     perfMemory_exit();
4658   }
4659 }
4660 
4661 // this is called _after_ the global arguments have been parsed
4662 jint os::init_2(void) {
4663   Linux::fast_thread_clock_init();
4664 
4665   // Allocate a single page and mark it as readable for safepoint polling
4666   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4667   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4668 
4669   os::set_polling_page(polling_page);
4670 
4671 #ifndef PRODUCT
4672   if (Verbose && PrintMiscellaneous) {
4673     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4674                (intptr_t)polling_page);
4675   }
4676 #endif
4677 
4678   if (!UseMembar) {
4679     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4680     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4681     os::set_memory_serialize_page(mem_serialize_page);
4682 
4683 #ifndef PRODUCT
4684     if (Verbose && PrintMiscellaneous) {
4685       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4686                  (intptr_t)mem_serialize_page);
4687     }
4688 #endif
4689   }
4690 
4691   // initialize suspend/resume support - must do this before signal_sets_init()
4692   if (SR_initialize() != 0) {
4693     perror("SR_initialize failed");
4694     return JNI_ERR;
4695   }
4696 
4697   Linux::signal_sets_init();
4698   Linux::install_signal_handlers();
4699 
4700   // Check minimum allowable stack size for thread creation and to initialize
4701   // the java system classes, including StackOverflowError - depends on page
4702   // size.  Add a page for compiler2 recursion in main thread.
4703   // Add in 2*BytesPerWord times page size to account for VM stack during
4704   // class initialization depending on 32 or 64 bit VM.
4705   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4706                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4707                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4708 
4709   size_t threadStackSizeInBytes = ThreadStackSize * K;
4710   if (threadStackSizeInBytes != 0 &&
4711       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4712     tty->print_cr("\nThe stack size specified is too small, "
4713                   "Specify at least " SIZE_FORMAT "k",
4714                   os::Linux::min_stack_allowed/ K);
4715     return JNI_ERR;
4716   }
4717 
4718   // Make the stack size a multiple of the page size so that
4719   // the yellow/red zones can be guarded.
4720   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4721                                                 vm_page_size()));
4722 
4723   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4724 
4725 #if defined(IA32)
4726   workaround_expand_exec_shield_cs_limit();
4727 #endif
4728 
4729   Linux::libpthread_init();
4730   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4731     tty->print_cr("[HotSpot is running with %s, %s]\n",
4732                   Linux::glibc_version(), Linux::libpthread_version());
4733   }
4734 
4735   if (UseNUMA) {
4736     if (!Linux::libnuma_init()) {
4737       UseNUMA = false;
4738     } else {
4739       if ((Linux::numa_max_node() < 1)) {
4740         // There's only one node(they start from 0), disable NUMA.
4741         UseNUMA = false;
4742       }
4743     }
4744     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4745     // we can make the adaptive lgrp chunk resizing work. If the user specified
4746     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4747     // disable adaptive resizing.
4748     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4749       if (FLAG_IS_DEFAULT(UseNUMA)) {
4750         UseNUMA = false;
4751       } else {
4752         if (FLAG_IS_DEFAULT(UseLargePages) &&
4753             FLAG_IS_DEFAULT(UseSHM) &&
4754             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4755           UseLargePages = false;
4756         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4757           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4758           UseAdaptiveSizePolicy = false;
4759           UseAdaptiveNUMAChunkSizing = false;
4760         }
4761       }
4762     }
4763     if (!UseNUMA && ForceNUMA) {
4764       UseNUMA = true;
4765     }
4766   }
4767 
4768   if (MaxFDLimit) {
4769     // set the number of file descriptors to max. print out error
4770     // if getrlimit/setrlimit fails but continue regardless.
4771     struct rlimit nbr_files;
4772     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4773     if (status != 0) {
4774       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4775         perror("os::init_2 getrlimit failed");
4776       }
4777     } else {
4778       nbr_files.rlim_cur = nbr_files.rlim_max;
4779       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4780       if (status != 0) {
4781         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4782           perror("os::init_2 setrlimit failed");
4783         }
4784       }
4785     }
4786   }
4787 
4788   // Initialize lock used to serialize thread creation (see os::create_thread)
4789   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4790 
4791   // at-exit methods are called in the reverse order of their registration.
4792   // atexit functions are called on return from main or as a result of a
4793   // call to exit(3C). There can be only 32 of these functions registered
4794   // and atexit() does not set errno.
4795 
4796   if (PerfAllowAtExitRegistration) {
4797     // only register atexit functions if PerfAllowAtExitRegistration is set.
4798     // atexit functions can be delayed until process exit time, which
4799     // can be problematic for embedded VM situations. Embedded VMs should
4800     // call DestroyJavaVM() to assure that VM resources are released.
4801 
4802     // note: perfMemory_exit_helper atexit function may be removed in
4803     // the future if the appropriate cleanup code can be added to the
4804     // VM_Exit VMOperation's doit method.
4805     if (atexit(perfMemory_exit_helper) != 0) {
4806       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4807     }
4808   }
4809 
4810   // initialize thread priority policy
4811   prio_init();
4812 
4813   return JNI_OK;
4814 }
4815 
4816 // Mark the polling page as unreadable
4817 void os::make_polling_page_unreadable(void) {
4818   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4819     fatal("Could not disable polling page");
4820   }
4821 }
4822 
4823 // Mark the polling page as readable
4824 void os::make_polling_page_readable(void) {
4825   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4826     fatal("Could not enable polling page");
4827   }
4828 }
4829 
4830 int os::active_processor_count() {
4831   // Linux doesn't yet have a (official) notion of processor sets,
4832   // so just return the number of online processors.
4833   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4834   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4835   return online_cpus;
4836 }
4837 
4838 void os::set_native_thread_name(const char *name) {
4839   if (Linux::_pthread_setname_np) {
4840     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4841     snprintf(buf, sizeof(buf), "%s", name);
4842     buf[sizeof(buf) - 1] = '\0';
4843     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4844     // ERANGE should not happen; all other errors should just be ignored.
4845     assert(rc != ERANGE, "pthread_setname_np failed");
4846   }
4847 }
4848 
4849 bool os::distribute_processes(uint length, uint* distribution) {
4850   // Not yet implemented.
4851   return false;
4852 }
4853 
4854 bool os::bind_to_processor(uint processor_id) {
4855   // Not yet implemented.
4856   return false;
4857 }
4858 
4859 ///
4860 
4861 void os::SuspendedThreadTask::internal_do_task() {
4862   if (do_suspend(_thread->osthread())) {
4863     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4864     do_task(context);
4865     do_resume(_thread->osthread());
4866   }
4867 }
4868 
4869 class PcFetcher : public os::SuspendedThreadTask {
4870  public:
4871   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4872   ExtendedPC result();
4873  protected:
4874   void do_task(const os::SuspendedThreadTaskContext& context);
4875  private:
4876   ExtendedPC _epc;
4877 };
4878 
4879 ExtendedPC PcFetcher::result() {
4880   guarantee(is_done(), "task is not done yet.");
4881   return _epc;
4882 }
4883 
4884 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4885   Thread* thread = context.thread();
4886   OSThread* osthread = thread->osthread();
4887   if (osthread->ucontext() != NULL) {
4888     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4889   } else {
4890     // NULL context is unexpected, double-check this is the VMThread
4891     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4892   }
4893 }
4894 
4895 // Suspends the target using the signal mechanism and then grabs the PC before
4896 // resuming the target. Used by the flat-profiler only
4897 ExtendedPC os::get_thread_pc(Thread* thread) {
4898   // Make sure that it is called by the watcher for the VMThread
4899   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4900   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4901 
4902   PcFetcher fetcher(thread);
4903   fetcher.run();
4904   return fetcher.result();
4905 }
4906 
4907 ////////////////////////////////////////////////////////////////////////////////
4908 // debug support
4909 
4910 bool os::find(address addr, outputStream* st) {
4911   Dl_info dlinfo;
4912   memset(&dlinfo, 0, sizeof(dlinfo));
4913   if (dladdr(addr, &dlinfo) != 0) {
4914     st->print(PTR_FORMAT ": ", p2i(addr));
4915     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4916       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4917                 p2i(addr) - p2i(dlinfo.dli_saddr));
4918     } else if (dlinfo.dli_fbase != NULL) {
4919       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4920     } else {
4921       st->print("<absolute address>");
4922     }
4923     if (dlinfo.dli_fname != NULL) {
4924       st->print(" in %s", dlinfo.dli_fname);
4925     }
4926     if (dlinfo.dli_fbase != NULL) {
4927       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4928     }
4929     st->cr();
4930 
4931     if (Verbose) {
4932       // decode some bytes around the PC
4933       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4934       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4935       address       lowest = (address) dlinfo.dli_sname;
4936       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4937       if (begin < lowest)  begin = lowest;
4938       Dl_info dlinfo2;
4939       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4940           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4941         end = (address) dlinfo2.dli_saddr;
4942       }
4943       Disassembler::decode(begin, end, st);
4944     }
4945     return true;
4946   }
4947   return false;
4948 }
4949 
4950 ////////////////////////////////////////////////////////////////////////////////
4951 // misc
4952 
4953 // This does not do anything on Linux. This is basically a hook for being
4954 // able to use structured exception handling (thread-local exception filters)
4955 // on, e.g., Win32.
4956 void
4957 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4958                          JavaCallArguments* args, Thread* thread) {
4959   f(value, method, args, thread);
4960 }
4961 
4962 void os::print_statistics() {
4963 }
4964 
4965 int os::message_box(const char* title, const char* message) {
4966   int i;
4967   fdStream err(defaultStream::error_fd());
4968   for (i = 0; i < 78; i++) err.print_raw("=");
4969   err.cr();
4970   err.print_raw_cr(title);
4971   for (i = 0; i < 78; i++) err.print_raw("-");
4972   err.cr();
4973   err.print_raw_cr(message);
4974   for (i = 0; i < 78; i++) err.print_raw("=");
4975   err.cr();
4976 
4977   char buf[16];
4978   // Prevent process from exiting upon "read error" without consuming all CPU
4979   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4980 
4981   return buf[0] == 'y' || buf[0] == 'Y';
4982 }
4983 
4984 int os::stat(const char *path, struct stat *sbuf) {
4985   char pathbuf[MAX_PATH];
4986   if (strlen(path) > MAX_PATH - 1) {
4987     errno = ENAMETOOLONG;
4988     return -1;
4989   }
4990   os::native_path(strcpy(pathbuf, path));
4991   return ::stat(pathbuf, sbuf);
4992 }
4993 
4994 bool os::check_heap(bool force) {
4995   return true;
4996 }
4997 
4998 // Is a (classpath) directory empty?
4999 bool os::dir_is_empty(const char* path) {
5000   DIR *dir = NULL;
5001   struct dirent *ptr;
5002 
5003   dir = opendir(path);
5004   if (dir == NULL) return true;
5005 
5006   // Scan the directory
5007   bool result = true;
5008   char buf[sizeof(struct dirent) + MAX_PATH];
5009   while (result && (ptr = ::readdir(dir)) != NULL) {
5010     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5011       result = false;
5012     }
5013   }
5014   closedir(dir);
5015   return result;
5016 }
5017 
5018 // This code originates from JDK's sysOpen and open64_w
5019 // from src/solaris/hpi/src/system_md.c
5020 
5021 int os::open(const char *path, int oflag, int mode) {
5022   if (strlen(path) > MAX_PATH - 1) {
5023     errno = ENAMETOOLONG;
5024     return -1;
5025   }
5026 
5027   // All file descriptors that are opened in the Java process and not
5028   // specifically destined for a subprocess should have the close-on-exec
5029   // flag set.  If we don't set it, then careless 3rd party native code
5030   // might fork and exec without closing all appropriate file descriptors
5031   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5032   // turn might:
5033   //
5034   // - cause end-of-file to fail to be detected on some file
5035   //   descriptors, resulting in mysterious hangs, or
5036   //
5037   // - might cause an fopen in the subprocess to fail on a system
5038   //   suffering from bug 1085341.
5039   //
5040   // (Yes, the default setting of the close-on-exec flag is a Unix
5041   // design flaw)
5042   //
5043   // See:
5044   // 1085341: 32-bit stdio routines should support file descriptors >255
5045   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5046   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5047   //
5048   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5049   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5050   // because it saves a system call and removes a small window where the flag
5051   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5052   // and we fall back to using FD_CLOEXEC (see below).
5053 #ifdef O_CLOEXEC
5054   oflag |= O_CLOEXEC;
5055 #endif
5056 
5057   int fd = ::open64(path, oflag, mode);
5058   if (fd == -1) return -1;
5059 
5060   //If the open succeeded, the file might still be a directory
5061   {
5062     struct stat64 buf64;
5063     int ret = ::fstat64(fd, &buf64);
5064     int st_mode = buf64.st_mode;
5065 
5066     if (ret != -1) {
5067       if ((st_mode & S_IFMT) == S_IFDIR) {
5068         errno = EISDIR;
5069         ::close(fd);
5070         return -1;
5071       }
5072     } else {
5073       ::close(fd);
5074       return -1;
5075     }
5076   }
5077 
5078 #ifdef FD_CLOEXEC
5079   // Validate that the use of the O_CLOEXEC flag on open above worked.
5080   // With recent kernels, we will perform this check exactly once.
5081   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5082   if (!O_CLOEXEC_is_known_to_work) {
5083     int flags = ::fcntl(fd, F_GETFD);
5084     if (flags != -1) {
5085       if ((flags & FD_CLOEXEC) != 0)
5086         O_CLOEXEC_is_known_to_work = 1;
5087       else
5088         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5089     }
5090   }
5091 #endif
5092 
5093   return fd;
5094 }
5095 
5096 
5097 // create binary file, rewriting existing file if required
5098 int os::create_binary_file(const char* path, bool rewrite_existing) {
5099   int oflags = O_WRONLY | O_CREAT;
5100   if (!rewrite_existing) {
5101     oflags |= O_EXCL;
5102   }
5103   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5104 }
5105 
5106 // return current position of file pointer
5107 jlong os::current_file_offset(int fd) {
5108   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5109 }
5110 
5111 // move file pointer to the specified offset
5112 jlong os::seek_to_file_offset(int fd, jlong offset) {
5113   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5114 }
5115 
5116 // This code originates from JDK's sysAvailable
5117 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5118 
5119 int os::available(int fd, jlong *bytes) {
5120   jlong cur, end;
5121   int mode;
5122   struct stat64 buf64;
5123 
5124   if (::fstat64(fd, &buf64) >= 0) {
5125     mode = buf64.st_mode;
5126     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5127       int n;
5128       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5129         *bytes = n;
5130         return 1;
5131       }
5132     }
5133   }
5134   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5135     return 0;
5136   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5137     return 0;
5138   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5139     return 0;
5140   }
5141   *bytes = end - cur;
5142   return 1;
5143 }
5144 
5145 // Map a block of memory.
5146 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5147                         char *addr, size_t bytes, bool read_only,
5148                         bool allow_exec) {
5149   int prot;
5150   int flags = MAP_PRIVATE;
5151 
5152   if (read_only) {
5153     prot = PROT_READ;
5154   } else {
5155     prot = PROT_READ | PROT_WRITE;
5156   }
5157 
5158   if (allow_exec) {
5159     prot |= PROT_EXEC;
5160   }
5161 
5162   if (addr != NULL) {
5163     flags |= MAP_FIXED;
5164   }
5165 
5166   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5167                                      fd, file_offset);
5168   if (mapped_address == MAP_FAILED) {
5169     return NULL;
5170   }
5171   return mapped_address;
5172 }
5173 
5174 
5175 // Remap a block of memory.
5176 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5177                           char *addr, size_t bytes, bool read_only,
5178                           bool allow_exec) {
5179   // same as map_memory() on this OS
5180   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5181                         allow_exec);
5182 }
5183 
5184 
5185 // Unmap a block of memory.
5186 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5187   return munmap(addr, bytes) == 0;
5188 }
5189 
5190 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5191 
5192 static clockid_t thread_cpu_clockid(Thread* thread) {
5193   pthread_t tid = thread->osthread()->pthread_id();
5194   clockid_t clockid;
5195 
5196   // Get thread clockid
5197   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5198   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5199   return clockid;
5200 }
5201 
5202 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5203 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5204 // of a thread.
5205 //
5206 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5207 // the fast estimate available on the platform.
5208 
5209 jlong os::current_thread_cpu_time() {
5210   if (os::Linux::supports_fast_thread_cpu_time()) {
5211     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5212   } else {
5213     // return user + sys since the cost is the same
5214     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5215   }
5216 }
5217 
5218 jlong os::thread_cpu_time(Thread* thread) {
5219   // consistent with what current_thread_cpu_time() returns
5220   if (os::Linux::supports_fast_thread_cpu_time()) {
5221     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5222   } else {
5223     return slow_thread_cpu_time(thread, true /* user + sys */);
5224   }
5225 }
5226 
5227 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5228   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5229     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5230   } else {
5231     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5232   }
5233 }
5234 
5235 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5236   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5237     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5238   } else {
5239     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5240   }
5241 }
5242 
5243 //  -1 on error.
5244 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5245   pid_t  tid = thread->osthread()->thread_id();
5246   char *s;
5247   char stat[2048];
5248   int statlen;
5249   char proc_name[64];
5250   int count;
5251   long sys_time, user_time;
5252   char cdummy;
5253   int idummy;
5254   long ldummy;
5255   FILE *fp;
5256 
5257   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5258   fp = fopen(proc_name, "r");
5259   if (fp == NULL) return -1;
5260   statlen = fread(stat, 1, 2047, fp);
5261   stat[statlen] = '\0';
5262   fclose(fp);
5263 
5264   // Skip pid and the command string. Note that we could be dealing with
5265   // weird command names, e.g. user could decide to rename java launcher
5266   // to "java 1.4.2 :)", then the stat file would look like
5267   //                1234 (java 1.4.2 :)) R ... ...
5268   // We don't really need to know the command string, just find the last
5269   // occurrence of ")" and then start parsing from there. See bug 4726580.
5270   s = strrchr(stat, ')');
5271   if (s == NULL) return -1;
5272 
5273   // Skip blank chars
5274   do { s++; } while (s && isspace(*s));
5275 
5276   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5277                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5278                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5279                  &user_time, &sys_time);
5280   if (count != 13) return -1;
5281   if (user_sys_cpu_time) {
5282     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5283   } else {
5284     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5285   }
5286 }
5287 
5288 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5289   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5290   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5291   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5292   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5293 }
5294 
5295 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5296   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5297   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5298   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5299   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5300 }
5301 
5302 bool os::is_thread_cpu_time_supported() {
5303   return true;
5304 }
5305 
5306 // System loadavg support.  Returns -1 if load average cannot be obtained.
5307 // Linux doesn't yet have a (official) notion of processor sets,
5308 // so just return the system wide load average.
5309 int os::loadavg(double loadavg[], int nelem) {
5310   return ::getloadavg(loadavg, nelem);
5311 }
5312 
5313 void os::pause() {
5314   char filename[MAX_PATH];
5315   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5316     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5317   } else {
5318     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5319   }
5320 
5321   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5322   if (fd != -1) {
5323     struct stat buf;
5324     ::close(fd);
5325     while (::stat(filename, &buf) == 0) {
5326       (void)::poll(NULL, 0, 100);
5327     }
5328   } else {
5329     jio_fprintf(stderr,
5330                 "Could not open pause file '%s', continuing immediately.\n", filename);
5331   }
5332 }
5333 
5334 
5335 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5336 // comment paragraphs are worth repeating here:
5337 //
5338 // Assumption:
5339 //    Only one parker can exist on an event, which is why we allocate
5340 //    them per-thread. Multiple unparkers can coexist.
5341 //
5342 // _Event serves as a restricted-range semaphore.
5343 //   -1 : thread is blocked, i.e. there is a waiter
5344 //    0 : neutral: thread is running or ready,
5345 //        could have been signaled after a wait started
5346 //    1 : signaled - thread is running or ready
5347 //
5348 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5349 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5350 // For specifics regarding the bug see GLIBC BUGID 261237 :
5351 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5352 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5353 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5354 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5355 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5356 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5357 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5358 // of libpthread avoids the problem, but isn't practical.
5359 //
5360 // Possible remedies:
5361 //
5362 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5363 //      This is palliative and probabilistic, however.  If the thread is preempted
5364 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5365 //      than the minimum period may have passed, and the abstime may be stale (in the
5366 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5367 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5368 //
5369 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5370 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5371 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5372 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5373 //      thread.
5374 //
5375 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5376 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5377 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5378 //      This also works well.  In fact it avoids kernel-level scalability impediments
5379 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5380 //      timers in a graceful fashion.
5381 //
5382 // 4.   When the abstime value is in the past it appears that control returns
5383 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5384 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5385 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5386 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5387 //      It may be possible to avoid reinitialization by checking the return
5388 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5389 //      condvar we must establish the invariant that cond_signal() is only called
5390 //      within critical sections protected by the adjunct mutex.  This prevents
5391 //      cond_signal() from "seeing" a condvar that's in the midst of being
5392 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5393 //      desirable signal-after-unlock optimization that avoids futile context switching.
5394 //
5395 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5396 //      structure when a condvar is used or initialized.  cond_destroy()  would
5397 //      release the helper structure.  Our reinitialize-after-timedwait fix
5398 //      put excessive stress on malloc/free and locks protecting the c-heap.
5399 //
5400 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5401 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5402 // and only enabling the work-around for vulnerable environments.
5403 
5404 // utility to compute the abstime argument to timedwait:
5405 // millis is the relative timeout time
5406 // abstime will be the absolute timeout time
5407 // TODO: replace compute_abstime() with unpackTime()
5408 
5409 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5410   if (millis < 0)  millis = 0;
5411 
5412   jlong seconds = millis / 1000;
5413   millis %= 1000;
5414   if (seconds > 50000000) { // see man cond_timedwait(3T)
5415     seconds = 50000000;
5416   }
5417 
5418   if (os::supports_monotonic_clock()) {
5419     struct timespec now;
5420     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5421     assert_status(status == 0, status, "clock_gettime");
5422     abstime->tv_sec = now.tv_sec  + seconds;
5423     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5424     if (nanos >= NANOSECS_PER_SEC) {
5425       abstime->tv_sec += 1;
5426       nanos -= NANOSECS_PER_SEC;
5427     }
5428     abstime->tv_nsec = nanos;
5429   } else {
5430     struct timeval now;
5431     int status = gettimeofday(&now, NULL);
5432     assert(status == 0, "gettimeofday");
5433     abstime->tv_sec = now.tv_sec  + seconds;
5434     long usec = now.tv_usec + millis * 1000;
5435     if (usec >= 1000000) {
5436       abstime->tv_sec += 1;
5437       usec -= 1000000;
5438     }
5439     abstime->tv_nsec = usec * 1000;
5440   }
5441   return abstime;
5442 }
5443 
5444 void os::PlatformEvent::park() {       // AKA "down()"
5445   // Transitions for _Event:
5446   //   -1 => -1 : illegal
5447   //    1 =>  0 : pass - return immediately
5448   //    0 => -1 : block; then set _Event to 0 before returning
5449 
5450   // Invariant: Only the thread associated with the Event/PlatformEvent
5451   // may call park().
5452   // TODO: assert that _Assoc != NULL or _Assoc == Self
5453   assert(_nParked == 0, "invariant");
5454 
5455   int v;
5456   for (;;) {
5457     v = _Event;
5458     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5459   }
5460   guarantee(v >= 0, "invariant");
5461   if (v == 0) {
5462     // Do this the hard way by blocking ...
5463     int status = pthread_mutex_lock(_mutex);
5464     assert_status(status == 0, status, "mutex_lock");
5465     guarantee(_nParked == 0, "invariant");
5466     ++_nParked;
5467     while (_Event < 0) {
5468       status = pthread_cond_wait(_cond, _mutex);
5469       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5470       // Treat this the same as if the wait was interrupted
5471       if (status == ETIME) { status = EINTR; }
5472       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5473     }
5474     --_nParked;
5475 
5476     _Event = 0;
5477     status = pthread_mutex_unlock(_mutex);
5478     assert_status(status == 0, status, "mutex_unlock");
5479     // Paranoia to ensure our locked and lock-free paths interact
5480     // correctly with each other.
5481     OrderAccess::fence();
5482   }
5483   guarantee(_Event >= 0, "invariant");
5484 }
5485 
5486 int os::PlatformEvent::park(jlong millis) {
5487   // Transitions for _Event:
5488   //   -1 => -1 : illegal
5489   //    1 =>  0 : pass - return immediately
5490   //    0 => -1 : block; then set _Event to 0 before returning
5491 
5492   guarantee(_nParked == 0, "invariant");
5493 
5494   int v;
5495   for (;;) {
5496     v = _Event;
5497     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5498   }
5499   guarantee(v >= 0, "invariant");
5500   if (v != 0) return OS_OK;
5501 
5502   // We do this the hard way, by blocking the thread.
5503   // Consider enforcing a minimum timeout value.
5504   struct timespec abst;
5505   compute_abstime(&abst, millis);
5506 
5507   int ret = OS_TIMEOUT;
5508   int status = pthread_mutex_lock(_mutex);
5509   assert_status(status == 0, status, "mutex_lock");
5510   guarantee(_nParked == 0, "invariant");
5511   ++_nParked;
5512 
5513   // Object.wait(timo) will return because of
5514   // (a) notification
5515   // (b) timeout
5516   // (c) thread.interrupt
5517   //
5518   // Thread.interrupt and object.notify{All} both call Event::set.
5519   // That is, we treat thread.interrupt as a special case of notification.
5520   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5521   // We assume all ETIME returns are valid.
5522   //
5523   // TODO: properly differentiate simultaneous notify+interrupt.
5524   // In that case, we should propagate the notify to another waiter.
5525 
5526   while (_Event < 0) {
5527     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5528     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5529       pthread_cond_destroy(_cond);
5530       pthread_cond_init(_cond, os::Linux::condAttr());
5531     }
5532     assert_status(status == 0 || status == EINTR ||
5533                   status == ETIME || status == ETIMEDOUT,
5534                   status, "cond_timedwait");
5535     if (!FilterSpuriousWakeups) break;                 // previous semantics
5536     if (status == ETIME || status == ETIMEDOUT) break;
5537     // We consume and ignore EINTR and spurious wakeups.
5538   }
5539   --_nParked;
5540   if (_Event >= 0) {
5541     ret = OS_OK;
5542   }
5543   _Event = 0;
5544   status = pthread_mutex_unlock(_mutex);
5545   assert_status(status == 0, status, "mutex_unlock");
5546   assert(_nParked == 0, "invariant");
5547   // Paranoia to ensure our locked and lock-free paths interact
5548   // correctly with each other.
5549   OrderAccess::fence();
5550   return ret;
5551 }
5552 
5553 void os::PlatformEvent::unpark() {
5554   // Transitions for _Event:
5555   //    0 => 1 : just return
5556   //    1 => 1 : just return
5557   //   -1 => either 0 or 1; must signal target thread
5558   //         That is, we can safely transition _Event from -1 to either
5559   //         0 or 1.
5560   // See also: "Semaphores in Plan 9" by Mullender & Cox
5561   //
5562   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5563   // that it will take two back-to-back park() calls for the owning
5564   // thread to block. This has the benefit of forcing a spurious return
5565   // from the first park() call after an unpark() call which will help
5566   // shake out uses of park() and unpark() without condition variables.
5567 
5568   if (Atomic::xchg(1, &_Event) >= 0) return;
5569 
5570   // Wait for the thread associated with the event to vacate
5571   int status = pthread_mutex_lock(_mutex);
5572   assert_status(status == 0, status, "mutex_lock");
5573   int AnyWaiters = _nParked;
5574   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5575   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5576     AnyWaiters = 0;
5577     pthread_cond_signal(_cond);
5578   }
5579   status = pthread_mutex_unlock(_mutex);
5580   assert_status(status == 0, status, "mutex_unlock");
5581   if (AnyWaiters != 0) {
5582     // Note that we signal() *after* dropping the lock for "immortal" Events.
5583     // This is safe and avoids a common class of  futile wakeups.  In rare
5584     // circumstances this can cause a thread to return prematurely from
5585     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5586     // will simply re-test the condition and re-park itself.
5587     // This provides particular benefit if the underlying platform does not
5588     // provide wait morphing.
5589     status = pthread_cond_signal(_cond);
5590     assert_status(status == 0, status, "cond_signal");
5591   }
5592 }
5593 
5594 
5595 // JSR166
5596 // -------------------------------------------------------
5597 
5598 // The solaris and linux implementations of park/unpark are fairly
5599 // conservative for now, but can be improved. They currently use a
5600 // mutex/condvar pair, plus a a count.
5601 // Park decrements count if > 0, else does a condvar wait.  Unpark
5602 // sets count to 1 and signals condvar.  Only one thread ever waits
5603 // on the condvar. Contention seen when trying to park implies that someone
5604 // is unparking you, so don't wait. And spurious returns are fine, so there
5605 // is no need to track notifications.
5606 
5607 // This code is common to linux and solaris and will be moved to a
5608 // common place in dolphin.
5609 //
5610 // The passed in time value is either a relative time in nanoseconds
5611 // or an absolute time in milliseconds. Either way it has to be unpacked
5612 // into suitable seconds and nanoseconds components and stored in the
5613 // given timespec structure.
5614 // Given time is a 64-bit value and the time_t used in the timespec is only
5615 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5616 // overflow if times way in the future are given. Further on Solaris versions
5617 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5618 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5619 // As it will be 28 years before "now + 100000000" will overflow we can
5620 // ignore overflow and just impose a hard-limit on seconds using the value
5621 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5622 // years from "now".
5623 
5624 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5625   assert(time > 0, "convertTime");
5626   time_t max_secs = 0;
5627 
5628   if (!os::supports_monotonic_clock() || isAbsolute) {
5629     struct timeval now;
5630     int status = gettimeofday(&now, NULL);
5631     assert(status == 0, "gettimeofday");
5632 
5633     max_secs = now.tv_sec + MAX_SECS;
5634 
5635     if (isAbsolute) {
5636       jlong secs = time / 1000;
5637       if (secs > max_secs) {
5638         absTime->tv_sec = max_secs;
5639       } else {
5640         absTime->tv_sec = secs;
5641       }
5642       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5643     } else {
5644       jlong secs = time / NANOSECS_PER_SEC;
5645       if (secs >= MAX_SECS) {
5646         absTime->tv_sec = max_secs;
5647         absTime->tv_nsec = 0;
5648       } else {
5649         absTime->tv_sec = now.tv_sec + secs;
5650         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5651         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5652           absTime->tv_nsec -= NANOSECS_PER_SEC;
5653           ++absTime->tv_sec; // note: this must be <= max_secs
5654         }
5655       }
5656     }
5657   } else {
5658     // must be relative using monotonic clock
5659     struct timespec now;
5660     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5661     assert_status(status == 0, status, "clock_gettime");
5662     max_secs = now.tv_sec + MAX_SECS;
5663     jlong secs = time / NANOSECS_PER_SEC;
5664     if (secs >= MAX_SECS) {
5665       absTime->tv_sec = max_secs;
5666       absTime->tv_nsec = 0;
5667     } else {
5668       absTime->tv_sec = now.tv_sec + secs;
5669       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5670       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5671         absTime->tv_nsec -= NANOSECS_PER_SEC;
5672         ++absTime->tv_sec; // note: this must be <= max_secs
5673       }
5674     }
5675   }
5676   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5677   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5678   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5679   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5680 }
5681 
5682 void Parker::park(bool isAbsolute, jlong time) {
5683   // Ideally we'd do something useful while spinning, such
5684   // as calling unpackTime().
5685 
5686   // Optional fast-path check:
5687   // Return immediately if a permit is available.
5688   // We depend on Atomic::xchg() having full barrier semantics
5689   // since we are doing a lock-free update to _counter.
5690   if (Atomic::xchg(0, &_counter) > 0) return;
5691 
5692   Thread* thread = Thread::current();
5693   assert(thread->is_Java_thread(), "Must be JavaThread");
5694   JavaThread *jt = (JavaThread *)thread;
5695 
5696   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5697   // Check interrupt before trying to wait
5698   if (Thread::is_interrupted(thread, false)) {
5699     return;
5700   }
5701 
5702   // Next, demultiplex/decode time arguments
5703   timespec absTime;
5704   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5705     return;
5706   }
5707   if (time > 0) {
5708     unpackTime(&absTime, isAbsolute, time);
5709   }
5710 
5711 
5712   // Enter safepoint region
5713   // Beware of deadlocks such as 6317397.
5714   // The per-thread Parker:: mutex is a classic leaf-lock.
5715   // In particular a thread must never block on the Threads_lock while
5716   // holding the Parker:: mutex.  If safepoints are pending both the
5717   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5718   ThreadBlockInVM tbivm(jt);
5719 
5720   // Don't wait if cannot get lock since interference arises from
5721   // unblocking.  Also. check interrupt before trying wait
5722   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5723     return;
5724   }
5725 
5726   int status;
5727   if (_counter > 0)  { // no wait needed
5728     _counter = 0;
5729     status = pthread_mutex_unlock(_mutex);
5730     assert(status == 0, "invariant");
5731     // Paranoia to ensure our locked and lock-free paths interact
5732     // correctly with each other and Java-level accesses.
5733     OrderAccess::fence();
5734     return;
5735   }
5736 
5737 #ifdef ASSERT
5738   // Don't catch signals while blocked; let the running threads have the signals.
5739   // (This allows a debugger to break into the running thread.)
5740   sigset_t oldsigs;
5741   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5742   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5743 #endif
5744 
5745   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5746   jt->set_suspend_equivalent();
5747   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5748 
5749   assert(_cur_index == -1, "invariant");
5750   if (time == 0) {
5751     _cur_index = REL_INDEX; // arbitrary choice when not timed
5752     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5753   } else {
5754     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5755     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5756     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5757       pthread_cond_destroy(&_cond[_cur_index]);
5758       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5759     }
5760   }
5761   _cur_index = -1;
5762   assert_status(status == 0 || status == EINTR ||
5763                 status == ETIME || status == ETIMEDOUT,
5764                 status, "cond_timedwait");
5765 
5766 #ifdef ASSERT
5767   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5768 #endif
5769 
5770   _counter = 0;
5771   status = pthread_mutex_unlock(_mutex);
5772   assert_status(status == 0, status, "invariant");
5773   // Paranoia to ensure our locked and lock-free paths interact
5774   // correctly with each other and Java-level accesses.
5775   OrderAccess::fence();
5776 
5777   // If externally suspended while waiting, re-suspend
5778   if (jt->handle_special_suspend_equivalent_condition()) {
5779     jt->java_suspend_self();
5780   }
5781 }
5782 
5783 void Parker::unpark() {
5784   int status = pthread_mutex_lock(_mutex);
5785   assert(status == 0, "invariant");
5786   const int s = _counter;
5787   _counter = 1;
5788   if (s < 1) {
5789     // thread might be parked
5790     if (_cur_index != -1) {
5791       // thread is definitely parked
5792       if (WorkAroundNPTLTimedWaitHang) {
5793         status = pthread_cond_signal(&_cond[_cur_index]);
5794         assert(status == 0, "invariant");
5795         status = pthread_mutex_unlock(_mutex);
5796         assert(status == 0, "invariant");
5797       } else {
5798         // must capture correct index before unlocking
5799         int index = _cur_index;
5800         status = pthread_mutex_unlock(_mutex);
5801         assert(status == 0, "invariant");
5802         status = pthread_cond_signal(&_cond[index]);
5803         assert(status == 0, "invariant");
5804       }
5805     } else {
5806       pthread_mutex_unlock(_mutex);
5807       assert(status == 0, "invariant");
5808     }
5809   } else {
5810     pthread_mutex_unlock(_mutex);
5811     assert(status == 0, "invariant");
5812   }
5813 }
5814 
5815 
5816 extern char** environ;
5817 
5818 // Run the specified command in a separate process. Return its exit value,
5819 // or -1 on failure (e.g. can't fork a new process).
5820 // Unlike system(), this function can be called from signal handler. It
5821 // doesn't block SIGINT et al.
5822 int os::fork_and_exec(char* cmd) {
5823   const char * argv[4] = {"sh", "-c", cmd, NULL};
5824 
5825   pid_t pid = fork();
5826 
5827   if (pid < 0) {
5828     // fork failed
5829     return -1;
5830 
5831   } else if (pid == 0) {
5832     // child process
5833 
5834     execve("/bin/sh", (char* const*)argv, environ);
5835 
5836     // execve failed
5837     _exit(-1);
5838 
5839   } else  {
5840     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5841     // care about the actual exit code, for now.
5842 
5843     int status;
5844 
5845     // Wait for the child process to exit.  This returns immediately if
5846     // the child has already exited. */
5847     while (waitpid(pid, &status, 0) < 0) {
5848       switch (errno) {
5849       case ECHILD: return 0;
5850       case EINTR: break;
5851       default: return -1;
5852       }
5853     }
5854 
5855     if (WIFEXITED(status)) {
5856       // The child exited normally; get its exit code.
5857       return WEXITSTATUS(status);
5858     } else if (WIFSIGNALED(status)) {
5859       // The child exited because of a signal
5860       // The best value to return is 0x80 + signal number,
5861       // because that is what all Unix shells do, and because
5862       // it allows callers to distinguish between process exit and
5863       // process death by signal.
5864       return 0x80 + WTERMSIG(status);
5865     } else {
5866       // Unknown exit code; pass it through
5867       return status;
5868     }
5869   }
5870 }
5871 
5872 // is_headless_jre()
5873 //
5874 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5875 // in order to report if we are running in a headless jre
5876 //
5877 // Since JDK8 xawt/libmawt.so was moved into the same directory
5878 // as libawt.so, and renamed libawt_xawt.so
5879 //
5880 bool os::is_headless_jre() {
5881   struct stat statbuf;
5882   char buf[MAXPATHLEN];
5883   char libmawtpath[MAXPATHLEN];
5884   const char *xawtstr  = "/xawt/libmawt.so";
5885   const char *new_xawtstr = "/libawt_xawt.so";
5886   char *p;
5887 
5888   // Get path to libjvm.so
5889   os::jvm_path(buf, sizeof(buf));
5890 
5891   // Get rid of libjvm.so
5892   p = strrchr(buf, '/');
5893   if (p == NULL) {
5894     return false;
5895   } else {
5896     *p = '\0';
5897   }
5898 
5899   // Get rid of client or server
5900   p = strrchr(buf, '/');
5901   if (p == NULL) {
5902     return false;
5903   } else {
5904     *p = '\0';
5905   }
5906 
5907   // check xawt/libmawt.so
5908   strcpy(libmawtpath, buf);
5909   strcat(libmawtpath, xawtstr);
5910   if (::stat(libmawtpath, &statbuf) == 0) return false;
5911 
5912   // check libawt_xawt.so
5913   strcpy(libmawtpath, buf);
5914   strcat(libmawtpath, new_xawtstr);
5915   if (::stat(libmawtpath, &statbuf) == 0) return false;
5916 
5917   return true;
5918 }
5919 
5920 // Get the default path to the core file
5921 // Returns the length of the string
5922 int os::get_core_path(char* buffer, size_t bufferSize) {
5923   /*
5924    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5925    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5926    */
5927   const int core_pattern_len = 129;
5928   char core_pattern[core_pattern_len] = {0};
5929 
5930   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5931   if (core_pattern_file != -1) {
5932     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5933     ::close(core_pattern_file);
5934 
5935     if (ret > 0) {
5936       char *last_char = core_pattern + strlen(core_pattern) - 1;
5937 
5938       if (*last_char == '\n') {
5939         *last_char = '\0';
5940       }
5941     }
5942   }
5943 
5944   if (strlen(core_pattern) == 0) {
5945     return -1;
5946   }
5947 
5948   char *pid_pos = strstr(core_pattern, "%p");
5949   int written;
5950 
5951   if (core_pattern[0] == '/') {
5952     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5953   } else {
5954     char cwd[PATH_MAX];
5955 
5956     const char* p = get_current_directory(cwd, PATH_MAX);
5957     if (p == NULL) {
5958       return -1;
5959     }
5960 
5961     if (core_pattern[0] == '|') {
5962       written = jio_snprintf(buffer, bufferSize,
5963                         "\"%s\" (or dumping to %s/core.%d)",
5964                                      &core_pattern[1], p, current_process_id());
5965     } else {
5966       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5967     }
5968   }
5969 
5970   if (written < 0) {
5971     return -1;
5972   }
5973 
5974   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5975     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5976 
5977     if (core_uses_pid_file != -1) {
5978       char core_uses_pid = 0;
5979       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5980       ::close(core_uses_pid_file);
5981 
5982       if (core_uses_pid == '1') {
5983         jio_snprintf(buffer + written, bufferSize - written,
5984                                           ".%d", current_process_id());
5985       }
5986     }
5987   }
5988 
5989   return strlen(buffer);
5990 }
5991 
5992 /////////////// Unit tests ///////////////
5993 
5994 #ifndef PRODUCT
5995 
5996 #define test_log(...)              \
5997   do {                             \
5998     if (VerboseInternalVMTests) {  \
5999       tty->print_cr(__VA_ARGS__);  \
6000       tty->flush();                \
6001     }                              \
6002   } while (false)
6003 
6004 class TestReserveMemorySpecial : AllStatic {
6005  public:
6006   static void small_page_write(void* addr, size_t size) {
6007     size_t page_size = os::vm_page_size();
6008 
6009     char* end = (char*)addr + size;
6010     for (char* p = (char*)addr; p < end; p += page_size) {
6011       *p = 1;
6012     }
6013   }
6014 
6015   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6016     if (!UseHugeTLBFS) {
6017       return;
6018     }
6019 
6020     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6021 
6022     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6023 
6024     if (addr != NULL) {
6025       small_page_write(addr, size);
6026 
6027       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6028     }
6029   }
6030 
6031   static void test_reserve_memory_special_huge_tlbfs_only() {
6032     if (!UseHugeTLBFS) {
6033       return;
6034     }
6035 
6036     size_t lp = os::large_page_size();
6037 
6038     for (size_t size = lp; size <= lp * 10; size += lp) {
6039       test_reserve_memory_special_huge_tlbfs_only(size);
6040     }
6041   }
6042 
6043   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6044     size_t lp = os::large_page_size();
6045     size_t ag = os::vm_allocation_granularity();
6046 
6047     // sizes to test
6048     const size_t sizes[] = {
6049       lp, lp + ag, lp + lp / 2, lp * 2,
6050       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6051       lp * 10, lp * 10 + lp / 2
6052     };
6053     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6054 
6055     // For each size/alignment combination, we test three scenarios:
6056     // 1) with req_addr == NULL
6057     // 2) with a non-null req_addr at which we expect to successfully allocate
6058     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6059     //    expect the allocation to either fail or to ignore req_addr
6060 
6061     // Pre-allocate two areas; they shall be as large as the largest allocation
6062     //  and aligned to the largest alignment we will be testing.
6063     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6064     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6065       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6066       -1, 0);
6067     assert(mapping1 != MAP_FAILED, "should work");
6068 
6069     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6070       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6071       -1, 0);
6072     assert(mapping2 != MAP_FAILED, "should work");
6073 
6074     // Unmap the first mapping, but leave the second mapping intact: the first
6075     // mapping will serve as a value for a "good" req_addr (case 2). The second
6076     // mapping, still intact, as "bad" req_addr (case 3).
6077     ::munmap(mapping1, mapping_size);
6078 
6079     // Case 1
6080     test_log("%s, req_addr NULL:", __FUNCTION__);
6081     test_log("size            align           result");
6082 
6083     for (int i = 0; i < num_sizes; i++) {
6084       const size_t size = sizes[i];
6085       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6086         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6087         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6088                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6089         if (p != NULL) {
6090           assert(is_ptr_aligned(p, alignment), "must be");
6091           small_page_write(p, size);
6092           os::Linux::release_memory_special_huge_tlbfs(p, size);
6093         }
6094       }
6095     }
6096 
6097     // Case 2
6098     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6099     test_log("size            align           req_addr         result");
6100 
6101     for (int i = 0; i < num_sizes; i++) {
6102       const size_t size = sizes[i];
6103       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6104         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6105         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6106         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6107                  size, alignment, p2i(req_addr), p2i(p),
6108                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6109         if (p != NULL) {
6110           assert(p == req_addr, "must be");
6111           small_page_write(p, size);
6112           os::Linux::release_memory_special_huge_tlbfs(p, size);
6113         }
6114       }
6115     }
6116 
6117     // Case 3
6118     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6119     test_log("size            align           req_addr         result");
6120 
6121     for (int i = 0; i < num_sizes; i++) {
6122       const size_t size = sizes[i];
6123       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6124         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6125         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6126         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6127                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6128         // as the area around req_addr contains already existing mappings, the API should always
6129         // return NULL (as per contract, it cannot return another address)
6130         assert(p == NULL, "must be");
6131       }
6132     }
6133 
6134     ::munmap(mapping2, mapping_size);
6135 
6136   }
6137 
6138   static void test_reserve_memory_special_huge_tlbfs() {
6139     if (!UseHugeTLBFS) {
6140       return;
6141     }
6142 
6143     test_reserve_memory_special_huge_tlbfs_only();
6144     test_reserve_memory_special_huge_tlbfs_mixed();
6145   }
6146 
6147   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6148     if (!UseSHM) {
6149       return;
6150     }
6151 
6152     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6153 
6154     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6155 
6156     if (addr != NULL) {
6157       assert(is_ptr_aligned(addr, alignment), "Check");
6158       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6159 
6160       small_page_write(addr, size);
6161 
6162       os::Linux::release_memory_special_shm(addr, size);
6163     }
6164   }
6165 
6166   static void test_reserve_memory_special_shm() {
6167     size_t lp = os::large_page_size();
6168     size_t ag = os::vm_allocation_granularity();
6169 
6170     for (size_t size = ag; size < lp * 3; size += ag) {
6171       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6172         test_reserve_memory_special_shm(size, alignment);
6173       }
6174     }
6175   }
6176 
6177   static void test() {
6178     test_reserve_memory_special_huge_tlbfs();
6179     test_reserve_memory_special_shm();
6180   }
6181 };
6182 
6183 void TestReserveMemorySpecial_test() {
6184   TestReserveMemorySpecial::test();
6185 }
6186 
6187 #endif