1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   thread->initialize_thread_current();
 423 
 424   OSThread* osthr = thread->osthread();
 425   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 426 
 427   if (UseNUMA) {
 428     int lgrp_id = os::numa_get_group_id();
 429     if (lgrp_id != -1) {
 430       thread->set_lgrp_id(lgrp_id);
 431     }
 432   }
 433 
 434   // Diagnostic code to investigate JDK-6573254
 435   int res = 30115;  // non-java thread
 436   if (thread->is_Java_thread()) {
 437     res = 20115;    // java thread
 438   }
 439 
 440   // Install a win32 structured exception handler around every thread created
 441   // by VM, so VM can generate error dump when an exception occurred in non-
 442   // Java thread (e.g. VM thread).
 443   __try {
 444     thread->run();
 445   } __except(topLevelExceptionFilter(
 446                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 447     // Nothing to do.
 448   }
 449 
 450   // One less thread is executing
 451   // When the VMThread gets here, the main thread may have already exited
 452   // which frees the CodeHeap containing the Atomic::add code
 453   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 454     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 455   }
 456 
 457   // Thread must not return from exit_process_or_thread(), but if it does,
 458   // let it proceed to exit normally
 459   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 460 }
 461 
 462 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 463                                   int thread_id) {
 464   // Allocate the OSThread object
 465   OSThread* osthread = new OSThread(NULL, NULL);
 466   if (osthread == NULL) return NULL;
 467 
 468   // Initialize support for Java interrupts
 469   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 470   if (interrupt_event == NULL) {
 471     delete osthread;
 472     return NULL;
 473   }
 474   osthread->set_interrupt_event(interrupt_event);
 475 
 476   // Store info on the Win32 thread into the OSThread
 477   osthread->set_thread_handle(thread_handle);
 478   osthread->set_thread_id(thread_id);
 479 
 480   if (UseNUMA) {
 481     int lgrp_id = os::numa_get_group_id();
 482     if (lgrp_id != -1) {
 483       thread->set_lgrp_id(lgrp_id);
 484     }
 485   }
 486 
 487   // Initial thread state is INITIALIZED, not SUSPENDED
 488   osthread->set_state(INITIALIZED);
 489 
 490   return osthread;
 491 }
 492 
 493 
 494 bool os::create_attached_thread(JavaThread* thread) {
 495 #ifdef ASSERT
 496   thread->verify_not_published();
 497 #endif
 498   HANDLE thread_h;
 499   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 500                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 501     fatal("DuplicateHandle failed\n");
 502   }
 503   OSThread* osthread = create_os_thread(thread, thread_h,
 504                                         (int)current_thread_id());
 505   if (osthread == NULL) {
 506     return false;
 507   }
 508 
 509   // Initial thread state is RUNNABLE
 510   osthread->set_state(RUNNABLE);
 511 
 512   thread->set_osthread(osthread);
 513   return true;
 514 }
 515 
 516 bool os::create_main_thread(JavaThread* thread) {
 517 #ifdef ASSERT
 518   thread->verify_not_published();
 519 #endif
 520   if (_starting_thread == NULL) {
 521     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 522     if (_starting_thread == NULL) {
 523       return false;
 524     }
 525   }
 526 
 527   // The primordial thread is runnable from the start)
 528   _starting_thread->set_state(RUNNABLE);
 529 
 530   thread->set_osthread(_starting_thread);
 531   return true;
 532 }
 533 
 534 // Allocate and initialize a new OSThread
 535 bool os::create_thread(Thread* thread, ThreadType thr_type,
 536                        size_t stack_size) {
 537   unsigned thread_id;
 538 
 539   // Allocate the OSThread object
 540   OSThread* osthread = new OSThread(NULL, NULL);
 541   if (osthread == NULL) {
 542     return false;
 543   }
 544 
 545   // Initialize support for Java interrupts
 546   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 547   if (interrupt_event == NULL) {
 548     delete osthread;
 549     return NULL;
 550   }
 551   osthread->set_interrupt_event(interrupt_event);
 552   osthread->set_interrupted(false);
 553 
 554   thread->set_osthread(osthread);
 555 
 556   if (stack_size == 0) {
 557     switch (thr_type) {
 558     case os::java_thread:
 559       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 560       if (JavaThread::stack_size_at_create() > 0) {
 561         stack_size = JavaThread::stack_size_at_create();
 562       }
 563       break;
 564     case os::compiler_thread:
 565       if (CompilerThreadStackSize > 0) {
 566         stack_size = (size_t)(CompilerThreadStackSize * K);
 567         break;
 568       } // else fall through:
 569         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 570     case os::vm_thread:
 571     case os::pgc_thread:
 572     case os::cgc_thread:
 573     case os::watcher_thread:
 574       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 575       break;
 576     }
 577   }
 578 
 579   // Create the Win32 thread
 580   //
 581   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 582   // does not specify stack size. Instead, it specifies the size of
 583   // initially committed space. The stack size is determined by
 584   // PE header in the executable. If the committed "stack_size" is larger
 585   // than default value in the PE header, the stack is rounded up to the
 586   // nearest multiple of 1MB. For example if the launcher has default
 587   // stack size of 320k, specifying any size less than 320k does not
 588   // affect the actual stack size at all, it only affects the initial
 589   // commitment. On the other hand, specifying 'stack_size' larger than
 590   // default value may cause significant increase in memory usage, because
 591   // not only the stack space will be rounded up to MB, but also the
 592   // entire space is committed upfront.
 593   //
 594   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 595   // for CreateThread() that can treat 'stack_size' as stack size. However we
 596   // are not supposed to call CreateThread() directly according to MSDN
 597   // document because JVM uses C runtime library. The good news is that the
 598   // flag appears to work with _beginthredex() as well.
 599 
 600 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 601   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 602 #endif
 603 
 604   HANDLE thread_handle =
 605     (HANDLE)_beginthreadex(NULL,
 606                            (unsigned)stack_size,
 607                            (unsigned (__stdcall *)(void*)) java_start,
 608                            thread,
 609                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 610                            &thread_id);
 611   if (thread_handle == NULL) {
 612     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 613     // without the flag.
 614     thread_handle =
 615       (HANDLE)_beginthreadex(NULL,
 616                              (unsigned)stack_size,
 617                              (unsigned (__stdcall *)(void*)) java_start,
 618                              thread,
 619                              CREATE_SUSPENDED,
 620                              &thread_id);
 621   }
 622   if (thread_handle == NULL) {
 623     // Need to clean up stuff we've allocated so far
 624     CloseHandle(osthread->interrupt_event());
 625     thread->set_osthread(NULL);
 626     delete osthread;
 627     return NULL;
 628   }
 629 
 630   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 631 
 632   // Store info on the Win32 thread into the OSThread
 633   osthread->set_thread_handle(thread_handle);
 634   osthread->set_thread_id(thread_id);
 635 
 636   // Initial thread state is INITIALIZED, not SUSPENDED
 637   osthread->set_state(INITIALIZED);
 638 
 639   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 640   return true;
 641 }
 642 
 643 
 644 // Free Win32 resources related to the OSThread
 645 void os::free_thread(OSThread* osthread) {
 646   assert(osthread != NULL, "osthread not set");
 647   CloseHandle(osthread->thread_handle());
 648   CloseHandle(osthread->interrupt_event());
 649   delete osthread;
 650 }
 651 
 652 static jlong first_filetime;
 653 static jlong initial_performance_count;
 654 static jlong performance_frequency;
 655 
 656 
 657 jlong as_long(LARGE_INTEGER x) {
 658   jlong result = 0; // initialization to avoid warning
 659   set_high(&result, x.HighPart);
 660   set_low(&result, x.LowPart);
 661   return result;
 662 }
 663 
 664 
 665 jlong os::elapsed_counter() {
 666   LARGE_INTEGER count;
 667   if (win32::_has_performance_count) {
 668     QueryPerformanceCounter(&count);
 669     return as_long(count) - initial_performance_count;
 670   } else {
 671     FILETIME wt;
 672     GetSystemTimeAsFileTime(&wt);
 673     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 674   }
 675 }
 676 
 677 
 678 jlong os::elapsed_frequency() {
 679   if (win32::_has_performance_count) {
 680     return performance_frequency;
 681   } else {
 682     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 683     return 10000000;
 684   }
 685 }
 686 
 687 
 688 julong os::available_memory() {
 689   return win32::available_memory();
 690 }
 691 
 692 julong os::win32::available_memory() {
 693   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 694   // value if total memory is larger than 4GB
 695   MEMORYSTATUSEX ms;
 696   ms.dwLength = sizeof(ms);
 697   GlobalMemoryStatusEx(&ms);
 698 
 699   return (julong)ms.ullAvailPhys;
 700 }
 701 
 702 julong os::physical_memory() {
 703   return win32::physical_memory();
 704 }
 705 
 706 bool os::has_allocatable_memory_limit(julong* limit) {
 707   MEMORYSTATUSEX ms;
 708   ms.dwLength = sizeof(ms);
 709   GlobalMemoryStatusEx(&ms);
 710 #ifdef _LP64
 711   *limit = (julong)ms.ullAvailVirtual;
 712   return true;
 713 #else
 714   // Limit to 1400m because of the 2gb address space wall
 715   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 716   return true;
 717 #endif
 718 }
 719 
 720 // VC6 lacks DWORD_PTR
 721 #if _MSC_VER < 1300
 722 typedef UINT_PTR DWORD_PTR;
 723 #endif
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 752   struct {
 753     DWORD dwType;     // must be 0x1000
 754     LPCSTR szName;    // pointer to name (in user addr space)
 755     DWORD dwThreadID; // thread ID (-1=caller thread)
 756     DWORD dwFlags;    // reserved for future use, must be zero
 757   } info;
 758 
 759   info.dwType = 0x1000;
 760   info.szName = name;
 761   info.dwThreadID = -1;
 762   info.dwFlags = 0;
 763 
 764   __try {
 765     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 766   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 767 }
 768 
 769 bool os::distribute_processes(uint length, uint* distribution) {
 770   // Not yet implemented.
 771   return false;
 772 }
 773 
 774 bool os::bind_to_processor(uint processor_id) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 void os::win32::initialize_performance_counter() {
 780   LARGE_INTEGER count;
 781   if (QueryPerformanceFrequency(&count)) {
 782     win32::_has_performance_count = 1;
 783     performance_frequency = as_long(count);
 784     QueryPerformanceCounter(&count);
 785     initial_performance_count = as_long(count);
 786   } else {
 787     win32::_has_performance_count = 0;
 788     FILETIME wt;
 789     GetSystemTimeAsFileTime(&wt);
 790     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 791   }
 792 }
 793 
 794 
 795 double os::elapsedTime() {
 796   return (double) elapsed_counter() / (double) elapsed_frequency();
 797 }
 798 
 799 
 800 // Windows format:
 801 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 802 // Java format:
 803 //   Java standards require the number of milliseconds since 1/1/1970
 804 
 805 // Constant offset - calculated using offset()
 806 static jlong  _offset   = 116444736000000000;
 807 // Fake time counter for reproducible results when debugging
 808 static jlong  fake_time = 0;
 809 
 810 #ifdef ASSERT
 811 // Just to be safe, recalculate the offset in debug mode
 812 static jlong _calculated_offset = 0;
 813 static int   _has_calculated_offset = 0;
 814 
 815 jlong offset() {
 816   if (_has_calculated_offset) return _calculated_offset;
 817   SYSTEMTIME java_origin;
 818   java_origin.wYear          = 1970;
 819   java_origin.wMonth         = 1;
 820   java_origin.wDayOfWeek     = 0; // ignored
 821   java_origin.wDay           = 1;
 822   java_origin.wHour          = 0;
 823   java_origin.wMinute        = 0;
 824   java_origin.wSecond        = 0;
 825   java_origin.wMilliseconds  = 0;
 826   FILETIME jot;
 827   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 828     fatal("Error = %d\nWindows error", GetLastError());
 829   }
 830   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 831   _has_calculated_offset = 1;
 832   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 833   return _calculated_offset;
 834 }
 835 #else
 836 jlong offset() {
 837   return _offset;
 838 }
 839 #endif
 840 
 841 jlong windows_to_java_time(FILETIME wt) {
 842   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 843   return (a - offset()) / 10000;
 844 }
 845 
 846 // Returns time ticks in (10th of micro seconds)
 847 jlong windows_to_time_ticks(FILETIME wt) {
 848   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 849   return (a - offset());
 850 }
 851 
 852 FILETIME java_to_windows_time(jlong l) {
 853   jlong a = (l * 10000) + offset();
 854   FILETIME result;
 855   result.dwHighDateTime = high(a);
 856   result.dwLowDateTime  = low(a);
 857   return result;
 858 }
 859 
 860 bool os::supports_vtime() { return true; }
 861 bool os::enable_vtime() { return false; }
 862 bool os::vtime_enabled() { return false; }
 863 
 864 double os::elapsedVTime() {
 865   FILETIME created;
 866   FILETIME exited;
 867   FILETIME kernel;
 868   FILETIME user;
 869   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 870     // the resolution of windows_to_java_time() should be sufficient (ms)
 871     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 872   } else {
 873     return elapsedTime();
 874   }
 875 }
 876 
 877 jlong os::javaTimeMillis() {
 878   if (UseFakeTimers) {
 879     return fake_time++;
 880   } else {
 881     FILETIME wt;
 882     GetSystemTimeAsFileTime(&wt);
 883     return windows_to_java_time(wt);
 884   }
 885 }
 886 
 887 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 888   FILETIME wt;
 889   GetSystemTimeAsFileTime(&wt);
 890   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 891   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 892   seconds = secs;
 893   nanos = jlong(ticks - (secs*10000000)) * 100;
 894 }
 895 
 896 jlong os::javaTimeNanos() {
 897   if (!win32::_has_performance_count) {
 898     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 899   } else {
 900     LARGE_INTEGER current_count;
 901     QueryPerformanceCounter(&current_count);
 902     double current = as_long(current_count);
 903     double freq = performance_frequency;
 904     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 905     return time;
 906   }
 907 }
 908 
 909 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 910   if (!win32::_has_performance_count) {
 911     // javaTimeMillis() doesn't have much percision,
 912     // but it is not going to wrap -- so all 64 bits
 913     info_ptr->max_value = ALL_64_BITS;
 914 
 915     // this is a wall clock timer, so may skip
 916     info_ptr->may_skip_backward = true;
 917     info_ptr->may_skip_forward = true;
 918   } else {
 919     jlong freq = performance_frequency;
 920     if (freq < NANOSECS_PER_SEC) {
 921       // the performance counter is 64 bits and we will
 922       // be multiplying it -- so no wrap in 64 bits
 923       info_ptr->max_value = ALL_64_BITS;
 924     } else if (freq > NANOSECS_PER_SEC) {
 925       // use the max value the counter can reach to
 926       // determine the max value which could be returned
 927       julong max_counter = (julong)ALL_64_BITS;
 928       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 929     } else {
 930       // the performance counter is 64 bits and we will
 931       // be using it directly -- so no wrap in 64 bits
 932       info_ptr->max_value = ALL_64_BITS;
 933     }
 934 
 935     // using a counter, so no skipping
 936     info_ptr->may_skip_backward = false;
 937     info_ptr->may_skip_forward = false;
 938   }
 939   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 940 }
 941 
 942 char* os::local_time_string(char *buf, size_t buflen) {
 943   SYSTEMTIME st;
 944   GetLocalTime(&st);
 945   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 946                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 947   return buf;
 948 }
 949 
 950 bool os::getTimesSecs(double* process_real_time,
 951                       double* process_user_time,
 952                       double* process_system_time) {
 953   HANDLE h_process = GetCurrentProcess();
 954   FILETIME create_time, exit_time, kernel_time, user_time;
 955   BOOL result = GetProcessTimes(h_process,
 956                                 &create_time,
 957                                 &exit_time,
 958                                 &kernel_time,
 959                                 &user_time);
 960   if (result != 0) {
 961     FILETIME wt;
 962     GetSystemTimeAsFileTime(&wt);
 963     jlong rtc_millis = windows_to_java_time(wt);
 964     jlong user_millis = windows_to_java_time(user_time);
 965     jlong system_millis = windows_to_java_time(kernel_time);
 966     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 967     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 968     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 969     return true;
 970   } else {
 971     return false;
 972   }
 973 }
 974 
 975 void os::shutdown() {
 976   // allow PerfMemory to attempt cleanup of any persistent resources
 977   perfMemory_exit();
 978 
 979   // flush buffered output, finish log files
 980   ostream_abort();
 981 
 982   // Check for abort hook
 983   abort_hook_t abort_hook = Arguments::abort_hook();
 984   if (abort_hook != NULL) {
 985     abort_hook();
 986   }
 987 }
 988 
 989 
 990 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 991                                          PMINIDUMP_EXCEPTION_INFORMATION,
 992                                          PMINIDUMP_USER_STREAM_INFORMATION,
 993                                          PMINIDUMP_CALLBACK_INFORMATION);
 994 
 995 static HANDLE dumpFile = NULL;
 996 
 997 // Check if dump file can be created.
 998 void os::check_dump_limit(char* buffer, size_t buffsz) {
 999   bool status = true;
1000   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1001     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1002     status = false;
1003   }
1004 
1005 #ifndef ASSERT
1006   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1007     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1008     status = false;
1009   }
1010 #endif
1011 
1012   if (status) {
1013     const char* cwd = get_current_directory(NULL, 0);
1014     int pid = current_process_id();
1015     if (cwd != NULL) {
1016       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1017     } else {
1018       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1019     }
1020 
1021     if (dumpFile == NULL &&
1022        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1023                  == INVALID_HANDLE_VALUE) {
1024       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1025       status = false;
1026     }
1027   }
1028   VMError::record_coredump_status(buffer, status);
1029 }
1030 
1031 void os::abort(bool dump_core, void* siginfo, void* context) {
1032   HINSTANCE dbghelp;
1033   EXCEPTION_POINTERS ep;
1034   MINIDUMP_EXCEPTION_INFORMATION mei;
1035   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1036 
1037   HANDLE hProcess = GetCurrentProcess();
1038   DWORD processId = GetCurrentProcessId();
1039   MINIDUMP_TYPE dumpType;
1040 
1041   shutdown();
1042   if (!dump_core || dumpFile == NULL) {
1043     if (dumpFile != NULL) {
1044       CloseHandle(dumpFile);
1045     }
1046     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1047   }
1048 
1049   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1050 
1051   if (dbghelp == NULL) {
1052     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1053     CloseHandle(dumpFile);
1054     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055   }
1056 
1057   _MiniDumpWriteDump =
1058       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1059                                     PMINIDUMP_EXCEPTION_INFORMATION,
1060                                     PMINIDUMP_USER_STREAM_INFORMATION,
1061                                     PMINIDUMP_CALLBACK_INFORMATION),
1062                                     GetProcAddress(dbghelp,
1063                                     "MiniDumpWriteDump"));
1064 
1065   if (_MiniDumpWriteDump == NULL) {
1066     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1067     CloseHandle(dumpFile);
1068     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1069   }
1070 
1071   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1072 
1073   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1074   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1075 #if API_VERSION_NUMBER >= 11
1076   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1077                              MiniDumpWithUnloadedModules);
1078 #endif
1079 
1080   if (siginfo != NULL && context != NULL) {
1081     ep.ContextRecord = (PCONTEXT) context;
1082     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1083 
1084     mei.ThreadId = GetCurrentThreadId();
1085     mei.ExceptionPointers = &ep;
1086     pmei = &mei;
1087   } else {
1088     pmei = NULL;
1089   }
1090 
1091   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1092   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1093   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1094       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1095     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1096   }
1097   CloseHandle(dumpFile);
1098   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1099 }
1100 
1101 // Die immediately, no exit hook, no abort hook, no cleanup.
1102 void os::die() {
1103   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1104 }
1105 
1106 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1107 //  * dirent_md.c       1.15 00/02/02
1108 //
1109 // The declarations for DIR and struct dirent are in jvm_win32.h.
1110 
1111 // Caller must have already run dirname through JVM_NativePath, which removes
1112 // duplicate slashes and converts all instances of '/' into '\\'.
1113 
1114 DIR * os::opendir(const char *dirname) {
1115   assert(dirname != NULL, "just checking");   // hotspot change
1116   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1117   DWORD fattr;                                // hotspot change
1118   char alt_dirname[4] = { 0, 0, 0, 0 };
1119 
1120   if (dirp == 0) {
1121     errno = ENOMEM;
1122     return 0;
1123   }
1124 
1125   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1126   // as a directory in FindFirstFile().  We detect this case here and
1127   // prepend the current drive name.
1128   //
1129   if (dirname[1] == '\0' && dirname[0] == '\\') {
1130     alt_dirname[0] = _getdrive() + 'A' - 1;
1131     alt_dirname[1] = ':';
1132     alt_dirname[2] = '\\';
1133     alt_dirname[3] = '\0';
1134     dirname = alt_dirname;
1135   }
1136 
1137   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1138   if (dirp->path == 0) {
1139     free(dirp);
1140     errno = ENOMEM;
1141     return 0;
1142   }
1143   strcpy(dirp->path, dirname);
1144 
1145   fattr = GetFileAttributes(dirp->path);
1146   if (fattr == 0xffffffff) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOENT;
1150     return 0;
1151   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1152     free(dirp->path);
1153     free(dirp);
1154     errno = ENOTDIR;
1155     return 0;
1156   }
1157 
1158   // Append "*.*", or possibly "\\*.*", to path
1159   if (dirp->path[1] == ':' &&
1160       (dirp->path[2] == '\0' ||
1161       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1162     // No '\\' needed for cases like "Z:" or "Z:\"
1163     strcat(dirp->path, "*.*");
1164   } else {
1165     strcat(dirp->path, "\\*.*");
1166   }
1167 
1168   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1169   if (dirp->handle == INVALID_HANDLE_VALUE) {
1170     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1171       free(dirp->path);
1172       free(dirp);
1173       errno = EACCES;
1174       return 0;
1175     }
1176   }
1177   return dirp;
1178 }
1179 
1180 // parameter dbuf unused on Windows
1181 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1182   assert(dirp != NULL, "just checking");      // hotspot change
1183   if (dirp->handle == INVALID_HANDLE_VALUE) {
1184     return 0;
1185   }
1186 
1187   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1188 
1189   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1190     if (GetLastError() == ERROR_INVALID_HANDLE) {
1191       errno = EBADF;
1192       return 0;
1193     }
1194     FindClose(dirp->handle);
1195     dirp->handle = INVALID_HANDLE_VALUE;
1196   }
1197 
1198   return &dirp->dirent;
1199 }
1200 
1201 int os::closedir(DIR *dirp) {
1202   assert(dirp != NULL, "just checking");      // hotspot change
1203   if (dirp->handle != INVALID_HANDLE_VALUE) {
1204     if (!FindClose(dirp->handle)) {
1205       errno = EBADF;
1206       return -1;
1207     }
1208     dirp->handle = INVALID_HANDLE_VALUE;
1209   }
1210   free(dirp->path);
1211   free(dirp);
1212   return 0;
1213 }
1214 
1215 // This must be hard coded because it's the system's temporary
1216 // directory not the java application's temp directory, ala java.io.tmpdir.
1217 const char* os::get_temp_directory() {
1218   static char path_buf[MAX_PATH];
1219   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1220     return path_buf;
1221   } else {
1222     path_buf[0] = '\0';
1223     return path_buf;
1224   }
1225 }
1226 
1227 static bool file_exists(const char* filename) {
1228   if (filename == NULL || strlen(filename) == 0) {
1229     return false;
1230   }
1231   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1232 }
1233 
1234 bool os::dll_build_name(char *buffer, size_t buflen,
1235                         const char* pname, const char* fname) {
1236   bool retval = false;
1237   const size_t pnamelen = pname ? strlen(pname) : 0;
1238   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1239 
1240   // Return error on buffer overflow.
1241   if (pnamelen + strlen(fname) + 10 > buflen) {
1242     return retval;
1243   }
1244 
1245   if (pnamelen == 0) {
1246     jio_snprintf(buffer, buflen, "%s.dll", fname);
1247     retval = true;
1248   } else if (c == ':' || c == '\\') {
1249     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1250     retval = true;
1251   } else if (strchr(pname, *os::path_separator()) != NULL) {
1252     int n;
1253     char** pelements = split_path(pname, &n);
1254     if (pelements == NULL) {
1255       return false;
1256     }
1257     for (int i = 0; i < n; i++) {
1258       char* path = pelements[i];
1259       // Really shouldn't be NULL, but check can't hurt
1260       size_t plen = (path == NULL) ? 0 : strlen(path);
1261       if (plen == 0) {
1262         continue; // skip the empty path values
1263       }
1264       const char lastchar = path[plen - 1];
1265       if (lastchar == ':' || lastchar == '\\') {
1266         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1267       } else {
1268         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1269       }
1270       if (file_exists(buffer)) {
1271         retval = true;
1272         break;
1273       }
1274     }
1275     // release the storage
1276     for (int i = 0; i < n; i++) {
1277       if (pelements[i] != NULL) {
1278         FREE_C_HEAP_ARRAY(char, pelements[i]);
1279       }
1280     }
1281     if (pelements != NULL) {
1282       FREE_C_HEAP_ARRAY(char*, pelements);
1283     }
1284   } else {
1285     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1286     retval = true;
1287   }
1288   return retval;
1289 }
1290 
1291 // Needs to be in os specific directory because windows requires another
1292 // header file <direct.h>
1293 const char* os::get_current_directory(char *buf, size_t buflen) {
1294   int n = static_cast<int>(buflen);
1295   if (buflen > INT_MAX)  n = INT_MAX;
1296   return _getcwd(buf, n);
1297 }
1298 
1299 //-----------------------------------------------------------
1300 // Helper functions for fatal error handler
1301 #ifdef _WIN64
1302 // Helper routine which returns true if address in
1303 // within the NTDLL address space.
1304 //
1305 static bool _addr_in_ntdll(address addr) {
1306   HMODULE hmod;
1307   MODULEINFO minfo;
1308 
1309   hmod = GetModuleHandle("NTDLL.DLL");
1310   if (hmod == NULL) return false;
1311   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1312                                           &minfo, sizeof(MODULEINFO))) {
1313     return false;
1314   }
1315 
1316   if ((addr >= minfo.lpBaseOfDll) &&
1317       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1318     return true;
1319   } else {
1320     return false;
1321   }
1322 }
1323 #endif
1324 
1325 struct _modinfo {
1326   address addr;
1327   char*   full_path;   // point to a char buffer
1328   int     buflen;      // size of the buffer
1329   address base_addr;
1330 };
1331 
1332 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1333                                   address top_address, void * param) {
1334   struct _modinfo *pmod = (struct _modinfo *)param;
1335   if (!pmod) return -1;
1336 
1337   if (base_addr   <= pmod->addr &&
1338       top_address > pmod->addr) {
1339     // if a buffer is provided, copy path name to the buffer
1340     if (pmod->full_path) {
1341       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1342     }
1343     pmod->base_addr = base_addr;
1344     return 1;
1345   }
1346   return 0;
1347 }
1348 
1349 bool os::dll_address_to_library_name(address addr, char* buf,
1350                                      int buflen, int* offset) {
1351   // buf is not optional, but offset is optional
1352   assert(buf != NULL, "sanity check");
1353 
1354 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1355 //       return the full path to the DLL file, sometimes it returns path
1356 //       to the corresponding PDB file (debug info); sometimes it only
1357 //       returns partial path, which makes life painful.
1358 
1359   struct _modinfo mi;
1360   mi.addr      = addr;
1361   mi.full_path = buf;
1362   mi.buflen    = buflen;
1363   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1364     // buf already contains path name
1365     if (offset) *offset = addr - mi.base_addr;
1366     return true;
1367   }
1368 
1369   buf[0] = '\0';
1370   if (offset) *offset = -1;
1371   return false;
1372 }
1373 
1374 bool os::dll_address_to_function_name(address addr, char *buf,
1375                                       int buflen, int *offset,
1376                                       bool demangle) {
1377   // buf is not optional, but offset is optional
1378   assert(buf != NULL, "sanity check");
1379 
1380   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1381     return true;
1382   }
1383   if (offset != NULL)  *offset  = -1;
1384   buf[0] = '\0';
1385   return false;
1386 }
1387 
1388 // save the start and end address of jvm.dll into param[0] and param[1]
1389 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1390                            address top_address, void * param) {
1391   if (!param) return -1;
1392 
1393   if (base_addr   <= (address)_locate_jvm_dll &&
1394       top_address > (address)_locate_jvm_dll) {
1395     ((address*)param)[0] = base_addr;
1396     ((address*)param)[1] = top_address;
1397     return 1;
1398   }
1399   return 0;
1400 }
1401 
1402 address vm_lib_location[2];    // start and end address of jvm.dll
1403 
1404 // check if addr is inside jvm.dll
1405 bool os::address_is_in_vm(address addr) {
1406   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1408       assert(false, "Can't find jvm module.");
1409       return false;
1410     }
1411   }
1412 
1413   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1414 }
1415 
1416 // print module info; param is outputStream*
1417 static int _print_module(const char* fname, address base_address,
1418                          address top_address, void* param) {
1419   if (!param) return -1;
1420 
1421   outputStream* st = (outputStream*)param;
1422 
1423   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1424   return 0;
1425 }
1426 
1427 // Loads .dll/.so and
1428 // in case of error it checks if .dll/.so was built for the
1429 // same architecture as Hotspot is running on
1430 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1431   void * result = LoadLibrary(name);
1432   if (result != NULL) {
1433     return result;
1434   }
1435 
1436   DWORD errcode = GetLastError();
1437   if (errcode == ERROR_MOD_NOT_FOUND) {
1438     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1439     ebuf[ebuflen - 1] = '\0';
1440     return NULL;
1441   }
1442 
1443   // Parsing dll below
1444   // If we can read dll-info and find that dll was built
1445   // for an architecture other than Hotspot is running in
1446   // - then print to buffer "DLL was built for a different architecture"
1447   // else call os::lasterror to obtain system error message
1448 
1449   // Read system error message into ebuf
1450   // It may or may not be overwritten below (in the for loop and just above)
1451   lasterror(ebuf, (size_t) ebuflen);
1452   ebuf[ebuflen - 1] = '\0';
1453   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1454   if (fd < 0) {
1455     return NULL;
1456   }
1457 
1458   uint32_t signature_offset;
1459   uint16_t lib_arch = 0;
1460   bool failed_to_get_lib_arch =
1461     ( // Go to position 3c in the dll
1462      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1463      ||
1464      // Read location of signature
1465      (sizeof(signature_offset) !=
1466      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1467      ||
1468      // Go to COFF File Header in dll
1469      // that is located after "signature" (4 bytes long)
1470      (os::seek_to_file_offset(fd,
1471      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1472      ||
1473      // Read field that contains code of architecture
1474      // that dll was built for
1475      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1476     );
1477 
1478   ::close(fd);
1479   if (failed_to_get_lib_arch) {
1480     // file i/o error - report os::lasterror(...) msg
1481     return NULL;
1482   }
1483 
1484   typedef struct {
1485     uint16_t arch_code;
1486     char* arch_name;
1487   } arch_t;
1488 
1489   static const arch_t arch_array[] = {
1490     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1491     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1492     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1493   };
1494 #if   (defined _M_IA64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1496 #elif (defined _M_AMD64)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1498 #elif (defined _M_IX86)
1499   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1500 #else
1501   #error Method os::dll_load requires that one of following \
1502          is defined :_M_IA64,_M_AMD64 or _M_IX86
1503 #endif
1504 
1505 
1506   // Obtain a string for printf operation
1507   // lib_arch_str shall contain string what platform this .dll was built for
1508   // running_arch_str shall string contain what platform Hotspot was built for
1509   char *running_arch_str = NULL, *lib_arch_str = NULL;
1510   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1511     if (lib_arch == arch_array[i].arch_code) {
1512       lib_arch_str = arch_array[i].arch_name;
1513     }
1514     if (running_arch == arch_array[i].arch_code) {
1515       running_arch_str = arch_array[i].arch_name;
1516     }
1517   }
1518 
1519   assert(running_arch_str,
1520          "Didn't find running architecture code in arch_array");
1521 
1522   // If the architecture is right
1523   // but some other error took place - report os::lasterror(...) msg
1524   if (lib_arch == running_arch) {
1525     return NULL;
1526   }
1527 
1528   if (lib_arch_str != NULL) {
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load %s-bit .dll on a %s-bit platform",
1531                 lib_arch_str, running_arch_str);
1532   } else {
1533     // don't know what architecture this dll was build for
1534     ::_snprintf(ebuf, ebuflen - 1,
1535                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1536                 lib_arch, running_arch_str);
1537   }
1538 
1539   return NULL;
1540 }
1541 
1542 void os::print_dll_info(outputStream *st) {
1543   st->print_cr("Dynamic libraries:");
1544   get_loaded_modules_info(_print_module, (void *)st);
1545 }
1546 
1547 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1548   HANDLE   hProcess;
1549 
1550 # define MAX_NUM_MODULES 128
1551   HMODULE     modules[MAX_NUM_MODULES];
1552   static char filename[MAX_PATH];
1553   int         result = 0;
1554 
1555   if (!os::PSApiDll::PSApiAvailable()) {
1556     return 0;
1557   }
1558 
1559   int pid = os::current_process_id();
1560   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1561                          FALSE, pid);
1562   if (hProcess == NULL) return 0;
1563 
1564   DWORD size_needed;
1565   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1566                                         sizeof(modules), &size_needed)) {
1567     CloseHandle(hProcess);
1568     return 0;
1569   }
1570 
1571   // number of modules that are currently loaded
1572   int num_modules = size_needed / sizeof(HMODULE);
1573 
1574   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1575     // Get Full pathname:
1576     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1577                                            filename, sizeof(filename))) {
1578       filename[0] = '\0';
1579     }
1580 
1581     MODULEINFO modinfo;
1582     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1583                                             &modinfo, sizeof(modinfo))) {
1584       modinfo.lpBaseOfDll = NULL;
1585       modinfo.SizeOfImage = 0;
1586     }
1587 
1588     // Invoke callback function
1589     result = callback(filename, (address)modinfo.lpBaseOfDll,
1590                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1591     if (result) break;
1592   }
1593 
1594   CloseHandle(hProcess);
1595   return result;
1596 }
1597 
1598 #ifndef PRODUCT
1599 bool os::get_host_name(char* buf, size_t buflen) {
1600   DWORD size = (DWORD)buflen;
1601   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1602 }
1603 #endif // PRODUCT
1604 
1605 void os::get_summary_os_info(char* buf, size_t buflen) {
1606   stringStream sst(buf, buflen);
1607   os::win32::print_windows_version(&sst);
1608   // chop off newline character
1609   char* nl = strchr(buf, '\n');
1610   if (nl != NULL) *nl = '\0';
1611 }
1612 
1613 void os::print_os_info_brief(outputStream* st) {
1614   os::print_os_info(st);
1615 }
1616 
1617 void os::print_os_info(outputStream* st) {
1618 #ifdef ASSERT
1619   char buffer[1024];
1620   st->print("HostName: ");
1621   if (get_host_name(buffer, sizeof(buffer))) {
1622     st->print("%s ", buffer);
1623   } else {
1624     st->print("N/A ");
1625   }
1626 #endif
1627   st->print("OS:");
1628   os::win32::print_windows_version(st);
1629 }
1630 
1631 void os::win32::print_windows_version(outputStream* st) {
1632   OSVERSIONINFOEX osvi;
1633   VS_FIXEDFILEINFO *file_info;
1634   TCHAR kernel32_path[MAX_PATH];
1635   UINT len, ret;
1636 
1637   // Use the GetVersionEx information to see if we're on a server or
1638   // workstation edition of Windows. Starting with Windows 8.1 we can't
1639   // trust the OS version information returned by this API.
1640   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1641   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1642   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1643     st->print_cr("Call to GetVersionEx failed");
1644     return;
1645   }
1646   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1647 
1648   // Get the full path to \Windows\System32\kernel32.dll and use that for
1649   // determining what version of Windows we're running on.
1650   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1651   ret = GetSystemDirectory(kernel32_path, len);
1652   if (ret == 0 || ret > len) {
1653     st->print_cr("Call to GetSystemDirectory failed");
1654     return;
1655   }
1656   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1657 
1658   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1659   if (version_size == 0) {
1660     st->print_cr("Call to GetFileVersionInfoSize failed");
1661     return;
1662   }
1663 
1664   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1665   if (version_info == NULL) {
1666     st->print_cr("Failed to allocate version_info");
1667     return;
1668   }
1669 
1670   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1671     os::free(version_info);
1672     st->print_cr("Call to GetFileVersionInfo failed");
1673     return;
1674   }
1675 
1676   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1677     os::free(version_info);
1678     st->print_cr("Call to VerQueryValue failed");
1679     return;
1680   }
1681 
1682   int major_version = HIWORD(file_info->dwProductVersionMS);
1683   int minor_version = LOWORD(file_info->dwProductVersionMS);
1684   int build_number = HIWORD(file_info->dwProductVersionLS);
1685   int build_minor = LOWORD(file_info->dwProductVersionLS);
1686   int os_vers = major_version * 1000 + minor_version;
1687   os::free(version_info);
1688 
1689   st->print(" Windows ");
1690   switch (os_vers) {
1691 
1692   case 6000:
1693     if (is_workstation) {
1694       st->print("Vista");
1695     } else {
1696       st->print("Server 2008");
1697     }
1698     break;
1699 
1700   case 6001:
1701     if (is_workstation) {
1702       st->print("7");
1703     } else {
1704       st->print("Server 2008 R2");
1705     }
1706     break;
1707 
1708   case 6002:
1709     if (is_workstation) {
1710       st->print("8");
1711     } else {
1712       st->print("Server 2012");
1713     }
1714     break;
1715 
1716   case 6003:
1717     if (is_workstation) {
1718       st->print("8.1");
1719     } else {
1720       st->print("Server 2012 R2");
1721     }
1722     break;
1723 
1724   case 10000:
1725     if (is_workstation) {
1726       st->print("10");
1727     } else {
1728       // The server version name of Windows 10 is not known at this time
1729       st->print("%d.%d", major_version, minor_version);
1730     }
1731     break;
1732 
1733   default:
1734     // Unrecognized windows, print out its major and minor versions
1735     st->print("%d.%d", major_version, minor_version);
1736     break;
1737   }
1738 
1739   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1740   // find out whether we are running on 64 bit processor or not
1741   SYSTEM_INFO si;
1742   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1743   os::Kernel32Dll::GetNativeSystemInfo(&si);
1744   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1745     st->print(" , 64 bit");
1746   }
1747 
1748   st->print(" Build %d", build_number);
1749   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1750   st->cr();
1751 }
1752 
1753 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1754   // Nothing to do for now.
1755 }
1756 
1757 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1758   HKEY key;
1759   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1760                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1761   if (status == ERROR_SUCCESS) {
1762     DWORD size = (DWORD)buflen;
1763     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1764     if (status != ERROR_SUCCESS) {
1765         strncpy(buf, "## __CPU__", buflen);
1766     }
1767     RegCloseKey(key);
1768   } else {
1769     // Put generic cpu info to return
1770     strncpy(buf, "## __CPU__", buflen);
1771   }
1772 }
1773 
1774 void os::print_memory_info(outputStream* st) {
1775   st->print("Memory:");
1776   st->print(" %dk page", os::vm_page_size()>>10);
1777 
1778   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1779   // value if total memory is larger than 4GB
1780   MEMORYSTATUSEX ms;
1781   ms.dwLength = sizeof(ms);
1782   GlobalMemoryStatusEx(&ms);
1783 
1784   st->print(", physical %uk", os::physical_memory() >> 10);
1785   st->print("(%uk free)", os::available_memory() >> 10);
1786 
1787   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1788   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1789   st->cr();
1790 }
1791 
1792 void os::print_siginfo(outputStream *st, void *siginfo) {
1793   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1794   st->print("siginfo:");
1795   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1796 
1797   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1798       er->NumberParameters >= 2) {
1799     switch (er->ExceptionInformation[0]) {
1800     case 0: st->print(", reading address"); break;
1801     case 1: st->print(", writing address"); break;
1802     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1803                        er->ExceptionInformation[0]);
1804     }
1805     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1806   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1807              er->NumberParameters >= 2 && UseSharedSpaces) {
1808     FileMapInfo* mapinfo = FileMapInfo::current_info();
1809     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1810       st->print("\n\nError accessing class data sharing archive."       \
1811                 " Mapped file inaccessible during execution, "          \
1812                 " possible disk/network problem.");
1813     }
1814   } else {
1815     int num = er->NumberParameters;
1816     if (num > 0) {
1817       st->print(", ExceptionInformation=");
1818       for (int i = 0; i < num; i++) {
1819         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1820       }
1821     }
1822   }
1823   st->cr();
1824 }
1825 
1826 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1827   // do nothing
1828 }
1829 
1830 static char saved_jvm_path[MAX_PATH] = {0};
1831 
1832 // Find the full path to the current module, jvm.dll
1833 void os::jvm_path(char *buf, jint buflen) {
1834   // Error checking.
1835   if (buflen < MAX_PATH) {
1836     assert(false, "must use a large-enough buffer");
1837     buf[0] = '\0';
1838     return;
1839   }
1840   // Lazy resolve the path to current module.
1841   if (saved_jvm_path[0] != 0) {
1842     strcpy(buf, saved_jvm_path);
1843     return;
1844   }
1845 
1846   buf[0] = '\0';
1847   if (Arguments::sun_java_launcher_is_altjvm()) {
1848     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1849     // for a JAVA_HOME environment variable and fix up the path so it
1850     // looks like jvm.dll is installed there (append a fake suffix
1851     // hotspot/jvm.dll).
1852     char* java_home_var = ::getenv("JAVA_HOME");
1853     if (java_home_var != NULL && java_home_var[0] != 0 &&
1854         strlen(java_home_var) < (size_t)buflen) {
1855       strncpy(buf, java_home_var, buflen);
1856 
1857       // determine if this is a legacy image or modules image
1858       // modules image doesn't have "jre" subdirectory
1859       size_t len = strlen(buf);
1860       char* jrebin_p = buf + len;
1861       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1862       if (0 != _access(buf, 0)) {
1863         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1864       }
1865       len = strlen(buf);
1866       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1867     }
1868   }
1869 
1870   if (buf[0] == '\0') {
1871     GetModuleFileName(vm_lib_handle, buf, buflen);
1872   }
1873   strncpy(saved_jvm_path, buf, MAX_PATH);
1874   saved_jvm_path[MAX_PATH - 1] = '\0';
1875 }
1876 
1877 
1878 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1879 #ifndef _WIN64
1880   st->print("_");
1881 #endif
1882 }
1883 
1884 
1885 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1886 #ifndef _WIN64
1887   st->print("@%d", args_size  * sizeof(int));
1888 #endif
1889 }
1890 
1891 // This method is a copy of JDK's sysGetLastErrorString
1892 // from src/windows/hpi/src/system_md.c
1893 
1894 size_t os::lasterror(char* buf, size_t len) {
1895   DWORD errval;
1896 
1897   if ((errval = GetLastError()) != 0) {
1898     // DOS error
1899     size_t n = (size_t)FormatMessage(
1900                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1901                                      NULL,
1902                                      errval,
1903                                      0,
1904                                      buf,
1905                                      (DWORD)len,
1906                                      NULL);
1907     if (n > 3) {
1908       // Drop final '.', CR, LF
1909       if (buf[n - 1] == '\n') n--;
1910       if (buf[n - 1] == '\r') n--;
1911       if (buf[n - 1] == '.') n--;
1912       buf[n] = '\0';
1913     }
1914     return n;
1915   }
1916 
1917   if (errno != 0) {
1918     // C runtime error that has no corresponding DOS error code
1919     const char* s = strerror(errno);
1920     size_t n = strlen(s);
1921     if (n >= len) n = len - 1;
1922     strncpy(buf, s, n);
1923     buf[n] = '\0';
1924     return n;
1925   }
1926 
1927   return 0;
1928 }
1929 
1930 int os::get_last_error() {
1931   DWORD error = GetLastError();
1932   if (error == 0) {
1933     error = errno;
1934   }
1935   return (int)error;
1936 }
1937 
1938 WindowsSemaphore::WindowsSemaphore(uint value) {
1939   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1940 
1941   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1942 }
1943 
1944 WindowsSemaphore::~WindowsSemaphore() {
1945   ::CloseHandle(_semaphore);
1946 }
1947 
1948 void WindowsSemaphore::signal(uint count) {
1949   if (count > 0) {
1950     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1951 
1952     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1953   }
1954 }
1955 
1956 void WindowsSemaphore::wait() {
1957   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1958   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1959   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1960 }
1961 
1962 // sun.misc.Signal
1963 // NOTE that this is a workaround for an apparent kernel bug where if
1964 // a signal handler for SIGBREAK is installed then that signal handler
1965 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1966 // See bug 4416763.
1967 static void (*sigbreakHandler)(int) = NULL;
1968 
1969 static void UserHandler(int sig, void *siginfo, void *context) {
1970   os::signal_notify(sig);
1971   // We need to reinstate the signal handler each time...
1972   os::signal(sig, (void*)UserHandler);
1973 }
1974 
1975 void* os::user_handler() {
1976   return (void*) UserHandler;
1977 }
1978 
1979 void* os::signal(int signal_number, void* handler) {
1980   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1981     void (*oldHandler)(int) = sigbreakHandler;
1982     sigbreakHandler = (void (*)(int)) handler;
1983     return (void*) oldHandler;
1984   } else {
1985     return (void*)::signal(signal_number, (void (*)(int))handler);
1986   }
1987 }
1988 
1989 void os::signal_raise(int signal_number) {
1990   raise(signal_number);
1991 }
1992 
1993 // The Win32 C runtime library maps all console control events other than ^C
1994 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1995 // logoff, and shutdown events.  We therefore install our own console handler
1996 // that raises SIGTERM for the latter cases.
1997 //
1998 static BOOL WINAPI consoleHandler(DWORD event) {
1999   switch (event) {
2000   case CTRL_C_EVENT:
2001     if (is_error_reported()) {
2002       // Ctrl-C is pressed during error reporting, likely because the error
2003       // handler fails to abort. Let VM die immediately.
2004       os::die();
2005     }
2006 
2007     os::signal_raise(SIGINT);
2008     return TRUE;
2009     break;
2010   case CTRL_BREAK_EVENT:
2011     if (sigbreakHandler != NULL) {
2012       (*sigbreakHandler)(SIGBREAK);
2013     }
2014     return TRUE;
2015     break;
2016   case CTRL_LOGOFF_EVENT: {
2017     // Don't terminate JVM if it is running in a non-interactive session,
2018     // such as a service process.
2019     USEROBJECTFLAGS flags;
2020     HANDLE handle = GetProcessWindowStation();
2021     if (handle != NULL &&
2022         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2023         sizeof(USEROBJECTFLAGS), NULL)) {
2024       // If it is a non-interactive session, let next handler to deal
2025       // with it.
2026       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2027         return FALSE;
2028       }
2029     }
2030   }
2031   case CTRL_CLOSE_EVENT:
2032   case CTRL_SHUTDOWN_EVENT:
2033     os::signal_raise(SIGTERM);
2034     return TRUE;
2035     break;
2036   default:
2037     break;
2038   }
2039   return FALSE;
2040 }
2041 
2042 // The following code is moved from os.cpp for making this
2043 // code platform specific, which it is by its very nature.
2044 
2045 // Return maximum OS signal used + 1 for internal use only
2046 // Used as exit signal for signal_thread
2047 int os::sigexitnum_pd() {
2048   return NSIG;
2049 }
2050 
2051 // a counter for each possible signal value, including signal_thread exit signal
2052 static volatile jint pending_signals[NSIG+1] = { 0 };
2053 static HANDLE sig_sem = NULL;
2054 
2055 void os::signal_init_pd() {
2056   // Initialize signal structures
2057   memset((void*)pending_signals, 0, sizeof(pending_signals));
2058 
2059   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2060 
2061   // Programs embedding the VM do not want it to attempt to receive
2062   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2063   // shutdown hooks mechanism introduced in 1.3.  For example, when
2064   // the VM is run as part of a Windows NT service (i.e., a servlet
2065   // engine in a web server), the correct behavior is for any console
2066   // control handler to return FALSE, not TRUE, because the OS's
2067   // "final" handler for such events allows the process to continue if
2068   // it is a service (while terminating it if it is not a service).
2069   // To make this behavior uniform and the mechanism simpler, we
2070   // completely disable the VM's usage of these console events if -Xrs
2071   // (=ReduceSignalUsage) is specified.  This means, for example, that
2072   // the CTRL-BREAK thread dump mechanism is also disabled in this
2073   // case.  See bugs 4323062, 4345157, and related bugs.
2074 
2075   if (!ReduceSignalUsage) {
2076     // Add a CTRL-C handler
2077     SetConsoleCtrlHandler(consoleHandler, TRUE);
2078   }
2079 }
2080 
2081 void os::signal_notify(int signal_number) {
2082   BOOL ret;
2083   if (sig_sem != NULL) {
2084     Atomic::inc(&pending_signals[signal_number]);
2085     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2086     assert(ret != 0, "ReleaseSemaphore() failed");
2087   }
2088 }
2089 
2090 static int check_pending_signals(bool wait_for_signal) {
2091   DWORD ret;
2092   while (true) {
2093     for (int i = 0; i < NSIG + 1; i++) {
2094       jint n = pending_signals[i];
2095       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2096         return i;
2097       }
2098     }
2099     if (!wait_for_signal) {
2100       return -1;
2101     }
2102 
2103     JavaThread *thread = JavaThread::current();
2104 
2105     ThreadBlockInVM tbivm(thread);
2106 
2107     bool threadIsSuspended;
2108     do {
2109       thread->set_suspend_equivalent();
2110       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2111       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2112       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2113 
2114       // were we externally suspended while we were waiting?
2115       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2116       if (threadIsSuspended) {
2117         // The semaphore has been incremented, but while we were waiting
2118         // another thread suspended us. We don't want to continue running
2119         // while suspended because that would surprise the thread that
2120         // suspended us.
2121         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2122         assert(ret != 0, "ReleaseSemaphore() failed");
2123 
2124         thread->java_suspend_self();
2125       }
2126     } while (threadIsSuspended);
2127   }
2128 }
2129 
2130 int os::signal_lookup() {
2131   return check_pending_signals(false);
2132 }
2133 
2134 int os::signal_wait() {
2135   return check_pending_signals(true);
2136 }
2137 
2138 // Implicit OS exception handling
2139 
2140 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2141                       address handler) {
2142   JavaThread* thread = JavaThread::current();
2143   // Save pc in thread
2144 #ifdef _M_IA64
2145   // Do not blow up if no thread info available.
2146   if (thread) {
2147     // Saving PRECISE pc (with slot information) in thread.
2148     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2149     // Convert precise PC into "Unix" format
2150     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2151     thread->set_saved_exception_pc((address)precise_pc);
2152   }
2153   // Set pc to handler
2154   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2155   // Clear out psr.ri (= Restart Instruction) in order to continue
2156   // at the beginning of the target bundle.
2157   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2158   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2159 #else
2160   #ifdef _M_AMD64
2161   // Do not blow up if no thread info available.
2162   if (thread) {
2163     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2164   }
2165   // Set pc to handler
2166   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2167   #else
2168   // Do not blow up if no thread info available.
2169   if (thread) {
2170     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2171   }
2172   // Set pc to handler
2173   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2174   #endif
2175 #endif
2176 
2177   // Continue the execution
2178   return EXCEPTION_CONTINUE_EXECUTION;
2179 }
2180 
2181 
2182 // Used for PostMortemDump
2183 extern "C" void safepoints();
2184 extern "C" void find(int x);
2185 extern "C" void events();
2186 
2187 // According to Windows API documentation, an illegal instruction sequence should generate
2188 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2189 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2190 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2191 
2192 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2193 
2194 // From "Execution Protection in the Windows Operating System" draft 0.35
2195 // Once a system header becomes available, the "real" define should be
2196 // included or copied here.
2197 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2198 
2199 // Handle NAT Bit consumption on IA64.
2200 #ifdef _M_IA64
2201   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2202 #endif
2203 
2204 // Windows Vista/2008 heap corruption check
2205 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2206 
2207 #define def_excpt(val) #val, val
2208 
2209 struct siglabel {
2210   char *name;
2211   int   number;
2212 };
2213 
2214 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2215 // C++ compiler contain this error code. Because this is a compiler-generated
2216 // error, the code is not listed in the Win32 API header files.
2217 // The code is actually a cryptic mnemonic device, with the initial "E"
2218 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2219 // ASCII values of "msc".
2220 
2221 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2222 
2223 
2224 struct siglabel exceptlabels[] = {
2225     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2226     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2227     def_excpt(EXCEPTION_BREAKPOINT),
2228     def_excpt(EXCEPTION_SINGLE_STEP),
2229     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2230     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2231     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2232     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2233     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2234     def_excpt(EXCEPTION_FLT_OVERFLOW),
2235     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2236     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2237     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2238     def_excpt(EXCEPTION_INT_OVERFLOW),
2239     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2240     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2242     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2243     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2244     def_excpt(EXCEPTION_STACK_OVERFLOW),
2245     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2246     def_excpt(EXCEPTION_GUARD_PAGE),
2247     def_excpt(EXCEPTION_INVALID_HANDLE),
2248     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2249     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2250 #ifdef _M_IA64
2251     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2252 #endif
2253     NULL, 0
2254 };
2255 
2256 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2257   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2258     if (exceptlabels[i].number == exception_code) {
2259       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2260       return buf;
2261     }
2262   }
2263 
2264   return NULL;
2265 }
2266 
2267 //-----------------------------------------------------------------------------
2268 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2269   // handle exception caused by idiv; should only happen for -MinInt/-1
2270   // (division by zero is handled explicitly)
2271 #ifdef _M_IA64
2272   assert(0, "Fix Handle_IDiv_Exception");
2273 #else
2274   #ifdef  _M_AMD64
2275   PCONTEXT ctx = exceptionInfo->ContextRecord;
2276   address pc = (address)ctx->Rip;
2277   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2278   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2279   if (pc[0] == 0xF7) {
2280     // set correct result values and continue after idiv instruction
2281     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2282   } else {
2283     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2284   }
2285   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2286   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2287   // idiv opcode (0xF7).
2288   ctx->Rdx = (DWORD)0;             // remainder
2289   // Continue the execution
2290   #else
2291   PCONTEXT ctx = exceptionInfo->ContextRecord;
2292   address pc = (address)ctx->Eip;
2293   assert(pc[0] == 0xF7, "not an idiv opcode");
2294   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2295   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2296   // set correct result values and continue after idiv instruction
2297   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2298   ctx->Eax = (DWORD)min_jint;      // result
2299   ctx->Edx = (DWORD)0;             // remainder
2300   // Continue the execution
2301   #endif
2302 #endif
2303   return EXCEPTION_CONTINUE_EXECUTION;
2304 }
2305 
2306 //-----------------------------------------------------------------------------
2307 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2308   PCONTEXT ctx = exceptionInfo->ContextRecord;
2309 #ifndef  _WIN64
2310   // handle exception caused by native method modifying control word
2311   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2312 
2313   switch (exception_code) {
2314   case EXCEPTION_FLT_DENORMAL_OPERAND:
2315   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2316   case EXCEPTION_FLT_INEXACT_RESULT:
2317   case EXCEPTION_FLT_INVALID_OPERATION:
2318   case EXCEPTION_FLT_OVERFLOW:
2319   case EXCEPTION_FLT_STACK_CHECK:
2320   case EXCEPTION_FLT_UNDERFLOW:
2321     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2322     if (fp_control_word != ctx->FloatSave.ControlWord) {
2323       // Restore FPCW and mask out FLT exceptions
2324       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2325       // Mask out pending FLT exceptions
2326       ctx->FloatSave.StatusWord &=  0xffffff00;
2327       return EXCEPTION_CONTINUE_EXECUTION;
2328     }
2329   }
2330 
2331   if (prev_uef_handler != NULL) {
2332     // We didn't handle this exception so pass it to the previous
2333     // UnhandledExceptionFilter.
2334     return (prev_uef_handler)(exceptionInfo);
2335   }
2336 #else // !_WIN64
2337   // On Windows, the mxcsr control bits are non-volatile across calls
2338   // See also CR 6192333
2339   //
2340   jint MxCsr = INITIAL_MXCSR;
2341   // we can't use StubRoutines::addr_mxcsr_std()
2342   // because in Win64 mxcsr is not saved there
2343   if (MxCsr != ctx->MxCsr) {
2344     ctx->MxCsr = MxCsr;
2345     return EXCEPTION_CONTINUE_EXECUTION;
2346   }
2347 #endif // !_WIN64
2348 
2349   return EXCEPTION_CONTINUE_SEARCH;
2350 }
2351 
2352 static inline void report_error(Thread* t, DWORD exception_code,
2353                                 address addr, void* siginfo, void* context) {
2354   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2355 
2356   // If UseOsErrorReporting, this will return here and save the error file
2357   // somewhere where we can find it in the minidump.
2358 }
2359 
2360 //-----------------------------------------------------------------------------
2361 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2362   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2363   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2364 #ifdef _M_IA64
2365   // On Itanium, we need the "precise pc", which has the slot number coded
2366   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2367   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2368   // Convert the pc to "Unix format", which has the slot number coded
2369   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2370   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2371   // information is saved in the Unix format.
2372   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2373 #else
2374   #ifdef _M_AMD64
2375   address pc = (address) exceptionInfo->ContextRecord->Rip;
2376   #else
2377   address pc = (address) exceptionInfo->ContextRecord->Eip;
2378   #endif
2379 #endif
2380   Thread* t = Thread::current();
2381 
2382   // Handle SafeFetch32 and SafeFetchN exceptions.
2383   if (StubRoutines::is_safefetch_fault(pc)) {
2384     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2385   }
2386 
2387 #ifndef _WIN64
2388   // Execution protection violation - win32 running on AMD64 only
2389   // Handled first to avoid misdiagnosis as a "normal" access violation;
2390   // This is safe to do because we have a new/unique ExceptionInformation
2391   // code for this condition.
2392   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2393     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2394     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2395     address addr = (address) exceptionRecord->ExceptionInformation[1];
2396 
2397     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2398       int page_size = os::vm_page_size();
2399 
2400       // Make sure the pc and the faulting address are sane.
2401       //
2402       // If an instruction spans a page boundary, and the page containing
2403       // the beginning of the instruction is executable but the following
2404       // page is not, the pc and the faulting address might be slightly
2405       // different - we still want to unguard the 2nd page in this case.
2406       //
2407       // 15 bytes seems to be a (very) safe value for max instruction size.
2408       bool pc_is_near_addr =
2409         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2410       bool instr_spans_page_boundary =
2411         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2412                          (intptr_t) page_size) > 0);
2413 
2414       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2415         static volatile address last_addr =
2416           (address) os::non_memory_address_word();
2417 
2418         // In conservative mode, don't unguard unless the address is in the VM
2419         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2420             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2421 
2422           // Set memory to RWX and retry
2423           address page_start =
2424             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2425           bool res = os::protect_memory((char*) page_start, page_size,
2426                                         os::MEM_PROT_RWX);
2427 
2428           if (PrintMiscellaneous && Verbose) {
2429             char buf[256];
2430             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2431                          "at " INTPTR_FORMAT
2432                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2433                          page_start, (res ? "success" : strerror(errno)));
2434             tty->print_raw_cr(buf);
2435           }
2436 
2437           // Set last_addr so if we fault again at the same address, we don't
2438           // end up in an endless loop.
2439           //
2440           // There are two potential complications here.  Two threads trapping
2441           // at the same address at the same time could cause one of the
2442           // threads to think it already unguarded, and abort the VM.  Likely
2443           // very rare.
2444           //
2445           // The other race involves two threads alternately trapping at
2446           // different addresses and failing to unguard the page, resulting in
2447           // an endless loop.  This condition is probably even more unlikely
2448           // than the first.
2449           //
2450           // Although both cases could be avoided by using locks or thread
2451           // local last_addr, these solutions are unnecessary complication:
2452           // this handler is a best-effort safety net, not a complete solution.
2453           // It is disabled by default and should only be used as a workaround
2454           // in case we missed any no-execute-unsafe VM code.
2455 
2456           last_addr = addr;
2457 
2458           return EXCEPTION_CONTINUE_EXECUTION;
2459         }
2460       }
2461 
2462       // Last unguard failed or not unguarding
2463       tty->print_raw_cr("Execution protection violation");
2464       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2465                    exceptionInfo->ContextRecord);
2466       return EXCEPTION_CONTINUE_SEARCH;
2467     }
2468   }
2469 #endif // _WIN64
2470 
2471   // Check to see if we caught the safepoint code in the
2472   // process of write protecting the memory serialization page.
2473   // It write enables the page immediately after protecting it
2474   // so just return.
2475   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2476     JavaThread* thread = (JavaThread*) t;
2477     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2478     address addr = (address) exceptionRecord->ExceptionInformation[1];
2479     if (os::is_memory_serialize_page(thread, addr)) {
2480       // Block current thread until the memory serialize page permission restored.
2481       os::block_on_serialize_page_trap();
2482       return EXCEPTION_CONTINUE_EXECUTION;
2483     }
2484   }
2485 
2486   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2487       VM_Version::is_cpuinfo_segv_addr(pc)) {
2488     // Verify that OS save/restore AVX registers.
2489     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2490   }
2491 
2492   if (t != NULL && t->is_Java_thread()) {
2493     JavaThread* thread = (JavaThread*) t;
2494     bool in_java = thread->thread_state() == _thread_in_Java;
2495 
2496     // Handle potential stack overflows up front.
2497     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2498       if (os::uses_stack_guard_pages()) {
2499 #ifdef _M_IA64
2500         // Use guard page for register stack.
2501         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2502         address addr = (address) exceptionRecord->ExceptionInformation[1];
2503         // Check for a register stack overflow on Itanium
2504         if (thread->addr_inside_register_stack_red_zone(addr)) {
2505           // Fatal red zone violation happens if the Java program
2506           // catches a StackOverflow error and does so much processing
2507           // that it runs beyond the unprotected yellow guard zone. As
2508           // a result, we are out of here.
2509           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2510         } else if(thread->addr_inside_register_stack(addr)) {
2511           // Disable the yellow zone which sets the state that
2512           // we've got a stack overflow problem.
2513           if (thread->stack_yellow_zone_enabled()) {
2514             thread->disable_stack_yellow_zone();
2515           }
2516           // Give us some room to process the exception.
2517           thread->disable_register_stack_guard();
2518           // Tracing with +Verbose.
2519           if (Verbose) {
2520             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2521             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2522             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2523             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2524                           thread->register_stack_base(),
2525                           thread->register_stack_base() + thread->stack_size());
2526           }
2527 
2528           // Reguard the permanent register stack red zone just to be sure.
2529           // We saw Windows silently disabling this without telling us.
2530           thread->enable_register_stack_red_zone();
2531 
2532           return Handle_Exception(exceptionInfo,
2533                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2534         }
2535 #endif
2536         if (thread->stack_yellow_zone_enabled()) {
2537           // Yellow zone violation.  The o/s has unprotected the first yellow
2538           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2539           // update the enabled status, even if the zone contains only one page.
2540           thread->disable_stack_yellow_zone();
2541           // If not in java code, return and hope for the best.
2542           return in_java
2543               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2544               :  EXCEPTION_CONTINUE_EXECUTION;
2545         } else {
2546           // Fatal red zone violation.
2547           thread->disable_stack_red_zone();
2548           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2549           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2550                        exceptionInfo->ContextRecord);
2551           return EXCEPTION_CONTINUE_SEARCH;
2552         }
2553       } else if (in_java) {
2554         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2555         // a one-time-only guard page, which it has released to us.  The next
2556         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2557         return Handle_Exception(exceptionInfo,
2558                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2559       } else {
2560         // Can only return and hope for the best.  Further stack growth will
2561         // result in an ACCESS_VIOLATION.
2562         return EXCEPTION_CONTINUE_EXECUTION;
2563       }
2564     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2565       // Either stack overflow or null pointer exception.
2566       if (in_java) {
2567         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2568         address addr = (address) exceptionRecord->ExceptionInformation[1];
2569         address stack_end = thread->stack_base() - thread->stack_size();
2570         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2571           // Stack overflow.
2572           assert(!os::uses_stack_guard_pages(),
2573                  "should be caught by red zone code above.");
2574           return Handle_Exception(exceptionInfo,
2575                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2576         }
2577         // Check for safepoint polling and implicit null
2578         // We only expect null pointers in the stubs (vtable)
2579         // the rest are checked explicitly now.
2580         CodeBlob* cb = CodeCache::find_blob(pc);
2581         if (cb != NULL) {
2582           if (os::is_poll_address(addr)) {
2583             address stub = SharedRuntime::get_poll_stub(pc);
2584             return Handle_Exception(exceptionInfo, stub);
2585           }
2586         }
2587         {
2588 #ifdef _WIN64
2589           // If it's a legal stack address map the entire region in
2590           //
2591           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2592           address addr = (address) exceptionRecord->ExceptionInformation[1];
2593           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2594             addr = (address)((uintptr_t)addr &
2595                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2596             os::commit_memory((char *)addr, thread->stack_base() - addr,
2597                               !ExecMem);
2598             return EXCEPTION_CONTINUE_EXECUTION;
2599           } else
2600 #endif
2601           {
2602             // Null pointer exception.
2603 #ifdef _M_IA64
2604             // Process implicit null checks in compiled code. Note: Implicit null checks
2605             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2606             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2607               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2608               // Handle implicit null check in UEP method entry
2609               if (cb && (cb->is_frame_complete_at(pc) ||
2610                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2611                 if (Verbose) {
2612                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2613                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2614                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2615                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2616                                 *(bundle_start + 1), *bundle_start);
2617                 }
2618                 return Handle_Exception(exceptionInfo,
2619                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2620               }
2621             }
2622 
2623             // Implicit null checks were processed above.  Hence, we should not reach
2624             // here in the usual case => die!
2625             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2626             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2627                          exceptionInfo->ContextRecord);
2628             return EXCEPTION_CONTINUE_SEARCH;
2629 
2630 #else // !IA64
2631 
2632             // Windows 98 reports faulting addresses incorrectly
2633             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2634                 !os::win32::is_nt()) {
2635               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2636               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2637             }
2638             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2639                          exceptionInfo->ContextRecord);
2640             return EXCEPTION_CONTINUE_SEARCH;
2641 #endif
2642           }
2643         }
2644       }
2645 
2646 #ifdef _WIN64
2647       // Special care for fast JNI field accessors.
2648       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2649       // in and the heap gets shrunk before the field access.
2650       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2651         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2652         if (addr != (address)-1) {
2653           return Handle_Exception(exceptionInfo, addr);
2654         }
2655       }
2656 #endif
2657 
2658       // Stack overflow or null pointer exception in native code.
2659       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2660                    exceptionInfo->ContextRecord);
2661       return EXCEPTION_CONTINUE_SEARCH;
2662     } // /EXCEPTION_ACCESS_VIOLATION
2663     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2664 #if defined _M_IA64
2665     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2666               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2667       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2668 
2669       // Compiled method patched to be non entrant? Following conditions must apply:
2670       // 1. must be first instruction in bundle
2671       // 2. must be a break instruction with appropriate code
2672       if ((((uint64_t) pc & 0x0F) == 0) &&
2673           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2674         return Handle_Exception(exceptionInfo,
2675                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2676       }
2677     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2678 #endif
2679 
2680 
2681     if (in_java) {
2682       switch (exception_code) {
2683       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2684         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2685 
2686       case EXCEPTION_INT_OVERFLOW:
2687         return Handle_IDiv_Exception(exceptionInfo);
2688 
2689       } // switch
2690     }
2691     if (((thread->thread_state() == _thread_in_Java) ||
2692          (thread->thread_state() == _thread_in_native)) &&
2693          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2694       LONG result=Handle_FLT_Exception(exceptionInfo);
2695       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2696     }
2697   }
2698 
2699   if (exception_code != EXCEPTION_BREAKPOINT) {
2700     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2701                  exceptionInfo->ContextRecord);
2702   }
2703   return EXCEPTION_CONTINUE_SEARCH;
2704 }
2705 
2706 #ifndef _WIN64
2707 // Special care for fast JNI accessors.
2708 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2709 // the heap gets shrunk before the field access.
2710 // Need to install our own structured exception handler since native code may
2711 // install its own.
2712 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2713   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2714   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2715     address pc = (address) exceptionInfo->ContextRecord->Eip;
2716     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2717     if (addr != (address)-1) {
2718       return Handle_Exception(exceptionInfo, addr);
2719     }
2720   }
2721   return EXCEPTION_CONTINUE_SEARCH;
2722 }
2723 
2724 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2725   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2726                                                      jobject obj,           \
2727                                                      jfieldID fieldID) {    \
2728     __try {                                                                 \
2729       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2730                                                                  obj,       \
2731                                                                  fieldID);  \
2732     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2733                                               _exception_info())) {         \
2734     }                                                                       \
2735     return 0;                                                               \
2736   }
2737 
2738 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2739 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2740 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2741 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2742 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2743 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2744 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2745 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2746 
2747 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2748   switch (type) {
2749   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2750   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2751   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2752   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2753   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2754   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2755   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2756   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2757   default:        ShouldNotReachHere();
2758   }
2759   return (address)-1;
2760 }
2761 #endif
2762 
2763 // Virtual Memory
2764 
2765 int os::vm_page_size() { return os::win32::vm_page_size(); }
2766 int os::vm_allocation_granularity() {
2767   return os::win32::vm_allocation_granularity();
2768 }
2769 
2770 // Windows large page support is available on Windows 2003. In order to use
2771 // large page memory, the administrator must first assign additional privilege
2772 // to the user:
2773 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2774 //   + select Local Policies -> User Rights Assignment
2775 //   + double click "Lock pages in memory", add users and/or groups
2776 //   + reboot
2777 // Note the above steps are needed for administrator as well, as administrators
2778 // by default do not have the privilege to lock pages in memory.
2779 //
2780 // Note about Windows 2003: although the API supports committing large page
2781 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2782 // scenario, I found through experiment it only uses large page if the entire
2783 // memory region is reserved and committed in a single VirtualAlloc() call.
2784 // This makes Windows large page support more or less like Solaris ISM, in
2785 // that the entire heap must be committed upfront. This probably will change
2786 // in the future, if so the code below needs to be revisited.
2787 
2788 #ifndef MEM_LARGE_PAGES
2789   #define MEM_LARGE_PAGES 0x20000000
2790 #endif
2791 
2792 static HANDLE    _hProcess;
2793 static HANDLE    _hToken;
2794 
2795 // Container for NUMA node list info
2796 class NUMANodeListHolder {
2797  private:
2798   int *_numa_used_node_list;  // allocated below
2799   int _numa_used_node_count;
2800 
2801   void free_node_list() {
2802     if (_numa_used_node_list != NULL) {
2803       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2804     }
2805   }
2806 
2807  public:
2808   NUMANodeListHolder() {
2809     _numa_used_node_count = 0;
2810     _numa_used_node_list = NULL;
2811     // do rest of initialization in build routine (after function pointers are set up)
2812   }
2813 
2814   ~NUMANodeListHolder() {
2815     free_node_list();
2816   }
2817 
2818   bool build() {
2819     DWORD_PTR proc_aff_mask;
2820     DWORD_PTR sys_aff_mask;
2821     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2822     ULONG highest_node_number;
2823     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2824     free_node_list();
2825     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2826     for (unsigned int i = 0; i <= highest_node_number; i++) {
2827       ULONGLONG proc_mask_numa_node;
2828       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2829       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2830         _numa_used_node_list[_numa_used_node_count++] = i;
2831       }
2832     }
2833     return (_numa_used_node_count > 1);
2834   }
2835 
2836   int get_count() { return _numa_used_node_count; }
2837   int get_node_list_entry(int n) {
2838     // for indexes out of range, returns -1
2839     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2840   }
2841 
2842 } numa_node_list_holder;
2843 
2844 
2845 
2846 static size_t _large_page_size = 0;
2847 
2848 static bool resolve_functions_for_large_page_init() {
2849   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2850     os::Advapi32Dll::AdvapiAvailable();
2851 }
2852 
2853 static bool request_lock_memory_privilege() {
2854   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2855                           os::current_process_id());
2856 
2857   LUID luid;
2858   if (_hProcess != NULL &&
2859       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2860       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2861 
2862     TOKEN_PRIVILEGES tp;
2863     tp.PrivilegeCount = 1;
2864     tp.Privileges[0].Luid = luid;
2865     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2866 
2867     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2868     // privilege. Check GetLastError() too. See MSDN document.
2869     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2870         (GetLastError() == ERROR_SUCCESS)) {
2871       return true;
2872     }
2873   }
2874 
2875   return false;
2876 }
2877 
2878 static void cleanup_after_large_page_init() {
2879   if (_hProcess) CloseHandle(_hProcess);
2880   _hProcess = NULL;
2881   if (_hToken) CloseHandle(_hToken);
2882   _hToken = NULL;
2883 }
2884 
2885 static bool numa_interleaving_init() {
2886   bool success = false;
2887   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2888 
2889   // print a warning if UseNUMAInterleaving flag is specified on command line
2890   bool warn_on_failure = use_numa_interleaving_specified;
2891 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2892 
2893   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2894   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2895   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2896 
2897   if (os::Kernel32Dll::NumaCallsAvailable()) {
2898     if (numa_node_list_holder.build()) {
2899       if (PrintMiscellaneous && Verbose) {
2900         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2901         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2902           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2903         }
2904         tty->print("\n");
2905       }
2906       success = true;
2907     } else {
2908       WARN("Process does not cover multiple NUMA nodes.");
2909     }
2910   } else {
2911     WARN("NUMA Interleaving is not supported by the operating system.");
2912   }
2913   if (!success) {
2914     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2915   }
2916   return success;
2917 #undef WARN
2918 }
2919 
2920 // this routine is used whenever we need to reserve a contiguous VA range
2921 // but we need to make separate VirtualAlloc calls for each piece of the range
2922 // Reasons for doing this:
2923 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2924 //  * UseNUMAInterleaving requires a separate node for each piece
2925 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2926                                          DWORD prot,
2927                                          bool should_inject_error = false) {
2928   char * p_buf;
2929   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2930   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2931   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2932 
2933   // first reserve enough address space in advance since we want to be
2934   // able to break a single contiguous virtual address range into multiple
2935   // large page commits but WS2003 does not allow reserving large page space
2936   // so we just use 4K pages for reserve, this gives us a legal contiguous
2937   // address space. then we will deallocate that reservation, and re alloc
2938   // using large pages
2939   const size_t size_of_reserve = bytes + chunk_size;
2940   if (bytes > size_of_reserve) {
2941     // Overflowed.
2942     return NULL;
2943   }
2944   p_buf = (char *) VirtualAlloc(addr,
2945                                 size_of_reserve,  // size of Reserve
2946                                 MEM_RESERVE,
2947                                 PAGE_READWRITE);
2948   // If reservation failed, return NULL
2949   if (p_buf == NULL) return NULL;
2950   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2951   os::release_memory(p_buf, bytes + chunk_size);
2952 
2953   // we still need to round up to a page boundary (in case we are using large pages)
2954   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2955   // instead we handle this in the bytes_to_rq computation below
2956   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2957 
2958   // now go through and allocate one chunk at a time until all bytes are
2959   // allocated
2960   size_t  bytes_remaining = bytes;
2961   // An overflow of align_size_up() would have been caught above
2962   // in the calculation of size_of_reserve.
2963   char * next_alloc_addr = p_buf;
2964   HANDLE hProc = GetCurrentProcess();
2965 
2966 #ifdef ASSERT
2967   // Variable for the failure injection
2968   long ran_num = os::random();
2969   size_t fail_after = ran_num % bytes;
2970 #endif
2971 
2972   int count=0;
2973   while (bytes_remaining) {
2974     // select bytes_to_rq to get to the next chunk_size boundary
2975 
2976     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2977     // Note allocate and commit
2978     char * p_new;
2979 
2980 #ifdef ASSERT
2981     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2982 #else
2983     const bool inject_error_now = false;
2984 #endif
2985 
2986     if (inject_error_now) {
2987       p_new = NULL;
2988     } else {
2989       if (!UseNUMAInterleaving) {
2990         p_new = (char *) VirtualAlloc(next_alloc_addr,
2991                                       bytes_to_rq,
2992                                       flags,
2993                                       prot);
2994       } else {
2995         // get the next node to use from the used_node_list
2996         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2997         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2998         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2999                                                             next_alloc_addr,
3000                                                             bytes_to_rq,
3001                                                             flags,
3002                                                             prot,
3003                                                             node);
3004       }
3005     }
3006 
3007     if (p_new == NULL) {
3008       // Free any allocated pages
3009       if (next_alloc_addr > p_buf) {
3010         // Some memory was committed so release it.
3011         size_t bytes_to_release = bytes - bytes_remaining;
3012         // NMT has yet to record any individual blocks, so it
3013         // need to create a dummy 'reserve' record to match
3014         // the release.
3015         MemTracker::record_virtual_memory_reserve((address)p_buf,
3016                                                   bytes_to_release, CALLER_PC);
3017         os::release_memory(p_buf, bytes_to_release);
3018       }
3019 #ifdef ASSERT
3020       if (should_inject_error) {
3021         if (TracePageSizes && Verbose) {
3022           tty->print_cr("Reserving pages individually failed.");
3023         }
3024       }
3025 #endif
3026       return NULL;
3027     }
3028 
3029     bytes_remaining -= bytes_to_rq;
3030     next_alloc_addr += bytes_to_rq;
3031     count++;
3032   }
3033   // Although the memory is allocated individually, it is returned as one.
3034   // NMT records it as one block.
3035   if ((flags & MEM_COMMIT) != 0) {
3036     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3037   } else {
3038     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3039   }
3040 
3041   // made it this far, success
3042   return p_buf;
3043 }
3044 
3045 
3046 
3047 void os::large_page_init() {
3048   if (!UseLargePages) return;
3049 
3050   // print a warning if any large page related flag is specified on command line
3051   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3052                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3053   bool success = false;
3054 
3055 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3056   if (resolve_functions_for_large_page_init()) {
3057     if (request_lock_memory_privilege()) {
3058       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3059       if (s) {
3060 #if defined(IA32) || defined(AMD64)
3061         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3062           WARN("JVM cannot use large pages bigger than 4mb.");
3063         } else {
3064 #endif
3065           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3066             _large_page_size = LargePageSizeInBytes;
3067           } else {
3068             _large_page_size = s;
3069           }
3070           success = true;
3071 #if defined(IA32) || defined(AMD64)
3072         }
3073 #endif
3074       } else {
3075         WARN("Large page is not supported by the processor.");
3076       }
3077     } else {
3078       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3079     }
3080   } else {
3081     WARN("Large page is not supported by the operating system.");
3082   }
3083 #undef WARN
3084 
3085   const size_t default_page_size = (size_t) vm_page_size();
3086   if (success && _large_page_size > default_page_size) {
3087     _page_sizes[0] = _large_page_size;
3088     _page_sizes[1] = default_page_size;
3089     _page_sizes[2] = 0;
3090   }
3091 
3092   cleanup_after_large_page_init();
3093   UseLargePages = success;
3094 }
3095 
3096 // On win32, one cannot release just a part of reserved memory, it's an
3097 // all or nothing deal.  When we split a reservation, we must break the
3098 // reservation into two reservations.
3099 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3100                                   bool realloc) {
3101   if (size > 0) {
3102     release_memory(base, size);
3103     if (realloc) {
3104       reserve_memory(split, base);
3105     }
3106     if (size != split) {
3107       reserve_memory(size - split, base + split);
3108     }
3109   }
3110 }
3111 
3112 // Multiple threads can race in this code but it's not possible to unmap small sections of
3113 // virtual space to get requested alignment, like posix-like os's.
3114 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3115 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3116   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3117          "Alignment must be a multiple of allocation granularity (page size)");
3118   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3119 
3120   size_t extra_size = size + alignment;
3121   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3122 
3123   char* aligned_base = NULL;
3124 
3125   do {
3126     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3127     if (extra_base == NULL) {
3128       return NULL;
3129     }
3130     // Do manual alignment
3131     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3132 
3133     os::release_memory(extra_base, extra_size);
3134 
3135     aligned_base = os::reserve_memory(size, aligned_base);
3136 
3137   } while (aligned_base == NULL);
3138 
3139   return aligned_base;
3140 }
3141 
3142 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3143   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3144          "reserve alignment");
3145   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3146   char* res;
3147   // note that if UseLargePages is on, all the areas that require interleaving
3148   // will go thru reserve_memory_special rather than thru here.
3149   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3150   if (!use_individual) {
3151     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3152   } else {
3153     elapsedTimer reserveTimer;
3154     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3155     // in numa interleaving, we have to allocate pages individually
3156     // (well really chunks of NUMAInterleaveGranularity size)
3157     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3158     if (res == NULL) {
3159       warning("NUMA page allocation failed");
3160     }
3161     if (Verbose && PrintMiscellaneous) {
3162       reserveTimer.stop();
3163       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3164                     reserveTimer.milliseconds(), reserveTimer.ticks());
3165     }
3166   }
3167   assert(res == NULL || addr == NULL || addr == res,
3168          "Unexpected address from reserve.");
3169 
3170   return res;
3171 }
3172 
3173 // Reserve memory at an arbitrary address, only if that area is
3174 // available (and not reserved for something else).
3175 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3176   // Windows os::reserve_memory() fails of the requested address range is
3177   // not avilable.
3178   return reserve_memory(bytes, requested_addr);
3179 }
3180 
3181 size_t os::large_page_size() {
3182   return _large_page_size;
3183 }
3184 
3185 bool os::can_commit_large_page_memory() {
3186   // Windows only uses large page memory when the entire region is reserved
3187   // and committed in a single VirtualAlloc() call. This may change in the
3188   // future, but with Windows 2003 it's not possible to commit on demand.
3189   return false;
3190 }
3191 
3192 bool os::can_execute_large_page_memory() {
3193   return true;
3194 }
3195 
3196 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3197                                  bool exec) {
3198   assert(UseLargePages, "only for large pages");
3199 
3200   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3201     return NULL; // Fallback to small pages.
3202   }
3203 
3204   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3205   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3206 
3207   // with large pages, there are two cases where we need to use Individual Allocation
3208   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3209   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3210   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3211     if (TracePageSizes && Verbose) {
3212       tty->print_cr("Reserving large pages individually.");
3213     }
3214     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3215     if (p_buf == NULL) {
3216       // give an appropriate warning message
3217       if (UseNUMAInterleaving) {
3218         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3219       }
3220       if (UseLargePagesIndividualAllocation) {
3221         warning("Individually allocated large pages failed, "
3222                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3223       }
3224       return NULL;
3225     }
3226 
3227     return p_buf;
3228 
3229   } else {
3230     if (TracePageSizes && Verbose) {
3231       tty->print_cr("Reserving large pages in a single large chunk.");
3232     }
3233     // normal policy just allocate it all at once
3234     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3235     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3236     if (res != NULL) {
3237       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3238     }
3239 
3240     return res;
3241   }
3242 }
3243 
3244 bool os::release_memory_special(char* base, size_t bytes) {
3245   assert(base != NULL, "Sanity check");
3246   return release_memory(base, bytes);
3247 }
3248 
3249 void os::print_statistics() {
3250 }
3251 
3252 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3253   int err = os::get_last_error();
3254   char buf[256];
3255   size_t buf_len = os::lasterror(buf, sizeof(buf));
3256   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3257           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3258           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3259 }
3260 
3261 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3262   if (bytes == 0) {
3263     // Don't bother the OS with noops.
3264     return true;
3265   }
3266   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3267   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3268   // Don't attempt to print anything if the OS call fails. We're
3269   // probably low on resources, so the print itself may cause crashes.
3270 
3271   // unless we have NUMAInterleaving enabled, the range of a commit
3272   // is always within a reserve covered by a single VirtualAlloc
3273   // in that case we can just do a single commit for the requested size
3274   if (!UseNUMAInterleaving) {
3275     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3276       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3277       return false;
3278     }
3279     if (exec) {
3280       DWORD oldprot;
3281       // Windows doc says to use VirtualProtect to get execute permissions
3282       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3283         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284         return false;
3285       }
3286     }
3287     return true;
3288   } else {
3289 
3290     // when NUMAInterleaving is enabled, the commit might cover a range that
3291     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3292     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3293     // returns represents the number of bytes that can be committed in one step.
3294     size_t bytes_remaining = bytes;
3295     char * next_alloc_addr = addr;
3296     while (bytes_remaining > 0) {
3297       MEMORY_BASIC_INFORMATION alloc_info;
3298       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3299       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3300       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3301                        PAGE_READWRITE) == NULL) {
3302         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3303                                             exec);)
3304         return false;
3305       }
3306       if (exec) {
3307         DWORD oldprot;
3308         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3309                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3310           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3311                                               exec);)
3312           return false;
3313         }
3314       }
3315       bytes_remaining -= bytes_to_rq;
3316       next_alloc_addr += bytes_to_rq;
3317     }
3318   }
3319   // if we made it this far, return true
3320   return true;
3321 }
3322 
3323 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3324                           bool exec) {
3325   // alignment_hint is ignored on this OS
3326   return pd_commit_memory(addr, size, exec);
3327 }
3328 
3329 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3330                                   const char* mesg) {
3331   assert(mesg != NULL, "mesg must be specified");
3332   if (!pd_commit_memory(addr, size, exec)) {
3333     warn_fail_commit_memory(addr, size, exec);
3334     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3335   }
3336 }
3337 
3338 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3339                                   size_t alignment_hint, bool exec,
3340                                   const char* mesg) {
3341   // alignment_hint is ignored on this OS
3342   pd_commit_memory_or_exit(addr, size, exec, mesg);
3343 }
3344 
3345 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3346   if (bytes == 0) {
3347     // Don't bother the OS with noops.
3348     return true;
3349   }
3350   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3351   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3352   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3353 }
3354 
3355 bool os::pd_release_memory(char* addr, size_t bytes) {
3356   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3357 }
3358 
3359 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3360   return os::commit_memory(addr, size, !ExecMem);
3361 }
3362 
3363 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3364   return os::uncommit_memory(addr, size);
3365 }
3366 
3367 // Set protections specified
3368 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3369                         bool is_committed) {
3370   unsigned int p = 0;
3371   switch (prot) {
3372   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3373   case MEM_PROT_READ: p = PAGE_READONLY; break;
3374   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3375   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3376   default:
3377     ShouldNotReachHere();
3378   }
3379 
3380   DWORD old_status;
3381 
3382   // Strange enough, but on Win32 one can change protection only for committed
3383   // memory, not a big deal anyway, as bytes less or equal than 64K
3384   if (!is_committed) {
3385     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3386                           "cannot commit protection page");
3387   }
3388   // One cannot use os::guard_memory() here, as on Win32 guard page
3389   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3390   //
3391   // Pages in the region become guard pages. Any attempt to access a guard page
3392   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3393   // the guard page status. Guard pages thus act as a one-time access alarm.
3394   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3395 }
3396 
3397 bool os::guard_memory(char* addr, size_t bytes) {
3398   DWORD old_status;
3399   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3400 }
3401 
3402 bool os::unguard_memory(char* addr, size_t bytes) {
3403   DWORD old_status;
3404   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3405 }
3406 
3407 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3408 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3409 void os::numa_make_global(char *addr, size_t bytes)    { }
3410 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3411 bool os::numa_topology_changed()                       { return false; }
3412 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3413 int os::numa_get_group_id()                            { return 0; }
3414 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3415   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3416     // Provide an answer for UMA systems
3417     ids[0] = 0;
3418     return 1;
3419   } else {
3420     // check for size bigger than actual groups_num
3421     size = MIN2(size, numa_get_groups_num());
3422     for (int i = 0; i < (int)size; i++) {
3423       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3424     }
3425     return size;
3426   }
3427 }
3428 
3429 bool os::get_page_info(char *start, page_info* info) {
3430   return false;
3431 }
3432 
3433 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3434                      page_info* page_found) {
3435   return end;
3436 }
3437 
3438 char* os::non_memory_address_word() {
3439   // Must never look like an address returned by reserve_memory,
3440   // even in its subfields (as defined by the CPU immediate fields,
3441   // if the CPU splits constants across multiple instructions).
3442   return (char*)-1;
3443 }
3444 
3445 #define MAX_ERROR_COUNT 100
3446 #define SYS_THREAD_ERROR 0xffffffffUL
3447 
3448 void os::pd_start_thread(Thread* thread) {
3449   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3450   // Returns previous suspend state:
3451   // 0:  Thread was not suspended
3452   // 1:  Thread is running now
3453   // >1: Thread is still suspended.
3454   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3455 }
3456 
3457 class HighResolutionInterval : public CHeapObj<mtThread> {
3458   // The default timer resolution seems to be 10 milliseconds.
3459   // (Where is this written down?)
3460   // If someone wants to sleep for only a fraction of the default,
3461   // then we set the timer resolution down to 1 millisecond for
3462   // the duration of their interval.
3463   // We carefully set the resolution back, since otherwise we
3464   // seem to incur an overhead (3%?) that we don't need.
3465   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3466   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3467   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3468   // timeBeginPeriod() if the relative error exceeded some threshold.
3469   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3470   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3471   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3472   // resolution timers running.
3473  private:
3474   jlong resolution;
3475  public:
3476   HighResolutionInterval(jlong ms) {
3477     resolution = ms % 10L;
3478     if (resolution != 0) {
3479       MMRESULT result = timeBeginPeriod(1L);
3480     }
3481   }
3482   ~HighResolutionInterval() {
3483     if (resolution != 0) {
3484       MMRESULT result = timeEndPeriod(1L);
3485     }
3486     resolution = 0L;
3487   }
3488 };
3489 
3490 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3491   jlong limit = (jlong) MAXDWORD;
3492 
3493   while (ms > limit) {
3494     int res;
3495     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3496       return res;
3497     }
3498     ms -= limit;
3499   }
3500 
3501   assert(thread == Thread::current(), "thread consistency check");
3502   OSThread* osthread = thread->osthread();
3503   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3504   int result;
3505   if (interruptable) {
3506     assert(thread->is_Java_thread(), "must be java thread");
3507     JavaThread *jt = (JavaThread *) thread;
3508     ThreadBlockInVM tbivm(jt);
3509 
3510     jt->set_suspend_equivalent();
3511     // cleared by handle_special_suspend_equivalent_condition() or
3512     // java_suspend_self() via check_and_wait_while_suspended()
3513 
3514     HANDLE events[1];
3515     events[0] = osthread->interrupt_event();
3516     HighResolutionInterval *phri=NULL;
3517     if (!ForceTimeHighResolution) {
3518       phri = new HighResolutionInterval(ms);
3519     }
3520     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3521       result = OS_TIMEOUT;
3522     } else {
3523       ResetEvent(osthread->interrupt_event());
3524       osthread->set_interrupted(false);
3525       result = OS_INTRPT;
3526     }
3527     delete phri; //if it is NULL, harmless
3528 
3529     // were we externally suspended while we were waiting?
3530     jt->check_and_wait_while_suspended();
3531   } else {
3532     assert(!thread->is_Java_thread(), "must not be java thread");
3533     Sleep((long) ms);
3534     result = OS_TIMEOUT;
3535   }
3536   return result;
3537 }
3538 
3539 // Short sleep, direct OS call.
3540 //
3541 // ms = 0, means allow others (if any) to run.
3542 //
3543 void os::naked_short_sleep(jlong ms) {
3544   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3545   Sleep(ms);
3546 }
3547 
3548 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3549 void os::infinite_sleep() {
3550   while (true) {    // sleep forever ...
3551     Sleep(100000);  // ... 100 seconds at a time
3552   }
3553 }
3554 
3555 typedef BOOL (WINAPI * STTSignature)(void);
3556 
3557 void os::naked_yield() {
3558   // Use either SwitchToThread() or Sleep(0)
3559   // Consider passing back the return value from SwitchToThread().
3560   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3561     SwitchToThread();
3562   } else {
3563     Sleep(0);
3564   }
3565 }
3566 
3567 // Win32 only gives you access to seven real priorities at a time,
3568 // so we compress Java's ten down to seven.  It would be better
3569 // if we dynamically adjusted relative priorities.
3570 
3571 int os::java_to_os_priority[CriticalPriority + 1] = {
3572   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3573   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3574   THREAD_PRIORITY_LOWEST,                       // 2
3575   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3576   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3577   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3578   THREAD_PRIORITY_NORMAL,                       // 6
3579   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3580   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3581   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3582   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3583   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3584 };
3585 
3586 int prio_policy1[CriticalPriority + 1] = {
3587   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3588   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3589   THREAD_PRIORITY_LOWEST,                       // 2
3590   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3591   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3592   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3593   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3594   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3595   THREAD_PRIORITY_HIGHEST,                      // 8
3596   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3597   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3598   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3599 };
3600 
3601 static int prio_init() {
3602   // If ThreadPriorityPolicy is 1, switch tables
3603   if (ThreadPriorityPolicy == 1) {
3604     int i;
3605     for (i = 0; i < CriticalPriority + 1; i++) {
3606       os::java_to_os_priority[i] = prio_policy1[i];
3607     }
3608   }
3609   if (UseCriticalJavaThreadPriority) {
3610     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3611   }
3612   return 0;
3613 }
3614 
3615 OSReturn os::set_native_priority(Thread* thread, int priority) {
3616   if (!UseThreadPriorities) return OS_OK;
3617   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3618   return ret ? OS_OK : OS_ERR;
3619 }
3620 
3621 OSReturn os::get_native_priority(const Thread* const thread,
3622                                  int* priority_ptr) {
3623   if (!UseThreadPriorities) {
3624     *priority_ptr = java_to_os_priority[NormPriority];
3625     return OS_OK;
3626   }
3627   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3628   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3629     assert(false, "GetThreadPriority failed");
3630     return OS_ERR;
3631   }
3632   *priority_ptr = os_prio;
3633   return OS_OK;
3634 }
3635 
3636 
3637 // Hint to the underlying OS that a task switch would not be good.
3638 // Void return because it's a hint and can fail.
3639 void os::hint_no_preempt() {}
3640 
3641 void os::interrupt(Thread* thread) {
3642   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3643          Threads_lock->owned_by_self(),
3644          "possibility of dangling Thread pointer");
3645 
3646   OSThread* osthread = thread->osthread();
3647   osthread->set_interrupted(true);
3648   // More than one thread can get here with the same value of osthread,
3649   // resulting in multiple notifications.  We do, however, want the store
3650   // to interrupted() to be visible to other threads before we post
3651   // the interrupt event.
3652   OrderAccess::release();
3653   SetEvent(osthread->interrupt_event());
3654   // For JSR166:  unpark after setting status
3655   if (thread->is_Java_thread()) {
3656     ((JavaThread*)thread)->parker()->unpark();
3657   }
3658 
3659   ParkEvent * ev = thread->_ParkEvent;
3660   if (ev != NULL) ev->unpark();
3661 }
3662 
3663 
3664 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3665   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3666          "possibility of dangling Thread pointer");
3667 
3668   OSThread* osthread = thread->osthread();
3669   // There is no synchronization between the setting of the interrupt
3670   // and it being cleared here. It is critical - see 6535709 - that
3671   // we only clear the interrupt state, and reset the interrupt event,
3672   // if we are going to report that we were indeed interrupted - else
3673   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3674   // depending on the timing. By checking thread interrupt event to see
3675   // if the thread gets real interrupt thus prevent spurious wakeup.
3676   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3677   if (interrupted && clear_interrupted) {
3678     osthread->set_interrupted(false);
3679     ResetEvent(osthread->interrupt_event());
3680   } // Otherwise leave the interrupted state alone
3681 
3682   return interrupted;
3683 }
3684 
3685 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3686 ExtendedPC os::get_thread_pc(Thread* thread) {
3687   CONTEXT context;
3688   context.ContextFlags = CONTEXT_CONTROL;
3689   HANDLE handle = thread->osthread()->thread_handle();
3690 #ifdef _M_IA64
3691   assert(0, "Fix get_thread_pc");
3692   return ExtendedPC(NULL);
3693 #else
3694   if (GetThreadContext(handle, &context)) {
3695 #ifdef _M_AMD64
3696     return ExtendedPC((address) context.Rip);
3697 #else
3698     return ExtendedPC((address) context.Eip);
3699 #endif
3700   } else {
3701     return ExtendedPC(NULL);
3702   }
3703 #endif
3704 }
3705 
3706 // GetCurrentThreadId() returns DWORD
3707 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3708 
3709 static int _initial_pid = 0;
3710 
3711 int os::current_process_id() {
3712   return (_initial_pid ? _initial_pid : _getpid());
3713 }
3714 
3715 int    os::win32::_vm_page_size              = 0;
3716 int    os::win32::_vm_allocation_granularity = 0;
3717 int    os::win32::_processor_type            = 0;
3718 // Processor level is not available on non-NT systems, use vm_version instead
3719 int    os::win32::_processor_level           = 0;
3720 julong os::win32::_physical_memory           = 0;
3721 size_t os::win32::_default_stack_size        = 0;
3722 
3723 intx          os::win32::_os_thread_limit    = 0;
3724 volatile intx os::win32::_os_thread_count    = 0;
3725 
3726 bool   os::win32::_is_nt                     = false;
3727 bool   os::win32::_is_windows_2003           = false;
3728 bool   os::win32::_is_windows_server         = false;
3729 
3730 // 6573254
3731 // Currently, the bug is observed across all the supported Windows releases,
3732 // including the latest one (as of this writing - Windows Server 2012 R2)
3733 bool   os::win32::_has_exit_bug              = true;
3734 bool   os::win32::_has_performance_count     = 0;
3735 
3736 void os::win32::initialize_system_info() {
3737   SYSTEM_INFO si;
3738   GetSystemInfo(&si);
3739   _vm_page_size    = si.dwPageSize;
3740   _vm_allocation_granularity = si.dwAllocationGranularity;
3741   _processor_type  = si.dwProcessorType;
3742   _processor_level = si.wProcessorLevel;
3743   set_processor_count(si.dwNumberOfProcessors);
3744 
3745   MEMORYSTATUSEX ms;
3746   ms.dwLength = sizeof(ms);
3747 
3748   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3749   // dwMemoryLoad (% of memory in use)
3750   GlobalMemoryStatusEx(&ms);
3751   _physical_memory = ms.ullTotalPhys;
3752 
3753   OSVERSIONINFOEX oi;
3754   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3755   GetVersionEx((OSVERSIONINFO*)&oi);
3756   switch (oi.dwPlatformId) {
3757   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3758   case VER_PLATFORM_WIN32_NT:
3759     _is_nt = true;
3760     {
3761       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3762       if (os_vers == 5002) {
3763         _is_windows_2003 = true;
3764       }
3765       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3766           oi.wProductType == VER_NT_SERVER) {
3767         _is_windows_server = true;
3768       }
3769     }
3770     break;
3771   default: fatal("Unknown platform");
3772   }
3773 
3774   _default_stack_size = os::current_stack_size();
3775   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3776   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3777          "stack size not a multiple of page size");
3778 
3779   initialize_performance_counter();
3780 }
3781 
3782 
3783 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3784                                       int ebuflen) {
3785   char path[MAX_PATH];
3786   DWORD size;
3787   DWORD pathLen = (DWORD)sizeof(path);
3788   HINSTANCE result = NULL;
3789 
3790   // only allow library name without path component
3791   assert(strchr(name, '\\') == NULL, "path not allowed");
3792   assert(strchr(name, ':') == NULL, "path not allowed");
3793   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3794     jio_snprintf(ebuf, ebuflen,
3795                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3796     return NULL;
3797   }
3798 
3799   // search system directory
3800   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3801     if (size >= pathLen) {
3802       return NULL; // truncated
3803     }
3804     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3805       return NULL; // truncated
3806     }
3807     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3808       return result;
3809     }
3810   }
3811 
3812   // try Windows directory
3813   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3814     if (size >= pathLen) {
3815       return NULL; // truncated
3816     }
3817     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3818       return NULL; // truncated
3819     }
3820     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3821       return result;
3822     }
3823   }
3824 
3825   jio_snprintf(ebuf, ebuflen,
3826                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3827   return NULL;
3828 }
3829 
3830 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3831 
3832 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3833   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3834   return TRUE;
3835 }
3836 
3837 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3838   // Basic approach:
3839   //  - Each exiting thread registers its intent to exit and then does so.
3840   //  - A thread trying to terminate the process must wait for all
3841   //    threads currently exiting to complete their exit.
3842 
3843   if (os::win32::has_exit_bug()) {
3844     // The array holds handles of the threads that have started exiting by calling
3845     // _endthreadex().
3846     // Should be large enough to avoid blocking the exiting thread due to lack of
3847     // a free slot.
3848     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3849     static int handle_count = 0;
3850 
3851     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3852     static CRITICAL_SECTION crit_sect;
3853     static volatile jint process_exiting = 0;
3854     int i, j;
3855     DWORD res;
3856     HANDLE hproc, hthr;
3857 
3858     // The first thread that reached this point, initializes the critical section.
3859     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3860       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3861     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3862       EnterCriticalSection(&crit_sect);
3863 
3864       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3865         // Remove from the array those handles of the threads that have completed exiting.
3866         for (i = 0, j = 0; i < handle_count; ++i) {
3867           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3868           if (res == WAIT_TIMEOUT) {
3869             handles[j++] = handles[i];
3870           } else {
3871             if (res == WAIT_FAILED) {
3872               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3873                       GetLastError(), __FILE__, __LINE__);
3874             }
3875             // Don't keep the handle, if we failed waiting for it.
3876             CloseHandle(handles[i]);
3877           }
3878         }
3879 
3880         // If there's no free slot in the array of the kept handles, we'll have to
3881         // wait until at least one thread completes exiting.
3882         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3883           // Raise the priority of the oldest exiting thread to increase its chances
3884           // to complete sooner.
3885           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3886           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3887           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3888             i = (res - WAIT_OBJECT_0);
3889             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3890             for (; i < handle_count; ++i) {
3891               handles[i] = handles[i + 1];
3892             }
3893           } else {
3894             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3895                     (res == WAIT_FAILED ? "failed" : "timed out"),
3896                     GetLastError(), __FILE__, __LINE__);
3897             // Don't keep handles, if we failed waiting for them.
3898             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3899               CloseHandle(handles[i]);
3900             }
3901             handle_count = 0;
3902           }
3903         }
3904 
3905         // Store a duplicate of the current thread handle in the array of handles.
3906         hproc = GetCurrentProcess();
3907         hthr = GetCurrentThread();
3908         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3909                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3910           warning("DuplicateHandle failed (%u) in %s: %d\n",
3911                   GetLastError(), __FILE__, __LINE__);
3912         } else {
3913           ++handle_count;
3914         }
3915 
3916         // The current exiting thread has stored its handle in the array, and now
3917         // should leave the critical section before calling _endthreadex().
3918 
3919       } else if (what != EPT_THREAD) {
3920         if (handle_count > 0) {
3921           // Before ending the process, make sure all the threads that had called
3922           // _endthreadex() completed.
3923 
3924           // Set the priority level of the current thread to the same value as
3925           // the priority level of exiting threads.
3926           // This is to ensure it will be given a fair chance to execute if
3927           // the timeout expires.
3928           hthr = GetCurrentThread();
3929           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3930           for (i = 0; i < handle_count; ++i) {
3931             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3932           }
3933           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3934           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3935             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3936                     (res == WAIT_FAILED ? "failed" : "timed out"),
3937                     GetLastError(), __FILE__, __LINE__);
3938           }
3939           for (i = 0; i < handle_count; ++i) {
3940             CloseHandle(handles[i]);
3941           }
3942           handle_count = 0;
3943         }
3944 
3945         OrderAccess::release_store(&process_exiting, 1);
3946       }
3947 
3948       LeaveCriticalSection(&crit_sect);
3949     }
3950 
3951     if (what == EPT_THREAD) {
3952       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3953         // Some other thread is about to call exit(), so we
3954         // don't let the current thread proceed to _endthreadex()
3955         SuspendThread(GetCurrentThread());
3956         // Avoid busy-wait loop, if SuspendThread() failed.
3957         Sleep(EXIT_TIMEOUT);
3958       }
3959     }
3960   }
3961 
3962   // We are here if either
3963   // - there's no 'race at exit' bug on this OS release;
3964   // - initialization of the critical section failed (unlikely);
3965   // - the current thread has stored its handle and left the critical section;
3966   // - the process-exiting thread has raised the flag and left the critical section.
3967   if (what == EPT_THREAD) {
3968     _endthreadex((unsigned)exit_code);
3969   } else if (what == EPT_PROCESS) {
3970     ::exit(exit_code);
3971   } else {
3972     _exit(exit_code);
3973   }
3974 
3975   // Should not reach here
3976   return exit_code;
3977 }
3978 
3979 #undef EXIT_TIMEOUT
3980 
3981 void os::win32::setmode_streams() {
3982   _setmode(_fileno(stdin), _O_BINARY);
3983   _setmode(_fileno(stdout), _O_BINARY);
3984   _setmode(_fileno(stderr), _O_BINARY);
3985 }
3986 
3987 
3988 bool os::is_debugger_attached() {
3989   return IsDebuggerPresent() ? true : false;
3990 }
3991 
3992 
3993 void os::wait_for_keypress_at_exit(void) {
3994   if (PauseAtExit) {
3995     fprintf(stderr, "Press any key to continue...\n");
3996     fgetc(stdin);
3997   }
3998 }
3999 
4000 
4001 int os::message_box(const char* title, const char* message) {
4002   int result = MessageBox(NULL, message, title,
4003                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4004   return result == IDYES;
4005 }
4006 
4007 #ifndef PRODUCT
4008 #ifndef _WIN64
4009 // Helpers to check whether NX protection is enabled
4010 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4011   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4012       pex->ExceptionRecord->NumberParameters > 0 &&
4013       pex->ExceptionRecord->ExceptionInformation[0] ==
4014       EXCEPTION_INFO_EXEC_VIOLATION) {
4015     return EXCEPTION_EXECUTE_HANDLER;
4016   }
4017   return EXCEPTION_CONTINUE_SEARCH;
4018 }
4019 
4020 void nx_check_protection() {
4021   // If NX is enabled we'll get an exception calling into code on the stack
4022   char code[] = { (char)0xC3 }; // ret
4023   void *code_ptr = (void *)code;
4024   __try {
4025     __asm call code_ptr
4026   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4027     tty->print_raw_cr("NX protection detected.");
4028   }
4029 }
4030 #endif // _WIN64
4031 #endif // PRODUCT
4032 
4033 // this is called _before_ the global arguments have been parsed
4034 void os::init(void) {
4035   _initial_pid = _getpid();
4036 
4037   init_random(1234567);
4038 
4039   win32::initialize_system_info();
4040   win32::setmode_streams();
4041   init_page_sizes((size_t) win32::vm_page_size());
4042 
4043   // This may be overridden later when argument processing is done.
4044   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4045                 os::win32::is_windows_2003());
4046 
4047   // Initialize main_process and main_thread
4048   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4049   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4050                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4051     fatal("DuplicateHandle failed\n");
4052   }
4053   main_thread_id = (int) GetCurrentThreadId();
4054 
4055   // initialize fast thread access - only used for 32-bit
4056   win32::initialize_thread_ptr_offset();
4057 }
4058 
4059 // To install functions for atexit processing
4060 extern "C" {
4061   static void perfMemory_exit_helper() {
4062     perfMemory_exit();
4063   }
4064 }
4065 
4066 static jint initSock();
4067 
4068 // this is called _after_ the global arguments have been parsed
4069 jint os::init_2(void) {
4070   // Allocate a single page and mark it as readable for safepoint polling
4071   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4072   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4073 
4074   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4075   guarantee(return_page != NULL, "Commit Failed for polling page");
4076 
4077   os::set_polling_page(polling_page);
4078 
4079 #ifndef PRODUCT
4080   if (Verbose && PrintMiscellaneous) {
4081     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4082                (intptr_t)polling_page);
4083   }
4084 #endif
4085 
4086   if (!UseMembar) {
4087     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4088     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4089 
4090     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4091     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4092 
4093     os::set_memory_serialize_page(mem_serialize_page);
4094 
4095 #ifndef PRODUCT
4096     if (Verbose && PrintMiscellaneous) {
4097       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4098                  (intptr_t)mem_serialize_page);
4099     }
4100 #endif
4101   }
4102 
4103   // Setup Windows Exceptions
4104 
4105   // for debugging float code generation bugs
4106   if (ForceFloatExceptions) {
4107 #ifndef  _WIN64
4108     static long fp_control_word = 0;
4109     __asm { fstcw fp_control_word }
4110     // see Intel PPro Manual, Vol. 2, p 7-16
4111     const long precision = 0x20;
4112     const long underflow = 0x10;
4113     const long overflow  = 0x08;
4114     const long zero_div  = 0x04;
4115     const long denorm    = 0x02;
4116     const long invalid   = 0x01;
4117     fp_control_word |= invalid;
4118     __asm { fldcw fp_control_word }
4119 #endif
4120   }
4121 
4122   // If stack_commit_size is 0, windows will reserve the default size,
4123   // but only commit a small portion of it.
4124   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4125   size_t default_reserve_size = os::win32::default_stack_size();
4126   size_t actual_reserve_size = stack_commit_size;
4127   if (stack_commit_size < default_reserve_size) {
4128     // If stack_commit_size == 0, we want this too
4129     actual_reserve_size = default_reserve_size;
4130   }
4131 
4132   // Check minimum allowable stack size for thread creation and to initialize
4133   // the java system classes, including StackOverflowError - depends on page
4134   // size.  Add a page for compiler2 recursion in main thread.
4135   // Add in 2*BytesPerWord times page size to account for VM stack during
4136   // class initialization depending on 32 or 64 bit VM.
4137   size_t min_stack_allowed =
4138             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4139                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4140   if (actual_reserve_size < min_stack_allowed) {
4141     tty->print_cr("\nThe stack size specified is too small, "
4142                   "Specify at least %dk",
4143                   min_stack_allowed / K);
4144     return JNI_ERR;
4145   }
4146 
4147   JavaThread::set_stack_size_at_create(stack_commit_size);
4148 
4149   // Calculate theoretical max. size of Threads to guard gainst artifical
4150   // out-of-memory situations, where all available address-space has been
4151   // reserved by thread stacks.
4152   assert(actual_reserve_size != 0, "Must have a stack");
4153 
4154   // Calculate the thread limit when we should start doing Virtual Memory
4155   // banging. Currently when the threads will have used all but 200Mb of space.
4156   //
4157   // TODO: consider performing a similar calculation for commit size instead
4158   // as reserve size, since on a 64-bit platform we'll run into that more
4159   // often than running out of virtual memory space.  We can use the
4160   // lower value of the two calculations as the os_thread_limit.
4161   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4162   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4163 
4164   // at exit methods are called in the reverse order of their registration.
4165   // there is no limit to the number of functions registered. atexit does
4166   // not set errno.
4167 
4168   if (PerfAllowAtExitRegistration) {
4169     // only register atexit functions if PerfAllowAtExitRegistration is set.
4170     // atexit functions can be delayed until process exit time, which
4171     // can be problematic for embedded VM situations. Embedded VMs should
4172     // call DestroyJavaVM() to assure that VM resources are released.
4173 
4174     // note: perfMemory_exit_helper atexit function may be removed in
4175     // the future if the appropriate cleanup code can be added to the
4176     // VM_Exit VMOperation's doit method.
4177     if (atexit(perfMemory_exit_helper) != 0) {
4178       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4179     }
4180   }
4181 
4182 #ifndef _WIN64
4183   // Print something if NX is enabled (win32 on AMD64)
4184   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4185 #endif
4186 
4187   // initialize thread priority policy
4188   prio_init();
4189 
4190   if (UseNUMA && !ForceNUMA) {
4191     UseNUMA = false; // We don't fully support this yet
4192   }
4193 
4194   if (UseNUMAInterleaving) {
4195     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4196     bool success = numa_interleaving_init();
4197     if (!success) UseNUMAInterleaving = false;
4198   }
4199 
4200   if (initSock() != JNI_OK) {
4201     return JNI_ERR;
4202   }
4203 
4204   return JNI_OK;
4205 }
4206 
4207 // Mark the polling page as unreadable
4208 void os::make_polling_page_unreadable(void) {
4209   DWORD old_status;
4210   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4211                       PAGE_NOACCESS, &old_status)) {
4212     fatal("Could not disable polling page");
4213   }
4214 }
4215 
4216 // Mark the polling page as readable
4217 void os::make_polling_page_readable(void) {
4218   DWORD old_status;
4219   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4220                       PAGE_READONLY, &old_status)) {
4221     fatal("Could not enable polling page");
4222   }
4223 }
4224 
4225 
4226 int os::stat(const char *path, struct stat *sbuf) {
4227   char pathbuf[MAX_PATH];
4228   if (strlen(path) > MAX_PATH - 1) {
4229     errno = ENAMETOOLONG;
4230     return -1;
4231   }
4232   os::native_path(strcpy(pathbuf, path));
4233   int ret = ::stat(pathbuf, sbuf);
4234   if (sbuf != NULL && UseUTCFileTimestamp) {
4235     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4236     // the system timezone and so can return different values for the
4237     // same file if/when daylight savings time changes.  This adjustment
4238     // makes sure the same timestamp is returned regardless of the TZ.
4239     //
4240     // See:
4241     // http://msdn.microsoft.com/library/
4242     //   default.asp?url=/library/en-us/sysinfo/base/
4243     //   time_zone_information_str.asp
4244     // and
4245     // http://msdn.microsoft.com/library/default.asp?url=
4246     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4247     //
4248     // NOTE: there is a insidious bug here:  If the timezone is changed
4249     // after the call to stat() but before 'GetTimeZoneInformation()', then
4250     // the adjustment we do here will be wrong and we'll return the wrong
4251     // value (which will likely end up creating an invalid class data
4252     // archive).  Absent a better API for this, or some time zone locking
4253     // mechanism, we'll have to live with this risk.
4254     TIME_ZONE_INFORMATION tz;
4255     DWORD tzid = GetTimeZoneInformation(&tz);
4256     int daylightBias =
4257       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4258     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4259   }
4260   return ret;
4261 }
4262 
4263 
4264 #define FT2INT64(ft) \
4265   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4266 
4267 
4268 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4269 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4270 // of a thread.
4271 //
4272 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4273 // the fast estimate available on the platform.
4274 
4275 // current_thread_cpu_time() is not optimized for Windows yet
4276 jlong os::current_thread_cpu_time() {
4277   // return user + sys since the cost is the same
4278   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4279 }
4280 
4281 jlong os::thread_cpu_time(Thread* thread) {
4282   // consistent with what current_thread_cpu_time() returns.
4283   return os::thread_cpu_time(thread, true /* user+sys */);
4284 }
4285 
4286 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4287   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4288 }
4289 
4290 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4291   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4292   // If this function changes, os::is_thread_cpu_time_supported() should too
4293   if (os::win32::is_nt()) {
4294     FILETIME CreationTime;
4295     FILETIME ExitTime;
4296     FILETIME KernelTime;
4297     FILETIME UserTime;
4298 
4299     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4300                        &ExitTime, &KernelTime, &UserTime) == 0) {
4301       return -1;
4302     } else if (user_sys_cpu_time) {
4303       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4304     } else {
4305       return FT2INT64(UserTime) * 100;
4306     }
4307   } else {
4308     return (jlong) timeGetTime() * 1000000;
4309   }
4310 }
4311 
4312 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4313   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4314   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4315   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4316   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4317 }
4318 
4319 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4320   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4321   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4322   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4323   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4324 }
4325 
4326 bool os::is_thread_cpu_time_supported() {
4327   // see os::thread_cpu_time
4328   if (os::win32::is_nt()) {
4329     FILETIME CreationTime;
4330     FILETIME ExitTime;
4331     FILETIME KernelTime;
4332     FILETIME UserTime;
4333 
4334     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4335                        &KernelTime, &UserTime) == 0) {
4336       return false;
4337     } else {
4338       return true;
4339     }
4340   } else {
4341     return false;
4342   }
4343 }
4344 
4345 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4346 // It does have primitives (PDH API) to get CPU usage and run queue length.
4347 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4348 // If we wanted to implement loadavg on Windows, we have a few options:
4349 //
4350 // a) Query CPU usage and run queue length and "fake" an answer by
4351 //    returning the CPU usage if it's under 100%, and the run queue
4352 //    length otherwise.  It turns out that querying is pretty slow
4353 //    on Windows, on the order of 200 microseconds on a fast machine.
4354 //    Note that on the Windows the CPU usage value is the % usage
4355 //    since the last time the API was called (and the first call
4356 //    returns 100%), so we'd have to deal with that as well.
4357 //
4358 // b) Sample the "fake" answer using a sampling thread and store
4359 //    the answer in a global variable.  The call to loadavg would
4360 //    just return the value of the global, avoiding the slow query.
4361 //
4362 // c) Sample a better answer using exponential decay to smooth the
4363 //    value.  This is basically the algorithm used by UNIX kernels.
4364 //
4365 // Note that sampling thread starvation could affect both (b) and (c).
4366 int os::loadavg(double loadavg[], int nelem) {
4367   return -1;
4368 }
4369 
4370 
4371 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4372 bool os::dont_yield() {
4373   return DontYieldALot;
4374 }
4375 
4376 // This method is a slightly reworked copy of JDK's sysOpen
4377 // from src/windows/hpi/src/sys_api_md.c
4378 
4379 int os::open(const char *path, int oflag, int mode) {
4380   char pathbuf[MAX_PATH];
4381 
4382   if (strlen(path) > MAX_PATH - 1) {
4383     errno = ENAMETOOLONG;
4384     return -1;
4385   }
4386   os::native_path(strcpy(pathbuf, path));
4387   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4388 }
4389 
4390 FILE* os::open(int fd, const char* mode) {
4391   return ::_fdopen(fd, mode);
4392 }
4393 
4394 // Is a (classpath) directory empty?
4395 bool os::dir_is_empty(const char* path) {
4396   WIN32_FIND_DATA fd;
4397   HANDLE f = FindFirstFile(path, &fd);
4398   if (f == INVALID_HANDLE_VALUE) {
4399     return true;
4400   }
4401   FindClose(f);
4402   return false;
4403 }
4404 
4405 // create binary file, rewriting existing file if required
4406 int os::create_binary_file(const char* path, bool rewrite_existing) {
4407   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4408   if (!rewrite_existing) {
4409     oflags |= _O_EXCL;
4410   }
4411   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4412 }
4413 
4414 // return current position of file pointer
4415 jlong os::current_file_offset(int fd) {
4416   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4417 }
4418 
4419 // move file pointer to the specified offset
4420 jlong os::seek_to_file_offset(int fd, jlong offset) {
4421   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4422 }
4423 
4424 
4425 jlong os::lseek(int fd, jlong offset, int whence) {
4426   return (jlong) ::_lseeki64(fd, offset, whence);
4427 }
4428 
4429 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4430   OVERLAPPED ov;
4431   DWORD nread;
4432   BOOL result;
4433 
4434   ZeroMemory(&ov, sizeof(ov));
4435   ov.Offset = (DWORD)offset;
4436   ov.OffsetHigh = (DWORD)(offset >> 32);
4437 
4438   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4439 
4440   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4441 
4442   return result ? nread : 0;
4443 }
4444 
4445 
4446 // This method is a slightly reworked copy of JDK's sysNativePath
4447 // from src/windows/hpi/src/path_md.c
4448 
4449 // Convert a pathname to native format.  On win32, this involves forcing all
4450 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4451 // sometimes rejects '/') and removing redundant separators.  The input path is
4452 // assumed to have been converted into the character encoding used by the local
4453 // system.  Because this might be a double-byte encoding, care is taken to
4454 // treat double-byte lead characters correctly.
4455 //
4456 // This procedure modifies the given path in place, as the result is never
4457 // longer than the original.  There is no error return; this operation always
4458 // succeeds.
4459 char * os::native_path(char *path) {
4460   char *src = path, *dst = path, *end = path;
4461   char *colon = NULL;  // If a drive specifier is found, this will
4462                        // point to the colon following the drive letter
4463 
4464   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4465   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4466           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4467 
4468   // Check for leading separators
4469 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4470   while (isfilesep(*src)) {
4471     src++;
4472   }
4473 
4474   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4475     // Remove leading separators if followed by drive specifier.  This
4476     // hack is necessary to support file URLs containing drive
4477     // specifiers (e.g., "file://c:/path").  As a side effect,
4478     // "/c:/path" can be used as an alternative to "c:/path".
4479     *dst++ = *src++;
4480     colon = dst;
4481     *dst++ = ':';
4482     src++;
4483   } else {
4484     src = path;
4485     if (isfilesep(src[0]) && isfilesep(src[1])) {
4486       // UNC pathname: Retain first separator; leave src pointed at
4487       // second separator so that further separators will be collapsed
4488       // into the second separator.  The result will be a pathname
4489       // beginning with "\\\\" followed (most likely) by a host name.
4490       src = dst = path + 1;
4491       path[0] = '\\';     // Force first separator to '\\'
4492     }
4493   }
4494 
4495   end = dst;
4496 
4497   // Remove redundant separators from remainder of path, forcing all
4498   // separators to be '\\' rather than '/'. Also, single byte space
4499   // characters are removed from the end of the path because those
4500   // are not legal ending characters on this operating system.
4501   //
4502   while (*src != '\0') {
4503     if (isfilesep(*src)) {
4504       *dst++ = '\\'; src++;
4505       while (isfilesep(*src)) src++;
4506       if (*src == '\0') {
4507         // Check for trailing separator
4508         end = dst;
4509         if (colon == dst - 2) break;  // "z:\\"
4510         if (dst == path + 1) break;   // "\\"
4511         if (dst == path + 2 && isfilesep(path[0])) {
4512           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4513           // beginning of a UNC pathname.  Even though it is not, by
4514           // itself, a valid UNC pathname, we leave it as is in order
4515           // to be consistent with the path canonicalizer as well
4516           // as the win32 APIs, which treat this case as an invalid
4517           // UNC pathname rather than as an alias for the root
4518           // directory of the current drive.
4519           break;
4520         }
4521         end = --dst;  // Path does not denote a root directory, so
4522                       // remove trailing separator
4523         break;
4524       }
4525       end = dst;
4526     } else {
4527       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4528         *dst++ = *src++;
4529         if (*src) *dst++ = *src++;
4530         end = dst;
4531       } else {  // Copy a single-byte character
4532         char c = *src++;
4533         *dst++ = c;
4534         // Space is not a legal ending character
4535         if (c != ' ') end = dst;
4536       }
4537     }
4538   }
4539 
4540   *end = '\0';
4541 
4542   // For "z:", add "." to work around a bug in the C runtime library
4543   if (colon == dst - 1) {
4544     path[2] = '.';
4545     path[3] = '\0';
4546   }
4547 
4548   return path;
4549 }
4550 
4551 // This code is a copy of JDK's sysSetLength
4552 // from src/windows/hpi/src/sys_api_md.c
4553 
4554 int os::ftruncate(int fd, jlong length) {
4555   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4556   long high = (long)(length >> 32);
4557   DWORD ret;
4558 
4559   if (h == (HANDLE)(-1)) {
4560     return -1;
4561   }
4562 
4563   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4564   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4565     return -1;
4566   }
4567 
4568   if (::SetEndOfFile(h) == FALSE) {
4569     return -1;
4570   }
4571 
4572   return 0;
4573 }
4574 
4575 
4576 // This code is a copy of JDK's sysSync
4577 // from src/windows/hpi/src/sys_api_md.c
4578 // except for the legacy workaround for a bug in Win 98
4579 
4580 int os::fsync(int fd) {
4581   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4582 
4583   if ((!::FlushFileBuffers(handle)) &&
4584       (GetLastError() != ERROR_ACCESS_DENIED)) {
4585     // from winerror.h
4586     return -1;
4587   }
4588   return 0;
4589 }
4590 
4591 static int nonSeekAvailable(int, long *);
4592 static int stdinAvailable(int, long *);
4593 
4594 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4595 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4596 
4597 // This code is a copy of JDK's sysAvailable
4598 // from src/windows/hpi/src/sys_api_md.c
4599 
4600 int os::available(int fd, jlong *bytes) {
4601   jlong cur, end;
4602   struct _stati64 stbuf64;
4603 
4604   if (::_fstati64(fd, &stbuf64) >= 0) {
4605     int mode = stbuf64.st_mode;
4606     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4607       int ret;
4608       long lpbytes;
4609       if (fd == 0) {
4610         ret = stdinAvailable(fd, &lpbytes);
4611       } else {
4612         ret = nonSeekAvailable(fd, &lpbytes);
4613       }
4614       (*bytes) = (jlong)(lpbytes);
4615       return ret;
4616     }
4617     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4618       return FALSE;
4619     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4620       return FALSE;
4621     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4622       return FALSE;
4623     }
4624     *bytes = end - cur;
4625     return TRUE;
4626   } else {
4627     return FALSE;
4628   }
4629 }
4630 
4631 // This code is a copy of JDK's nonSeekAvailable
4632 // from src/windows/hpi/src/sys_api_md.c
4633 
4634 static int nonSeekAvailable(int fd, long *pbytes) {
4635   // This is used for available on non-seekable devices
4636   // (like both named and anonymous pipes, such as pipes
4637   //  connected to an exec'd process).
4638   // Standard Input is a special case.
4639   HANDLE han;
4640 
4641   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4642     return FALSE;
4643   }
4644 
4645   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4646     // PeekNamedPipe fails when at EOF.  In that case we
4647     // simply make *pbytes = 0 which is consistent with the
4648     // behavior we get on Solaris when an fd is at EOF.
4649     // The only alternative is to raise an Exception,
4650     // which isn't really warranted.
4651     //
4652     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4653       return FALSE;
4654     }
4655     *pbytes = 0;
4656   }
4657   return TRUE;
4658 }
4659 
4660 #define MAX_INPUT_EVENTS 2000
4661 
4662 // This code is a copy of JDK's stdinAvailable
4663 // from src/windows/hpi/src/sys_api_md.c
4664 
4665 static int stdinAvailable(int fd, long *pbytes) {
4666   HANDLE han;
4667   DWORD numEventsRead = 0;  // Number of events read from buffer
4668   DWORD numEvents = 0;      // Number of events in buffer
4669   DWORD i = 0;              // Loop index
4670   DWORD curLength = 0;      // Position marker
4671   DWORD actualLength = 0;   // Number of bytes readable
4672   BOOL error = FALSE;       // Error holder
4673   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4674 
4675   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4676     return FALSE;
4677   }
4678 
4679   // Construct an array of input records in the console buffer
4680   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4681   if (error == 0) {
4682     return nonSeekAvailable(fd, pbytes);
4683   }
4684 
4685   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4686   if (numEvents > MAX_INPUT_EVENTS) {
4687     numEvents = MAX_INPUT_EVENTS;
4688   }
4689 
4690   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4691   if (lpBuffer == NULL) {
4692     return FALSE;
4693   }
4694 
4695   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4696   if (error == 0) {
4697     os::free(lpBuffer);
4698     return FALSE;
4699   }
4700 
4701   // Examine input records for the number of bytes available
4702   for (i=0; i<numEvents; i++) {
4703     if (lpBuffer[i].EventType == KEY_EVENT) {
4704 
4705       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4706                                       &(lpBuffer[i].Event);
4707       if (keyRecord->bKeyDown == TRUE) {
4708         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4709         curLength++;
4710         if (*keyPressed == '\r') {
4711           actualLength = curLength;
4712         }
4713       }
4714     }
4715   }
4716 
4717   if (lpBuffer != NULL) {
4718     os::free(lpBuffer);
4719   }
4720 
4721   *pbytes = (long) actualLength;
4722   return TRUE;
4723 }
4724 
4725 // Map a block of memory.
4726 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4727                         char *addr, size_t bytes, bool read_only,
4728                         bool allow_exec) {
4729   HANDLE hFile;
4730   char* base;
4731 
4732   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4733                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4734   if (hFile == NULL) {
4735     if (PrintMiscellaneous && Verbose) {
4736       DWORD err = GetLastError();
4737       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4738     }
4739     return NULL;
4740   }
4741 
4742   if (allow_exec) {
4743     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4744     // unless it comes from a PE image (which the shared archive is not.)
4745     // Even VirtualProtect refuses to give execute access to mapped memory
4746     // that was not previously executable.
4747     //
4748     // Instead, stick the executable region in anonymous memory.  Yuck.
4749     // Penalty is that ~4 pages will not be shareable - in the future
4750     // we might consider DLLizing the shared archive with a proper PE
4751     // header so that mapping executable + sharing is possible.
4752 
4753     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4754                                 PAGE_READWRITE);
4755     if (base == NULL) {
4756       if (PrintMiscellaneous && Verbose) {
4757         DWORD err = GetLastError();
4758         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4759       }
4760       CloseHandle(hFile);
4761       return NULL;
4762     }
4763 
4764     DWORD bytes_read;
4765     OVERLAPPED overlapped;
4766     overlapped.Offset = (DWORD)file_offset;
4767     overlapped.OffsetHigh = 0;
4768     overlapped.hEvent = NULL;
4769     // ReadFile guarantees that if the return value is true, the requested
4770     // number of bytes were read before returning.
4771     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4772     if (!res) {
4773       if (PrintMiscellaneous && Verbose) {
4774         DWORD err = GetLastError();
4775         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4776       }
4777       release_memory(base, bytes);
4778       CloseHandle(hFile);
4779       return NULL;
4780     }
4781   } else {
4782     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4783                                     NULL /* file_name */);
4784     if (hMap == NULL) {
4785       if (PrintMiscellaneous && Verbose) {
4786         DWORD err = GetLastError();
4787         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4788       }
4789       CloseHandle(hFile);
4790       return NULL;
4791     }
4792 
4793     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4794     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4795                                   (DWORD)bytes, addr);
4796     if (base == NULL) {
4797       if (PrintMiscellaneous && Verbose) {
4798         DWORD err = GetLastError();
4799         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4800       }
4801       CloseHandle(hMap);
4802       CloseHandle(hFile);
4803       return NULL;
4804     }
4805 
4806     if (CloseHandle(hMap) == 0) {
4807       if (PrintMiscellaneous && Verbose) {
4808         DWORD err = GetLastError();
4809         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4810       }
4811       CloseHandle(hFile);
4812       return base;
4813     }
4814   }
4815 
4816   if (allow_exec) {
4817     DWORD old_protect;
4818     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4819     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4820 
4821     if (!res) {
4822       if (PrintMiscellaneous && Verbose) {
4823         DWORD err = GetLastError();
4824         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4825       }
4826       // Don't consider this a hard error, on IA32 even if the
4827       // VirtualProtect fails, we should still be able to execute
4828       CloseHandle(hFile);
4829       return base;
4830     }
4831   }
4832 
4833   if (CloseHandle(hFile) == 0) {
4834     if (PrintMiscellaneous && Verbose) {
4835       DWORD err = GetLastError();
4836       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4837     }
4838     return base;
4839   }
4840 
4841   return base;
4842 }
4843 
4844 
4845 // Remap a block of memory.
4846 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4847                           char *addr, size_t bytes, bool read_only,
4848                           bool allow_exec) {
4849   // This OS does not allow existing memory maps to be remapped so we
4850   // have to unmap the memory before we remap it.
4851   if (!os::unmap_memory(addr, bytes)) {
4852     return NULL;
4853   }
4854 
4855   // There is a very small theoretical window between the unmap_memory()
4856   // call above and the map_memory() call below where a thread in native
4857   // code may be able to access an address that is no longer mapped.
4858 
4859   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4860                         read_only, allow_exec);
4861 }
4862 
4863 
4864 // Unmap a block of memory.
4865 // Returns true=success, otherwise false.
4866 
4867 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4868   MEMORY_BASIC_INFORMATION mem_info;
4869   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4870     if (PrintMiscellaneous && Verbose) {
4871       DWORD err = GetLastError();
4872       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4873     }
4874     return false;
4875   }
4876 
4877   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4878   // Instead, executable region was allocated using VirtualAlloc(). See
4879   // pd_map_memory() above.
4880   //
4881   // The following flags should match the 'exec_access' flages used for
4882   // VirtualProtect() in pd_map_memory().
4883   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4884       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4885     return pd_release_memory(addr, bytes);
4886   }
4887 
4888   BOOL result = UnmapViewOfFile(addr);
4889   if (result == 0) {
4890     if (PrintMiscellaneous && Verbose) {
4891       DWORD err = GetLastError();
4892       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4893     }
4894     return false;
4895   }
4896   return true;
4897 }
4898 
4899 void os::pause() {
4900   char filename[MAX_PATH];
4901   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4902     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4903   } else {
4904     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4905   }
4906 
4907   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4908   if (fd != -1) {
4909     struct stat buf;
4910     ::close(fd);
4911     while (::stat(filename, &buf) == 0) {
4912       Sleep(100);
4913     }
4914   } else {
4915     jio_fprintf(stderr,
4916                 "Could not open pause file '%s', continuing immediately.\n", filename);
4917   }
4918 }
4919 
4920 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4921   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4922 }
4923 
4924 // See the caveats for this class in os_windows.hpp
4925 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4926 // into this method and returns false. If no OS EXCEPTION was raised, returns
4927 // true.
4928 // The callback is supposed to provide the method that should be protected.
4929 //
4930 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4931   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4932   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4933          "crash_protection already set?");
4934 
4935   bool success = true;
4936   __try {
4937     WatcherThread::watcher_thread()->set_crash_protection(this);
4938     cb.call();
4939   } __except(EXCEPTION_EXECUTE_HANDLER) {
4940     // only for protection, nothing to do
4941     success = false;
4942   }
4943   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4944   return success;
4945 }
4946 
4947 // An Event wraps a win32 "CreateEvent" kernel handle.
4948 //
4949 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4950 //
4951 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4952 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4953 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4954 //     In addition, an unpark() operation might fetch the handle field, but the
4955 //     event could recycle between the fetch and the SetEvent() operation.
4956 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4957 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4958 //     on an stale but recycled handle would be harmless, but in practice this might
4959 //     confuse other non-Sun code, so it's not a viable approach.
4960 //
4961 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4962 //     with the Event.  The event handle is never closed.  This could be construed
4963 //     as handle leakage, but only up to the maximum # of threads that have been extant
4964 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4965 //     permit a process to have hundreds of thousands of open handles.
4966 //
4967 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4968 //     and release unused handles.
4969 //
4970 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4971 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4972 //
4973 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4974 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4975 //
4976 // We use (2).
4977 //
4978 // TODO-FIXME:
4979 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4980 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4981 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4982 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4983 //     into a single win32 CreateEvent() handle.
4984 //
4985 // Assumption:
4986 //    Only one parker can exist on an event, which is why we allocate
4987 //    them per-thread. Multiple unparkers can coexist.
4988 //
4989 // _Event transitions in park()
4990 //   -1 => -1 : illegal
4991 //    1 =>  0 : pass - return immediately
4992 //    0 => -1 : block; then set _Event to 0 before returning
4993 //
4994 // _Event transitions in unpark()
4995 //    0 => 1 : just return
4996 //    1 => 1 : just return
4997 //   -1 => either 0 or 1; must signal target thread
4998 //         That is, we can safely transition _Event from -1 to either
4999 //         0 or 1.
5000 //
5001 // _Event serves as a restricted-range semaphore.
5002 //   -1 : thread is blocked, i.e. there is a waiter
5003 //    0 : neutral: thread is running or ready,
5004 //        could have been signaled after a wait started
5005 //    1 : signaled - thread is running or ready
5006 //
5007 // Another possible encoding of _Event would be with
5008 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5009 //
5010 
5011 int os::PlatformEvent::park(jlong Millis) {
5012   // Transitions for _Event:
5013   //   -1 => -1 : illegal
5014   //    1 =>  0 : pass - return immediately
5015   //    0 => -1 : block; then set _Event to 0 before returning
5016 
5017   guarantee(_ParkHandle != NULL , "Invariant");
5018   guarantee(Millis > 0          , "Invariant");
5019 
5020   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5021   // the initial park() operation.
5022   // Consider: use atomic decrement instead of CAS-loop
5023 
5024   int v;
5025   for (;;) {
5026     v = _Event;
5027     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5028   }
5029   guarantee((v == 0) || (v == 1), "invariant");
5030   if (v != 0) return OS_OK;
5031 
5032   // Do this the hard way by blocking ...
5033   // TODO: consider a brief spin here, gated on the success of recent
5034   // spin attempts by this thread.
5035   //
5036   // We decompose long timeouts into series of shorter timed waits.
5037   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5038   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5039   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5040   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5041   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5042   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5043   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5044   // for the already waited time.  This policy does not admit any new outcomes.
5045   // In the future, however, we might want to track the accumulated wait time and
5046   // adjust Millis accordingly if we encounter a spurious wakeup.
5047 
5048   const int MAXTIMEOUT = 0x10000000;
5049   DWORD rv = WAIT_TIMEOUT;
5050   while (_Event < 0 && Millis > 0) {
5051     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5052     if (Millis > MAXTIMEOUT) {
5053       prd = MAXTIMEOUT;
5054     }
5055     rv = ::WaitForSingleObject(_ParkHandle, prd);
5056     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5057     if (rv == WAIT_TIMEOUT) {
5058       Millis -= prd;
5059     }
5060   }
5061   v = _Event;
5062   _Event = 0;
5063   // see comment at end of os::PlatformEvent::park() below:
5064   OrderAccess::fence();
5065   // If we encounter a nearly simultanous timeout expiry and unpark()
5066   // we return OS_OK indicating we awoke via unpark().
5067   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5068   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5069 }
5070 
5071 void os::PlatformEvent::park() {
5072   // Transitions for _Event:
5073   //   -1 => -1 : illegal
5074   //    1 =>  0 : pass - return immediately
5075   //    0 => -1 : block; then set _Event to 0 before returning
5076 
5077   guarantee(_ParkHandle != NULL, "Invariant");
5078   // Invariant: Only the thread associated with the Event/PlatformEvent
5079   // may call park().
5080   // Consider: use atomic decrement instead of CAS-loop
5081   int v;
5082   for (;;) {
5083     v = _Event;
5084     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5085   }
5086   guarantee((v == 0) || (v == 1), "invariant");
5087   if (v != 0) return;
5088 
5089   // Do this the hard way by blocking ...
5090   // TODO: consider a brief spin here, gated on the success of recent
5091   // spin attempts by this thread.
5092   while (_Event < 0) {
5093     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5094     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5095   }
5096 
5097   // Usually we'll find _Event == 0 at this point, but as
5098   // an optional optimization we clear it, just in case can
5099   // multiple unpark() operations drove _Event up to 1.
5100   _Event = 0;
5101   OrderAccess::fence();
5102   guarantee(_Event >= 0, "invariant");
5103 }
5104 
5105 void os::PlatformEvent::unpark() {
5106   guarantee(_ParkHandle != NULL, "Invariant");
5107 
5108   // Transitions for _Event:
5109   //    0 => 1 : just return
5110   //    1 => 1 : just return
5111   //   -1 => either 0 or 1; must signal target thread
5112   //         That is, we can safely transition _Event from -1 to either
5113   //         0 or 1.
5114   // See also: "Semaphores in Plan 9" by Mullender & Cox
5115   //
5116   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5117   // that it will take two back-to-back park() calls for the owning
5118   // thread to block. This has the benefit of forcing a spurious return
5119   // from the first park() call after an unpark() call which will help
5120   // shake out uses of park() and unpark() without condition variables.
5121 
5122   if (Atomic::xchg(1, &_Event) >= 0) return;
5123 
5124   ::SetEvent(_ParkHandle);
5125 }
5126 
5127 
5128 // JSR166
5129 // -------------------------------------------------------
5130 
5131 // The Windows implementation of Park is very straightforward: Basic
5132 // operations on Win32 Events turn out to have the right semantics to
5133 // use them directly. We opportunistically resuse the event inherited
5134 // from Monitor.
5135 
5136 void Parker::park(bool isAbsolute, jlong time) {
5137   guarantee(_ParkEvent != NULL, "invariant");
5138   // First, demultiplex/decode time arguments
5139   if (time < 0) { // don't wait
5140     return;
5141   } else if (time == 0 && !isAbsolute) {
5142     time = INFINITE;
5143   } else if (isAbsolute) {
5144     time -= os::javaTimeMillis(); // convert to relative time
5145     if (time <= 0) {  // already elapsed
5146       return;
5147     }
5148   } else { // relative
5149     time /= 1000000;  // Must coarsen from nanos to millis
5150     if (time == 0) {  // Wait for the minimal time unit if zero
5151       time = 1;
5152     }
5153   }
5154 
5155   JavaThread* thread = (JavaThread*)(Thread::current());
5156   assert(thread->is_Java_thread(), "Must be JavaThread");
5157   JavaThread *jt = (JavaThread *)thread;
5158 
5159   // Don't wait if interrupted or already triggered
5160   if (Thread::is_interrupted(thread, false) ||
5161       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5162     ResetEvent(_ParkEvent);
5163     return;
5164   } else {
5165     ThreadBlockInVM tbivm(jt);
5166     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5167     jt->set_suspend_equivalent();
5168 
5169     WaitForSingleObject(_ParkEvent, time);
5170     ResetEvent(_ParkEvent);
5171 
5172     // If externally suspended while waiting, re-suspend
5173     if (jt->handle_special_suspend_equivalent_condition()) {
5174       jt->java_suspend_self();
5175     }
5176   }
5177 }
5178 
5179 void Parker::unpark() {
5180   guarantee(_ParkEvent != NULL, "invariant");
5181   SetEvent(_ParkEvent);
5182 }
5183 
5184 // Run the specified command in a separate process. Return its exit value,
5185 // or -1 on failure (e.g. can't create a new process).
5186 int os::fork_and_exec(char* cmd) {
5187   STARTUPINFO si;
5188   PROCESS_INFORMATION pi;
5189 
5190   memset(&si, 0, sizeof(si));
5191   si.cb = sizeof(si);
5192   memset(&pi, 0, sizeof(pi));
5193   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5194                             cmd,    // command line
5195                             NULL,   // process security attribute
5196                             NULL,   // thread security attribute
5197                             TRUE,   // inherits system handles
5198                             0,      // no creation flags
5199                             NULL,   // use parent's environment block
5200                             NULL,   // use parent's starting directory
5201                             &si,    // (in) startup information
5202                             &pi);   // (out) process information
5203 
5204   if (rslt) {
5205     // Wait until child process exits.
5206     WaitForSingleObject(pi.hProcess, INFINITE);
5207 
5208     DWORD exit_code;
5209     GetExitCodeProcess(pi.hProcess, &exit_code);
5210 
5211     // Close process and thread handles.
5212     CloseHandle(pi.hProcess);
5213     CloseHandle(pi.hThread);
5214 
5215     return (int)exit_code;
5216   } else {
5217     return -1;
5218   }
5219 }
5220 
5221 //--------------------------------------------------------------------------------------------------
5222 // Non-product code
5223 
5224 static int mallocDebugIntervalCounter = 0;
5225 static int mallocDebugCounter = 0;
5226 bool os::check_heap(bool force) {
5227   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5228   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5229     // Note: HeapValidate executes two hardware breakpoints when it finds something
5230     // wrong; at these points, eax contains the address of the offending block (I think).
5231     // To get to the exlicit error message(s) below, just continue twice.
5232     HANDLE heap = GetProcessHeap();
5233 
5234     // If we fail to lock the heap, then gflags.exe has been used
5235     // or some other special heap flag has been set that prevents
5236     // locking. We don't try to walk a heap we can't lock.
5237     if (HeapLock(heap) != 0) {
5238       PROCESS_HEAP_ENTRY phe;
5239       phe.lpData = NULL;
5240       while (HeapWalk(heap, &phe) != 0) {
5241         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5242             !HeapValidate(heap, 0, phe.lpData)) {
5243           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5244           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5245           fatal("corrupted C heap");
5246         }
5247       }
5248       DWORD err = GetLastError();
5249       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5250         fatal("heap walk aborted with error %d", err);
5251       }
5252       HeapUnlock(heap);
5253     }
5254     mallocDebugIntervalCounter = 0;
5255   }
5256   return true;
5257 }
5258 
5259 
5260 bool os::find(address addr, outputStream* st) {
5261   // Nothing yet
5262   return false;
5263 }
5264 
5265 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5266   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5267 
5268   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5269     JavaThread* thread = JavaThread::current();
5270     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5271     address addr = (address) exceptionRecord->ExceptionInformation[1];
5272 
5273     if (os::is_memory_serialize_page(thread, addr)) {
5274       return EXCEPTION_CONTINUE_EXECUTION;
5275     }
5276   }
5277 
5278   return EXCEPTION_CONTINUE_SEARCH;
5279 }
5280 
5281 // We don't build a headless jre for Windows
5282 bool os::is_headless_jre() { return false; }
5283 
5284 static jint initSock() {
5285   WSADATA wsadata;
5286 
5287   if (!os::WinSock2Dll::WinSock2Available()) {
5288     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5289                 ::GetLastError());
5290     return JNI_ERR;
5291   }
5292 
5293   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5294     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5295                 ::GetLastError());
5296     return JNI_ERR;
5297   }
5298   return JNI_OK;
5299 }
5300 
5301 struct hostent* os::get_host_by_name(char* name) {
5302   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5303 }
5304 
5305 int os::socket_close(int fd) {
5306   return ::closesocket(fd);
5307 }
5308 
5309 int os::socket(int domain, int type, int protocol) {
5310   return ::socket(domain, type, protocol);
5311 }
5312 
5313 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5314   return ::connect(fd, him, len);
5315 }
5316 
5317 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5318   return ::recv(fd, buf, (int)nBytes, flags);
5319 }
5320 
5321 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5322   return ::send(fd, buf, (int)nBytes, flags);
5323 }
5324 
5325 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5326   return ::send(fd, buf, (int)nBytes, flags);
5327 }
5328 
5329 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5330 #if defined(IA32)
5331   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5332 #elif defined (AMD64)
5333   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5334 #endif
5335 
5336 // returns true if thread could be suspended,
5337 // false otherwise
5338 static bool do_suspend(HANDLE* h) {
5339   if (h != NULL) {
5340     if (SuspendThread(*h) != ~0) {
5341       return true;
5342     }
5343   }
5344   return false;
5345 }
5346 
5347 // resume the thread
5348 // calling resume on an active thread is a no-op
5349 static void do_resume(HANDLE* h) {
5350   if (h != NULL) {
5351     ResumeThread(*h);
5352   }
5353 }
5354 
5355 // retrieve a suspend/resume context capable handle
5356 // from the tid. Caller validates handle return value.
5357 void get_thread_handle_for_extended_context(HANDLE* h,
5358                                             OSThread::thread_id_t tid) {
5359   if (h != NULL) {
5360     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5361   }
5362 }
5363 
5364 // Thread sampling implementation
5365 //
5366 void os::SuspendedThreadTask::internal_do_task() {
5367   CONTEXT    ctxt;
5368   HANDLE     h = NULL;
5369 
5370   // get context capable handle for thread
5371   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5372 
5373   // sanity
5374   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5375     return;
5376   }
5377 
5378   // suspend the thread
5379   if (do_suspend(&h)) {
5380     ctxt.ContextFlags = sampling_context_flags;
5381     // get thread context
5382     GetThreadContext(h, &ctxt);
5383     SuspendedThreadTaskContext context(_thread, &ctxt);
5384     // pass context to Thread Sampling impl
5385     do_task(context);
5386     // resume thread
5387     do_resume(&h);
5388   }
5389 
5390   // close handle
5391   CloseHandle(h);
5392 }
5393 
5394 
5395 // Kernel32 API
5396 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5397 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5398 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5399 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5400 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5401 
5402 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5403 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5404 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5405 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5406 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5407 
5408 
5409 BOOL                        os::Kernel32Dll::initialized = FALSE;
5410 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5411   assert(initialized && _GetLargePageMinimum != NULL,
5412          "GetLargePageMinimumAvailable() not yet called");
5413   return _GetLargePageMinimum();
5414 }
5415 
5416 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5417   if (!initialized) {
5418     initialize();
5419   }
5420   return _GetLargePageMinimum != NULL;
5421 }
5422 
5423 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5424   if (!initialized) {
5425     initialize();
5426   }
5427   return _VirtualAllocExNuma != NULL;
5428 }
5429 
5430 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5431                                            SIZE_T bytes, DWORD flags,
5432                                            DWORD prot, DWORD node) {
5433   assert(initialized && _VirtualAllocExNuma != NULL,
5434          "NUMACallsAvailable() not yet called");
5435 
5436   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5437 }
5438 
5439 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5440   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5441          "NUMACallsAvailable() not yet called");
5442 
5443   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5444 }
5445 
5446 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5447                                                PULONGLONG proc_mask) {
5448   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5449          "NUMACallsAvailable() not yet called");
5450 
5451   return _GetNumaNodeProcessorMask(node, proc_mask);
5452 }
5453 
5454 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5455                                                  ULONG FrameToCapture,
5456                                                  PVOID* BackTrace,
5457                                                  PULONG BackTraceHash) {
5458   if (!initialized) {
5459     initialize();
5460   }
5461 
5462   if (_RtlCaptureStackBackTrace != NULL) {
5463     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5464                                      BackTrace, BackTraceHash);
5465   } else {
5466     return 0;
5467   }
5468 }
5469 
5470 void os::Kernel32Dll::initializeCommon() {
5471   if (!initialized) {
5472     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5473     assert(handle != NULL, "Just check");
5474     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5475     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5476     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5477     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5478     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5479     initialized = TRUE;
5480   }
5481 }
5482 
5483 
5484 
5485 #ifndef JDK6_OR_EARLIER
5486 
5487 void os::Kernel32Dll::initialize() {
5488   initializeCommon();
5489 }
5490 
5491 
5492 // Kernel32 API
5493 inline BOOL os::Kernel32Dll::SwitchToThread() {
5494   return ::SwitchToThread();
5495 }
5496 
5497 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5498   return true;
5499 }
5500 
5501 // Help tools
5502 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5503   return true;
5504 }
5505 
5506 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5507                                                         DWORD th32ProcessId) {
5508   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5509 }
5510 
5511 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5512                                            LPMODULEENTRY32 lpme) {
5513   return ::Module32First(hSnapshot, lpme);
5514 }
5515 
5516 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5517                                           LPMODULEENTRY32 lpme) {
5518   return ::Module32Next(hSnapshot, lpme);
5519 }
5520 
5521 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5522   ::GetNativeSystemInfo(lpSystemInfo);
5523 }
5524 
5525 // PSAPI API
5526 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5527                                              HMODULE *lpModule, DWORD cb,
5528                                              LPDWORD lpcbNeeded) {
5529   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5530 }
5531 
5532 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5533                                                HMODULE hModule,
5534                                                LPTSTR lpFilename,
5535                                                DWORD nSize) {
5536   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5537 }
5538 
5539 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5540                                                HMODULE hModule,
5541                                                LPMODULEINFO lpmodinfo,
5542                                                DWORD cb) {
5543   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5544 }
5545 
5546 inline BOOL os::PSApiDll::PSApiAvailable() {
5547   return true;
5548 }
5549 
5550 
5551 // WinSock2 API
5552 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5553                                         LPWSADATA lpWSAData) {
5554   return ::WSAStartup(wVersionRequested, lpWSAData);
5555 }
5556 
5557 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5558   return ::gethostbyname(name);
5559 }
5560 
5561 inline BOOL os::WinSock2Dll::WinSock2Available() {
5562   return true;
5563 }
5564 
5565 // Advapi API
5566 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5567                                                    BOOL DisableAllPrivileges,
5568                                                    PTOKEN_PRIVILEGES NewState,
5569                                                    DWORD BufferLength,
5570                                                    PTOKEN_PRIVILEGES PreviousState,
5571                                                    PDWORD ReturnLength) {
5572   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5573                                  BufferLength, PreviousState, ReturnLength);
5574 }
5575 
5576 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5577                                               DWORD DesiredAccess,
5578                                               PHANDLE TokenHandle) {
5579   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5580 }
5581 
5582 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5583                                                   LPCTSTR lpName,
5584                                                   PLUID lpLuid) {
5585   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5586 }
5587 
5588 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5589   return true;
5590 }
5591 
5592 void* os::get_default_process_handle() {
5593   return (void*)GetModuleHandle(NULL);
5594 }
5595 
5596 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5597 // which is used to find statically linked in agents.
5598 // Additionally for windows, takes into account __stdcall names.
5599 // Parameters:
5600 //            sym_name: Symbol in library we are looking for
5601 //            lib_name: Name of library to look in, NULL for shared libs.
5602 //            is_absolute_path == true if lib_name is absolute path to agent
5603 //                                     such as "C:/a/b/L.dll"
5604 //            == false if only the base name of the library is passed in
5605 //               such as "L"
5606 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5607                                     bool is_absolute_path) {
5608   char *agent_entry_name;
5609   size_t len;
5610   size_t name_len;
5611   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5612   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5613   const char *start;
5614 
5615   if (lib_name != NULL) {
5616     len = name_len = strlen(lib_name);
5617     if (is_absolute_path) {
5618       // Need to strip path, prefix and suffix
5619       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5620         lib_name = ++start;
5621       } else {
5622         // Need to check for drive prefix
5623         if ((start = strchr(lib_name, ':')) != NULL) {
5624           lib_name = ++start;
5625         }
5626       }
5627       if (len <= (prefix_len + suffix_len)) {
5628         return NULL;
5629       }
5630       lib_name += prefix_len;
5631       name_len = strlen(lib_name) - suffix_len;
5632     }
5633   }
5634   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5635   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5636   if (agent_entry_name == NULL) {
5637     return NULL;
5638   }
5639   if (lib_name != NULL) {
5640     const char *p = strrchr(sym_name, '@');
5641     if (p != NULL && p != sym_name) {
5642       // sym_name == _Agent_OnLoad@XX
5643       strncpy(agent_entry_name, sym_name, (p - sym_name));
5644       agent_entry_name[(p-sym_name)] = '\0';
5645       // agent_entry_name == _Agent_OnLoad
5646       strcat(agent_entry_name, "_");
5647       strncat(agent_entry_name, lib_name, name_len);
5648       strcat(agent_entry_name, p);
5649       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5650     } else {
5651       strcpy(agent_entry_name, sym_name);
5652       strcat(agent_entry_name, "_");
5653       strncat(agent_entry_name, lib_name, name_len);
5654     }
5655   } else {
5656     strcpy(agent_entry_name, sym_name);
5657   }
5658   return agent_entry_name;
5659 }
5660 
5661 #else
5662 // Kernel32 API
5663 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5664 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5665 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5666 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5667 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5668 
5669 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5670 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5671 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5672 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5673 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5674 
5675 void os::Kernel32Dll::initialize() {
5676   if (!initialized) {
5677     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5678     assert(handle != NULL, "Just check");
5679 
5680     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5681     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5682       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5683     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5684     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5685     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5686     initializeCommon();  // resolve the functions that always need resolving
5687 
5688     initialized = TRUE;
5689   }
5690 }
5691 
5692 BOOL os::Kernel32Dll::SwitchToThread() {
5693   assert(initialized && _SwitchToThread != NULL,
5694          "SwitchToThreadAvailable() not yet called");
5695   return _SwitchToThread();
5696 }
5697 
5698 
5699 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5700   if (!initialized) {
5701     initialize();
5702   }
5703   return _SwitchToThread != NULL;
5704 }
5705 
5706 // Help tools
5707 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5708   if (!initialized) {
5709     initialize();
5710   }
5711   return _CreateToolhelp32Snapshot != NULL &&
5712          _Module32First != NULL &&
5713          _Module32Next != NULL;
5714 }
5715 
5716 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5717                                                  DWORD th32ProcessId) {
5718   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5719          "HelpToolsAvailable() not yet called");
5720 
5721   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5722 }
5723 
5724 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5725   assert(initialized && _Module32First != NULL,
5726          "HelpToolsAvailable() not yet called");
5727 
5728   return _Module32First(hSnapshot, lpme);
5729 }
5730 
5731 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5732                                           LPMODULEENTRY32 lpme) {
5733   assert(initialized && _Module32Next != NULL,
5734          "HelpToolsAvailable() not yet called");
5735 
5736   return _Module32Next(hSnapshot, lpme);
5737 }
5738 
5739 
5740 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5741   if (!initialized) {
5742     initialize();
5743   }
5744   return _GetNativeSystemInfo != NULL;
5745 }
5746 
5747 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5748   assert(initialized && _GetNativeSystemInfo != NULL,
5749          "GetNativeSystemInfoAvailable() not yet called");
5750 
5751   _GetNativeSystemInfo(lpSystemInfo);
5752 }
5753 
5754 // PSAPI API
5755 
5756 
5757 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5758 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5759 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5760 
5761 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5762 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5763 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5764 BOOL                    os::PSApiDll::initialized = FALSE;
5765 
5766 void os::PSApiDll::initialize() {
5767   if (!initialized) {
5768     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5769     if (handle != NULL) {
5770       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5771                                                                     "EnumProcessModules");
5772       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5773                                                                       "GetModuleFileNameExA");
5774       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5775                                                                         "GetModuleInformation");
5776     }
5777     initialized = TRUE;
5778   }
5779 }
5780 
5781 
5782 
5783 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5784                                       DWORD cb, LPDWORD lpcbNeeded) {
5785   assert(initialized && _EnumProcessModules != NULL,
5786          "PSApiAvailable() not yet called");
5787   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5788 }
5789 
5790 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5791                                         LPTSTR lpFilename, DWORD nSize) {
5792   assert(initialized && _GetModuleFileNameEx != NULL,
5793          "PSApiAvailable() not yet called");
5794   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5795 }
5796 
5797 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5798                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5799   assert(initialized && _GetModuleInformation != NULL,
5800          "PSApiAvailable() not yet called");
5801   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5802 }
5803 
5804 BOOL os::PSApiDll::PSApiAvailable() {
5805   if (!initialized) {
5806     initialize();
5807   }
5808   return _EnumProcessModules != NULL &&
5809     _GetModuleFileNameEx != NULL &&
5810     _GetModuleInformation != NULL;
5811 }
5812 
5813 
5814 // WinSock2 API
5815 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5816 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5817 
5818 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5819 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5820 BOOL             os::WinSock2Dll::initialized = FALSE;
5821 
5822 void os::WinSock2Dll::initialize() {
5823   if (!initialized) {
5824     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5825     if (handle != NULL) {
5826       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5827       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5828     }
5829     initialized = TRUE;
5830   }
5831 }
5832 
5833 
5834 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5835   assert(initialized && _WSAStartup != NULL,
5836          "WinSock2Available() not yet called");
5837   return _WSAStartup(wVersionRequested, lpWSAData);
5838 }
5839 
5840 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5841   assert(initialized && _gethostbyname != NULL,
5842          "WinSock2Available() not yet called");
5843   return _gethostbyname(name);
5844 }
5845 
5846 BOOL os::WinSock2Dll::WinSock2Available() {
5847   if (!initialized) {
5848     initialize();
5849   }
5850   return _WSAStartup != NULL &&
5851     _gethostbyname != NULL;
5852 }
5853 
5854 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5855 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5856 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5857 
5858 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5859 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5860 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5861 BOOL                     os::Advapi32Dll::initialized = FALSE;
5862 
5863 void os::Advapi32Dll::initialize() {
5864   if (!initialized) {
5865     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5866     if (handle != NULL) {
5867       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5868                                                                           "AdjustTokenPrivileges");
5869       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5870                                                                 "OpenProcessToken");
5871       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5872                                                                         "LookupPrivilegeValueA");
5873     }
5874     initialized = TRUE;
5875   }
5876 }
5877 
5878 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5879                                             BOOL DisableAllPrivileges,
5880                                             PTOKEN_PRIVILEGES NewState,
5881                                             DWORD BufferLength,
5882                                             PTOKEN_PRIVILEGES PreviousState,
5883                                             PDWORD ReturnLength) {
5884   assert(initialized && _AdjustTokenPrivileges != NULL,
5885          "AdvapiAvailable() not yet called");
5886   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5887                                 BufferLength, PreviousState, ReturnLength);
5888 }
5889 
5890 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5891                                        DWORD DesiredAccess,
5892                                        PHANDLE TokenHandle) {
5893   assert(initialized && _OpenProcessToken != NULL,
5894          "AdvapiAvailable() not yet called");
5895   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5896 }
5897 
5898 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5899                                            LPCTSTR lpName, PLUID lpLuid) {
5900   assert(initialized && _LookupPrivilegeValue != NULL,
5901          "AdvapiAvailable() not yet called");
5902   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5903 }
5904 
5905 BOOL os::Advapi32Dll::AdvapiAvailable() {
5906   if (!initialized) {
5907     initialize();
5908   }
5909   return _AdjustTokenPrivileges != NULL &&
5910     _OpenProcessToken != NULL &&
5911     _LookupPrivilegeValue != NULL;
5912 }
5913 
5914 #endif
5915 
5916 #ifndef PRODUCT
5917 
5918 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5919 // contiguous memory block at a particular address.
5920 // The test first tries to find a good approximate address to allocate at by using the same
5921 // method to allocate some memory at any address. The test then tries to allocate memory in
5922 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5923 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5924 // the previously allocated memory is available for allocation. The only actual failure
5925 // that is reported is when the test tries to allocate at a particular location but gets a
5926 // different valid one. A NULL return value at this point is not considered an error but may
5927 // be legitimate.
5928 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5929 void TestReserveMemorySpecial_test() {
5930   if (!UseLargePages) {
5931     if (VerboseInternalVMTests) {
5932       gclog_or_tty->print("Skipping test because large pages are disabled");
5933     }
5934     return;
5935   }
5936   // save current value of globals
5937   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5938   bool old_use_numa_interleaving = UseNUMAInterleaving;
5939 
5940   // set globals to make sure we hit the correct code path
5941   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5942 
5943   // do an allocation at an address selected by the OS to get a good one.
5944   const size_t large_allocation_size = os::large_page_size() * 4;
5945   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5946   if (result == NULL) {
5947     if (VerboseInternalVMTests) {
5948       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5949                           large_allocation_size);
5950     }
5951   } else {
5952     os::release_memory_special(result, large_allocation_size);
5953 
5954     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5955     // we managed to get it once.
5956     const size_t expected_allocation_size = os::large_page_size();
5957     char* expected_location = result + os::large_page_size();
5958     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5959     if (actual_location == NULL) {
5960       if (VerboseInternalVMTests) {
5961         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5962                             expected_location, large_allocation_size);
5963       }
5964     } else {
5965       // release memory
5966       os::release_memory_special(actual_location, expected_allocation_size);
5967       // only now check, after releasing any memory to avoid any leaks.
5968       assert(actual_location == expected_location,
5969              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5970              expected_location, expected_allocation_size, actual_location);
5971     }
5972   }
5973 
5974   // restore globals
5975   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5976   UseNUMAInterleaving = old_use_numa_interleaving;
5977 }
5978 #endif // PRODUCT
5979 
5980 // Fast current thread access
5981 
5982 int os::win32::_thread_ptr_offset = 0;
5983 
5984 static void call_wrapper_dummy() {}
5985 
5986 // We need to call the os_exception_wrapper once so that it sets
5987 // up the offset from FS of the thread pointer.
5988 void os::win32::initialize_thread_ptr_offset() {
5989       os::os_exception_wrapper( (java_call_t)call_wrapper_dummy,
5990                                 NULL, NULL, NULL, NULL);
5991 }