1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/logConfiguration.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/instanceKlass.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvm_misc.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "prims/privilegedStack.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/commandLineFlagConstraintList.hpp"
  58 #include "runtime/commandLineFlagRangeList.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/globals.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniPeriodicChecker.hpp"
  68 #include "runtime/memprofiler.hpp"
  69 #include "runtime/mutexLocker.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/osThread.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/statSampler.hpp"
  76 #include "runtime/stubRoutines.hpp"
  77 #include "runtime/sweeper.hpp"
  78 #include "runtime/task.hpp"
  79 #include "runtime/thread.inline.hpp"
  80 #include "runtime/threadCritical.hpp"
  81 #include "runtime/vframe.hpp"
  82 #include "runtime/vframeArray.hpp"
  83 #include "runtime/vframe_hp.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "runtime/vm_operations.hpp"
  86 #include "runtime/vm_version.hpp"
  87 #include "services/attachListener.hpp"
  88 #include "services/management.hpp"
  89 #include "services/memTracker.hpp"
  90 #include "services/threadService.hpp"
  91 #include "trace/traceMacros.hpp"
  92 #include "trace/tracing.hpp"
  93 #include "utilities/defaultStream.hpp"
  94 #include "utilities/dtrace.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/preserveException.hpp"
  98 #if INCLUDE_ALL_GCS
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #if INCLUDE_JVMCI
 104 #include "jvmci/jvmciCompiler.hpp"
 105 #include "jvmci/jvmciRuntime.hpp"
 106 #endif
 107 #ifdef COMPILER1
 108 #include "c1/c1_Compiler.hpp"
 109 #endif
 110 #ifdef COMPILER2
 111 #include "opto/c2compiler.hpp"
 112 #include "opto/idealGraphPrinter.hpp"
 113 #endif
 114 #if INCLUDE_RTM_OPT
 115 #include "runtime/rtmLocking.hpp"
 116 #endif
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 126     {                                                                      \
 127       ResourceMark rm(this);                                               \
 128       int len = 0;                                                         \
 129       const char* name = (javathread)->get_thread_name();                  \
 130       len = strlen(name);                                                  \
 131       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 132         (char *) name, len,                                                \
 133         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 134         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 135         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 136     }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140   #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 // Current thread is maintained as a thread-local variable
 145 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 146 
 147 // Class hierarchy
 148 // - Thread
 149 //   - VMThread
 150 //   - WatcherThread
 151 //   - ConcurrentMarkSweepThread
 152 //   - JavaThread
 153 //     - CompilerThread
 154 
 155 // ======= Thread ========
 156 // Support for forcing alignment of thread objects for biased locking
 157 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 158   if (UseBiasedLocking) {
 159     const int alignment = markOopDesc::biased_lock_alignment;
 160     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 161     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 162                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 163                                                          AllocFailStrategy::RETURN_NULL);
 164     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 165     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 166            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 167            "JavaThread alignment code overflowed allocated storage");
 168     if (TraceBiasedLocking) {
 169       if (aligned_addr != real_malloc_addr) {
 170         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 171                       p2i(real_malloc_addr), p2i(aligned_addr));
 172       }
 173     }
 174     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 175     return aligned_addr;
 176   } else {
 177     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 178                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 179   }
 180 }
 181 
 182 void Thread::operator delete(void* p) {
 183   if (UseBiasedLocking) {
 184     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 185     FreeHeap(real_malloc_addr);
 186   } else {
 187     FreeHeap(p);
 188   }
 189 }
 190 
 191 
 192 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 193 // JavaThread
 194 
 195 
 196 Thread::Thread() {
 197   // stack and get_thread
 198   set_stack_base(NULL);
 199   set_stack_size(0);
 200   set_self_raw_id(0);
 201   set_lgrp_id(-1);
 202   DEBUG_ONLY(clear_suspendible_thread();)
 203 
 204   // allocated data structures
 205   set_osthread(NULL);
 206   set_resource_area(new (mtThread)ResourceArea());
 207   DEBUG_ONLY(_current_resource_mark = NULL;)
 208   set_handle_area(new (mtThread) HandleArea(NULL));
 209   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 210   set_active_handles(NULL);
 211   set_free_handle_block(NULL);
 212   set_last_handle_mark(NULL);
 213 
 214   // This initial value ==> never claimed.
 215   _oops_do_parity = 0;
 216 
 217   // the handle mark links itself to last_handle_mark
 218   new HandleMark(this);
 219 
 220   // plain initialization
 221   debug_only(_owned_locks = NULL;)
 222   debug_only(_allow_allocation_count = 0;)
 223   NOT_PRODUCT(_allow_safepoint_count = 0;)
 224   NOT_PRODUCT(_skip_gcalot = false;)
 225   _jvmti_env_iteration_count = 0;
 226   set_allocated_bytes(0);
 227   _vm_operation_started_count = 0;
 228   _vm_operation_completed_count = 0;
 229   _current_pending_monitor = NULL;
 230   _current_pending_monitor_is_from_java = true;
 231   _current_waiting_monitor = NULL;
 232   _num_nested_signal = 0;
 233   omFreeList = NULL;
 234   omFreeCount = 0;
 235   omFreeProvision = 32;
 236   omInUseList = NULL;
 237   omInUseCount = 0;
 238 
 239 #ifdef ASSERT
 240   _visited_for_critical_count = false;
 241 #endif
 242 
 243   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 244                          Monitor::_safepoint_check_sometimes);
 245   _suspend_flags = 0;
 246 
 247   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 248   _hashStateX = os::random();
 249   _hashStateY = 842502087;
 250   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 251   _hashStateW = 273326509;
 252 
 253   _OnTrap   = 0;
 254   _schedctl = NULL;
 255   _Stalled  = 0;
 256   _TypeTag  = 0x2BAD;
 257 
 258   // Many of the following fields are effectively final - immutable
 259   // Note that nascent threads can't use the Native Monitor-Mutex
 260   // construct until the _MutexEvent is initialized ...
 261   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 262   // we might instead use a stack of ParkEvents that we could provision on-demand.
 263   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 264   // and ::Release()
 265   _ParkEvent   = ParkEvent::Allocate(this);
 266   _SleepEvent  = ParkEvent::Allocate(this);
 267   _MutexEvent  = ParkEvent::Allocate(this);
 268   _MuxEvent    = ParkEvent::Allocate(this);
 269 
 270 #ifdef CHECK_UNHANDLED_OOPS
 271   if (CheckUnhandledOops) {
 272     _unhandled_oops = new UnhandledOops(this);
 273   }
 274 #endif // CHECK_UNHANDLED_OOPS
 275 #ifdef ASSERT
 276   if (UseBiasedLocking) {
 277     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 278     assert(this == _real_malloc_address ||
 279            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 280            "bug in forced alignment of thread objects");
 281   }
 282 #endif // ASSERT
 283 }
 284 
 285 void Thread::initialize_thread_current() {
 286   assert(_thr_current == NULL, "Thread::current already initialized");
 287   _thr_current = this;
 288 }
 289 
 290 void Thread::clear_thread_current() {
 291   _thr_current = NULL;
 292 }
 293 
 294 void Thread::record_stack_base_and_size() {
 295   set_stack_base(os::current_stack_base());
 296   set_stack_size(os::current_stack_size());
 297   if (is_Java_thread()) {
 298     ((JavaThread*) this)->set_stack_overflow_limit();
 299   }
 300   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 301   // in initialize_thread(). Without the adjustment, stack size is
 302   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 303   // So far, only Solaris has real implementation of initialize_thread().
 304   //
 305   // set up any platform-specific state.
 306   os::initialize_thread(this);
 307 
 308 #if INCLUDE_NMT
 309   // record thread's native stack, stack grows downward
 310   address stack_low_addr = stack_base() - stack_size();
 311   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 312 #endif // INCLUDE_NMT
 313 }
 314 
 315 
 316 Thread::~Thread() {
 317   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 318   ObjectSynchronizer::omFlush(this);
 319 
 320   EVENT_THREAD_DESTRUCT(this);
 321 
 322   // stack_base can be NULL if the thread is never started or exited before
 323   // record_stack_base_and_size called. Although, we would like to ensure
 324   // that all started threads do call record_stack_base_and_size(), there is
 325   // not proper way to enforce that.
 326 #if INCLUDE_NMT
 327   if (_stack_base != NULL) {
 328     address low_stack_addr = stack_base() - stack_size();
 329     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 330 #ifdef ASSERT
 331     set_stack_base(NULL);
 332 #endif
 333   }
 334 #endif // INCLUDE_NMT
 335 
 336   // deallocate data structures
 337   delete resource_area();
 338   // since the handle marks are using the handle area, we have to deallocated the root
 339   // handle mark before deallocating the thread's handle area,
 340   assert(last_handle_mark() != NULL, "check we have an element");
 341   delete last_handle_mark();
 342   assert(last_handle_mark() == NULL, "check we have reached the end");
 343 
 344   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 345   // We NULL out the fields for good hygiene.
 346   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 347   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 348   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 349   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 350 
 351   delete handle_area();
 352   delete metadata_handles();
 353 
 354   // osthread() can be NULL, if creation of thread failed.
 355   if (osthread() != NULL) os::free_thread(osthread());
 356 
 357   delete _SR_lock;
 358 
 359   // clear Thread::current if thread is deleting itself.
 360   // Needed to ensure JNI correctly detects non-attached threads.
 361   if (this == Thread::current()) {
 362     clear_thread_current();
 363   }
 364 
 365   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 366 }
 367 
 368 // NOTE: dummy function for assertion purpose.
 369 void Thread::run() {
 370   ShouldNotReachHere();
 371 }
 372 
 373 #ifdef ASSERT
 374 // Private method to check for dangling thread pointer
 375 void check_for_dangling_thread_pointer(Thread *thread) {
 376   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 377          "possibility of dangling Thread pointer");
 378 }
 379 #endif
 380 
 381 ThreadPriority Thread::get_priority(const Thread* const thread) {
 382   ThreadPriority priority;
 383   // Can return an error!
 384   (void)os::get_priority(thread, priority);
 385   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 386   return priority;
 387 }
 388 
 389 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 390   debug_only(check_for_dangling_thread_pointer(thread);)
 391   // Can return an error!
 392   (void)os::set_priority(thread, priority);
 393 }
 394 
 395 
 396 void Thread::start(Thread* thread) {
 397   // Start is different from resume in that its safety is guaranteed by context or
 398   // being called from a Java method synchronized on the Thread object.
 399   if (!DisableStartThread) {
 400     if (thread->is_Java_thread()) {
 401       // Initialize the thread state to RUNNABLE before starting this thread.
 402       // Can not set it after the thread started because we do not know the
 403       // exact thread state at that time. It could be in MONITOR_WAIT or
 404       // in SLEEPING or some other state.
 405       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 406                                           java_lang_Thread::RUNNABLE);
 407     }
 408     os::start_thread(thread);
 409   }
 410 }
 411 
 412 // Enqueue a VM_Operation to do the job for us - sometime later
 413 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 414   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 415   VMThread::execute(vm_stop);
 416 }
 417 
 418 
 419 // Check if an external suspend request has completed (or has been
 420 // cancelled). Returns true if the thread is externally suspended and
 421 // false otherwise.
 422 //
 423 // The bits parameter returns information about the code path through
 424 // the routine. Useful for debugging:
 425 //
 426 // set in is_ext_suspend_completed():
 427 // 0x00000001 - routine was entered
 428 // 0x00000010 - routine return false at end
 429 // 0x00000100 - thread exited (return false)
 430 // 0x00000200 - suspend request cancelled (return false)
 431 // 0x00000400 - thread suspended (return true)
 432 // 0x00001000 - thread is in a suspend equivalent state (return true)
 433 // 0x00002000 - thread is native and walkable (return true)
 434 // 0x00004000 - thread is native_trans and walkable (needed retry)
 435 //
 436 // set in wait_for_ext_suspend_completion():
 437 // 0x00010000 - routine was entered
 438 // 0x00020000 - suspend request cancelled before loop (return false)
 439 // 0x00040000 - thread suspended before loop (return true)
 440 // 0x00080000 - suspend request cancelled in loop (return false)
 441 // 0x00100000 - thread suspended in loop (return true)
 442 // 0x00200000 - suspend not completed during retry loop (return false)
 443 
 444 // Helper class for tracing suspend wait debug bits.
 445 //
 446 // 0x00000100 indicates that the target thread exited before it could
 447 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 448 // 0x00080000 each indicate a cancelled suspend request so they don't
 449 // count as wait failures either.
 450 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 451 
 452 class TraceSuspendDebugBits : public StackObj {
 453  private:
 454   JavaThread * jt;
 455   bool         is_wait;
 456   bool         called_by_wait;  // meaningful when !is_wait
 457   uint32_t *   bits;
 458 
 459  public:
 460   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 461                         uint32_t *_bits) {
 462     jt             = _jt;
 463     is_wait        = _is_wait;
 464     called_by_wait = _called_by_wait;
 465     bits           = _bits;
 466   }
 467 
 468   ~TraceSuspendDebugBits() {
 469     if (!is_wait) {
 470 #if 1
 471       // By default, don't trace bits for is_ext_suspend_completed() calls.
 472       // That trace is very chatty.
 473       return;
 474 #else
 475       if (!called_by_wait) {
 476         // If tracing for is_ext_suspend_completed() is enabled, then only
 477         // trace calls to it from wait_for_ext_suspend_completion()
 478         return;
 479       }
 480 #endif
 481     }
 482 
 483     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 484       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 485         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 486         ResourceMark rm;
 487 
 488         tty->print_cr(
 489                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 490                       jt->get_thread_name(), *bits);
 491 
 492         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 493       }
 494     }
 495   }
 496 };
 497 #undef DEBUG_FALSE_BITS
 498 
 499 
 500 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 501                                           uint32_t *bits) {
 502   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 503 
 504   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 505   bool do_trans_retry;           // flag to force the retry
 506 
 507   *bits |= 0x00000001;
 508 
 509   do {
 510     do_trans_retry = false;
 511 
 512     if (is_exiting()) {
 513       // Thread is in the process of exiting. This is always checked
 514       // first to reduce the risk of dereferencing a freed JavaThread.
 515       *bits |= 0x00000100;
 516       return false;
 517     }
 518 
 519     if (!is_external_suspend()) {
 520       // Suspend request is cancelled. This is always checked before
 521       // is_ext_suspended() to reduce the risk of a rogue resume
 522       // confusing the thread that made the suspend request.
 523       *bits |= 0x00000200;
 524       return false;
 525     }
 526 
 527     if (is_ext_suspended()) {
 528       // thread is suspended
 529       *bits |= 0x00000400;
 530       return true;
 531     }
 532 
 533     // Now that we no longer do hard suspends of threads running
 534     // native code, the target thread can be changing thread state
 535     // while we are in this routine:
 536     //
 537     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 538     //
 539     // We save a copy of the thread state as observed at this moment
 540     // and make our decision about suspend completeness based on the
 541     // copy. This closes the race where the thread state is seen as
 542     // _thread_in_native_trans in the if-thread_blocked check, but is
 543     // seen as _thread_blocked in if-thread_in_native_trans check.
 544     JavaThreadState save_state = thread_state();
 545 
 546     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 547       // If the thread's state is _thread_blocked and this blocking
 548       // condition is known to be equivalent to a suspend, then we can
 549       // consider the thread to be externally suspended. This means that
 550       // the code that sets _thread_blocked has been modified to do
 551       // self-suspension if the blocking condition releases. We also
 552       // used to check for CONDVAR_WAIT here, but that is now covered by
 553       // the _thread_blocked with self-suspension check.
 554       //
 555       // Return true since we wouldn't be here unless there was still an
 556       // external suspend request.
 557       *bits |= 0x00001000;
 558       return true;
 559     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 560       // Threads running native code will self-suspend on native==>VM/Java
 561       // transitions. If its stack is walkable (should always be the case
 562       // unless this function is called before the actual java_suspend()
 563       // call), then the wait is done.
 564       *bits |= 0x00002000;
 565       return true;
 566     } else if (!called_by_wait && !did_trans_retry &&
 567                save_state == _thread_in_native_trans &&
 568                frame_anchor()->walkable()) {
 569       // The thread is transitioning from thread_in_native to another
 570       // thread state. check_safepoint_and_suspend_for_native_trans()
 571       // will force the thread to self-suspend. If it hasn't gotten
 572       // there yet we may have caught the thread in-between the native
 573       // code check above and the self-suspend. Lucky us. If we were
 574       // called by wait_for_ext_suspend_completion(), then it
 575       // will be doing the retries so we don't have to.
 576       //
 577       // Since we use the saved thread state in the if-statement above,
 578       // there is a chance that the thread has already transitioned to
 579       // _thread_blocked by the time we get here. In that case, we will
 580       // make a single unnecessary pass through the logic below. This
 581       // doesn't hurt anything since we still do the trans retry.
 582 
 583       *bits |= 0x00004000;
 584 
 585       // Once the thread leaves thread_in_native_trans for another
 586       // thread state, we break out of this retry loop. We shouldn't
 587       // need this flag to prevent us from getting back here, but
 588       // sometimes paranoia is good.
 589       did_trans_retry = true;
 590 
 591       // We wait for the thread to transition to a more usable state.
 592       for (int i = 1; i <= SuspendRetryCount; i++) {
 593         // We used to do an "os::yield_all(i)" call here with the intention
 594         // that yielding would increase on each retry. However, the parameter
 595         // is ignored on Linux which means the yield didn't scale up. Waiting
 596         // on the SR_lock below provides a much more predictable scale up for
 597         // the delay. It also provides a simple/direct point to check for any
 598         // safepoint requests from the VMThread
 599 
 600         // temporarily drops SR_lock while doing wait with safepoint check
 601         // (if we're a JavaThread - the WatcherThread can also call this)
 602         // and increase delay with each retry
 603         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 604 
 605         // check the actual thread state instead of what we saved above
 606         if (thread_state() != _thread_in_native_trans) {
 607           // the thread has transitioned to another thread state so
 608           // try all the checks (except this one) one more time.
 609           do_trans_retry = true;
 610           break;
 611         }
 612       } // end retry loop
 613 
 614 
 615     }
 616   } while (do_trans_retry);
 617 
 618   *bits |= 0x00000010;
 619   return false;
 620 }
 621 
 622 // Wait for an external suspend request to complete (or be cancelled).
 623 // Returns true if the thread is externally suspended and false otherwise.
 624 //
 625 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 626                                                  uint32_t *bits) {
 627   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 628                              false /* !called_by_wait */, bits);
 629 
 630   // local flag copies to minimize SR_lock hold time
 631   bool is_suspended;
 632   bool pending;
 633   uint32_t reset_bits;
 634 
 635   // set a marker so is_ext_suspend_completed() knows we are the caller
 636   *bits |= 0x00010000;
 637 
 638   // We use reset_bits to reinitialize the bits value at the top of
 639   // each retry loop. This allows the caller to make use of any
 640   // unused bits for their own marking purposes.
 641   reset_bits = *bits;
 642 
 643   {
 644     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 645     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 646                                             delay, bits);
 647     pending = is_external_suspend();
 648   }
 649   // must release SR_lock to allow suspension to complete
 650 
 651   if (!pending) {
 652     // A cancelled suspend request is the only false return from
 653     // is_ext_suspend_completed() that keeps us from entering the
 654     // retry loop.
 655     *bits |= 0x00020000;
 656     return false;
 657   }
 658 
 659   if (is_suspended) {
 660     *bits |= 0x00040000;
 661     return true;
 662   }
 663 
 664   for (int i = 1; i <= retries; i++) {
 665     *bits = reset_bits;  // reinit to only track last retry
 666 
 667     // We used to do an "os::yield_all(i)" call here with the intention
 668     // that yielding would increase on each retry. However, the parameter
 669     // is ignored on Linux which means the yield didn't scale up. Waiting
 670     // on the SR_lock below provides a much more predictable scale up for
 671     // the delay. It also provides a simple/direct point to check for any
 672     // safepoint requests from the VMThread
 673 
 674     {
 675       MutexLocker ml(SR_lock());
 676       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 677       // can also call this)  and increase delay with each retry
 678       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 679 
 680       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 681                                               delay, bits);
 682 
 683       // It is possible for the external suspend request to be cancelled
 684       // (by a resume) before the actual suspend operation is completed.
 685       // Refresh our local copy to see if we still need to wait.
 686       pending = is_external_suspend();
 687     }
 688 
 689     if (!pending) {
 690       // A cancelled suspend request is the only false return from
 691       // is_ext_suspend_completed() that keeps us from staying in the
 692       // retry loop.
 693       *bits |= 0x00080000;
 694       return false;
 695     }
 696 
 697     if (is_suspended) {
 698       *bits |= 0x00100000;
 699       return true;
 700     }
 701   } // end retry loop
 702 
 703   // thread did not suspend after all our retries
 704   *bits |= 0x00200000;
 705   return false;
 706 }
 707 
 708 #ifndef PRODUCT
 709 void JavaThread::record_jump(address target, address instr, const char* file,
 710                              int line) {
 711 
 712   // This should not need to be atomic as the only way for simultaneous
 713   // updates is via interrupts. Even then this should be rare or non-existent
 714   // and we don't care that much anyway.
 715 
 716   int index = _jmp_ring_index;
 717   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 718   _jmp_ring[index]._target = (intptr_t) target;
 719   _jmp_ring[index]._instruction = (intptr_t) instr;
 720   _jmp_ring[index]._file = file;
 721   _jmp_ring[index]._line = line;
 722 }
 723 #endif // PRODUCT
 724 
 725 // Called by flat profiler
 726 // Callers have already called wait_for_ext_suspend_completion
 727 // The assertion for that is currently too complex to put here:
 728 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 729   bool gotframe = false;
 730   // self suspension saves needed state.
 731   if (has_last_Java_frame() && _anchor.walkable()) {
 732     *_fr = pd_last_frame();
 733     gotframe = true;
 734   }
 735   return gotframe;
 736 }
 737 
 738 void Thread::interrupt(Thread* thread) {
 739   debug_only(check_for_dangling_thread_pointer(thread);)
 740   os::interrupt(thread);
 741 }
 742 
 743 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 744   debug_only(check_for_dangling_thread_pointer(thread);)
 745   // Note:  If clear_interrupted==false, this simply fetches and
 746   // returns the value of the field osthread()->interrupted().
 747   return os::is_interrupted(thread, clear_interrupted);
 748 }
 749 
 750 
 751 // GC Support
 752 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 753   jint thread_parity = _oops_do_parity;
 754   if (thread_parity != strong_roots_parity) {
 755     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 756     if (res == thread_parity) {
 757       return true;
 758     } else {
 759       guarantee(res == strong_roots_parity, "Or else what?");
 760       return false;
 761     }
 762   }
 763   return false;
 764 }
 765 
 766 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 767   active_handles()->oops_do(f);
 768   // Do oop for ThreadShadow
 769   f->do_oop((oop*)&_pending_exception);
 770   handle_area()->oops_do(f);
 771 }
 772 
 773 void Thread::nmethods_do(CodeBlobClosure* cf) {
 774   // no nmethods in a generic thread...
 775 }
 776 
 777 void Thread::metadata_handles_do(void f(Metadata*)) {
 778   // Only walk the Handles in Thread.
 779   if (metadata_handles() != NULL) {
 780     for (int i = 0; i< metadata_handles()->length(); i++) {
 781       f(metadata_handles()->at(i));
 782     }
 783   }
 784 }
 785 
 786 void Thread::print_on(outputStream* st) const {
 787   // get_priority assumes osthread initialized
 788   if (osthread() != NULL) {
 789     int os_prio;
 790     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 791       st->print("os_prio=%d ", os_prio);
 792     }
 793     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 794     ext().print_on(st);
 795     osthread()->print_on(st);
 796   }
 797   debug_only(if (WizardMode) print_owned_locks_on(st);)
 798 }
 799 
 800 // Thread::print_on_error() is called by fatal error handler. Don't use
 801 // any lock or allocate memory.
 802 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 803   if (is_VM_thread())                 st->print("VMThread");
 804   else if (is_Compiler_thread())      st->print("CompilerThread");
 805   else if (is_Java_thread())          st->print("JavaThread");
 806   else if (is_GC_task_thread())       st->print("GCTaskThread");
 807   else if (is_Watcher_thread())       st->print("WatcherThread");
 808   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 809   else                                st->print("Thread");
 810 
 811   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 812             p2i(_stack_base - _stack_size), p2i(_stack_base));
 813 
 814   if (osthread()) {
 815     st->print(" [id=%d]", osthread()->thread_id());
 816   }
 817 }
 818 
 819 #ifdef ASSERT
 820 void Thread::print_owned_locks_on(outputStream* st) const {
 821   Monitor *cur = _owned_locks;
 822   if (cur == NULL) {
 823     st->print(" (no locks) ");
 824   } else {
 825     st->print_cr(" Locks owned:");
 826     while (cur) {
 827       cur->print_on(st);
 828       cur = cur->next();
 829     }
 830   }
 831 }
 832 
 833 static int ref_use_count  = 0;
 834 
 835 bool Thread::owns_locks_but_compiled_lock() const {
 836   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 837     if (cur != Compile_lock) return true;
 838   }
 839   return false;
 840 }
 841 
 842 
 843 #endif
 844 
 845 #ifndef PRODUCT
 846 
 847 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 848 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 849 // no threads which allow_vm_block's are held
 850 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 851   // Check if current thread is allowed to block at a safepoint
 852   if (!(_allow_safepoint_count == 0)) {
 853     fatal("Possible safepoint reached by thread that does not allow it");
 854   }
 855   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 856     fatal("LEAF method calling lock?");
 857   }
 858 
 859 #ifdef ASSERT
 860   if (potential_vm_operation && is_Java_thread()
 861       && !Universe::is_bootstrapping()) {
 862     // Make sure we do not hold any locks that the VM thread also uses.
 863     // This could potentially lead to deadlocks
 864     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 865       // Threads_lock is special, since the safepoint synchronization will not start before this is
 866       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 867       // since it is used to transfer control between JavaThreads and the VMThread
 868       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 869       if ((cur->allow_vm_block() &&
 870            cur != Threads_lock &&
 871            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 872            cur != VMOperationRequest_lock &&
 873            cur != VMOperationQueue_lock) ||
 874            cur->rank() == Mutex::special) {
 875         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 876       }
 877     }
 878   }
 879 
 880   if (GCALotAtAllSafepoints) {
 881     // We could enter a safepoint here and thus have a gc
 882     InterfaceSupport::check_gc_alot();
 883   }
 884 #endif
 885 }
 886 #endif
 887 
 888 bool Thread::is_in_stack(address adr) const {
 889   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 890   address end = os::current_stack_pointer();
 891   // Allow non Java threads to call this without stack_base
 892   if (_stack_base == NULL) return true;
 893   if (stack_base() >= adr && adr >= end) return true;
 894 
 895   return false;
 896 }
 897 
 898 
 899 bool Thread::is_in_usable_stack(address adr) const {
 900   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 901   size_t usable_stack_size = _stack_size - stack_guard_size;
 902 
 903   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 904 }
 905 
 906 
 907 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 908 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 909 // used for compilation in the future. If that change is made, the need for these methods
 910 // should be revisited, and they should be removed if possible.
 911 
 912 bool Thread::is_lock_owned(address adr) const {
 913   return on_local_stack(adr);
 914 }
 915 
 916 bool Thread::set_as_starting_thread() {
 917   // NOTE: this must be called inside the main thread.
 918   return os::create_main_thread((JavaThread*)this);
 919 }
 920 
 921 static void initialize_class(Symbol* class_name, TRAPS) {
 922   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 923   InstanceKlass::cast(klass)->initialize(CHECK);
 924 }
 925 
 926 
 927 // Creates the initial ThreadGroup
 928 static Handle create_initial_thread_group(TRAPS) {
 929   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 930   instanceKlassHandle klass (THREAD, k);
 931 
 932   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 933   {
 934     JavaValue result(T_VOID);
 935     JavaCalls::call_special(&result,
 936                             system_instance,
 937                             klass,
 938                             vmSymbols::object_initializer_name(),
 939                             vmSymbols::void_method_signature(),
 940                             CHECK_NH);
 941   }
 942   Universe::set_system_thread_group(system_instance());
 943 
 944   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 945   {
 946     JavaValue result(T_VOID);
 947     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 948     JavaCalls::call_special(&result,
 949                             main_instance,
 950                             klass,
 951                             vmSymbols::object_initializer_name(),
 952                             vmSymbols::threadgroup_string_void_signature(),
 953                             system_instance,
 954                             string,
 955                             CHECK_NH);
 956   }
 957   return main_instance;
 958 }
 959 
 960 // Creates the initial Thread
 961 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 962                                  TRAPS) {
 963   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 964   instanceKlassHandle klass (THREAD, k);
 965   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 966 
 967   java_lang_Thread::set_thread(thread_oop(), thread);
 968   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 969   thread->set_threadObj(thread_oop());
 970 
 971   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 972 
 973   JavaValue result(T_VOID);
 974   JavaCalls::call_special(&result, thread_oop,
 975                           klass,
 976                           vmSymbols::object_initializer_name(),
 977                           vmSymbols::threadgroup_string_void_signature(),
 978                           thread_group,
 979                           string,
 980                           CHECK_NULL);
 981   return thread_oop();
 982 }
 983 
 984 static void call_initializeSystemClass(TRAPS) {
 985   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 986   instanceKlassHandle klass (THREAD, k);
 987 
 988   JavaValue result(T_VOID);
 989   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 990                          vmSymbols::void_method_signature(), CHECK);
 991 }
 992 
 993 char java_runtime_name[128] = "";
 994 char java_runtime_version[128] = "";
 995 
 996 // extract the JRE name from sun.misc.Version.java_runtime_name
 997 static const char* get_java_runtime_name(TRAPS) {
 998   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
 999                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1000   fieldDescriptor fd;
1001   bool found = k != NULL &&
1002                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1003                                                         vmSymbols::string_signature(), &fd);
1004   if (found) {
1005     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1006     if (name_oop == NULL) {
1007       return NULL;
1008     }
1009     const char* name = java_lang_String::as_utf8_string(name_oop,
1010                                                         java_runtime_name,
1011                                                         sizeof(java_runtime_name));
1012     return name;
1013   } else {
1014     return NULL;
1015   }
1016 }
1017 
1018 // extract the JRE version from sun.misc.Version.java_runtime_version
1019 static const char* get_java_runtime_version(TRAPS) {
1020   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1021                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1022   fieldDescriptor fd;
1023   bool found = k != NULL &&
1024                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1025                                                         vmSymbols::string_signature(), &fd);
1026   if (found) {
1027     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1028     if (name_oop == NULL) {
1029       return NULL;
1030     }
1031     const char* name = java_lang_String::as_utf8_string(name_oop,
1032                                                         java_runtime_version,
1033                                                         sizeof(java_runtime_version));
1034     return name;
1035   } else {
1036     return NULL;
1037   }
1038 }
1039 
1040 // General purpose hook into Java code, run once when the VM is initialized.
1041 // The Java library method itself may be changed independently from the VM.
1042 static void call_postVMInitHook(TRAPS) {
1043   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1044   instanceKlassHandle klass (THREAD, k);
1045   if (klass.not_null()) {
1046     JavaValue result(T_VOID);
1047     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1048                            vmSymbols::void_method_signature(),
1049                            CHECK);
1050   }
1051 }
1052 
1053 static void reset_vm_info_property(TRAPS) {
1054   // the vm info string
1055   ResourceMark rm(THREAD);
1056   const char *vm_info = VM_Version::vm_info_string();
1057 
1058   // java.lang.System class
1059   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1060   instanceKlassHandle klass (THREAD, k);
1061 
1062   // setProperty arguments
1063   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1064   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1065 
1066   // return value
1067   JavaValue r(T_OBJECT);
1068 
1069   // public static String setProperty(String key, String value);
1070   JavaCalls::call_static(&r,
1071                          klass,
1072                          vmSymbols::setProperty_name(),
1073                          vmSymbols::string_string_string_signature(),
1074                          key_str,
1075                          value_str,
1076                          CHECK);
1077 }
1078 
1079 
1080 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1081                                     bool daemon, TRAPS) {
1082   assert(thread_group.not_null(), "thread group should be specified");
1083   assert(threadObj() == NULL, "should only create Java thread object once");
1084 
1085   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1086   instanceKlassHandle klass (THREAD, k);
1087   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1088 
1089   java_lang_Thread::set_thread(thread_oop(), this);
1090   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1091   set_threadObj(thread_oop());
1092 
1093   JavaValue result(T_VOID);
1094   if (thread_name != NULL) {
1095     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1096     // Thread gets assigned specified name and null target
1097     JavaCalls::call_special(&result,
1098                             thread_oop,
1099                             klass,
1100                             vmSymbols::object_initializer_name(),
1101                             vmSymbols::threadgroup_string_void_signature(),
1102                             thread_group, // Argument 1
1103                             name,         // Argument 2
1104                             THREAD);
1105   } else {
1106     // Thread gets assigned name "Thread-nnn" and null target
1107     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_runnable_void_signature(),
1113                             thread_group, // Argument 1
1114                             Handle(),     // Argument 2
1115                             THREAD);
1116   }
1117 
1118 
1119   if (daemon) {
1120     java_lang_Thread::set_daemon(thread_oop());
1121   }
1122 
1123   if (HAS_PENDING_EXCEPTION) {
1124     return;
1125   }
1126 
1127   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1128   Handle threadObj(THREAD, this->threadObj());
1129 
1130   JavaCalls::call_special(&result,
1131                           thread_group,
1132                           group,
1133                           vmSymbols::add_method_name(),
1134                           vmSymbols::thread_void_signature(),
1135                           threadObj,          // Arg 1
1136                           THREAD);
1137 }
1138 
1139 // NamedThread --  non-JavaThread subclasses with multiple
1140 // uniquely named instances should derive from this.
1141 NamedThread::NamedThread() : Thread() {
1142   _name = NULL;
1143   _processed_thread = NULL;
1144   _gc_id = GCId::undefined();
1145 }
1146 
1147 NamedThread::~NamedThread() {
1148   if (_name != NULL) {
1149     FREE_C_HEAP_ARRAY(char, _name);
1150     _name = NULL;
1151   }
1152 }
1153 
1154 void NamedThread::set_name(const char* format, ...) {
1155   guarantee(_name == NULL, "Only get to set name once.");
1156   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1157   guarantee(_name != NULL, "alloc failure");
1158   va_list ap;
1159   va_start(ap, format);
1160   jio_vsnprintf(_name, max_name_len, format, ap);
1161   va_end(ap);
1162 }
1163 
1164 void NamedThread::initialize_named_thread() {
1165   set_native_thread_name(name());
1166 }
1167 
1168 void NamedThread::print_on(outputStream* st) const {
1169   st->print("\"%s\" ", name());
1170   Thread::print_on(st);
1171   st->cr();
1172 }
1173 
1174 
1175 // ======= WatcherThread ========
1176 
1177 // The watcher thread exists to simulate timer interrupts.  It should
1178 // be replaced by an abstraction over whatever native support for
1179 // timer interrupts exists on the platform.
1180 
1181 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1182 bool WatcherThread::_startable = false;
1183 volatile bool  WatcherThread::_should_terminate = false;
1184 
1185 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1186   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1187   if (os::create_thread(this, os::watcher_thread)) {
1188     _watcher_thread = this;
1189 
1190     // Set the watcher thread to the highest OS priority which should not be
1191     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1192     // is created. The only normal thread using this priority is the reference
1193     // handler thread, which runs for very short intervals only.
1194     // If the VMThread's priority is not lower than the WatcherThread profiling
1195     // will be inaccurate.
1196     os::set_priority(this, MaxPriority);
1197     if (!DisableStartThread) {
1198       os::start_thread(this);
1199     }
1200   }
1201 }
1202 
1203 int WatcherThread::sleep() const {
1204   // The WatcherThread does not participate in the safepoint protocol
1205   // for the PeriodicTask_lock because it is not a JavaThread.
1206   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1207 
1208   if (_should_terminate) {
1209     // check for termination before we do any housekeeping or wait
1210     return 0;  // we did not sleep.
1211   }
1212 
1213   // remaining will be zero if there are no tasks,
1214   // causing the WatcherThread to sleep until a task is
1215   // enrolled
1216   int remaining = PeriodicTask::time_to_wait();
1217   int time_slept = 0;
1218 
1219   // we expect this to timeout - we only ever get unparked when
1220   // we should terminate or when a new task has been enrolled
1221   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1222 
1223   jlong time_before_loop = os::javaTimeNanos();
1224 
1225   while (true) {
1226     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1227                                             remaining);
1228     jlong now = os::javaTimeNanos();
1229 
1230     if (remaining == 0) {
1231       // if we didn't have any tasks we could have waited for a long time
1232       // consider the time_slept zero and reset time_before_loop
1233       time_slept = 0;
1234       time_before_loop = now;
1235     } else {
1236       // need to recalculate since we might have new tasks in _tasks
1237       time_slept = (int) ((now - time_before_loop) / 1000000);
1238     }
1239 
1240     // Change to task list or spurious wakeup of some kind
1241     if (timedout || _should_terminate) {
1242       break;
1243     }
1244 
1245     remaining = PeriodicTask::time_to_wait();
1246     if (remaining == 0) {
1247       // Last task was just disenrolled so loop around and wait until
1248       // another task gets enrolled
1249       continue;
1250     }
1251 
1252     remaining -= time_slept;
1253     if (remaining <= 0) {
1254       break;
1255     }
1256   }
1257 
1258   return time_slept;
1259 }
1260 
1261 void WatcherThread::run() {
1262   assert(this == watcher_thread(), "just checking");
1263 
1264   this->record_stack_base_and_size();
1265   this->set_native_thread_name(this->name());
1266   this->set_active_handles(JNIHandleBlock::allocate_block());
1267   while (true) {
1268     assert(watcher_thread() == Thread::current(), "thread consistency check");
1269     assert(watcher_thread() == this, "thread consistency check");
1270 
1271     // Calculate how long it'll be until the next PeriodicTask work
1272     // should be done, and sleep that amount of time.
1273     int time_waited = sleep();
1274 
1275     if (is_error_reported()) {
1276       // A fatal error has happened, the error handler(VMError::report_and_die)
1277       // should abort JVM after creating an error log file. However in some
1278       // rare cases, the error handler itself might deadlock. Here we try to
1279       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1280       //
1281       // This code is in WatcherThread because WatcherThread wakes up
1282       // periodically so the fatal error handler doesn't need to do anything;
1283       // also because the WatcherThread is less likely to crash than other
1284       // threads.
1285 
1286       for (;;) {
1287         if (!ShowMessageBoxOnError
1288             && (OnError == NULL || OnError[0] == '\0')
1289             && Arguments::abort_hook() == NULL) {
1290           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1291           fdStream err(defaultStream::output_fd());
1292           err.print_raw_cr("# [ timer expired, abort... ]");
1293           // skip atexit/vm_exit/vm_abort hooks
1294           os::die();
1295         }
1296 
1297         // Wake up 5 seconds later, the fatal handler may reset OnError or
1298         // ShowMessageBoxOnError when it is ready to abort.
1299         os::sleep(this, 5 * 1000, false);
1300       }
1301     }
1302 
1303     if (_should_terminate) {
1304       // check for termination before posting the next tick
1305       break;
1306     }
1307 
1308     PeriodicTask::real_time_tick(time_waited);
1309   }
1310 
1311   // Signal that it is terminated
1312   {
1313     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1314     _watcher_thread = NULL;
1315     Terminator_lock->notify();
1316   }
1317 }
1318 
1319 void WatcherThread::start() {
1320   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1321 
1322   if (watcher_thread() == NULL && _startable) {
1323     _should_terminate = false;
1324     // Create the single instance of WatcherThread
1325     new WatcherThread();
1326   }
1327 }
1328 
1329 void WatcherThread::make_startable() {
1330   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1331   _startable = true;
1332 }
1333 
1334 void WatcherThread::stop() {
1335   {
1336     // Follow normal safepoint aware lock enter protocol since the
1337     // WatcherThread is stopped by another JavaThread.
1338     MutexLocker ml(PeriodicTask_lock);
1339     _should_terminate = true;
1340 
1341     WatcherThread* watcher = watcher_thread();
1342     if (watcher != NULL) {
1343       // unpark the WatcherThread so it can see that it should terminate
1344       watcher->unpark();
1345     }
1346   }
1347 
1348   MutexLocker mu(Terminator_lock);
1349 
1350   while (watcher_thread() != NULL) {
1351     // This wait should make safepoint checks, wait without a timeout,
1352     // and wait as a suspend-equivalent condition.
1353     //
1354     // Note: If the FlatProfiler is running, then this thread is waiting
1355     // for the WatcherThread to terminate and the WatcherThread, via the
1356     // FlatProfiler task, is waiting for the external suspend request on
1357     // this thread to complete. wait_for_ext_suspend_completion() will
1358     // eventually timeout, but that takes time. Making this wait a
1359     // suspend-equivalent condition solves that timeout problem.
1360     //
1361     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1362                           Mutex::_as_suspend_equivalent_flag);
1363   }
1364 }
1365 
1366 void WatcherThread::unpark() {
1367   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1368   PeriodicTask_lock->notify();
1369 }
1370 
1371 void WatcherThread::print_on(outputStream* st) const {
1372   st->print("\"%s\" ", name());
1373   Thread::print_on(st);
1374   st->cr();
1375 }
1376 
1377 // ======= JavaThread ========
1378 
1379 #if INCLUDE_JVMCI
1380 
1381 jlong* JavaThread::_jvmci_old_thread_counters;
1382 
1383 bool jvmci_counters_include(JavaThread* thread) {
1384   oop threadObj = thread->threadObj();
1385   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1386 }
1387 
1388 void JavaThread::collect_counters(typeArrayOop array) {
1389   if (JVMCICounterSize > 0) {
1390     MutexLocker tl(Threads_lock);
1391     for (int i = 0; i < array->length(); i++) {
1392       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1393     }
1394     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1395       if (jvmci_counters_include(tp)) {
1396         for (int i = 0; i < array->length(); i++) {
1397           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1398         }
1399       }
1400     }
1401   }
1402 }
1403 
1404 #endif // INCLUDE_JVMCI
1405 
1406 // A JavaThread is a normal Java thread
1407 
1408 void JavaThread::initialize() {
1409   // Initialize fields
1410 
1411   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1412   set_claimed_par_id(UINT_MAX);
1413 
1414   set_saved_exception_pc(NULL);
1415   set_threadObj(NULL);
1416   _anchor.clear();
1417   set_entry_point(NULL);
1418   set_jni_functions(jni_functions());
1419   set_callee_target(NULL);
1420   set_vm_result(NULL);
1421   set_vm_result_2(NULL);
1422   set_vframe_array_head(NULL);
1423   set_vframe_array_last(NULL);
1424   set_deferred_locals(NULL);
1425   set_deopt_mark(NULL);
1426   set_deopt_nmethod(NULL);
1427   clear_must_deopt_id();
1428   set_monitor_chunks(NULL);
1429   set_next(NULL);
1430   set_thread_state(_thread_new);
1431   _terminated = _not_terminated;
1432   _privileged_stack_top = NULL;
1433   _array_for_gc = NULL;
1434   _suspend_equivalent = false;
1435   _in_deopt_handler = 0;
1436   _doing_unsafe_access = false;
1437   _stack_guard_state = stack_guard_unused;
1438 #if INCLUDE_JVMCI
1439   _pending_monitorenter = false;
1440   _pending_deoptimization = -1;
1441   _pending_failed_speculation = NULL;
1442   _pending_transfer_to_interpreter = false;
1443   _jvmci._alternate_call_target = NULL;
1444   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1445   if (JVMCICounterSize > 0) {
1446     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1447     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1448   } else {
1449     _jvmci_counters = NULL;
1450   }
1451 #endif // INCLUDE_JVMCI
1452   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1453   _exception_pc  = 0;
1454   _exception_handler_pc = 0;
1455   _is_method_handle_return = 0;
1456   _jvmti_thread_state= NULL;
1457   _should_post_on_exceptions_flag = JNI_FALSE;
1458   _jvmti_get_loaded_classes_closure = NULL;
1459   _interp_only_mode    = 0;
1460   _special_runtime_exit_condition = _no_async_condition;
1461   _pending_async_exception = NULL;
1462   _thread_stat = NULL;
1463   _thread_stat = new ThreadStatistics();
1464   _blocked_on_compilation = false;
1465   _jni_active_critical = 0;
1466   _pending_jni_exception_check_fn = NULL;
1467   _do_not_unlock_if_synchronized = false;
1468   _cached_monitor_info = NULL;
1469   _parker = Parker::Allocate(this);
1470 
1471 #ifndef PRODUCT
1472   _jmp_ring_index = 0;
1473   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1474     record_jump(NULL, NULL, NULL, 0);
1475   }
1476 #endif // PRODUCT
1477 
1478   set_thread_profiler(NULL);
1479   if (FlatProfiler::is_active()) {
1480     // This is where we would decide to either give each thread it's own profiler
1481     // or use one global one from FlatProfiler,
1482     // or up to some count of the number of profiled threads, etc.
1483     ThreadProfiler* pp = new ThreadProfiler();
1484     pp->engage();
1485     set_thread_profiler(pp);
1486   }
1487 
1488   // Setup safepoint state info for this thread
1489   ThreadSafepointState::create(this);
1490 
1491   debug_only(_java_call_counter = 0);
1492 
1493   // JVMTI PopFrame support
1494   _popframe_condition = popframe_inactive;
1495   _popframe_preserved_args = NULL;
1496   _popframe_preserved_args_size = 0;
1497   _frames_to_pop_failed_realloc = 0;
1498 
1499   pd_initialize();
1500 }
1501 
1502 #if INCLUDE_ALL_GCS
1503 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1504 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1505 #endif // INCLUDE_ALL_GCS
1506 
1507 JavaThread::JavaThread(bool is_attaching_via_jni) :
1508                        Thread()
1509 #if INCLUDE_ALL_GCS
1510                        , _satb_mark_queue(&_satb_mark_queue_set),
1511                        _dirty_card_queue(&_dirty_card_queue_set)
1512 #endif // INCLUDE_ALL_GCS
1513 {
1514   initialize();
1515   if (is_attaching_via_jni) {
1516     _jni_attach_state = _attaching_via_jni;
1517   } else {
1518     _jni_attach_state = _not_attaching_via_jni;
1519   }
1520   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1521 }
1522 
1523 bool JavaThread::reguard_stack(address cur_sp) {
1524   if (_stack_guard_state != stack_guard_yellow_disabled) {
1525     return true; // Stack already guarded or guard pages not needed.
1526   }
1527 
1528   if (register_stack_overflow()) {
1529     // For those architectures which have separate register and
1530     // memory stacks, we must check the register stack to see if
1531     // it has overflowed.
1532     return false;
1533   }
1534 
1535   // Java code never executes within the yellow zone: the latter is only
1536   // there to provoke an exception during stack banging.  If java code
1537   // is executing there, either StackShadowPages should be larger, or
1538   // some exception code in c1, c2 or the interpreter isn't unwinding
1539   // when it should.
1540   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1541 
1542   enable_stack_yellow_zone();
1543   return true;
1544 }
1545 
1546 bool JavaThread::reguard_stack(void) {
1547   return reguard_stack(os::current_stack_pointer());
1548 }
1549 
1550 
1551 void JavaThread::block_if_vm_exited() {
1552   if (_terminated == _vm_exited) {
1553     // _vm_exited is set at safepoint, and Threads_lock is never released
1554     // we will block here forever
1555     Threads_lock->lock_without_safepoint_check();
1556     ShouldNotReachHere();
1557   }
1558 }
1559 
1560 
1561 // Remove this ifdef when C1 is ported to the compiler interface.
1562 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1563 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1564 
1565 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1566                        Thread()
1567 #if INCLUDE_ALL_GCS
1568                        , _satb_mark_queue(&_satb_mark_queue_set),
1569                        _dirty_card_queue(&_dirty_card_queue_set)
1570 #endif // INCLUDE_ALL_GCS
1571 {
1572   initialize();
1573   _jni_attach_state = _not_attaching_via_jni;
1574   set_entry_point(entry_point);
1575   // Create the native thread itself.
1576   // %note runtime_23
1577   os::ThreadType thr_type = os::java_thread;
1578   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1579                                                      os::java_thread;
1580   os::create_thread(this, thr_type, stack_sz);
1581   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1582   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1583   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1584   // the exception consists of creating the exception object & initializing it, initialization
1585   // will leave the VM via a JavaCall and then all locks must be unlocked).
1586   //
1587   // The thread is still suspended when we reach here. Thread must be explicit started
1588   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1589   // by calling Threads:add. The reason why this is not done here, is because the thread
1590   // object must be fully initialized (take a look at JVM_Start)
1591 }
1592 
1593 JavaThread::~JavaThread() {
1594 
1595   // JSR166 -- return the parker to the free list
1596   Parker::Release(_parker);
1597   _parker = NULL;
1598 
1599   // Free any remaining  previous UnrollBlock
1600   vframeArray* old_array = vframe_array_last();
1601 
1602   if (old_array != NULL) {
1603     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1604     old_array->set_unroll_block(NULL);
1605     delete old_info;
1606     delete old_array;
1607   }
1608 
1609   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1610   if (deferred != NULL) {
1611     // This can only happen if thread is destroyed before deoptimization occurs.
1612     assert(deferred->length() != 0, "empty array!");
1613     do {
1614       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1615       deferred->remove_at(0);
1616       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1617       delete dlv;
1618     } while (deferred->length() != 0);
1619     delete deferred;
1620   }
1621 
1622   // All Java related clean up happens in exit
1623   ThreadSafepointState::destroy(this);
1624   if (_thread_profiler != NULL) delete _thread_profiler;
1625   if (_thread_stat != NULL) delete _thread_stat;
1626 
1627 #if INCLUDE_JVMCI
1628   if (JVMCICounterSize > 0) {
1629     if (jvmci_counters_include(this)) {
1630       for (int i = 0; i < JVMCICounterSize; i++) {
1631         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1632       }
1633     }
1634     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1635   }
1636 #endif // INCLUDE_JVMCI
1637 }
1638 
1639 
1640 // The first routine called by a new Java thread
1641 void JavaThread::run() {
1642   // initialize thread-local alloc buffer related fields
1643   this->initialize_tlab();
1644 
1645   // used to test validity of stack trace backs
1646   this->record_base_of_stack_pointer();
1647 
1648   // Record real stack base and size.
1649   this->record_stack_base_and_size();
1650 
1651   this->create_stack_guard_pages();
1652 
1653   this->cache_global_variables();
1654 
1655   // Thread is now sufficient initialized to be handled by the safepoint code as being
1656   // in the VM. Change thread state from _thread_new to _thread_in_vm
1657   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1658 
1659   assert(JavaThread::current() == this, "sanity check");
1660   assert(!Thread::current()->owns_locks(), "sanity check");
1661 
1662   DTRACE_THREAD_PROBE(start, this);
1663 
1664   // This operation might block. We call that after all safepoint checks for a new thread has
1665   // been completed.
1666   this->set_active_handles(JNIHandleBlock::allocate_block());
1667 
1668   if (JvmtiExport::should_post_thread_life()) {
1669     JvmtiExport::post_thread_start(this);
1670   }
1671 
1672   EventThreadStart event;
1673   if (event.should_commit()) {
1674     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1675     event.commit();
1676   }
1677 
1678   // We call another function to do the rest so we are sure that the stack addresses used
1679   // from there will be lower than the stack base just computed
1680   thread_main_inner();
1681 
1682   // Note, thread is no longer valid at this point!
1683 }
1684 
1685 
1686 void JavaThread::thread_main_inner() {
1687   assert(JavaThread::current() == this, "sanity check");
1688   assert(this->threadObj() != NULL, "just checking");
1689 
1690   // Execute thread entry point unless this thread has a pending exception
1691   // or has been stopped before starting.
1692   // Note: Due to JVM_StopThread we can have pending exceptions already!
1693   if (!this->has_pending_exception() &&
1694       !java_lang_Thread::is_stillborn(this->threadObj())) {
1695     {
1696       ResourceMark rm(this);
1697       this->set_native_thread_name(this->get_thread_name());
1698     }
1699     HandleMark hm(this);
1700     this->entry_point()(this, this);
1701   }
1702 
1703   DTRACE_THREAD_PROBE(stop, this);
1704 
1705   this->exit(false);
1706   delete this;
1707 }
1708 
1709 
1710 static void ensure_join(JavaThread* thread) {
1711   // We do not need to grap the Threads_lock, since we are operating on ourself.
1712   Handle threadObj(thread, thread->threadObj());
1713   assert(threadObj.not_null(), "java thread object must exist");
1714   ObjectLocker lock(threadObj, thread);
1715   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716   thread->clear_pending_exception();
1717   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1718   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1719   // Clear the native thread instance - this makes isAlive return false and allows the join()
1720   // to complete once we've done the notify_all below
1721   java_lang_Thread::set_thread(threadObj(), NULL);
1722   lock.notify_all(thread);
1723   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1724   thread->clear_pending_exception();
1725 }
1726 
1727 
1728 // For any new cleanup additions, please check to see if they need to be applied to
1729 // cleanup_failed_attach_current_thread as well.
1730 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1731   assert(this == JavaThread::current(), "thread consistency check");
1732 
1733   HandleMark hm(this);
1734   Handle uncaught_exception(this, this->pending_exception());
1735   this->clear_pending_exception();
1736   Handle threadObj(this, this->threadObj());
1737   assert(threadObj.not_null(), "Java thread object should be created");
1738 
1739   if (get_thread_profiler() != NULL) {
1740     get_thread_profiler()->disengage();
1741     ResourceMark rm;
1742     get_thread_profiler()->print(get_thread_name());
1743   }
1744 
1745 
1746   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1747   {
1748     EXCEPTION_MARK;
1749 
1750     CLEAR_PENDING_EXCEPTION;
1751   }
1752   if (!destroy_vm) {
1753     if (uncaught_exception.not_null()) {
1754       EXCEPTION_MARK;
1755       // Call method Thread.dispatchUncaughtException().
1756       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1757       JavaValue result(T_VOID);
1758       JavaCalls::call_virtual(&result,
1759                               threadObj, thread_klass,
1760                               vmSymbols::dispatchUncaughtException_name(),
1761                               vmSymbols::throwable_void_signature(),
1762                               uncaught_exception,
1763                               THREAD);
1764       if (HAS_PENDING_EXCEPTION) {
1765         ResourceMark rm(this);
1766         jio_fprintf(defaultStream::error_stream(),
1767                     "\nException: %s thrown from the UncaughtExceptionHandler"
1768                     " in thread \"%s\"\n",
1769                     pending_exception()->klass()->external_name(),
1770                     get_thread_name());
1771         CLEAR_PENDING_EXCEPTION;
1772       }
1773     }
1774 
1775     // Called before the java thread exit since we want to read info
1776     // from java_lang_Thread object
1777     EventThreadEnd event;
1778     if (event.should_commit()) {
1779       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1780       event.commit();
1781     }
1782 
1783     // Call after last event on thread
1784     EVENT_THREAD_EXIT(this);
1785 
1786     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1787     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1788     // is deprecated anyhow.
1789     if (!is_Compiler_thread()) {
1790       int count = 3;
1791       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1792         EXCEPTION_MARK;
1793         JavaValue result(T_VOID);
1794         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1795         JavaCalls::call_virtual(&result,
1796                                 threadObj, thread_klass,
1797                                 vmSymbols::exit_method_name(),
1798                                 vmSymbols::void_method_signature(),
1799                                 THREAD);
1800         CLEAR_PENDING_EXCEPTION;
1801       }
1802     }
1803     // notify JVMTI
1804     if (JvmtiExport::should_post_thread_life()) {
1805       JvmtiExport::post_thread_end(this);
1806     }
1807 
1808     // We have notified the agents that we are exiting, before we go on,
1809     // we must check for a pending external suspend request and honor it
1810     // in order to not surprise the thread that made the suspend request.
1811     while (true) {
1812       {
1813         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1814         if (!is_external_suspend()) {
1815           set_terminated(_thread_exiting);
1816           ThreadService::current_thread_exiting(this);
1817           break;
1818         }
1819         // Implied else:
1820         // Things get a little tricky here. We have a pending external
1821         // suspend request, but we are holding the SR_lock so we
1822         // can't just self-suspend. So we temporarily drop the lock
1823         // and then self-suspend.
1824       }
1825 
1826       ThreadBlockInVM tbivm(this);
1827       java_suspend_self();
1828 
1829       // We're done with this suspend request, but we have to loop around
1830       // and check again. Eventually we will get SR_lock without a pending
1831       // external suspend request and will be able to mark ourselves as
1832       // exiting.
1833     }
1834     // no more external suspends are allowed at this point
1835   } else {
1836     // before_exit() has already posted JVMTI THREAD_END events
1837   }
1838 
1839   // Notify waiters on thread object. This has to be done after exit() is called
1840   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1841   // group should have the destroyed bit set before waiters are notified).
1842   ensure_join(this);
1843   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1844 
1845   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1846   // held by this thread must be released. The spec does not distinguish
1847   // between JNI-acquired and regular Java monitors. We can only see
1848   // regular Java monitors here if monitor enter-exit matching is broken.
1849   //
1850   // Optionally release any monitors for regular JavaThread exits. This
1851   // is provided as a work around for any bugs in monitor enter-exit
1852   // matching. This can be expensive so it is not enabled by default.
1853   //
1854   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1855   // ObjectSynchronizer::release_monitors_owned_by_thread().
1856   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1857     // Sanity check even though JNI DetachCurrentThread() would have
1858     // returned JNI_ERR if there was a Java frame. JavaThread exit
1859     // should be done executing Java code by the time we get here.
1860     assert(!this->has_last_Java_frame(),
1861            "should not have a Java frame when detaching or exiting");
1862     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1863     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1864   }
1865 
1866   // These things needs to be done while we are still a Java Thread. Make sure that thread
1867   // is in a consistent state, in case GC happens
1868   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1869 
1870   if (active_handles() != NULL) {
1871     JNIHandleBlock* block = active_handles();
1872     set_active_handles(NULL);
1873     JNIHandleBlock::release_block(block);
1874   }
1875 
1876   if (free_handle_block() != NULL) {
1877     JNIHandleBlock* block = free_handle_block();
1878     set_free_handle_block(NULL);
1879     JNIHandleBlock::release_block(block);
1880   }
1881 
1882   // These have to be removed while this is still a valid thread.
1883   remove_stack_guard_pages();
1884 
1885   if (UseTLAB) {
1886     tlab().make_parsable(true);  // retire TLAB
1887   }
1888 
1889   if (JvmtiEnv::environments_might_exist()) {
1890     JvmtiExport::cleanup_thread(this);
1891   }
1892 
1893   // We must flush any deferred card marks before removing a thread from
1894   // the list of active threads.
1895   Universe::heap()->flush_deferred_store_barrier(this);
1896   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1897 
1898 #if INCLUDE_ALL_GCS
1899   // We must flush the G1-related buffers before removing a thread
1900   // from the list of active threads. We must do this after any deferred
1901   // card marks have been flushed (above) so that any entries that are
1902   // added to the thread's dirty card queue as a result are not lost.
1903   if (UseG1GC) {
1904     flush_barrier_queues();
1905   }
1906 #endif // INCLUDE_ALL_GCS
1907 
1908   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1909   Threads::remove(this);
1910 }
1911 
1912 #if INCLUDE_ALL_GCS
1913 // Flush G1-related queues.
1914 void JavaThread::flush_barrier_queues() {
1915   satb_mark_queue().flush();
1916   dirty_card_queue().flush();
1917 }
1918 
1919 void JavaThread::initialize_queues() {
1920   assert(!SafepointSynchronize::is_at_safepoint(),
1921          "we should not be at a safepoint");
1922 
1923   ObjPtrQueue& satb_queue = satb_mark_queue();
1924   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1925   // The SATB queue should have been constructed with its active
1926   // field set to false.
1927   assert(!satb_queue.is_active(), "SATB queue should not be active");
1928   assert(satb_queue.is_empty(), "SATB queue should be empty");
1929   // If we are creating the thread during a marking cycle, we should
1930   // set the active field of the SATB queue to true.
1931   if (satb_queue_set.is_active()) {
1932     satb_queue.set_active(true);
1933   }
1934 
1935   DirtyCardQueue& dirty_queue = dirty_card_queue();
1936   // The dirty card queue should have been constructed with its
1937   // active field set to true.
1938   assert(dirty_queue.is_active(), "dirty card queue should be active");
1939 }
1940 #endif // INCLUDE_ALL_GCS
1941 
1942 void JavaThread::cleanup_failed_attach_current_thread() {
1943   if (get_thread_profiler() != NULL) {
1944     get_thread_profiler()->disengage();
1945     ResourceMark rm;
1946     get_thread_profiler()->print(get_thread_name());
1947   }
1948 
1949   if (active_handles() != NULL) {
1950     JNIHandleBlock* block = active_handles();
1951     set_active_handles(NULL);
1952     JNIHandleBlock::release_block(block);
1953   }
1954 
1955   if (free_handle_block() != NULL) {
1956     JNIHandleBlock* block = free_handle_block();
1957     set_free_handle_block(NULL);
1958     JNIHandleBlock::release_block(block);
1959   }
1960 
1961   // These have to be removed while this is still a valid thread.
1962   remove_stack_guard_pages();
1963 
1964   if (UseTLAB) {
1965     tlab().make_parsable(true);  // retire TLAB, if any
1966   }
1967 
1968 #if INCLUDE_ALL_GCS
1969   if (UseG1GC) {
1970     flush_barrier_queues();
1971   }
1972 #endif // INCLUDE_ALL_GCS
1973 
1974   Threads::remove(this);
1975   delete this;
1976 }
1977 
1978 
1979 
1980 
1981 JavaThread* JavaThread::active() {
1982   Thread* thread = Thread::current();
1983   assert(thread != NULL, "just checking");
1984   if (thread->is_Java_thread()) {
1985     return (JavaThread*) thread;
1986   } else {
1987     assert(thread->is_VM_thread(), "this must be a vm thread");
1988     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1989     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1990     assert(ret->is_Java_thread(), "must be a Java thread");
1991     return ret;
1992   }
1993 }
1994 
1995 bool JavaThread::is_lock_owned(address adr) const {
1996   if (Thread::is_lock_owned(adr)) return true;
1997 
1998   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1999     if (chunk->contains(adr)) return true;
2000   }
2001 
2002   return false;
2003 }
2004 
2005 
2006 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2007   chunk->set_next(monitor_chunks());
2008   set_monitor_chunks(chunk);
2009 }
2010 
2011 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2012   guarantee(monitor_chunks() != NULL, "must be non empty");
2013   if (monitor_chunks() == chunk) {
2014     set_monitor_chunks(chunk->next());
2015   } else {
2016     MonitorChunk* prev = monitor_chunks();
2017     while (prev->next() != chunk) prev = prev->next();
2018     prev->set_next(chunk->next());
2019   }
2020 }
2021 
2022 // JVM support.
2023 
2024 // Note: this function shouldn't block if it's called in
2025 // _thread_in_native_trans state (such as from
2026 // check_special_condition_for_native_trans()).
2027 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2028 
2029   if (has_last_Java_frame() && has_async_condition()) {
2030     // If we are at a polling page safepoint (not a poll return)
2031     // then we must defer async exception because live registers
2032     // will be clobbered by the exception path. Poll return is
2033     // ok because the call we a returning from already collides
2034     // with exception handling registers and so there is no issue.
2035     // (The exception handling path kills call result registers but
2036     //  this is ok since the exception kills the result anyway).
2037 
2038     if (is_at_poll_safepoint()) {
2039       // if the code we are returning to has deoptimized we must defer
2040       // the exception otherwise live registers get clobbered on the
2041       // exception path before deoptimization is able to retrieve them.
2042       //
2043       RegisterMap map(this, false);
2044       frame caller_fr = last_frame().sender(&map);
2045       assert(caller_fr.is_compiled_frame(), "what?");
2046       if (caller_fr.is_deoptimized_frame()) {
2047         if (TraceExceptions) {
2048           ResourceMark rm;
2049           tty->print_cr("deferred async exception at compiled safepoint");
2050         }
2051         return;
2052       }
2053     }
2054   }
2055 
2056   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2057   if (condition == _no_async_condition) {
2058     // Conditions have changed since has_special_runtime_exit_condition()
2059     // was called:
2060     // - if we were here only because of an external suspend request,
2061     //   then that was taken care of above (or cancelled) so we are done
2062     // - if we were here because of another async request, then it has
2063     //   been cleared between the has_special_runtime_exit_condition()
2064     //   and now so again we are done
2065     return;
2066   }
2067 
2068   // Check for pending async. exception
2069   if (_pending_async_exception != NULL) {
2070     // Only overwrite an already pending exception, if it is not a threadDeath.
2071     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2072 
2073       // We cannot call Exceptions::_throw(...) here because we cannot block
2074       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2075 
2076       if (TraceExceptions) {
2077         ResourceMark rm;
2078         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2079         if (has_last_Java_frame()) {
2080           frame f = last_frame();
2081           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2082         }
2083         tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2084       }
2085       _pending_async_exception = NULL;
2086       clear_has_async_exception();
2087     }
2088   }
2089 
2090   if (check_unsafe_error &&
2091       condition == _async_unsafe_access_error && !has_pending_exception()) {
2092     condition = _no_async_condition;  // done
2093     switch (thread_state()) {
2094     case _thread_in_vm: {
2095       JavaThread* THREAD = this;
2096       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2097     }
2098     case _thread_in_native: {
2099       ThreadInVMfromNative tiv(this);
2100       JavaThread* THREAD = this;
2101       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2102     }
2103     case _thread_in_Java: {
2104       ThreadInVMfromJava tiv(this);
2105       JavaThread* THREAD = this;
2106       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2107     }
2108     default:
2109       ShouldNotReachHere();
2110     }
2111   }
2112 
2113   assert(condition == _no_async_condition || has_pending_exception() ||
2114          (!check_unsafe_error && condition == _async_unsafe_access_error),
2115          "must have handled the async condition, if no exception");
2116 }
2117 
2118 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2119   //
2120   // Check for pending external suspend. Internal suspend requests do
2121   // not use handle_special_runtime_exit_condition().
2122   // If JNIEnv proxies are allowed, don't self-suspend if the target
2123   // thread is not the current thread. In older versions of jdbx, jdbx
2124   // threads could call into the VM with another thread's JNIEnv so we
2125   // can be here operating on behalf of a suspended thread (4432884).
2126   bool do_self_suspend = is_external_suspend_with_lock();
2127   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2128     //
2129     // Because thread is external suspended the safepoint code will count
2130     // thread as at a safepoint. This can be odd because we can be here
2131     // as _thread_in_Java which would normally transition to _thread_blocked
2132     // at a safepoint. We would like to mark the thread as _thread_blocked
2133     // before calling java_suspend_self like all other callers of it but
2134     // we must then observe proper safepoint protocol. (We can't leave
2135     // _thread_blocked with a safepoint in progress). However we can be
2136     // here as _thread_in_native_trans so we can't use a normal transition
2137     // constructor/destructor pair because they assert on that type of
2138     // transition. We could do something like:
2139     //
2140     // JavaThreadState state = thread_state();
2141     // set_thread_state(_thread_in_vm);
2142     // {
2143     //   ThreadBlockInVM tbivm(this);
2144     //   java_suspend_self()
2145     // }
2146     // set_thread_state(_thread_in_vm_trans);
2147     // if (safepoint) block;
2148     // set_thread_state(state);
2149     //
2150     // but that is pretty messy. Instead we just go with the way the
2151     // code has worked before and note that this is the only path to
2152     // java_suspend_self that doesn't put the thread in _thread_blocked
2153     // mode.
2154 
2155     frame_anchor()->make_walkable(this);
2156     java_suspend_self();
2157 
2158     // We might be here for reasons in addition to the self-suspend request
2159     // so check for other async requests.
2160   }
2161 
2162   if (check_asyncs) {
2163     check_and_handle_async_exceptions();
2164   }
2165 }
2166 
2167 void JavaThread::send_thread_stop(oop java_throwable)  {
2168   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2169   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2170   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2171 
2172   // Do not throw asynchronous exceptions against the compiler thread
2173   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2174   if (!can_call_java()) return;
2175 
2176   {
2177     // Actually throw the Throwable against the target Thread - however
2178     // only if there is no thread death exception installed already.
2179     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2180       // If the topmost frame is a runtime stub, then we are calling into
2181       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2182       // must deoptimize the caller before continuing, as the compiled  exception handler table
2183       // may not be valid
2184       if (has_last_Java_frame()) {
2185         frame f = last_frame();
2186         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2187           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2188           RegisterMap reg_map(this, UseBiasedLocking);
2189           frame compiled_frame = f.sender(&reg_map);
2190           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2191             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2192           }
2193         }
2194       }
2195 
2196       // Set async. pending exception in thread.
2197       set_pending_async_exception(java_throwable);
2198 
2199       if (TraceExceptions) {
2200         ResourceMark rm;
2201         tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2202       }
2203       // for AbortVMOnException flag
2204       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2205     }
2206   }
2207 
2208 
2209   // Interrupt thread so it will wake up from a potential wait()
2210   Thread::interrupt(this);
2211 }
2212 
2213 // External suspension mechanism.
2214 //
2215 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2216 // to any VM_locks and it is at a transition
2217 // Self-suspension will happen on the transition out of the vm.
2218 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2219 //
2220 // Guarantees on return:
2221 //   + Target thread will not execute any new bytecode (that's why we need to
2222 //     force a safepoint)
2223 //   + Target thread will not enter any new monitors
2224 //
2225 void JavaThread::java_suspend() {
2226   { MutexLocker mu(Threads_lock);
2227     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2228       return;
2229     }
2230   }
2231 
2232   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2233     if (!is_external_suspend()) {
2234       // a racing resume has cancelled us; bail out now
2235       return;
2236     }
2237 
2238     // suspend is done
2239     uint32_t debug_bits = 0;
2240     // Warning: is_ext_suspend_completed() may temporarily drop the
2241     // SR_lock to allow the thread to reach a stable thread state if
2242     // it is currently in a transient thread state.
2243     if (is_ext_suspend_completed(false /* !called_by_wait */,
2244                                  SuspendRetryDelay, &debug_bits)) {
2245       return;
2246     }
2247   }
2248 
2249   VM_ForceSafepoint vm_suspend;
2250   VMThread::execute(&vm_suspend);
2251 }
2252 
2253 // Part II of external suspension.
2254 // A JavaThread self suspends when it detects a pending external suspend
2255 // request. This is usually on transitions. It is also done in places
2256 // where continuing to the next transition would surprise the caller,
2257 // e.g., monitor entry.
2258 //
2259 // Returns the number of times that the thread self-suspended.
2260 //
2261 // Note: DO NOT call java_suspend_self() when you just want to block current
2262 //       thread. java_suspend_self() is the second stage of cooperative
2263 //       suspension for external suspend requests and should only be used
2264 //       to complete an external suspend request.
2265 //
2266 int JavaThread::java_suspend_self() {
2267   int ret = 0;
2268 
2269   // we are in the process of exiting so don't suspend
2270   if (is_exiting()) {
2271     clear_external_suspend();
2272     return ret;
2273   }
2274 
2275   assert(_anchor.walkable() ||
2276          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2277          "must have walkable stack");
2278 
2279   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2280 
2281   assert(!this->is_ext_suspended(),
2282          "a thread trying to self-suspend should not already be suspended");
2283 
2284   if (this->is_suspend_equivalent()) {
2285     // If we are self-suspending as a result of the lifting of a
2286     // suspend equivalent condition, then the suspend_equivalent
2287     // flag is not cleared until we set the ext_suspended flag so
2288     // that wait_for_ext_suspend_completion() returns consistent
2289     // results.
2290     this->clear_suspend_equivalent();
2291   }
2292 
2293   // A racing resume may have cancelled us before we grabbed SR_lock
2294   // above. Or another external suspend request could be waiting for us
2295   // by the time we return from SR_lock()->wait(). The thread
2296   // that requested the suspension may already be trying to walk our
2297   // stack and if we return now, we can change the stack out from under
2298   // it. This would be a "bad thing (TM)" and cause the stack walker
2299   // to crash. We stay self-suspended until there are no more pending
2300   // external suspend requests.
2301   while (is_external_suspend()) {
2302     ret++;
2303     this->set_ext_suspended();
2304 
2305     // _ext_suspended flag is cleared by java_resume()
2306     while (is_ext_suspended()) {
2307       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2308     }
2309   }
2310 
2311   return ret;
2312 }
2313 
2314 #ifdef ASSERT
2315 // verify the JavaThread has not yet been published in the Threads::list, and
2316 // hence doesn't need protection from concurrent access at this stage
2317 void JavaThread::verify_not_published() {
2318   if (!Threads_lock->owned_by_self()) {
2319     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2320     assert(!Threads::includes(this),
2321            "java thread shouldn't have been published yet!");
2322   } else {
2323     assert(!Threads::includes(this),
2324            "java thread shouldn't have been published yet!");
2325   }
2326 }
2327 #endif
2328 
2329 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2330 // progress or when _suspend_flags is non-zero.
2331 // Current thread needs to self-suspend if there is a suspend request and/or
2332 // block if a safepoint is in progress.
2333 // Async exception ISN'T checked.
2334 // Note only the ThreadInVMfromNative transition can call this function
2335 // directly and when thread state is _thread_in_native_trans
2336 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2337   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2338 
2339   JavaThread *curJT = JavaThread::current();
2340   bool do_self_suspend = thread->is_external_suspend();
2341 
2342   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2343 
2344   // If JNIEnv proxies are allowed, don't self-suspend if the target
2345   // thread is not the current thread. In older versions of jdbx, jdbx
2346   // threads could call into the VM with another thread's JNIEnv so we
2347   // can be here operating on behalf of a suspended thread (4432884).
2348   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2349     JavaThreadState state = thread->thread_state();
2350 
2351     // We mark this thread_blocked state as a suspend-equivalent so
2352     // that a caller to is_ext_suspend_completed() won't be confused.
2353     // The suspend-equivalent state is cleared by java_suspend_self().
2354     thread->set_suspend_equivalent();
2355 
2356     // If the safepoint code sees the _thread_in_native_trans state, it will
2357     // wait until the thread changes to other thread state. There is no
2358     // guarantee on how soon we can obtain the SR_lock and complete the
2359     // self-suspend request. It would be a bad idea to let safepoint wait for
2360     // too long. Temporarily change the state to _thread_blocked to
2361     // let the VM thread know that this thread is ready for GC. The problem
2362     // of changing thread state is that safepoint could happen just after
2363     // java_suspend_self() returns after being resumed, and VM thread will
2364     // see the _thread_blocked state. We must check for safepoint
2365     // after restoring the state and make sure we won't leave while a safepoint
2366     // is in progress.
2367     thread->set_thread_state(_thread_blocked);
2368     thread->java_suspend_self();
2369     thread->set_thread_state(state);
2370     // Make sure new state is seen by VM thread
2371     if (os::is_MP()) {
2372       if (UseMembar) {
2373         // Force a fence between the write above and read below
2374         OrderAccess::fence();
2375       } else {
2376         // Must use this rather than serialization page in particular on Windows
2377         InterfaceSupport::serialize_memory(thread);
2378       }
2379     }
2380   }
2381 
2382   if (SafepointSynchronize::do_call_back()) {
2383     // If we are safepointing, then block the caller which may not be
2384     // the same as the target thread (see above).
2385     SafepointSynchronize::block(curJT);
2386   }
2387 
2388   if (thread->is_deopt_suspend()) {
2389     thread->clear_deopt_suspend();
2390     RegisterMap map(thread, false);
2391     frame f = thread->last_frame();
2392     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2393       f = f.sender(&map);
2394     }
2395     if (f.id() == thread->must_deopt_id()) {
2396       thread->clear_must_deopt_id();
2397       f.deoptimize(thread);
2398     } else {
2399       fatal("missed deoptimization!");
2400     }
2401   }
2402 }
2403 
2404 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2405 // progress or when _suspend_flags is non-zero.
2406 // Current thread needs to self-suspend if there is a suspend request and/or
2407 // block if a safepoint is in progress.
2408 // Also check for pending async exception (not including unsafe access error).
2409 // Note only the native==>VM/Java barriers can call this function and when
2410 // thread state is _thread_in_native_trans.
2411 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2412   check_safepoint_and_suspend_for_native_trans(thread);
2413 
2414   if (thread->has_async_exception()) {
2415     // We are in _thread_in_native_trans state, don't handle unsafe
2416     // access error since that may block.
2417     thread->check_and_handle_async_exceptions(false);
2418   }
2419 }
2420 
2421 // This is a variant of the normal
2422 // check_special_condition_for_native_trans with slightly different
2423 // semantics for use by critical native wrappers.  It does all the
2424 // normal checks but also performs the transition back into
2425 // thread_in_Java state.  This is required so that critical natives
2426 // can potentially block and perform a GC if they are the last thread
2427 // exiting the GC_locker.
2428 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2429   check_special_condition_for_native_trans(thread);
2430 
2431   // Finish the transition
2432   thread->set_thread_state(_thread_in_Java);
2433 
2434   if (thread->do_critical_native_unlock()) {
2435     ThreadInVMfromJavaNoAsyncException tiv(thread);
2436     GC_locker::unlock_critical(thread);
2437     thread->clear_critical_native_unlock();
2438   }
2439 }
2440 
2441 // We need to guarantee the Threads_lock here, since resumes are not
2442 // allowed during safepoint synchronization
2443 // Can only resume from an external suspension
2444 void JavaThread::java_resume() {
2445   assert_locked_or_safepoint(Threads_lock);
2446 
2447   // Sanity check: thread is gone, has started exiting or the thread
2448   // was not externally suspended.
2449   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2450     return;
2451   }
2452 
2453   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2454 
2455   clear_external_suspend();
2456 
2457   if (is_ext_suspended()) {
2458     clear_ext_suspended();
2459     SR_lock()->notify_all();
2460   }
2461 }
2462 
2463 void JavaThread::create_stack_guard_pages() {
2464   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2465   address low_addr = stack_base() - stack_size();
2466   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2467 
2468   int allocate = os::allocate_stack_guard_pages();
2469   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2470 
2471   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2472     warning("Attempt to allocate stack guard pages failed.");
2473     return;
2474   }
2475 
2476   if (os::guard_memory((char *) low_addr, len)) {
2477     _stack_guard_state = stack_guard_enabled;
2478   } else {
2479     warning("Attempt to protect stack guard pages failed.");
2480     if (os::uncommit_memory((char *) low_addr, len)) {
2481       warning("Attempt to deallocate stack guard pages failed.");
2482     }
2483   }
2484 }
2485 
2486 void JavaThread::remove_stack_guard_pages() {
2487   assert(Thread::current() == this, "from different thread");
2488   if (_stack_guard_state == stack_guard_unused) return;
2489   address low_addr = stack_base() - stack_size();
2490   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2491 
2492   if (os::allocate_stack_guard_pages()) {
2493     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2494       _stack_guard_state = stack_guard_unused;
2495     } else {
2496       warning("Attempt to deallocate stack guard pages failed.");
2497     }
2498   } else {
2499     if (_stack_guard_state == stack_guard_unused) return;
2500     if (os::unguard_memory((char *) low_addr, len)) {
2501       _stack_guard_state = stack_guard_unused;
2502     } else {
2503       warning("Attempt to unprotect stack guard pages failed.");
2504     }
2505   }
2506 }
2507 
2508 void JavaThread::enable_stack_yellow_zone() {
2509   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2510   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2511 
2512   // The base notation is from the stacks point of view, growing downward.
2513   // We need to adjust it to work correctly with guard_memory()
2514   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2515 
2516   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2517   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2518 
2519   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2520     _stack_guard_state = stack_guard_enabled;
2521   } else {
2522     warning("Attempt to guard stack yellow zone failed.");
2523   }
2524   enable_register_stack_guard();
2525 }
2526 
2527 void JavaThread::disable_stack_yellow_zone() {
2528   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2529   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2530 
2531   // Simply return if called for a thread that does not use guard pages.
2532   if (_stack_guard_state == stack_guard_unused) return;
2533 
2534   // The base notation is from the stacks point of view, growing downward.
2535   // We need to adjust it to work correctly with guard_memory()
2536   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2537 
2538   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2539     _stack_guard_state = stack_guard_yellow_disabled;
2540   } else {
2541     warning("Attempt to unguard stack yellow zone failed.");
2542   }
2543   disable_register_stack_guard();
2544 }
2545 
2546 void JavaThread::enable_stack_red_zone() {
2547   // The base notation is from the stacks point of view, growing downward.
2548   // We need to adjust it to work correctly with guard_memory()
2549   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2550   address base = stack_red_zone_base() - stack_red_zone_size();
2551 
2552   guarantee(base < stack_base(), "Error calculating stack red zone");
2553   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2554 
2555   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2556     warning("Attempt to guard stack red zone failed.");
2557   }
2558 }
2559 
2560 void JavaThread::disable_stack_red_zone() {
2561   // The base notation is from the stacks point of view, growing downward.
2562   // We need to adjust it to work correctly with guard_memory()
2563   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2564   address base = stack_red_zone_base() - stack_red_zone_size();
2565   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2566     warning("Attempt to unguard stack red zone failed.");
2567   }
2568 }
2569 
2570 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2571   // ignore is there is no stack
2572   if (!has_last_Java_frame()) return;
2573   // traverse the stack frames. Starts from top frame.
2574   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2575     frame* fr = fst.current();
2576     f(fr, fst.register_map());
2577   }
2578 }
2579 
2580 
2581 #ifndef PRODUCT
2582 // Deoptimization
2583 // Function for testing deoptimization
2584 void JavaThread::deoptimize() {
2585   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2586   StackFrameStream fst(this, UseBiasedLocking);
2587   bool deopt = false;           // Dump stack only if a deopt actually happens.
2588   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2589   // Iterate over all frames in the thread and deoptimize
2590   for (; !fst.is_done(); fst.next()) {
2591     if (fst.current()->can_be_deoptimized()) {
2592 
2593       if (only_at) {
2594         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2595         // consists of comma or carriage return separated numbers so
2596         // search for the current bci in that string.
2597         address pc = fst.current()->pc();
2598         nmethod* nm =  (nmethod*) fst.current()->cb();
2599         ScopeDesc* sd = nm->scope_desc_at(pc);
2600         char buffer[8];
2601         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2602         size_t len = strlen(buffer);
2603         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2604         while (found != NULL) {
2605           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2606               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2607             // Check that the bci found is bracketed by terminators.
2608             break;
2609           }
2610           found = strstr(found + 1, buffer);
2611         }
2612         if (!found) {
2613           continue;
2614         }
2615       }
2616 
2617       if (DebugDeoptimization && !deopt) {
2618         deopt = true; // One-time only print before deopt
2619         tty->print_cr("[BEFORE Deoptimization]");
2620         trace_frames();
2621         trace_stack();
2622       }
2623       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2624     }
2625   }
2626 
2627   if (DebugDeoptimization && deopt) {
2628     tty->print_cr("[AFTER Deoptimization]");
2629     trace_frames();
2630   }
2631 }
2632 
2633 
2634 // Make zombies
2635 void JavaThread::make_zombies() {
2636   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2637     if (fst.current()->can_be_deoptimized()) {
2638       // it is a Java nmethod
2639       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2640       nm->make_not_entrant();
2641     }
2642   }
2643 }
2644 #endif // PRODUCT
2645 
2646 
2647 void JavaThread::deoptimized_wrt_marked_nmethods() {
2648   if (!has_last_Java_frame()) return;
2649   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2650   StackFrameStream fst(this, UseBiasedLocking);
2651   for (; !fst.is_done(); fst.next()) {
2652     if (fst.current()->should_be_deoptimized()) {
2653       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2654     }
2655   }
2656 }
2657 
2658 
2659 // If the caller is a NamedThread, then remember, in the current scope,
2660 // the given JavaThread in its _processed_thread field.
2661 class RememberProcessedThread: public StackObj {
2662   NamedThread* _cur_thr;
2663  public:
2664   RememberProcessedThread(JavaThread* jthr) {
2665     Thread* thread = Thread::current();
2666     if (thread->is_Named_thread()) {
2667       _cur_thr = (NamedThread *)thread;
2668       _cur_thr->set_processed_thread(jthr);
2669     } else {
2670       _cur_thr = NULL;
2671     }
2672   }
2673 
2674   ~RememberProcessedThread() {
2675     if (_cur_thr) {
2676       _cur_thr->set_processed_thread(NULL);
2677     }
2678   }
2679 };
2680 
2681 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2682   // Verify that the deferred card marks have been flushed.
2683   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2684 
2685   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2686   // since there may be more than one thread using each ThreadProfiler.
2687 
2688   // Traverse the GCHandles
2689   Thread::oops_do(f, cld_f, cf);
2690 
2691   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2692 
2693   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2694          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2695 
2696   if (has_last_Java_frame()) {
2697     // Record JavaThread to GC thread
2698     RememberProcessedThread rpt(this);
2699 
2700     // Traverse the privileged stack
2701     if (_privileged_stack_top != NULL) {
2702       _privileged_stack_top->oops_do(f);
2703     }
2704 
2705     // traverse the registered growable array
2706     if (_array_for_gc != NULL) {
2707       for (int index = 0; index < _array_for_gc->length(); index++) {
2708         f->do_oop(_array_for_gc->adr_at(index));
2709       }
2710     }
2711 
2712     // Traverse the monitor chunks
2713     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2714       chunk->oops_do(f);
2715     }
2716 
2717     // Traverse the execution stack
2718     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2719       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2720     }
2721   }
2722 
2723   // callee_target is never live across a gc point so NULL it here should
2724   // it still contain a methdOop.
2725 
2726   set_callee_target(NULL);
2727 
2728   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2729   // If we have deferred set_locals there might be oops waiting to be
2730   // written
2731   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2732   if (list != NULL) {
2733     for (int i = 0; i < list->length(); i++) {
2734       list->at(i)->oops_do(f);
2735     }
2736   }
2737 
2738   // Traverse instance variables at the end since the GC may be moving things
2739   // around using this function
2740   f->do_oop((oop*) &_threadObj);
2741   f->do_oop((oop*) &_vm_result);
2742   f->do_oop((oop*) &_exception_oop);
2743   f->do_oop((oop*) &_pending_async_exception);
2744 
2745   if (jvmti_thread_state() != NULL) {
2746     jvmti_thread_state()->oops_do(f);
2747   }
2748 }
2749 
2750 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2751   Thread::nmethods_do(cf);  // (super method is a no-op)
2752 
2753   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2754          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2755 
2756   if (has_last_Java_frame()) {
2757     // Traverse the execution stack
2758     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2759       fst.current()->nmethods_do(cf);
2760     }
2761   }
2762 }
2763 
2764 void JavaThread::metadata_do(void f(Metadata*)) {
2765   if (has_last_Java_frame()) {
2766     // Traverse the execution stack to call f() on the methods in the stack
2767     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2768       fst.current()->metadata_do(f);
2769     }
2770   } else if (is_Compiler_thread()) {
2771     // need to walk ciMetadata in current compile tasks to keep alive.
2772     CompilerThread* ct = (CompilerThread*)this;
2773     if (ct->env() != NULL) {
2774       ct->env()->metadata_do(f);
2775     }
2776     if (ct->task() != NULL) {
2777       ct->task()->metadata_do(f);
2778     }
2779   }
2780 }
2781 
2782 // Printing
2783 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2784   switch (_thread_state) {
2785   case _thread_uninitialized:     return "_thread_uninitialized";
2786   case _thread_new:               return "_thread_new";
2787   case _thread_new_trans:         return "_thread_new_trans";
2788   case _thread_in_native:         return "_thread_in_native";
2789   case _thread_in_native_trans:   return "_thread_in_native_trans";
2790   case _thread_in_vm:             return "_thread_in_vm";
2791   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2792   case _thread_in_Java:           return "_thread_in_Java";
2793   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2794   case _thread_blocked:           return "_thread_blocked";
2795   case _thread_blocked_trans:     return "_thread_blocked_trans";
2796   default:                        return "unknown thread state";
2797   }
2798 }
2799 
2800 #ifndef PRODUCT
2801 void JavaThread::print_thread_state_on(outputStream *st) const {
2802   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2803 };
2804 void JavaThread::print_thread_state() const {
2805   print_thread_state_on(tty);
2806 }
2807 #endif // PRODUCT
2808 
2809 // Called by Threads::print() for VM_PrintThreads operation
2810 void JavaThread::print_on(outputStream *st) const {
2811   st->print("\"%s\" ", get_thread_name());
2812   oop thread_oop = threadObj();
2813   if (thread_oop != NULL) {
2814     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2815     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2816     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2817   }
2818   Thread::print_on(st);
2819   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2820   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2821   if (thread_oop != NULL) {
2822     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2823   }
2824 #ifndef PRODUCT
2825   print_thread_state_on(st);
2826   _safepoint_state->print_on(st);
2827 #endif // PRODUCT
2828 }
2829 
2830 // Called by fatal error handler. The difference between this and
2831 // JavaThread::print() is that we can't grab lock or allocate memory.
2832 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2833   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2834   oop thread_obj = threadObj();
2835   if (thread_obj != NULL) {
2836     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2837   }
2838   st->print(" [");
2839   st->print("%s", _get_thread_state_name(_thread_state));
2840   if (osthread()) {
2841     st->print(", id=%d", osthread()->thread_id());
2842   }
2843   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2844             p2i(_stack_base - _stack_size), p2i(_stack_base));
2845   st->print("]");
2846   return;
2847 }
2848 
2849 // Verification
2850 
2851 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2852 
2853 void JavaThread::verify() {
2854   // Verify oops in the thread.
2855   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2856 
2857   // Verify the stack frames.
2858   frames_do(frame_verify);
2859 }
2860 
2861 // CR 6300358 (sub-CR 2137150)
2862 // Most callers of this method assume that it can't return NULL but a
2863 // thread may not have a name whilst it is in the process of attaching to
2864 // the VM - see CR 6412693, and there are places where a JavaThread can be
2865 // seen prior to having it's threadObj set (eg JNI attaching threads and
2866 // if vm exit occurs during initialization). These cases can all be accounted
2867 // for such that this method never returns NULL.
2868 const char* JavaThread::get_thread_name() const {
2869 #ifdef ASSERT
2870   // early safepoints can hit while current thread does not yet have TLS
2871   if (!SafepointSynchronize::is_at_safepoint()) {
2872     Thread *cur = Thread::current();
2873     if (!(cur->is_Java_thread() && cur == this)) {
2874       // Current JavaThreads are allowed to get their own name without
2875       // the Threads_lock.
2876       assert_locked_or_safepoint(Threads_lock);
2877     }
2878   }
2879 #endif // ASSERT
2880   return get_thread_name_string();
2881 }
2882 
2883 // Returns a non-NULL representation of this thread's name, or a suitable
2884 // descriptive string if there is no set name
2885 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2886   const char* name_str;
2887   oop thread_obj = threadObj();
2888   if (thread_obj != NULL) {
2889     oop name = java_lang_Thread::name(thread_obj);
2890     if (name != NULL) {
2891       if (buf == NULL) {
2892         name_str = java_lang_String::as_utf8_string(name);
2893       } else {
2894         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2895       }
2896     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2897       name_str = "<no-name - thread is attaching>";
2898     } else {
2899       name_str = Thread::name();
2900     }
2901   } else {
2902     name_str = Thread::name();
2903   }
2904   assert(name_str != NULL, "unexpected NULL thread name");
2905   return name_str;
2906 }
2907 
2908 
2909 const char* JavaThread::get_threadgroup_name() const {
2910   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2911   oop thread_obj = threadObj();
2912   if (thread_obj != NULL) {
2913     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2914     if (thread_group != NULL) {
2915       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2916       // ThreadGroup.name can be null
2917       if (name != NULL) {
2918         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2919         return str;
2920       }
2921     }
2922   }
2923   return NULL;
2924 }
2925 
2926 const char* JavaThread::get_parent_name() const {
2927   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2928   oop thread_obj = threadObj();
2929   if (thread_obj != NULL) {
2930     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2931     if (thread_group != NULL) {
2932       oop parent = java_lang_ThreadGroup::parent(thread_group);
2933       if (parent != NULL) {
2934         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2935         // ThreadGroup.name can be null
2936         if (name != NULL) {
2937           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2938           return str;
2939         }
2940       }
2941     }
2942   }
2943   return NULL;
2944 }
2945 
2946 ThreadPriority JavaThread::java_priority() const {
2947   oop thr_oop = threadObj();
2948   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2949   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2950   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2951   return priority;
2952 }
2953 
2954 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2955 
2956   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2957   // Link Java Thread object <-> C++ Thread
2958 
2959   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2960   // and put it into a new Handle.  The Handle "thread_oop" can then
2961   // be used to pass the C++ thread object to other methods.
2962 
2963   // Set the Java level thread object (jthread) field of the
2964   // new thread (a JavaThread *) to C++ thread object using the
2965   // "thread_oop" handle.
2966 
2967   // Set the thread field (a JavaThread *) of the
2968   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2969 
2970   Handle thread_oop(Thread::current(),
2971                     JNIHandles::resolve_non_null(jni_thread));
2972   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2973          "must be initialized");
2974   set_threadObj(thread_oop());
2975   java_lang_Thread::set_thread(thread_oop(), this);
2976 
2977   if (prio == NoPriority) {
2978     prio = java_lang_Thread::priority(thread_oop());
2979     assert(prio != NoPriority, "A valid priority should be present");
2980   }
2981 
2982   // Push the Java priority down to the native thread; needs Threads_lock
2983   Thread::set_priority(this, prio);
2984 
2985   prepare_ext();
2986 
2987   // Add the new thread to the Threads list and set it in motion.
2988   // We must have threads lock in order to call Threads::add.
2989   // It is crucial that we do not block before the thread is
2990   // added to the Threads list for if a GC happens, then the java_thread oop
2991   // will not be visited by GC.
2992   Threads::add(this);
2993 }
2994 
2995 oop JavaThread::current_park_blocker() {
2996   // Support for JSR-166 locks
2997   oop thread_oop = threadObj();
2998   if (thread_oop != NULL &&
2999       JDK_Version::current().supports_thread_park_blocker()) {
3000     return java_lang_Thread::park_blocker(thread_oop);
3001   }
3002   return NULL;
3003 }
3004 
3005 
3006 void JavaThread::print_stack_on(outputStream* st) {
3007   if (!has_last_Java_frame()) return;
3008   ResourceMark rm;
3009   HandleMark   hm;
3010 
3011   RegisterMap reg_map(this);
3012   vframe* start_vf = last_java_vframe(&reg_map);
3013   int count = 0;
3014   for (vframe* f = start_vf; f; f = f->sender()) {
3015     if (f->is_java_frame()) {
3016       javaVFrame* jvf = javaVFrame::cast(f);
3017       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3018 
3019       // Print out lock information
3020       if (JavaMonitorsInStackTrace) {
3021         jvf->print_lock_info_on(st, count);
3022       }
3023     } else {
3024       // Ignore non-Java frames
3025     }
3026 
3027     // Bail-out case for too deep stacks
3028     count++;
3029     if (MaxJavaStackTraceDepth == count) return;
3030   }
3031 }
3032 
3033 
3034 // JVMTI PopFrame support
3035 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3036   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3037   if (in_bytes(size_in_bytes) != 0) {
3038     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3039     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3040     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3041   }
3042 }
3043 
3044 void* JavaThread::popframe_preserved_args() {
3045   return _popframe_preserved_args;
3046 }
3047 
3048 ByteSize JavaThread::popframe_preserved_args_size() {
3049   return in_ByteSize(_popframe_preserved_args_size);
3050 }
3051 
3052 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3053   int sz = in_bytes(popframe_preserved_args_size());
3054   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3055   return in_WordSize(sz / wordSize);
3056 }
3057 
3058 void JavaThread::popframe_free_preserved_args() {
3059   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3060   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3061   _popframe_preserved_args = NULL;
3062   _popframe_preserved_args_size = 0;
3063 }
3064 
3065 #ifndef PRODUCT
3066 
3067 void JavaThread::trace_frames() {
3068   tty->print_cr("[Describe stack]");
3069   int frame_no = 1;
3070   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3071     tty->print("  %d. ", frame_no++);
3072     fst.current()->print_value_on(tty, this);
3073     tty->cr();
3074   }
3075 }
3076 
3077 class PrintAndVerifyOopClosure: public OopClosure {
3078  protected:
3079   template <class T> inline void do_oop_work(T* p) {
3080     oop obj = oopDesc::load_decode_heap_oop(p);
3081     if (obj == NULL) return;
3082     tty->print(INTPTR_FORMAT ": ", p2i(p));
3083     if (obj->is_oop_or_null()) {
3084       if (obj->is_objArray()) {
3085         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3086       } else {
3087         obj->print();
3088       }
3089     } else {
3090       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3091     }
3092     tty->cr();
3093   }
3094  public:
3095   virtual void do_oop(oop* p) { do_oop_work(p); }
3096   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3097 };
3098 
3099 
3100 static void oops_print(frame* f, const RegisterMap *map) {
3101   PrintAndVerifyOopClosure print;
3102   f->print_value();
3103   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3104 }
3105 
3106 // Print our all the locations that contain oops and whether they are
3107 // valid or not.  This useful when trying to find the oldest frame
3108 // where an oop has gone bad since the frame walk is from youngest to
3109 // oldest.
3110 void JavaThread::trace_oops() {
3111   tty->print_cr("[Trace oops]");
3112   frames_do(oops_print);
3113 }
3114 
3115 
3116 #ifdef ASSERT
3117 // Print or validate the layout of stack frames
3118 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3119   ResourceMark rm;
3120   PRESERVE_EXCEPTION_MARK;
3121   FrameValues values;
3122   int frame_no = 0;
3123   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3124     fst.current()->describe(values, ++frame_no);
3125     if (depth == frame_no) break;
3126   }
3127   if (validate_only) {
3128     values.validate();
3129   } else {
3130     tty->print_cr("[Describe stack layout]");
3131     values.print(this);
3132   }
3133 }
3134 #endif
3135 
3136 void JavaThread::trace_stack_from(vframe* start_vf) {
3137   ResourceMark rm;
3138   int vframe_no = 1;
3139   for (vframe* f = start_vf; f; f = f->sender()) {
3140     if (f->is_java_frame()) {
3141       javaVFrame::cast(f)->print_activation(vframe_no++);
3142     } else {
3143       f->print();
3144     }
3145     if (vframe_no > StackPrintLimit) {
3146       tty->print_cr("...<more frames>...");
3147       return;
3148     }
3149   }
3150 }
3151 
3152 
3153 void JavaThread::trace_stack() {
3154   if (!has_last_Java_frame()) return;
3155   ResourceMark rm;
3156   HandleMark   hm;
3157   RegisterMap reg_map(this);
3158   trace_stack_from(last_java_vframe(&reg_map));
3159 }
3160 
3161 
3162 #endif // PRODUCT
3163 
3164 
3165 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3166   assert(reg_map != NULL, "a map must be given");
3167   frame f = last_frame();
3168   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3169     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3170   }
3171   return NULL;
3172 }
3173 
3174 
3175 Klass* JavaThread::security_get_caller_class(int depth) {
3176   vframeStream vfst(this);
3177   vfst.security_get_caller_frame(depth);
3178   if (!vfst.at_end()) {
3179     return vfst.method()->method_holder();
3180   }
3181   return NULL;
3182 }
3183 
3184 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3185   assert(thread->is_Compiler_thread(), "must be compiler thread");
3186   CompileBroker::compiler_thread_loop();
3187 }
3188 
3189 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3190   NMethodSweeper::sweeper_loop();
3191 }
3192 
3193 // Create a CompilerThread
3194 CompilerThread::CompilerThread(CompileQueue* queue,
3195                                CompilerCounters* counters)
3196                                : JavaThread(&compiler_thread_entry) {
3197   _env   = NULL;
3198   _log   = NULL;
3199   _task  = NULL;
3200   _queue = queue;
3201   _counters = counters;
3202   _buffer_blob = NULL;
3203   _compiler = NULL;
3204 
3205 #ifndef PRODUCT
3206   _ideal_graph_printer = NULL;
3207 #endif
3208 }
3209 
3210 bool CompilerThread::can_call_java() const {
3211   return _compiler != NULL && _compiler->is_jvmci();
3212 }
3213 
3214 // Create sweeper thread
3215 CodeCacheSweeperThread::CodeCacheSweeperThread()
3216 : JavaThread(&sweeper_thread_entry) {
3217   _scanned_nmethod = NULL;
3218 }
3219 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3220   JavaThread::oops_do(f, cld_f, cf);
3221   if (_scanned_nmethod != NULL && cf != NULL) {
3222     // Safepoints can occur when the sweeper is scanning an nmethod so
3223     // process it here to make sure it isn't unloaded in the middle of
3224     // a scan.
3225     cf->do_code_blob(_scanned_nmethod);
3226   }
3227 }
3228 
3229 
3230 // ======= Threads ========
3231 
3232 // The Threads class links together all active threads, and provides
3233 // operations over all threads.  It is protected by its own Mutex
3234 // lock, which is also used in other contexts to protect thread
3235 // operations from having the thread being operated on from exiting
3236 // and going away unexpectedly (e.g., safepoint synchronization)
3237 
3238 JavaThread* Threads::_thread_list = NULL;
3239 int         Threads::_number_of_threads = 0;
3240 int         Threads::_number_of_non_daemon_threads = 0;
3241 int         Threads::_return_code = 0;
3242 int         Threads::_thread_claim_parity = 0;
3243 size_t      JavaThread::_stack_size_at_create = 0;
3244 #ifdef ASSERT
3245 bool        Threads::_vm_complete = false;
3246 #endif
3247 
3248 // All JavaThreads
3249 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3250 
3251 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3252 void Threads::threads_do(ThreadClosure* tc) {
3253   assert_locked_or_safepoint(Threads_lock);
3254   // ALL_JAVA_THREADS iterates through all JavaThreads
3255   ALL_JAVA_THREADS(p) {
3256     tc->do_thread(p);
3257   }
3258   // Someday we could have a table or list of all non-JavaThreads.
3259   // For now, just manually iterate through them.
3260   tc->do_thread(VMThread::vm_thread());
3261   Universe::heap()->gc_threads_do(tc);
3262   WatcherThread *wt = WatcherThread::watcher_thread();
3263   // Strictly speaking, the following NULL check isn't sufficient to make sure
3264   // the data for WatcherThread is still valid upon being examined. However,
3265   // considering that WatchThread terminates when the VM is on the way to
3266   // exit at safepoint, the chance of the above is extremely small. The right
3267   // way to prevent termination of WatcherThread would be to acquire
3268   // Terminator_lock, but we can't do that without violating the lock rank
3269   // checking in some cases.
3270   if (wt != NULL) {
3271     tc->do_thread(wt);
3272   }
3273 
3274   // If CompilerThreads ever become non-JavaThreads, add them here
3275 }
3276 
3277 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3278   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3279 
3280   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3281     create_vm_init_libraries();
3282   }
3283 
3284   initialize_class(vmSymbols::java_lang_String(), CHECK);
3285 
3286   // Initialize java_lang.System (needed before creating the thread)
3287   initialize_class(vmSymbols::java_lang_System(), CHECK);
3288   // The VM creates & returns objects of this class. Make sure it's initialized.
3289   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3290   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3291   Handle thread_group = create_initial_thread_group(CHECK);
3292   Universe::set_main_thread_group(thread_group());
3293   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3294   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3295   main_thread->set_threadObj(thread_object);
3296   // Set thread status to running since main thread has
3297   // been started and running.
3298   java_lang_Thread::set_thread_status(thread_object,
3299                                       java_lang_Thread::RUNNABLE);
3300 
3301   // The VM preresolves methods to these classes. Make sure that they get initialized
3302   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3303   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3304   call_initializeSystemClass(CHECK);
3305 
3306   // get the Java runtime name after java.lang.System is initialized
3307   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3308   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3309 
3310   // an instance of OutOfMemory exception has been allocated earlier
3311   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3312   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3313   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3314   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3315   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3316   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3317   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3318   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3319 }
3320 
3321 void Threads::initialize_jsr292_core_classes(TRAPS) {
3322   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3323   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3324   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3325 }
3326 
3327 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3328   extern void JDK_Version_init();
3329 
3330   // Preinitialize version info.
3331   VM_Version::early_initialize();
3332 
3333   // Check version
3334   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3335 
3336   // Initialize the output stream module
3337   ostream_init();
3338 
3339   // Process java launcher properties.
3340   Arguments::process_sun_java_launcher_properties(args);
3341 
3342   // Initialize the os module before using TLS
3343   os::init();
3344 
3345   // Record VM creation timing statistics
3346   TraceVmCreationTime create_vm_timer;
3347   create_vm_timer.start();
3348 
3349   // Initialize system properties.
3350   Arguments::init_system_properties();
3351 
3352   // So that JDK version can be used as a discriminator when parsing arguments
3353   JDK_Version_init();
3354 
3355   // Update/Initialize System properties after JDK version number is known
3356   Arguments::init_version_specific_system_properties();
3357 
3358   // Make sure to initialize log configuration *before* parsing arguments
3359   LogConfiguration::initialize(create_vm_timer.begin_time());
3360 
3361   // Parse arguments
3362   jint parse_result = Arguments::parse(args);
3363   if (parse_result != JNI_OK) return parse_result;
3364 
3365   os::init_before_ergo();
3366 
3367   jint ergo_result = Arguments::apply_ergo();
3368   if (ergo_result != JNI_OK) return ergo_result;
3369 
3370   // Final check of all ranges after ergonomics which may change values.
3371   if (!CommandLineFlagRangeList::check_ranges()) {
3372     return JNI_EINVAL;
3373   }
3374 
3375   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3376   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3377   if (!constraint_result) {
3378     return JNI_EINVAL;
3379   }
3380 
3381   if (PauseAtStartup) {
3382     os::pause();
3383   }
3384 
3385   HOTSPOT_VM_INIT_BEGIN();
3386 
3387   // Timing (must come after argument parsing)
3388   TraceTime timer("Create VM", TraceStartupTime);
3389 
3390   // Initialize the os module after parsing the args
3391   jint os_init_2_result = os::init_2();
3392   if (os_init_2_result != JNI_OK) return os_init_2_result;
3393 
3394   jint adjust_after_os_result = Arguments::adjust_after_os();
3395   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3396 
3397   // Initialize output stream logging
3398   ostream_init_log();
3399 
3400   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3401   // Must be before create_vm_init_agents()
3402   if (Arguments::init_libraries_at_startup()) {
3403     convert_vm_init_libraries_to_agents();
3404   }
3405 
3406   // Launch -agentlib/-agentpath and converted -Xrun agents
3407   if (Arguments::init_agents_at_startup()) {
3408     create_vm_init_agents();
3409   }
3410 
3411   // Initialize Threads state
3412   _thread_list = NULL;
3413   _number_of_threads = 0;
3414   _number_of_non_daemon_threads = 0;
3415 
3416   // Initialize global data structures and create system classes in heap
3417   vm_init_globals();
3418 
3419 #if INCLUDE_JVMCI
3420   if (JVMCICounterSize > 0) {
3421     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3422     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3423   } else {
3424     JavaThread::_jvmci_old_thread_counters = NULL;
3425   }
3426 #endif // INCLUDE_JVMCI
3427 
3428   // Attach the main thread to this os thread
3429   JavaThread* main_thread = new JavaThread();
3430   main_thread->set_thread_state(_thread_in_vm);
3431   main_thread->initialize_thread_current();
3432   // must do this before set_active_handles
3433   main_thread->record_stack_base_and_size();
3434   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3435 
3436   if (!main_thread->set_as_starting_thread()) {
3437     vm_shutdown_during_initialization(
3438                                       "Failed necessary internal allocation. Out of swap space");
3439     delete main_thread;
3440     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3441     return JNI_ENOMEM;
3442   }
3443 
3444   // Enable guard page *after* os::create_main_thread(), otherwise it would
3445   // crash Linux VM, see notes in os_linux.cpp.
3446   main_thread->create_stack_guard_pages();
3447 
3448   // Initialize Java-Level synchronization subsystem
3449   ObjectMonitor::Initialize();
3450 
3451   // Initialize global modules
3452   jint status = init_globals();
3453   if (status != JNI_OK) {
3454     delete main_thread;
3455     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3456     return status;
3457   }
3458 
3459   // Should be done after the heap is fully created
3460   main_thread->cache_global_variables();
3461 
3462   HandleMark hm;
3463 
3464   { MutexLocker mu(Threads_lock);
3465     Threads::add(main_thread);
3466   }
3467 
3468   // Any JVMTI raw monitors entered in onload will transition into
3469   // real raw monitor. VM is setup enough here for raw monitor enter.
3470   JvmtiExport::transition_pending_onload_raw_monitors();
3471 
3472   // Create the VMThread
3473   { TraceTime timer("Start VMThread", TraceStartupTime);
3474     VMThread::create();
3475     Thread* vmthread = VMThread::vm_thread();
3476 
3477     if (!os::create_thread(vmthread, os::vm_thread)) {
3478       vm_exit_during_initialization("Cannot create VM thread. "
3479                                     "Out of system resources.");
3480     }
3481 
3482     // Wait for the VM thread to become ready, and VMThread::run to initialize
3483     // Monitors can have spurious returns, must always check another state flag
3484     {
3485       MutexLocker ml(Notify_lock);
3486       os::start_thread(vmthread);
3487       while (vmthread->active_handles() == NULL) {
3488         Notify_lock->wait();
3489       }
3490     }
3491   }
3492 
3493   assert(Universe::is_fully_initialized(), "not initialized");
3494   if (VerifyDuringStartup) {
3495     // Make sure we're starting with a clean slate.
3496     VM_Verify verify_op;
3497     VMThread::execute(&verify_op);
3498   }
3499 
3500   Thread* THREAD = Thread::current();
3501 
3502   // At this point, the Universe is initialized, but we have not executed
3503   // any byte code.  Now is a good time (the only time) to dump out the
3504   // internal state of the JVM for sharing.
3505   if (DumpSharedSpaces) {
3506     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3507     ShouldNotReachHere();
3508   }
3509 
3510   // Always call even when there are not JVMTI environments yet, since environments
3511   // may be attached late and JVMTI must track phases of VM execution
3512   JvmtiExport::enter_start_phase();
3513 
3514   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3515   JvmtiExport::post_vm_start();
3516 
3517   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3518 
3519   // We need this for ClassDataSharing - the initial vm.info property is set
3520   // with the default value of CDS "sharing" which may be reset through
3521   // command line options.
3522   reset_vm_info_property(CHECK_JNI_ERR);
3523 
3524   quicken_jni_functions();
3525 
3526   // Must be run after init_ft which initializes ft_enabled
3527   if (TRACE_INITIALIZE() != JNI_OK) {
3528     vm_exit_during_initialization("Failed to initialize tracing backend");
3529   }
3530 
3531   // Set flag that basic initialization has completed. Used by exceptions and various
3532   // debug stuff, that does not work until all basic classes have been initialized.
3533   set_init_completed();
3534 
3535   LogConfiguration::post_initialize();
3536   Metaspace::post_initialize();
3537 
3538   HOTSPOT_VM_INIT_END();
3539 
3540   // record VM initialization completion time
3541 #if INCLUDE_MANAGEMENT
3542   Management::record_vm_init_completed();
3543 #endif // INCLUDE_MANAGEMENT
3544 
3545   // Compute system loader. Note that this has to occur after set_init_completed, since
3546   // valid exceptions may be thrown in the process.
3547   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3548   // set_init_completed has just been called, causing exceptions not to be shortcut
3549   // anymore. We call vm_exit_during_initialization directly instead.
3550   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3551 
3552 #if INCLUDE_ALL_GCS
3553   // Support for ConcurrentMarkSweep. This should be cleaned up
3554   // and better encapsulated. The ugly nested if test would go away
3555   // once things are properly refactored. XXX YSR
3556   if (UseConcMarkSweepGC || UseG1GC) {
3557     if (UseConcMarkSweepGC) {
3558       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3559     } else {
3560       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3561     }
3562   }
3563 #endif // INCLUDE_ALL_GCS
3564 
3565   // Always call even when there are not JVMTI environments yet, since environments
3566   // may be attached late and JVMTI must track phases of VM execution
3567   JvmtiExport::enter_live_phase();
3568 
3569   // Signal Dispatcher needs to be started before VMInit event is posted
3570   os::signal_init();
3571 
3572   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3573   if (!DisableAttachMechanism) {
3574     AttachListener::vm_start();
3575     if (StartAttachListener || AttachListener::init_at_startup()) {
3576       AttachListener::init();
3577     }
3578   }
3579 
3580   // Launch -Xrun agents
3581   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3582   // back-end can launch with -Xdebug -Xrunjdwp.
3583   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3584     create_vm_init_libraries();
3585   }
3586 
3587   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3588   JvmtiExport::post_vm_initialized();
3589 
3590   if (TRACE_START() != JNI_OK) {
3591     vm_exit_during_initialization("Failed to start tracing backend.");
3592   }
3593 
3594   if (CleanChunkPoolAsync) {
3595     Chunk::start_chunk_pool_cleaner_task();
3596   }
3597 
3598 #if INCLUDE_JVMCI
3599   if (EnableJVMCI) {
3600     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3601     if (jvmciCompiler != NULL) {
3602       JVMCIRuntime::save_compiler(jvmciCompiler);
3603     }
3604   }
3605 #endif // INCLUDE_JVMCI
3606 
3607   // initialize compiler(s)
3608 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3609   CompileBroker::compilation_init();
3610 #endif
3611 
3612   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3613   // It is done after compilers are initialized, because otherwise compilations of
3614   // signature polymorphic MH intrinsics can be missed
3615   // (see SystemDictionary::find_method_handle_intrinsic).
3616   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3617 
3618 #if INCLUDE_MANAGEMENT
3619   Management::initialize(THREAD);
3620 
3621   if (HAS_PENDING_EXCEPTION) {
3622     // management agent fails to start possibly due to
3623     // configuration problem and is responsible for printing
3624     // stack trace if appropriate. Simply exit VM.
3625     vm_exit(1);
3626   }
3627 #endif // INCLUDE_MANAGEMENT
3628 
3629   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3630   if (MemProfiling)                   MemProfiler::engage();
3631   StatSampler::engage();
3632   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3633 
3634   BiasedLocking::init();
3635 
3636 #if INCLUDE_RTM_OPT
3637   RTMLockingCounters::init();
3638 #endif
3639 
3640   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3641     call_postVMInitHook(THREAD);
3642     // The Java side of PostVMInitHook.run must deal with all
3643     // exceptions and provide means of diagnosis.
3644     if (HAS_PENDING_EXCEPTION) {
3645       CLEAR_PENDING_EXCEPTION;
3646     }
3647   }
3648 
3649   {
3650     MutexLocker ml(PeriodicTask_lock);
3651     // Make sure the WatcherThread can be started by WatcherThread::start()
3652     // or by dynamic enrollment.
3653     WatcherThread::make_startable();
3654     // Start up the WatcherThread if there are any periodic tasks
3655     // NOTE:  All PeriodicTasks should be registered by now. If they
3656     //   aren't, late joiners might appear to start slowly (we might
3657     //   take a while to process their first tick).
3658     if (PeriodicTask::num_tasks() > 0) {
3659       WatcherThread::start();
3660     }
3661   }
3662 
3663   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3664 
3665   create_vm_timer.end();
3666 #ifdef ASSERT
3667   _vm_complete = true;
3668 #endif
3669   return JNI_OK;
3670 }
3671 
3672 // type for the Agent_OnLoad and JVM_OnLoad entry points
3673 extern "C" {
3674   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3675 }
3676 // Find a command line agent library and return its entry point for
3677 //         -agentlib:  -agentpath:   -Xrun
3678 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3679 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3680                                     const char *on_load_symbols[],
3681                                     size_t num_symbol_entries) {
3682   OnLoadEntry_t on_load_entry = NULL;
3683   void *library = NULL;
3684 
3685   if (!agent->valid()) {
3686     char buffer[JVM_MAXPATHLEN];
3687     char ebuf[1024] = "";
3688     const char *name = agent->name();
3689     const char *msg = "Could not find agent library ";
3690 
3691     // First check to see if agent is statically linked into executable
3692     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3693       library = agent->os_lib();
3694     } else if (agent->is_absolute_path()) {
3695       library = os::dll_load(name, ebuf, sizeof ebuf);
3696       if (library == NULL) {
3697         const char *sub_msg = " in absolute path, with error: ";
3698         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3699         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3700         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3701         // If we can't find the agent, exit.
3702         vm_exit_during_initialization(buf, NULL);
3703         FREE_C_HEAP_ARRAY(char, buf);
3704       }
3705     } else {
3706       // Try to load the agent from the standard dll directory
3707       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3708                              name)) {
3709         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3710       }
3711       if (library == NULL) { // Try the local directory
3712         char ns[1] = {0};
3713         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3714           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3715         }
3716         if (library == NULL) {
3717           const char *sub_msg = " on the library path, with error: ";
3718           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3719           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3720           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3721           // If we can't find the agent, exit.
3722           vm_exit_during_initialization(buf, NULL);
3723           FREE_C_HEAP_ARRAY(char, buf);
3724         }
3725       }
3726     }
3727     agent->set_os_lib(library);
3728     agent->set_valid();
3729   }
3730 
3731   // Find the OnLoad function.
3732   on_load_entry =
3733     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3734                                                           false,
3735                                                           on_load_symbols,
3736                                                           num_symbol_entries));
3737   return on_load_entry;
3738 }
3739 
3740 // Find the JVM_OnLoad entry point
3741 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3742   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3743   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3744 }
3745 
3746 // Find the Agent_OnLoad entry point
3747 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3748   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3749   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3750 }
3751 
3752 // For backwards compatibility with -Xrun
3753 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3754 // treated like -agentpath:
3755 // Must be called before agent libraries are created
3756 void Threads::convert_vm_init_libraries_to_agents() {
3757   AgentLibrary* agent;
3758   AgentLibrary* next;
3759 
3760   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3761     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3762     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3763 
3764     // If there is an JVM_OnLoad function it will get called later,
3765     // otherwise see if there is an Agent_OnLoad
3766     if (on_load_entry == NULL) {
3767       on_load_entry = lookup_agent_on_load(agent);
3768       if (on_load_entry != NULL) {
3769         // switch it to the agent list -- so that Agent_OnLoad will be called,
3770         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3771         Arguments::convert_library_to_agent(agent);
3772       } else {
3773         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3774       }
3775     }
3776   }
3777 }
3778 
3779 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3780 // Invokes Agent_OnLoad
3781 // Called very early -- before JavaThreads exist
3782 void Threads::create_vm_init_agents() {
3783   extern struct JavaVM_ main_vm;
3784   AgentLibrary* agent;
3785 
3786   JvmtiExport::enter_onload_phase();
3787 
3788   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3789     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3790 
3791     if (on_load_entry != NULL) {
3792       // Invoke the Agent_OnLoad function
3793       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3794       if (err != JNI_OK) {
3795         vm_exit_during_initialization("agent library failed to init", agent->name());
3796       }
3797     } else {
3798       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3799     }
3800   }
3801   JvmtiExport::enter_primordial_phase();
3802 }
3803 
3804 extern "C" {
3805   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3806 }
3807 
3808 void Threads::shutdown_vm_agents() {
3809   // Send any Agent_OnUnload notifications
3810   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3811   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3812   extern struct JavaVM_ main_vm;
3813   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3814 
3815     // Find the Agent_OnUnload function.
3816     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3817                                                    os::find_agent_function(agent,
3818                                                    false,
3819                                                    on_unload_symbols,
3820                                                    num_symbol_entries));
3821 
3822     // Invoke the Agent_OnUnload function
3823     if (unload_entry != NULL) {
3824       JavaThread* thread = JavaThread::current();
3825       ThreadToNativeFromVM ttn(thread);
3826       HandleMark hm(thread);
3827       (*unload_entry)(&main_vm);
3828     }
3829   }
3830 }
3831 
3832 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3833 // Invokes JVM_OnLoad
3834 void Threads::create_vm_init_libraries() {
3835   extern struct JavaVM_ main_vm;
3836   AgentLibrary* agent;
3837 
3838   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3839     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3840 
3841     if (on_load_entry != NULL) {
3842       // Invoke the JVM_OnLoad function
3843       JavaThread* thread = JavaThread::current();
3844       ThreadToNativeFromVM ttn(thread);
3845       HandleMark hm(thread);
3846       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3847       if (err != JNI_OK) {
3848         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3849       }
3850     } else {
3851       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3852     }
3853   }
3854 }
3855 
3856 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3857   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3858 
3859   JavaThread* java_thread = NULL;
3860   // Sequential search for now.  Need to do better optimization later.
3861   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3862     oop tobj = thread->threadObj();
3863     if (!thread->is_exiting() &&
3864         tobj != NULL &&
3865         java_tid == java_lang_Thread::thread_id(tobj)) {
3866       java_thread = thread;
3867       break;
3868     }
3869   }
3870   return java_thread;
3871 }
3872 
3873 
3874 // Last thread running calls java.lang.Shutdown.shutdown()
3875 void JavaThread::invoke_shutdown_hooks() {
3876   HandleMark hm(this);
3877 
3878   // We could get here with a pending exception, if so clear it now.
3879   if (this->has_pending_exception()) {
3880     this->clear_pending_exception();
3881   }
3882 
3883   EXCEPTION_MARK;
3884   Klass* k =
3885     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3886                                       THREAD);
3887   if (k != NULL) {
3888     // SystemDictionary::resolve_or_null will return null if there was
3889     // an exception.  If we cannot load the Shutdown class, just don't
3890     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3891     // and finalizers (if runFinalizersOnExit is set) won't be run.
3892     // Note that if a shutdown hook was registered or runFinalizersOnExit
3893     // was called, the Shutdown class would have already been loaded
3894     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3895     instanceKlassHandle shutdown_klass (THREAD, k);
3896     JavaValue result(T_VOID);
3897     JavaCalls::call_static(&result,
3898                            shutdown_klass,
3899                            vmSymbols::shutdown_method_name(),
3900                            vmSymbols::void_method_signature(),
3901                            THREAD);
3902   }
3903   CLEAR_PENDING_EXCEPTION;
3904 }
3905 
3906 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3907 // the program falls off the end of main(). Another VM exit path is through
3908 // vm_exit() when the program calls System.exit() to return a value or when
3909 // there is a serious error in VM. The two shutdown paths are not exactly
3910 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3911 // and VM_Exit op at VM level.
3912 //
3913 // Shutdown sequence:
3914 //   + Shutdown native memory tracking if it is on
3915 //   + Wait until we are the last non-daemon thread to execute
3916 //     <-- every thing is still working at this moment -->
3917 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3918 //        shutdown hooks, run finalizers if finalization-on-exit
3919 //   + Call before_exit(), prepare for VM exit
3920 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3921 //        currently the only user of this mechanism is File.deleteOnExit())
3922 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3923 //        post thread end and vm death events to JVMTI,
3924 //        stop signal thread
3925 //   + Call JavaThread::exit(), it will:
3926 //      > release JNI handle blocks, remove stack guard pages
3927 //      > remove this thread from Threads list
3928 //     <-- no more Java code from this thread after this point -->
3929 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3930 //     the compiler threads at safepoint
3931 //     <-- do not use anything that could get blocked by Safepoint -->
3932 //   + Disable tracing at JNI/JVM barriers
3933 //   + Set _vm_exited flag for threads that are still running native code
3934 //   + Delete this thread
3935 //   + Call exit_globals()
3936 //      > deletes tty
3937 //      > deletes PerfMemory resources
3938 //   + Return to caller
3939 
3940 bool Threads::destroy_vm() {
3941   JavaThread* thread = JavaThread::current();
3942 
3943 #ifdef ASSERT
3944   _vm_complete = false;
3945 #endif
3946   // Wait until we are the last non-daemon thread to execute
3947   { MutexLocker nu(Threads_lock);
3948     while (Threads::number_of_non_daemon_threads() > 1)
3949       // This wait should make safepoint checks, wait without a timeout,
3950       // and wait as a suspend-equivalent condition.
3951       //
3952       // Note: If the FlatProfiler is running and this thread is waiting
3953       // for another non-daemon thread to finish, then the FlatProfiler
3954       // is waiting for the external suspend request on this thread to
3955       // complete. wait_for_ext_suspend_completion() will eventually
3956       // timeout, but that takes time. Making this wait a suspend-
3957       // equivalent condition solves that timeout problem.
3958       //
3959       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3960                          Mutex::_as_suspend_equivalent_flag);
3961   }
3962 
3963   // Hang forever on exit if we are reporting an error.
3964   if (ShowMessageBoxOnError && is_error_reported()) {
3965     os::infinite_sleep();
3966   }
3967   os::wait_for_keypress_at_exit();
3968 
3969   // run Java level shutdown hooks
3970   thread->invoke_shutdown_hooks();
3971 
3972   before_exit(thread);
3973 
3974   thread->exit(true);
3975 
3976   // Stop VM thread.
3977   {
3978     // 4945125 The vm thread comes to a safepoint during exit.
3979     // GC vm_operations can get caught at the safepoint, and the
3980     // heap is unparseable if they are caught. Grab the Heap_lock
3981     // to prevent this. The GC vm_operations will not be able to
3982     // queue until after the vm thread is dead. After this point,
3983     // we'll never emerge out of the safepoint before the VM exits.
3984 
3985     MutexLocker ml(Heap_lock);
3986 
3987     VMThread::wait_for_vm_thread_exit();
3988     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3989     VMThread::destroy();
3990   }
3991 
3992   // clean up ideal graph printers
3993 #if defined(COMPILER2) && !defined(PRODUCT)
3994   IdealGraphPrinter::clean_up();
3995 #endif
3996 
3997   // Now, all Java threads are gone except daemon threads. Daemon threads
3998   // running Java code or in VM are stopped by the Safepoint. However,
3999   // daemon threads executing native code are still running.  But they
4000   // will be stopped at native=>Java/VM barriers. Note that we can't
4001   // simply kill or suspend them, as it is inherently deadlock-prone.
4002 
4003 #ifndef PRODUCT
4004   // disable function tracing at JNI/JVM barriers
4005   TraceJNICalls = false;
4006   TraceJVMCalls = false;
4007   TraceRuntimeCalls = false;
4008 #endif
4009 
4010   VM_Exit::set_vm_exited();
4011 
4012   notify_vm_shutdown();
4013 
4014   delete thread;
4015 
4016 #if INCLUDE_JVMCI
4017   if (JVMCICounterSize > 0) {
4018     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4019   }
4020 #endif
4021 
4022   // exit_globals() will delete tty
4023   exit_globals();
4024 
4025   LogConfiguration::finalize();
4026 
4027   return true;
4028 }
4029 
4030 
4031 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4032   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4033   return is_supported_jni_version(version);
4034 }
4035 
4036 
4037 jboolean Threads::is_supported_jni_version(jint version) {
4038   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4039   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4040   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4041   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4042   return JNI_FALSE;
4043 }
4044 
4045 
4046 void Threads::add(JavaThread* p, bool force_daemon) {
4047   // The threads lock must be owned at this point
4048   assert_locked_or_safepoint(Threads_lock);
4049 
4050   // See the comment for this method in thread.hpp for its purpose and
4051   // why it is called here.
4052   p->initialize_queues();
4053   p->set_next(_thread_list);
4054   _thread_list = p;
4055   _number_of_threads++;
4056   oop threadObj = p->threadObj();
4057   bool daemon = true;
4058   // Bootstrapping problem: threadObj can be null for initial
4059   // JavaThread (or for threads attached via JNI)
4060   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4061     _number_of_non_daemon_threads++;
4062     daemon = false;
4063   }
4064 
4065   ThreadService::add_thread(p, daemon);
4066 
4067   // Possible GC point.
4068   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4069 }
4070 
4071 void Threads::remove(JavaThread* p) {
4072   // Extra scope needed for Thread_lock, so we can check
4073   // that we do not remove thread without safepoint code notice
4074   { MutexLocker ml(Threads_lock);
4075 
4076     assert(includes(p), "p must be present");
4077 
4078     JavaThread* current = _thread_list;
4079     JavaThread* prev    = NULL;
4080 
4081     while (current != p) {
4082       prev    = current;
4083       current = current->next();
4084     }
4085 
4086     if (prev) {
4087       prev->set_next(current->next());
4088     } else {
4089       _thread_list = p->next();
4090     }
4091     _number_of_threads--;
4092     oop threadObj = p->threadObj();
4093     bool daemon = true;
4094     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4095       _number_of_non_daemon_threads--;
4096       daemon = false;
4097 
4098       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4099       // on destroy_vm will wake up.
4100       if (number_of_non_daemon_threads() == 1) {
4101         Threads_lock->notify_all();
4102       }
4103     }
4104     ThreadService::remove_thread(p, daemon);
4105 
4106     // Make sure that safepoint code disregard this thread. This is needed since
4107     // the thread might mess around with locks after this point. This can cause it
4108     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4109     // of this thread since it is removed from the queue.
4110     p->set_terminated_value();
4111   } // unlock Threads_lock
4112 
4113   // Since Events::log uses a lock, we grab it outside the Threads_lock
4114   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4115 }
4116 
4117 // Threads_lock must be held when this is called (or must be called during a safepoint)
4118 bool Threads::includes(JavaThread* p) {
4119   assert(Threads_lock->is_locked(), "sanity check");
4120   ALL_JAVA_THREADS(q) {
4121     if (q == p) {
4122       return true;
4123     }
4124   }
4125   return false;
4126 }
4127 
4128 // Operations on the Threads list for GC.  These are not explicitly locked,
4129 // but the garbage collector must provide a safe context for them to run.
4130 // In particular, these things should never be called when the Threads_lock
4131 // is held by some other thread. (Note: the Safepoint abstraction also
4132 // uses the Threads_lock to guarantee this property. It also makes sure that
4133 // all threads gets blocked when exiting or starting).
4134 
4135 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4136   ALL_JAVA_THREADS(p) {
4137     p->oops_do(f, cld_f, cf);
4138   }
4139   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4140 }
4141 
4142 void Threads::change_thread_claim_parity() {
4143   // Set the new claim parity.
4144   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4145          "Not in range.");
4146   _thread_claim_parity++;
4147   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4148   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4149          "Not in range.");
4150 }
4151 
4152 #ifdef ASSERT
4153 void Threads::assert_all_threads_claimed() {
4154   ALL_JAVA_THREADS(p) {
4155     const int thread_parity = p->oops_do_parity();
4156     assert((thread_parity == _thread_claim_parity),
4157            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4158   }
4159 }
4160 #endif // ASSERT
4161 
4162 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4163   int cp = Threads::thread_claim_parity();
4164   ALL_JAVA_THREADS(p) {
4165     if (p->claim_oops_do(is_par, cp)) {
4166       p->oops_do(f, cld_f, cf);
4167     }
4168   }
4169   VMThread* vmt = VMThread::vm_thread();
4170   if (vmt->claim_oops_do(is_par, cp)) {
4171     vmt->oops_do(f, cld_f, cf);
4172   }
4173 }
4174 
4175 #if INCLUDE_ALL_GCS
4176 // Used by ParallelScavenge
4177 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4178   ALL_JAVA_THREADS(p) {
4179     q->enqueue(new ThreadRootsTask(p));
4180   }
4181   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4182 }
4183 
4184 // Used by Parallel Old
4185 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4186   ALL_JAVA_THREADS(p) {
4187     q->enqueue(new ThreadRootsMarkingTask(p));
4188   }
4189   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4190 }
4191 #endif // INCLUDE_ALL_GCS
4192 
4193 void Threads::nmethods_do(CodeBlobClosure* cf) {
4194   ALL_JAVA_THREADS(p) {
4195     p->nmethods_do(cf);
4196   }
4197   VMThread::vm_thread()->nmethods_do(cf);
4198 }
4199 
4200 void Threads::metadata_do(void f(Metadata*)) {
4201   ALL_JAVA_THREADS(p) {
4202     p->metadata_do(f);
4203   }
4204 }
4205 
4206 class ThreadHandlesClosure : public ThreadClosure {
4207   void (*_f)(Metadata*);
4208  public:
4209   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4210   virtual void do_thread(Thread* thread) {
4211     thread->metadata_handles_do(_f);
4212   }
4213 };
4214 
4215 void Threads::metadata_handles_do(void f(Metadata*)) {
4216   // Only walk the Handles in Thread.
4217   ThreadHandlesClosure handles_closure(f);
4218   threads_do(&handles_closure);
4219 }
4220 
4221 void Threads::deoptimized_wrt_marked_nmethods() {
4222   ALL_JAVA_THREADS(p) {
4223     p->deoptimized_wrt_marked_nmethods();
4224   }
4225 }
4226 
4227 
4228 // Get count Java threads that are waiting to enter the specified monitor.
4229 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4230                                                          address monitor,
4231                                                          bool doLock) {
4232   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4233          "must grab Threads_lock or be at safepoint");
4234   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4235 
4236   int i = 0;
4237   {
4238     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4239     ALL_JAVA_THREADS(p) {
4240       if (!p->can_call_java()) continue;
4241 
4242       address pending = (address)p->current_pending_monitor();
4243       if (pending == monitor) {             // found a match
4244         if (i < count) result->append(p);   // save the first count matches
4245         i++;
4246       }
4247     }
4248   }
4249   return result;
4250 }
4251 
4252 
4253 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4254                                                       bool doLock) {
4255   assert(doLock ||
4256          Threads_lock->owned_by_self() ||
4257          SafepointSynchronize::is_at_safepoint(),
4258          "must grab Threads_lock or be at safepoint");
4259 
4260   // NULL owner means not locked so we can skip the search
4261   if (owner == NULL) return NULL;
4262 
4263   {
4264     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4265     ALL_JAVA_THREADS(p) {
4266       // first, see if owner is the address of a Java thread
4267       if (owner == (address)p) return p;
4268     }
4269   }
4270   // Cannot assert on lack of success here since this function may be
4271   // used by code that is trying to report useful problem information
4272   // like deadlock detection.
4273   if (UseHeavyMonitors) return NULL;
4274 
4275   // If we didn't find a matching Java thread and we didn't force use of
4276   // heavyweight monitors, then the owner is the stack address of the
4277   // Lock Word in the owning Java thread's stack.
4278   //
4279   JavaThread* the_owner = NULL;
4280   {
4281     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4282     ALL_JAVA_THREADS(q) {
4283       if (q->is_lock_owned(owner)) {
4284         the_owner = q;
4285         break;
4286       }
4287     }
4288   }
4289   // cannot assert on lack of success here; see above comment
4290   return the_owner;
4291 }
4292 
4293 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4294 void Threads::print_on(outputStream* st, bool print_stacks,
4295                        bool internal_format, bool print_concurrent_locks) {
4296   char buf[32];
4297   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4298 
4299   st->print_cr("Full thread dump %s (%s %s):",
4300                Abstract_VM_Version::vm_name(),
4301                Abstract_VM_Version::vm_release(),
4302                Abstract_VM_Version::vm_info_string());
4303   st->cr();
4304 
4305 #if INCLUDE_SERVICES
4306   // Dump concurrent locks
4307   ConcurrentLocksDump concurrent_locks;
4308   if (print_concurrent_locks) {
4309     concurrent_locks.dump_at_safepoint();
4310   }
4311 #endif // INCLUDE_SERVICES
4312 
4313   ALL_JAVA_THREADS(p) {
4314     ResourceMark rm;
4315     p->print_on(st);
4316     if (print_stacks) {
4317       if (internal_format) {
4318         p->trace_stack();
4319       } else {
4320         p->print_stack_on(st);
4321       }
4322     }
4323     st->cr();
4324 #if INCLUDE_SERVICES
4325     if (print_concurrent_locks) {
4326       concurrent_locks.print_locks_on(p, st);
4327     }
4328 #endif // INCLUDE_SERVICES
4329   }
4330 
4331   VMThread::vm_thread()->print_on(st);
4332   st->cr();
4333   Universe::heap()->print_gc_threads_on(st);
4334   WatcherThread* wt = WatcherThread::watcher_thread();
4335   if (wt != NULL) {
4336     wt->print_on(st);
4337     st->cr();
4338   }
4339   CompileBroker::print_compiler_threads_on(st);
4340   st->flush();
4341 }
4342 
4343 // Threads::print_on_error() is called by fatal error handler. It's possible
4344 // that VM is not at safepoint and/or current thread is inside signal handler.
4345 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4346 // memory (even in resource area), it might deadlock the error handler.
4347 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4348                              int buflen) {
4349   bool found_current = false;
4350   st->print_cr("Java Threads: ( => current thread )");
4351   ALL_JAVA_THREADS(thread) {
4352     bool is_current = (current == thread);
4353     found_current = found_current || is_current;
4354 
4355     st->print("%s", is_current ? "=>" : "  ");
4356 
4357     st->print(PTR_FORMAT, p2i(thread));
4358     st->print(" ");
4359     thread->print_on_error(st, buf, buflen);
4360     st->cr();
4361   }
4362   st->cr();
4363 
4364   st->print_cr("Other Threads:");
4365   if (VMThread::vm_thread()) {
4366     bool is_current = (current == VMThread::vm_thread());
4367     found_current = found_current || is_current;
4368     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4369 
4370     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4371     st->print(" ");
4372     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4373     st->cr();
4374   }
4375   WatcherThread* wt = WatcherThread::watcher_thread();
4376   if (wt != NULL) {
4377     bool is_current = (current == wt);
4378     found_current = found_current || is_current;
4379     st->print("%s", is_current ? "=>" : "  ");
4380 
4381     st->print(PTR_FORMAT, p2i(wt));
4382     st->print(" ");
4383     wt->print_on_error(st, buf, buflen);
4384     st->cr();
4385   }
4386   if (!found_current) {
4387     st->cr();
4388     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4389     current->print_on_error(st, buf, buflen);
4390     st->cr();
4391   }
4392 }
4393 
4394 // Internal SpinLock and Mutex
4395 // Based on ParkEvent
4396 
4397 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4398 //
4399 // We employ SpinLocks _only for low-contention, fixed-length
4400 // short-duration critical sections where we're concerned
4401 // about native mutex_t or HotSpot Mutex:: latency.
4402 // The mux construct provides a spin-then-block mutual exclusion
4403 // mechanism.
4404 //
4405 // Testing has shown that contention on the ListLock guarding gFreeList
4406 // is common.  If we implement ListLock as a simple SpinLock it's common
4407 // for the JVM to devolve to yielding with little progress.  This is true
4408 // despite the fact that the critical sections protected by ListLock are
4409 // extremely short.
4410 //
4411 // TODO-FIXME: ListLock should be of type SpinLock.
4412 // We should make this a 1st-class type, integrated into the lock
4413 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4414 // should have sufficient padding to avoid false-sharing and excessive
4415 // cache-coherency traffic.
4416 
4417 
4418 typedef volatile int SpinLockT;
4419 
4420 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4421   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4422     return;   // normal fast-path return
4423   }
4424 
4425   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4426   TEVENT(SpinAcquire - ctx);
4427   int ctr = 0;
4428   int Yields = 0;
4429   for (;;) {
4430     while (*adr != 0) {
4431       ++ctr;
4432       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4433         if (Yields > 5) {
4434           os::naked_short_sleep(1);
4435         } else {
4436           os::naked_yield();
4437           ++Yields;
4438         }
4439       } else {
4440         SpinPause();
4441       }
4442     }
4443     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4444   }
4445 }
4446 
4447 void Thread::SpinRelease(volatile int * adr) {
4448   assert(*adr != 0, "invariant");
4449   OrderAccess::fence();      // guarantee at least release consistency.
4450   // Roach-motel semantics.
4451   // It's safe if subsequent LDs and STs float "up" into the critical section,
4452   // but prior LDs and STs within the critical section can't be allowed
4453   // to reorder or float past the ST that releases the lock.
4454   // Loads and stores in the critical section - which appear in program
4455   // order before the store that releases the lock - must also appear
4456   // before the store that releases the lock in memory visibility order.
4457   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4458   // the ST of 0 into the lock-word which releases the lock, so fence
4459   // more than covers this on all platforms.
4460   *adr = 0;
4461 }
4462 
4463 // muxAcquire and muxRelease:
4464 //
4465 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4466 //    The LSB of the word is set IFF the lock is held.
4467 //    The remainder of the word points to the head of a singly-linked list
4468 //    of threads blocked on the lock.
4469 //
4470 // *  The current implementation of muxAcquire-muxRelease uses its own
4471 //    dedicated Thread._MuxEvent instance.  If we're interested in
4472 //    minimizing the peak number of extant ParkEvent instances then
4473 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4474 //    as certain invariants were satisfied.  Specifically, care would need
4475 //    to be taken with regards to consuming unpark() "permits".
4476 //    A safe rule of thumb is that a thread would never call muxAcquire()
4477 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4478 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4479 //    consume an unpark() permit intended for monitorenter, for instance.
4480 //    One way around this would be to widen the restricted-range semaphore
4481 //    implemented in park().  Another alternative would be to provide
4482 //    multiple instances of the PlatformEvent() for each thread.  One
4483 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4484 //
4485 // *  Usage:
4486 //    -- Only as leaf locks
4487 //    -- for short-term locking only as muxAcquire does not perform
4488 //       thread state transitions.
4489 //
4490 // Alternatives:
4491 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4492 //    but with parking or spin-then-park instead of pure spinning.
4493 // *  Use Taura-Oyama-Yonenzawa locks.
4494 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4495 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4496 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4497 //    acquiring threads use timers (ParkTimed) to detect and recover from
4498 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4499 //    boundaries by using placement-new.
4500 // *  Augment MCS with advisory back-link fields maintained with CAS().
4501 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4502 //    The validity of the backlinks must be ratified before we trust the value.
4503 //    If the backlinks are invalid the exiting thread must back-track through the
4504 //    the forward links, which are always trustworthy.
4505 // *  Add a successor indication.  The LockWord is currently encoded as
4506 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4507 //    to provide the usual futile-wakeup optimization.
4508 //    See RTStt for details.
4509 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4510 //
4511 
4512 
4513 typedef volatile intptr_t MutexT;      // Mux Lock-word
4514 enum MuxBits { LOCKBIT = 1 };
4515 
4516 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4517   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4518   if (w == 0) return;
4519   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4520     return;
4521   }
4522 
4523   TEVENT(muxAcquire - Contention);
4524   ParkEvent * const Self = Thread::current()->_MuxEvent;
4525   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4526   for (;;) {
4527     int its = (os::is_MP() ? 100 : 0) + 1;
4528 
4529     // Optional spin phase: spin-then-park strategy
4530     while (--its >= 0) {
4531       w = *Lock;
4532       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4533         return;
4534       }
4535     }
4536 
4537     Self->reset();
4538     Self->OnList = intptr_t(Lock);
4539     // The following fence() isn't _strictly necessary as the subsequent
4540     // CAS() both serializes execution and ratifies the fetched *Lock value.
4541     OrderAccess::fence();
4542     for (;;) {
4543       w = *Lock;
4544       if ((w & LOCKBIT) == 0) {
4545         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4546           Self->OnList = 0;   // hygiene - allows stronger asserts
4547           return;
4548         }
4549         continue;      // Interference -- *Lock changed -- Just retry
4550       }
4551       assert(w & LOCKBIT, "invariant");
4552       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4553       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4554     }
4555 
4556     while (Self->OnList != 0) {
4557       Self->park();
4558     }
4559   }
4560 }
4561 
4562 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4563   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4564   if (w == 0) return;
4565   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4566     return;
4567   }
4568 
4569   TEVENT(muxAcquire - Contention);
4570   ParkEvent * ReleaseAfter = NULL;
4571   if (ev == NULL) {
4572     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4573   }
4574   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4575   for (;;) {
4576     guarantee(ev->OnList == 0, "invariant");
4577     int its = (os::is_MP() ? 100 : 0) + 1;
4578 
4579     // Optional spin phase: spin-then-park strategy
4580     while (--its >= 0) {
4581       w = *Lock;
4582       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4583         if (ReleaseAfter != NULL) {
4584           ParkEvent::Release(ReleaseAfter);
4585         }
4586         return;
4587       }
4588     }
4589 
4590     ev->reset();
4591     ev->OnList = intptr_t(Lock);
4592     // The following fence() isn't _strictly necessary as the subsequent
4593     // CAS() both serializes execution and ratifies the fetched *Lock value.
4594     OrderAccess::fence();
4595     for (;;) {
4596       w = *Lock;
4597       if ((w & LOCKBIT) == 0) {
4598         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599           ev->OnList = 0;
4600           // We call ::Release while holding the outer lock, thus
4601           // artificially lengthening the critical section.
4602           // Consider deferring the ::Release() until the subsequent unlock(),
4603           // after we've dropped the outer lock.
4604           if (ReleaseAfter != NULL) {
4605             ParkEvent::Release(ReleaseAfter);
4606           }
4607           return;
4608         }
4609         continue;      // Interference -- *Lock changed -- Just retry
4610       }
4611       assert(w & LOCKBIT, "invariant");
4612       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4613       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4614     }
4615 
4616     while (ev->OnList != 0) {
4617       ev->park();
4618     }
4619   }
4620 }
4621 
4622 // Release() must extract a successor from the list and then wake that thread.
4623 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4624 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4625 // Release() would :
4626 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4627 // (B) Extract a successor from the private list "in-hand"
4628 // (C) attempt to CAS() the residual back into *Lock over null.
4629 //     If there were any newly arrived threads and the CAS() would fail.
4630 //     In that case Release() would detach the RATs, re-merge the list in-hand
4631 //     with the RATs and repeat as needed.  Alternately, Release() might
4632 //     detach and extract a successor, but then pass the residual list to the wakee.
4633 //     The wakee would be responsible for reattaching and remerging before it
4634 //     competed for the lock.
4635 //
4636 // Both "pop" and DMR are immune from ABA corruption -- there can be
4637 // multiple concurrent pushers, but only one popper or detacher.
4638 // This implementation pops from the head of the list.  This is unfair,
4639 // but tends to provide excellent throughput as hot threads remain hot.
4640 // (We wake recently run threads first).
4641 //
4642 // All paths through muxRelease() will execute a CAS.
4643 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4644 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4645 // executed within the critical section are complete and globally visible before the
4646 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4647 void Thread::muxRelease(volatile intptr_t * Lock)  {
4648   for (;;) {
4649     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4650     assert(w & LOCKBIT, "invariant");
4651     if (w == LOCKBIT) return;
4652     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4653     assert(List != NULL, "invariant");
4654     assert(List->OnList == intptr_t(Lock), "invariant");
4655     ParkEvent * const nxt = List->ListNext;
4656     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4657 
4658     // The following CAS() releases the lock and pops the head element.
4659     // The CAS() also ratifies the previously fetched lock-word value.
4660     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4661       continue;
4662     }
4663     List->OnList = 0;
4664     OrderAccess::fence();
4665     List->unpark();
4666     return;
4667   }
4668 }
4669 
4670 
4671 void Threads::verify() {
4672   ALL_JAVA_THREADS(p) {
4673     p->verify();
4674   }
4675   VMThread* thread = VMThread::vm_thread();
4676   if (thread != NULL) thread->verify();
4677 }