1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 110 // getrusage() is prepared to handle the associated failure.
 111 #ifndef RUSAGE_THREAD
 112   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 113 #endif
 114 
 115 #define MAX_PATH    (2 * K)
 116 
 117 #define MAX_SECS 100000000
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 #define LARGEPAGES_BIT (1 << 6)
 123 ////////////////////////////////////////////////////////////////////////////////
 124 // global variables
 125 julong os::Linux::_physical_memory = 0;
 126 
 127 address   os::Linux::_initial_thread_stack_bottom = NULL;
 128 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 129 
 130 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 132 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 133 Mutex* os::Linux::_createThread_lock = NULL;
 134 pthread_t os::Linux::_main_thread;
 135 int os::Linux::_page_size = -1;
 136 const int os::Linux::_vm_default_page_size = (8 * K);
 137 bool os::Linux::_supports_fast_thread_cpu_time = false;
 138 const char * os::Linux::_glibc_version = NULL;
 139 const char * os::Linux::_libpthread_version = NULL;
 140 pthread_condattr_t os::Linux::_condattr[1];
 141 
 142 static jlong initial_time_count=0;
 143 
 144 static int clock_tics_per_sec = 100;
 145 
 146 // For diagnostics to print a message once. see run_periodic_checks
 147 static sigset_t check_signal_done;
 148 static bool check_signals = true;
 149 
 150 // Signal number used to suspend/resume a thread
 151 
 152 // do not use any signal number less than SIGSEGV, see 4355769
 153 static int SR_signum = SIGUSR2;
 154 sigset_t SR_sigset;
 155 
 156 // Declarations
 157 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 158 
 159 // utility functions
 160 
 161 static int SR_initialize();
 162 
 163 julong os::available_memory() {
 164   return Linux::available_memory();
 165 }
 166 
 167 julong os::Linux::available_memory() {
 168   // values in struct sysinfo are "unsigned long"
 169   struct sysinfo si;
 170   sysinfo(&si);
 171 
 172   return (julong)si.freeram * si.mem_unit;
 173 }
 174 
 175 julong os::physical_memory() {
 176   return Linux::physical_memory();
 177 }
 178 
 179 // Return true if user is running as root.
 180 
 181 bool os::have_special_privileges() {
 182   static bool init = false;
 183   static bool privileges = false;
 184   if (!init) {
 185     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 186     init = true;
 187   }
 188   return privileges;
 189 }
 190 
 191 
 192 #ifndef SYS_gettid
 193 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 194   #ifdef __ia64__
 195     #define SYS_gettid 1105
 196   #else
 197     #ifdef __i386__
 198       #define SYS_gettid 224
 199     #else
 200       #ifdef __amd64__
 201         #define SYS_gettid 186
 202       #else
 203         #ifdef __sparc__
 204           #define SYS_gettid 143
 205         #else
 206           #error define gettid for the arch
 207         #endif
 208       #endif
 209     #endif
 210   #endif
 211 #endif
 212 
 213 // Cpu architecture string
 214 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 215 
 216 
 217 // pid_t gettid()
 218 //
 219 // Returns the kernel thread id of the currently running thread. Kernel
 220 // thread id is used to access /proc.
 221 pid_t os::Linux::gettid() {
 222   int rslt = syscall(SYS_gettid);
 223   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 224   return (pid_t)rslt;
 225 }
 226 
 227 // Most versions of linux have a bug where the number of processors are
 228 // determined by looking at the /proc file system.  In a chroot environment,
 229 // the system call returns 1.  This causes the VM to act as if it is
 230 // a single processor and elide locking (see is_MP() call).
 231 static bool unsafe_chroot_detected = false;
 232 static const char *unstable_chroot_error = "/proc file system not found.\n"
 233                      "Java may be unstable running multithreaded in a chroot "
 234                      "environment on Linux when /proc filesystem is not mounted.";
 235 
 236 void os::Linux::initialize_system_info() {
 237   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 238   if (processor_count() == 1) {
 239     pid_t pid = os::Linux::gettid();
 240     char fname[32];
 241     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 242     FILE *fp = fopen(fname, "r");
 243     if (fp == NULL) {
 244       unsafe_chroot_detected = true;
 245     } else {
 246       fclose(fp);
 247     }
 248   }
 249   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 250   assert(processor_count() > 0, "linux error");
 251 }
 252 
 253 void os::init_system_properties_values() {
 254   // The next steps are taken in the product version:
 255   //
 256   // Obtain the JAVA_HOME value from the location of libjvm.so.
 257   // This library should be located at:
 258   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 259   //
 260   // If "/jre/lib/" appears at the right place in the path, then we
 261   // assume libjvm.so is installed in a JDK and we use this path.
 262   //
 263   // Otherwise exit with message: "Could not create the Java virtual machine."
 264   //
 265   // The following extra steps are taken in the debugging version:
 266   //
 267   // If "/jre/lib/" does NOT appear at the right place in the path
 268   // instead of exit check for $JAVA_HOME environment variable.
 269   //
 270   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 271   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 272   // it looks like libjvm.so is installed there
 273   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 274   //
 275   // Otherwise exit.
 276   //
 277   // Important note: if the location of libjvm.so changes this
 278   // code needs to be changed accordingly.
 279 
 280   // See ld(1):
 281   //      The linker uses the following search paths to locate required
 282   //      shared libraries:
 283   //        1: ...
 284   //        ...
 285   //        7: The default directories, normally /lib and /usr/lib.
 286 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 287   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 288 #else
 289   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 290 #endif
 291 
 292 // Base path of extensions installed on the system.
 293 #define SYS_EXT_DIR     "/usr/java/packages"
 294 #define EXTENSIONS_DIR  "/lib/ext"
 295 
 296   // Buffer that fits several sprintfs.
 297   // Note that the space for the colon and the trailing null are provided
 298   // by the nulls included by the sizeof operator.
 299   const size_t bufsize =
 300     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 301          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 302   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 303 
 304   // sysclasspath, java_home, dll_dir
 305   {
 306     char *pslash;
 307     os::jvm_path(buf, bufsize);
 308 
 309     // Found the full path to libjvm.so.
 310     // Now cut the path to <java_home>/jre if we can.
 311     pslash = strrchr(buf, '/');
 312     if (pslash != NULL) {
 313       *pslash = '\0';            // Get rid of /libjvm.so.
 314     }
 315     pslash = strrchr(buf, '/');
 316     if (pslash != NULL) {
 317       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 318     }
 319     Arguments::set_dll_dir(buf);
 320 
 321     if (pslash != NULL) {
 322       pslash = strrchr(buf, '/');
 323       if (pslash != NULL) {
 324         *pslash = '\0';          // Get rid of /<arch>.
 325         pslash = strrchr(buf, '/');
 326         if (pslash != NULL) {
 327           *pslash = '\0';        // Get rid of /lib.
 328         }
 329       }
 330     }
 331     Arguments::set_java_home(buf);
 332     set_boot_path('/', ':');
 333   }
 334 
 335   // Where to look for native libraries.
 336   //
 337   // Note: Due to a legacy implementation, most of the library path
 338   // is set in the launcher. This was to accomodate linking restrictions
 339   // on legacy Linux implementations (which are no longer supported).
 340   // Eventually, all the library path setting will be done here.
 341   //
 342   // However, to prevent the proliferation of improperly built native
 343   // libraries, the new path component /usr/java/packages is added here.
 344   // Eventually, all the library path setting will be done here.
 345   {
 346     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 347     // should always exist (until the legacy problem cited above is
 348     // addressed).
 349     const char *v = ::getenv("LD_LIBRARY_PATH");
 350     const char *v_colon = ":";
 351     if (v == NULL) { v = ""; v_colon = ""; }
 352     // That's +1 for the colon and +1 for the trailing '\0'.
 353     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 354                                                      strlen(v) + 1 +
 355                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 356                                                      mtInternal);
 357     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 358     Arguments::set_library_path(ld_library_path);
 359     FREE_C_HEAP_ARRAY(char, ld_library_path);
 360   }
 361 
 362   // Extensions directories.
 363   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 364   Arguments::set_ext_dirs(buf);
 365 
 366   FREE_C_HEAP_ARRAY(char, buf);
 367 
 368 #undef DEFAULT_LIBPATH
 369 #undef SYS_EXT_DIR
 370 #undef EXTENSIONS_DIR
 371 }
 372 
 373 ////////////////////////////////////////////////////////////////////////////////
 374 // breakpoint support
 375 
 376 void os::breakpoint() {
 377   BREAKPOINT;
 378 }
 379 
 380 extern "C" void breakpoint() {
 381   // use debugger to set breakpoint here
 382 }
 383 
 384 ////////////////////////////////////////////////////////////////////////////////
 385 // signal support
 386 
 387 debug_only(static bool signal_sets_initialized = false);
 388 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 389 
 390 bool os::Linux::is_sig_ignored(int sig) {
 391   struct sigaction oact;
 392   sigaction(sig, (struct sigaction*)NULL, &oact);
 393   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 394                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 395   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 396     return true;
 397   } else {
 398     return false;
 399   }
 400 }
 401 
 402 void os::Linux::signal_sets_init() {
 403   // Should also have an assertion stating we are still single-threaded.
 404   assert(!signal_sets_initialized, "Already initialized");
 405   // Fill in signals that are necessarily unblocked for all threads in
 406   // the VM. Currently, we unblock the following signals:
 407   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 408   //                         by -Xrs (=ReduceSignalUsage));
 409   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 410   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 411   // the dispositions or masks wrt these signals.
 412   // Programs embedding the VM that want to use the above signals for their
 413   // own purposes must, at this time, use the "-Xrs" option to prevent
 414   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 415   // (See bug 4345157, and other related bugs).
 416   // In reality, though, unblocking these signals is really a nop, since
 417   // these signals are not blocked by default.
 418   sigemptyset(&unblocked_sigs);
 419   sigemptyset(&allowdebug_blocked_sigs);
 420   sigaddset(&unblocked_sigs, SIGILL);
 421   sigaddset(&unblocked_sigs, SIGSEGV);
 422   sigaddset(&unblocked_sigs, SIGBUS);
 423   sigaddset(&unblocked_sigs, SIGFPE);
 424 #if defined(PPC64)
 425   sigaddset(&unblocked_sigs, SIGTRAP);
 426 #endif
 427   sigaddset(&unblocked_sigs, SR_signum);
 428 
 429   if (!ReduceSignalUsage) {
 430     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 431       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 432       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 436       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 437     }
 438     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 439       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 440       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 441     }
 442   }
 443   // Fill in signals that are blocked by all but the VM thread.
 444   sigemptyset(&vm_sigs);
 445   if (!ReduceSignalUsage) {
 446     sigaddset(&vm_sigs, BREAK_SIGNAL);
 447   }
 448   debug_only(signal_sets_initialized = true);
 449 
 450 }
 451 
 452 // These are signals that are unblocked while a thread is running Java.
 453 // (For some reason, they get blocked by default.)
 454 sigset_t* os::Linux::unblocked_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &unblocked_sigs;
 457 }
 458 
 459 // These are the signals that are blocked while a (non-VM) thread is
 460 // running Java. Only the VM thread handles these signals.
 461 sigset_t* os::Linux::vm_signals() {
 462   assert(signal_sets_initialized, "Not initialized");
 463   return &vm_sigs;
 464 }
 465 
 466 // These are signals that are blocked during cond_wait to allow debugger in
 467 sigset_t* os::Linux::allowdebug_blocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &allowdebug_blocked_sigs;
 470 }
 471 
 472 void os::Linux::hotspot_sigmask(Thread* thread) {
 473 
 474   //Save caller's signal mask before setting VM signal mask
 475   sigset_t caller_sigmask;
 476   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 477 
 478   OSThread* osthread = thread->osthread();
 479   osthread->set_caller_sigmask(caller_sigmask);
 480 
 481   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 482 
 483   if (!ReduceSignalUsage) {
 484     if (thread->is_VM_thread()) {
 485       // Only the VM thread handles BREAK_SIGNAL ...
 486       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 487     } else {
 488       // ... all other threads block BREAK_SIGNAL
 489       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 490     }
 491   }
 492 }
 493 
 494 //////////////////////////////////////////////////////////////////////////////
 495 // detecting pthread library
 496 
 497 void os::Linux::libpthread_init() {
 498   // Save glibc and pthread version strings.
 499 #if !defined(_CS_GNU_LIBC_VERSION) || \
 500     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 501   #error "glibc too old (< 2.3.2)"
 502 #endif
 503 
 504   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 505   assert(n > 0, "cannot retrieve glibc version");
 506   char *str = (char *)malloc(n, mtInternal);
 507   confstr(_CS_GNU_LIBC_VERSION, str, n);
 508   os::Linux::set_glibc_version(str);
 509 
 510   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 511   assert(n > 0, "cannot retrieve pthread version");
 512   str = (char *)malloc(n, mtInternal);
 513   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 514   os::Linux::set_libpthread_version(str);
 515 }
 516 
 517 /////////////////////////////////////////////////////////////////////////////
 518 // thread stack expansion
 519 
 520 // os::Linux::manually_expand_stack() takes care of expanding the thread
 521 // stack. Note that this is normally not needed: pthread stacks allocate
 522 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 523 // committed. Therefore it is not necessary to expand the stack manually.
 524 //
 525 // Manually expanding the stack was historically needed on LinuxThreads
 526 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 527 // it is kept to deal with very rare corner cases:
 528 //
 529 // For one, user may run the VM on an own implementation of threads
 530 // whose stacks are - like the old LinuxThreads - implemented using
 531 // mmap(MAP_GROWSDOWN).
 532 //
 533 // Also, this coding may be needed if the VM is running on the primordial
 534 // thread. Normally we avoid running on the primordial thread; however,
 535 // user may still invoke the VM on the primordial thread.
 536 //
 537 // The following historical comment describes the details about running
 538 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 539 
 540 
 541 // Force Linux kernel to expand current thread stack. If "bottom" is close
 542 // to the stack guard, caller should block all signals.
 543 //
 544 // MAP_GROWSDOWN:
 545 //   A special mmap() flag that is used to implement thread stacks. It tells
 546 //   kernel that the memory region should extend downwards when needed. This
 547 //   allows early versions of LinuxThreads to only mmap the first few pages
 548 //   when creating a new thread. Linux kernel will automatically expand thread
 549 //   stack as needed (on page faults).
 550 //
 551 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 552 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 553 //   region, it's hard to tell if the fault is due to a legitimate stack
 554 //   access or because of reading/writing non-exist memory (e.g. buffer
 555 //   overrun). As a rule, if the fault happens below current stack pointer,
 556 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 557 //   application (see Linux kernel fault.c).
 558 //
 559 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 560 //   stack overflow detection.
 561 //
 562 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 563 //   not use MAP_GROWSDOWN.
 564 //
 565 // To get around the problem and allow stack banging on Linux, we need to
 566 // manually expand thread stack after receiving the SIGSEGV.
 567 //
 568 // There are two ways to expand thread stack to address "bottom", we used
 569 // both of them in JVM before 1.5:
 570 //   1. adjust stack pointer first so that it is below "bottom", and then
 571 //      touch "bottom"
 572 //   2. mmap() the page in question
 573 //
 574 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 575 // if current sp is already near the lower end of page 101, and we need to
 576 // call mmap() to map page 100, it is possible that part of the mmap() frame
 577 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 578 // That will destroy the mmap() frame and cause VM to crash.
 579 //
 580 // The following code works by adjusting sp first, then accessing the "bottom"
 581 // page to force a page fault. Linux kernel will then automatically expand the
 582 // stack mapping.
 583 //
 584 // _expand_stack_to() assumes its frame size is less than page size, which
 585 // should always be true if the function is not inlined.
 586 
 587 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 588   #define NOINLINE
 589 #else
 590   #define NOINLINE __attribute__ ((noinline))
 591 #endif
 592 
 593 static void _expand_stack_to(address bottom) NOINLINE;
 594 
 595 static void _expand_stack_to(address bottom) {
 596   address sp;
 597   size_t size;
 598   volatile char *p;
 599 
 600   // Adjust bottom to point to the largest address within the same page, it
 601   // gives us a one-page buffer if alloca() allocates slightly more memory.
 602   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 603   bottom += os::Linux::page_size() - 1;
 604 
 605   // sp might be slightly above current stack pointer; if that's the case, we
 606   // will alloca() a little more space than necessary, which is OK. Don't use
 607   // os::current_stack_pointer(), as its result can be slightly below current
 608   // stack pointer, causing us to not alloca enough to reach "bottom".
 609   sp = (address)&sp;
 610 
 611   if (sp > bottom) {
 612     size = sp - bottom;
 613     p = (volatile char *)alloca(size);
 614     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 615     p[0] = '\0';
 616   }
 617 }
 618 
 619 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 620   assert(t!=NULL, "just checking");
 621   assert(t->osthread()->expanding_stack(), "expand should be set");
 622   assert(t->stack_base() != NULL, "stack_base was not initialized");
 623 
 624   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 625     sigset_t mask_all, old_sigset;
 626     sigfillset(&mask_all);
 627     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 628     _expand_stack_to(addr);
 629     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 630     return true;
 631   }
 632   return false;
 633 }
 634 
 635 //////////////////////////////////////////////////////////////////////////////
 636 // create new thread
 637 
 638 // Thread start routine for all newly created threads
 639 static void *java_start(Thread *thread) {
 640   // Try to randomize the cache line index of hot stack frames.
 641   // This helps when threads of the same stack traces evict each other's
 642   // cache lines. The threads can be either from the same JVM instance, or
 643   // from different JVM instances. The benefit is especially true for
 644   // processors with hyperthreading technology.
 645   static int counter = 0;
 646   int pid = os::current_process_id();
 647   alloca(((pid ^ counter++) & 7) * 128);
 648 
 649   thread->initialize_thread_current();
 650 
 651   OSThread* osthread = thread->osthread();
 652   Monitor* sync = osthread->startThread_lock();
 653 
 654   osthread->set_thread_id(os::current_thread_id());
 655 
 656   if (UseNUMA) {
 657     int lgrp_id = os::numa_get_group_id();
 658     if (lgrp_id != -1) {
 659       thread->set_lgrp_id(lgrp_id);
 660     }
 661   }
 662   // initialize signal mask for this thread
 663   os::Linux::hotspot_sigmask(thread);
 664 
 665   // initialize floating point control register
 666   os::Linux::init_thread_fpu_state();
 667 
 668   // handshaking with parent thread
 669   {
 670     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 671 
 672     // notify parent thread
 673     osthread->set_state(INITIALIZED);
 674     sync->notify_all();
 675 
 676     // wait until os::start_thread()
 677     while (osthread->get_state() == INITIALIZED) {
 678       sync->wait(Mutex::_no_safepoint_check_flag);
 679     }
 680   }
 681 
 682   // call one more level start routine
 683   thread->run();
 684 
 685   return 0;
 686 }
 687 
 688 bool os::create_thread(Thread* thread, ThreadType thr_type,
 689                        size_t stack_size) {
 690   assert(thread->osthread() == NULL, "caller responsible");
 691 
 692   // Allocate the OSThread object
 693   OSThread* osthread = new OSThread(NULL, NULL);
 694   if (osthread == NULL) {
 695     return false;
 696   }
 697 
 698   // set the correct thread state
 699   osthread->set_thread_type(thr_type);
 700 
 701   // Initial state is ALLOCATED but not INITIALIZED
 702   osthread->set_state(ALLOCATED);
 703 
 704   thread->set_osthread(osthread);
 705 
 706   // init thread attributes
 707   pthread_attr_t attr;
 708   pthread_attr_init(&attr);
 709   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 710 
 711   // stack size
 712   // calculate stack size if it's not specified by caller
 713   if (stack_size == 0) {
 714     stack_size = os::Linux::default_stack_size(thr_type);
 715 
 716     switch (thr_type) {
 717     case os::java_thread:
 718       // Java threads use ThreadStackSize which default value can be
 719       // changed with the flag -Xss
 720       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 721       stack_size = JavaThread::stack_size_at_create();
 722       break;
 723     case os::compiler_thread:
 724       if (CompilerThreadStackSize > 0) {
 725         stack_size = (size_t)(CompilerThreadStackSize * K);
 726         break;
 727       } // else fall through:
 728         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 729     case os::vm_thread:
 730     case os::pgc_thread:
 731     case os::cgc_thread:
 732     case os::watcher_thread:
 733       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 734       break;
 735     }
 736   }
 737 
 738   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 739   pthread_attr_setstacksize(&attr, stack_size);
 740 
 741   // glibc guard page
 742   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 743 
 744   ThreadState state;
 745 
 746   {
 747     pthread_t tid;
 748     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 749 
 750     pthread_attr_destroy(&attr);
 751 
 752     if (ret != 0) {
 753       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 754         perror("pthread_create()");
 755       }
 756       // Need to clean up stuff we've allocated so far
 757       thread->set_osthread(NULL);
 758       delete osthread;
 759       return false;
 760     }
 761 
 762     // Store pthread info into the OSThread
 763     osthread->set_pthread_id(tid);
 764 
 765     // Wait until child thread is either initialized or aborted
 766     {
 767       Monitor* sync_with_child = osthread->startThread_lock();
 768       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 769       while ((state = osthread->get_state()) == ALLOCATED) {
 770         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 771       }
 772     }
 773   }
 774 
 775   // Aborted due to thread limit being reached
 776   if (state == ZOMBIE) {
 777     thread->set_osthread(NULL);
 778     delete osthread;
 779     return false;
 780   }
 781 
 782   // The thread is returned suspended (in state INITIALIZED),
 783   // and is started higher up in the call chain
 784   assert(state == INITIALIZED, "race condition");
 785   return true;
 786 }
 787 
 788 /////////////////////////////////////////////////////////////////////////////
 789 // attach existing thread
 790 
 791 // bootstrap the main thread
 792 bool os::create_main_thread(JavaThread* thread) {
 793   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 794   return create_attached_thread(thread);
 795 }
 796 
 797 bool os::create_attached_thread(JavaThread* thread) {
 798 #ifdef ASSERT
 799   thread->verify_not_published();
 800 #endif
 801 
 802   // Allocate the OSThread object
 803   OSThread* osthread = new OSThread(NULL, NULL);
 804 
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // Store pthread info into the OSThread
 810   osthread->set_thread_id(os::Linux::gettid());
 811   osthread->set_pthread_id(::pthread_self());
 812 
 813   // initialize floating point control register
 814   os::Linux::init_thread_fpu_state();
 815 
 816   // Initial thread state is RUNNABLE
 817   osthread->set_state(RUNNABLE);
 818 
 819   thread->set_osthread(osthread);
 820 
 821   if (UseNUMA) {
 822     int lgrp_id = os::numa_get_group_id();
 823     if (lgrp_id != -1) {
 824       thread->set_lgrp_id(lgrp_id);
 825     }
 826   }
 827 
 828   if (os::Linux::is_initial_thread()) {
 829     // If current thread is initial thread, its stack is mapped on demand,
 830     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 831     // the entire stack region to avoid SEGV in stack banging.
 832     // It is also useful to get around the heap-stack-gap problem on SuSE
 833     // kernel (see 4821821 for details). We first expand stack to the top
 834     // of yellow zone, then enable stack yellow zone (order is significant,
 835     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 836     // is no gap between the last two virtual memory regions.
 837 
 838     JavaThread *jt = (JavaThread *)thread;
 839     address addr = jt->stack_yellow_zone_base();
 840     assert(addr != NULL, "initialization problem?");
 841     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 842 
 843     osthread->set_expanding_stack();
 844     os::Linux::manually_expand_stack(jt, addr);
 845     osthread->clear_expanding_stack();
 846   }
 847 
 848   // initialize signal mask for this thread
 849   // and save the caller's signal mask
 850   os::Linux::hotspot_sigmask(thread);
 851 
 852   return true;
 853 }
 854 
 855 void os::pd_start_thread(Thread* thread) {
 856   OSThread * osthread = thread->osthread();
 857   assert(osthread->get_state() != INITIALIZED, "just checking");
 858   Monitor* sync_with_child = osthread->startThread_lock();
 859   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 860   sync_with_child->notify();
 861 }
 862 
 863 // Free Linux resources related to the OSThread
 864 void os::free_thread(OSThread* osthread) {
 865   assert(osthread != NULL, "osthread not set");
 866 
 867   if (Thread::current()->osthread() == osthread) {
 868     // Restore caller's signal mask
 869     sigset_t sigmask = osthread->caller_sigmask();
 870     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 871   }
 872 
 873   delete osthread;
 874 }
 875 
 876 //////////////////////////////////////////////////////////////////////////////
 877 // initial thread
 878 
 879 // Check if current thread is the initial thread, similar to Solaris thr_main.
 880 bool os::Linux::is_initial_thread(void) {
 881   char dummy;
 882   // If called before init complete, thread stack bottom will be null.
 883   // Can be called if fatal error occurs before initialization.
 884   if (initial_thread_stack_bottom() == NULL) return false;
 885   assert(initial_thread_stack_bottom() != NULL &&
 886          initial_thread_stack_size()   != 0,
 887          "os::init did not locate initial thread's stack region");
 888   if ((address)&dummy >= initial_thread_stack_bottom() &&
 889       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 890     return true;
 891   } else {
 892     return false;
 893   }
 894 }
 895 
 896 // Find the virtual memory area that contains addr
 897 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 898   FILE *fp = fopen("/proc/self/maps", "r");
 899   if (fp) {
 900     address low, high;
 901     while (!feof(fp)) {
 902       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 903         if (low <= addr && addr < high) {
 904           if (vma_low)  *vma_low  = low;
 905           if (vma_high) *vma_high = high;
 906           fclose(fp);
 907           return true;
 908         }
 909       }
 910       for (;;) {
 911         int ch = fgetc(fp);
 912         if (ch == EOF || ch == (int)'\n') break;
 913       }
 914     }
 915     fclose(fp);
 916   }
 917   return false;
 918 }
 919 
 920 // Locate initial thread stack. This special handling of initial thread stack
 921 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 922 // bogus value for initial thread.
 923 void os::Linux::capture_initial_stack(size_t max_size) {
 924   // stack size is the easy part, get it from RLIMIT_STACK
 925   size_t stack_size;
 926   struct rlimit rlim;
 927   getrlimit(RLIMIT_STACK, &rlim);
 928   stack_size = rlim.rlim_cur;
 929 
 930   // 6308388: a bug in ld.so will relocate its own .data section to the
 931   //   lower end of primordial stack; reduce ulimit -s value a little bit
 932   //   so we won't install guard page on ld.so's data section.
 933   stack_size -= 2 * page_size();
 934 
 935   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 936   //   7.1, in both cases we will get 2G in return value.
 937   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 938   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 939   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 940   //   in case other parts in glibc still assumes 2M max stack size.
 941   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 942   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 943   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 944     stack_size = 2 * K * K IA64_ONLY(*2);
 945   }
 946   // Try to figure out where the stack base (top) is. This is harder.
 947   //
 948   // When an application is started, glibc saves the initial stack pointer in
 949   // a global variable "__libc_stack_end", which is then used by system
 950   // libraries. __libc_stack_end should be pretty close to stack top. The
 951   // variable is available since the very early days. However, because it is
 952   // a private interface, it could disappear in the future.
 953   //
 954   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 955   // to __libc_stack_end, it is very close to stack top, but isn't the real
 956   // stack top. Note that /proc may not exist if VM is running as a chroot
 957   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 958   // /proc/<pid>/stat could change in the future (though unlikely).
 959   //
 960   // We try __libc_stack_end first. If that doesn't work, look for
 961   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 962   // as a hint, which should work well in most cases.
 963 
 964   uintptr_t stack_start;
 965 
 966   // try __libc_stack_end first
 967   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 968   if (p && *p) {
 969     stack_start = *p;
 970   } else {
 971     // see if we can get the start_stack field from /proc/self/stat
 972     FILE *fp;
 973     int pid;
 974     char state;
 975     int ppid;
 976     int pgrp;
 977     int session;
 978     int nr;
 979     int tpgrp;
 980     unsigned long flags;
 981     unsigned long minflt;
 982     unsigned long cminflt;
 983     unsigned long majflt;
 984     unsigned long cmajflt;
 985     unsigned long utime;
 986     unsigned long stime;
 987     long cutime;
 988     long cstime;
 989     long prio;
 990     long nice;
 991     long junk;
 992     long it_real;
 993     uintptr_t start;
 994     uintptr_t vsize;
 995     intptr_t rss;
 996     uintptr_t rsslim;
 997     uintptr_t scodes;
 998     uintptr_t ecode;
 999     int i;
1000 
1001     // Figure what the primordial thread stack base is. Code is inspired
1002     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1003     // followed by command name surrounded by parentheses, state, etc.
1004     char stat[2048];
1005     int statlen;
1006 
1007     fp = fopen("/proc/self/stat", "r");
1008     if (fp) {
1009       statlen = fread(stat, 1, 2047, fp);
1010       stat[statlen] = '\0';
1011       fclose(fp);
1012 
1013       // Skip pid and the command string. Note that we could be dealing with
1014       // weird command names, e.g. user could decide to rename java launcher
1015       // to "java 1.4.2 :)", then the stat file would look like
1016       //                1234 (java 1.4.2 :)) R ... ...
1017       // We don't really need to know the command string, just find the last
1018       // occurrence of ")" and then start parsing from there. See bug 4726580.
1019       char * s = strrchr(stat, ')');
1020 
1021       i = 0;
1022       if (s) {
1023         // Skip blank chars
1024         do { s++; } while (s && isspace(*s));
1025 
1026 #define _UFM UINTX_FORMAT
1027 #define _DFM INTX_FORMAT
1028 
1029         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1030         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1031         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1032                    &state,          // 3  %c
1033                    &ppid,           // 4  %d
1034                    &pgrp,           // 5  %d
1035                    &session,        // 6  %d
1036                    &nr,             // 7  %d
1037                    &tpgrp,          // 8  %d
1038                    &flags,          // 9  %lu
1039                    &minflt,         // 10 %lu
1040                    &cminflt,        // 11 %lu
1041                    &majflt,         // 12 %lu
1042                    &cmajflt,        // 13 %lu
1043                    &utime,          // 14 %lu
1044                    &stime,          // 15 %lu
1045                    &cutime,         // 16 %ld
1046                    &cstime,         // 17 %ld
1047                    &prio,           // 18 %ld
1048                    &nice,           // 19 %ld
1049                    &junk,           // 20 %ld
1050                    &it_real,        // 21 %ld
1051                    &start,          // 22 UINTX_FORMAT
1052                    &vsize,          // 23 UINTX_FORMAT
1053                    &rss,            // 24 INTX_FORMAT
1054                    &rsslim,         // 25 UINTX_FORMAT
1055                    &scodes,         // 26 UINTX_FORMAT
1056                    &ecode,          // 27 UINTX_FORMAT
1057                    &stack_start);   // 28 UINTX_FORMAT
1058       }
1059 
1060 #undef _UFM
1061 #undef _DFM
1062 
1063       if (i != 28 - 2) {
1064         assert(false, "Bad conversion from /proc/self/stat");
1065         // product mode - assume we are the initial thread, good luck in the
1066         // embedded case.
1067         warning("Can't detect initial thread stack location - bad conversion");
1068         stack_start = (uintptr_t) &rlim;
1069       }
1070     } else {
1071       // For some reason we can't open /proc/self/stat (for example, running on
1072       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1073       // most cases, so don't abort:
1074       warning("Can't detect initial thread stack location - no /proc/self/stat");
1075       stack_start = (uintptr_t) &rlim;
1076     }
1077   }
1078 
1079   // Now we have a pointer (stack_start) very close to the stack top, the
1080   // next thing to do is to figure out the exact location of stack top. We
1081   // can find out the virtual memory area that contains stack_start by
1082   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1083   // and its upper limit is the real stack top. (again, this would fail if
1084   // running inside chroot, because /proc may not exist.)
1085 
1086   uintptr_t stack_top;
1087   address low, high;
1088   if (find_vma((address)stack_start, &low, &high)) {
1089     // success, "high" is the true stack top. (ignore "low", because initial
1090     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1091     stack_top = (uintptr_t)high;
1092   } else {
1093     // failed, likely because /proc/self/maps does not exist
1094     warning("Can't detect initial thread stack location - find_vma failed");
1095     // best effort: stack_start is normally within a few pages below the real
1096     // stack top, use it as stack top, and reduce stack size so we won't put
1097     // guard page outside stack.
1098     stack_top = stack_start;
1099     stack_size -= 16 * page_size();
1100   }
1101 
1102   // stack_top could be partially down the page so align it
1103   stack_top = align_size_up(stack_top, page_size());
1104 
1105   if (max_size && stack_size > max_size) {
1106     _initial_thread_stack_size = max_size;
1107   } else {
1108     _initial_thread_stack_size = stack_size;
1109   }
1110 
1111   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1112   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1113 }
1114 
1115 ////////////////////////////////////////////////////////////////////////////////
1116 // time support
1117 
1118 // Time since start-up in seconds to a fine granularity.
1119 // Used by VMSelfDestructTimer and the MemProfiler.
1120 double os::elapsedTime() {
1121 
1122   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1123 }
1124 
1125 jlong os::elapsed_counter() {
1126   return javaTimeNanos() - initial_time_count;
1127 }
1128 
1129 jlong os::elapsed_frequency() {
1130   return NANOSECS_PER_SEC; // nanosecond resolution
1131 }
1132 
1133 bool os::supports_vtime() { return true; }
1134 bool os::enable_vtime()   { return false; }
1135 bool os::vtime_enabled()  { return false; }
1136 
1137 double os::elapsedVTime() {
1138   struct rusage usage;
1139   int retval = getrusage(RUSAGE_THREAD, &usage);
1140   if (retval == 0) {
1141     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1142   } else {
1143     // better than nothing, but not much
1144     return elapsedTime();
1145   }
1146 }
1147 
1148 jlong os::javaTimeMillis() {
1149   timeval time;
1150   int status = gettimeofday(&time, NULL);
1151   assert(status != -1, "linux error");
1152   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1153 }
1154 
1155 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1156   timeval time;
1157   int status = gettimeofday(&time, NULL);
1158   assert(status != -1, "linux error");
1159   seconds = jlong(time.tv_sec);
1160   nanos = jlong(time.tv_usec) * 1000;
1161 }
1162 
1163 
1164 #ifndef CLOCK_MONOTONIC
1165   #define CLOCK_MONOTONIC (1)
1166 #endif
1167 
1168 void os::Linux::clock_init() {
1169   // we do dlopen's in this particular order due to bug in linux
1170   // dynamical loader (see 6348968) leading to crash on exit
1171   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1172   if (handle == NULL) {
1173     handle = dlopen("librt.so", RTLD_LAZY);
1174   }
1175 
1176   if (handle) {
1177     int (*clock_getres_func)(clockid_t, struct timespec*) =
1178            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1179     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1180            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1181     if (clock_getres_func && clock_gettime_func) {
1182       // See if monotonic clock is supported by the kernel. Note that some
1183       // early implementations simply return kernel jiffies (updated every
1184       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1185       // for nano time (though the monotonic property is still nice to have).
1186       // It's fixed in newer kernels, however clock_getres() still returns
1187       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1188       // resolution for now. Hopefully as people move to new kernels, this
1189       // won't be a problem.
1190       struct timespec res;
1191       struct timespec tp;
1192       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1193           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1194         // yes, monotonic clock is supported
1195         _clock_gettime = clock_gettime_func;
1196         return;
1197       } else {
1198         // close librt if there is no monotonic clock
1199         dlclose(handle);
1200       }
1201     }
1202   }
1203   warning("No monotonic clock was available - timed services may " \
1204           "be adversely affected if the time-of-day clock changes");
1205 }
1206 
1207 #ifndef SYS_clock_getres
1208   #if defined(IA32) || defined(AMD64)
1209     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1210     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1211   #else
1212     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1213     #define sys_clock_getres(x,y)  -1
1214   #endif
1215 #else
1216   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1217 #endif
1218 
1219 void os::Linux::fast_thread_clock_init() {
1220   if (!UseLinuxPosixThreadCPUClocks) {
1221     return;
1222   }
1223   clockid_t clockid;
1224   struct timespec tp;
1225   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1226       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1227 
1228   // Switch to using fast clocks for thread cpu time if
1229   // the sys_clock_getres() returns 0 error code.
1230   // Note, that some kernels may support the current thread
1231   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1232   // returned by the pthread_getcpuclockid().
1233   // If the fast Posix clocks are supported then the sys_clock_getres()
1234   // must return at least tp.tv_sec == 0 which means a resolution
1235   // better than 1 sec. This is extra check for reliability.
1236 
1237   if (pthread_getcpuclockid_func &&
1238       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1239       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1240     _supports_fast_thread_cpu_time = true;
1241     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1242   }
1243 }
1244 
1245 jlong os::javaTimeNanos() {
1246   if (os::supports_monotonic_clock()) {
1247     struct timespec tp;
1248     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1249     assert(status == 0, "gettime error");
1250     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1251     return result;
1252   } else {
1253     timeval time;
1254     int status = gettimeofday(&time, NULL);
1255     assert(status != -1, "linux error");
1256     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1257     return 1000 * usecs;
1258   }
1259 }
1260 
1261 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1262   if (os::supports_monotonic_clock()) {
1263     info_ptr->max_value = ALL_64_BITS;
1264 
1265     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1266     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1267     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1268   } else {
1269     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1270     info_ptr->max_value = ALL_64_BITS;
1271 
1272     // gettimeofday is a real time clock so it skips
1273     info_ptr->may_skip_backward = true;
1274     info_ptr->may_skip_forward = true;
1275   }
1276 
1277   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1278 }
1279 
1280 // Return the real, user, and system times in seconds from an
1281 // arbitrary fixed point in the past.
1282 bool os::getTimesSecs(double* process_real_time,
1283                       double* process_user_time,
1284                       double* process_system_time) {
1285   struct tms ticks;
1286   clock_t real_ticks = times(&ticks);
1287 
1288   if (real_ticks == (clock_t) (-1)) {
1289     return false;
1290   } else {
1291     double ticks_per_second = (double) clock_tics_per_sec;
1292     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1293     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1294     *process_real_time = ((double) real_ticks) / ticks_per_second;
1295 
1296     return true;
1297   }
1298 }
1299 
1300 
1301 char * os::local_time_string(char *buf, size_t buflen) {
1302   struct tm t;
1303   time_t long_time;
1304   time(&long_time);
1305   localtime_r(&long_time, &t);
1306   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1307                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1308                t.tm_hour, t.tm_min, t.tm_sec);
1309   return buf;
1310 }
1311 
1312 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1313   return localtime_r(clock, res);
1314 }
1315 
1316 ////////////////////////////////////////////////////////////////////////////////
1317 // runtime exit support
1318 
1319 // Note: os::shutdown() might be called very early during initialization, or
1320 // called from signal handler. Before adding something to os::shutdown(), make
1321 // sure it is async-safe and can handle partially initialized VM.
1322 void os::shutdown() {
1323 
1324   // allow PerfMemory to attempt cleanup of any persistent resources
1325   perfMemory_exit();
1326 
1327   // needs to remove object in file system
1328   AttachListener::abort();
1329 
1330   // flush buffered output, finish log files
1331   ostream_abort();
1332 
1333   // Check for abort hook
1334   abort_hook_t abort_hook = Arguments::abort_hook();
1335   if (abort_hook != NULL) {
1336     abort_hook();
1337   }
1338 
1339 }
1340 
1341 // Note: os::abort() might be called very early during initialization, or
1342 // called from signal handler. Before adding something to os::abort(), make
1343 // sure it is async-safe and can handle partially initialized VM.
1344 void os::abort(bool dump_core, void* siginfo, void* context) {
1345   os::shutdown();
1346   if (dump_core) {
1347 #ifndef PRODUCT
1348     fdStream out(defaultStream::output_fd());
1349     out.print_raw("Current thread is ");
1350     char buf[16];
1351     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1352     out.print_raw_cr(buf);
1353     out.print_raw_cr("Dumping core ...");
1354 #endif
1355     ::abort(); // dump core
1356   }
1357 
1358   ::exit(1);
1359 }
1360 
1361 // Die immediately, no exit hook, no abort hook, no cleanup.
1362 void os::die() {
1363   ::abort();
1364 }
1365 
1366 
1367 // This method is a copy of JDK's sysGetLastErrorString
1368 // from src/solaris/hpi/src/system_md.c
1369 
1370 size_t os::lasterror(char *buf, size_t len) {
1371   if (errno == 0)  return 0;
1372 
1373   const char *s = ::strerror(errno);
1374   size_t n = ::strlen(s);
1375   if (n >= len) {
1376     n = len - 1;
1377   }
1378   ::strncpy(buf, s, n);
1379   buf[n] = '\0';
1380   return n;
1381 }
1382 
1383 // thread_id is kernel thread id (similar to Solaris LWP id)
1384 intx os::current_thread_id() { return os::Linux::gettid(); }
1385 int os::current_process_id() {
1386   return ::getpid();
1387 }
1388 
1389 // DLL functions
1390 
1391 const char* os::dll_file_extension() { return ".so"; }
1392 
1393 // This must be hard coded because it's the system's temporary
1394 // directory not the java application's temp directory, ala java.io.tmpdir.
1395 const char* os::get_temp_directory() { return "/tmp"; }
1396 
1397 static bool file_exists(const char* filename) {
1398   struct stat statbuf;
1399   if (filename == NULL || strlen(filename) == 0) {
1400     return false;
1401   }
1402   return os::stat(filename, &statbuf) == 0;
1403 }
1404 
1405 bool os::dll_build_name(char* buffer, size_t buflen,
1406                         const char* pname, const char* fname) {
1407   bool retval = false;
1408   // Copied from libhpi
1409   const size_t pnamelen = pname ? strlen(pname) : 0;
1410 
1411   // Return error on buffer overflow.
1412   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1413     return retval;
1414   }
1415 
1416   if (pnamelen == 0) {
1417     snprintf(buffer, buflen, "lib%s.so", fname);
1418     retval = true;
1419   } else if (strchr(pname, *os::path_separator()) != NULL) {
1420     int n;
1421     char** pelements = split_path(pname, &n);
1422     if (pelements == NULL) {
1423       return false;
1424     }
1425     for (int i = 0; i < n; i++) {
1426       // Really shouldn't be NULL, but check can't hurt
1427       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1428         continue; // skip the empty path values
1429       }
1430       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1431       if (file_exists(buffer)) {
1432         retval = true;
1433         break;
1434       }
1435     }
1436     // release the storage
1437     for (int i = 0; i < n; i++) {
1438       if (pelements[i] != NULL) {
1439         FREE_C_HEAP_ARRAY(char, pelements[i]);
1440       }
1441     }
1442     if (pelements != NULL) {
1443       FREE_C_HEAP_ARRAY(char*, pelements);
1444     }
1445   } else {
1446     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1447     retval = true;
1448   }
1449   return retval;
1450 }
1451 
1452 // check if addr is inside libjvm.so
1453 bool os::address_is_in_vm(address addr) {
1454   static address libjvm_base_addr;
1455   Dl_info dlinfo;
1456 
1457   if (libjvm_base_addr == NULL) {
1458     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1459       libjvm_base_addr = (address)dlinfo.dli_fbase;
1460     }
1461     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1462   }
1463 
1464   if (dladdr((void *)addr, &dlinfo) != 0) {
1465     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1466   }
1467 
1468   return false;
1469 }
1470 
1471 bool os::dll_address_to_function_name(address addr, char *buf,
1472                                       int buflen, int *offset,
1473                                       bool demangle) {
1474   // buf is not optional, but offset is optional
1475   assert(buf != NULL, "sanity check");
1476 
1477   Dl_info dlinfo;
1478 
1479   if (dladdr((void*)addr, &dlinfo) != 0) {
1480     // see if we have a matching symbol
1481     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1482       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1483         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1484       }
1485       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1486       return true;
1487     }
1488     // no matching symbol so try for just file info
1489     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1490       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1491                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1492         return true;
1493       }
1494     }
1495   }
1496 
1497   buf[0] = '\0';
1498   if (offset != NULL) *offset = -1;
1499   return false;
1500 }
1501 
1502 struct _address_to_library_name {
1503   address addr;          // input : memory address
1504   size_t  buflen;        //         size of fname
1505   char*   fname;         // output: library name
1506   address base;          //         library base addr
1507 };
1508 
1509 static int address_to_library_name_callback(struct dl_phdr_info *info,
1510                                             size_t size, void *data) {
1511   int i;
1512   bool found = false;
1513   address libbase = NULL;
1514   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1515 
1516   // iterate through all loadable segments
1517   for (i = 0; i < info->dlpi_phnum; i++) {
1518     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1519     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1520       // base address of a library is the lowest address of its loaded
1521       // segments.
1522       if (libbase == NULL || libbase > segbase) {
1523         libbase = segbase;
1524       }
1525       // see if 'addr' is within current segment
1526       if (segbase <= d->addr &&
1527           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1528         found = true;
1529       }
1530     }
1531   }
1532 
1533   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1534   // so dll_address_to_library_name() can fall through to use dladdr() which
1535   // can figure out executable name from argv[0].
1536   if (found && info->dlpi_name && info->dlpi_name[0]) {
1537     d->base = libbase;
1538     if (d->fname) {
1539       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1540     }
1541     return 1;
1542   }
1543   return 0;
1544 }
1545 
1546 bool os::dll_address_to_library_name(address addr, char* buf,
1547                                      int buflen, int* offset) {
1548   // buf is not optional, but offset is optional
1549   assert(buf != NULL, "sanity check");
1550 
1551   Dl_info dlinfo;
1552   struct _address_to_library_name data;
1553 
1554   // There is a bug in old glibc dladdr() implementation that it could resolve
1555   // to wrong library name if the .so file has a base address != NULL. Here
1556   // we iterate through the program headers of all loaded libraries to find
1557   // out which library 'addr' really belongs to. This workaround can be
1558   // removed once the minimum requirement for glibc is moved to 2.3.x.
1559   data.addr = addr;
1560   data.fname = buf;
1561   data.buflen = buflen;
1562   data.base = NULL;
1563   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1564 
1565   if (rslt) {
1566     // buf already contains library name
1567     if (offset) *offset = addr - data.base;
1568     return true;
1569   }
1570   if (dladdr((void*)addr, &dlinfo) != 0) {
1571     if (dlinfo.dli_fname != NULL) {
1572       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1573     }
1574     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1575       *offset = addr - (address)dlinfo.dli_fbase;
1576     }
1577     return true;
1578   }
1579 
1580   buf[0] = '\0';
1581   if (offset) *offset = -1;
1582   return false;
1583 }
1584 
1585 // Loads .dll/.so and
1586 // in case of error it checks if .dll/.so was built for the
1587 // same architecture as Hotspot is running on
1588 
1589 
1590 // Remember the stack's state. The Linux dynamic linker will change
1591 // the stack to 'executable' at most once, so we must safepoint only once.
1592 bool os::Linux::_stack_is_executable = false;
1593 
1594 // VM operation that loads a library.  This is necessary if stack protection
1595 // of the Java stacks can be lost during loading the library.  If we
1596 // do not stop the Java threads, they can stack overflow before the stacks
1597 // are protected again.
1598 class VM_LinuxDllLoad: public VM_Operation {
1599  private:
1600   const char *_filename;
1601   char *_ebuf;
1602   int _ebuflen;
1603   void *_lib;
1604  public:
1605   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1606     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1607   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1608   void doit() {
1609     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1610     os::Linux::_stack_is_executable = true;
1611   }
1612   void* loaded_library() { return _lib; }
1613 };
1614 
1615 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1616   void * result = NULL;
1617   bool load_attempted = false;
1618 
1619   // Check whether the library to load might change execution rights
1620   // of the stack. If they are changed, the protection of the stack
1621   // guard pages will be lost. We need a safepoint to fix this.
1622   //
1623   // See Linux man page execstack(8) for more info.
1624   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1625     ElfFile ef(filename);
1626     if (!ef.specifies_noexecstack()) {
1627       if (!is_init_completed()) {
1628         os::Linux::_stack_is_executable = true;
1629         // This is OK - No Java threads have been created yet, and hence no
1630         // stack guard pages to fix.
1631         //
1632         // This should happen only when you are building JDK7 using a very
1633         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1634         //
1635         // Dynamic loader will make all stacks executable after
1636         // this function returns, and will not do that again.
1637         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1638       } else {
1639         warning("You have loaded library %s which might have disabled stack guard. "
1640                 "The VM will try to fix the stack guard now.\n"
1641                 "It's highly recommended that you fix the library with "
1642                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1643                 filename);
1644 
1645         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1646         JavaThread *jt = JavaThread::current();
1647         if (jt->thread_state() != _thread_in_native) {
1648           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1649           // that requires ExecStack. Cannot enter safe point. Let's give up.
1650           warning("Unable to fix stack guard. Giving up.");
1651         } else {
1652           if (!LoadExecStackDllInVMThread) {
1653             // This is for the case where the DLL has an static
1654             // constructor function that executes JNI code. We cannot
1655             // load such DLLs in the VMThread.
1656             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1657           }
1658 
1659           ThreadInVMfromNative tiv(jt);
1660           debug_only(VMNativeEntryWrapper vew;)
1661 
1662           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1663           VMThread::execute(&op);
1664           if (LoadExecStackDllInVMThread) {
1665             result = op.loaded_library();
1666           }
1667           load_attempted = true;
1668         }
1669       }
1670     }
1671   }
1672 
1673   if (!load_attempted) {
1674     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1675   }
1676 
1677   if (result != NULL) {
1678     // Successful loading
1679     return result;
1680   }
1681 
1682   Elf32_Ehdr elf_head;
1683   int diag_msg_max_length=ebuflen-strlen(ebuf);
1684   char* diag_msg_buf=ebuf+strlen(ebuf);
1685 
1686   if (diag_msg_max_length==0) {
1687     // No more space in ebuf for additional diagnostics message
1688     return NULL;
1689   }
1690 
1691 
1692   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1693 
1694   if (file_descriptor < 0) {
1695     // Can't open library, report dlerror() message
1696     return NULL;
1697   }
1698 
1699   bool failed_to_read_elf_head=
1700     (sizeof(elf_head)!=
1701      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1702 
1703   ::close(file_descriptor);
1704   if (failed_to_read_elf_head) {
1705     // file i/o error - report dlerror() msg
1706     return NULL;
1707   }
1708 
1709   typedef struct {
1710     Elf32_Half  code;         // Actual value as defined in elf.h
1711     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1712     char        elf_class;    // 32 or 64 bit
1713     char        endianess;    // MSB or LSB
1714     char*       name;         // String representation
1715   } arch_t;
1716 
1717 #ifndef EM_486
1718   #define EM_486          6               /* Intel 80486 */
1719 #endif
1720 #ifndef EM_AARCH64
1721   #define EM_AARCH64    183               /* ARM AARCH64 */
1722 #endif
1723 
1724   static const arch_t arch_array[]={
1725     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1726     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1727     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1728     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1729     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1730     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1731     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1732     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1733 #if defined(VM_LITTLE_ENDIAN)
1734     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1735 #else
1736     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1737 #endif
1738     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1739     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1740     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1741     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1742     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1743     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1744     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1745     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1746   };
1747 
1748 #if  (defined IA32)
1749   static  Elf32_Half running_arch_code=EM_386;
1750 #elif   (defined AMD64)
1751   static  Elf32_Half running_arch_code=EM_X86_64;
1752 #elif  (defined IA64)
1753   static  Elf32_Half running_arch_code=EM_IA_64;
1754 #elif  (defined __sparc) && (defined _LP64)
1755   static  Elf32_Half running_arch_code=EM_SPARCV9;
1756 #elif  (defined __sparc) && (!defined _LP64)
1757   static  Elf32_Half running_arch_code=EM_SPARC;
1758 #elif  (defined __powerpc64__)
1759   static  Elf32_Half running_arch_code=EM_PPC64;
1760 #elif  (defined __powerpc__)
1761   static  Elf32_Half running_arch_code=EM_PPC;
1762 #elif  (defined ARM)
1763   static  Elf32_Half running_arch_code=EM_ARM;
1764 #elif  (defined S390)
1765   static  Elf32_Half running_arch_code=EM_S390;
1766 #elif  (defined ALPHA)
1767   static  Elf32_Half running_arch_code=EM_ALPHA;
1768 #elif  (defined MIPSEL)
1769   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1770 #elif  (defined PARISC)
1771   static  Elf32_Half running_arch_code=EM_PARISC;
1772 #elif  (defined MIPS)
1773   static  Elf32_Half running_arch_code=EM_MIPS;
1774 #elif  (defined M68K)
1775   static  Elf32_Half running_arch_code=EM_68K;
1776 #elif  (defined AARCH64)
1777   static  Elf32_Half running_arch_code=EM_AARCH64;
1778 #else
1779     #error Method os::dll_load requires that one of following is defined:\
1780          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1781 #endif
1782 
1783   // Identify compatability class for VM's architecture and library's architecture
1784   // Obtain string descriptions for architectures
1785 
1786   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1787   int running_arch_index=-1;
1788 
1789   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1790     if (running_arch_code == arch_array[i].code) {
1791       running_arch_index    = i;
1792     }
1793     if (lib_arch.code == arch_array[i].code) {
1794       lib_arch.compat_class = arch_array[i].compat_class;
1795       lib_arch.name         = arch_array[i].name;
1796     }
1797   }
1798 
1799   assert(running_arch_index != -1,
1800          "Didn't find running architecture code (running_arch_code) in arch_array");
1801   if (running_arch_index == -1) {
1802     // Even though running architecture detection failed
1803     // we may still continue with reporting dlerror() message
1804     return NULL;
1805   }
1806 
1807   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1808     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1809     return NULL;
1810   }
1811 
1812 #ifndef S390
1813   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1814     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1815     return NULL;
1816   }
1817 #endif // !S390
1818 
1819   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1820     if (lib_arch.name!=NULL) {
1821       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1822                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1823                  lib_arch.name, arch_array[running_arch_index].name);
1824     } else {
1825       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1826                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1827                  lib_arch.code,
1828                  arch_array[running_arch_index].name);
1829     }
1830   }
1831 
1832   return NULL;
1833 }
1834 
1835 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1836                                 int ebuflen) {
1837   void * result = ::dlopen(filename, RTLD_LAZY);
1838   if (result == NULL) {
1839     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1840     ebuf[ebuflen-1] = '\0';
1841   }
1842   return result;
1843 }
1844 
1845 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1846                                        int ebuflen) {
1847   void * result = NULL;
1848   if (LoadExecStackDllInVMThread) {
1849     result = dlopen_helper(filename, ebuf, ebuflen);
1850   }
1851 
1852   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1853   // library that requires an executable stack, or which does not have this
1854   // stack attribute set, dlopen changes the stack attribute to executable. The
1855   // read protection of the guard pages gets lost.
1856   //
1857   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1858   // may have been queued at the same time.
1859 
1860   if (!_stack_is_executable) {
1861     JavaThread *jt = Threads::first();
1862 
1863     while (jt) {
1864       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1865           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1866         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1867                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1868           warning("Attempt to reguard stack yellow zone failed.");
1869         }
1870       }
1871       jt = jt->next();
1872     }
1873   }
1874 
1875   return result;
1876 }
1877 
1878 void* os::dll_lookup(void* handle, const char* name) {
1879   void* res = dlsym(handle, name);
1880   return res;
1881 }
1882 
1883 void* os::get_default_process_handle() {
1884   return (void*)::dlopen(NULL, RTLD_LAZY);
1885 }
1886 
1887 static bool _print_ascii_file(const char* filename, outputStream* st) {
1888   int fd = ::open(filename, O_RDONLY);
1889   if (fd == -1) {
1890     return false;
1891   }
1892 
1893   char buf[32];
1894   int bytes;
1895   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1896     st->print_raw(buf, bytes);
1897   }
1898 
1899   ::close(fd);
1900 
1901   return true;
1902 }
1903 
1904 void os::print_dll_info(outputStream *st) {
1905   st->print_cr("Dynamic libraries:");
1906 
1907   char fname[32];
1908   pid_t pid = os::Linux::gettid();
1909 
1910   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1911 
1912   if (!_print_ascii_file(fname, st)) {
1913     st->print("Can not get library information for pid = %d\n", pid);
1914   }
1915 }
1916 
1917 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1918   FILE *procmapsFile = NULL;
1919 
1920   // Open the procfs maps file for the current process
1921   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1922     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1923     char line[PATH_MAX + 100];
1924 
1925     // Read line by line from 'file'
1926     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1927       u8 base, top, offset, inode;
1928       char permissions[5];
1929       char device[6];
1930       char name[PATH_MAX + 1];
1931 
1932       // Parse fields from line
1933       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1934              &base, &top, permissions, &offset, device, &inode, name);
1935 
1936       // Filter by device id '00:00' so that we only get file system mapped files.
1937       if (strcmp(device, "00:00") != 0) {
1938 
1939         // Call callback with the fields of interest
1940         if(callback(name, (address)base, (address)top, param)) {
1941           // Oops abort, callback aborted
1942           fclose(procmapsFile);
1943           return 1;
1944         }
1945       }
1946     }
1947     fclose(procmapsFile);
1948   }
1949   return 0;
1950 }
1951 
1952 void os::print_os_info_brief(outputStream* st) {
1953   os::Linux::print_distro_info(st);
1954 
1955   os::Posix::print_uname_info(st);
1956 
1957   os::Linux::print_libversion_info(st);
1958 
1959 }
1960 
1961 void os::print_os_info(outputStream* st) {
1962   st->print("OS:");
1963 
1964   os::Linux::print_distro_info(st);
1965 
1966   os::Posix::print_uname_info(st);
1967 
1968   // Print warning if unsafe chroot environment detected
1969   if (unsafe_chroot_detected) {
1970     st->print("WARNING!! ");
1971     st->print_cr("%s", unstable_chroot_error);
1972   }
1973 
1974   os::Linux::print_libversion_info(st);
1975 
1976   os::Posix::print_rlimit_info(st);
1977 
1978   os::Posix::print_load_average(st);
1979 
1980   os::Linux::print_full_memory_info(st);
1981 }
1982 
1983 // Try to identify popular distros.
1984 // Most Linux distributions have a /etc/XXX-release file, which contains
1985 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1986 // file that also contains the OS version string. Some have more than one
1987 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1988 // /etc/redhat-release.), so the order is important.
1989 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1990 // their own specific XXX-release file as well as a redhat-release file.
1991 // Because of this the XXX-release file needs to be searched for before the
1992 // redhat-release file.
1993 // Since Red Hat has a lsb-release file that is not very descriptive the
1994 // search for redhat-release needs to be before lsb-release.
1995 // Since the lsb-release file is the new standard it needs to be searched
1996 // before the older style release files.
1997 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1998 // next to last resort.  The os-release file is a new standard that contains
1999 // distribution information and the system-release file seems to be an old
2000 // standard that has been replaced by the lsb-release and os-release files.
2001 // Searching for the debian_version file is the last resort.  It contains
2002 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2003 // "Debian " is printed before the contents of the debian_version file.
2004 
2005 const char* distro_files[] = {
2006   "/etc/oracle-release",
2007   "/etc/mandriva-release",
2008   "/etc/mandrake-release",
2009   "/etc/sun-release",
2010   "/etc/redhat-release",
2011   "/etc/lsb-release",
2012   "/etc/SuSE-release",
2013   "/etc/turbolinux-release",
2014   "/etc/gentoo-release",
2015   "/etc/ltib-release",
2016   "/etc/angstrom-version",
2017   "/etc/system-release",
2018   "/etc/os-release",
2019   NULL };
2020 
2021 void os::Linux::print_distro_info(outputStream* st) {
2022   for (int i = 0;; i++) {
2023     const char* file = distro_files[i];
2024     if (file == NULL) {
2025       break;  // done
2026     }
2027     // If file prints, we found it.
2028     if (_print_ascii_file(file, st)) {
2029       return;
2030     }
2031   }
2032 
2033   if (file_exists("/etc/debian_version")) {
2034     st->print("Debian ");
2035     _print_ascii_file("/etc/debian_version", st);
2036   } else {
2037     st->print("Linux");
2038   }
2039   st->cr();
2040 }
2041 
2042 static void parse_os_info(char* distro, size_t length, const char* file) {
2043   FILE* fp = fopen(file, "r");
2044   if (fp != NULL) {
2045     char buf[256];
2046     // get last line of the file.
2047     while (fgets(buf, sizeof(buf), fp)) { }
2048     // Edit out extra stuff in expected ubuntu format
2049     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2050       char* ptr = strstr(buf, "\"");  // the name is in quotes
2051       if (ptr != NULL) {
2052         ptr++; // go beyond first quote
2053         char* nl = strchr(ptr, '\"');
2054         if (nl != NULL) *nl = '\0';
2055         strncpy(distro, ptr, length);
2056       } else {
2057         ptr = strstr(buf, "=");
2058         ptr++; // go beyond equals then
2059         char* nl = strchr(ptr, '\n');
2060         if (nl != NULL) *nl = '\0';
2061         strncpy(distro, ptr, length);
2062       }
2063     } else {
2064       // if not in expected Ubuntu format, print out whole line minus \n
2065       char* nl = strchr(buf, '\n');
2066       if (nl != NULL) *nl = '\0';
2067       strncpy(distro, buf, length);
2068     }
2069     // close distro file
2070     fclose(fp);
2071   }
2072 }
2073 
2074 void os::get_summary_os_info(char* buf, size_t buflen) {
2075   for (int i = 0;; i++) {
2076     const char* file = distro_files[i];
2077     if (file == NULL) {
2078       break; // ran out of distro_files
2079     }
2080     if (file_exists(file)) {
2081       parse_os_info(buf, buflen, file);
2082       return;
2083     }
2084   }
2085   // special case for debian
2086   if (file_exists("/etc/debian_version")) {
2087     strncpy(buf, "Debian ", buflen);
2088     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2089   } else {
2090     strncpy(buf, "Linux", buflen);
2091   }
2092 }
2093 
2094 void os::Linux::print_libversion_info(outputStream* st) {
2095   // libc, pthread
2096   st->print("libc:");
2097   st->print("%s ", os::Linux::glibc_version());
2098   st->print("%s ", os::Linux::libpthread_version());
2099   st->cr();
2100 }
2101 
2102 void os::Linux::print_full_memory_info(outputStream* st) {
2103   st->print("\n/proc/meminfo:\n");
2104   _print_ascii_file("/proc/meminfo", st);
2105   st->cr();
2106 }
2107 
2108 void os::print_memory_info(outputStream* st) {
2109 
2110   st->print("Memory:");
2111   st->print(" %dk page", os::vm_page_size()>>10);
2112 
2113   // values in struct sysinfo are "unsigned long"
2114   struct sysinfo si;
2115   sysinfo(&si);
2116 
2117   st->print(", physical " UINT64_FORMAT "k",
2118             os::physical_memory() >> 10);
2119   st->print("(" UINT64_FORMAT "k free)",
2120             os::available_memory() >> 10);
2121   st->print(", swap " UINT64_FORMAT "k",
2122             ((jlong)si.totalswap * si.mem_unit) >> 10);
2123   st->print("(" UINT64_FORMAT "k free)",
2124             ((jlong)si.freeswap * si.mem_unit) >> 10);
2125   st->cr();
2126 }
2127 
2128 // Print the first "model name" line and the first "flags" line
2129 // that we find and nothing more. We assume "model name" comes
2130 // before "flags" so if we find a second "model name", then the
2131 // "flags" field is considered missing.
2132 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2133 #if defined(IA32) || defined(AMD64)
2134   // Other platforms have less repetitive cpuinfo files
2135   FILE *fp = fopen("/proc/cpuinfo", "r");
2136   if (fp) {
2137     while (!feof(fp)) {
2138       if (fgets(buf, buflen, fp)) {
2139         // Assume model name comes before flags
2140         bool model_name_printed = false;
2141         if (strstr(buf, "model name") != NULL) {
2142           if (!model_name_printed) {
2143             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2144             st->print_raw(buf);
2145             model_name_printed = true;
2146           } else {
2147             // model name printed but not flags?  Odd, just return
2148             fclose(fp);
2149             return true;
2150           }
2151         }
2152         // print the flags line too
2153         if (strstr(buf, "flags") != NULL) {
2154           st->print_raw(buf);
2155           fclose(fp);
2156           return true;
2157         }
2158       }
2159     }
2160     fclose(fp);
2161   }
2162 #endif // x86 platforms
2163   return false;
2164 }
2165 
2166 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2167   // Only print the model name if the platform provides this as a summary
2168   if (!print_model_name_and_flags(st, buf, buflen)) {
2169     st->print("\n/proc/cpuinfo:\n");
2170     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2171       st->print_cr("  <Not Available>");
2172     }
2173   }
2174 }
2175 
2176 #if defined(AMD64) || defined(IA32) || defined(X32)
2177 const char* search_string = "model name";
2178 #elif defined(SPARC)
2179 const char* search_string = "cpu";
2180 #else
2181 const char* search_string = "Processor";
2182 #endif
2183 
2184 // Parses the cpuinfo file for string representing the model name.
2185 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2186   FILE* fp = fopen("/proc/cpuinfo", "r");
2187   if (fp != NULL) {
2188     while (!feof(fp)) {
2189       char buf[256];
2190       if (fgets(buf, sizeof(buf), fp)) {
2191         char* start = strstr(buf, search_string);
2192         if (start != NULL) {
2193           char *ptr = start + strlen(search_string);
2194           char *end = buf + strlen(buf);
2195           while (ptr != end) {
2196              // skip whitespace and colon for the rest of the name.
2197              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2198                break;
2199              }
2200              ptr++;
2201           }
2202           if (ptr != end) {
2203             // reasonable string, get rid of newline and keep the rest
2204             char* nl = strchr(buf, '\n');
2205             if (nl != NULL) *nl = '\0';
2206             strncpy(cpuinfo, ptr, length);
2207             fclose(fp);
2208             return;
2209           }
2210         }
2211       }
2212     }
2213     fclose(fp);
2214   }
2215   // cpuinfo not found or parsing failed, just print generic string.  The entire
2216   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2217 #if defined(AMD64)
2218   strncpy(cpuinfo, "x86_64", length);
2219 #elif defined(IA32)
2220   strncpy(cpuinfo, "x86_32", length);
2221 #elif defined(IA64)
2222   strncpy(cpuinfo, "IA64", length);
2223 #elif defined(SPARC)
2224   strncpy(cpuinfo, "sparcv9", length);
2225 #elif defined(AARCH64)
2226   strncpy(cpuinfo, "AArch64", length);
2227 #elif defined(ARM)
2228   strncpy(cpuinfo, "ARM", length);
2229 #elif defined(PPC)
2230   strncpy(cpuinfo, "PPC64", length);
2231 #elif defined(ZERO_LIBARCH)
2232   strncpy(cpuinfo, ZERO_LIBARCH, length);
2233 #else
2234   strncpy(cpuinfo, "unknown", length);
2235 #endif
2236 }
2237 
2238 void os::print_siginfo(outputStream* st, void* siginfo) {
2239   const siginfo_t* si = (const siginfo_t*)siginfo;
2240 
2241   os::Posix::print_siginfo_brief(st, si);
2242 #if INCLUDE_CDS
2243   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2244       UseSharedSpaces) {
2245     FileMapInfo* mapinfo = FileMapInfo::current_info();
2246     if (mapinfo->is_in_shared_space(si->si_addr)) {
2247       st->print("\n\nError accessing class data sharing archive."   \
2248                 " Mapped file inaccessible during execution, "      \
2249                 " possible disk/network problem.");
2250     }
2251   }
2252 #endif
2253   st->cr();
2254 }
2255 
2256 
2257 static void print_signal_handler(outputStream* st, int sig,
2258                                  char* buf, size_t buflen);
2259 
2260 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2261   st->print_cr("Signal Handlers:");
2262   print_signal_handler(st, SIGSEGV, buf, buflen);
2263   print_signal_handler(st, SIGBUS , buf, buflen);
2264   print_signal_handler(st, SIGFPE , buf, buflen);
2265   print_signal_handler(st, SIGPIPE, buf, buflen);
2266   print_signal_handler(st, SIGXFSZ, buf, buflen);
2267   print_signal_handler(st, SIGILL , buf, buflen);
2268   print_signal_handler(st, SR_signum, buf, buflen);
2269   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2270   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2271   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2272   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2273 #if defined(PPC64)
2274   print_signal_handler(st, SIGTRAP, buf, buflen);
2275 #endif
2276 }
2277 
2278 static char saved_jvm_path[MAXPATHLEN] = {0};
2279 
2280 // Find the full path to the current module, libjvm.so
2281 void os::jvm_path(char *buf, jint buflen) {
2282   // Error checking.
2283   if (buflen < MAXPATHLEN) {
2284     assert(false, "must use a large-enough buffer");
2285     buf[0] = '\0';
2286     return;
2287   }
2288   // Lazy resolve the path to current module.
2289   if (saved_jvm_path[0] != 0) {
2290     strcpy(buf, saved_jvm_path);
2291     return;
2292   }
2293 
2294   char dli_fname[MAXPATHLEN];
2295   bool ret = dll_address_to_library_name(
2296                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2297                                          dli_fname, sizeof(dli_fname), NULL);
2298   assert(ret, "cannot locate libjvm");
2299   char *rp = NULL;
2300   if (ret && dli_fname[0] != '\0') {
2301     rp = realpath(dli_fname, buf);
2302   }
2303   if (rp == NULL) {
2304     return;
2305   }
2306 
2307   if (Arguments::sun_java_launcher_is_altjvm()) {
2308     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2309     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2310     // If "/jre/lib/" appears at the right place in the string, then
2311     // assume we are installed in a JDK and we're done. Otherwise, check
2312     // for a JAVA_HOME environment variable and fix up the path so it
2313     // looks like libjvm.so is installed there (append a fake suffix
2314     // hotspot/libjvm.so).
2315     const char *p = buf + strlen(buf) - 1;
2316     for (int count = 0; p > buf && count < 5; ++count) {
2317       for (--p; p > buf && *p != '/'; --p)
2318         /* empty */ ;
2319     }
2320 
2321     if (strncmp(p, "/jre/lib/", 9) != 0) {
2322       // Look for JAVA_HOME in the environment.
2323       char* java_home_var = ::getenv("JAVA_HOME");
2324       if (java_home_var != NULL && java_home_var[0] != 0) {
2325         char* jrelib_p;
2326         int len;
2327 
2328         // Check the current module name "libjvm.so".
2329         p = strrchr(buf, '/');
2330         if (p == NULL) {
2331           return;
2332         }
2333         assert(strstr(p, "/libjvm") == p, "invalid library name");
2334 
2335         rp = realpath(java_home_var, buf);
2336         if (rp == NULL) {
2337           return;
2338         }
2339 
2340         // determine if this is a legacy image or modules image
2341         // modules image doesn't have "jre" subdirectory
2342         len = strlen(buf);
2343         assert(len < buflen, "Ran out of buffer room");
2344         jrelib_p = buf + len;
2345         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2346         if (0 != access(buf, F_OK)) {
2347           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2348         }
2349 
2350         if (0 == access(buf, F_OK)) {
2351           // Use current module name "libjvm.so"
2352           len = strlen(buf);
2353           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2354         } else {
2355           // Go back to path of .so
2356           rp = realpath(dli_fname, buf);
2357           if (rp == NULL) {
2358             return;
2359           }
2360         }
2361       }
2362     }
2363   }
2364 
2365   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2366   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2367 }
2368 
2369 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2370   // no prefix required, not even "_"
2371 }
2372 
2373 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2374   // no suffix required
2375 }
2376 
2377 ////////////////////////////////////////////////////////////////////////////////
2378 // sun.misc.Signal support
2379 
2380 static volatile jint sigint_count = 0;
2381 
2382 static void UserHandler(int sig, void *siginfo, void *context) {
2383   // 4511530 - sem_post is serialized and handled by the manager thread. When
2384   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2385   // don't want to flood the manager thread with sem_post requests.
2386   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2387     return;
2388   }
2389 
2390   // Ctrl-C is pressed during error reporting, likely because the error
2391   // handler fails to abort. Let VM die immediately.
2392   if (sig == SIGINT && is_error_reported()) {
2393     os::die();
2394   }
2395 
2396   os::signal_notify(sig);
2397 }
2398 
2399 void* os::user_handler() {
2400   return CAST_FROM_FN_PTR(void*, UserHandler);
2401 }
2402 
2403 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2404   struct timespec ts;
2405   // Semaphore's are always associated with CLOCK_REALTIME
2406   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2407   // see unpackTime for discussion on overflow checking
2408   if (sec >= MAX_SECS) {
2409     ts.tv_sec += MAX_SECS;
2410     ts.tv_nsec = 0;
2411   } else {
2412     ts.tv_sec += sec;
2413     ts.tv_nsec += nsec;
2414     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2415       ts.tv_nsec -= NANOSECS_PER_SEC;
2416       ++ts.tv_sec; // note: this must be <= max_secs
2417     }
2418   }
2419 
2420   return ts;
2421 }
2422 
2423 extern "C" {
2424   typedef void (*sa_handler_t)(int);
2425   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2426 }
2427 
2428 void* os::signal(int signal_number, void* handler) {
2429   struct sigaction sigAct, oldSigAct;
2430 
2431   sigfillset(&(sigAct.sa_mask));
2432   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2433   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2434 
2435   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2436     // -1 means registration failed
2437     return (void *)-1;
2438   }
2439 
2440   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2441 }
2442 
2443 void os::signal_raise(int signal_number) {
2444   ::raise(signal_number);
2445 }
2446 
2447 // The following code is moved from os.cpp for making this
2448 // code platform specific, which it is by its very nature.
2449 
2450 // Will be modified when max signal is changed to be dynamic
2451 int os::sigexitnum_pd() {
2452   return NSIG;
2453 }
2454 
2455 // a counter for each possible signal value
2456 static volatile jint pending_signals[NSIG+1] = { 0 };
2457 
2458 // Linux(POSIX) specific hand shaking semaphore.
2459 static sem_t sig_sem;
2460 static PosixSemaphore sr_semaphore;
2461 
2462 void os::signal_init_pd() {
2463   // Initialize signal structures
2464   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2465 
2466   // Initialize signal semaphore
2467   ::sem_init(&sig_sem, 0, 0);
2468 }
2469 
2470 void os::signal_notify(int sig) {
2471   Atomic::inc(&pending_signals[sig]);
2472   ::sem_post(&sig_sem);
2473 }
2474 
2475 static int check_pending_signals(bool wait) {
2476   Atomic::store(0, &sigint_count);
2477   for (;;) {
2478     for (int i = 0; i < NSIG + 1; i++) {
2479       jint n = pending_signals[i];
2480       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2481         return i;
2482       }
2483     }
2484     if (!wait) {
2485       return -1;
2486     }
2487     JavaThread *thread = JavaThread::current();
2488     ThreadBlockInVM tbivm(thread);
2489 
2490     bool threadIsSuspended;
2491     do {
2492       thread->set_suspend_equivalent();
2493       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2494       ::sem_wait(&sig_sem);
2495 
2496       // were we externally suspended while we were waiting?
2497       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2498       if (threadIsSuspended) {
2499         // The semaphore has been incremented, but while we were waiting
2500         // another thread suspended us. We don't want to continue running
2501         // while suspended because that would surprise the thread that
2502         // suspended us.
2503         ::sem_post(&sig_sem);
2504 
2505         thread->java_suspend_self();
2506       }
2507     } while (threadIsSuspended);
2508   }
2509 }
2510 
2511 int os::signal_lookup() {
2512   return check_pending_signals(false);
2513 }
2514 
2515 int os::signal_wait() {
2516   return check_pending_signals(true);
2517 }
2518 
2519 ////////////////////////////////////////////////////////////////////////////////
2520 // Virtual Memory
2521 
2522 int os::vm_page_size() {
2523   // Seems redundant as all get out
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Solaris allocates memory by pages.
2529 int os::vm_allocation_granularity() {
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Rationale behind this function:
2535 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2536 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2537 //  samples for JITted code. Here we create private executable mapping over the code cache
2538 //  and then we can use standard (well, almost, as mapping can change) way to provide
2539 //  info for the reporting script by storing timestamp and location of symbol
2540 void linux_wrap_code(char* base, size_t size) {
2541   static volatile jint cnt = 0;
2542 
2543   if (!UseOprofile) {
2544     return;
2545   }
2546 
2547   char buf[PATH_MAX+1];
2548   int num = Atomic::add(1, &cnt);
2549 
2550   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2551            os::get_temp_directory(), os::current_process_id(), num);
2552   unlink(buf);
2553 
2554   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2555 
2556   if (fd != -1) {
2557     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2558     if (rv != (off_t)-1) {
2559       if (::write(fd, "", 1) == 1) {
2560         mmap(base, size,
2561              PROT_READ|PROT_WRITE|PROT_EXEC,
2562              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2563       }
2564     }
2565     ::close(fd);
2566     unlink(buf);
2567   }
2568 }
2569 
2570 static bool recoverable_mmap_error(int err) {
2571   // See if the error is one we can let the caller handle. This
2572   // list of errno values comes from JBS-6843484. I can't find a
2573   // Linux man page that documents this specific set of errno
2574   // values so while this list currently matches Solaris, it may
2575   // change as we gain experience with this failure mode.
2576   switch (err) {
2577   case EBADF:
2578   case EINVAL:
2579   case ENOTSUP:
2580     // let the caller deal with these errors
2581     return true;
2582 
2583   default:
2584     // Any remaining errors on this OS can cause our reserved mapping
2585     // to be lost. That can cause confusion where different data
2586     // structures think they have the same memory mapped. The worst
2587     // scenario is if both the VM and a library think they have the
2588     // same memory mapped.
2589     return false;
2590   }
2591 }
2592 
2593 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2594                                     int err) {
2595   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2596           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2597           strerror(err), err);
2598 }
2599 
2600 static void warn_fail_commit_memory(char* addr, size_t size,
2601                                     size_t alignment_hint, bool exec,
2602                                     int err) {
2603   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2604           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2605           alignment_hint, exec, strerror(err), err);
2606 }
2607 
2608 // NOTE: Linux kernel does not really reserve the pages for us.
2609 //       All it does is to check if there are enough free pages
2610 //       left at the time of mmap(). This could be a potential
2611 //       problem.
2612 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2613   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2614   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2615                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2616   if (res != (uintptr_t) MAP_FAILED) {
2617     if (UseNUMAInterleaving) {
2618       numa_make_global(addr, size);
2619     }
2620     return 0;
2621   }
2622 
2623   int err = errno;  // save errno from mmap() call above
2624 
2625   if (!recoverable_mmap_error(err)) {
2626     warn_fail_commit_memory(addr, size, exec, err);
2627     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2628   }
2629 
2630   return err;
2631 }
2632 
2633 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2634   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2635 }
2636 
2637 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2638                                   const char* mesg) {
2639   assert(mesg != NULL, "mesg must be specified");
2640   int err = os::Linux::commit_memory_impl(addr, size, exec);
2641   if (err != 0) {
2642     // the caller wants all commit errors to exit with the specified mesg:
2643     warn_fail_commit_memory(addr, size, exec, err);
2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2645   }
2646 }
2647 
2648 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2649 #ifndef MAP_HUGETLB
2650   #define MAP_HUGETLB 0x40000
2651 #endif
2652 
2653 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2654 #ifndef MADV_HUGEPAGE
2655   #define MADV_HUGEPAGE 14
2656 #endif
2657 
2658 int os::Linux::commit_memory_impl(char* addr, size_t size,
2659                                   size_t alignment_hint, bool exec) {
2660   int err = os::Linux::commit_memory_impl(addr, size, exec);
2661   if (err == 0) {
2662     realign_memory(addr, size, alignment_hint);
2663   }
2664   return err;
2665 }
2666 
2667 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2668                           bool exec) {
2669   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2670 }
2671 
2672 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2673                                   size_t alignment_hint, bool exec,
2674                                   const char* mesg) {
2675   assert(mesg != NULL, "mesg must be specified");
2676   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2677   if (err != 0) {
2678     // the caller wants all commit errors to exit with the specified mesg:
2679     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2680     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2681   }
2682 }
2683 
2684 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2685   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2686     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2687     // be supported or the memory may already be backed by huge pages.
2688     ::madvise(addr, bytes, MADV_HUGEPAGE);
2689   }
2690 }
2691 
2692 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2693   // This method works by doing an mmap over an existing mmaping and effectively discarding
2694   // the existing pages. However it won't work for SHM-based large pages that cannot be
2695   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2696   // small pages on top of the SHM segment. This method always works for small pages, so we
2697   // allow that in any case.
2698   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2699     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2700   }
2701 }
2702 
2703 void os::numa_make_global(char *addr, size_t bytes) {
2704   Linux::numa_interleave_memory(addr, bytes);
2705 }
2706 
2707 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2708 // bind policy to MPOL_PREFERRED for the current thread.
2709 #define USE_MPOL_PREFERRED 0
2710 
2711 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2712   // To make NUMA and large pages more robust when both enabled, we need to ease
2713   // the requirements on where the memory should be allocated. MPOL_BIND is the
2714   // default policy and it will force memory to be allocated on the specified
2715   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2716   // the specified node, but will not force it. Using this policy will prevent
2717   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2718   // free large pages.
2719   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2720   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2721 }
2722 
2723 bool os::numa_topology_changed() { return false; }
2724 
2725 size_t os::numa_get_groups_num() {
2726   int max_node = Linux::numa_max_node();
2727   return max_node > 0 ? max_node + 1 : 1;
2728 }
2729 
2730 int os::numa_get_group_id() {
2731   int cpu_id = Linux::sched_getcpu();
2732   if (cpu_id != -1) {
2733     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2734     if (lgrp_id != -1) {
2735       return lgrp_id;
2736     }
2737   }
2738   return 0;
2739 }
2740 
2741 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2742   for (size_t i = 0; i < size; i++) {
2743     ids[i] = i;
2744   }
2745   return size;
2746 }
2747 
2748 bool os::get_page_info(char *start, page_info* info) {
2749   return false;
2750 }
2751 
2752 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2753                      page_info* page_found) {
2754   return end;
2755 }
2756 
2757 
2758 int os::Linux::sched_getcpu_syscall(void) {
2759   unsigned int cpu = 0;
2760   int retval = -1;
2761 
2762 #if defined(IA32)
2763   #ifndef SYS_getcpu
2764     #define SYS_getcpu 318
2765   #endif
2766   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2767 #elif defined(AMD64)
2768 // Unfortunately we have to bring all these macros here from vsyscall.h
2769 // to be able to compile on old linuxes.
2770   #define __NR_vgetcpu 2
2771   #define VSYSCALL_START (-10UL << 20)
2772   #define VSYSCALL_SIZE 1024
2773   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2774   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2775   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2776   retval = vgetcpu(&cpu, NULL, NULL);
2777 #endif
2778 
2779   return (retval == -1) ? retval : cpu;
2780 }
2781 
2782 // Something to do with the numa-aware allocator needs these symbols
2783 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2784 extern "C" JNIEXPORT void numa_error(char *where) { }
2785 extern "C" JNIEXPORT int fork1() { return fork(); }
2786 
2787 
2788 // If we are running with libnuma version > 2, then we should
2789 // be trying to use symbols with versions 1.1
2790 // If we are running with earlier version, which did not have symbol versions,
2791 // we should use the base version.
2792 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2793   void *f = dlvsym(handle, name, "libnuma_1.1");
2794   if (f == NULL) {
2795     f = dlsym(handle, name);
2796   }
2797   return f;
2798 }
2799 
2800 bool os::Linux::libnuma_init() {
2801   // sched_getcpu() should be in libc.
2802   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2803                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2804 
2805   // If it's not, try a direct syscall.
2806   if (sched_getcpu() == -1) {
2807     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2808                                     (void*)&sched_getcpu_syscall));
2809   }
2810 
2811   if (sched_getcpu() != -1) { // Does it work?
2812     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2813     if (handle != NULL) {
2814       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2815                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2816       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2817                                        libnuma_dlsym(handle, "numa_max_node")));
2818       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2819                                         libnuma_dlsym(handle, "numa_available")));
2820       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2821                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2822       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2823                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2824       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2825                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2826 
2827 
2828       if (numa_available() != -1) {
2829         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2830         // Create a cpu -> node mapping
2831         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2832         rebuild_cpu_to_node_map();
2833         return true;
2834       }
2835     }
2836   }
2837   return false;
2838 }
2839 
2840 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2841 // The table is later used in get_node_by_cpu().
2842 void os::Linux::rebuild_cpu_to_node_map() {
2843   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2844                               // in libnuma (possible values are starting from 16,
2845                               // and continuing up with every other power of 2, but less
2846                               // than the maximum number of CPUs supported by kernel), and
2847                               // is a subject to change (in libnuma version 2 the requirements
2848                               // are more reasonable) we'll just hardcode the number they use
2849                               // in the library.
2850   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2851 
2852   size_t cpu_num = os::active_processor_count();
2853   size_t cpu_map_size = NCPUS / BitsPerCLong;
2854   size_t cpu_map_valid_size =
2855     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2856 
2857   cpu_to_node()->clear();
2858   cpu_to_node()->at_grow(cpu_num - 1);
2859   size_t node_num = numa_get_groups_num();
2860 
2861   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2862   for (size_t i = 0; i < node_num; i++) {
2863     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2864       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2865         if (cpu_map[j] != 0) {
2866           for (size_t k = 0; k < BitsPerCLong; k++) {
2867             if (cpu_map[j] & (1UL << k)) {
2868               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2869             }
2870           }
2871         }
2872       }
2873     }
2874   }
2875   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2876 }
2877 
2878 int os::Linux::get_node_by_cpu(int cpu_id) {
2879   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2880     return cpu_to_node()->at(cpu_id);
2881   }
2882   return -1;
2883 }
2884 
2885 GrowableArray<int>* os::Linux::_cpu_to_node;
2886 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2887 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2888 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2889 os::Linux::numa_available_func_t os::Linux::_numa_available;
2890 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2891 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2892 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2893 unsigned long* os::Linux::_numa_all_nodes;
2894 
2895 bool os::pd_uncommit_memory(char* addr, size_t size) {
2896   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2897                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2898   return res  != (uintptr_t) MAP_FAILED;
2899 }
2900 
2901 static address get_stack_commited_bottom(address bottom, size_t size) {
2902   address nbot = bottom;
2903   address ntop = bottom + size;
2904 
2905   size_t page_sz = os::vm_page_size();
2906   unsigned pages = size / page_sz;
2907 
2908   unsigned char vec[1];
2909   unsigned imin = 1, imax = pages + 1, imid;
2910   int mincore_return_value = 0;
2911 
2912   assert(imin <= imax, "Unexpected page size");
2913 
2914   while (imin < imax) {
2915     imid = (imax + imin) / 2;
2916     nbot = ntop - (imid * page_sz);
2917 
2918     // Use a trick with mincore to check whether the page is mapped or not.
2919     // mincore sets vec to 1 if page resides in memory and to 0 if page
2920     // is swapped output but if page we are asking for is unmapped
2921     // it returns -1,ENOMEM
2922     mincore_return_value = mincore(nbot, page_sz, vec);
2923 
2924     if (mincore_return_value == -1) {
2925       // Page is not mapped go up
2926       // to find first mapped page
2927       if (errno != EAGAIN) {
2928         assert(errno == ENOMEM, "Unexpected mincore errno");
2929         imax = imid;
2930       }
2931     } else {
2932       // Page is mapped go down
2933       // to find first not mapped page
2934       imin = imid + 1;
2935     }
2936   }
2937 
2938   nbot = nbot + page_sz;
2939 
2940   // Adjust stack bottom one page up if last checked page is not mapped
2941   if (mincore_return_value == -1) {
2942     nbot = nbot + page_sz;
2943   }
2944 
2945   return nbot;
2946 }
2947 
2948 
2949 // Linux uses a growable mapping for the stack, and if the mapping for
2950 // the stack guard pages is not removed when we detach a thread the
2951 // stack cannot grow beyond the pages where the stack guard was
2952 // mapped.  If at some point later in the process the stack expands to
2953 // that point, the Linux kernel cannot expand the stack any further
2954 // because the guard pages are in the way, and a segfault occurs.
2955 //
2956 // However, it's essential not to split the stack region by unmapping
2957 // a region (leaving a hole) that's already part of the stack mapping,
2958 // so if the stack mapping has already grown beyond the guard pages at
2959 // the time we create them, we have to truncate the stack mapping.
2960 // So, we need to know the extent of the stack mapping when
2961 // create_stack_guard_pages() is called.
2962 
2963 // We only need this for stacks that are growable: at the time of
2964 // writing thread stacks don't use growable mappings (i.e. those
2965 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2966 // only applies to the main thread.
2967 
2968 // If the (growable) stack mapping already extends beyond the point
2969 // where we're going to put our guard pages, truncate the mapping at
2970 // that point by munmap()ping it.  This ensures that when we later
2971 // munmap() the guard pages we don't leave a hole in the stack
2972 // mapping. This only affects the main/initial thread
2973 
2974 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2975   if (os::Linux::is_initial_thread()) {
2976     // As we manually grow stack up to bottom inside create_attached_thread(),
2977     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2978     // we don't need to do anything special.
2979     // Check it first, before calling heavy function.
2980     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2981     unsigned char vec[1];
2982 
2983     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2984       // Fallback to slow path on all errors, including EAGAIN
2985       stack_extent = (uintptr_t) get_stack_commited_bottom(
2986                                                            os::Linux::initial_thread_stack_bottom(),
2987                                                            (size_t)addr - stack_extent);
2988     }
2989 
2990     if (stack_extent < (uintptr_t)addr) {
2991       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2992     }
2993   }
2994 
2995   return os::commit_memory(addr, size, !ExecMem);
2996 }
2997 
2998 // If this is a growable mapping, remove the guard pages entirely by
2999 // munmap()ping them.  If not, just call uncommit_memory(). This only
3000 // affects the main/initial thread, but guard against future OS changes
3001 // It's safe to always unmap guard pages for initial thread because we
3002 // always place it right after end of the mapped region
3003 
3004 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3005   uintptr_t stack_extent, stack_base;
3006 
3007   if (os::Linux::is_initial_thread()) {
3008     return ::munmap(addr, size) == 0;
3009   }
3010 
3011   return os::uncommit_memory(addr, size);
3012 }
3013 
3014 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3015 // at 'requested_addr'. If there are existing memory mappings at the same
3016 // location, however, they will be overwritten. If 'fixed' is false,
3017 // 'requested_addr' is only treated as a hint, the return value may or
3018 // may not start from the requested address. Unlike Linux mmap(), this
3019 // function returns NULL to indicate failure.
3020 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3021   char * addr;
3022   int flags;
3023 
3024   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3025   if (fixed) {
3026     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3027     flags |= MAP_FIXED;
3028   }
3029 
3030   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3031   // touch an uncommitted page. Otherwise, the read/write might
3032   // succeed if we have enough swap space to back the physical page.
3033   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3034                        flags, -1, 0);
3035 
3036   return addr == MAP_FAILED ? NULL : addr;
3037 }
3038 
3039 static int anon_munmap(char * addr, size_t size) {
3040   return ::munmap(addr, size) == 0;
3041 }
3042 
3043 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3044                             size_t alignment_hint) {
3045   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3046 }
3047 
3048 bool os::pd_release_memory(char* addr, size_t size) {
3049   return anon_munmap(addr, size);
3050 }
3051 
3052 static bool linux_mprotect(char* addr, size_t size, int prot) {
3053   // Linux wants the mprotect address argument to be page aligned.
3054   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3055 
3056   // According to SUSv3, mprotect() should only be used with mappings
3057   // established by mmap(), and mmap() always maps whole pages. Unaligned
3058   // 'addr' likely indicates problem in the VM (e.g. trying to change
3059   // protection of malloc'ed or statically allocated memory). Check the
3060   // caller if you hit this assert.
3061   assert(addr == bottom, "sanity check");
3062 
3063   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3064   return ::mprotect(bottom, size, prot) == 0;
3065 }
3066 
3067 // Set protections specified
3068 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3069                         bool is_committed) {
3070   unsigned int p = 0;
3071   switch (prot) {
3072   case MEM_PROT_NONE: p = PROT_NONE; break;
3073   case MEM_PROT_READ: p = PROT_READ; break;
3074   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3075   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3076   default:
3077     ShouldNotReachHere();
3078   }
3079   // is_committed is unused.
3080   return linux_mprotect(addr, bytes, p);
3081 }
3082 
3083 bool os::guard_memory(char* addr, size_t size) {
3084   return linux_mprotect(addr, size, PROT_NONE);
3085 }
3086 
3087 bool os::unguard_memory(char* addr, size_t size) {
3088   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3089 }
3090 
3091 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3092                                                     size_t page_size) {
3093   bool result = false;
3094   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3095                  MAP_ANONYMOUS|MAP_PRIVATE,
3096                  -1, 0);
3097   if (p != MAP_FAILED) {
3098     void *aligned_p = align_ptr_up(p, page_size);
3099 
3100     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3101 
3102     munmap(p, page_size * 2);
3103   }
3104 
3105   if (warn && !result) {
3106     warning("TransparentHugePages is not supported by the operating system.");
3107   }
3108 
3109   return result;
3110 }
3111 
3112 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3113   bool result = false;
3114   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3115                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3116                  -1, 0);
3117 
3118   if (p != MAP_FAILED) {
3119     // We don't know if this really is a huge page or not.
3120     FILE *fp = fopen("/proc/self/maps", "r");
3121     if (fp) {
3122       while (!feof(fp)) {
3123         char chars[257];
3124         long x = 0;
3125         if (fgets(chars, sizeof(chars), fp)) {
3126           if (sscanf(chars, "%lx-%*x", &x) == 1
3127               && x == (long)p) {
3128             if (strstr (chars, "hugepage")) {
3129               result = true;
3130               break;
3131             }
3132           }
3133         }
3134       }
3135       fclose(fp);
3136     }
3137     munmap(p, page_size);
3138   }
3139 
3140   if (warn && !result) {
3141     warning("HugeTLBFS is not supported by the operating system.");
3142   }
3143 
3144   return result;
3145 }
3146 
3147 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3148 //
3149 // From the coredump_filter documentation:
3150 //
3151 // - (bit 0) anonymous private memory
3152 // - (bit 1) anonymous shared memory
3153 // - (bit 2) file-backed private memory
3154 // - (bit 3) file-backed shared memory
3155 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3156 //           effective only if the bit 2 is cleared)
3157 // - (bit 5) hugetlb private memory
3158 // - (bit 6) hugetlb shared memory
3159 //
3160 static void set_coredump_filter(void) {
3161   FILE *f;
3162   long cdm;
3163 
3164   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3165     return;
3166   }
3167 
3168   if (fscanf(f, "%lx", &cdm) != 1) {
3169     fclose(f);
3170     return;
3171   }
3172 
3173   rewind(f);
3174 
3175   if ((cdm & LARGEPAGES_BIT) == 0) {
3176     cdm |= LARGEPAGES_BIT;
3177     fprintf(f, "%#lx", cdm);
3178   }
3179 
3180   fclose(f);
3181 }
3182 
3183 // Large page support
3184 
3185 static size_t _large_page_size = 0;
3186 
3187 size_t os::Linux::find_large_page_size() {
3188   size_t large_page_size = 0;
3189 
3190   // large_page_size on Linux is used to round up heap size. x86 uses either
3191   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3192   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3193   // page as large as 256M.
3194   //
3195   // Here we try to figure out page size by parsing /proc/meminfo and looking
3196   // for a line with the following format:
3197   //    Hugepagesize:     2048 kB
3198   //
3199   // If we can't determine the value (e.g. /proc is not mounted, or the text
3200   // format has been changed), we'll use the largest page size supported by
3201   // the processor.
3202 
3203 #ifndef ZERO
3204   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3205                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3206 #endif // ZERO
3207 
3208   FILE *fp = fopen("/proc/meminfo", "r");
3209   if (fp) {
3210     while (!feof(fp)) {
3211       int x = 0;
3212       char buf[16];
3213       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3214         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3215           large_page_size = x * K;
3216           break;
3217         }
3218       } else {
3219         // skip to next line
3220         for (;;) {
3221           int ch = fgetc(fp);
3222           if (ch == EOF || ch == (int)'\n') break;
3223         }
3224       }
3225     }
3226     fclose(fp);
3227   }
3228 
3229   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3230     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3231             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3232             proper_unit_for_byte_size(large_page_size));
3233   }
3234 
3235   return large_page_size;
3236 }
3237 
3238 size_t os::Linux::setup_large_page_size() {
3239   _large_page_size = Linux::find_large_page_size();
3240   const size_t default_page_size = (size_t)Linux::page_size();
3241   if (_large_page_size > default_page_size) {
3242     _page_sizes[0] = _large_page_size;
3243     _page_sizes[1] = default_page_size;
3244     _page_sizes[2] = 0;
3245   }
3246 
3247   return _large_page_size;
3248 }
3249 
3250 bool os::Linux::setup_large_page_type(size_t page_size) {
3251   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3252       FLAG_IS_DEFAULT(UseSHM) &&
3253       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3254 
3255     // The type of large pages has not been specified by the user.
3256 
3257     // Try UseHugeTLBFS and then UseSHM.
3258     UseHugeTLBFS = UseSHM = true;
3259 
3260     // Don't try UseTransparentHugePages since there are known
3261     // performance issues with it turned on. This might change in the future.
3262     UseTransparentHugePages = false;
3263   }
3264 
3265   if (UseTransparentHugePages) {
3266     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3267     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3268       UseHugeTLBFS = false;
3269       UseSHM = false;
3270       return true;
3271     }
3272     UseTransparentHugePages = false;
3273   }
3274 
3275   if (UseHugeTLBFS) {
3276     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3277     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3278       UseSHM = false;
3279       return true;
3280     }
3281     UseHugeTLBFS = false;
3282   }
3283 
3284   return UseSHM;
3285 }
3286 
3287 void os::large_page_init() {
3288   if (!UseLargePages &&
3289       !UseTransparentHugePages &&
3290       !UseHugeTLBFS &&
3291       !UseSHM) {
3292     // Not using large pages.
3293     return;
3294   }
3295 
3296   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3297     // The user explicitly turned off large pages.
3298     // Ignore the rest of the large pages flags.
3299     UseTransparentHugePages = false;
3300     UseHugeTLBFS = false;
3301     UseSHM = false;
3302     return;
3303   }
3304 
3305   size_t large_page_size = Linux::setup_large_page_size();
3306   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3307 
3308   set_coredump_filter();
3309 }
3310 
3311 #ifndef SHM_HUGETLB
3312   #define SHM_HUGETLB 04000
3313 #endif
3314 
3315 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3316                                             char* req_addr, bool exec) {
3317   // "exec" is passed in but not used.  Creating the shared image for
3318   // the code cache doesn't have an SHM_X executable permission to check.
3319   assert(UseLargePages && UseSHM, "only for SHM large pages");
3320   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3321 
3322   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3323     return NULL; // Fallback to small pages.
3324   }
3325 
3326   key_t key = IPC_PRIVATE;
3327   char *addr;
3328 
3329   bool warn_on_failure = UseLargePages &&
3330                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3331                          !FLAG_IS_DEFAULT(UseSHM) ||
3332                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3333   char msg[128];
3334 
3335   // Create a large shared memory region to attach to based on size.
3336   // Currently, size is the total size of the heap
3337   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3338   if (shmid == -1) {
3339     // Possible reasons for shmget failure:
3340     // 1. shmmax is too small for Java heap.
3341     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3342     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3343     // 2. not enough large page memory.
3344     //    > check available large pages: cat /proc/meminfo
3345     //    > increase amount of large pages:
3346     //          echo new_value > /proc/sys/vm/nr_hugepages
3347     //      Note 1: different Linux may use different name for this property,
3348     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3349     //      Note 2: it's possible there's enough physical memory available but
3350     //            they are so fragmented after a long run that they can't
3351     //            coalesce into large pages. Try to reserve large pages when
3352     //            the system is still "fresh".
3353     if (warn_on_failure) {
3354       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3355       warning("%s", msg);
3356     }
3357     return NULL;
3358   }
3359 
3360   // attach to the region
3361   addr = (char*)shmat(shmid, req_addr, 0);
3362   int err = errno;
3363 
3364   // Remove shmid. If shmat() is successful, the actual shared memory segment
3365   // will be deleted when it's detached by shmdt() or when the process
3366   // terminates. If shmat() is not successful this will remove the shared
3367   // segment immediately.
3368   shmctl(shmid, IPC_RMID, NULL);
3369 
3370   if ((intptr_t)addr == -1) {
3371     if (warn_on_failure) {
3372       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3373       warning("%s", msg);
3374     }
3375     return NULL;
3376   }
3377 
3378   return addr;
3379 }
3380 
3381 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3382                                         int error) {
3383   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3384 
3385   bool warn_on_failure = UseLargePages &&
3386       (!FLAG_IS_DEFAULT(UseLargePages) ||
3387        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3388        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3389 
3390   if (warn_on_failure) {
3391     char msg[128];
3392     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3393                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3394     warning("%s", msg);
3395   }
3396 }
3397 
3398 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3399                                                         char* req_addr,
3400                                                         bool exec) {
3401   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3402   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3403   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3404 
3405   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3406   char* addr = (char*)::mmap(req_addr, bytes, prot,
3407                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3408                              -1, 0);
3409 
3410   if (addr == MAP_FAILED) {
3411     warn_on_large_pages_failure(req_addr, bytes, errno);
3412     return NULL;
3413   }
3414 
3415   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3416 
3417   return addr;
3418 }
3419 
3420 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3421 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3422 //   (req_addr != NULL) or with a given alignment.
3423 //  - bytes shall be a multiple of alignment.
3424 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3425 //  - alignment sets the alignment at which memory shall be allocated.
3426 //     It must be a multiple of allocation granularity.
3427 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3428 //  req_addr or NULL.
3429 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3430 
3431   size_t extra_size = bytes;
3432   if (req_addr == NULL && alignment > 0) {
3433     extra_size += alignment;
3434   }
3435 
3436   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3437     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3438     -1, 0);
3439   if (start == MAP_FAILED) {
3440     start = NULL;
3441   } else {
3442     if (req_addr != NULL) {
3443       if (start != req_addr) {
3444         ::munmap(start, extra_size);
3445         start = NULL;
3446       }
3447     } else {
3448       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3449       char* const end_aligned = start_aligned + bytes;
3450       char* const end = start + extra_size;
3451       if (start_aligned > start) {
3452         ::munmap(start, start_aligned - start);
3453       }
3454       if (end_aligned < end) {
3455         ::munmap(end_aligned, end - end_aligned);
3456       }
3457       start = start_aligned;
3458     }
3459   }
3460   return start;
3461 
3462 }
3463 
3464 // Reserve memory using mmap(MAP_HUGETLB).
3465 //  - bytes shall be a multiple of alignment.
3466 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3467 //  - alignment sets the alignment at which memory shall be allocated.
3468 //     It must be a multiple of allocation granularity.
3469 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3470 //  req_addr or NULL.
3471 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3472                                                          size_t alignment,
3473                                                          char* req_addr,
3474                                                          bool exec) {
3475   size_t large_page_size = os::large_page_size();
3476   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3477 
3478   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3479   assert(is_size_aligned(bytes, alignment), "Must be");
3480 
3481   // First reserve - but not commit - the address range in small pages.
3482   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3483 
3484   if (start == NULL) {
3485     return NULL;
3486   }
3487 
3488   assert(is_ptr_aligned(start, alignment), "Must be");
3489 
3490   char* end = start + bytes;
3491 
3492   // Find the regions of the allocated chunk that can be promoted to large pages.
3493   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3494   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3495 
3496   size_t lp_bytes = lp_end - lp_start;
3497 
3498   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3499 
3500   if (lp_bytes == 0) {
3501     // The mapped region doesn't even span the start and the end of a large page.
3502     // Fall back to allocate a non-special area.
3503     ::munmap(start, end - start);
3504     return NULL;
3505   }
3506 
3507   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3508 
3509   void* result;
3510 
3511   // Commit small-paged leading area.
3512   if (start != lp_start) {
3513     result = ::mmap(start, lp_start - start, prot,
3514                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3515                     -1, 0);
3516     if (result == MAP_FAILED) {
3517       ::munmap(lp_start, end - lp_start);
3518       return NULL;
3519     }
3520   }
3521 
3522   // Commit large-paged area.
3523   result = ::mmap(lp_start, lp_bytes, prot,
3524                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3525                   -1, 0);
3526   if (result == MAP_FAILED) {
3527     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3528     // If the mmap above fails, the large pages region will be unmapped and we
3529     // have regions before and after with small pages. Release these regions.
3530     //
3531     // |  mapped  |  unmapped  |  mapped  |
3532     // ^          ^            ^          ^
3533     // start      lp_start     lp_end     end
3534     //
3535     ::munmap(start, lp_start - start);
3536     ::munmap(lp_end, end - lp_end);
3537     return NULL;
3538   }
3539 
3540   // Commit small-paged trailing area.
3541   if (lp_end != end) {
3542     result = ::mmap(lp_end, end - lp_end, prot,
3543                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3544                     -1, 0);
3545     if (result == MAP_FAILED) {
3546       ::munmap(start, lp_end - start);
3547       return NULL;
3548     }
3549   }
3550 
3551   return start;
3552 }
3553 
3554 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3555                                                    size_t alignment,
3556                                                    char* req_addr,
3557                                                    bool exec) {
3558   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3559   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3560   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3561   assert(is_power_of_2(os::large_page_size()), "Must be");
3562   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3563 
3564   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3565     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3566   } else {
3567     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3568   }
3569 }
3570 
3571 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3572                                  char* req_addr, bool exec) {
3573   assert(UseLargePages, "only for large pages");
3574 
3575   char* addr;
3576   if (UseSHM) {
3577     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3578   } else {
3579     assert(UseHugeTLBFS, "must be");
3580     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3581   }
3582 
3583   if (addr != NULL) {
3584     if (UseNUMAInterleaving) {
3585       numa_make_global(addr, bytes);
3586     }
3587 
3588     // The memory is committed
3589     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3590   }
3591 
3592   return addr;
3593 }
3594 
3595 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3596   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3597   return shmdt(base) == 0;
3598 }
3599 
3600 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3601   return pd_release_memory(base, bytes);
3602 }
3603 
3604 bool os::release_memory_special(char* base, size_t bytes) {
3605   bool res;
3606   if (MemTracker::tracking_level() > NMT_minimal) {
3607     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3608     res = os::Linux::release_memory_special_impl(base, bytes);
3609     if (res) {
3610       tkr.record((address)base, bytes);
3611     }
3612 
3613   } else {
3614     res = os::Linux::release_memory_special_impl(base, bytes);
3615   }
3616   return res;
3617 }
3618 
3619 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3620   assert(UseLargePages, "only for large pages");
3621   bool res;
3622 
3623   if (UseSHM) {
3624     res = os::Linux::release_memory_special_shm(base, bytes);
3625   } else {
3626     assert(UseHugeTLBFS, "must be");
3627     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3628   }
3629   return res;
3630 }
3631 
3632 size_t os::large_page_size() {
3633   return _large_page_size;
3634 }
3635 
3636 // With SysV SHM the entire memory region must be allocated as shared
3637 // memory.
3638 // HugeTLBFS allows application to commit large page memory on demand.
3639 // However, when committing memory with HugeTLBFS fails, the region
3640 // that was supposed to be committed will lose the old reservation
3641 // and allow other threads to steal that memory region. Because of this
3642 // behavior we can't commit HugeTLBFS memory.
3643 bool os::can_commit_large_page_memory() {
3644   return UseTransparentHugePages;
3645 }
3646 
3647 bool os::can_execute_large_page_memory() {
3648   return UseTransparentHugePages || UseHugeTLBFS;
3649 }
3650 
3651 // Reserve memory at an arbitrary address, only if that area is
3652 // available (and not reserved for something else).
3653 
3654 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3655   const int max_tries = 10;
3656   char* base[max_tries];
3657   size_t size[max_tries];
3658   const size_t gap = 0x000000;
3659 
3660   // Assert only that the size is a multiple of the page size, since
3661   // that's all that mmap requires, and since that's all we really know
3662   // about at this low abstraction level.  If we need higher alignment,
3663   // we can either pass an alignment to this method or verify alignment
3664   // in one of the methods further up the call chain.  See bug 5044738.
3665   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3666 
3667   // Repeatedly allocate blocks until the block is allocated at the
3668   // right spot.
3669 
3670   // Linux mmap allows caller to pass an address as hint; give it a try first,
3671   // if kernel honors the hint then we can return immediately.
3672   char * addr = anon_mmap(requested_addr, bytes, false);
3673   if (addr == requested_addr) {
3674     return requested_addr;
3675   }
3676 
3677   if (addr != NULL) {
3678     // mmap() is successful but it fails to reserve at the requested address
3679     anon_munmap(addr, bytes);
3680   }
3681 
3682   int i;
3683   for (i = 0; i < max_tries; ++i) {
3684     base[i] = reserve_memory(bytes);
3685 
3686     if (base[i] != NULL) {
3687       // Is this the block we wanted?
3688       if (base[i] == requested_addr) {
3689         size[i] = bytes;
3690         break;
3691       }
3692 
3693       // Does this overlap the block we wanted? Give back the overlapped
3694       // parts and try again.
3695 
3696       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3697       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3698         unmap_memory(base[i], top_overlap);
3699         base[i] += top_overlap;
3700         size[i] = bytes - top_overlap;
3701       } else {
3702         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3703         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3704           unmap_memory(requested_addr, bottom_overlap);
3705           size[i] = bytes - bottom_overlap;
3706         } else {
3707           size[i] = bytes;
3708         }
3709       }
3710     }
3711   }
3712 
3713   // Give back the unused reserved pieces.
3714 
3715   for (int j = 0; j < i; ++j) {
3716     if (base[j] != NULL) {
3717       unmap_memory(base[j], size[j]);
3718     }
3719   }
3720 
3721   if (i < max_tries) {
3722     return requested_addr;
3723   } else {
3724     return NULL;
3725   }
3726 }
3727 
3728 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3729   return ::read(fd, buf, nBytes);
3730 }
3731 
3732 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3733   return ::pread(fd, buf, nBytes, offset);
3734 }
3735 
3736 // Short sleep, direct OS call.
3737 //
3738 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3739 // sched_yield(2) will actually give up the CPU:
3740 //
3741 //   * Alone on this pariticular CPU, keeps running.
3742 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3743 //     (pre 2.6.39).
3744 //
3745 // So calling this with 0 is an alternative.
3746 //
3747 void os::naked_short_sleep(jlong ms) {
3748   struct timespec req;
3749 
3750   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3751   req.tv_sec = 0;
3752   if (ms > 0) {
3753     req.tv_nsec = (ms % 1000) * 1000000;
3754   } else {
3755     req.tv_nsec = 1;
3756   }
3757 
3758   nanosleep(&req, NULL);
3759 
3760   return;
3761 }
3762 
3763 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3764 void os::infinite_sleep() {
3765   while (true) {    // sleep forever ...
3766     ::sleep(100);   // ... 100 seconds at a time
3767   }
3768 }
3769 
3770 // Used to convert frequent JVM_Yield() to nops
3771 bool os::dont_yield() {
3772   return DontYieldALot;
3773 }
3774 
3775 void os::naked_yield() {
3776   sched_yield();
3777 }
3778 
3779 ////////////////////////////////////////////////////////////////////////////////
3780 // thread priority support
3781 
3782 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3783 // only supports dynamic priority, static priority must be zero. For real-time
3784 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3785 // However, for large multi-threaded applications, SCHED_RR is not only slower
3786 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3787 // of 5 runs - Sep 2005).
3788 //
3789 // The following code actually changes the niceness of kernel-thread/LWP. It
3790 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3791 // not the entire user process, and user level threads are 1:1 mapped to kernel
3792 // threads. It has always been the case, but could change in the future. For
3793 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3794 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3795 
3796 int os::java_to_os_priority[CriticalPriority + 1] = {
3797   19,              // 0 Entry should never be used
3798 
3799    4,              // 1 MinPriority
3800    3,              // 2
3801    2,              // 3
3802 
3803    1,              // 4
3804    0,              // 5 NormPriority
3805   -1,              // 6
3806 
3807   -2,              // 7
3808   -3,              // 8
3809   -4,              // 9 NearMaxPriority
3810 
3811   -5,              // 10 MaxPriority
3812 
3813   -5               // 11 CriticalPriority
3814 };
3815 
3816 static int prio_init() {
3817   if (ThreadPriorityPolicy == 1) {
3818     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3819     // if effective uid is not root. Perhaps, a more elegant way of doing
3820     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3821     if (geteuid() != 0) {
3822       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3823         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3824       }
3825       ThreadPriorityPolicy = 0;
3826     }
3827   }
3828   if (UseCriticalJavaThreadPriority) {
3829     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3830   }
3831   return 0;
3832 }
3833 
3834 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3835   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3836 
3837   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3838   return (ret == 0) ? OS_OK : OS_ERR;
3839 }
3840 
3841 OSReturn os::get_native_priority(const Thread* const thread,
3842                                  int *priority_ptr) {
3843   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3844     *priority_ptr = java_to_os_priority[NormPriority];
3845     return OS_OK;
3846   }
3847 
3848   errno = 0;
3849   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3850   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3851 }
3852 
3853 // Hint to the underlying OS that a task switch would not be good.
3854 // Void return because it's a hint and can fail.
3855 void os::hint_no_preempt() {}
3856 
3857 ////////////////////////////////////////////////////////////////////////////////
3858 // suspend/resume support
3859 
3860 //  the low-level signal-based suspend/resume support is a remnant from the
3861 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3862 //  within hotspot. Now there is a single use-case for this:
3863 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3864 //      that runs in the watcher thread.
3865 //  The remaining code is greatly simplified from the more general suspension
3866 //  code that used to be used.
3867 //
3868 //  The protocol is quite simple:
3869 //  - suspend:
3870 //      - sends a signal to the target thread
3871 //      - polls the suspend state of the osthread using a yield loop
3872 //      - target thread signal handler (SR_handler) sets suspend state
3873 //        and blocks in sigsuspend until continued
3874 //  - resume:
3875 //      - sets target osthread state to continue
3876 //      - sends signal to end the sigsuspend loop in the SR_handler
3877 //
3878 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3879 
3880 static void resume_clear_context(OSThread *osthread) {
3881   osthread->set_ucontext(NULL);
3882   osthread->set_siginfo(NULL);
3883 }
3884 
3885 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3886                                  ucontext_t* context) {
3887   osthread->set_ucontext(context);
3888   osthread->set_siginfo(siginfo);
3889 }
3890 
3891 // Handler function invoked when a thread's execution is suspended or
3892 // resumed. We have to be careful that only async-safe functions are
3893 // called here (Note: most pthread functions are not async safe and
3894 // should be avoided.)
3895 //
3896 // Note: sigwait() is a more natural fit than sigsuspend() from an
3897 // interface point of view, but sigwait() prevents the signal hander
3898 // from being run. libpthread would get very confused by not having
3899 // its signal handlers run and prevents sigwait()'s use with the
3900 // mutex granting granting signal.
3901 //
3902 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3903 //
3904 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3905   // Save and restore errno to avoid confusing native code with EINTR
3906   // after sigsuspend.
3907   int old_errno = errno;
3908 
3909   Thread* thread = Thread::current();
3910   OSThread* osthread = thread->osthread();
3911   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3912 
3913   os::SuspendResume::State current = osthread->sr.state();
3914   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3915     suspend_save_context(osthread, siginfo, context);
3916 
3917     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3918     os::SuspendResume::State state = osthread->sr.suspended();
3919     if (state == os::SuspendResume::SR_SUSPENDED) {
3920       sigset_t suspend_set;  // signals for sigsuspend()
3921 
3922       // get current set of blocked signals and unblock resume signal
3923       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3924       sigdelset(&suspend_set, SR_signum);
3925 
3926       sr_semaphore.signal();
3927       // wait here until we are resumed
3928       while (1) {
3929         sigsuspend(&suspend_set);
3930 
3931         os::SuspendResume::State result = osthread->sr.running();
3932         if (result == os::SuspendResume::SR_RUNNING) {
3933           sr_semaphore.signal();
3934           break;
3935         }
3936       }
3937 
3938     } else if (state == os::SuspendResume::SR_RUNNING) {
3939       // request was cancelled, continue
3940     } else {
3941       ShouldNotReachHere();
3942     }
3943 
3944     resume_clear_context(osthread);
3945   } else if (current == os::SuspendResume::SR_RUNNING) {
3946     // request was cancelled, continue
3947   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3948     // ignore
3949   } else {
3950     // ignore
3951   }
3952 
3953   errno = old_errno;
3954 }
3955 
3956 
3957 static int SR_initialize() {
3958   struct sigaction act;
3959   char *s;
3960   // Get signal number to use for suspend/resume
3961   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3962     int sig = ::strtol(s, 0, 10);
3963     if (sig > 0 || sig < _NSIG) {
3964       SR_signum = sig;
3965     }
3966   }
3967 
3968   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3969          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3970 
3971   sigemptyset(&SR_sigset);
3972   sigaddset(&SR_sigset, SR_signum);
3973 
3974   // Set up signal handler for suspend/resume
3975   act.sa_flags = SA_RESTART|SA_SIGINFO;
3976   act.sa_handler = (void (*)(int)) SR_handler;
3977 
3978   // SR_signum is blocked by default.
3979   // 4528190 - We also need to block pthread restart signal (32 on all
3980   // supported Linux platforms). Note that LinuxThreads need to block
3981   // this signal for all threads to work properly. So we don't have
3982   // to use hard-coded signal number when setting up the mask.
3983   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3984 
3985   if (sigaction(SR_signum, &act, 0) == -1) {
3986     return -1;
3987   }
3988 
3989   // Save signal flag
3990   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3991   return 0;
3992 }
3993 
3994 static int sr_notify(OSThread* osthread) {
3995   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3996   assert_status(status == 0, status, "pthread_kill");
3997   return status;
3998 }
3999 
4000 // "Randomly" selected value for how long we want to spin
4001 // before bailing out on suspending a thread, also how often
4002 // we send a signal to a thread we want to resume
4003 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4004 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4005 
4006 // returns true on success and false on error - really an error is fatal
4007 // but this seems the normal response to library errors
4008 static bool do_suspend(OSThread* osthread) {
4009   assert(osthread->sr.is_running(), "thread should be running");
4010   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4011 
4012   // mark as suspended and send signal
4013   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4014     // failed to switch, state wasn't running?
4015     ShouldNotReachHere();
4016     return false;
4017   }
4018 
4019   if (sr_notify(osthread) != 0) {
4020     ShouldNotReachHere();
4021   }
4022 
4023   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4024   while (true) {
4025     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4026       break;
4027     } else {
4028       // timeout
4029       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4030       if (cancelled == os::SuspendResume::SR_RUNNING) {
4031         return false;
4032       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4033         // make sure that we consume the signal on the semaphore as well
4034         sr_semaphore.wait();
4035         break;
4036       } else {
4037         ShouldNotReachHere();
4038         return false;
4039       }
4040     }
4041   }
4042 
4043   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4044   return true;
4045 }
4046 
4047 static void do_resume(OSThread* osthread) {
4048   assert(osthread->sr.is_suspended(), "thread should be suspended");
4049   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4050 
4051   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4052     // failed to switch to WAKEUP_REQUEST
4053     ShouldNotReachHere();
4054     return;
4055   }
4056 
4057   while (true) {
4058     if (sr_notify(osthread) == 0) {
4059       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4060         if (osthread->sr.is_running()) {
4061           return;
4062         }
4063       }
4064     } else {
4065       ShouldNotReachHere();
4066     }
4067   }
4068 
4069   guarantee(osthread->sr.is_running(), "Must be running!");
4070 }
4071 
4072 ///////////////////////////////////////////////////////////////////////////////////
4073 // signal handling (except suspend/resume)
4074 
4075 // This routine may be used by user applications as a "hook" to catch signals.
4076 // The user-defined signal handler must pass unrecognized signals to this
4077 // routine, and if it returns true (non-zero), then the signal handler must
4078 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4079 // routine will never retun false (zero), but instead will execute a VM panic
4080 // routine kill the process.
4081 //
4082 // If this routine returns false, it is OK to call it again.  This allows
4083 // the user-defined signal handler to perform checks either before or after
4084 // the VM performs its own checks.  Naturally, the user code would be making
4085 // a serious error if it tried to handle an exception (such as a null check
4086 // or breakpoint) that the VM was generating for its own correct operation.
4087 //
4088 // This routine may recognize any of the following kinds of signals:
4089 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4090 // It should be consulted by handlers for any of those signals.
4091 //
4092 // The caller of this routine must pass in the three arguments supplied
4093 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4094 // field of the structure passed to sigaction().  This routine assumes that
4095 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4096 //
4097 // Note that the VM will print warnings if it detects conflicting signal
4098 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4099 //
4100 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4101                                                  siginfo_t* siginfo,
4102                                                  void* ucontext,
4103                                                  int abort_if_unrecognized);
4104 
4105 void signalHandler(int sig, siginfo_t* info, void* uc) {
4106   assert(info != NULL && uc != NULL, "it must be old kernel");
4107   int orig_errno = errno;  // Preserve errno value over signal handler.
4108   JVM_handle_linux_signal(sig, info, uc, true);
4109   errno = orig_errno;
4110 }
4111 
4112 
4113 // This boolean allows users to forward their own non-matching signals
4114 // to JVM_handle_linux_signal, harmlessly.
4115 bool os::Linux::signal_handlers_are_installed = false;
4116 
4117 // For signal-chaining
4118 struct sigaction os::Linux::sigact[MAXSIGNUM];
4119 unsigned int os::Linux::sigs = 0;
4120 bool os::Linux::libjsig_is_loaded = false;
4121 typedef struct sigaction *(*get_signal_t)(int);
4122 get_signal_t os::Linux::get_signal_action = NULL;
4123 
4124 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4125   struct sigaction *actp = NULL;
4126 
4127   if (libjsig_is_loaded) {
4128     // Retrieve the old signal handler from libjsig
4129     actp = (*get_signal_action)(sig);
4130   }
4131   if (actp == NULL) {
4132     // Retrieve the preinstalled signal handler from jvm
4133     actp = get_preinstalled_handler(sig);
4134   }
4135 
4136   return actp;
4137 }
4138 
4139 static bool call_chained_handler(struct sigaction *actp, int sig,
4140                                  siginfo_t *siginfo, void *context) {
4141   // Call the old signal handler
4142   if (actp->sa_handler == SIG_DFL) {
4143     // It's more reasonable to let jvm treat it as an unexpected exception
4144     // instead of taking the default action.
4145     return false;
4146   } else if (actp->sa_handler != SIG_IGN) {
4147     if ((actp->sa_flags & SA_NODEFER) == 0) {
4148       // automaticlly block the signal
4149       sigaddset(&(actp->sa_mask), sig);
4150     }
4151 
4152     sa_handler_t hand = NULL;
4153     sa_sigaction_t sa = NULL;
4154     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4155     // retrieve the chained handler
4156     if (siginfo_flag_set) {
4157       sa = actp->sa_sigaction;
4158     } else {
4159       hand = actp->sa_handler;
4160     }
4161 
4162     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4163       actp->sa_handler = SIG_DFL;
4164     }
4165 
4166     // try to honor the signal mask
4167     sigset_t oset;
4168     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4169 
4170     // call into the chained handler
4171     if (siginfo_flag_set) {
4172       (*sa)(sig, siginfo, context);
4173     } else {
4174       (*hand)(sig);
4175     }
4176 
4177     // restore the signal mask
4178     pthread_sigmask(SIG_SETMASK, &oset, 0);
4179   }
4180   // Tell jvm's signal handler the signal is taken care of.
4181   return true;
4182 }
4183 
4184 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4185   bool chained = false;
4186   // signal-chaining
4187   if (UseSignalChaining) {
4188     struct sigaction *actp = get_chained_signal_action(sig);
4189     if (actp != NULL) {
4190       chained = call_chained_handler(actp, sig, siginfo, context);
4191     }
4192   }
4193   return chained;
4194 }
4195 
4196 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4197   if ((((unsigned int)1 << sig) & sigs) != 0) {
4198     return &sigact[sig];
4199   }
4200   return NULL;
4201 }
4202 
4203 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4204   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4205   sigact[sig] = oldAct;
4206   sigs |= (unsigned int)1 << sig;
4207 }
4208 
4209 // for diagnostic
4210 int os::Linux::sigflags[MAXSIGNUM];
4211 
4212 int os::Linux::get_our_sigflags(int sig) {
4213   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4214   return sigflags[sig];
4215 }
4216 
4217 void os::Linux::set_our_sigflags(int sig, int flags) {
4218   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4219   sigflags[sig] = flags;
4220 }
4221 
4222 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4223   // Check for overwrite.
4224   struct sigaction oldAct;
4225   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4226 
4227   void* oldhand = oldAct.sa_sigaction
4228                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4229                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4230   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4231       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4232       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4233     if (AllowUserSignalHandlers || !set_installed) {
4234       // Do not overwrite; user takes responsibility to forward to us.
4235       return;
4236     } else if (UseSignalChaining) {
4237       // save the old handler in jvm
4238       save_preinstalled_handler(sig, oldAct);
4239       // libjsig also interposes the sigaction() call below and saves the
4240       // old sigaction on it own.
4241     } else {
4242       fatal("Encountered unexpected pre-existing sigaction handler "
4243             "%#lx for signal %d.", (long)oldhand, sig);
4244     }
4245   }
4246 
4247   struct sigaction sigAct;
4248   sigfillset(&(sigAct.sa_mask));
4249   sigAct.sa_handler = SIG_DFL;
4250   if (!set_installed) {
4251     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4252   } else {
4253     sigAct.sa_sigaction = signalHandler;
4254     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4255   }
4256   // Save flags, which are set by ours
4257   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4258   sigflags[sig] = sigAct.sa_flags;
4259 
4260   int ret = sigaction(sig, &sigAct, &oldAct);
4261   assert(ret == 0, "check");
4262 
4263   void* oldhand2  = oldAct.sa_sigaction
4264                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4265                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4266   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4267 }
4268 
4269 // install signal handlers for signals that HotSpot needs to
4270 // handle in order to support Java-level exception handling.
4271 
4272 void os::Linux::install_signal_handlers() {
4273   if (!signal_handlers_are_installed) {
4274     signal_handlers_are_installed = true;
4275 
4276     // signal-chaining
4277     typedef void (*signal_setting_t)();
4278     signal_setting_t begin_signal_setting = NULL;
4279     signal_setting_t end_signal_setting = NULL;
4280     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4281                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4282     if (begin_signal_setting != NULL) {
4283       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4284                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4285       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4286                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4287       libjsig_is_loaded = true;
4288       assert(UseSignalChaining, "should enable signal-chaining");
4289     }
4290     if (libjsig_is_loaded) {
4291       // Tell libjsig jvm is setting signal handlers
4292       (*begin_signal_setting)();
4293     }
4294 
4295     set_signal_handler(SIGSEGV, true);
4296     set_signal_handler(SIGPIPE, true);
4297     set_signal_handler(SIGBUS, true);
4298     set_signal_handler(SIGILL, true);
4299     set_signal_handler(SIGFPE, true);
4300 #if defined(PPC64)
4301     set_signal_handler(SIGTRAP, true);
4302 #endif
4303     set_signal_handler(SIGXFSZ, true);
4304 
4305     if (libjsig_is_loaded) {
4306       // Tell libjsig jvm finishes setting signal handlers
4307       (*end_signal_setting)();
4308     }
4309 
4310     // We don't activate signal checker if libjsig is in place, we trust ourselves
4311     // and if UserSignalHandler is installed all bets are off.
4312     // Log that signal checking is off only if -verbose:jni is specified.
4313     if (CheckJNICalls) {
4314       if (libjsig_is_loaded) {
4315         if (PrintJNIResolving) {
4316           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4317         }
4318         check_signals = false;
4319       }
4320       if (AllowUserSignalHandlers) {
4321         if (PrintJNIResolving) {
4322           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4323         }
4324         check_signals = false;
4325       }
4326     }
4327   }
4328 }
4329 
4330 // This is the fastest way to get thread cpu time on Linux.
4331 // Returns cpu time (user+sys) for any thread, not only for current.
4332 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4333 // It might work on 2.6.10+ with a special kernel/glibc patch.
4334 // For reference, please, see IEEE Std 1003.1-2004:
4335 //   http://www.unix.org/single_unix_specification
4336 
4337 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4338   struct timespec tp;
4339   int rc = os::Linux::clock_gettime(clockid, &tp);
4340   assert(rc == 0, "clock_gettime is expected to return 0 code");
4341 
4342   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4343 }
4344 
4345 /////
4346 // glibc on Linux platform uses non-documented flag
4347 // to indicate, that some special sort of signal
4348 // trampoline is used.
4349 // We will never set this flag, and we should
4350 // ignore this flag in our diagnostic
4351 #ifdef SIGNIFICANT_SIGNAL_MASK
4352   #undef SIGNIFICANT_SIGNAL_MASK
4353 #endif
4354 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4355 
4356 static const char* get_signal_handler_name(address handler,
4357                                            char* buf, int buflen) {
4358   int offset = 0;
4359   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4360   if (found) {
4361     // skip directory names
4362     const char *p1, *p2;
4363     p1 = buf;
4364     size_t len = strlen(os::file_separator());
4365     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4366     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4367   } else {
4368     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4369   }
4370   return buf;
4371 }
4372 
4373 static void print_signal_handler(outputStream* st, int sig,
4374                                  char* buf, size_t buflen) {
4375   struct sigaction sa;
4376 
4377   sigaction(sig, NULL, &sa);
4378 
4379   // See comment for SIGNIFICANT_SIGNAL_MASK define
4380   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4381 
4382   st->print("%s: ", os::exception_name(sig, buf, buflen));
4383 
4384   address handler = (sa.sa_flags & SA_SIGINFO)
4385     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4386     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4387 
4388   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4389     st->print("SIG_DFL");
4390   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4391     st->print("SIG_IGN");
4392   } else {
4393     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4394   }
4395 
4396   st->print(", sa_mask[0]=");
4397   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4398 
4399   address rh = VMError::get_resetted_sighandler(sig);
4400   // May be, handler was resetted by VMError?
4401   if (rh != NULL) {
4402     handler = rh;
4403     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4404   }
4405 
4406   st->print(", sa_flags=");
4407   os::Posix::print_sa_flags(st, sa.sa_flags);
4408 
4409   // Check: is it our handler?
4410   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4411       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4412     // It is our signal handler
4413     // check for flags, reset system-used one!
4414     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4415       st->print(
4416                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4417                 os::Linux::get_our_sigflags(sig));
4418     }
4419   }
4420   st->cr();
4421 }
4422 
4423 
4424 #define DO_SIGNAL_CHECK(sig)                      \
4425   do {                                            \
4426     if (!sigismember(&check_signal_done, sig)) {  \
4427       os::Linux::check_signal_handler(sig);       \
4428     }                                             \
4429   } while (0)
4430 
4431 // This method is a periodic task to check for misbehaving JNI applications
4432 // under CheckJNI, we can add any periodic checks here
4433 
4434 void os::run_periodic_checks() {
4435   if (check_signals == false) return;
4436 
4437   // SEGV and BUS if overridden could potentially prevent
4438   // generation of hs*.log in the event of a crash, debugging
4439   // such a case can be very challenging, so we absolutely
4440   // check the following for a good measure:
4441   DO_SIGNAL_CHECK(SIGSEGV);
4442   DO_SIGNAL_CHECK(SIGILL);
4443   DO_SIGNAL_CHECK(SIGFPE);
4444   DO_SIGNAL_CHECK(SIGBUS);
4445   DO_SIGNAL_CHECK(SIGPIPE);
4446   DO_SIGNAL_CHECK(SIGXFSZ);
4447 #if defined(PPC64)
4448   DO_SIGNAL_CHECK(SIGTRAP);
4449 #endif
4450 
4451   // ReduceSignalUsage allows the user to override these handlers
4452   // see comments at the very top and jvm_solaris.h
4453   if (!ReduceSignalUsage) {
4454     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4455     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4456     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4457     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4458   }
4459 
4460   DO_SIGNAL_CHECK(SR_signum);
4461 }
4462 
4463 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4464 
4465 static os_sigaction_t os_sigaction = NULL;
4466 
4467 void os::Linux::check_signal_handler(int sig) {
4468   char buf[O_BUFLEN];
4469   address jvmHandler = NULL;
4470 
4471 
4472   struct sigaction act;
4473   if (os_sigaction == NULL) {
4474     // only trust the default sigaction, in case it has been interposed
4475     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4476     if (os_sigaction == NULL) return;
4477   }
4478 
4479   os_sigaction(sig, (struct sigaction*)NULL, &act);
4480 
4481 
4482   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4483 
4484   address thisHandler = (act.sa_flags & SA_SIGINFO)
4485     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4486     : CAST_FROM_FN_PTR(address, act.sa_handler);
4487 
4488 
4489   switch (sig) {
4490   case SIGSEGV:
4491   case SIGBUS:
4492   case SIGFPE:
4493   case SIGPIPE:
4494   case SIGILL:
4495   case SIGXFSZ:
4496     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4497     break;
4498 
4499   case SHUTDOWN1_SIGNAL:
4500   case SHUTDOWN2_SIGNAL:
4501   case SHUTDOWN3_SIGNAL:
4502   case BREAK_SIGNAL:
4503     jvmHandler = (address)user_handler();
4504     break;
4505 
4506   default:
4507     if (sig == SR_signum) {
4508       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4509     } else {
4510       return;
4511     }
4512     break;
4513   }
4514 
4515   if (thisHandler != jvmHandler) {
4516     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4517     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4518     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4519     // No need to check this sig any longer
4520     sigaddset(&check_signal_done, sig);
4521     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4522     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4523       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4524                     exception_name(sig, buf, O_BUFLEN));
4525     }
4526   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4527     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4528     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4529     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4530     // No need to check this sig any longer
4531     sigaddset(&check_signal_done, sig);
4532   }
4533 
4534   // Dump all the signal
4535   if (sigismember(&check_signal_done, sig)) {
4536     print_signal_handlers(tty, buf, O_BUFLEN);
4537   }
4538 }
4539 
4540 extern void report_error(char* file_name, int line_no, char* title,
4541                          char* format, ...);
4542 
4543 extern bool signal_name(int signo, char* buf, size_t len);
4544 
4545 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4546   if (0 < exception_code && exception_code <= SIGRTMAX) {
4547     // signal
4548     if (!signal_name(exception_code, buf, size)) {
4549       jio_snprintf(buf, size, "SIG%d", exception_code);
4550     }
4551     return buf;
4552   } else {
4553     return NULL;
4554   }
4555 }
4556 
4557 // this is called _before_ the most of global arguments have been parsed
4558 void os::init(void) {
4559   char dummy;   // used to get a guess on initial stack address
4560 //  first_hrtime = gethrtime();
4561 
4562   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4563 
4564   init_random(1234567);
4565 
4566   ThreadCritical::initialize();
4567 
4568   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4569   if (Linux::page_size() == -1) {
4570     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4571           strerror(errno));
4572   }
4573   init_page_sizes((size_t) Linux::page_size());
4574 
4575   Linux::initialize_system_info();
4576 
4577   // main_thread points to the aboriginal thread
4578   Linux::_main_thread = pthread_self();
4579 
4580   Linux::clock_init();
4581   initial_time_count = javaTimeNanos();
4582 
4583   // pthread_condattr initialization for monotonic clock
4584   int status;
4585   pthread_condattr_t* _condattr = os::Linux::condAttr();
4586   if ((status = pthread_condattr_init(_condattr)) != 0) {
4587     fatal("pthread_condattr_init: %s", strerror(status));
4588   }
4589   // Only set the clock if CLOCK_MONOTONIC is available
4590   if (os::supports_monotonic_clock()) {
4591     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4592       if (status == EINVAL) {
4593         warning("Unable to use monotonic clock with relative timed-waits" \
4594                 " - changes to the time-of-day clock may have adverse affects");
4595       } else {
4596         fatal("pthread_condattr_setclock: %s", strerror(status));
4597       }
4598     }
4599   }
4600   // else it defaults to CLOCK_REALTIME
4601 
4602   // If the pagesize of the VM is greater than 8K determine the appropriate
4603   // number of initial guard pages.  The user can change this with the
4604   // command line arguments, if needed.
4605   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4606     StackYellowPages = 1;
4607     StackRedPages = 1;
4608     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4609   }
4610 
4611   // retrieve entry point for pthread_setname_np
4612   Linux::_pthread_setname_np =
4613     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4614 
4615 }
4616 
4617 // To install functions for atexit system call
4618 extern "C" {
4619   static void perfMemory_exit_helper() {
4620     perfMemory_exit();
4621   }
4622 }
4623 
4624 // this is called _after_ the global arguments have been parsed
4625 jint os::init_2(void) {
4626   Linux::fast_thread_clock_init();
4627 
4628   // Allocate a single page and mark it as readable for safepoint polling
4629   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4630   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4631 
4632   os::set_polling_page(polling_page);
4633 
4634 #ifndef PRODUCT
4635   if (Verbose && PrintMiscellaneous) {
4636     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4637                (intptr_t)polling_page);
4638   }
4639 #endif
4640 
4641   if (!UseMembar) {
4642     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4643     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4644     os::set_memory_serialize_page(mem_serialize_page);
4645 
4646 #ifndef PRODUCT
4647     if (Verbose && PrintMiscellaneous) {
4648       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4649                  (intptr_t)mem_serialize_page);
4650     }
4651 #endif
4652   }
4653 
4654   // initialize suspend/resume support - must do this before signal_sets_init()
4655   if (SR_initialize() != 0) {
4656     perror("SR_initialize failed");
4657     return JNI_ERR;
4658   }
4659 
4660   Linux::signal_sets_init();
4661   Linux::install_signal_handlers();
4662 
4663   // Check minimum allowable stack size for thread creation and to initialize
4664   // the java system classes, including StackOverflowError - depends on page
4665   // size.  Add a page for compiler2 recursion in main thread.
4666   // Add in 2*BytesPerWord times page size to account for VM stack during
4667   // class initialization depending on 32 or 64 bit VM.
4668   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4669                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4670                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4671 
4672   size_t threadStackSizeInBytes = ThreadStackSize * K;
4673   if (threadStackSizeInBytes != 0 &&
4674       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4675     tty->print_cr("\nThe stack size specified is too small, "
4676                   "Specify at least " SIZE_FORMAT "k",
4677                   os::Linux::min_stack_allowed/ K);
4678     return JNI_ERR;
4679   }
4680 
4681   // Make the stack size a multiple of the page size so that
4682   // the yellow/red zones can be guarded.
4683   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4684                                                 vm_page_size()));
4685 
4686   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4687 
4688 #if defined(IA32)
4689   workaround_expand_exec_shield_cs_limit();
4690 #endif
4691 
4692   Linux::libpthread_init();
4693   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4694     tty->print_cr("[HotSpot is running with %s, %s]\n",
4695                   Linux::glibc_version(), Linux::libpthread_version());
4696   }
4697 
4698   if (UseNUMA) {
4699     if (!Linux::libnuma_init()) {
4700       UseNUMA = false;
4701     } else {
4702       if ((Linux::numa_max_node() < 1)) {
4703         // There's only one node(they start from 0), disable NUMA.
4704         UseNUMA = false;
4705       }
4706     }
4707     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4708     // we can make the adaptive lgrp chunk resizing work. If the user specified
4709     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4710     // disable adaptive resizing.
4711     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4712       if (FLAG_IS_DEFAULT(UseNUMA)) {
4713         UseNUMA = false;
4714       } else {
4715         if (FLAG_IS_DEFAULT(UseLargePages) &&
4716             FLAG_IS_DEFAULT(UseSHM) &&
4717             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4718           UseLargePages = false;
4719         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4720           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4721           UseAdaptiveSizePolicy = false;
4722           UseAdaptiveNUMAChunkSizing = false;
4723         }
4724       }
4725     }
4726     if (!UseNUMA && ForceNUMA) {
4727       UseNUMA = true;
4728     }
4729   }
4730 
4731   if (MaxFDLimit) {
4732     // set the number of file descriptors to max. print out error
4733     // if getrlimit/setrlimit fails but continue regardless.
4734     struct rlimit nbr_files;
4735     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4736     if (status != 0) {
4737       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4738         perror("os::init_2 getrlimit failed");
4739       }
4740     } else {
4741       nbr_files.rlim_cur = nbr_files.rlim_max;
4742       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4743       if (status != 0) {
4744         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4745           perror("os::init_2 setrlimit failed");
4746         }
4747       }
4748     }
4749   }
4750 
4751   // Initialize lock used to serialize thread creation (see os::create_thread)
4752   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4753 
4754   // at-exit methods are called in the reverse order of their registration.
4755   // atexit functions are called on return from main or as a result of a
4756   // call to exit(3C). There can be only 32 of these functions registered
4757   // and atexit() does not set errno.
4758 
4759   if (PerfAllowAtExitRegistration) {
4760     // only register atexit functions if PerfAllowAtExitRegistration is set.
4761     // atexit functions can be delayed until process exit time, which
4762     // can be problematic for embedded VM situations. Embedded VMs should
4763     // call DestroyJavaVM() to assure that VM resources are released.
4764 
4765     // note: perfMemory_exit_helper atexit function may be removed in
4766     // the future if the appropriate cleanup code can be added to the
4767     // VM_Exit VMOperation's doit method.
4768     if (atexit(perfMemory_exit_helper) != 0) {
4769       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4770     }
4771   }
4772 
4773   // initialize thread priority policy
4774   prio_init();
4775 
4776   return JNI_OK;
4777 }
4778 
4779 // Mark the polling page as unreadable
4780 void os::make_polling_page_unreadable(void) {
4781   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4782     fatal("Could not disable polling page");
4783   }
4784 }
4785 
4786 // Mark the polling page as readable
4787 void os::make_polling_page_readable(void) {
4788   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4789     fatal("Could not enable polling page");
4790   }
4791 }
4792 
4793 int os::active_processor_count() {
4794   // Linux doesn't yet have a (official) notion of processor sets,
4795   // so just return the number of online processors.
4796   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4797   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4798   return online_cpus;
4799 }
4800 
4801 void os::set_native_thread_name(const char *name) {
4802   if (Linux::_pthread_setname_np) {
4803     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4804     snprintf(buf, sizeof(buf), "%s", name);
4805     buf[sizeof(buf) - 1] = '\0';
4806     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4807     // ERANGE should not happen; all other errors should just be ignored.
4808     assert(rc != ERANGE, "pthread_setname_np failed");
4809   }
4810 }
4811 
4812 bool os::distribute_processes(uint length, uint* distribution) {
4813   // Not yet implemented.
4814   return false;
4815 }
4816 
4817 bool os::bind_to_processor(uint processor_id) {
4818   // Not yet implemented.
4819   return false;
4820 }
4821 
4822 ///
4823 
4824 void os::SuspendedThreadTask::internal_do_task() {
4825   if (do_suspend(_thread->osthread())) {
4826     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4827     do_task(context);
4828     do_resume(_thread->osthread());
4829   }
4830 }
4831 
4832 class PcFetcher : public os::SuspendedThreadTask {
4833  public:
4834   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4835   ExtendedPC result();
4836  protected:
4837   void do_task(const os::SuspendedThreadTaskContext& context);
4838  private:
4839   ExtendedPC _epc;
4840 };
4841 
4842 ExtendedPC PcFetcher::result() {
4843   guarantee(is_done(), "task is not done yet.");
4844   return _epc;
4845 }
4846 
4847 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4848   Thread* thread = context.thread();
4849   OSThread* osthread = thread->osthread();
4850   if (osthread->ucontext() != NULL) {
4851     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4852   } else {
4853     // NULL context is unexpected, double-check this is the VMThread
4854     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4855   }
4856 }
4857 
4858 // Suspends the target using the signal mechanism and then grabs the PC before
4859 // resuming the target. Used by the flat-profiler only
4860 ExtendedPC os::get_thread_pc(Thread* thread) {
4861   // Make sure that it is called by the watcher for the VMThread
4862   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4863   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4864 
4865   PcFetcher fetcher(thread);
4866   fetcher.run();
4867   return fetcher.result();
4868 }
4869 
4870 ////////////////////////////////////////////////////////////////////////////////
4871 // debug support
4872 
4873 bool os::find(address addr, outputStream* st) {
4874   Dl_info dlinfo;
4875   memset(&dlinfo, 0, sizeof(dlinfo));
4876   if (dladdr(addr, &dlinfo) != 0) {
4877     st->print(PTR_FORMAT ": ", p2i(addr));
4878     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4879       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4880                 p2i(addr) - p2i(dlinfo.dli_saddr));
4881     } else if (dlinfo.dli_fbase != NULL) {
4882       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4883     } else {
4884       st->print("<absolute address>");
4885     }
4886     if (dlinfo.dli_fname != NULL) {
4887       st->print(" in %s", dlinfo.dli_fname);
4888     }
4889     if (dlinfo.dli_fbase != NULL) {
4890       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4891     }
4892     st->cr();
4893 
4894     if (Verbose) {
4895       // decode some bytes around the PC
4896       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4897       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4898       address       lowest = (address) dlinfo.dli_sname;
4899       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4900       if (begin < lowest)  begin = lowest;
4901       Dl_info dlinfo2;
4902       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4903           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4904         end = (address) dlinfo2.dli_saddr;
4905       }
4906       Disassembler::decode(begin, end, st);
4907     }
4908     return true;
4909   }
4910   return false;
4911 }
4912 
4913 ////////////////////////////////////////////////////////////////////////////////
4914 // misc
4915 
4916 // This does not do anything on Linux. This is basically a hook for being
4917 // able to use structured exception handling (thread-local exception filters)
4918 // on, e.g., Win32.
4919 void
4920 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4921                          JavaCallArguments* args, Thread* thread) {
4922   f(value, method, args, thread);
4923 }
4924 
4925 void os::print_statistics() {
4926 }
4927 
4928 int os::message_box(const char* title, const char* message) {
4929   int i;
4930   fdStream err(defaultStream::error_fd());
4931   for (i = 0; i < 78; i++) err.print_raw("=");
4932   err.cr();
4933   err.print_raw_cr(title);
4934   for (i = 0; i < 78; i++) err.print_raw("-");
4935   err.cr();
4936   err.print_raw_cr(message);
4937   for (i = 0; i < 78; i++) err.print_raw("=");
4938   err.cr();
4939 
4940   char buf[16];
4941   // Prevent process from exiting upon "read error" without consuming all CPU
4942   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4943 
4944   return buf[0] == 'y' || buf[0] == 'Y';
4945 }
4946 
4947 int os::stat(const char *path, struct stat *sbuf) {
4948   char pathbuf[MAX_PATH];
4949   if (strlen(path) > MAX_PATH - 1) {
4950     errno = ENAMETOOLONG;
4951     return -1;
4952   }
4953   os::native_path(strcpy(pathbuf, path));
4954   return ::stat(pathbuf, sbuf);
4955 }
4956 
4957 bool os::check_heap(bool force) {
4958   return true;
4959 }
4960 
4961 // Is a (classpath) directory empty?
4962 bool os::dir_is_empty(const char* path) {
4963   DIR *dir = NULL;
4964   struct dirent *ptr;
4965 
4966   dir = opendir(path);
4967   if (dir == NULL) return true;
4968 
4969   // Scan the directory
4970   bool result = true;
4971   char buf[sizeof(struct dirent) + MAX_PATH];
4972   while (result && (ptr = ::readdir(dir)) != NULL) {
4973     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4974       result = false;
4975     }
4976   }
4977   closedir(dir);
4978   return result;
4979 }
4980 
4981 // This code originates from JDK's sysOpen and open64_w
4982 // from src/solaris/hpi/src/system_md.c
4983 
4984 int os::open(const char *path, int oflag, int mode) {
4985   if (strlen(path) > MAX_PATH - 1) {
4986     errno = ENAMETOOLONG;
4987     return -1;
4988   }
4989 
4990   // All file descriptors that are opened in the Java process and not
4991   // specifically destined for a subprocess should have the close-on-exec
4992   // flag set.  If we don't set it, then careless 3rd party native code
4993   // might fork and exec without closing all appropriate file descriptors
4994   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
4995   // turn might:
4996   //
4997   // - cause end-of-file to fail to be detected on some file
4998   //   descriptors, resulting in mysterious hangs, or
4999   //
5000   // - might cause an fopen in the subprocess to fail on a system
5001   //   suffering from bug 1085341.
5002   //
5003   // (Yes, the default setting of the close-on-exec flag is a Unix
5004   // design flaw)
5005   //
5006   // See:
5007   // 1085341: 32-bit stdio routines should support file descriptors >255
5008   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5009   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5010   //
5011   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5012   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5013   // because it saves a system call and removes a small window where the flag
5014   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5015   // and we fall back to using FD_CLOEXEC (see below).
5016 #ifdef O_CLOEXEC
5017   oflag |= O_CLOEXEC;
5018 #endif
5019 
5020   int fd = ::open64(path, oflag, mode);
5021   if (fd == -1) return -1;
5022 
5023   //If the open succeeded, the file might still be a directory
5024   {
5025     struct stat64 buf64;
5026     int ret = ::fstat64(fd, &buf64);
5027     int st_mode = buf64.st_mode;
5028 
5029     if (ret != -1) {
5030       if ((st_mode & S_IFMT) == S_IFDIR) {
5031         errno = EISDIR;
5032         ::close(fd);
5033         return -1;
5034       }
5035     } else {
5036       ::close(fd);
5037       return -1;
5038     }
5039   }
5040 
5041 #ifdef FD_CLOEXEC
5042   // Validate that the use of the O_CLOEXEC flag on open above worked.
5043   // With recent kernels, we will perform this check exactly once.
5044   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5045   if (!O_CLOEXEC_is_known_to_work) {
5046     int flags = ::fcntl(fd, F_GETFD);
5047     if (flags != -1) {
5048       if ((flags & FD_CLOEXEC) != 0)
5049         O_CLOEXEC_is_known_to_work = 1;
5050       else
5051         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5052     }
5053   }
5054 #endif
5055 
5056   return fd;
5057 }
5058 
5059 
5060 // create binary file, rewriting existing file if required
5061 int os::create_binary_file(const char* path, bool rewrite_existing) {
5062   int oflags = O_WRONLY | O_CREAT;
5063   if (!rewrite_existing) {
5064     oflags |= O_EXCL;
5065   }
5066   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5067 }
5068 
5069 // return current position of file pointer
5070 jlong os::current_file_offset(int fd) {
5071   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5072 }
5073 
5074 // move file pointer to the specified offset
5075 jlong os::seek_to_file_offset(int fd, jlong offset) {
5076   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5077 }
5078 
5079 // This code originates from JDK's sysAvailable
5080 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5081 
5082 int os::available(int fd, jlong *bytes) {
5083   jlong cur, end;
5084   int mode;
5085   struct stat64 buf64;
5086 
5087   if (::fstat64(fd, &buf64) >= 0) {
5088     mode = buf64.st_mode;
5089     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5090       int n;
5091       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5092         *bytes = n;
5093         return 1;
5094       }
5095     }
5096   }
5097   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5098     return 0;
5099   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5100     return 0;
5101   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5102     return 0;
5103   }
5104   *bytes = end - cur;
5105   return 1;
5106 }
5107 
5108 // Map a block of memory.
5109 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5110                         char *addr, size_t bytes, bool read_only,
5111                         bool allow_exec) {
5112   int prot;
5113   int flags = MAP_PRIVATE;
5114 
5115   if (read_only) {
5116     prot = PROT_READ;
5117   } else {
5118     prot = PROT_READ | PROT_WRITE;
5119   }
5120 
5121   if (allow_exec) {
5122     prot |= PROT_EXEC;
5123   }
5124 
5125   if (addr != NULL) {
5126     flags |= MAP_FIXED;
5127   }
5128 
5129   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5130                                      fd, file_offset);
5131   if (mapped_address == MAP_FAILED) {
5132     return NULL;
5133   }
5134   return mapped_address;
5135 }
5136 
5137 
5138 // Remap a block of memory.
5139 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5140                           char *addr, size_t bytes, bool read_only,
5141                           bool allow_exec) {
5142   // same as map_memory() on this OS
5143   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5144                         allow_exec);
5145 }
5146 
5147 
5148 // Unmap a block of memory.
5149 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5150   return munmap(addr, bytes) == 0;
5151 }
5152 
5153 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5154 
5155 static clockid_t thread_cpu_clockid(Thread* thread) {
5156   pthread_t tid = thread->osthread()->pthread_id();
5157   clockid_t clockid;
5158 
5159   // Get thread clockid
5160   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5161   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5162   return clockid;
5163 }
5164 
5165 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5166 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5167 // of a thread.
5168 //
5169 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5170 // the fast estimate available on the platform.
5171 
5172 jlong os::current_thread_cpu_time() {
5173   if (os::Linux::supports_fast_thread_cpu_time()) {
5174     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5175   } else {
5176     // return user + sys since the cost is the same
5177     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5178   }
5179 }
5180 
5181 jlong os::thread_cpu_time(Thread* thread) {
5182   // consistent with what current_thread_cpu_time() returns
5183   if (os::Linux::supports_fast_thread_cpu_time()) {
5184     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5185   } else {
5186     return slow_thread_cpu_time(thread, true /* user + sys */);
5187   }
5188 }
5189 
5190 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5191   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5192     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5193   } else {
5194     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5195   }
5196 }
5197 
5198 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5199   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5200     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5201   } else {
5202     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5203   }
5204 }
5205 
5206 //  -1 on error.
5207 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5208   pid_t  tid = thread->osthread()->thread_id();
5209   char *s;
5210   char stat[2048];
5211   int statlen;
5212   char proc_name[64];
5213   int count;
5214   long sys_time, user_time;
5215   char cdummy;
5216   int idummy;
5217   long ldummy;
5218   FILE *fp;
5219 
5220   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5221   fp = fopen(proc_name, "r");
5222   if (fp == NULL) return -1;
5223   statlen = fread(stat, 1, 2047, fp);
5224   stat[statlen] = '\0';
5225   fclose(fp);
5226 
5227   // Skip pid and the command string. Note that we could be dealing with
5228   // weird command names, e.g. user could decide to rename java launcher
5229   // to "java 1.4.2 :)", then the stat file would look like
5230   //                1234 (java 1.4.2 :)) R ... ...
5231   // We don't really need to know the command string, just find the last
5232   // occurrence of ")" and then start parsing from there. See bug 4726580.
5233   s = strrchr(stat, ')');
5234   if (s == NULL) return -1;
5235 
5236   // Skip blank chars
5237   do { s++; } while (s && isspace(*s));
5238 
5239   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5240                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5241                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5242                  &user_time, &sys_time);
5243   if (count != 13) return -1;
5244   if (user_sys_cpu_time) {
5245     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5246   } else {
5247     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5248   }
5249 }
5250 
5251 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5252   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5253   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5254   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5255   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5256 }
5257 
5258 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5259   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5260   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5261   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5262   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5263 }
5264 
5265 bool os::is_thread_cpu_time_supported() {
5266   return true;
5267 }
5268 
5269 // System loadavg support.  Returns -1 if load average cannot be obtained.
5270 // Linux doesn't yet have a (official) notion of processor sets,
5271 // so just return the system wide load average.
5272 int os::loadavg(double loadavg[], int nelem) {
5273   return ::getloadavg(loadavg, nelem);
5274 }
5275 
5276 void os::pause() {
5277   char filename[MAX_PATH];
5278   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5279     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5280   } else {
5281     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5282   }
5283 
5284   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5285   if (fd != -1) {
5286     struct stat buf;
5287     ::close(fd);
5288     while (::stat(filename, &buf) == 0) {
5289       (void)::poll(NULL, 0, 100);
5290     }
5291   } else {
5292     jio_fprintf(stderr,
5293                 "Could not open pause file '%s', continuing immediately.\n", filename);
5294   }
5295 }
5296 
5297 
5298 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5299 // comment paragraphs are worth repeating here:
5300 //
5301 // Assumption:
5302 //    Only one parker can exist on an event, which is why we allocate
5303 //    them per-thread. Multiple unparkers can coexist.
5304 //
5305 // _Event serves as a restricted-range semaphore.
5306 //   -1 : thread is blocked, i.e. there is a waiter
5307 //    0 : neutral: thread is running or ready,
5308 //        could have been signaled after a wait started
5309 //    1 : signaled - thread is running or ready
5310 //
5311 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5312 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5313 // For specifics regarding the bug see GLIBC BUGID 261237 :
5314 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5315 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5316 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5317 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5318 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5319 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5320 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5321 // of libpthread avoids the problem, but isn't practical.
5322 //
5323 // Possible remedies:
5324 //
5325 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5326 //      This is palliative and probabilistic, however.  If the thread is preempted
5327 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5328 //      than the minimum period may have passed, and the abstime may be stale (in the
5329 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5330 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5331 //
5332 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5333 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5334 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5335 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5336 //      thread.
5337 //
5338 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5339 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5340 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5341 //      This also works well.  In fact it avoids kernel-level scalability impediments
5342 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5343 //      timers in a graceful fashion.
5344 //
5345 // 4.   When the abstime value is in the past it appears that control returns
5346 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5347 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5348 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5349 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5350 //      It may be possible to avoid reinitialization by checking the return
5351 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5352 //      condvar we must establish the invariant that cond_signal() is only called
5353 //      within critical sections protected by the adjunct mutex.  This prevents
5354 //      cond_signal() from "seeing" a condvar that's in the midst of being
5355 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5356 //      desirable signal-after-unlock optimization that avoids futile context switching.
5357 //
5358 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5359 //      structure when a condvar is used or initialized.  cond_destroy()  would
5360 //      release the helper structure.  Our reinitialize-after-timedwait fix
5361 //      put excessive stress on malloc/free and locks protecting the c-heap.
5362 //
5363 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5364 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5365 // and only enabling the work-around for vulnerable environments.
5366 
5367 // utility to compute the abstime argument to timedwait:
5368 // millis is the relative timeout time
5369 // abstime will be the absolute timeout time
5370 // TODO: replace compute_abstime() with unpackTime()
5371 
5372 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5373   if (millis < 0)  millis = 0;
5374 
5375   jlong seconds = millis / 1000;
5376   millis %= 1000;
5377   if (seconds > 50000000) { // see man cond_timedwait(3T)
5378     seconds = 50000000;
5379   }
5380 
5381   if (os::supports_monotonic_clock()) {
5382     struct timespec now;
5383     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5384     assert_status(status == 0, status, "clock_gettime");
5385     abstime->tv_sec = now.tv_sec  + seconds;
5386     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5387     if (nanos >= NANOSECS_PER_SEC) {
5388       abstime->tv_sec += 1;
5389       nanos -= NANOSECS_PER_SEC;
5390     }
5391     abstime->tv_nsec = nanos;
5392   } else {
5393     struct timeval now;
5394     int status = gettimeofday(&now, NULL);
5395     assert(status == 0, "gettimeofday");
5396     abstime->tv_sec = now.tv_sec  + seconds;
5397     long usec = now.tv_usec + millis * 1000;
5398     if (usec >= 1000000) {
5399       abstime->tv_sec += 1;
5400       usec -= 1000000;
5401     }
5402     abstime->tv_nsec = usec * 1000;
5403   }
5404   return abstime;
5405 }
5406 
5407 void os::PlatformEvent::park() {       // AKA "down()"
5408   // Transitions for _Event:
5409   //   -1 => -1 : illegal
5410   //    1 =>  0 : pass - return immediately
5411   //    0 => -1 : block; then set _Event to 0 before returning
5412 
5413   // Invariant: Only the thread associated with the Event/PlatformEvent
5414   // may call park().
5415   // TODO: assert that _Assoc != NULL or _Assoc == Self
5416   assert(_nParked == 0, "invariant");
5417 
5418   int v;
5419   for (;;) {
5420     v = _Event;
5421     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5422   }
5423   guarantee(v >= 0, "invariant");
5424   if (v == 0) {
5425     // Do this the hard way by blocking ...
5426     int status = pthread_mutex_lock(_mutex);
5427     assert_status(status == 0, status, "mutex_lock");
5428     guarantee(_nParked == 0, "invariant");
5429     ++_nParked;
5430     while (_Event < 0) {
5431       status = pthread_cond_wait(_cond, _mutex);
5432       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5433       // Treat this the same as if the wait was interrupted
5434       if (status == ETIME) { status = EINTR; }
5435       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5436     }
5437     --_nParked;
5438 
5439     _Event = 0;
5440     status = pthread_mutex_unlock(_mutex);
5441     assert_status(status == 0, status, "mutex_unlock");
5442     // Paranoia to ensure our locked and lock-free paths interact
5443     // correctly with each other.
5444     OrderAccess::fence();
5445   }
5446   guarantee(_Event >= 0, "invariant");
5447 }
5448 
5449 int os::PlatformEvent::park(jlong millis) {
5450   // Transitions for _Event:
5451   //   -1 => -1 : illegal
5452   //    1 =>  0 : pass - return immediately
5453   //    0 => -1 : block; then set _Event to 0 before returning
5454 
5455   guarantee(_nParked == 0, "invariant");
5456 
5457   int v;
5458   for (;;) {
5459     v = _Event;
5460     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5461   }
5462   guarantee(v >= 0, "invariant");
5463   if (v != 0) return OS_OK;
5464 
5465   // We do this the hard way, by blocking the thread.
5466   // Consider enforcing a minimum timeout value.
5467   struct timespec abst;
5468   compute_abstime(&abst, millis);
5469 
5470   int ret = OS_TIMEOUT;
5471   int status = pthread_mutex_lock(_mutex);
5472   assert_status(status == 0, status, "mutex_lock");
5473   guarantee(_nParked == 0, "invariant");
5474   ++_nParked;
5475 
5476   // Object.wait(timo) will return because of
5477   // (a) notification
5478   // (b) timeout
5479   // (c) thread.interrupt
5480   //
5481   // Thread.interrupt and object.notify{All} both call Event::set.
5482   // That is, we treat thread.interrupt as a special case of notification.
5483   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5484   // We assume all ETIME returns are valid.
5485   //
5486   // TODO: properly differentiate simultaneous notify+interrupt.
5487   // In that case, we should propagate the notify to another waiter.
5488 
5489   while (_Event < 0) {
5490     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5491     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5492       pthread_cond_destroy(_cond);
5493       pthread_cond_init(_cond, os::Linux::condAttr());
5494     }
5495     assert_status(status == 0 || status == EINTR ||
5496                   status == ETIME || status == ETIMEDOUT,
5497                   status, "cond_timedwait");
5498     if (!FilterSpuriousWakeups) break;                 // previous semantics
5499     if (status == ETIME || status == ETIMEDOUT) break;
5500     // We consume and ignore EINTR and spurious wakeups.
5501   }
5502   --_nParked;
5503   if (_Event >= 0) {
5504     ret = OS_OK;
5505   }
5506   _Event = 0;
5507   status = pthread_mutex_unlock(_mutex);
5508   assert_status(status == 0, status, "mutex_unlock");
5509   assert(_nParked == 0, "invariant");
5510   // Paranoia to ensure our locked and lock-free paths interact
5511   // correctly with each other.
5512   OrderAccess::fence();
5513   return ret;
5514 }
5515 
5516 void os::PlatformEvent::unpark() {
5517   // Transitions for _Event:
5518   //    0 => 1 : just return
5519   //    1 => 1 : just return
5520   //   -1 => either 0 or 1; must signal target thread
5521   //         That is, we can safely transition _Event from -1 to either
5522   //         0 or 1.
5523   // See also: "Semaphores in Plan 9" by Mullender & Cox
5524   //
5525   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5526   // that it will take two back-to-back park() calls for the owning
5527   // thread to block. This has the benefit of forcing a spurious return
5528   // from the first park() call after an unpark() call which will help
5529   // shake out uses of park() and unpark() without condition variables.
5530 
5531   if (Atomic::xchg(1, &_Event) >= 0) return;
5532 
5533   // Wait for the thread associated with the event to vacate
5534   int status = pthread_mutex_lock(_mutex);
5535   assert_status(status == 0, status, "mutex_lock");
5536   int AnyWaiters = _nParked;
5537   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5538   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5539     AnyWaiters = 0;
5540     pthread_cond_signal(_cond);
5541   }
5542   status = pthread_mutex_unlock(_mutex);
5543   assert_status(status == 0, status, "mutex_unlock");
5544   if (AnyWaiters != 0) {
5545     // Note that we signal() *after* dropping the lock for "immortal" Events.
5546     // This is safe and avoids a common class of  futile wakeups.  In rare
5547     // circumstances this can cause a thread to return prematurely from
5548     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5549     // will simply re-test the condition and re-park itself.
5550     // This provides particular benefit if the underlying platform does not
5551     // provide wait morphing.
5552     status = pthread_cond_signal(_cond);
5553     assert_status(status == 0, status, "cond_signal");
5554   }
5555 }
5556 
5557 
5558 // JSR166
5559 // -------------------------------------------------------
5560 
5561 // The solaris and linux implementations of park/unpark are fairly
5562 // conservative for now, but can be improved. They currently use a
5563 // mutex/condvar pair, plus a a count.
5564 // Park decrements count if > 0, else does a condvar wait.  Unpark
5565 // sets count to 1 and signals condvar.  Only one thread ever waits
5566 // on the condvar. Contention seen when trying to park implies that someone
5567 // is unparking you, so don't wait. And spurious returns are fine, so there
5568 // is no need to track notifications.
5569 
5570 // This code is common to linux and solaris and will be moved to a
5571 // common place in dolphin.
5572 //
5573 // The passed in time value is either a relative time in nanoseconds
5574 // or an absolute time in milliseconds. Either way it has to be unpacked
5575 // into suitable seconds and nanoseconds components and stored in the
5576 // given timespec structure.
5577 // Given time is a 64-bit value and the time_t used in the timespec is only
5578 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5579 // overflow if times way in the future are given. Further on Solaris versions
5580 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5581 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5582 // As it will be 28 years before "now + 100000000" will overflow we can
5583 // ignore overflow and just impose a hard-limit on seconds using the value
5584 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5585 // years from "now".
5586 
5587 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5588   assert(time > 0, "convertTime");
5589   time_t max_secs = 0;
5590 
5591   if (!os::supports_monotonic_clock() || isAbsolute) {
5592     struct timeval now;
5593     int status = gettimeofday(&now, NULL);
5594     assert(status == 0, "gettimeofday");
5595 
5596     max_secs = now.tv_sec + MAX_SECS;
5597 
5598     if (isAbsolute) {
5599       jlong secs = time / 1000;
5600       if (secs > max_secs) {
5601         absTime->tv_sec = max_secs;
5602       } else {
5603         absTime->tv_sec = secs;
5604       }
5605       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5606     } else {
5607       jlong secs = time / NANOSECS_PER_SEC;
5608       if (secs >= MAX_SECS) {
5609         absTime->tv_sec = max_secs;
5610         absTime->tv_nsec = 0;
5611       } else {
5612         absTime->tv_sec = now.tv_sec + secs;
5613         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5614         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5615           absTime->tv_nsec -= NANOSECS_PER_SEC;
5616           ++absTime->tv_sec; // note: this must be <= max_secs
5617         }
5618       }
5619     }
5620   } else {
5621     // must be relative using monotonic clock
5622     struct timespec now;
5623     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5624     assert_status(status == 0, status, "clock_gettime");
5625     max_secs = now.tv_sec + MAX_SECS;
5626     jlong secs = time / NANOSECS_PER_SEC;
5627     if (secs >= MAX_SECS) {
5628       absTime->tv_sec = max_secs;
5629       absTime->tv_nsec = 0;
5630     } else {
5631       absTime->tv_sec = now.tv_sec + secs;
5632       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5633       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5634         absTime->tv_nsec -= NANOSECS_PER_SEC;
5635         ++absTime->tv_sec; // note: this must be <= max_secs
5636       }
5637     }
5638   }
5639   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5640   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5641   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5642   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5643 }
5644 
5645 void Parker::park(bool isAbsolute, jlong time) {
5646   // Ideally we'd do something useful while spinning, such
5647   // as calling unpackTime().
5648 
5649   // Optional fast-path check:
5650   // Return immediately if a permit is available.
5651   // We depend on Atomic::xchg() having full barrier semantics
5652   // since we are doing a lock-free update to _counter.
5653   if (Atomic::xchg(0, &_counter) > 0) return;
5654 
5655   Thread* thread = Thread::current();
5656   assert(thread->is_Java_thread(), "Must be JavaThread");
5657   JavaThread *jt = (JavaThread *)thread;
5658 
5659   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5660   // Check interrupt before trying to wait
5661   if (Thread::is_interrupted(thread, false)) {
5662     return;
5663   }
5664 
5665   // Next, demultiplex/decode time arguments
5666   timespec absTime;
5667   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5668     return;
5669   }
5670   if (time > 0) {
5671     unpackTime(&absTime, isAbsolute, time);
5672   }
5673 
5674 
5675   // Enter safepoint region
5676   // Beware of deadlocks such as 6317397.
5677   // The per-thread Parker:: mutex is a classic leaf-lock.
5678   // In particular a thread must never block on the Threads_lock while
5679   // holding the Parker:: mutex.  If safepoints are pending both the
5680   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5681   ThreadBlockInVM tbivm(jt);
5682 
5683   // Don't wait if cannot get lock since interference arises from
5684   // unblocking.  Also. check interrupt before trying wait
5685   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5686     return;
5687   }
5688 
5689   int status;
5690   if (_counter > 0)  { // no wait needed
5691     _counter = 0;
5692     status = pthread_mutex_unlock(_mutex);
5693     assert(status == 0, "invariant");
5694     // Paranoia to ensure our locked and lock-free paths interact
5695     // correctly with each other and Java-level accesses.
5696     OrderAccess::fence();
5697     return;
5698   }
5699 
5700 #ifdef ASSERT
5701   // Don't catch signals while blocked; let the running threads have the signals.
5702   // (This allows a debugger to break into the running thread.)
5703   sigset_t oldsigs;
5704   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5705   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5706 #endif
5707 
5708   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5709   jt->set_suspend_equivalent();
5710   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5711 
5712   assert(_cur_index == -1, "invariant");
5713   if (time == 0) {
5714     _cur_index = REL_INDEX; // arbitrary choice when not timed
5715     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5716   } else {
5717     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5718     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5719     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5720       pthread_cond_destroy(&_cond[_cur_index]);
5721       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5722     }
5723   }
5724   _cur_index = -1;
5725   assert_status(status == 0 || status == EINTR ||
5726                 status == ETIME || status == ETIMEDOUT,
5727                 status, "cond_timedwait");
5728 
5729 #ifdef ASSERT
5730   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5731 #endif
5732 
5733   _counter = 0;
5734   status = pthread_mutex_unlock(_mutex);
5735   assert_status(status == 0, status, "invariant");
5736   // Paranoia to ensure our locked and lock-free paths interact
5737   // correctly with each other and Java-level accesses.
5738   OrderAccess::fence();
5739 
5740   // If externally suspended while waiting, re-suspend
5741   if (jt->handle_special_suspend_equivalent_condition()) {
5742     jt->java_suspend_self();
5743   }
5744 }
5745 
5746 void Parker::unpark() {
5747   int status = pthread_mutex_lock(_mutex);
5748   assert(status == 0, "invariant");
5749   const int s = _counter;
5750   _counter = 1;
5751   if (s < 1) {
5752     // thread might be parked
5753     if (_cur_index != -1) {
5754       // thread is definitely parked
5755       if (WorkAroundNPTLTimedWaitHang) {
5756         status = pthread_cond_signal(&_cond[_cur_index]);
5757         assert(status == 0, "invariant");
5758         status = pthread_mutex_unlock(_mutex);
5759         assert(status == 0, "invariant");
5760       } else {
5761         // must capture correct index before unlocking
5762         int index = _cur_index;
5763         status = pthread_mutex_unlock(_mutex);
5764         assert(status == 0, "invariant");
5765         status = pthread_cond_signal(&_cond[index]);
5766         assert(status == 0, "invariant");
5767       }
5768     } else {
5769       pthread_mutex_unlock(_mutex);
5770       assert(status == 0, "invariant");
5771     }
5772   } else {
5773     pthread_mutex_unlock(_mutex);
5774     assert(status == 0, "invariant");
5775   }
5776 }
5777 
5778 
5779 extern char** environ;
5780 
5781 // Run the specified command in a separate process. Return its exit value,
5782 // or -1 on failure (e.g. can't fork a new process).
5783 // Unlike system(), this function can be called from signal handler. It
5784 // doesn't block SIGINT et al.
5785 int os::fork_and_exec(char* cmd) {
5786   const char * argv[4] = {"sh", "-c", cmd, NULL};
5787 
5788   pid_t pid = fork();
5789 
5790   if (pid < 0) {
5791     // fork failed
5792     return -1;
5793 
5794   } else if (pid == 0) {
5795     // child process
5796 
5797     execve("/bin/sh", (char* const*)argv, environ);
5798 
5799     // execve failed
5800     _exit(-1);
5801 
5802   } else  {
5803     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5804     // care about the actual exit code, for now.
5805 
5806     int status;
5807 
5808     // Wait for the child process to exit.  This returns immediately if
5809     // the child has already exited. */
5810     while (waitpid(pid, &status, 0) < 0) {
5811       switch (errno) {
5812       case ECHILD: return 0;
5813       case EINTR: break;
5814       default: return -1;
5815       }
5816     }
5817 
5818     if (WIFEXITED(status)) {
5819       // The child exited normally; get its exit code.
5820       return WEXITSTATUS(status);
5821     } else if (WIFSIGNALED(status)) {
5822       // The child exited because of a signal
5823       // The best value to return is 0x80 + signal number,
5824       // because that is what all Unix shells do, and because
5825       // it allows callers to distinguish between process exit and
5826       // process death by signal.
5827       return 0x80 + WTERMSIG(status);
5828     } else {
5829       // Unknown exit code; pass it through
5830       return status;
5831     }
5832   }
5833 }
5834 
5835 // is_headless_jre()
5836 //
5837 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5838 // in order to report if we are running in a headless jre
5839 //
5840 // Since JDK8 xawt/libmawt.so was moved into the same directory
5841 // as libawt.so, and renamed libawt_xawt.so
5842 //
5843 bool os::is_headless_jre() {
5844   struct stat statbuf;
5845   char buf[MAXPATHLEN];
5846   char libmawtpath[MAXPATHLEN];
5847   const char *xawtstr  = "/xawt/libmawt.so";
5848   const char *new_xawtstr = "/libawt_xawt.so";
5849   char *p;
5850 
5851   // Get path to libjvm.so
5852   os::jvm_path(buf, sizeof(buf));
5853 
5854   // Get rid of libjvm.so
5855   p = strrchr(buf, '/');
5856   if (p == NULL) {
5857     return false;
5858   } else {
5859     *p = '\0';
5860   }
5861 
5862   // Get rid of client or server
5863   p = strrchr(buf, '/');
5864   if (p == NULL) {
5865     return false;
5866   } else {
5867     *p = '\0';
5868   }
5869 
5870   // check xawt/libmawt.so
5871   strcpy(libmawtpath, buf);
5872   strcat(libmawtpath, xawtstr);
5873   if (::stat(libmawtpath, &statbuf) == 0) return false;
5874 
5875   // check libawt_xawt.so
5876   strcpy(libmawtpath, buf);
5877   strcat(libmawtpath, new_xawtstr);
5878   if (::stat(libmawtpath, &statbuf) == 0) return false;
5879 
5880   return true;
5881 }
5882 
5883 // Get the default path to the core file
5884 // Returns the length of the string
5885 int os::get_core_path(char* buffer, size_t bufferSize) {
5886   /*
5887    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5888    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5889    */
5890   const int core_pattern_len = 129;
5891   char core_pattern[core_pattern_len] = {0};
5892 
5893   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5894   if (core_pattern_file != -1) {
5895     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5896     ::close(core_pattern_file);
5897 
5898     if (ret > 0) {
5899       char *last_char = core_pattern + strlen(core_pattern) - 1;
5900 
5901       if (*last_char == '\n') {
5902         *last_char = '\0';
5903       }
5904     }
5905   }
5906 
5907   if (strlen(core_pattern) == 0) {
5908     return -1;
5909   }
5910 
5911   char *pid_pos = strstr(core_pattern, "%p");
5912   int written;
5913 
5914   if (core_pattern[0] == '/') {
5915     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5916   } else {
5917     char cwd[PATH_MAX];
5918 
5919     const char* p = get_current_directory(cwd, PATH_MAX);
5920     if (p == NULL) {
5921       return -1;
5922     }
5923 
5924     if (core_pattern[0] == '|') {
5925       written = jio_snprintf(buffer, bufferSize,
5926                         "\"%s\" (or dumping to %s/core.%d)",
5927                                      &core_pattern[1], p, current_process_id());
5928     } else {
5929       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5930     }
5931   }
5932 
5933   if (written < 0) {
5934     return -1;
5935   }
5936 
5937   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5938     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5939 
5940     if (core_uses_pid_file != -1) {
5941       char core_uses_pid = 0;
5942       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5943       ::close(core_uses_pid_file);
5944 
5945       if (core_uses_pid == '1') {
5946         jio_snprintf(buffer + written, bufferSize - written,
5947                                           ".%d", current_process_id());
5948       }
5949     }
5950   }
5951 
5952   return strlen(buffer);
5953 }
5954 
5955 /////////////// Unit tests ///////////////
5956 
5957 #ifndef PRODUCT
5958 
5959 #define test_log(...)              \
5960   do {                             \
5961     if (VerboseInternalVMTests) {  \
5962       tty->print_cr(__VA_ARGS__);  \
5963       tty->flush();                \
5964     }                              \
5965   } while (false)
5966 
5967 class TestReserveMemorySpecial : AllStatic {
5968  public:
5969   static void small_page_write(void* addr, size_t size) {
5970     size_t page_size = os::vm_page_size();
5971 
5972     char* end = (char*)addr + size;
5973     for (char* p = (char*)addr; p < end; p += page_size) {
5974       *p = 1;
5975     }
5976   }
5977 
5978   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5979     if (!UseHugeTLBFS) {
5980       return;
5981     }
5982 
5983     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5984 
5985     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5986 
5987     if (addr != NULL) {
5988       small_page_write(addr, size);
5989 
5990       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5991     }
5992   }
5993 
5994   static void test_reserve_memory_special_huge_tlbfs_only() {
5995     if (!UseHugeTLBFS) {
5996       return;
5997     }
5998 
5999     size_t lp = os::large_page_size();
6000 
6001     for (size_t size = lp; size <= lp * 10; size += lp) {
6002       test_reserve_memory_special_huge_tlbfs_only(size);
6003     }
6004   }
6005 
6006   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6007     size_t lp = os::large_page_size();
6008     size_t ag = os::vm_allocation_granularity();
6009 
6010     // sizes to test
6011     const size_t sizes[] = {
6012       lp, lp + ag, lp + lp / 2, lp * 2,
6013       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6014       lp * 10, lp * 10 + lp / 2
6015     };
6016     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6017 
6018     // For each size/alignment combination, we test three scenarios:
6019     // 1) with req_addr == NULL
6020     // 2) with a non-null req_addr at which we expect to successfully allocate
6021     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6022     //    expect the allocation to either fail or to ignore req_addr
6023 
6024     // Pre-allocate two areas; they shall be as large as the largest allocation
6025     //  and aligned to the largest alignment we will be testing.
6026     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6027     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6028       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6029       -1, 0);
6030     assert(mapping1 != MAP_FAILED, "should work");
6031 
6032     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6033       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6034       -1, 0);
6035     assert(mapping2 != MAP_FAILED, "should work");
6036 
6037     // Unmap the first mapping, but leave the second mapping intact: the first
6038     // mapping will serve as a value for a "good" req_addr (case 2). The second
6039     // mapping, still intact, as "bad" req_addr (case 3).
6040     ::munmap(mapping1, mapping_size);
6041 
6042     // Case 1
6043     test_log("%s, req_addr NULL:", __FUNCTION__);
6044     test_log("size            align           result");
6045 
6046     for (int i = 0; i < num_sizes; i++) {
6047       const size_t size = sizes[i];
6048       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6049         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6050         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6051                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6052         if (p != NULL) {
6053           assert(is_ptr_aligned(p, alignment), "must be");
6054           small_page_write(p, size);
6055           os::Linux::release_memory_special_huge_tlbfs(p, size);
6056         }
6057       }
6058     }
6059 
6060     // Case 2
6061     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6062     test_log("size            align           req_addr         result");
6063 
6064     for (int i = 0; i < num_sizes; i++) {
6065       const size_t size = sizes[i];
6066       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6067         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6068         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6069         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6070                  size, alignment, p2i(req_addr), p2i(p),
6071                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6072         if (p != NULL) {
6073           assert(p == req_addr, "must be");
6074           small_page_write(p, size);
6075           os::Linux::release_memory_special_huge_tlbfs(p, size);
6076         }
6077       }
6078     }
6079 
6080     // Case 3
6081     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6082     test_log("size            align           req_addr         result");
6083 
6084     for (int i = 0; i < num_sizes; i++) {
6085       const size_t size = sizes[i];
6086       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6087         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6088         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6089         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6090                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6091         // as the area around req_addr contains already existing mappings, the API should always
6092         // return NULL (as per contract, it cannot return another address)
6093         assert(p == NULL, "must be");
6094       }
6095     }
6096 
6097     ::munmap(mapping2, mapping_size);
6098 
6099   }
6100 
6101   static void test_reserve_memory_special_huge_tlbfs() {
6102     if (!UseHugeTLBFS) {
6103       return;
6104     }
6105 
6106     test_reserve_memory_special_huge_tlbfs_only();
6107     test_reserve_memory_special_huge_tlbfs_mixed();
6108   }
6109 
6110   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6111     if (!UseSHM) {
6112       return;
6113     }
6114 
6115     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6116 
6117     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6118 
6119     if (addr != NULL) {
6120       assert(is_ptr_aligned(addr, alignment), "Check");
6121       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6122 
6123       small_page_write(addr, size);
6124 
6125       os::Linux::release_memory_special_shm(addr, size);
6126     }
6127   }
6128 
6129   static void test_reserve_memory_special_shm() {
6130     size_t lp = os::large_page_size();
6131     size_t ag = os::vm_allocation_granularity();
6132 
6133     for (size_t size = ag; size < lp * 3; size += ag) {
6134       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6135         test_reserve_memory_special_shm(size, alignment);
6136       }
6137     }
6138   }
6139 
6140   static void test() {
6141     test_reserve_memory_special_huge_tlbfs();
6142     test_reserve_memory_special_shm();
6143   }
6144 };
6145 
6146 void TestReserveMemorySpecial_test() {
6147   TestReserveMemorySpecial::test();
6148 }
6149 
6150 #endif