1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "gc/shared/vmGCOperations.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #ifdef ASSERT
  37 #include "memory/guardedMemory.hpp"
  38 #endif
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "prims/privilegedStack.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/vm_version.hpp"
  54 #include "services/attachListener.hpp"
  55 #include "services/mallocTracker.hpp"
  56 #include "services/memTracker.hpp"
  57 #include "services/nmtCommon.hpp"
  58 #include "services/threadService.hpp"
  59 #include "utilities/defaultStream.hpp"
  60 #include "utilities/events.hpp"
  61 
  62 # include <signal.h>
  63 
  64 OSThread*         os::_starting_thread    = NULL;
  65 address           os::_polling_page       = NULL;
  66 volatile int32_t* os::_mem_serialize_page = NULL;
  67 uintptr_t         os::_serialize_page_mask = 0;
  68 long              os::_rand_seed          = 1;
  69 int               os::_processor_count    = 0;
  70 size_t            os::_page_sizes[os::page_sizes_max];
  71 
  72 #ifndef PRODUCT
  73 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  74 julong os::alloc_bytes = 0;         // # of bytes allocated
  75 julong os::num_frees = 0;           // # of calls to free
  76 julong os::free_bytes = 0;          // # of bytes freed
  77 #endif
  78 
  79 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  80 
  81 void os_init_globals() {
  82   // Called from init_globals().
  83   // See Threads::create_vm() in thread.cpp, and init.cpp.
  84   os::init_globals();
  85 }
  86 
  87 // Fill in buffer with current local time as an ISO-8601 string.
  88 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  89 // Returns buffer, or NULL if it failed.
  90 // This would mostly be a call to
  91 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  92 // except that on Windows the %z behaves badly, so we do it ourselves.
  93 // Also, people wanted milliseconds on there,
  94 // and strftime doesn't do milliseconds.
  95 char* os::iso8601_time(char* buffer, size_t buffer_length) {
  96   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
  97   //                                      1         2
  98   //                             12345678901234567890123456789
  99   // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
 100   static const size_t needed_buffer = 29;
 101 
 102   // Sanity check the arguments
 103   if (buffer == NULL) {
 104     assert(false, "NULL buffer");
 105     return NULL;
 106   }
 107   if (buffer_length < needed_buffer) {
 108     assert(false, "buffer_length too small");
 109     return NULL;
 110   }
 111   // Get the current time
 112   jlong milliseconds_since_19700101 = javaTimeMillis();
 113   const int milliseconds_per_microsecond = 1000;
 114   const time_t seconds_since_19700101 =
 115     milliseconds_since_19700101 / milliseconds_per_microsecond;
 116   const int milliseconds_after_second =
 117     milliseconds_since_19700101 % milliseconds_per_microsecond;
 118   // Convert the time value to a tm and timezone variable
 119   struct tm time_struct;
 120   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 121     assert(false, "Failed localtime_pd");
 122     return NULL;
 123   }
 124 #if defined(_ALLBSD_SOURCE)
 125   const time_t zone = (time_t) time_struct.tm_gmtoff;
 126 #else
 127   const time_t zone = timezone;
 128 #endif
 129 
 130   // If daylight savings time is in effect,
 131   // we are 1 hour East of our time zone
 132   const time_t seconds_per_minute = 60;
 133   const time_t minutes_per_hour = 60;
 134   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 135   time_t UTC_to_local = zone;
 136   if (time_struct.tm_isdst > 0) {
 137     UTC_to_local = UTC_to_local - seconds_per_hour;
 138   }
 139   // Compute the time zone offset.
 140   //    localtime_pd() sets timezone to the difference (in seconds)
 141   //    between UTC and and local time.
 142   //    ISO 8601 says we need the difference between local time and UTC,
 143   //    we change the sign of the localtime_pd() result.
 144   const time_t local_to_UTC = -(UTC_to_local);
 145   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 146   char sign_local_to_UTC = '+';
 147   time_t abs_local_to_UTC = local_to_UTC;
 148   if (local_to_UTC < 0) {
 149     sign_local_to_UTC = '-';
 150     abs_local_to_UTC = -(abs_local_to_UTC);
 151   }
 152   // Convert time zone offset seconds to hours and minutes.
 153   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 154   const time_t zone_min =
 155     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 156 
 157   // Print an ISO 8601 date and time stamp into the buffer
 158   const int year = 1900 + time_struct.tm_year;
 159   const int month = 1 + time_struct.tm_mon;
 160   const int printed = jio_snprintf(buffer, buffer_length,
 161                                    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
 162                                    year,
 163                                    month,
 164                                    time_struct.tm_mday,
 165                                    time_struct.tm_hour,
 166                                    time_struct.tm_min,
 167                                    time_struct.tm_sec,
 168                                    milliseconds_after_second,
 169                                    sign_local_to_UTC,
 170                                    zone_hours,
 171                                    zone_min);
 172   if (printed == 0) {
 173     assert(false, "Failed jio_printf");
 174     return NULL;
 175   }
 176   return buffer;
 177 }
 178 
 179 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 180 #ifdef ASSERT
 181   if (!(!thread->is_Java_thread() ||
 182          Thread::current() == thread  ||
 183          Threads_lock->owned_by_self()
 184          || thread->is_Compiler_thread()
 185         )) {
 186     assert(false, "possibility of dangling Thread pointer");
 187   }
 188 #endif
 189 
 190   if (p >= MinPriority && p <= MaxPriority) {
 191     int priority = java_to_os_priority[p];
 192     return set_native_priority(thread, priority);
 193   } else {
 194     assert(false, "Should not happen");
 195     return OS_ERR;
 196   }
 197 }
 198 
 199 // The mapping from OS priority back to Java priority may be inexact because
 200 // Java priorities can map M:1 with native priorities. If you want the definite
 201 // Java priority then use JavaThread::java_priority()
 202 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 203   int p;
 204   int os_prio;
 205   OSReturn ret = get_native_priority(thread, &os_prio);
 206   if (ret != OS_OK) return ret;
 207 
 208   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 209     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 210   } else {
 211     // niceness values are in reverse order
 212     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 213   }
 214   priority = (ThreadPriority)p;
 215   return OS_OK;
 216 }
 217 
 218 
 219 // --------------------- sun.misc.Signal (optional) ---------------------
 220 
 221 
 222 // SIGBREAK is sent by the keyboard to query the VM state
 223 #ifndef SIGBREAK
 224 #define SIGBREAK SIGQUIT
 225 #endif
 226 
 227 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 228 
 229 
 230 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 231   os::set_priority(thread, NearMaxPriority);
 232   while (true) {
 233     int sig;
 234     {
 235       // FIXME : Currently we have not decided what should be the status
 236       //         for this java thread blocked here. Once we decide about
 237       //         that we should fix this.
 238       sig = os::signal_wait();
 239     }
 240     if (sig == os::sigexitnum_pd()) {
 241        // Terminate the signal thread
 242        return;
 243     }
 244 
 245     switch (sig) {
 246       case SIGBREAK: {
 247         // Check if the signal is a trigger to start the Attach Listener - in that
 248         // case don't print stack traces.
 249         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 250           continue;
 251         }
 252         // Print stack traces
 253         // Any SIGBREAK operations added here should make sure to flush
 254         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 255         // Each module also prints an extra carriage return after its output.
 256         VM_PrintThreads op;
 257         VMThread::execute(&op);
 258         VM_PrintJNI jni_op;
 259         VMThread::execute(&jni_op);
 260         VM_FindDeadlocks op1(tty);
 261         VMThread::execute(&op1);
 262         Universe::print_heap_at_SIGBREAK();
 263         if (PrintClassHistogram) {
 264           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 265           VMThread::execute(&op1);
 266         }
 267         if (JvmtiExport::should_post_data_dump()) {
 268           JvmtiExport::post_data_dump();
 269         }
 270         break;
 271       }
 272       default: {
 273         // Dispatch the signal to java
 274         HandleMark hm(THREAD);
 275         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 276         KlassHandle klass (THREAD, k);
 277         if (klass.not_null()) {
 278           JavaValue result(T_VOID);
 279           JavaCallArguments args;
 280           args.push_int(sig);
 281           JavaCalls::call_static(
 282             &result,
 283             klass,
 284             vmSymbols::dispatch_name(),
 285             vmSymbols::int_void_signature(),
 286             &args,
 287             THREAD
 288           );
 289         }
 290         if (HAS_PENDING_EXCEPTION) {
 291           // tty is initialized early so we don't expect it to be null, but
 292           // if it is we can't risk doing an initialization that might
 293           // trigger additional out-of-memory conditions
 294           if (tty != NULL) {
 295             char klass_name[256];
 296             char tmp_sig_name[16];
 297             const char* sig_name = "UNKNOWN";
 298             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 299               name()->as_klass_external_name(klass_name, 256);
 300             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 301               sig_name = tmp_sig_name;
 302             warning("Exception %s occurred dispatching signal %s to handler"
 303                     "- the VM may need to be forcibly terminated",
 304                     klass_name, sig_name );
 305           }
 306           CLEAR_PENDING_EXCEPTION;
 307         }
 308       }
 309     }
 310   }
 311 }
 312 
 313 void os::init_before_ergo() {
 314   // We need to initialize large page support here because ergonomics takes some
 315   // decisions depending on large page support and the calculated large page size.
 316   large_page_init();
 317 }
 318 
 319 void os::signal_init() {
 320   if (!ReduceSignalUsage) {
 321     // Setup JavaThread for processing signals
 322     EXCEPTION_MARK;
 323     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 324     instanceKlassHandle klass (THREAD, k);
 325     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 326 
 327     const char thread_name[] = "Signal Dispatcher";
 328     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 329 
 330     // Initialize thread_oop to put it into the system threadGroup
 331     Handle thread_group (THREAD, Universe::system_thread_group());
 332     JavaValue result(T_VOID);
 333     JavaCalls::call_special(&result, thread_oop,
 334                            klass,
 335                            vmSymbols::object_initializer_name(),
 336                            vmSymbols::threadgroup_string_void_signature(),
 337                            thread_group,
 338                            string,
 339                            CHECK);
 340 
 341     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 342     JavaCalls::call_special(&result,
 343                             thread_group,
 344                             group,
 345                             vmSymbols::add_method_name(),
 346                             vmSymbols::thread_void_signature(),
 347                             thread_oop,         // ARG 1
 348                             CHECK);
 349 
 350     os::signal_init_pd();
 351 
 352     { MutexLocker mu(Threads_lock);
 353       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 354 
 355       // At this point it may be possible that no osthread was created for the
 356       // JavaThread due to lack of memory. We would have to throw an exception
 357       // in that case. However, since this must work and we do not allow
 358       // exceptions anyway, check and abort if this fails.
 359       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 360         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 361                                       os::native_thread_creation_failed_msg());
 362       }
 363 
 364       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 365       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 366       java_lang_Thread::set_daemon(thread_oop());
 367 
 368       signal_thread->set_threadObj(thread_oop());
 369       Threads::add(signal_thread);
 370       Thread::start(signal_thread);
 371     }
 372     // Handle ^BREAK
 373     os::signal(SIGBREAK, os::user_handler());
 374   }
 375 }
 376 
 377 
 378 void os::terminate_signal_thread() {
 379   if (!ReduceSignalUsage)
 380     signal_notify(sigexitnum_pd());
 381 }
 382 
 383 
 384 // --------------------- loading libraries ---------------------
 385 
 386 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 387 extern struct JavaVM_ main_vm;
 388 
 389 static void* _native_java_library = NULL;
 390 
 391 void* os::native_java_library() {
 392   if (_native_java_library == NULL) {
 393     char buffer[JVM_MAXPATHLEN];
 394     char ebuf[1024];
 395 
 396     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 397     // always able to find it when the loading executable is outside the JDK.
 398     // In order to keep working with 1.2 we ignore any loading errors.
 399     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 400                        "verify")) {
 401       dll_load(buffer, ebuf, sizeof(ebuf));
 402     }
 403 
 404     // Load java dll
 405     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 406                        "java")) {
 407       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 408     }
 409     if (_native_java_library == NULL) {
 410       vm_exit_during_initialization("Unable to load native library", ebuf);
 411     }
 412 
 413 #if defined(__OpenBSD__)
 414     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 415     // ignore errors
 416     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 417                        "net")) {
 418       dll_load(buffer, ebuf, sizeof(ebuf));
 419     }
 420 #endif
 421   }
 422   static jboolean onLoaded = JNI_FALSE;
 423   if (onLoaded) {
 424     // We may have to wait to fire OnLoad until TLS is initialized.
 425     if (ThreadLocalStorage::is_initialized()) {
 426       // The JNI_OnLoad handling is normally done by method load in
 427       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 428       // explicitly so we have to check for JNI_OnLoad as well
 429       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 430       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 431           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 432       if (JNI_OnLoad != NULL) {
 433         JavaThread* thread = JavaThread::current();
 434         ThreadToNativeFromVM ttn(thread);
 435         HandleMark hm(thread);
 436         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 437         onLoaded = JNI_TRUE;
 438         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 439           vm_exit_during_initialization("Unsupported JNI version");
 440         }
 441       }
 442     }
 443   }
 444   return _native_java_library;
 445 }
 446 
 447 /*
 448  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 449  * If check_lib == true then we are looking for an
 450  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 451  * this library is statically linked into the image.
 452  * If check_lib == false then we will look for the appropriate symbol in the
 453  * executable if agent_lib->is_static_lib() == true or in the shared library
 454  * referenced by 'handle'.
 455  */
 456 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 457                               const char *syms[], size_t syms_len) {
 458   assert(agent_lib != NULL, "sanity check");
 459   const char *lib_name;
 460   void *handle = agent_lib->os_lib();
 461   void *entryName = NULL;
 462   char *agent_function_name;
 463   size_t i;
 464 
 465   // If checking then use the agent name otherwise test is_static_lib() to
 466   // see how to process this lookup
 467   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 468   for (i = 0; i < syms_len; i++) {
 469     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 470     if (agent_function_name == NULL) {
 471       break;
 472     }
 473     entryName = dll_lookup(handle, agent_function_name);
 474     FREE_C_HEAP_ARRAY(char, agent_function_name);
 475     if (entryName != NULL) {
 476       break;
 477     }
 478   }
 479   return entryName;
 480 }
 481 
 482 // See if the passed in agent is statically linked into the VM image.
 483 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 484                             size_t syms_len) {
 485   void *ret;
 486   void *proc_handle;
 487   void *save_handle;
 488 
 489   assert(agent_lib != NULL, "sanity check");
 490   if (agent_lib->name() == NULL) {
 491     return false;
 492   }
 493   proc_handle = get_default_process_handle();
 494   // Check for Agent_OnLoad/Attach_lib_name function
 495   save_handle = agent_lib->os_lib();
 496   // We want to look in this process' symbol table.
 497   agent_lib->set_os_lib(proc_handle);
 498   ret = find_agent_function(agent_lib, true, syms, syms_len);
 499   if (ret != NULL) {
 500     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 501     agent_lib->set_valid();
 502     agent_lib->set_static_lib(true);
 503     return true;
 504   }
 505   agent_lib->set_os_lib(save_handle);
 506   return false;
 507 }
 508 
 509 // --------------------- heap allocation utilities ---------------------
 510 
 511 char *os::strdup(const char *str, MEMFLAGS flags) {
 512   size_t size = strlen(str);
 513   char *dup_str = (char *)malloc(size + 1, flags);
 514   if (dup_str == NULL) return NULL;
 515   strcpy(dup_str, str);
 516   return dup_str;
 517 }
 518 
 519 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 520   char* p = os::strdup(str, flags);
 521   if (p == NULL) {
 522     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 523   }
 524   return p;
 525 }
 526 
 527 
 528 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 529 
 530 #ifdef ASSERT
 531 
 532 static void verify_memory(void* ptr) {
 533   GuardedMemory guarded(ptr);
 534   if (!guarded.verify_guards()) {
 535     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 536     tty->print_cr("## memory stomp:");
 537     guarded.print_on(tty);
 538     fatal("memory stomping error");
 539   }
 540 }
 541 
 542 #endif
 543 
 544 //
 545 // This function supports testing of the malloc out of memory
 546 // condition without really running the system out of memory.
 547 //
 548 static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
 549   if (MallocMaxTestWords > 0) {
 550     jint words = (jint)(alloc_size / BytesPerWord);
 551 
 552     if ((cur_malloc_words + words) > MallocMaxTestWords) {
 553       return true;
 554     }
 555     Atomic::add(words, (volatile jint *)&cur_malloc_words);
 556   }
 557   return false;
 558 }
 559 
 560 void* os::malloc(size_t size, MEMFLAGS flags) {
 561   return os::malloc(size, flags, CALLER_PC);
 562 }
 563 
 564 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 565   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 566   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 567 
 568 #ifdef ASSERT
 569   // checking for the WatcherThread and crash_protection first
 570   // since os::malloc can be called when the libjvm.{dll,so} is
 571   // first loaded and we don't have a thread yet.
 572   // try to find the thread after we see that the watcher thread
 573   // exists and has crash protection.
 574   WatcherThread *wt = WatcherThread::watcher_thread();
 575   if (wt != NULL && wt->has_crash_protection()) {
 576     Thread* thread = ThreadLocalStorage::get_thread_slow();
 577     if (thread == wt) {
 578       assert(!wt->has_crash_protection(),
 579           "Can't malloc with crash protection from WatcherThread");
 580     }
 581   }
 582 #endif
 583 
 584   if (size == 0) {
 585     // return a valid pointer if size is zero
 586     // if NULL is returned the calling functions assume out of memory.
 587     size = 1;
 588   }
 589 
 590   // NMT support
 591   NMT_TrackingLevel level = MemTracker::tracking_level();
 592   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 593 
 594 #ifndef ASSERT
 595   const size_t alloc_size = size + nmt_header_size;
 596 #else
 597   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 598   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 599     return NULL;
 600   }
 601 #endif
 602 
 603   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 604 
 605   // For the test flag -XX:MallocMaxTestWords
 606   if (has_reached_max_malloc_test_peak(size)) {
 607     return NULL;
 608   }
 609 
 610   u_char* ptr;
 611   ptr = (u_char*)::malloc(alloc_size);
 612 
 613 #ifdef ASSERT
 614   if (ptr == NULL) {
 615     return NULL;
 616   }
 617   // Wrap memory with guard
 618   GuardedMemory guarded(ptr, size + nmt_header_size);
 619   ptr = guarded.get_user_ptr();
 620 #endif
 621   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 622     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 623     breakpoint();
 624   }
 625   debug_only(if (paranoid) verify_memory(ptr));
 626   if (PrintMalloc && tty != NULL) {
 627     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 628   }
 629 
 630   // we do not track guard memory
 631   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 632 }
 633 
 634 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 635   return os::realloc(memblock, size, flags, CALLER_PC);
 636 }
 637 
 638 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 639 
 640   // For the test flag -XX:MallocMaxTestWords
 641   if (has_reached_max_malloc_test_peak(size)) {
 642     return NULL;
 643   }
 644 
 645 #ifndef ASSERT
 646   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 647   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 648    // NMT support
 649   void* membase = MemTracker::record_free(memblock);
 650   NMT_TrackingLevel level = MemTracker::tracking_level();
 651   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 652   void* ptr = ::realloc(membase, size + nmt_header_size);
 653   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 654 #else
 655   if (memblock == NULL) {
 656     return os::malloc(size, memflags, stack);
 657   }
 658   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 659     tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
 660     breakpoint();
 661   }
 662   // NMT support
 663   void* membase = MemTracker::malloc_base(memblock);
 664   verify_memory(membase);
 665   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 666   if (size == 0) {
 667     return NULL;
 668   }
 669   // always move the block
 670   void* ptr = os::malloc(size, memflags, stack);
 671   if (PrintMalloc && tty != NULL) {
 672     tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
 673   }
 674   // Copy to new memory if malloc didn't fail
 675   if ( ptr != NULL ) {
 676     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 677     // Guard's user data contains NMT header
 678     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 679     memcpy(ptr, memblock, MIN2(size, memblock_size));
 680     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 681     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 682       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 683       breakpoint();
 684     }
 685     os::free(memblock);
 686   }
 687   return ptr;
 688 #endif
 689 }
 690 
 691 
 692 void  os::free(void *memblock) {
 693   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 694 #ifdef ASSERT
 695   if (memblock == NULL) return;
 696   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 697     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
 698     breakpoint();
 699   }
 700   void* membase = MemTracker::record_free(memblock);
 701   verify_memory(membase);
 702   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 703 
 704   GuardedMemory guarded(membase);
 705   size_t size = guarded.get_user_size();
 706   inc_stat_counter(&free_bytes, size);
 707   membase = guarded.release_for_freeing();
 708   if (PrintMalloc && tty != NULL) {
 709       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
 710   }
 711   ::free(membase);
 712 #else
 713   void* membase = MemTracker::record_free(memblock);
 714   ::free(membase);
 715 #endif
 716 }
 717 
 718 void os::init_random(long initval) {
 719   _rand_seed = initval;
 720 }
 721 
 722 
 723 long os::random() {
 724   /* standard, well-known linear congruential random generator with
 725    * next_rand = (16807*seed) mod (2**31-1)
 726    * see
 727    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 728    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 729    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 730    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 731   */
 732   const long a = 16807;
 733   const unsigned long m = 2147483647;
 734   const long q = m / a;        assert(q == 127773, "weird math");
 735   const long r = m % a;        assert(r == 2836, "weird math");
 736 
 737   // compute az=2^31p+q
 738   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 739   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 740   lo += (hi & 0x7FFF) << 16;
 741 
 742   // if q overflowed, ignore the overflow and increment q
 743   if (lo > m) {
 744     lo &= m;
 745     ++lo;
 746   }
 747   lo += hi >> 15;
 748 
 749   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 750   if (lo > m) {
 751     lo &= m;
 752     ++lo;
 753   }
 754   return (_rand_seed = lo);
 755 }
 756 
 757 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 758 // conditions in which a thread is first started are different from those in which
 759 // a suspension is resumed.  These differences make it hard for us to apply the
 760 // tougher checks when starting threads that we want to do when resuming them.
 761 // However, when start_thread is called as a result of Thread.start, on a Java
 762 // thread, the operation is synchronized on the Java Thread object.  So there
 763 // cannot be a race to start the thread and hence for the thread to exit while
 764 // we are working on it.  Non-Java threads that start Java threads either have
 765 // to do so in a context in which races are impossible, or should do appropriate
 766 // locking.
 767 
 768 void os::start_thread(Thread* thread) {
 769   // guard suspend/resume
 770   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 771   OSThread* osthread = thread->osthread();
 772   osthread->set_state(RUNNABLE);
 773   pd_start_thread(thread);
 774 }
 775 
 776 void os::abort(bool dump_core) {
 777   abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
 778 }
 779 
 780 //---------------------------------------------------------------------------
 781 // Helper functions for fatal error handler
 782 
 783 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 784   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 785 
 786   int cols = 0;
 787   int cols_per_line = 0;
 788   switch (unitsize) {
 789     case 1: cols_per_line = 16; break;
 790     case 2: cols_per_line = 8;  break;
 791     case 4: cols_per_line = 4;  break;
 792     case 8: cols_per_line = 2;  break;
 793     default: return;
 794   }
 795 
 796   address p = start;
 797   st->print(PTR_FORMAT ":   ", p2i(start));
 798   while (p < end) {
 799     switch (unitsize) {
 800       case 1: st->print("%02x", *(u1*)p); break;
 801       case 2: st->print("%04x", *(u2*)p); break;
 802       case 4: st->print("%08x", *(u4*)p); break;
 803       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 804     }
 805     p += unitsize;
 806     cols++;
 807     if (cols >= cols_per_line && p < end) {
 808        cols = 0;
 809        st->cr();
 810        st->print(PTR_FORMAT ":   ", p2i(p));
 811     } else {
 812        st->print(" ");
 813     }
 814   }
 815   st->cr();
 816 }
 817 
 818 void os::print_environment_variables(outputStream* st, const char** env_list) {
 819   if (env_list) {
 820     st->print_cr("Environment Variables:");
 821 
 822     for (int i = 0; env_list[i] != NULL; i++) {
 823       char *envvar = ::getenv(env_list[i]);
 824       if (envvar != NULL) {
 825         st->print("%s", env_list[i]);
 826         st->print("=");
 827         st->print_cr("%s", envvar);
 828       }
 829     }
 830   }
 831 }
 832 
 833 void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
 834   // cpu
 835   st->print("CPU:");
 836   st->print("total %d", os::processor_count());
 837   // It's not safe to query number of active processors after crash
 838   // st->print("(active %d)", os::active_processor_count());
 839   st->print(" %s", VM_Version::cpu_features());
 840   st->cr();
 841   pd_print_cpu_info(st, buf, buflen);
 842 }
 843 
 844 // Print a one line string summarizing the cpu, number of cores, memory, and operating system version
 845 void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
 846   st->print("Host: ");
 847 #ifndef PRODUCT
 848   if (get_host_name(buf, buflen)) {
 849     st->print("%s, ", buf);
 850   }
 851 #endif // PRODUCT
 852   get_summary_cpu_info(buf, buflen);
 853   st->print("%s, ", buf);
 854   size_t mem = physical_memory()/G;
 855   if (mem == 0) {  // for low memory systems
 856     mem = physical_memory()/M;
 857     st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
 858   } else {
 859     st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
 860   }
 861   get_summary_os_info(buf, buflen);
 862   st->print_raw(buf);
 863   st->cr();
 864 }
 865 
 866 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 867   const int secs_per_day  = 86400;
 868   const int secs_per_hour = 3600;
 869   const int secs_per_min  = 60;
 870 
 871   time_t tloc;
 872   (void)time(&tloc);
 873   char* timestring = ctime(&tloc);  // ctime adds newline.
 874   // edit out the newline
 875   char* nl = strchr(timestring, '\n');
 876   if (nl != NULL) {
 877     *nl = '\0';
 878   }
 879 
 880   struct tm tz;
 881   if (localtime_pd(&tloc, &tz) != NULL) {
 882     ::strftime(buf, buflen, "%Z", &tz);
 883     st->print("Time: %s %s", timestring, buf);
 884   } else {
 885     st->print("Time: %s", timestring);
 886   }
 887 
 888   double t = os::elapsedTime();
 889   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 890   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 891   //       before printf. We lost some precision, but who cares?
 892   int eltime = (int)t;  // elapsed time in seconds
 893 
 894   // print elapsed time in a human-readable format:
 895   int eldays = eltime / secs_per_day;
 896   int day_secs = eldays * secs_per_day;
 897   int elhours = (eltime - day_secs) / secs_per_hour;
 898   int hour_secs = elhours * secs_per_hour;
 899   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 900   int minute_secs = elmins * secs_per_min;
 901   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 902   st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 903 }
 904 
 905 // moved from debug.cpp (used to be find()) but still called from there
 906 // The verbose parameter is only set by the debug code in one case
 907 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 908   address addr = (address)x;
 909   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 910   if (b != NULL) {
 911     if (b->is_buffer_blob()) {
 912       // the interpreter is generated into a buffer blob
 913       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 914       if (i != NULL) {
 915         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
 916         i->print_on(st);
 917         return;
 918       }
 919       if (Interpreter::contains(addr)) {
 920         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 921                      " (not bytecode specific)", p2i(addr));
 922         return;
 923       }
 924       //
 925       if (AdapterHandlerLibrary::contains(b)) {
 926         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
 927         AdapterHandlerLibrary::print_handler_on(st, b);
 928       }
 929       // the stubroutines are generated into a buffer blob
 930       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 931       if (d != NULL) {
 932         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
 933         d->print_on(st);
 934         st->cr();
 935         return;
 936       }
 937       if (StubRoutines::contains(addr)) {
 938         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
 939         return;
 940       }
 941       // the InlineCacheBuffer is using stubs generated into a buffer blob
 942       if (InlineCacheBuffer::contains(addr)) {
 943         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
 944         return;
 945       }
 946       VtableStub* v = VtableStubs::stub_containing(addr);
 947       if (v != NULL) {
 948         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
 949         v->print_on(st);
 950         st->cr();
 951         return;
 952       }
 953     }
 954     nmethod* nm = b->as_nmethod_or_null();
 955     if (nm != NULL) {
 956       ResourceMark rm;
 957       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 958                 p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
 959       if (verbose) {
 960         st->print(" for ");
 961         nm->method()->print_value_on(st);
 962       }
 963       st->cr();
 964       nm->print_nmethod(verbose);
 965       return;
 966     }
 967     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
 968     b->print_on(st);
 969     return;
 970   }
 971 
 972   if (Universe::heap()->is_in(addr)) {
 973     HeapWord* p = Universe::heap()->block_start(addr);
 974     bool print = false;
 975     // If we couldn't find it it just may mean that heap wasn't parsable
 976     // See if we were just given an oop directly
 977     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 978       print = true;
 979     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 980       p = (HeapWord*) addr;
 981       print = true;
 982     }
 983     if (print) {
 984       if (p == (HeapWord*) addr) {
 985         st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
 986       } else {
 987         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
 988       }
 989       oop(p)->print_on(st);
 990       return;
 991     }
 992   } else {
 993     if (Universe::heap()->is_in_reserved(addr)) {
 994       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 995                    "in the heap", p2i(addr));
 996       return;
 997     }
 998   }
 999   if (JNIHandles::is_global_handle((jobject) addr)) {
1000     st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1001     return;
1002   }
1003   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1004     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1005     return;
1006   }
1007 #ifndef PRODUCT
1008   // we don't keep the block list in product mode
1009   if (JNIHandleBlock::any_contains((jobject) addr)) {
1010     st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1011     return;
1012   }
1013 #endif
1014 
1015   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1016     // Check for privilege stack
1017     if (thread->privileged_stack_top() != NULL &&
1018         thread->privileged_stack_top()->contains(addr)) {
1019       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1020                    "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1021       if (verbose) thread->print_on(st);
1022       return;
1023     }
1024     // If the addr is a java thread print information about that.
1025     if (addr == (address)thread) {
1026       if (verbose) {
1027         thread->print_on(st);
1028       } else {
1029         st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1030       }
1031       return;
1032     }
1033     // If the addr is in the stack region for this thread then report that
1034     // and print thread info
1035     if (thread->stack_base() >= addr &&
1036         addr > (thread->stack_base() - thread->stack_size())) {
1037       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1038                    INTPTR_FORMAT, p2i(addr), p2i(thread));
1039       if (verbose) thread->print_on(st);
1040       return;
1041     }
1042 
1043   }
1044 
1045   // Check if in metaspace and print types that have vptrs (only method now)
1046   if (Metaspace::contains(addr)) {
1047     if (Method::has_method_vptr((const void*)addr)) {
1048       ((Method*)addr)->print_value_on(st);
1049       st->cr();
1050     } else {
1051       // Use addr->print() from the debugger instead (not here)
1052       st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1053     }
1054     return;
1055   }
1056 
1057   // Try an OS specific find
1058   if (os::find(addr, st)) {
1059     return;
1060   }
1061 
1062   st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1063 }
1064 
1065 // Looks like all platforms except IA64 can use the same function to check
1066 // if C stack is walkable beyond current frame. The check for fp() is not
1067 // necessary on Sparc, but it's harmless.
1068 bool os::is_first_C_frame(frame* fr) {
1069 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1070   // On IA64 we have to check if the callers bsp is still valid
1071   // (i.e. within the register stack bounds).
1072   // Notice: this only works for threads created by the VM and only if
1073   // we walk the current stack!!! If we want to be able to walk
1074   // arbitrary other threads, we'll have to somehow store the thread
1075   // object in the frame.
1076   Thread *thread = Thread::current();
1077   if ((address)fr->fp() <=
1078       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1079     // This check is a little hacky, because on Linux the first C
1080     // frame's ('start_thread') register stack frame starts at
1081     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1082     // ('__pthread_bound_body') register stack frame seems to really
1083     // start at "register_stack_base".
1084     return true;
1085   } else {
1086     return false;
1087   }
1088 #elif defined(IA64) && defined(_WIN32)
1089   return true;
1090 #else
1091   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1092   // Check usp first, because if that's bad the other accessors may fault
1093   // on some architectures.  Ditto ufp second, etc.
1094   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1095   // sp on amd can be 32 bit aligned.
1096   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1097 
1098   uintptr_t usp    = (uintptr_t)fr->sp();
1099   if ((usp & sp_align_mask) != 0) return true;
1100 
1101   uintptr_t ufp    = (uintptr_t)fr->fp();
1102   if ((ufp & fp_align_mask) != 0) return true;
1103 
1104   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1105   if ((old_sp & sp_align_mask) != 0) return true;
1106   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1107 
1108   uintptr_t old_fp = (uintptr_t)fr->link();
1109   if ((old_fp & fp_align_mask) != 0) return true;
1110   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1111 
1112   // stack grows downwards; if old_fp is below current fp or if the stack
1113   // frame is too large, either the stack is corrupted or fp is not saved
1114   // on stack (i.e. on x86, ebp may be used as general register). The stack
1115   // is not walkable beyond current frame.
1116   if (old_fp < ufp) return true;
1117   if (old_fp - ufp > 64 * K) return true;
1118 
1119   return false;
1120 #endif
1121 }
1122 
1123 #ifdef ASSERT
1124 extern "C" void test_random() {
1125   const double m = 2147483647;
1126   double mean = 0.0, variance = 0.0, t;
1127   long reps = 10000;
1128   unsigned long seed = 1;
1129 
1130   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1131   os::init_random(seed);
1132   long num;
1133   for (int k = 0; k < reps; k++) {
1134     num = os::random();
1135     double u = (double)num / m;
1136     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1137 
1138     // calculate mean and variance of the random sequence
1139     mean += u;
1140     variance += (u*u);
1141   }
1142   mean /= reps;
1143   variance /= (reps - 1);
1144 
1145   assert(num == 1043618065, "bad seed");
1146   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1147   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1148   const double eps = 0.0001;
1149   t = fabsd(mean - 0.5018);
1150   assert(t < eps, "bad mean");
1151   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1152   assert(t < eps, "bad variance");
1153 }
1154 #endif
1155 
1156 
1157 // Set up the boot classpath.
1158 
1159 char* os::format_boot_path(const char* format_string,
1160                            const char* home,
1161                            int home_len,
1162                            char fileSep,
1163                            char pathSep) {
1164     assert((fileSep == '/' && pathSep == ':') ||
1165            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1166 
1167     // Scan the format string to determine the length of the actual
1168     // boot classpath, and handle platform dependencies as well.
1169     int formatted_path_len = 0;
1170     const char* p;
1171     for (p = format_string; *p != 0; ++p) {
1172         if (*p == '%') formatted_path_len += home_len - 1;
1173         ++formatted_path_len;
1174     }
1175 
1176     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1177     if (formatted_path == NULL) {
1178         return NULL;
1179     }
1180 
1181     // Create boot classpath from format, substituting separator chars and
1182     // java home directory.
1183     char* q = formatted_path;
1184     for (p = format_string; *p != 0; ++p) {
1185         switch (*p) {
1186         case '%':
1187             strcpy(q, home);
1188             q += home_len;
1189             break;
1190         case '/':
1191             *q++ = fileSep;
1192             break;
1193         case ':':
1194             *q++ = pathSep;
1195             break;
1196         default:
1197             *q++ = *p;
1198         }
1199     }
1200     *q = '\0';
1201 
1202     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1203     return formatted_path;
1204 }
1205 
1206 // returns a PATH of all entries in the given directory that do not start with a '.'
1207 static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1208   DIR* dir = os::opendir(directory);
1209   if (dir == NULL) return NULL;
1210 
1211   char* path = NULL;
1212   size_t path_len = 0;  // path length including \0 terminator
1213 
1214   size_t directory_len = strlen(directory);
1215   struct dirent *entry;
1216   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1217   while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1218     const char* name = entry->d_name;
1219     if (name[0] == '.') continue;
1220 
1221     size_t name_len = strlen(name);
1222     size_t needed = directory_len + name_len + 2;
1223     size_t new_len = path_len + needed;
1224     if (path == NULL) {
1225       path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1226     } else {
1227       path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1228     }
1229     if (path == NULL)
1230       break;
1231 
1232     // append <pathSep>directory<fileSep>name
1233     char* p = path;
1234     if (path_len > 0) {
1235       p += (path_len -1);
1236       *p = pathSep;
1237       p++;
1238     }
1239 
1240     strcpy(p, directory);
1241     p += directory_len;
1242 
1243     *p = fileSep;
1244     p++;
1245 
1246     strcpy(p, name);
1247     p += name_len;
1248 
1249     path_len = new_len;
1250   }
1251 
1252   FREE_C_HEAP_ARRAY(char, dbuf);
1253   os::closedir(dir);
1254 
1255   return path;
1256 }
1257 
1258 bool os::set_boot_path(char fileSep, char pathSep) {
1259   const char* home = Arguments::get_java_home();
1260   int home_len = (int)strlen(home);
1261 
1262   char* sysclasspath = NULL;
1263   struct stat st;
1264 
1265   // modular image if bootmodules.jimage exists
1266   char* jimage = format_boot_path("%/lib/modules/" BOOT_IMAGE_NAME, home, home_len, fileSep, pathSep);
1267   if (jimage == NULL) return false;
1268   bool has_jimage = (os::stat(jimage, &st) == 0);
1269   if (has_jimage) {
1270     Arguments::set_sysclasspath(jimage);
1271     FREE_C_HEAP_ARRAY(char, jimage);
1272     return true;
1273   }
1274   FREE_C_HEAP_ARRAY(char, jimage);
1275 
1276   // check if developer build with exploded modules
1277   char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1278   if (os::stat(modules_dir, &st) == 0) {
1279     if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1280       sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1281     }
1282   }
1283   FREE_C_HEAP_ARRAY(char, modules_dir);
1284 
1285   // fallback to classes
1286   if (sysclasspath == NULL)
1287     sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1288 
1289   if (sysclasspath == NULL) return false;
1290   Arguments::set_sysclasspath(sysclasspath);
1291   FREE_C_HEAP_ARRAY(char, sysclasspath);
1292 
1293   return true;
1294 }
1295 
1296 /*
1297  * Splits a path, based on its separator, the number of
1298  * elements is returned back in n.
1299  * It is the callers responsibility to:
1300  *   a> check the value of n, and n may be 0.
1301  *   b> ignore any empty path elements
1302  *   c> free up the data.
1303  */
1304 char** os::split_path(const char* path, int* n) {
1305   *n = 0;
1306   if (path == NULL || strlen(path) == 0) {
1307     return NULL;
1308   }
1309   const char psepchar = *os::path_separator();
1310   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1311   if (inpath == NULL) {
1312     return NULL;
1313   }
1314   strcpy(inpath, path);
1315   int count = 1;
1316   char* p = strchr(inpath, psepchar);
1317   // Get a count of elements to allocate memory
1318   while (p != NULL) {
1319     count++;
1320     p++;
1321     p = strchr(p, psepchar);
1322   }
1323   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1324   if (opath == NULL) {
1325     return NULL;
1326   }
1327 
1328   // do the actual splitting
1329   p = inpath;
1330   for (int i = 0 ; i < count ; i++) {
1331     size_t len = strcspn(p, os::path_separator());
1332     if (len > JVM_MAXPATHLEN) {
1333       return NULL;
1334     }
1335     // allocate the string and add terminator storage
1336     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1337     if (s == NULL) {
1338       return NULL;
1339     }
1340     strncpy(s, p, len);
1341     s[len] = '\0';
1342     opath[i] = s;
1343     p += len + 1;
1344   }
1345   FREE_C_HEAP_ARRAY(char, inpath);
1346   *n = count;
1347   return opath;
1348 }
1349 
1350 void os::set_memory_serialize_page(address page) {
1351   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1352   _mem_serialize_page = (volatile int32_t *)page;
1353   // We initialize the serialization page shift count here
1354   // We assume a cache line size of 64 bytes
1355   assert(SerializePageShiftCount == count,
1356          "thread size changed, fix SerializePageShiftCount constant");
1357   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1358 }
1359 
1360 static volatile intptr_t SerializePageLock = 0;
1361 
1362 // This method is called from signal handler when SIGSEGV occurs while the current
1363 // thread tries to store to the "read-only" memory serialize page during state
1364 // transition.
1365 void os::block_on_serialize_page_trap() {
1366   if (TraceSafepoint) {
1367     tty->print_cr("Block until the serialize page permission restored");
1368   }
1369   // When VMThread is holding the SerializePageLock during modifying the
1370   // access permission of the memory serialize page, the following call
1371   // will block until the permission of that page is restored to rw.
1372   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1373   // this case, it's OK as the signal is synchronous and we know precisely when
1374   // it can occur.
1375   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1376   Thread::muxRelease(&SerializePageLock);
1377 }
1378 
1379 // Serialize all thread state variables
1380 void os::serialize_thread_states() {
1381   // On some platforms such as Solaris & Linux, the time duration of the page
1382   // permission restoration is observed to be much longer than expected  due to
1383   // scheduler starvation problem etc. To avoid the long synchronization
1384   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1385   // the mutator thread if such case is encountered. See bug 6546278 for details.
1386   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1387   os::protect_memory((char *)os::get_memory_serialize_page(),
1388                      os::vm_page_size(), MEM_PROT_READ);
1389   os::protect_memory((char *)os::get_memory_serialize_page(),
1390                      os::vm_page_size(), MEM_PROT_RW);
1391   Thread::muxRelease(&SerializePageLock);
1392 }
1393 
1394 // Returns true if the current stack pointer is above the stack shadow
1395 // pages, false otherwise.
1396 
1397 bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method) {
1398   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1399   address sp = current_stack_pointer();
1400   // Check if we have StackShadowPages above the yellow zone.  This parameter
1401   // is dependent on the depth of the maximum VM call stack possible from
1402   // the handler for stack overflow.  'instanceof' in the stack overflow
1403   // handler or a println uses at least 8k stack of VM and native code
1404   // respectively.
1405   const int framesize_in_bytes =
1406     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1407   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1408                       * vm_page_size()) + framesize_in_bytes;
1409   // The very lower end of the stack
1410   address stack_limit = thread->stack_base() - thread->stack_size();
1411   return (sp > (stack_limit + reserved_area));
1412 }
1413 
1414 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1415   assert(min_pages > 0, "sanity");
1416   if (UseLargePages) {
1417     const size_t max_page_size = region_size / min_pages;
1418 
1419     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1420       const size_t page_size = _page_sizes[i];
1421       if (page_size <= max_page_size) {
1422         if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1423           return page_size;
1424         }
1425       }
1426     }
1427   }
1428 
1429   return vm_page_size();
1430 }
1431 
1432 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1433   return page_size_for_region(region_size, min_pages, true);
1434 }
1435 
1436 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1437   return page_size_for_region(region_size, min_pages, false);
1438 }
1439 
1440 #ifndef PRODUCT
1441 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1442 {
1443   if (TracePageSizes) {
1444     tty->print("%s: ", str);
1445     for (int i = 0; i < count; ++i) {
1446       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1447     }
1448     tty->cr();
1449   }
1450 }
1451 
1452 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1453                           const size_t region_max_size, const size_t page_size,
1454                           const char* base, const size_t size)
1455 {
1456   if (TracePageSizes) {
1457     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1458                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1459                   " size=" SIZE_FORMAT,
1460                   str, region_min_size, region_max_size,
1461                   page_size, p2i(base), size);
1462   }
1463 }
1464 #endif  // #ifndef PRODUCT
1465 
1466 // This is the working definition of a server class machine:
1467 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1468 // because the graphics memory (?) sometimes masks physical memory.
1469 // If you want to change the definition of a server class machine
1470 // on some OS or platform, e.g., >=4GB on Windows platforms,
1471 // then you'll have to parameterize this method based on that state,
1472 // as was done for logical processors here, or replicate and
1473 // specialize this method for each platform.  (Or fix os to have
1474 // some inheritance structure and use subclassing.  Sigh.)
1475 // If you want some platform to always or never behave as a server
1476 // class machine, change the setting of AlwaysActAsServerClassMachine
1477 // and NeverActAsServerClassMachine in globals*.hpp.
1478 bool os::is_server_class_machine() {
1479   // First check for the early returns
1480   if (NeverActAsServerClassMachine) {
1481     return false;
1482   }
1483   if (AlwaysActAsServerClassMachine) {
1484     return true;
1485   }
1486   // Then actually look at the machine
1487   bool         result            = false;
1488   const unsigned int    server_processors = 2;
1489   const julong server_memory     = 2UL * G;
1490   // We seem not to get our full complement of memory.
1491   //     We allow some part (1/8?) of the memory to be "missing",
1492   //     based on the sizes of DIMMs, and maybe graphics cards.
1493   const julong missing_memory   = 256UL * M;
1494 
1495   /* Is this a server class machine? */
1496   if ((os::active_processor_count() >= (int)server_processors) &&
1497       (os::physical_memory() >= (server_memory - missing_memory))) {
1498     const unsigned int logical_processors =
1499       VM_Version::logical_processors_per_package();
1500     if (logical_processors > 1) {
1501       const unsigned int physical_packages =
1502         os::active_processor_count() / logical_processors;
1503       if (physical_packages > server_processors) {
1504         result = true;
1505       }
1506     } else {
1507       result = true;
1508     }
1509   }
1510   return result;
1511 }
1512 
1513 void os::SuspendedThreadTask::run() {
1514   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1515   internal_do_task();
1516   _done = true;
1517 }
1518 
1519 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1520   return os::pd_create_stack_guard_pages(addr, bytes);
1521 }
1522 
1523 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1524   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1525   if (result != NULL) {
1526     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1527   }
1528 
1529   return result;
1530 }
1531 
1532 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1533    MEMFLAGS flags) {
1534   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1535   if (result != NULL) {
1536     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1537     MemTracker::record_virtual_memory_type((address)result, flags);
1538   }
1539 
1540   return result;
1541 }
1542 
1543 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1544   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1545   if (result != NULL) {
1546     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1547   }
1548   return result;
1549 }
1550 
1551 void os::split_reserved_memory(char *base, size_t size,
1552                                  size_t split, bool realloc) {
1553   pd_split_reserved_memory(base, size, split, realloc);
1554 }
1555 
1556 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1557   bool res = pd_commit_memory(addr, bytes, executable);
1558   if (res) {
1559     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1560   }
1561   return res;
1562 }
1563 
1564 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1565                               bool executable) {
1566   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1567   if (res) {
1568     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1569   }
1570   return res;
1571 }
1572 
1573 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1574                                const char* mesg) {
1575   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1576   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1577 }
1578 
1579 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1580                                bool executable, const char* mesg) {
1581   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1582   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1583 }
1584 
1585 bool os::uncommit_memory(char* addr, size_t bytes) {
1586   bool res;
1587   if (MemTracker::tracking_level() > NMT_minimal) {
1588     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1589     res = pd_uncommit_memory(addr, bytes);
1590     if (res) {
1591       tkr.record((address)addr, bytes);
1592     }
1593   } else {
1594     res = pd_uncommit_memory(addr, bytes);
1595   }
1596   return res;
1597 }
1598 
1599 bool os::release_memory(char* addr, size_t bytes) {
1600   bool res;
1601   if (MemTracker::tracking_level() > NMT_minimal) {
1602     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1603     res = pd_release_memory(addr, bytes);
1604     if (res) {
1605       tkr.record((address)addr, bytes);
1606     }
1607   } else {
1608     res = pd_release_memory(addr, bytes);
1609   }
1610   return res;
1611 }
1612 
1613 void os::pretouch_memory(char* start, char* end) {
1614   for (volatile char *p = start; p < end; p += os::vm_page_size()) {
1615     *p = 0;
1616   }
1617 }
1618 
1619 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1620                            char *addr, size_t bytes, bool read_only,
1621                            bool allow_exec) {
1622   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1623   if (result != NULL) {
1624     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1625   }
1626   return result;
1627 }
1628 
1629 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1630                              char *addr, size_t bytes, bool read_only,
1631                              bool allow_exec) {
1632   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1633                     read_only, allow_exec);
1634 }
1635 
1636 bool os::unmap_memory(char *addr, size_t bytes) {
1637   bool result;
1638   if (MemTracker::tracking_level() > NMT_minimal) {
1639     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1640     result = pd_unmap_memory(addr, bytes);
1641     if (result) {
1642       tkr.record((address)addr, bytes);
1643     }
1644   } else {
1645     result = pd_unmap_memory(addr, bytes);
1646   }
1647   return result;
1648 }
1649 
1650 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1651   pd_free_memory(addr, bytes, alignment_hint);
1652 }
1653 
1654 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1655   pd_realign_memory(addr, bytes, alignment_hint);
1656 }
1657 
1658 #ifndef TARGET_OS_FAMILY_windows
1659 /* try to switch state from state "from" to state "to"
1660  * returns the state set after the method is complete
1661  */
1662 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1663                                                          os::SuspendResume::State to)
1664 {
1665   os::SuspendResume::State result =
1666     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1667   if (result == from) {
1668     // success
1669     return to;
1670   }
1671   return result;
1672 }
1673 #endif
1674 
1675 /////////////// Unit tests ///////////////
1676 
1677 #ifndef PRODUCT
1678 
1679 #define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1680 
1681 class TestOS : AllStatic {
1682   static size_t small_page_size() {
1683     return os::vm_page_size();
1684   }
1685 
1686   static size_t large_page_size() {
1687     const size_t large_page_size_example = 4 * M;
1688     return os::page_size_for_region_aligned(large_page_size_example, 1);
1689   }
1690 
1691   static void test_page_size_for_region_aligned() {
1692     if (UseLargePages) {
1693       const size_t small_page = small_page_size();
1694       const size_t large_page = large_page_size();
1695 
1696       if (large_page > small_page) {
1697         size_t num_small_pages_in_large = large_page / small_page;
1698         size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1699 
1700         assert_eq(page, small_page);
1701       }
1702     }
1703   }
1704 
1705   static void test_page_size_for_region_alignment() {
1706     if (UseLargePages) {
1707       const size_t small_page = small_page_size();
1708       const size_t large_page = large_page_size();
1709       if (large_page > small_page) {
1710         const size_t unaligned_region = large_page + 17;
1711         size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1712         assert_eq(page, small_page);
1713 
1714         const size_t num_pages = 5;
1715         const size_t aligned_region = large_page * num_pages;
1716         page = os::page_size_for_region_aligned(aligned_region, num_pages);
1717         assert_eq(page, large_page);
1718       }
1719     }
1720   }
1721 
1722   static void test_page_size_for_region_unaligned() {
1723     if (UseLargePages) {
1724       // Given exact page size, should return that page size.
1725       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1726         size_t expected = os::_page_sizes[i];
1727         size_t actual = os::page_size_for_region_unaligned(expected, 1);
1728         assert_eq(expected, actual);
1729       }
1730 
1731       // Given slightly larger size than a page size, return the page size.
1732       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1733         size_t expected = os::_page_sizes[i];
1734         size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1735         assert_eq(expected, actual);
1736       }
1737 
1738       // Given a slightly smaller size than a page size,
1739       // return the next smaller page size.
1740       if (os::_page_sizes[1] > os::_page_sizes[0]) {
1741         size_t expected = os::_page_sizes[0];
1742         size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1743         assert_eq(actual, expected);
1744       }
1745 
1746       // Return small page size for values less than a small page.
1747       size_t small_page = small_page_size();
1748       size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1749       assert_eq(small_page, actual);
1750     }
1751   }
1752 
1753  public:
1754   static void run_tests() {
1755     test_page_size_for_region_aligned();
1756     test_page_size_for_region_alignment();
1757     test_page_size_for_region_unaligned();
1758   }
1759 };
1760 
1761 void TestOS_test() {
1762   TestOS::run_tests();
1763 }
1764 
1765 #endif // PRODUCT