1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/logConfiguration.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/instanceKlass.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvm_misc.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "prims/privilegedStack.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/commandLineFlagConstraintList.hpp"
  58 #include "runtime/commandLineFlagRangeList.hpp"
  59 #include "runtime/deoptimization.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/globals.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/jniPeriodicChecker.hpp"
  68 #include "runtime/memprofiler.hpp"
  69 #include "runtime/mutexLocker.hpp"
  70 #include "runtime/objectMonitor.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/osThread.hpp"
  73 #include "runtime/safepoint.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/statSampler.hpp"
  76 #include "runtime/stubRoutines.hpp"
  77 #include "runtime/sweeper.hpp"
  78 #include "runtime/task.hpp"
  79 #include "runtime/thread.inline.hpp"
  80 #include "runtime/threadCritical.hpp"
  81 #include "runtime/vframe.hpp"
  82 #include "runtime/vframeArray.hpp"
  83 #include "runtime/vframe_hp.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "runtime/vm_operations.hpp"
  86 #include "runtime/vm_version.hpp"
  87 #include "services/attachListener.hpp"
  88 #include "services/management.hpp"
  89 #include "services/memTracker.hpp"
  90 #include "services/threadService.hpp"
  91 #include "trace/traceMacros.hpp"
  92 #include "trace/tracing.hpp"
  93 #include "utilities/defaultStream.hpp"
  94 #include "utilities/dtrace.hpp"
  95 #include "utilities/events.hpp"
  96 #include "utilities/macros.hpp"
  97 #include "utilities/preserveException.hpp"
  98 #if INCLUDE_ALL_GCS
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #if INCLUDE_JVMCI
 104 #include "jvmci/jvmciCompiler.hpp"
 105 #include "jvmci/jvmciRuntime.hpp"
 106 #endif
 107 #ifdef COMPILER1
 108 #include "c1/c1_Compiler.hpp"
 109 #endif
 110 #ifdef COMPILER2
 111 #include "opto/c2compiler.hpp"
 112 #include "opto/idealGraphPrinter.hpp"
 113 #endif
 114 #if INCLUDE_RTM_OPT
 115 #include "runtime/rtmLocking.hpp"
 116 #endif
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 123   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 124 
 125   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 126     {                                                                      \
 127       ResourceMark rm(this);                                               \
 128       int len = 0;                                                         \
 129       const char* name = (javathread)->get_thread_name();                  \
 130       len = strlen(name);                                                  \
 131       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 132         (char *) name, len,                                                \
 133         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 134         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 135         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 136     }
 137 
 138 #else //  ndef DTRACE_ENABLED
 139 
 140   #define DTRACE_THREAD_PROBE(probe, javathread)
 141 
 142 #endif // ndef DTRACE_ENABLED
 143 
 144 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 145 // Current thread is maintained as a thread-local variable
 146 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 147 #endif
 148 
 149 // Class hierarchy
 150 // - Thread
 151 //   - VMThread
 152 //   - WatcherThread
 153 //   - ConcurrentMarkSweepThread
 154 //   - JavaThread
 155 //     - CompilerThread
 156 
 157 // ======= Thread ========
 158 // Support for forcing alignment of thread objects for biased locking
 159 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 160   if (UseBiasedLocking) {
 161     const int alignment = markOopDesc::biased_lock_alignment;
 162     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 163     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 164                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 165                                                          AllocFailStrategy::RETURN_NULL);
 166     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 167     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 168            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 169            "JavaThread alignment code overflowed allocated storage");
 170     if (TraceBiasedLocking) {
 171       if (aligned_addr != real_malloc_addr) {
 172         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 173                       p2i(real_malloc_addr), p2i(aligned_addr));
 174       }
 175     }
 176     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 177     return aligned_addr;
 178   } else {
 179     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 180                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 181   }
 182 }
 183 
 184 void Thread::operator delete(void* p) {
 185   if (UseBiasedLocking) {
 186     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 187     FreeHeap(real_malloc_addr);
 188   } else {
 189     FreeHeap(p);
 190   }
 191 }
 192 
 193 
 194 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 195 // JavaThread
 196 
 197 
 198 Thread::Thread() {
 199   // stack and get_thread
 200   set_stack_base(NULL);
 201   set_stack_size(0);
 202   set_self_raw_id(0);
 203   set_lgrp_id(-1);
 204   DEBUG_ONLY(clear_suspendible_thread();)
 205 
 206   // allocated data structures
 207   set_osthread(NULL);
 208   set_resource_area(new (mtThread)ResourceArea());
 209   DEBUG_ONLY(_current_resource_mark = NULL;)
 210   set_handle_area(new (mtThread) HandleArea(NULL));
 211   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 212   set_active_handles(NULL);
 213   set_free_handle_block(NULL);
 214   set_last_handle_mark(NULL);
 215 
 216   // This initial value ==> never claimed.
 217   _oops_do_parity = 0;
 218 
 219   // the handle mark links itself to last_handle_mark
 220   new HandleMark(this);
 221 
 222   // plain initialization
 223   debug_only(_owned_locks = NULL;)
 224   debug_only(_allow_allocation_count = 0;)
 225   NOT_PRODUCT(_allow_safepoint_count = 0;)
 226   NOT_PRODUCT(_skip_gcalot = false;)
 227   _jvmti_env_iteration_count = 0;
 228   set_allocated_bytes(0);
 229   _vm_operation_started_count = 0;
 230   _vm_operation_completed_count = 0;
 231   _current_pending_monitor = NULL;
 232   _current_pending_monitor_is_from_java = true;
 233   _current_waiting_monitor = NULL;
 234   _num_nested_signal = 0;
 235   omFreeList = NULL;
 236   omFreeCount = 0;
 237   omFreeProvision = 32;
 238   omInUseList = NULL;
 239   omInUseCount = 0;
 240 
 241 #ifdef ASSERT
 242   _visited_for_critical_count = false;
 243 #endif
 244 
 245   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 246                          Monitor::_safepoint_check_sometimes);
 247   _suspend_flags = 0;
 248 
 249   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 250   _hashStateX = os::random();
 251   _hashStateY = 842502087;
 252   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 253   _hashStateW = 273326509;
 254 
 255   _OnTrap   = 0;
 256   _schedctl = NULL;
 257   _Stalled  = 0;
 258   _TypeTag  = 0x2BAD;
 259 
 260   // Many of the following fields are effectively final - immutable
 261   // Note that nascent threads can't use the Native Monitor-Mutex
 262   // construct until the _MutexEvent is initialized ...
 263   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 264   // we might instead use a stack of ParkEvents that we could provision on-demand.
 265   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 266   // and ::Release()
 267   _ParkEvent   = ParkEvent::Allocate(this);
 268   _SleepEvent  = ParkEvent::Allocate(this);
 269   _MutexEvent  = ParkEvent::Allocate(this);
 270   _MuxEvent    = ParkEvent::Allocate(this);
 271 
 272 #ifdef CHECK_UNHANDLED_OOPS
 273   if (CheckUnhandledOops) {
 274     _unhandled_oops = new UnhandledOops(this);
 275   }
 276 #endif // CHECK_UNHANDLED_OOPS
 277 #ifdef ASSERT
 278   if (UseBiasedLocking) {
 279     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 280     assert(this == _real_malloc_address ||
 281            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 282            "bug in forced alignment of thread objects");
 283   }
 284 #endif // ASSERT
 285 }
 286 
 287 void Thread::initialize_thread_current() {
 288 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 289   assert(_thr_current == NULL, "Thread::current already initialized");
 290   _thr_current = this;
 291 #endif
 292   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 293   ThreadLocalStorage::set_thread(this);
 294   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 295 }
 296 
 297 void Thread::clear_thread_current() {
 298 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 299   _thr_current = NULL;
 300 #endif
 301   ThreadLocalStorage::set_thread(NULL);
 302 }
 303 
 304 void Thread::record_stack_base_and_size() {
 305   set_stack_base(os::current_stack_base());
 306   set_stack_size(os::current_stack_size());
 307   if (is_Java_thread()) {
 308     ((JavaThread*) this)->set_stack_overflow_limit();
 309   }
 310   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 311   // in initialize_thread(). Without the adjustment, stack size is
 312   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 313   // So far, only Solaris has real implementation of initialize_thread().
 314   //
 315   // set up any platform-specific state.
 316   os::initialize_thread(this);
 317 
 318 #if INCLUDE_NMT
 319   // record thread's native stack, stack grows downward
 320   address stack_low_addr = stack_base() - stack_size();
 321   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 322 #endif // INCLUDE_NMT
 323 }
 324 
 325 
 326 Thread::~Thread() {
 327   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 328   ObjectSynchronizer::omFlush(this);
 329 
 330   EVENT_THREAD_DESTRUCT(this);
 331 
 332   // stack_base can be NULL if the thread is never started or exited before
 333   // record_stack_base_and_size called. Although, we would like to ensure
 334   // that all started threads do call record_stack_base_and_size(), there is
 335   // not proper way to enforce that.
 336 #if INCLUDE_NMT
 337   if (_stack_base != NULL) {
 338     address low_stack_addr = stack_base() - stack_size();
 339     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 340 #ifdef ASSERT
 341     set_stack_base(NULL);
 342 #endif
 343   }
 344 #endif // INCLUDE_NMT
 345 
 346   // deallocate data structures
 347   delete resource_area();
 348   // since the handle marks are using the handle area, we have to deallocated the root
 349   // handle mark before deallocating the thread's handle area,
 350   assert(last_handle_mark() != NULL, "check we have an element");
 351   delete last_handle_mark();
 352   assert(last_handle_mark() == NULL, "check we have reached the end");
 353 
 354   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 355   // We NULL out the fields for good hygiene.
 356   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 357   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 358   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 359   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 360 
 361   delete handle_area();
 362   delete metadata_handles();
 363 
 364   // osthread() can be NULL, if creation of thread failed.
 365   if (osthread() != NULL) os::free_thread(osthread());
 366 
 367   delete _SR_lock;
 368 
 369   // clear Thread::current if thread is deleting itself.
 370   // Needed to ensure JNI correctly detects non-attached threads.
 371   if (this == Thread::current()) {
 372     clear_thread_current();
 373   }
 374 
 375   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 376 }
 377 
 378 // NOTE: dummy function for assertion purpose.
 379 void Thread::run() {
 380   ShouldNotReachHere();
 381 }
 382 
 383 #ifdef ASSERT
 384 // Private method to check for dangling thread pointer
 385 void check_for_dangling_thread_pointer(Thread *thread) {
 386   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 387          "possibility of dangling Thread pointer");
 388 }
 389 #endif
 390 
 391 ThreadPriority Thread::get_priority(const Thread* const thread) {
 392   ThreadPriority priority;
 393   // Can return an error!
 394   (void)os::get_priority(thread, priority);
 395   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 396   return priority;
 397 }
 398 
 399 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 400   debug_only(check_for_dangling_thread_pointer(thread);)
 401   // Can return an error!
 402   (void)os::set_priority(thread, priority);
 403 }
 404 
 405 
 406 void Thread::start(Thread* thread) {
 407   // Start is different from resume in that its safety is guaranteed by context or
 408   // being called from a Java method synchronized on the Thread object.
 409   if (!DisableStartThread) {
 410     if (thread->is_Java_thread()) {
 411       // Initialize the thread state to RUNNABLE before starting this thread.
 412       // Can not set it after the thread started because we do not know the
 413       // exact thread state at that time. It could be in MONITOR_WAIT or
 414       // in SLEEPING or some other state.
 415       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 416                                           java_lang_Thread::RUNNABLE);
 417     }
 418     os::start_thread(thread);
 419   }
 420 }
 421 
 422 // Enqueue a VM_Operation to do the job for us - sometime later
 423 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 424   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 425   VMThread::execute(vm_stop);
 426 }
 427 
 428 
 429 // Check if an external suspend request has completed (or has been
 430 // cancelled). Returns true if the thread is externally suspended and
 431 // false otherwise.
 432 //
 433 // The bits parameter returns information about the code path through
 434 // the routine. Useful for debugging:
 435 //
 436 // set in is_ext_suspend_completed():
 437 // 0x00000001 - routine was entered
 438 // 0x00000010 - routine return false at end
 439 // 0x00000100 - thread exited (return false)
 440 // 0x00000200 - suspend request cancelled (return false)
 441 // 0x00000400 - thread suspended (return true)
 442 // 0x00001000 - thread is in a suspend equivalent state (return true)
 443 // 0x00002000 - thread is native and walkable (return true)
 444 // 0x00004000 - thread is native_trans and walkable (needed retry)
 445 //
 446 // set in wait_for_ext_suspend_completion():
 447 // 0x00010000 - routine was entered
 448 // 0x00020000 - suspend request cancelled before loop (return false)
 449 // 0x00040000 - thread suspended before loop (return true)
 450 // 0x00080000 - suspend request cancelled in loop (return false)
 451 // 0x00100000 - thread suspended in loop (return true)
 452 // 0x00200000 - suspend not completed during retry loop (return false)
 453 
 454 // Helper class for tracing suspend wait debug bits.
 455 //
 456 // 0x00000100 indicates that the target thread exited before it could
 457 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 458 // 0x00080000 each indicate a cancelled suspend request so they don't
 459 // count as wait failures either.
 460 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 461 
 462 class TraceSuspendDebugBits : public StackObj {
 463  private:
 464   JavaThread * jt;
 465   bool         is_wait;
 466   bool         called_by_wait;  // meaningful when !is_wait
 467   uint32_t *   bits;
 468 
 469  public:
 470   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 471                         uint32_t *_bits) {
 472     jt             = _jt;
 473     is_wait        = _is_wait;
 474     called_by_wait = _called_by_wait;
 475     bits           = _bits;
 476   }
 477 
 478   ~TraceSuspendDebugBits() {
 479     if (!is_wait) {
 480 #if 1
 481       // By default, don't trace bits for is_ext_suspend_completed() calls.
 482       // That trace is very chatty.
 483       return;
 484 #else
 485       if (!called_by_wait) {
 486         // If tracing for is_ext_suspend_completed() is enabled, then only
 487         // trace calls to it from wait_for_ext_suspend_completion()
 488         return;
 489       }
 490 #endif
 491     }
 492 
 493     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 494       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 495         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 496         ResourceMark rm;
 497 
 498         tty->print_cr(
 499                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 500                       jt->get_thread_name(), *bits);
 501 
 502         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 503       }
 504     }
 505   }
 506 };
 507 #undef DEBUG_FALSE_BITS
 508 
 509 
 510 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 511                                           uint32_t *bits) {
 512   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 513 
 514   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 515   bool do_trans_retry;           // flag to force the retry
 516 
 517   *bits |= 0x00000001;
 518 
 519   do {
 520     do_trans_retry = false;
 521 
 522     if (is_exiting()) {
 523       // Thread is in the process of exiting. This is always checked
 524       // first to reduce the risk of dereferencing a freed JavaThread.
 525       *bits |= 0x00000100;
 526       return false;
 527     }
 528 
 529     if (!is_external_suspend()) {
 530       // Suspend request is cancelled. This is always checked before
 531       // is_ext_suspended() to reduce the risk of a rogue resume
 532       // confusing the thread that made the suspend request.
 533       *bits |= 0x00000200;
 534       return false;
 535     }
 536 
 537     if (is_ext_suspended()) {
 538       // thread is suspended
 539       *bits |= 0x00000400;
 540       return true;
 541     }
 542 
 543     // Now that we no longer do hard suspends of threads running
 544     // native code, the target thread can be changing thread state
 545     // while we are in this routine:
 546     //
 547     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 548     //
 549     // We save a copy of the thread state as observed at this moment
 550     // and make our decision about suspend completeness based on the
 551     // copy. This closes the race where the thread state is seen as
 552     // _thread_in_native_trans in the if-thread_blocked check, but is
 553     // seen as _thread_blocked in if-thread_in_native_trans check.
 554     JavaThreadState save_state = thread_state();
 555 
 556     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 557       // If the thread's state is _thread_blocked and this blocking
 558       // condition is known to be equivalent to a suspend, then we can
 559       // consider the thread to be externally suspended. This means that
 560       // the code that sets _thread_blocked has been modified to do
 561       // self-suspension if the blocking condition releases. We also
 562       // used to check for CONDVAR_WAIT here, but that is now covered by
 563       // the _thread_blocked with self-suspension check.
 564       //
 565       // Return true since we wouldn't be here unless there was still an
 566       // external suspend request.
 567       *bits |= 0x00001000;
 568       return true;
 569     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 570       // Threads running native code will self-suspend on native==>VM/Java
 571       // transitions. If its stack is walkable (should always be the case
 572       // unless this function is called before the actual java_suspend()
 573       // call), then the wait is done.
 574       *bits |= 0x00002000;
 575       return true;
 576     } else if (!called_by_wait && !did_trans_retry &&
 577                save_state == _thread_in_native_trans &&
 578                frame_anchor()->walkable()) {
 579       // The thread is transitioning from thread_in_native to another
 580       // thread state. check_safepoint_and_suspend_for_native_trans()
 581       // will force the thread to self-suspend. If it hasn't gotten
 582       // there yet we may have caught the thread in-between the native
 583       // code check above and the self-suspend. Lucky us. If we were
 584       // called by wait_for_ext_suspend_completion(), then it
 585       // will be doing the retries so we don't have to.
 586       //
 587       // Since we use the saved thread state in the if-statement above,
 588       // there is a chance that the thread has already transitioned to
 589       // _thread_blocked by the time we get here. In that case, we will
 590       // make a single unnecessary pass through the logic below. This
 591       // doesn't hurt anything since we still do the trans retry.
 592 
 593       *bits |= 0x00004000;
 594 
 595       // Once the thread leaves thread_in_native_trans for another
 596       // thread state, we break out of this retry loop. We shouldn't
 597       // need this flag to prevent us from getting back here, but
 598       // sometimes paranoia is good.
 599       did_trans_retry = true;
 600 
 601       // We wait for the thread to transition to a more usable state.
 602       for (int i = 1; i <= SuspendRetryCount; i++) {
 603         // We used to do an "os::yield_all(i)" call here with the intention
 604         // that yielding would increase on each retry. However, the parameter
 605         // is ignored on Linux which means the yield didn't scale up. Waiting
 606         // on the SR_lock below provides a much more predictable scale up for
 607         // the delay. It also provides a simple/direct point to check for any
 608         // safepoint requests from the VMThread
 609 
 610         // temporarily drops SR_lock while doing wait with safepoint check
 611         // (if we're a JavaThread - the WatcherThread can also call this)
 612         // and increase delay with each retry
 613         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 614 
 615         // check the actual thread state instead of what we saved above
 616         if (thread_state() != _thread_in_native_trans) {
 617           // the thread has transitioned to another thread state so
 618           // try all the checks (except this one) one more time.
 619           do_trans_retry = true;
 620           break;
 621         }
 622       } // end retry loop
 623 
 624 
 625     }
 626   } while (do_trans_retry);
 627 
 628   *bits |= 0x00000010;
 629   return false;
 630 }
 631 
 632 // Wait for an external suspend request to complete (or be cancelled).
 633 // Returns true if the thread is externally suspended and false otherwise.
 634 //
 635 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 636                                                  uint32_t *bits) {
 637   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 638                              false /* !called_by_wait */, bits);
 639 
 640   // local flag copies to minimize SR_lock hold time
 641   bool is_suspended;
 642   bool pending;
 643   uint32_t reset_bits;
 644 
 645   // set a marker so is_ext_suspend_completed() knows we are the caller
 646   *bits |= 0x00010000;
 647 
 648   // We use reset_bits to reinitialize the bits value at the top of
 649   // each retry loop. This allows the caller to make use of any
 650   // unused bits for their own marking purposes.
 651   reset_bits = *bits;
 652 
 653   {
 654     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 655     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 656                                             delay, bits);
 657     pending = is_external_suspend();
 658   }
 659   // must release SR_lock to allow suspension to complete
 660 
 661   if (!pending) {
 662     // A cancelled suspend request is the only false return from
 663     // is_ext_suspend_completed() that keeps us from entering the
 664     // retry loop.
 665     *bits |= 0x00020000;
 666     return false;
 667   }
 668 
 669   if (is_suspended) {
 670     *bits |= 0x00040000;
 671     return true;
 672   }
 673 
 674   for (int i = 1; i <= retries; i++) {
 675     *bits = reset_bits;  // reinit to only track last retry
 676 
 677     // We used to do an "os::yield_all(i)" call here with the intention
 678     // that yielding would increase on each retry. However, the parameter
 679     // is ignored on Linux which means the yield didn't scale up. Waiting
 680     // on the SR_lock below provides a much more predictable scale up for
 681     // the delay. It also provides a simple/direct point to check for any
 682     // safepoint requests from the VMThread
 683 
 684     {
 685       MutexLocker ml(SR_lock());
 686       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 687       // can also call this)  and increase delay with each retry
 688       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 689 
 690       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 691                                               delay, bits);
 692 
 693       // It is possible for the external suspend request to be cancelled
 694       // (by a resume) before the actual suspend operation is completed.
 695       // Refresh our local copy to see if we still need to wait.
 696       pending = is_external_suspend();
 697     }
 698 
 699     if (!pending) {
 700       // A cancelled suspend request is the only false return from
 701       // is_ext_suspend_completed() that keeps us from staying in the
 702       // retry loop.
 703       *bits |= 0x00080000;
 704       return false;
 705     }
 706 
 707     if (is_suspended) {
 708       *bits |= 0x00100000;
 709       return true;
 710     }
 711   } // end retry loop
 712 
 713   // thread did not suspend after all our retries
 714   *bits |= 0x00200000;
 715   return false;
 716 }
 717 
 718 #ifndef PRODUCT
 719 void JavaThread::record_jump(address target, address instr, const char* file,
 720                              int line) {
 721 
 722   // This should not need to be atomic as the only way for simultaneous
 723   // updates is via interrupts. Even then this should be rare or non-existent
 724   // and we don't care that much anyway.
 725 
 726   int index = _jmp_ring_index;
 727   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 728   _jmp_ring[index]._target = (intptr_t) target;
 729   _jmp_ring[index]._instruction = (intptr_t) instr;
 730   _jmp_ring[index]._file = file;
 731   _jmp_ring[index]._line = line;
 732 }
 733 #endif // PRODUCT
 734 
 735 // Called by flat profiler
 736 // Callers have already called wait_for_ext_suspend_completion
 737 // The assertion for that is currently too complex to put here:
 738 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 739   bool gotframe = false;
 740   // self suspension saves needed state.
 741   if (has_last_Java_frame() && _anchor.walkable()) {
 742     *_fr = pd_last_frame();
 743     gotframe = true;
 744   }
 745   return gotframe;
 746 }
 747 
 748 void Thread::interrupt(Thread* thread) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   os::interrupt(thread);
 751 }
 752 
 753 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 754   debug_only(check_for_dangling_thread_pointer(thread);)
 755   // Note:  If clear_interrupted==false, this simply fetches and
 756   // returns the value of the field osthread()->interrupted().
 757   return os::is_interrupted(thread, clear_interrupted);
 758 }
 759 
 760 
 761 // GC Support
 762 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 763   jint thread_parity = _oops_do_parity;
 764   if (thread_parity != strong_roots_parity) {
 765     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 766     if (res == thread_parity) {
 767       return true;
 768     } else {
 769       guarantee(res == strong_roots_parity, "Or else what?");
 770       return false;
 771     }
 772   }
 773   return false;
 774 }
 775 
 776 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 777   active_handles()->oops_do(f);
 778   // Do oop for ThreadShadow
 779   f->do_oop((oop*)&_pending_exception);
 780   handle_area()->oops_do(f);
 781 }
 782 
 783 void Thread::nmethods_do(CodeBlobClosure* cf) {
 784   // no nmethods in a generic thread...
 785 }
 786 
 787 void Thread::metadata_handles_do(void f(Metadata*)) {
 788   // Only walk the Handles in Thread.
 789   if (metadata_handles() != NULL) {
 790     for (int i = 0; i< metadata_handles()->length(); i++) {
 791       f(metadata_handles()->at(i));
 792     }
 793   }
 794 }
 795 
 796 void Thread::print_on(outputStream* st) const {
 797   // get_priority assumes osthread initialized
 798   if (osthread() != NULL) {
 799     int os_prio;
 800     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 801       st->print("os_prio=%d ", os_prio);
 802     }
 803     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 804     ext().print_on(st);
 805     osthread()->print_on(st);
 806   }
 807   debug_only(if (WizardMode) print_owned_locks_on(st);)
 808 }
 809 
 810 // Thread::print_on_error() is called by fatal error handler. Don't use
 811 // any lock or allocate memory.
 812 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 813   if (is_VM_thread())                 st->print("VMThread");
 814   else if (is_Compiler_thread())      st->print("CompilerThread");
 815   else if (is_Java_thread())          st->print("JavaThread");
 816   else if (is_GC_task_thread())       st->print("GCTaskThread");
 817   else if (is_Watcher_thread())       st->print("WatcherThread");
 818   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 819   else                                st->print("Thread");
 820 
 821   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 822             p2i(_stack_base - _stack_size), p2i(_stack_base));
 823 
 824   if (osthread()) {
 825     st->print(" [id=%d]", osthread()->thread_id());
 826   }
 827 }
 828 
 829 #ifdef ASSERT
 830 void Thread::print_owned_locks_on(outputStream* st) const {
 831   Monitor *cur = _owned_locks;
 832   if (cur == NULL) {
 833     st->print(" (no locks) ");
 834   } else {
 835     st->print_cr(" Locks owned:");
 836     while (cur) {
 837       cur->print_on(st);
 838       cur = cur->next();
 839     }
 840   }
 841 }
 842 
 843 static int ref_use_count  = 0;
 844 
 845 bool Thread::owns_locks_but_compiled_lock() const {
 846   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 847     if (cur != Compile_lock) return true;
 848   }
 849   return false;
 850 }
 851 
 852 
 853 #endif
 854 
 855 #ifndef PRODUCT
 856 
 857 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 858 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 859 // no threads which allow_vm_block's are held
 860 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 861   // Check if current thread is allowed to block at a safepoint
 862   if (!(_allow_safepoint_count == 0)) {
 863     fatal("Possible safepoint reached by thread that does not allow it");
 864   }
 865   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 866     fatal("LEAF method calling lock?");
 867   }
 868 
 869 #ifdef ASSERT
 870   if (potential_vm_operation && is_Java_thread()
 871       && !Universe::is_bootstrapping()) {
 872     // Make sure we do not hold any locks that the VM thread also uses.
 873     // This could potentially lead to deadlocks
 874     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 875       // Threads_lock is special, since the safepoint synchronization will not start before this is
 876       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 877       // since it is used to transfer control between JavaThreads and the VMThread
 878       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 879       if ((cur->allow_vm_block() &&
 880            cur != Threads_lock &&
 881            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 882            cur != VMOperationRequest_lock &&
 883            cur != VMOperationQueue_lock) ||
 884            cur->rank() == Mutex::special) {
 885         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 886       }
 887     }
 888   }
 889 
 890   if (GCALotAtAllSafepoints) {
 891     // We could enter a safepoint here and thus have a gc
 892     InterfaceSupport::check_gc_alot();
 893   }
 894 #endif
 895 }
 896 #endif
 897 
 898 bool Thread::is_in_stack(address adr) const {
 899   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 900   address end = os::current_stack_pointer();
 901   // Allow non Java threads to call this without stack_base
 902   if (_stack_base == NULL) return true;
 903   if (stack_base() >= adr && adr >= end) return true;
 904 
 905   return false;
 906 }
 907 
 908 
 909 bool Thread::is_in_usable_stack(address adr) const {
 910   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 911   size_t usable_stack_size = _stack_size - stack_guard_size;
 912 
 913   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 914 }
 915 
 916 
 917 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 918 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 919 // used for compilation in the future. If that change is made, the need for these methods
 920 // should be revisited, and they should be removed if possible.
 921 
 922 bool Thread::is_lock_owned(address adr) const {
 923   return on_local_stack(adr);
 924 }
 925 
 926 bool Thread::set_as_starting_thread() {
 927   // NOTE: this must be called inside the main thread.
 928   return os::create_main_thread((JavaThread*)this);
 929 }
 930 
 931 static void initialize_class(Symbol* class_name, TRAPS) {
 932   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 933   InstanceKlass::cast(klass)->initialize(CHECK);
 934 }
 935 
 936 
 937 // Creates the initial ThreadGroup
 938 static Handle create_initial_thread_group(TRAPS) {
 939   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 940   instanceKlassHandle klass (THREAD, k);
 941 
 942   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 943   {
 944     JavaValue result(T_VOID);
 945     JavaCalls::call_special(&result,
 946                             system_instance,
 947                             klass,
 948                             vmSymbols::object_initializer_name(),
 949                             vmSymbols::void_method_signature(),
 950                             CHECK_NH);
 951   }
 952   Universe::set_system_thread_group(system_instance());
 953 
 954   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 955   {
 956     JavaValue result(T_VOID);
 957     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 958     JavaCalls::call_special(&result,
 959                             main_instance,
 960                             klass,
 961                             vmSymbols::object_initializer_name(),
 962                             vmSymbols::threadgroup_string_void_signature(),
 963                             system_instance,
 964                             string,
 965                             CHECK_NH);
 966   }
 967   return main_instance;
 968 }
 969 
 970 // Creates the initial Thread
 971 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 972                                  TRAPS) {
 973   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 974   instanceKlassHandle klass (THREAD, k);
 975   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 976 
 977   java_lang_Thread::set_thread(thread_oop(), thread);
 978   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 979   thread->set_threadObj(thread_oop());
 980 
 981   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 982 
 983   JavaValue result(T_VOID);
 984   JavaCalls::call_special(&result, thread_oop,
 985                           klass,
 986                           vmSymbols::object_initializer_name(),
 987                           vmSymbols::threadgroup_string_void_signature(),
 988                           thread_group,
 989                           string,
 990                           CHECK_NULL);
 991   return thread_oop();
 992 }
 993 
 994 static void call_initializeSystemClass(TRAPS) {
 995   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 996   instanceKlassHandle klass (THREAD, k);
 997 
 998   JavaValue result(T_VOID);
 999   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1000                          vmSymbols::void_method_signature(), CHECK);
1001 }
1002 
1003 char java_runtime_name[128] = "";
1004 char java_runtime_version[128] = "";
1005 
1006 // extract the JRE name from sun.misc.Version.java_runtime_name
1007 static const char* get_java_runtime_name(TRAPS) {
1008   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1009                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1010   fieldDescriptor fd;
1011   bool found = k != NULL &&
1012                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1013                                                         vmSymbols::string_signature(), &fd);
1014   if (found) {
1015     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1016     if (name_oop == NULL) {
1017       return NULL;
1018     }
1019     const char* name = java_lang_String::as_utf8_string(name_oop,
1020                                                         java_runtime_name,
1021                                                         sizeof(java_runtime_name));
1022     return name;
1023   } else {
1024     return NULL;
1025   }
1026 }
1027 
1028 // extract the JRE version from sun.misc.Version.java_runtime_version
1029 static const char* get_java_runtime_version(TRAPS) {
1030   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1031                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1032   fieldDescriptor fd;
1033   bool found = k != NULL &&
1034                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1035                                                         vmSymbols::string_signature(), &fd);
1036   if (found) {
1037     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1038     if (name_oop == NULL) {
1039       return NULL;
1040     }
1041     const char* name = java_lang_String::as_utf8_string(name_oop,
1042                                                         java_runtime_version,
1043                                                         sizeof(java_runtime_version));
1044     return name;
1045   } else {
1046     return NULL;
1047   }
1048 }
1049 
1050 // General purpose hook into Java code, run once when the VM is initialized.
1051 // The Java library method itself may be changed independently from the VM.
1052 static void call_postVMInitHook(TRAPS) {
1053   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1054   instanceKlassHandle klass (THREAD, k);
1055   if (klass.not_null()) {
1056     JavaValue result(T_VOID);
1057     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1058                            vmSymbols::void_method_signature(),
1059                            CHECK);
1060   }
1061 }
1062 
1063 static void reset_vm_info_property(TRAPS) {
1064   // the vm info string
1065   ResourceMark rm(THREAD);
1066   const char *vm_info = VM_Version::vm_info_string();
1067 
1068   // java.lang.System class
1069   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1070   instanceKlassHandle klass (THREAD, k);
1071 
1072   // setProperty arguments
1073   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1074   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1075 
1076   // return value
1077   JavaValue r(T_OBJECT);
1078 
1079   // public static String setProperty(String key, String value);
1080   JavaCalls::call_static(&r,
1081                          klass,
1082                          vmSymbols::setProperty_name(),
1083                          vmSymbols::string_string_string_signature(),
1084                          key_str,
1085                          value_str,
1086                          CHECK);
1087 }
1088 
1089 
1090 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1091                                     bool daemon, TRAPS) {
1092   assert(thread_group.not_null(), "thread group should be specified");
1093   assert(threadObj() == NULL, "should only create Java thread object once");
1094 
1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1098 
1099   java_lang_Thread::set_thread(thread_oop(), this);
1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1101   set_threadObj(thread_oop());
1102 
1103   JavaValue result(T_VOID);
1104   if (thread_name != NULL) {
1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1106     // Thread gets assigned specified name and null target
1107     JavaCalls::call_special(&result,
1108                             thread_oop,
1109                             klass,
1110                             vmSymbols::object_initializer_name(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             thread_group, // Argument 1
1113                             name,         // Argument 2
1114                             THREAD);
1115   } else {
1116     // Thread gets assigned name "Thread-nnn" and null target
1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1118     JavaCalls::call_special(&result,
1119                             thread_oop,
1120                             klass,
1121                             vmSymbols::object_initializer_name(),
1122                             vmSymbols::threadgroup_runnable_void_signature(),
1123                             thread_group, // Argument 1
1124                             Handle(),     // Argument 2
1125                             THREAD);
1126   }
1127 
1128 
1129   if (daemon) {
1130     java_lang_Thread::set_daemon(thread_oop());
1131   }
1132 
1133   if (HAS_PENDING_EXCEPTION) {
1134     return;
1135   }
1136 
1137   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1138   Handle threadObj(THREAD, this->threadObj());
1139 
1140   JavaCalls::call_special(&result,
1141                           thread_group,
1142                           group,
1143                           vmSymbols::add_method_name(),
1144                           vmSymbols::thread_void_signature(),
1145                           threadObj,          // Arg 1
1146                           THREAD);
1147 }
1148 
1149 // NamedThread --  non-JavaThread subclasses with multiple
1150 // uniquely named instances should derive from this.
1151 NamedThread::NamedThread() : Thread() {
1152   _name = NULL;
1153   _processed_thread = NULL;
1154   _gc_id = GCId::undefined();
1155 }
1156 
1157 NamedThread::~NamedThread() {
1158   if (_name != NULL) {
1159     FREE_C_HEAP_ARRAY(char, _name);
1160     _name = NULL;
1161   }
1162 }
1163 
1164 void NamedThread::set_name(const char* format, ...) {
1165   guarantee(_name == NULL, "Only get to set name once.");
1166   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1167   guarantee(_name != NULL, "alloc failure");
1168   va_list ap;
1169   va_start(ap, format);
1170   jio_vsnprintf(_name, max_name_len, format, ap);
1171   va_end(ap);
1172 }
1173 
1174 void NamedThread::initialize_named_thread() {
1175   set_native_thread_name(name());
1176 }
1177 
1178 void NamedThread::print_on(outputStream* st) const {
1179   st->print("\"%s\" ", name());
1180   Thread::print_on(st);
1181   st->cr();
1182 }
1183 
1184 
1185 // ======= WatcherThread ========
1186 
1187 // The watcher thread exists to simulate timer interrupts.  It should
1188 // be replaced by an abstraction over whatever native support for
1189 // timer interrupts exists on the platform.
1190 
1191 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1192 bool WatcherThread::_startable = false;
1193 volatile bool  WatcherThread::_should_terminate = false;
1194 
1195 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1196   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1197   if (os::create_thread(this, os::watcher_thread)) {
1198     _watcher_thread = this;
1199 
1200     // Set the watcher thread to the highest OS priority which should not be
1201     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1202     // is created. The only normal thread using this priority is the reference
1203     // handler thread, which runs for very short intervals only.
1204     // If the VMThread's priority is not lower than the WatcherThread profiling
1205     // will be inaccurate.
1206     os::set_priority(this, MaxPriority);
1207     if (!DisableStartThread) {
1208       os::start_thread(this);
1209     }
1210   }
1211 }
1212 
1213 int WatcherThread::sleep() const {
1214   // The WatcherThread does not participate in the safepoint protocol
1215   // for the PeriodicTask_lock because it is not a JavaThread.
1216   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1217 
1218   if (_should_terminate) {
1219     // check for termination before we do any housekeeping or wait
1220     return 0;  // we did not sleep.
1221   }
1222 
1223   // remaining will be zero if there are no tasks,
1224   // causing the WatcherThread to sleep until a task is
1225   // enrolled
1226   int remaining = PeriodicTask::time_to_wait();
1227   int time_slept = 0;
1228 
1229   // we expect this to timeout - we only ever get unparked when
1230   // we should terminate or when a new task has been enrolled
1231   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1232 
1233   jlong time_before_loop = os::javaTimeNanos();
1234 
1235   while (true) {
1236     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1237                                             remaining);
1238     jlong now = os::javaTimeNanos();
1239 
1240     if (remaining == 0) {
1241       // if we didn't have any tasks we could have waited for a long time
1242       // consider the time_slept zero and reset time_before_loop
1243       time_slept = 0;
1244       time_before_loop = now;
1245     } else {
1246       // need to recalculate since we might have new tasks in _tasks
1247       time_slept = (int) ((now - time_before_loop) / 1000000);
1248     }
1249 
1250     // Change to task list or spurious wakeup of some kind
1251     if (timedout || _should_terminate) {
1252       break;
1253     }
1254 
1255     remaining = PeriodicTask::time_to_wait();
1256     if (remaining == 0) {
1257       // Last task was just disenrolled so loop around and wait until
1258       // another task gets enrolled
1259       continue;
1260     }
1261 
1262     remaining -= time_slept;
1263     if (remaining <= 0) {
1264       break;
1265     }
1266   }
1267 
1268   return time_slept;
1269 }
1270 
1271 void WatcherThread::run() {
1272   assert(this == watcher_thread(), "just checking");
1273 
1274   this->record_stack_base_and_size();
1275   this->set_native_thread_name(this->name());
1276   this->set_active_handles(JNIHandleBlock::allocate_block());
1277   while (true) {
1278     assert(watcher_thread() == Thread::current(), "thread consistency check");
1279     assert(watcher_thread() == this, "thread consistency check");
1280 
1281     // Calculate how long it'll be until the next PeriodicTask work
1282     // should be done, and sleep that amount of time.
1283     int time_waited = sleep();
1284 
1285     if (is_error_reported()) {
1286       // A fatal error has happened, the error handler(VMError::report_and_die)
1287       // should abort JVM after creating an error log file. However in some
1288       // rare cases, the error handler itself might deadlock. Here we try to
1289       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1290       //
1291       // This code is in WatcherThread because WatcherThread wakes up
1292       // periodically so the fatal error handler doesn't need to do anything;
1293       // also because the WatcherThread is less likely to crash than other
1294       // threads.
1295 
1296       for (;;) {
1297         if (!ShowMessageBoxOnError
1298             && (OnError == NULL || OnError[0] == '\0')
1299             && Arguments::abort_hook() == NULL) {
1300           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1301           fdStream err(defaultStream::output_fd());
1302           err.print_raw_cr("# [ timer expired, abort... ]");
1303           // skip atexit/vm_exit/vm_abort hooks
1304           os::die();
1305         }
1306 
1307         // Wake up 5 seconds later, the fatal handler may reset OnError or
1308         // ShowMessageBoxOnError when it is ready to abort.
1309         os::sleep(this, 5 * 1000, false);
1310       }
1311     }
1312 
1313     if (_should_terminate) {
1314       // check for termination before posting the next tick
1315       break;
1316     }
1317 
1318     PeriodicTask::real_time_tick(time_waited);
1319   }
1320 
1321   // Signal that it is terminated
1322   {
1323     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1324     _watcher_thread = NULL;
1325     Terminator_lock->notify();
1326   }
1327 }
1328 
1329 void WatcherThread::start() {
1330   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1331 
1332   if (watcher_thread() == NULL && _startable) {
1333     _should_terminate = false;
1334     // Create the single instance of WatcherThread
1335     new WatcherThread();
1336   }
1337 }
1338 
1339 void WatcherThread::make_startable() {
1340   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1341   _startable = true;
1342 }
1343 
1344 void WatcherThread::stop() {
1345   {
1346     // Follow normal safepoint aware lock enter protocol since the
1347     // WatcherThread is stopped by another JavaThread.
1348     MutexLocker ml(PeriodicTask_lock);
1349     _should_terminate = true;
1350 
1351     WatcherThread* watcher = watcher_thread();
1352     if (watcher != NULL) {
1353       // unpark the WatcherThread so it can see that it should terminate
1354       watcher->unpark();
1355     }
1356   }
1357 
1358   MutexLocker mu(Terminator_lock);
1359 
1360   while (watcher_thread() != NULL) {
1361     // This wait should make safepoint checks, wait without a timeout,
1362     // and wait as a suspend-equivalent condition.
1363     //
1364     // Note: If the FlatProfiler is running, then this thread is waiting
1365     // for the WatcherThread to terminate and the WatcherThread, via the
1366     // FlatProfiler task, is waiting for the external suspend request on
1367     // this thread to complete. wait_for_ext_suspend_completion() will
1368     // eventually timeout, but that takes time. Making this wait a
1369     // suspend-equivalent condition solves that timeout problem.
1370     //
1371     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1372                           Mutex::_as_suspend_equivalent_flag);
1373   }
1374 }
1375 
1376 void WatcherThread::unpark() {
1377   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1378   PeriodicTask_lock->notify();
1379 }
1380 
1381 void WatcherThread::print_on(outputStream* st) const {
1382   st->print("\"%s\" ", name());
1383   Thread::print_on(st);
1384   st->cr();
1385 }
1386 
1387 // ======= JavaThread ========
1388 
1389 #if INCLUDE_JVMCI
1390 
1391 jlong* JavaThread::_jvmci_old_thread_counters;
1392 
1393 bool jvmci_counters_include(JavaThread* thread) {
1394   oop threadObj = thread->threadObj();
1395   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1396 }
1397 
1398 void JavaThread::collect_counters(typeArrayOop array) {
1399   if (JVMCICounterSize > 0) {
1400     MutexLocker tl(Threads_lock);
1401     for (int i = 0; i < array->length(); i++) {
1402       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1403     }
1404     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1405       if (jvmci_counters_include(tp)) {
1406         for (int i = 0; i < array->length(); i++) {
1407           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1408         }
1409       }
1410     }
1411   }
1412 }
1413 
1414 #endif // INCLUDE_JVMCI
1415 
1416 // A JavaThread is a normal Java thread
1417 
1418 void JavaThread::initialize() {
1419   // Initialize fields
1420 
1421   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1422   set_claimed_par_id(UINT_MAX);
1423 
1424   set_saved_exception_pc(NULL);
1425   set_threadObj(NULL);
1426   _anchor.clear();
1427   set_entry_point(NULL);
1428   set_jni_functions(jni_functions());
1429   set_callee_target(NULL);
1430   set_vm_result(NULL);
1431   set_vm_result_2(NULL);
1432   set_vframe_array_head(NULL);
1433   set_vframe_array_last(NULL);
1434   set_deferred_locals(NULL);
1435   set_deopt_mark(NULL);
1436   set_deopt_nmethod(NULL);
1437   clear_must_deopt_id();
1438   set_monitor_chunks(NULL);
1439   set_next(NULL);
1440   set_thread_state(_thread_new);
1441   _terminated = _not_terminated;
1442   _privileged_stack_top = NULL;
1443   _array_for_gc = NULL;
1444   _suspend_equivalent = false;
1445   _in_deopt_handler = 0;
1446   _doing_unsafe_access = false;
1447   _stack_guard_state = stack_guard_unused;
1448 #if INCLUDE_JVMCI
1449   _pending_monitorenter = false;
1450   _pending_deoptimization = -1;
1451   _pending_failed_speculation = NULL;
1452   _pending_transfer_to_interpreter = false;
1453   _jvmci._alternate_call_target = NULL;
1454   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1455   if (JVMCICounterSize > 0) {
1456     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1457     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1458   } else {
1459     _jvmci_counters = NULL;
1460   }
1461 #endif // INCLUDE_JVMCI
1462   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1463   _exception_pc  = 0;
1464   _exception_handler_pc = 0;
1465   _is_method_handle_return = 0;
1466   _jvmti_thread_state= NULL;
1467   _should_post_on_exceptions_flag = JNI_FALSE;
1468   _jvmti_get_loaded_classes_closure = NULL;
1469   _interp_only_mode    = 0;
1470   _special_runtime_exit_condition = _no_async_condition;
1471   _pending_async_exception = NULL;
1472   _thread_stat = NULL;
1473   _thread_stat = new ThreadStatistics();
1474   _blocked_on_compilation = false;
1475   _jni_active_critical = 0;
1476   _pending_jni_exception_check_fn = NULL;
1477   _do_not_unlock_if_synchronized = false;
1478   _cached_monitor_info = NULL;
1479   _parker = Parker::Allocate(this);
1480 
1481 #ifndef PRODUCT
1482   _jmp_ring_index = 0;
1483   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1484     record_jump(NULL, NULL, NULL, 0);
1485   }
1486 #endif // PRODUCT
1487 
1488   set_thread_profiler(NULL);
1489   if (FlatProfiler::is_active()) {
1490     // This is where we would decide to either give each thread it's own profiler
1491     // or use one global one from FlatProfiler,
1492     // or up to some count of the number of profiled threads, etc.
1493     ThreadProfiler* pp = new ThreadProfiler();
1494     pp->engage();
1495     set_thread_profiler(pp);
1496   }
1497 
1498   // Setup safepoint state info for this thread
1499   ThreadSafepointState::create(this);
1500 
1501   debug_only(_java_call_counter = 0);
1502 
1503   // JVMTI PopFrame support
1504   _popframe_condition = popframe_inactive;
1505   _popframe_preserved_args = NULL;
1506   _popframe_preserved_args_size = 0;
1507   _frames_to_pop_failed_realloc = 0;
1508 
1509   pd_initialize();
1510 }
1511 
1512 #if INCLUDE_ALL_GCS
1513 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1514 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1515 #endif // INCLUDE_ALL_GCS
1516 
1517 JavaThread::JavaThread(bool is_attaching_via_jni) :
1518                        Thread()
1519 #if INCLUDE_ALL_GCS
1520                        , _satb_mark_queue(&_satb_mark_queue_set),
1521                        _dirty_card_queue(&_dirty_card_queue_set)
1522 #endif // INCLUDE_ALL_GCS
1523 {
1524   initialize();
1525   if (is_attaching_via_jni) {
1526     _jni_attach_state = _attaching_via_jni;
1527   } else {
1528     _jni_attach_state = _not_attaching_via_jni;
1529   }
1530   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1531 }
1532 
1533 bool JavaThread::reguard_stack(address cur_sp) {
1534   if (_stack_guard_state != stack_guard_yellow_disabled) {
1535     return true; // Stack already guarded or guard pages not needed.
1536   }
1537 
1538   if (register_stack_overflow()) {
1539     // For those architectures which have separate register and
1540     // memory stacks, we must check the register stack to see if
1541     // it has overflowed.
1542     return false;
1543   }
1544 
1545   // Java code never executes within the yellow zone: the latter is only
1546   // there to provoke an exception during stack banging.  If java code
1547   // is executing there, either StackShadowPages should be larger, or
1548   // some exception code in c1, c2 or the interpreter isn't unwinding
1549   // when it should.
1550   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1551 
1552   enable_stack_yellow_zone();
1553   return true;
1554 }
1555 
1556 bool JavaThread::reguard_stack(void) {
1557   return reguard_stack(os::current_stack_pointer());
1558 }
1559 
1560 
1561 void JavaThread::block_if_vm_exited() {
1562   if (_terminated == _vm_exited) {
1563     // _vm_exited is set at safepoint, and Threads_lock is never released
1564     // we will block here forever
1565     Threads_lock->lock_without_safepoint_check();
1566     ShouldNotReachHere();
1567   }
1568 }
1569 
1570 
1571 // Remove this ifdef when C1 is ported to the compiler interface.
1572 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1573 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1574 
1575 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1576                        Thread()
1577 #if INCLUDE_ALL_GCS
1578                        , _satb_mark_queue(&_satb_mark_queue_set),
1579                        _dirty_card_queue(&_dirty_card_queue_set)
1580 #endif // INCLUDE_ALL_GCS
1581 {
1582   initialize();
1583   _jni_attach_state = _not_attaching_via_jni;
1584   set_entry_point(entry_point);
1585   // Create the native thread itself.
1586   // %note runtime_23
1587   os::ThreadType thr_type = os::java_thread;
1588   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1589                                                      os::java_thread;
1590   os::create_thread(this, thr_type, stack_sz);
1591   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1592   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1593   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1594   // the exception consists of creating the exception object & initializing it, initialization
1595   // will leave the VM via a JavaCall and then all locks must be unlocked).
1596   //
1597   // The thread is still suspended when we reach here. Thread must be explicit started
1598   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1599   // by calling Threads:add. The reason why this is not done here, is because the thread
1600   // object must be fully initialized (take a look at JVM_Start)
1601 }
1602 
1603 JavaThread::~JavaThread() {
1604 
1605   // JSR166 -- return the parker to the free list
1606   Parker::Release(_parker);
1607   _parker = NULL;
1608 
1609   // Free any remaining  previous UnrollBlock
1610   vframeArray* old_array = vframe_array_last();
1611 
1612   if (old_array != NULL) {
1613     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1614     old_array->set_unroll_block(NULL);
1615     delete old_info;
1616     delete old_array;
1617   }
1618 
1619   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1620   if (deferred != NULL) {
1621     // This can only happen if thread is destroyed before deoptimization occurs.
1622     assert(deferred->length() != 0, "empty array!");
1623     do {
1624       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1625       deferred->remove_at(0);
1626       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1627       delete dlv;
1628     } while (deferred->length() != 0);
1629     delete deferred;
1630   }
1631 
1632   // All Java related clean up happens in exit
1633   ThreadSafepointState::destroy(this);
1634   if (_thread_profiler != NULL) delete _thread_profiler;
1635   if (_thread_stat != NULL) delete _thread_stat;
1636 
1637 #if INCLUDE_JVMCI
1638   if (JVMCICounterSize > 0) {
1639     if (jvmci_counters_include(this)) {
1640       for (int i = 0; i < JVMCICounterSize; i++) {
1641         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1642       }
1643     }
1644     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1645   }
1646 #endif // INCLUDE_JVMCI
1647 }
1648 
1649 
1650 // The first routine called by a new Java thread
1651 void JavaThread::run() {
1652   // initialize thread-local alloc buffer related fields
1653   this->initialize_tlab();
1654 
1655   // used to test validity of stack trace backs
1656   this->record_base_of_stack_pointer();
1657 
1658   // Record real stack base and size.
1659   this->record_stack_base_and_size();
1660 
1661   this->create_stack_guard_pages();
1662 
1663   this->cache_global_variables();
1664 
1665   // Thread is now sufficient initialized to be handled by the safepoint code as being
1666   // in the VM. Change thread state from _thread_new to _thread_in_vm
1667   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1668 
1669   assert(JavaThread::current() == this, "sanity check");
1670   assert(!Thread::current()->owns_locks(), "sanity check");
1671 
1672   DTRACE_THREAD_PROBE(start, this);
1673 
1674   // This operation might block. We call that after all safepoint checks for a new thread has
1675   // been completed.
1676   this->set_active_handles(JNIHandleBlock::allocate_block());
1677 
1678   if (JvmtiExport::should_post_thread_life()) {
1679     JvmtiExport::post_thread_start(this);
1680   }
1681 
1682   EventThreadStart event;
1683   if (event.should_commit()) {
1684     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1685     event.commit();
1686   }
1687 
1688   // We call another function to do the rest so we are sure that the stack addresses used
1689   // from there will be lower than the stack base just computed
1690   thread_main_inner();
1691 
1692   // Note, thread is no longer valid at this point!
1693 }
1694 
1695 
1696 void JavaThread::thread_main_inner() {
1697   assert(JavaThread::current() == this, "sanity check");
1698   assert(this->threadObj() != NULL, "just checking");
1699 
1700   // Execute thread entry point unless this thread has a pending exception
1701   // or has been stopped before starting.
1702   // Note: Due to JVM_StopThread we can have pending exceptions already!
1703   if (!this->has_pending_exception() &&
1704       !java_lang_Thread::is_stillborn(this->threadObj())) {
1705     {
1706       ResourceMark rm(this);
1707       this->set_native_thread_name(this->get_thread_name());
1708     }
1709     HandleMark hm(this);
1710     this->entry_point()(this, this);
1711   }
1712 
1713   DTRACE_THREAD_PROBE(stop, this);
1714 
1715   this->exit(false);
1716   delete this;
1717 }
1718 
1719 
1720 static void ensure_join(JavaThread* thread) {
1721   // We do not need to grap the Threads_lock, since we are operating on ourself.
1722   Handle threadObj(thread, thread->threadObj());
1723   assert(threadObj.not_null(), "java thread object must exist");
1724   ObjectLocker lock(threadObj, thread);
1725   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1726   thread->clear_pending_exception();
1727   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1728   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1729   // Clear the native thread instance - this makes isAlive return false and allows the join()
1730   // to complete once we've done the notify_all below
1731   java_lang_Thread::set_thread(threadObj(), NULL);
1732   lock.notify_all(thread);
1733   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1734   thread->clear_pending_exception();
1735 }
1736 
1737 
1738 // For any new cleanup additions, please check to see if they need to be applied to
1739 // cleanup_failed_attach_current_thread as well.
1740 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1741   assert(this == JavaThread::current(), "thread consistency check");
1742 
1743   HandleMark hm(this);
1744   Handle uncaught_exception(this, this->pending_exception());
1745   this->clear_pending_exception();
1746   Handle threadObj(this, this->threadObj());
1747   assert(threadObj.not_null(), "Java thread object should be created");
1748 
1749   if (get_thread_profiler() != NULL) {
1750     get_thread_profiler()->disengage();
1751     ResourceMark rm;
1752     get_thread_profiler()->print(get_thread_name());
1753   }
1754 
1755 
1756   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1757   {
1758     EXCEPTION_MARK;
1759 
1760     CLEAR_PENDING_EXCEPTION;
1761   }
1762   if (!destroy_vm) {
1763     if (uncaught_exception.not_null()) {
1764       EXCEPTION_MARK;
1765       // Call method Thread.dispatchUncaughtException().
1766       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1767       JavaValue result(T_VOID);
1768       JavaCalls::call_virtual(&result,
1769                               threadObj, thread_klass,
1770                               vmSymbols::dispatchUncaughtException_name(),
1771                               vmSymbols::throwable_void_signature(),
1772                               uncaught_exception,
1773                               THREAD);
1774       if (HAS_PENDING_EXCEPTION) {
1775         ResourceMark rm(this);
1776         jio_fprintf(defaultStream::error_stream(),
1777                     "\nException: %s thrown from the UncaughtExceptionHandler"
1778                     " in thread \"%s\"\n",
1779                     pending_exception()->klass()->external_name(),
1780                     get_thread_name());
1781         CLEAR_PENDING_EXCEPTION;
1782       }
1783     }
1784 
1785     // Called before the java thread exit since we want to read info
1786     // from java_lang_Thread object
1787     EventThreadEnd event;
1788     if (event.should_commit()) {
1789       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1790       event.commit();
1791     }
1792 
1793     // Call after last event on thread
1794     EVENT_THREAD_EXIT(this);
1795 
1796     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1797     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1798     // is deprecated anyhow.
1799     if (!is_Compiler_thread()) {
1800       int count = 3;
1801       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1802         EXCEPTION_MARK;
1803         JavaValue result(T_VOID);
1804         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1805         JavaCalls::call_virtual(&result,
1806                                 threadObj, thread_klass,
1807                                 vmSymbols::exit_method_name(),
1808                                 vmSymbols::void_method_signature(),
1809                                 THREAD);
1810         CLEAR_PENDING_EXCEPTION;
1811       }
1812     }
1813     // notify JVMTI
1814     if (JvmtiExport::should_post_thread_life()) {
1815       JvmtiExport::post_thread_end(this);
1816     }
1817 
1818     // We have notified the agents that we are exiting, before we go on,
1819     // we must check for a pending external suspend request and honor it
1820     // in order to not surprise the thread that made the suspend request.
1821     while (true) {
1822       {
1823         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1824         if (!is_external_suspend()) {
1825           set_terminated(_thread_exiting);
1826           ThreadService::current_thread_exiting(this);
1827           break;
1828         }
1829         // Implied else:
1830         // Things get a little tricky here. We have a pending external
1831         // suspend request, but we are holding the SR_lock so we
1832         // can't just self-suspend. So we temporarily drop the lock
1833         // and then self-suspend.
1834       }
1835 
1836       ThreadBlockInVM tbivm(this);
1837       java_suspend_self();
1838 
1839       // We're done with this suspend request, but we have to loop around
1840       // and check again. Eventually we will get SR_lock without a pending
1841       // external suspend request and will be able to mark ourselves as
1842       // exiting.
1843     }
1844     // no more external suspends are allowed at this point
1845   } else {
1846     // before_exit() has already posted JVMTI THREAD_END events
1847   }
1848 
1849   // Notify waiters on thread object. This has to be done after exit() is called
1850   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1851   // group should have the destroyed bit set before waiters are notified).
1852   ensure_join(this);
1853   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1854 
1855   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1856   // held by this thread must be released. The spec does not distinguish
1857   // between JNI-acquired and regular Java monitors. We can only see
1858   // regular Java monitors here if monitor enter-exit matching is broken.
1859   //
1860   // Optionally release any monitors for regular JavaThread exits. This
1861   // is provided as a work around for any bugs in monitor enter-exit
1862   // matching. This can be expensive so it is not enabled by default.
1863   //
1864   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1865   // ObjectSynchronizer::release_monitors_owned_by_thread().
1866   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1867     // Sanity check even though JNI DetachCurrentThread() would have
1868     // returned JNI_ERR if there was a Java frame. JavaThread exit
1869     // should be done executing Java code by the time we get here.
1870     assert(!this->has_last_Java_frame(),
1871            "should not have a Java frame when detaching or exiting");
1872     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1873     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1874   }
1875 
1876   // These things needs to be done while we are still a Java Thread. Make sure that thread
1877   // is in a consistent state, in case GC happens
1878   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1879 
1880   if (active_handles() != NULL) {
1881     JNIHandleBlock* block = active_handles();
1882     set_active_handles(NULL);
1883     JNIHandleBlock::release_block(block);
1884   }
1885 
1886   if (free_handle_block() != NULL) {
1887     JNIHandleBlock* block = free_handle_block();
1888     set_free_handle_block(NULL);
1889     JNIHandleBlock::release_block(block);
1890   }
1891 
1892   // These have to be removed while this is still a valid thread.
1893   remove_stack_guard_pages();
1894 
1895   if (UseTLAB) {
1896     tlab().make_parsable(true);  // retire TLAB
1897   }
1898 
1899   if (JvmtiEnv::environments_might_exist()) {
1900     JvmtiExport::cleanup_thread(this);
1901   }
1902 
1903   // We must flush any deferred card marks before removing a thread from
1904   // the list of active threads.
1905   Universe::heap()->flush_deferred_store_barrier(this);
1906   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1907 
1908 #if INCLUDE_ALL_GCS
1909   // We must flush the G1-related buffers before removing a thread
1910   // from the list of active threads. We must do this after any deferred
1911   // card marks have been flushed (above) so that any entries that are
1912   // added to the thread's dirty card queue as a result are not lost.
1913   if (UseG1GC) {
1914     flush_barrier_queues();
1915   }
1916 #endif // INCLUDE_ALL_GCS
1917 
1918   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1919   Threads::remove(this);
1920 }
1921 
1922 #if INCLUDE_ALL_GCS
1923 // Flush G1-related queues.
1924 void JavaThread::flush_barrier_queues() {
1925   satb_mark_queue().flush();
1926   dirty_card_queue().flush();
1927 }
1928 
1929 void JavaThread::initialize_queues() {
1930   assert(!SafepointSynchronize::is_at_safepoint(),
1931          "we should not be at a safepoint");
1932 
1933   ObjPtrQueue& satb_queue = satb_mark_queue();
1934   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1935   // The SATB queue should have been constructed with its active
1936   // field set to false.
1937   assert(!satb_queue.is_active(), "SATB queue should not be active");
1938   assert(satb_queue.is_empty(), "SATB queue should be empty");
1939   // If we are creating the thread during a marking cycle, we should
1940   // set the active field of the SATB queue to true.
1941   if (satb_queue_set.is_active()) {
1942     satb_queue.set_active(true);
1943   }
1944 
1945   DirtyCardQueue& dirty_queue = dirty_card_queue();
1946   // The dirty card queue should have been constructed with its
1947   // active field set to true.
1948   assert(dirty_queue.is_active(), "dirty card queue should be active");
1949 }
1950 #endif // INCLUDE_ALL_GCS
1951 
1952 void JavaThread::cleanup_failed_attach_current_thread() {
1953   if (get_thread_profiler() != NULL) {
1954     get_thread_profiler()->disengage();
1955     ResourceMark rm;
1956     get_thread_profiler()->print(get_thread_name());
1957   }
1958 
1959   if (active_handles() != NULL) {
1960     JNIHandleBlock* block = active_handles();
1961     set_active_handles(NULL);
1962     JNIHandleBlock::release_block(block);
1963   }
1964 
1965   if (free_handle_block() != NULL) {
1966     JNIHandleBlock* block = free_handle_block();
1967     set_free_handle_block(NULL);
1968     JNIHandleBlock::release_block(block);
1969   }
1970 
1971   // These have to be removed while this is still a valid thread.
1972   remove_stack_guard_pages();
1973 
1974   if (UseTLAB) {
1975     tlab().make_parsable(true);  // retire TLAB, if any
1976   }
1977 
1978 #if INCLUDE_ALL_GCS
1979   if (UseG1GC) {
1980     flush_barrier_queues();
1981   }
1982 #endif // INCLUDE_ALL_GCS
1983 
1984   Threads::remove(this);
1985   delete this;
1986 }
1987 
1988 
1989 
1990 
1991 JavaThread* JavaThread::active() {
1992   Thread* thread = Thread::current();
1993   assert(thread != NULL, "just checking");
1994   if (thread->is_Java_thread()) {
1995     return (JavaThread*) thread;
1996   } else {
1997     assert(thread->is_VM_thread(), "this must be a vm thread");
1998     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1999     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2000     assert(ret->is_Java_thread(), "must be a Java thread");
2001     return ret;
2002   }
2003 }
2004 
2005 bool JavaThread::is_lock_owned(address adr) const {
2006   if (Thread::is_lock_owned(adr)) return true;
2007 
2008   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2009     if (chunk->contains(adr)) return true;
2010   }
2011 
2012   return false;
2013 }
2014 
2015 
2016 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2017   chunk->set_next(monitor_chunks());
2018   set_monitor_chunks(chunk);
2019 }
2020 
2021 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2022   guarantee(monitor_chunks() != NULL, "must be non empty");
2023   if (monitor_chunks() == chunk) {
2024     set_monitor_chunks(chunk->next());
2025   } else {
2026     MonitorChunk* prev = monitor_chunks();
2027     while (prev->next() != chunk) prev = prev->next();
2028     prev->set_next(chunk->next());
2029   }
2030 }
2031 
2032 // JVM support.
2033 
2034 // Note: this function shouldn't block if it's called in
2035 // _thread_in_native_trans state (such as from
2036 // check_special_condition_for_native_trans()).
2037 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2038 
2039   if (has_last_Java_frame() && has_async_condition()) {
2040     // If we are at a polling page safepoint (not a poll return)
2041     // then we must defer async exception because live registers
2042     // will be clobbered by the exception path. Poll return is
2043     // ok because the call we a returning from already collides
2044     // with exception handling registers and so there is no issue.
2045     // (The exception handling path kills call result registers but
2046     //  this is ok since the exception kills the result anyway).
2047 
2048     if (is_at_poll_safepoint()) {
2049       // if the code we are returning to has deoptimized we must defer
2050       // the exception otherwise live registers get clobbered on the
2051       // exception path before deoptimization is able to retrieve them.
2052       //
2053       RegisterMap map(this, false);
2054       frame caller_fr = last_frame().sender(&map);
2055       assert(caller_fr.is_compiled_frame(), "what?");
2056       if (caller_fr.is_deoptimized_frame()) {
2057         if (TraceExceptions) {
2058           ResourceMark rm;
2059           tty->print_cr("deferred async exception at compiled safepoint");
2060         }
2061         return;
2062       }
2063     }
2064   }
2065 
2066   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2067   if (condition == _no_async_condition) {
2068     // Conditions have changed since has_special_runtime_exit_condition()
2069     // was called:
2070     // - if we were here only because of an external suspend request,
2071     //   then that was taken care of above (or cancelled) so we are done
2072     // - if we were here because of another async request, then it has
2073     //   been cleared between the has_special_runtime_exit_condition()
2074     //   and now so again we are done
2075     return;
2076   }
2077 
2078   // Check for pending async. exception
2079   if (_pending_async_exception != NULL) {
2080     // Only overwrite an already pending exception, if it is not a threadDeath.
2081     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2082 
2083       // We cannot call Exceptions::_throw(...) here because we cannot block
2084       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2085 
2086       if (TraceExceptions) {
2087         ResourceMark rm;
2088         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2089         if (has_last_Java_frame()) {
2090           frame f = last_frame();
2091           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2092         }
2093         tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2094       }
2095       _pending_async_exception = NULL;
2096       clear_has_async_exception();
2097     }
2098   }
2099 
2100   if (check_unsafe_error &&
2101       condition == _async_unsafe_access_error && !has_pending_exception()) {
2102     condition = _no_async_condition;  // done
2103     switch (thread_state()) {
2104     case _thread_in_vm: {
2105       JavaThread* THREAD = this;
2106       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2107     }
2108     case _thread_in_native: {
2109       ThreadInVMfromNative tiv(this);
2110       JavaThread* THREAD = this;
2111       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112     }
2113     case _thread_in_Java: {
2114       ThreadInVMfromJava tiv(this);
2115       JavaThread* THREAD = this;
2116       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2117     }
2118     default:
2119       ShouldNotReachHere();
2120     }
2121   }
2122 
2123   assert(condition == _no_async_condition || has_pending_exception() ||
2124          (!check_unsafe_error && condition == _async_unsafe_access_error),
2125          "must have handled the async condition, if no exception");
2126 }
2127 
2128 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2129   //
2130   // Check for pending external suspend. Internal suspend requests do
2131   // not use handle_special_runtime_exit_condition().
2132   // If JNIEnv proxies are allowed, don't self-suspend if the target
2133   // thread is not the current thread. In older versions of jdbx, jdbx
2134   // threads could call into the VM with another thread's JNIEnv so we
2135   // can be here operating on behalf of a suspended thread (4432884).
2136   bool do_self_suspend = is_external_suspend_with_lock();
2137   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2138     //
2139     // Because thread is external suspended the safepoint code will count
2140     // thread as at a safepoint. This can be odd because we can be here
2141     // as _thread_in_Java which would normally transition to _thread_blocked
2142     // at a safepoint. We would like to mark the thread as _thread_blocked
2143     // before calling java_suspend_self like all other callers of it but
2144     // we must then observe proper safepoint protocol. (We can't leave
2145     // _thread_blocked with a safepoint in progress). However we can be
2146     // here as _thread_in_native_trans so we can't use a normal transition
2147     // constructor/destructor pair because they assert on that type of
2148     // transition. We could do something like:
2149     //
2150     // JavaThreadState state = thread_state();
2151     // set_thread_state(_thread_in_vm);
2152     // {
2153     //   ThreadBlockInVM tbivm(this);
2154     //   java_suspend_self()
2155     // }
2156     // set_thread_state(_thread_in_vm_trans);
2157     // if (safepoint) block;
2158     // set_thread_state(state);
2159     //
2160     // but that is pretty messy. Instead we just go with the way the
2161     // code has worked before and note that this is the only path to
2162     // java_suspend_self that doesn't put the thread in _thread_blocked
2163     // mode.
2164 
2165     frame_anchor()->make_walkable(this);
2166     java_suspend_self();
2167 
2168     // We might be here for reasons in addition to the self-suspend request
2169     // so check for other async requests.
2170   }
2171 
2172   if (check_asyncs) {
2173     check_and_handle_async_exceptions();
2174   }
2175 }
2176 
2177 void JavaThread::send_thread_stop(oop java_throwable)  {
2178   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2179   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2180   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2181 
2182   // Do not throw asynchronous exceptions against the compiler thread
2183   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2184   if (!can_call_java()) return;
2185 
2186   {
2187     // Actually throw the Throwable against the target Thread - however
2188     // only if there is no thread death exception installed already.
2189     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2190       // If the topmost frame is a runtime stub, then we are calling into
2191       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2192       // must deoptimize the caller before continuing, as the compiled  exception handler table
2193       // may not be valid
2194       if (has_last_Java_frame()) {
2195         frame f = last_frame();
2196         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2197           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2198           RegisterMap reg_map(this, UseBiasedLocking);
2199           frame compiled_frame = f.sender(&reg_map);
2200           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2201             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2202           }
2203         }
2204       }
2205 
2206       // Set async. pending exception in thread.
2207       set_pending_async_exception(java_throwable);
2208 
2209       if (TraceExceptions) {
2210         ResourceMark rm;
2211         tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2212       }
2213       // for AbortVMOnException flag
2214       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2215     }
2216   }
2217 
2218 
2219   // Interrupt thread so it will wake up from a potential wait()
2220   Thread::interrupt(this);
2221 }
2222 
2223 // External suspension mechanism.
2224 //
2225 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2226 // to any VM_locks and it is at a transition
2227 // Self-suspension will happen on the transition out of the vm.
2228 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2229 //
2230 // Guarantees on return:
2231 //   + Target thread will not execute any new bytecode (that's why we need to
2232 //     force a safepoint)
2233 //   + Target thread will not enter any new monitors
2234 //
2235 void JavaThread::java_suspend() {
2236   { MutexLocker mu(Threads_lock);
2237     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2238       return;
2239     }
2240   }
2241 
2242   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2243     if (!is_external_suspend()) {
2244       // a racing resume has cancelled us; bail out now
2245       return;
2246     }
2247 
2248     // suspend is done
2249     uint32_t debug_bits = 0;
2250     // Warning: is_ext_suspend_completed() may temporarily drop the
2251     // SR_lock to allow the thread to reach a stable thread state if
2252     // it is currently in a transient thread state.
2253     if (is_ext_suspend_completed(false /* !called_by_wait */,
2254                                  SuspendRetryDelay, &debug_bits)) {
2255       return;
2256     }
2257   }
2258 
2259   VM_ForceSafepoint vm_suspend;
2260   VMThread::execute(&vm_suspend);
2261 }
2262 
2263 // Part II of external suspension.
2264 // A JavaThread self suspends when it detects a pending external suspend
2265 // request. This is usually on transitions. It is also done in places
2266 // where continuing to the next transition would surprise the caller,
2267 // e.g., monitor entry.
2268 //
2269 // Returns the number of times that the thread self-suspended.
2270 //
2271 // Note: DO NOT call java_suspend_self() when you just want to block current
2272 //       thread. java_suspend_self() is the second stage of cooperative
2273 //       suspension for external suspend requests and should only be used
2274 //       to complete an external suspend request.
2275 //
2276 int JavaThread::java_suspend_self() {
2277   int ret = 0;
2278 
2279   // we are in the process of exiting so don't suspend
2280   if (is_exiting()) {
2281     clear_external_suspend();
2282     return ret;
2283   }
2284 
2285   assert(_anchor.walkable() ||
2286          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2287          "must have walkable stack");
2288 
2289   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2290 
2291   assert(!this->is_ext_suspended(),
2292          "a thread trying to self-suspend should not already be suspended");
2293 
2294   if (this->is_suspend_equivalent()) {
2295     // If we are self-suspending as a result of the lifting of a
2296     // suspend equivalent condition, then the suspend_equivalent
2297     // flag is not cleared until we set the ext_suspended flag so
2298     // that wait_for_ext_suspend_completion() returns consistent
2299     // results.
2300     this->clear_suspend_equivalent();
2301   }
2302 
2303   // A racing resume may have cancelled us before we grabbed SR_lock
2304   // above. Or another external suspend request could be waiting for us
2305   // by the time we return from SR_lock()->wait(). The thread
2306   // that requested the suspension may already be trying to walk our
2307   // stack and if we return now, we can change the stack out from under
2308   // it. This would be a "bad thing (TM)" and cause the stack walker
2309   // to crash. We stay self-suspended until there are no more pending
2310   // external suspend requests.
2311   while (is_external_suspend()) {
2312     ret++;
2313     this->set_ext_suspended();
2314 
2315     // _ext_suspended flag is cleared by java_resume()
2316     while (is_ext_suspended()) {
2317       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2318     }
2319   }
2320 
2321   return ret;
2322 }
2323 
2324 #ifdef ASSERT
2325 // verify the JavaThread has not yet been published in the Threads::list, and
2326 // hence doesn't need protection from concurrent access at this stage
2327 void JavaThread::verify_not_published() {
2328   if (!Threads_lock->owned_by_self()) {
2329     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2330     assert(!Threads::includes(this),
2331            "java thread shouldn't have been published yet!");
2332   } else {
2333     assert(!Threads::includes(this),
2334            "java thread shouldn't have been published yet!");
2335   }
2336 }
2337 #endif
2338 
2339 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2340 // progress or when _suspend_flags is non-zero.
2341 // Current thread needs to self-suspend if there is a suspend request and/or
2342 // block if a safepoint is in progress.
2343 // Async exception ISN'T checked.
2344 // Note only the ThreadInVMfromNative transition can call this function
2345 // directly and when thread state is _thread_in_native_trans
2346 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2347   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2348 
2349   JavaThread *curJT = JavaThread::current();
2350   bool do_self_suspend = thread->is_external_suspend();
2351 
2352   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2353 
2354   // If JNIEnv proxies are allowed, don't self-suspend if the target
2355   // thread is not the current thread. In older versions of jdbx, jdbx
2356   // threads could call into the VM with another thread's JNIEnv so we
2357   // can be here operating on behalf of a suspended thread (4432884).
2358   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2359     JavaThreadState state = thread->thread_state();
2360 
2361     // We mark this thread_blocked state as a suspend-equivalent so
2362     // that a caller to is_ext_suspend_completed() won't be confused.
2363     // The suspend-equivalent state is cleared by java_suspend_self().
2364     thread->set_suspend_equivalent();
2365 
2366     // If the safepoint code sees the _thread_in_native_trans state, it will
2367     // wait until the thread changes to other thread state. There is no
2368     // guarantee on how soon we can obtain the SR_lock and complete the
2369     // self-suspend request. It would be a bad idea to let safepoint wait for
2370     // too long. Temporarily change the state to _thread_blocked to
2371     // let the VM thread know that this thread is ready for GC. The problem
2372     // of changing thread state is that safepoint could happen just after
2373     // java_suspend_self() returns after being resumed, and VM thread will
2374     // see the _thread_blocked state. We must check for safepoint
2375     // after restoring the state and make sure we won't leave while a safepoint
2376     // is in progress.
2377     thread->set_thread_state(_thread_blocked);
2378     thread->java_suspend_self();
2379     thread->set_thread_state(state);
2380     // Make sure new state is seen by VM thread
2381     if (os::is_MP()) {
2382       if (UseMembar) {
2383         // Force a fence between the write above and read below
2384         OrderAccess::fence();
2385       } else {
2386         // Must use this rather than serialization page in particular on Windows
2387         InterfaceSupport::serialize_memory(thread);
2388       }
2389     }
2390   }
2391 
2392   if (SafepointSynchronize::do_call_back()) {
2393     // If we are safepointing, then block the caller which may not be
2394     // the same as the target thread (see above).
2395     SafepointSynchronize::block(curJT);
2396   }
2397 
2398   if (thread->is_deopt_suspend()) {
2399     thread->clear_deopt_suspend();
2400     RegisterMap map(thread, false);
2401     frame f = thread->last_frame();
2402     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2403       f = f.sender(&map);
2404     }
2405     if (f.id() == thread->must_deopt_id()) {
2406       thread->clear_must_deopt_id();
2407       f.deoptimize(thread);
2408     } else {
2409       fatal("missed deoptimization!");
2410     }
2411   }
2412 }
2413 
2414 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2415 // progress or when _suspend_flags is non-zero.
2416 // Current thread needs to self-suspend if there is a suspend request and/or
2417 // block if a safepoint is in progress.
2418 // Also check for pending async exception (not including unsafe access error).
2419 // Note only the native==>VM/Java barriers can call this function and when
2420 // thread state is _thread_in_native_trans.
2421 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2422   check_safepoint_and_suspend_for_native_trans(thread);
2423 
2424   if (thread->has_async_exception()) {
2425     // We are in _thread_in_native_trans state, don't handle unsafe
2426     // access error since that may block.
2427     thread->check_and_handle_async_exceptions(false);
2428   }
2429 }
2430 
2431 // This is a variant of the normal
2432 // check_special_condition_for_native_trans with slightly different
2433 // semantics for use by critical native wrappers.  It does all the
2434 // normal checks but also performs the transition back into
2435 // thread_in_Java state.  This is required so that critical natives
2436 // can potentially block and perform a GC if they are the last thread
2437 // exiting the GC_locker.
2438 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2439   check_special_condition_for_native_trans(thread);
2440 
2441   // Finish the transition
2442   thread->set_thread_state(_thread_in_Java);
2443 
2444   if (thread->do_critical_native_unlock()) {
2445     ThreadInVMfromJavaNoAsyncException tiv(thread);
2446     GC_locker::unlock_critical(thread);
2447     thread->clear_critical_native_unlock();
2448   }
2449 }
2450 
2451 // We need to guarantee the Threads_lock here, since resumes are not
2452 // allowed during safepoint synchronization
2453 // Can only resume from an external suspension
2454 void JavaThread::java_resume() {
2455   assert_locked_or_safepoint(Threads_lock);
2456 
2457   // Sanity check: thread is gone, has started exiting or the thread
2458   // was not externally suspended.
2459   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2460     return;
2461   }
2462 
2463   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2464 
2465   clear_external_suspend();
2466 
2467   if (is_ext_suspended()) {
2468     clear_ext_suspended();
2469     SR_lock()->notify_all();
2470   }
2471 }
2472 
2473 void JavaThread::create_stack_guard_pages() {
2474   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2475   address low_addr = stack_base() - stack_size();
2476   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2477 
2478   int allocate = os::allocate_stack_guard_pages();
2479   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2480 
2481   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2482     warning("Attempt to allocate stack guard pages failed.");
2483     return;
2484   }
2485 
2486   if (os::guard_memory((char *) low_addr, len)) {
2487     _stack_guard_state = stack_guard_enabled;
2488   } else {
2489     warning("Attempt to protect stack guard pages failed.");
2490     if (os::uncommit_memory((char *) low_addr, len)) {
2491       warning("Attempt to deallocate stack guard pages failed.");
2492     }
2493   }
2494 }
2495 
2496 void JavaThread::remove_stack_guard_pages() {
2497   assert(Thread::current() == this, "from different thread");
2498   if (_stack_guard_state == stack_guard_unused) return;
2499   address low_addr = stack_base() - stack_size();
2500   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2501 
2502   if (os::allocate_stack_guard_pages()) {
2503     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2504       _stack_guard_state = stack_guard_unused;
2505     } else {
2506       warning("Attempt to deallocate stack guard pages failed.");
2507     }
2508   } else {
2509     if (_stack_guard_state == stack_guard_unused) return;
2510     if (os::unguard_memory((char *) low_addr, len)) {
2511       _stack_guard_state = stack_guard_unused;
2512     } else {
2513       warning("Attempt to unprotect stack guard pages failed.");
2514     }
2515   }
2516 }
2517 
2518 void JavaThread::enable_stack_yellow_zone() {
2519   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2520   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2521 
2522   // The base notation is from the stacks point of view, growing downward.
2523   // We need to adjust it to work correctly with guard_memory()
2524   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2525 
2526   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2527   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2528 
2529   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2530     _stack_guard_state = stack_guard_enabled;
2531   } else {
2532     warning("Attempt to guard stack yellow zone failed.");
2533   }
2534   enable_register_stack_guard();
2535 }
2536 
2537 void JavaThread::disable_stack_yellow_zone() {
2538   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2539   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2540 
2541   // Simply return if called for a thread that does not use guard pages.
2542   if (_stack_guard_state == stack_guard_unused) return;
2543 
2544   // The base notation is from the stacks point of view, growing downward.
2545   // We need to adjust it to work correctly with guard_memory()
2546   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2547 
2548   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2549     _stack_guard_state = stack_guard_yellow_disabled;
2550   } else {
2551     warning("Attempt to unguard stack yellow zone failed.");
2552   }
2553   disable_register_stack_guard();
2554 }
2555 
2556 void JavaThread::enable_stack_red_zone() {
2557   // The base notation is from the stacks point of view, growing downward.
2558   // We need to adjust it to work correctly with guard_memory()
2559   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2560   address base = stack_red_zone_base() - stack_red_zone_size();
2561 
2562   guarantee(base < stack_base(), "Error calculating stack red zone");
2563   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2564 
2565   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2566     warning("Attempt to guard stack red zone failed.");
2567   }
2568 }
2569 
2570 void JavaThread::disable_stack_red_zone() {
2571   // The base notation is from the stacks point of view, growing downward.
2572   // We need to adjust it to work correctly with guard_memory()
2573   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2574   address base = stack_red_zone_base() - stack_red_zone_size();
2575   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2576     warning("Attempt to unguard stack red zone failed.");
2577   }
2578 }
2579 
2580 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2581   // ignore is there is no stack
2582   if (!has_last_Java_frame()) return;
2583   // traverse the stack frames. Starts from top frame.
2584   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2585     frame* fr = fst.current();
2586     f(fr, fst.register_map());
2587   }
2588 }
2589 
2590 
2591 #ifndef PRODUCT
2592 // Deoptimization
2593 // Function for testing deoptimization
2594 void JavaThread::deoptimize() {
2595   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2596   StackFrameStream fst(this, UseBiasedLocking);
2597   bool deopt = false;           // Dump stack only if a deopt actually happens.
2598   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2599   // Iterate over all frames in the thread and deoptimize
2600   for (; !fst.is_done(); fst.next()) {
2601     if (fst.current()->can_be_deoptimized()) {
2602 
2603       if (only_at) {
2604         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2605         // consists of comma or carriage return separated numbers so
2606         // search for the current bci in that string.
2607         address pc = fst.current()->pc();
2608         nmethod* nm =  (nmethod*) fst.current()->cb();
2609         ScopeDesc* sd = nm->scope_desc_at(pc);
2610         char buffer[8];
2611         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2612         size_t len = strlen(buffer);
2613         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2614         while (found != NULL) {
2615           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2616               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2617             // Check that the bci found is bracketed by terminators.
2618             break;
2619           }
2620           found = strstr(found + 1, buffer);
2621         }
2622         if (!found) {
2623           continue;
2624         }
2625       }
2626 
2627       if (DebugDeoptimization && !deopt) {
2628         deopt = true; // One-time only print before deopt
2629         tty->print_cr("[BEFORE Deoptimization]");
2630         trace_frames();
2631         trace_stack();
2632       }
2633       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2634     }
2635   }
2636 
2637   if (DebugDeoptimization && deopt) {
2638     tty->print_cr("[AFTER Deoptimization]");
2639     trace_frames();
2640   }
2641 }
2642 
2643 
2644 // Make zombies
2645 void JavaThread::make_zombies() {
2646   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2647     if (fst.current()->can_be_deoptimized()) {
2648       // it is a Java nmethod
2649       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2650       nm->make_not_entrant();
2651     }
2652   }
2653 }
2654 #endif // PRODUCT
2655 
2656 
2657 void JavaThread::deoptimized_wrt_marked_nmethods() {
2658   if (!has_last_Java_frame()) return;
2659   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2660   StackFrameStream fst(this, UseBiasedLocking);
2661   for (; !fst.is_done(); fst.next()) {
2662     if (fst.current()->should_be_deoptimized()) {
2663       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2664     }
2665   }
2666 }
2667 
2668 
2669 // If the caller is a NamedThread, then remember, in the current scope,
2670 // the given JavaThread in its _processed_thread field.
2671 class RememberProcessedThread: public StackObj {
2672   NamedThread* _cur_thr;
2673  public:
2674   RememberProcessedThread(JavaThread* jthr) {
2675     Thread* thread = Thread::current();
2676     if (thread->is_Named_thread()) {
2677       _cur_thr = (NamedThread *)thread;
2678       _cur_thr->set_processed_thread(jthr);
2679     } else {
2680       _cur_thr = NULL;
2681     }
2682   }
2683 
2684   ~RememberProcessedThread() {
2685     if (_cur_thr) {
2686       _cur_thr->set_processed_thread(NULL);
2687     }
2688   }
2689 };
2690 
2691 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2692   // Verify that the deferred card marks have been flushed.
2693   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2694 
2695   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2696   // since there may be more than one thread using each ThreadProfiler.
2697 
2698   // Traverse the GCHandles
2699   Thread::oops_do(f, cld_f, cf);
2700 
2701   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2702 
2703   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2704          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2705 
2706   if (has_last_Java_frame()) {
2707     // Record JavaThread to GC thread
2708     RememberProcessedThread rpt(this);
2709 
2710     // Traverse the privileged stack
2711     if (_privileged_stack_top != NULL) {
2712       _privileged_stack_top->oops_do(f);
2713     }
2714 
2715     // traverse the registered growable array
2716     if (_array_for_gc != NULL) {
2717       for (int index = 0; index < _array_for_gc->length(); index++) {
2718         f->do_oop(_array_for_gc->adr_at(index));
2719       }
2720     }
2721 
2722     // Traverse the monitor chunks
2723     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2724       chunk->oops_do(f);
2725     }
2726 
2727     // Traverse the execution stack
2728     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2729       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2730     }
2731   }
2732 
2733   // callee_target is never live across a gc point so NULL it here should
2734   // it still contain a methdOop.
2735 
2736   set_callee_target(NULL);
2737 
2738   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2739   // If we have deferred set_locals there might be oops waiting to be
2740   // written
2741   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2742   if (list != NULL) {
2743     for (int i = 0; i < list->length(); i++) {
2744       list->at(i)->oops_do(f);
2745     }
2746   }
2747 
2748   // Traverse instance variables at the end since the GC may be moving things
2749   // around using this function
2750   f->do_oop((oop*) &_threadObj);
2751   f->do_oop((oop*) &_vm_result);
2752   f->do_oop((oop*) &_exception_oop);
2753   f->do_oop((oop*) &_pending_async_exception);
2754 
2755   if (jvmti_thread_state() != NULL) {
2756     jvmti_thread_state()->oops_do(f);
2757   }
2758 }
2759 
2760 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2761   Thread::nmethods_do(cf);  // (super method is a no-op)
2762 
2763   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2764          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2765 
2766   if (has_last_Java_frame()) {
2767     // Traverse the execution stack
2768     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2769       fst.current()->nmethods_do(cf);
2770     }
2771   }
2772 }
2773 
2774 void JavaThread::metadata_do(void f(Metadata*)) {
2775   if (has_last_Java_frame()) {
2776     // Traverse the execution stack to call f() on the methods in the stack
2777     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2778       fst.current()->metadata_do(f);
2779     }
2780   } else if (is_Compiler_thread()) {
2781     // need to walk ciMetadata in current compile tasks to keep alive.
2782     CompilerThread* ct = (CompilerThread*)this;
2783     if (ct->env() != NULL) {
2784       ct->env()->metadata_do(f);
2785     }
2786     if (ct->task() != NULL) {
2787       ct->task()->metadata_do(f);
2788     }
2789   }
2790 }
2791 
2792 // Printing
2793 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2794   switch (_thread_state) {
2795   case _thread_uninitialized:     return "_thread_uninitialized";
2796   case _thread_new:               return "_thread_new";
2797   case _thread_new_trans:         return "_thread_new_trans";
2798   case _thread_in_native:         return "_thread_in_native";
2799   case _thread_in_native_trans:   return "_thread_in_native_trans";
2800   case _thread_in_vm:             return "_thread_in_vm";
2801   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2802   case _thread_in_Java:           return "_thread_in_Java";
2803   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2804   case _thread_blocked:           return "_thread_blocked";
2805   case _thread_blocked_trans:     return "_thread_blocked_trans";
2806   default:                        return "unknown thread state";
2807   }
2808 }
2809 
2810 #ifndef PRODUCT
2811 void JavaThread::print_thread_state_on(outputStream *st) const {
2812   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2813 };
2814 void JavaThread::print_thread_state() const {
2815   print_thread_state_on(tty);
2816 }
2817 #endif // PRODUCT
2818 
2819 // Called by Threads::print() for VM_PrintThreads operation
2820 void JavaThread::print_on(outputStream *st) const {
2821   st->print("\"%s\" ", get_thread_name());
2822   oop thread_oop = threadObj();
2823   if (thread_oop != NULL) {
2824     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2825     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2826     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2827   }
2828   Thread::print_on(st);
2829   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2830   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2831   if (thread_oop != NULL) {
2832     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2833   }
2834 #ifndef PRODUCT
2835   print_thread_state_on(st);
2836   _safepoint_state->print_on(st);
2837 #endif // PRODUCT
2838 }
2839 
2840 // Called by fatal error handler. The difference between this and
2841 // JavaThread::print() is that we can't grab lock or allocate memory.
2842 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2843   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2844   oop thread_obj = threadObj();
2845   if (thread_obj != NULL) {
2846     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2847   }
2848   st->print(" [");
2849   st->print("%s", _get_thread_state_name(_thread_state));
2850   if (osthread()) {
2851     st->print(", id=%d", osthread()->thread_id());
2852   }
2853   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2854             p2i(_stack_base - _stack_size), p2i(_stack_base));
2855   st->print("]");
2856   return;
2857 }
2858 
2859 // Verification
2860 
2861 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2862 
2863 void JavaThread::verify() {
2864   // Verify oops in the thread.
2865   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2866 
2867   // Verify the stack frames.
2868   frames_do(frame_verify);
2869 }
2870 
2871 // CR 6300358 (sub-CR 2137150)
2872 // Most callers of this method assume that it can't return NULL but a
2873 // thread may not have a name whilst it is in the process of attaching to
2874 // the VM - see CR 6412693, and there are places where a JavaThread can be
2875 // seen prior to having it's threadObj set (eg JNI attaching threads and
2876 // if vm exit occurs during initialization). These cases can all be accounted
2877 // for such that this method never returns NULL.
2878 const char* JavaThread::get_thread_name() const {
2879 #ifdef ASSERT
2880   // early safepoints can hit while current thread does not yet have TLS
2881   if (!SafepointSynchronize::is_at_safepoint()) {
2882     Thread *cur = Thread::current();
2883     if (!(cur->is_Java_thread() && cur == this)) {
2884       // Current JavaThreads are allowed to get their own name without
2885       // the Threads_lock.
2886       assert_locked_or_safepoint(Threads_lock);
2887     }
2888   }
2889 #endif // ASSERT
2890   return get_thread_name_string();
2891 }
2892 
2893 // Returns a non-NULL representation of this thread's name, or a suitable
2894 // descriptive string if there is no set name
2895 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2896   const char* name_str;
2897   oop thread_obj = threadObj();
2898   if (thread_obj != NULL) {
2899     oop name = java_lang_Thread::name(thread_obj);
2900     if (name != NULL) {
2901       if (buf == NULL) {
2902         name_str = java_lang_String::as_utf8_string(name);
2903       } else {
2904         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2905       }
2906     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2907       name_str = "<no-name - thread is attaching>";
2908     } else {
2909       name_str = Thread::name();
2910     }
2911   } else {
2912     name_str = Thread::name();
2913   }
2914   assert(name_str != NULL, "unexpected NULL thread name");
2915   return name_str;
2916 }
2917 
2918 
2919 const char* JavaThread::get_threadgroup_name() const {
2920   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2921   oop thread_obj = threadObj();
2922   if (thread_obj != NULL) {
2923     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2924     if (thread_group != NULL) {
2925       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2926       // ThreadGroup.name can be null
2927       if (name != NULL) {
2928         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2929         return str;
2930       }
2931     }
2932   }
2933   return NULL;
2934 }
2935 
2936 const char* JavaThread::get_parent_name() const {
2937   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2938   oop thread_obj = threadObj();
2939   if (thread_obj != NULL) {
2940     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2941     if (thread_group != NULL) {
2942       oop parent = java_lang_ThreadGroup::parent(thread_group);
2943       if (parent != NULL) {
2944         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2945         // ThreadGroup.name can be null
2946         if (name != NULL) {
2947           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2948           return str;
2949         }
2950       }
2951     }
2952   }
2953   return NULL;
2954 }
2955 
2956 ThreadPriority JavaThread::java_priority() const {
2957   oop thr_oop = threadObj();
2958   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2959   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2960   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2961   return priority;
2962 }
2963 
2964 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2965 
2966   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2967   // Link Java Thread object <-> C++ Thread
2968 
2969   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2970   // and put it into a new Handle.  The Handle "thread_oop" can then
2971   // be used to pass the C++ thread object to other methods.
2972 
2973   // Set the Java level thread object (jthread) field of the
2974   // new thread (a JavaThread *) to C++ thread object using the
2975   // "thread_oop" handle.
2976 
2977   // Set the thread field (a JavaThread *) of the
2978   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2979 
2980   Handle thread_oop(Thread::current(),
2981                     JNIHandles::resolve_non_null(jni_thread));
2982   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2983          "must be initialized");
2984   set_threadObj(thread_oop());
2985   java_lang_Thread::set_thread(thread_oop(), this);
2986 
2987   if (prio == NoPriority) {
2988     prio = java_lang_Thread::priority(thread_oop());
2989     assert(prio != NoPriority, "A valid priority should be present");
2990   }
2991 
2992   // Push the Java priority down to the native thread; needs Threads_lock
2993   Thread::set_priority(this, prio);
2994 
2995   prepare_ext();
2996 
2997   // Add the new thread to the Threads list and set it in motion.
2998   // We must have threads lock in order to call Threads::add.
2999   // It is crucial that we do not block before the thread is
3000   // added to the Threads list for if a GC happens, then the java_thread oop
3001   // will not be visited by GC.
3002   Threads::add(this);
3003 }
3004 
3005 oop JavaThread::current_park_blocker() {
3006   // Support for JSR-166 locks
3007   oop thread_oop = threadObj();
3008   if (thread_oop != NULL &&
3009       JDK_Version::current().supports_thread_park_blocker()) {
3010     return java_lang_Thread::park_blocker(thread_oop);
3011   }
3012   return NULL;
3013 }
3014 
3015 
3016 void JavaThread::print_stack_on(outputStream* st) {
3017   if (!has_last_Java_frame()) return;
3018   ResourceMark rm;
3019   HandleMark   hm;
3020 
3021   RegisterMap reg_map(this);
3022   vframe* start_vf = last_java_vframe(&reg_map);
3023   int count = 0;
3024   for (vframe* f = start_vf; f; f = f->sender()) {
3025     if (f->is_java_frame()) {
3026       javaVFrame* jvf = javaVFrame::cast(f);
3027       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3028 
3029       // Print out lock information
3030       if (JavaMonitorsInStackTrace) {
3031         jvf->print_lock_info_on(st, count);
3032       }
3033     } else {
3034       // Ignore non-Java frames
3035     }
3036 
3037     // Bail-out case for too deep stacks
3038     count++;
3039     if (MaxJavaStackTraceDepth == count) return;
3040   }
3041 }
3042 
3043 
3044 // JVMTI PopFrame support
3045 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3046   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3047   if (in_bytes(size_in_bytes) != 0) {
3048     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3049     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3050     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3051   }
3052 }
3053 
3054 void* JavaThread::popframe_preserved_args() {
3055   return _popframe_preserved_args;
3056 }
3057 
3058 ByteSize JavaThread::popframe_preserved_args_size() {
3059   return in_ByteSize(_popframe_preserved_args_size);
3060 }
3061 
3062 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3063   int sz = in_bytes(popframe_preserved_args_size());
3064   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3065   return in_WordSize(sz / wordSize);
3066 }
3067 
3068 void JavaThread::popframe_free_preserved_args() {
3069   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3070   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3071   _popframe_preserved_args = NULL;
3072   _popframe_preserved_args_size = 0;
3073 }
3074 
3075 #ifndef PRODUCT
3076 
3077 void JavaThread::trace_frames() {
3078   tty->print_cr("[Describe stack]");
3079   int frame_no = 1;
3080   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3081     tty->print("  %d. ", frame_no++);
3082     fst.current()->print_value_on(tty, this);
3083     tty->cr();
3084   }
3085 }
3086 
3087 class PrintAndVerifyOopClosure: public OopClosure {
3088  protected:
3089   template <class T> inline void do_oop_work(T* p) {
3090     oop obj = oopDesc::load_decode_heap_oop(p);
3091     if (obj == NULL) return;
3092     tty->print(INTPTR_FORMAT ": ", p2i(p));
3093     if (obj->is_oop_or_null()) {
3094       if (obj->is_objArray()) {
3095         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3096       } else {
3097         obj->print();
3098       }
3099     } else {
3100       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3101     }
3102     tty->cr();
3103   }
3104  public:
3105   virtual void do_oop(oop* p) { do_oop_work(p); }
3106   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3107 };
3108 
3109 
3110 static void oops_print(frame* f, const RegisterMap *map) {
3111   PrintAndVerifyOopClosure print;
3112   f->print_value();
3113   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3114 }
3115 
3116 // Print our all the locations that contain oops and whether they are
3117 // valid or not.  This useful when trying to find the oldest frame
3118 // where an oop has gone bad since the frame walk is from youngest to
3119 // oldest.
3120 void JavaThread::trace_oops() {
3121   tty->print_cr("[Trace oops]");
3122   frames_do(oops_print);
3123 }
3124 
3125 
3126 #ifdef ASSERT
3127 // Print or validate the layout of stack frames
3128 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3129   ResourceMark rm;
3130   PRESERVE_EXCEPTION_MARK;
3131   FrameValues values;
3132   int frame_no = 0;
3133   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3134     fst.current()->describe(values, ++frame_no);
3135     if (depth == frame_no) break;
3136   }
3137   if (validate_only) {
3138     values.validate();
3139   } else {
3140     tty->print_cr("[Describe stack layout]");
3141     values.print(this);
3142   }
3143 }
3144 #endif
3145 
3146 void JavaThread::trace_stack_from(vframe* start_vf) {
3147   ResourceMark rm;
3148   int vframe_no = 1;
3149   for (vframe* f = start_vf; f; f = f->sender()) {
3150     if (f->is_java_frame()) {
3151       javaVFrame::cast(f)->print_activation(vframe_no++);
3152     } else {
3153       f->print();
3154     }
3155     if (vframe_no > StackPrintLimit) {
3156       tty->print_cr("...<more frames>...");
3157       return;
3158     }
3159   }
3160 }
3161 
3162 
3163 void JavaThread::trace_stack() {
3164   if (!has_last_Java_frame()) return;
3165   ResourceMark rm;
3166   HandleMark   hm;
3167   RegisterMap reg_map(this);
3168   trace_stack_from(last_java_vframe(&reg_map));
3169 }
3170 
3171 
3172 #endif // PRODUCT
3173 
3174 
3175 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3176   assert(reg_map != NULL, "a map must be given");
3177   frame f = last_frame();
3178   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3179     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3180   }
3181   return NULL;
3182 }
3183 
3184 
3185 Klass* JavaThread::security_get_caller_class(int depth) {
3186   vframeStream vfst(this);
3187   vfst.security_get_caller_frame(depth);
3188   if (!vfst.at_end()) {
3189     return vfst.method()->method_holder();
3190   }
3191   return NULL;
3192 }
3193 
3194 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3195   assert(thread->is_Compiler_thread(), "must be compiler thread");
3196   CompileBroker::compiler_thread_loop();
3197 }
3198 
3199 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3200   NMethodSweeper::sweeper_loop();
3201 }
3202 
3203 // Create a CompilerThread
3204 CompilerThread::CompilerThread(CompileQueue* queue,
3205                                CompilerCounters* counters)
3206                                : JavaThread(&compiler_thread_entry) {
3207   _env   = NULL;
3208   _log   = NULL;
3209   _task  = NULL;
3210   _queue = queue;
3211   _counters = counters;
3212   _buffer_blob = NULL;
3213   _compiler = NULL;
3214 
3215 #ifndef PRODUCT
3216   _ideal_graph_printer = NULL;
3217 #endif
3218 }
3219 
3220 bool CompilerThread::can_call_java() const {
3221   return _compiler != NULL && _compiler->is_jvmci();
3222 }
3223 
3224 // Create sweeper thread
3225 CodeCacheSweeperThread::CodeCacheSweeperThread()
3226 : JavaThread(&sweeper_thread_entry) {
3227   _scanned_nmethod = NULL;
3228 }
3229 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3230   JavaThread::oops_do(f, cld_f, cf);
3231   if (_scanned_nmethod != NULL && cf != NULL) {
3232     // Safepoints can occur when the sweeper is scanning an nmethod so
3233     // process it here to make sure it isn't unloaded in the middle of
3234     // a scan.
3235     cf->do_code_blob(_scanned_nmethod);
3236   }
3237 }
3238 
3239 
3240 // ======= Threads ========
3241 
3242 // The Threads class links together all active threads, and provides
3243 // operations over all threads.  It is protected by its own Mutex
3244 // lock, which is also used in other contexts to protect thread
3245 // operations from having the thread being operated on from exiting
3246 // and going away unexpectedly (e.g., safepoint synchronization)
3247 
3248 JavaThread* Threads::_thread_list = NULL;
3249 int         Threads::_number_of_threads = 0;
3250 int         Threads::_number_of_non_daemon_threads = 0;
3251 int         Threads::_return_code = 0;
3252 int         Threads::_thread_claim_parity = 0;
3253 size_t      JavaThread::_stack_size_at_create = 0;
3254 #ifdef ASSERT
3255 bool        Threads::_vm_complete = false;
3256 #endif
3257 
3258 // All JavaThreads
3259 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3260 
3261 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3262 void Threads::threads_do(ThreadClosure* tc) {
3263   assert_locked_or_safepoint(Threads_lock);
3264   // ALL_JAVA_THREADS iterates through all JavaThreads
3265   ALL_JAVA_THREADS(p) {
3266     tc->do_thread(p);
3267   }
3268   // Someday we could have a table or list of all non-JavaThreads.
3269   // For now, just manually iterate through them.
3270   tc->do_thread(VMThread::vm_thread());
3271   Universe::heap()->gc_threads_do(tc);
3272   WatcherThread *wt = WatcherThread::watcher_thread();
3273   // Strictly speaking, the following NULL check isn't sufficient to make sure
3274   // the data for WatcherThread is still valid upon being examined. However,
3275   // considering that WatchThread terminates when the VM is on the way to
3276   // exit at safepoint, the chance of the above is extremely small. The right
3277   // way to prevent termination of WatcherThread would be to acquire
3278   // Terminator_lock, but we can't do that without violating the lock rank
3279   // checking in some cases.
3280   if (wt != NULL) {
3281     tc->do_thread(wt);
3282   }
3283 
3284   // If CompilerThreads ever become non-JavaThreads, add them here
3285 }
3286 
3287 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3288   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3289 
3290   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3291     create_vm_init_libraries();
3292   }
3293 
3294   initialize_class(vmSymbols::java_lang_String(), CHECK);
3295 
3296   // Initialize java_lang.System (needed before creating the thread)
3297   initialize_class(vmSymbols::java_lang_System(), CHECK);
3298   // The VM creates & returns objects of this class. Make sure it's initialized.
3299   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3300   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3301   Handle thread_group = create_initial_thread_group(CHECK);
3302   Universe::set_main_thread_group(thread_group());
3303   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3304   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3305   main_thread->set_threadObj(thread_object);
3306   // Set thread status to running since main thread has
3307   // been started and running.
3308   java_lang_Thread::set_thread_status(thread_object,
3309                                       java_lang_Thread::RUNNABLE);
3310 
3311   // The VM preresolves methods to these classes. Make sure that they get initialized
3312   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3313   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3314   call_initializeSystemClass(CHECK);
3315 
3316   // get the Java runtime name after java.lang.System is initialized
3317   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3318   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3319 
3320   // an instance of OutOfMemory exception has been allocated earlier
3321   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3322   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3323   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3324   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3325   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3326   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3327   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3328   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3329 }
3330 
3331 void Threads::initialize_jsr292_core_classes(TRAPS) {
3332   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3333   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3334   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3335 }
3336 
3337 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3338   extern void JDK_Version_init();
3339 
3340   // Preinitialize version info.
3341   VM_Version::early_initialize();
3342 
3343   // Check version
3344   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3345 
3346   // Initialize the output stream module
3347   ostream_init();
3348 
3349   // Process java launcher properties.
3350   Arguments::process_sun_java_launcher_properties(args);
3351 
3352   // Initialize the os module before using TLS
3353   os::init();
3354 
3355   // Record VM creation timing statistics
3356   TraceVmCreationTime create_vm_timer;
3357   create_vm_timer.start();
3358 
3359   // Initialize system properties.
3360   Arguments::init_system_properties();
3361 
3362   // So that JDK version can be used as a discriminator when parsing arguments
3363   JDK_Version_init();
3364 
3365   // Update/Initialize System properties after JDK version number is known
3366   Arguments::init_version_specific_system_properties();
3367 
3368   // Make sure to initialize log configuration *before* parsing arguments
3369   LogConfiguration::initialize(create_vm_timer.begin_time());
3370 
3371   // Parse arguments
3372   jint parse_result = Arguments::parse(args);
3373   if (parse_result != JNI_OK) return parse_result;
3374 
3375   os::init_before_ergo();
3376 
3377   jint ergo_result = Arguments::apply_ergo();
3378   if (ergo_result != JNI_OK) return ergo_result;
3379 
3380   // Final check of all ranges after ergonomics which may change values.
3381   if (!CommandLineFlagRangeList::check_ranges()) {
3382     return JNI_EINVAL;
3383   }
3384 
3385   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3386   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3387   if (!constraint_result) {
3388     return JNI_EINVAL;
3389   }
3390 
3391   if (PauseAtStartup) {
3392     os::pause();
3393   }
3394 
3395   HOTSPOT_VM_INIT_BEGIN();
3396 
3397   // Timing (must come after argument parsing)
3398   TraceTime timer("Create VM", TraceStartupTime);
3399 
3400   // Initialize the os module after parsing the args
3401   jint os_init_2_result = os::init_2();
3402   if (os_init_2_result != JNI_OK) return os_init_2_result;
3403 
3404   jint adjust_after_os_result = Arguments::adjust_after_os();
3405   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3406 
3407   // Initialize library-based TLS
3408   ThreadLocalStorage::init();
3409 
3410   // Initialize output stream logging
3411   ostream_init_log();
3412 
3413   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3414   // Must be before create_vm_init_agents()
3415   if (Arguments::init_libraries_at_startup()) {
3416     convert_vm_init_libraries_to_agents();
3417   }
3418 
3419   // Launch -agentlib/-agentpath and converted -Xrun agents
3420   if (Arguments::init_agents_at_startup()) {
3421     create_vm_init_agents();
3422   }
3423 
3424   // Initialize Threads state
3425   _thread_list = NULL;
3426   _number_of_threads = 0;
3427   _number_of_non_daemon_threads = 0;
3428 
3429   // Initialize global data structures and create system classes in heap
3430   vm_init_globals();
3431 
3432 #if INCLUDE_JVMCI
3433   if (JVMCICounterSize > 0) {
3434     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3435     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3436   } else {
3437     JavaThread::_jvmci_old_thread_counters = NULL;
3438   }
3439 #endif // INCLUDE_JVMCI
3440 
3441   // Attach the main thread to this os thread
3442   JavaThread* main_thread = new JavaThread();
3443   main_thread->set_thread_state(_thread_in_vm);
3444   main_thread->initialize_thread_current();
3445   // must do this before set_active_handles
3446   main_thread->record_stack_base_and_size();
3447   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3448 
3449   if (!main_thread->set_as_starting_thread()) {
3450     vm_shutdown_during_initialization(
3451                                       "Failed necessary internal allocation. Out of swap space");
3452     delete main_thread;
3453     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3454     return JNI_ENOMEM;
3455   }
3456 
3457   // Enable guard page *after* os::create_main_thread(), otherwise it would
3458   // crash Linux VM, see notes in os_linux.cpp.
3459   main_thread->create_stack_guard_pages();
3460 
3461   // Initialize Java-Level synchronization subsystem
3462   ObjectMonitor::Initialize();
3463 
3464   // Initialize global modules
3465   jint status = init_globals();
3466   if (status != JNI_OK) {
3467     delete main_thread;
3468     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3469     return status;
3470   }
3471 
3472   // Should be done after the heap is fully created
3473   main_thread->cache_global_variables();
3474 
3475   HandleMark hm;
3476 
3477   { MutexLocker mu(Threads_lock);
3478     Threads::add(main_thread);
3479   }
3480 
3481   // Any JVMTI raw monitors entered in onload will transition into
3482   // real raw monitor. VM is setup enough here for raw monitor enter.
3483   JvmtiExport::transition_pending_onload_raw_monitors();
3484 
3485   // Create the VMThread
3486   { TraceTime timer("Start VMThread", TraceStartupTime);
3487     VMThread::create();
3488     Thread* vmthread = VMThread::vm_thread();
3489 
3490     if (!os::create_thread(vmthread, os::vm_thread)) {
3491       vm_exit_during_initialization("Cannot create VM thread. "
3492                                     "Out of system resources.");
3493     }
3494 
3495     // Wait for the VM thread to become ready, and VMThread::run to initialize
3496     // Monitors can have spurious returns, must always check another state flag
3497     {
3498       MutexLocker ml(Notify_lock);
3499       os::start_thread(vmthread);
3500       while (vmthread->active_handles() == NULL) {
3501         Notify_lock->wait();
3502       }
3503     }
3504   }
3505 
3506   assert(Universe::is_fully_initialized(), "not initialized");
3507   if (VerifyDuringStartup) {
3508     // Make sure we're starting with a clean slate.
3509     VM_Verify verify_op;
3510     VMThread::execute(&verify_op);
3511   }
3512 
3513   Thread* THREAD = Thread::current();
3514 
3515   // At this point, the Universe is initialized, but we have not executed
3516   // any byte code.  Now is a good time (the only time) to dump out the
3517   // internal state of the JVM for sharing.
3518   if (DumpSharedSpaces) {
3519     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3520     ShouldNotReachHere();
3521   }
3522 
3523   // Always call even when there are not JVMTI environments yet, since environments
3524   // may be attached late and JVMTI must track phases of VM execution
3525   JvmtiExport::enter_start_phase();
3526 
3527   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3528   JvmtiExport::post_vm_start();
3529 
3530   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3531 
3532   // We need this for ClassDataSharing - the initial vm.info property is set
3533   // with the default value of CDS "sharing" which may be reset through
3534   // command line options.
3535   reset_vm_info_property(CHECK_JNI_ERR);
3536 
3537   quicken_jni_functions();
3538 
3539   // Must be run after init_ft which initializes ft_enabled
3540   if (TRACE_INITIALIZE() != JNI_OK) {
3541     vm_exit_during_initialization("Failed to initialize tracing backend");
3542   }
3543 
3544   // Set flag that basic initialization has completed. Used by exceptions and various
3545   // debug stuff, that does not work until all basic classes have been initialized.
3546   set_init_completed();
3547 
3548   LogConfiguration::post_initialize();
3549   Metaspace::post_initialize();
3550 
3551   HOTSPOT_VM_INIT_END();
3552 
3553   // record VM initialization completion time
3554 #if INCLUDE_MANAGEMENT
3555   Management::record_vm_init_completed();
3556 #endif // INCLUDE_MANAGEMENT
3557 
3558   // Compute system loader. Note that this has to occur after set_init_completed, since
3559   // valid exceptions may be thrown in the process.
3560   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3561   // set_init_completed has just been called, causing exceptions not to be shortcut
3562   // anymore. We call vm_exit_during_initialization directly instead.
3563   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3564 
3565 #if INCLUDE_ALL_GCS
3566   // Support for ConcurrentMarkSweep. This should be cleaned up
3567   // and better encapsulated. The ugly nested if test would go away
3568   // once things are properly refactored. XXX YSR
3569   if (UseConcMarkSweepGC || UseG1GC) {
3570     if (UseConcMarkSweepGC) {
3571       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3572     } else {
3573       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3574     }
3575   }
3576 #endif // INCLUDE_ALL_GCS
3577 
3578   // Always call even when there are not JVMTI environments yet, since environments
3579   // may be attached late and JVMTI must track phases of VM execution
3580   JvmtiExport::enter_live_phase();
3581 
3582   // Signal Dispatcher needs to be started before VMInit event is posted
3583   os::signal_init();
3584 
3585   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3586   if (!DisableAttachMechanism) {
3587     AttachListener::vm_start();
3588     if (StartAttachListener || AttachListener::init_at_startup()) {
3589       AttachListener::init();
3590     }
3591   }
3592 
3593   // Launch -Xrun agents
3594   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3595   // back-end can launch with -Xdebug -Xrunjdwp.
3596   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3597     create_vm_init_libraries();
3598   }
3599 
3600   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3601   JvmtiExport::post_vm_initialized();
3602 
3603   if (TRACE_START() != JNI_OK) {
3604     vm_exit_during_initialization("Failed to start tracing backend.");
3605   }
3606 
3607   if (CleanChunkPoolAsync) {
3608     Chunk::start_chunk_pool_cleaner_task();
3609   }
3610 
3611 #if INCLUDE_JVMCI
3612   if (EnableJVMCI) {
3613     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3614     if (jvmciCompiler != NULL) {
3615       JVMCIRuntime::save_compiler(jvmciCompiler);
3616     }
3617   }
3618 #endif // INCLUDE_JVMCI
3619 
3620   // initialize compiler(s)
3621 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3622   CompileBroker::compilation_init();
3623 #endif
3624 
3625   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3626   // It is done after compilers are initialized, because otherwise compilations of
3627   // signature polymorphic MH intrinsics can be missed
3628   // (see SystemDictionary::find_method_handle_intrinsic).
3629   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3630 
3631 #if INCLUDE_MANAGEMENT
3632   Management::initialize(THREAD);
3633 
3634   if (HAS_PENDING_EXCEPTION) {
3635     // management agent fails to start possibly due to
3636     // configuration problem and is responsible for printing
3637     // stack trace if appropriate. Simply exit VM.
3638     vm_exit(1);
3639   }
3640 #endif // INCLUDE_MANAGEMENT
3641 
3642   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3643   if (MemProfiling)                   MemProfiler::engage();
3644   StatSampler::engage();
3645   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3646 
3647   BiasedLocking::init();
3648 
3649 #if INCLUDE_RTM_OPT
3650   RTMLockingCounters::init();
3651 #endif
3652 
3653   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3654     call_postVMInitHook(THREAD);
3655     // The Java side of PostVMInitHook.run must deal with all
3656     // exceptions and provide means of diagnosis.
3657     if (HAS_PENDING_EXCEPTION) {
3658       CLEAR_PENDING_EXCEPTION;
3659     }
3660   }
3661 
3662   {
3663     MutexLocker ml(PeriodicTask_lock);
3664     // Make sure the WatcherThread can be started by WatcherThread::start()
3665     // or by dynamic enrollment.
3666     WatcherThread::make_startable();
3667     // Start up the WatcherThread if there are any periodic tasks
3668     // NOTE:  All PeriodicTasks should be registered by now. If they
3669     //   aren't, late joiners might appear to start slowly (we might
3670     //   take a while to process their first tick).
3671     if (PeriodicTask::num_tasks() > 0) {
3672       WatcherThread::start();
3673     }
3674   }
3675 
3676   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3677 
3678   create_vm_timer.end();
3679 #ifdef ASSERT
3680   _vm_complete = true;
3681 #endif
3682   return JNI_OK;
3683 }
3684 
3685 // type for the Agent_OnLoad and JVM_OnLoad entry points
3686 extern "C" {
3687   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3688 }
3689 // Find a command line agent library and return its entry point for
3690 //         -agentlib:  -agentpath:   -Xrun
3691 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3692 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3693                                     const char *on_load_symbols[],
3694                                     size_t num_symbol_entries) {
3695   OnLoadEntry_t on_load_entry = NULL;
3696   void *library = NULL;
3697 
3698   if (!agent->valid()) {
3699     char buffer[JVM_MAXPATHLEN];
3700     char ebuf[1024] = "";
3701     const char *name = agent->name();
3702     const char *msg = "Could not find agent library ";
3703 
3704     // First check to see if agent is statically linked into executable
3705     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3706       library = agent->os_lib();
3707     } else if (agent->is_absolute_path()) {
3708       library = os::dll_load(name, ebuf, sizeof ebuf);
3709       if (library == NULL) {
3710         const char *sub_msg = " in absolute path, with error: ";
3711         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3712         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3713         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3714         // If we can't find the agent, exit.
3715         vm_exit_during_initialization(buf, NULL);
3716         FREE_C_HEAP_ARRAY(char, buf);
3717       }
3718     } else {
3719       // Try to load the agent from the standard dll directory
3720       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3721                              name)) {
3722         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3723       }
3724       if (library == NULL) { // Try the local directory
3725         char ns[1] = {0};
3726         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3727           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3728         }
3729         if (library == NULL) {
3730           const char *sub_msg = " on the library path, with error: ";
3731           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3732           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3733           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3734           // If we can't find the agent, exit.
3735           vm_exit_during_initialization(buf, NULL);
3736           FREE_C_HEAP_ARRAY(char, buf);
3737         }
3738       }
3739     }
3740     agent->set_os_lib(library);
3741     agent->set_valid();
3742   }
3743 
3744   // Find the OnLoad function.
3745   on_load_entry =
3746     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3747                                                           false,
3748                                                           on_load_symbols,
3749                                                           num_symbol_entries));
3750   return on_load_entry;
3751 }
3752 
3753 // Find the JVM_OnLoad entry point
3754 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3755   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3756   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3757 }
3758 
3759 // Find the Agent_OnLoad entry point
3760 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3761   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3762   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3763 }
3764 
3765 // For backwards compatibility with -Xrun
3766 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3767 // treated like -agentpath:
3768 // Must be called before agent libraries are created
3769 void Threads::convert_vm_init_libraries_to_agents() {
3770   AgentLibrary* agent;
3771   AgentLibrary* next;
3772 
3773   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3774     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3775     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3776 
3777     // If there is an JVM_OnLoad function it will get called later,
3778     // otherwise see if there is an Agent_OnLoad
3779     if (on_load_entry == NULL) {
3780       on_load_entry = lookup_agent_on_load(agent);
3781       if (on_load_entry != NULL) {
3782         // switch it to the agent list -- so that Agent_OnLoad will be called,
3783         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3784         Arguments::convert_library_to_agent(agent);
3785       } else {
3786         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3787       }
3788     }
3789   }
3790 }
3791 
3792 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3793 // Invokes Agent_OnLoad
3794 // Called very early -- before JavaThreads exist
3795 void Threads::create_vm_init_agents() {
3796   extern struct JavaVM_ main_vm;
3797   AgentLibrary* agent;
3798 
3799   JvmtiExport::enter_onload_phase();
3800 
3801   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3802     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3803 
3804     if (on_load_entry != NULL) {
3805       // Invoke the Agent_OnLoad function
3806       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3807       if (err != JNI_OK) {
3808         vm_exit_during_initialization("agent library failed to init", agent->name());
3809       }
3810     } else {
3811       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3812     }
3813   }
3814   JvmtiExport::enter_primordial_phase();
3815 }
3816 
3817 extern "C" {
3818   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3819 }
3820 
3821 void Threads::shutdown_vm_agents() {
3822   // Send any Agent_OnUnload notifications
3823   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3824   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3825   extern struct JavaVM_ main_vm;
3826   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3827 
3828     // Find the Agent_OnUnload function.
3829     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3830                                                    os::find_agent_function(agent,
3831                                                    false,
3832                                                    on_unload_symbols,
3833                                                    num_symbol_entries));
3834 
3835     // Invoke the Agent_OnUnload function
3836     if (unload_entry != NULL) {
3837       JavaThread* thread = JavaThread::current();
3838       ThreadToNativeFromVM ttn(thread);
3839       HandleMark hm(thread);
3840       (*unload_entry)(&main_vm);
3841     }
3842   }
3843 }
3844 
3845 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3846 // Invokes JVM_OnLoad
3847 void Threads::create_vm_init_libraries() {
3848   extern struct JavaVM_ main_vm;
3849   AgentLibrary* agent;
3850 
3851   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3852     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3853 
3854     if (on_load_entry != NULL) {
3855       // Invoke the JVM_OnLoad function
3856       JavaThread* thread = JavaThread::current();
3857       ThreadToNativeFromVM ttn(thread);
3858       HandleMark hm(thread);
3859       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3860       if (err != JNI_OK) {
3861         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3862       }
3863     } else {
3864       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3865     }
3866   }
3867 }
3868 
3869 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3870   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3871 
3872   JavaThread* java_thread = NULL;
3873   // Sequential search for now.  Need to do better optimization later.
3874   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3875     oop tobj = thread->threadObj();
3876     if (!thread->is_exiting() &&
3877         tobj != NULL &&
3878         java_tid == java_lang_Thread::thread_id(tobj)) {
3879       java_thread = thread;
3880       break;
3881     }
3882   }
3883   return java_thread;
3884 }
3885 
3886 
3887 // Last thread running calls java.lang.Shutdown.shutdown()
3888 void JavaThread::invoke_shutdown_hooks() {
3889   HandleMark hm(this);
3890 
3891   // We could get here with a pending exception, if so clear it now.
3892   if (this->has_pending_exception()) {
3893     this->clear_pending_exception();
3894   }
3895 
3896   EXCEPTION_MARK;
3897   Klass* k =
3898     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3899                                       THREAD);
3900   if (k != NULL) {
3901     // SystemDictionary::resolve_or_null will return null if there was
3902     // an exception.  If we cannot load the Shutdown class, just don't
3903     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3904     // and finalizers (if runFinalizersOnExit is set) won't be run.
3905     // Note that if a shutdown hook was registered or runFinalizersOnExit
3906     // was called, the Shutdown class would have already been loaded
3907     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3908     instanceKlassHandle shutdown_klass (THREAD, k);
3909     JavaValue result(T_VOID);
3910     JavaCalls::call_static(&result,
3911                            shutdown_klass,
3912                            vmSymbols::shutdown_method_name(),
3913                            vmSymbols::void_method_signature(),
3914                            THREAD);
3915   }
3916   CLEAR_PENDING_EXCEPTION;
3917 }
3918 
3919 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3920 // the program falls off the end of main(). Another VM exit path is through
3921 // vm_exit() when the program calls System.exit() to return a value or when
3922 // there is a serious error in VM. The two shutdown paths are not exactly
3923 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3924 // and VM_Exit op at VM level.
3925 //
3926 // Shutdown sequence:
3927 //   + Shutdown native memory tracking if it is on
3928 //   + Wait until we are the last non-daemon thread to execute
3929 //     <-- every thing is still working at this moment -->
3930 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3931 //        shutdown hooks, run finalizers if finalization-on-exit
3932 //   + Call before_exit(), prepare for VM exit
3933 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3934 //        currently the only user of this mechanism is File.deleteOnExit())
3935 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3936 //        post thread end and vm death events to JVMTI,
3937 //        stop signal thread
3938 //   + Call JavaThread::exit(), it will:
3939 //      > release JNI handle blocks, remove stack guard pages
3940 //      > remove this thread from Threads list
3941 //     <-- no more Java code from this thread after this point -->
3942 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3943 //     the compiler threads at safepoint
3944 //     <-- do not use anything that could get blocked by Safepoint -->
3945 //   + Disable tracing at JNI/JVM barriers
3946 //   + Set _vm_exited flag for threads that are still running native code
3947 //   + Delete this thread
3948 //   + Call exit_globals()
3949 //      > deletes tty
3950 //      > deletes PerfMemory resources
3951 //   + Return to caller
3952 
3953 bool Threads::destroy_vm() {
3954   JavaThread* thread = JavaThread::current();
3955 
3956 #ifdef ASSERT
3957   _vm_complete = false;
3958 #endif
3959   // Wait until we are the last non-daemon thread to execute
3960   { MutexLocker nu(Threads_lock);
3961     while (Threads::number_of_non_daemon_threads() > 1)
3962       // This wait should make safepoint checks, wait without a timeout,
3963       // and wait as a suspend-equivalent condition.
3964       //
3965       // Note: If the FlatProfiler is running and this thread is waiting
3966       // for another non-daemon thread to finish, then the FlatProfiler
3967       // is waiting for the external suspend request on this thread to
3968       // complete. wait_for_ext_suspend_completion() will eventually
3969       // timeout, but that takes time. Making this wait a suspend-
3970       // equivalent condition solves that timeout problem.
3971       //
3972       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3973                          Mutex::_as_suspend_equivalent_flag);
3974   }
3975 
3976   // Hang forever on exit if we are reporting an error.
3977   if (ShowMessageBoxOnError && is_error_reported()) {
3978     os::infinite_sleep();
3979   }
3980   os::wait_for_keypress_at_exit();
3981 
3982   // run Java level shutdown hooks
3983   thread->invoke_shutdown_hooks();
3984 
3985   before_exit(thread);
3986 
3987   thread->exit(true);
3988 
3989   // Stop VM thread.
3990   {
3991     // 4945125 The vm thread comes to a safepoint during exit.
3992     // GC vm_operations can get caught at the safepoint, and the
3993     // heap is unparseable if they are caught. Grab the Heap_lock
3994     // to prevent this. The GC vm_operations will not be able to
3995     // queue until after the vm thread is dead. After this point,
3996     // we'll never emerge out of the safepoint before the VM exits.
3997 
3998     MutexLocker ml(Heap_lock);
3999 
4000     VMThread::wait_for_vm_thread_exit();
4001     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4002     VMThread::destroy();
4003   }
4004 
4005   // clean up ideal graph printers
4006 #if defined(COMPILER2) && !defined(PRODUCT)
4007   IdealGraphPrinter::clean_up();
4008 #endif
4009 
4010   // Now, all Java threads are gone except daemon threads. Daemon threads
4011   // running Java code or in VM are stopped by the Safepoint. However,
4012   // daemon threads executing native code are still running.  But they
4013   // will be stopped at native=>Java/VM barriers. Note that we can't
4014   // simply kill or suspend them, as it is inherently deadlock-prone.
4015 
4016 #ifndef PRODUCT
4017   // disable function tracing at JNI/JVM barriers
4018   TraceJNICalls = false;
4019   TraceJVMCalls = false;
4020   TraceRuntimeCalls = false;
4021 #endif
4022 
4023   VM_Exit::set_vm_exited();
4024 
4025   notify_vm_shutdown();
4026 
4027   delete thread;
4028 
4029 #if INCLUDE_JVMCI
4030   if (JVMCICounterSize > 0) {
4031     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4032   }
4033 #endif
4034 
4035   // exit_globals() will delete tty
4036   exit_globals();
4037 
4038   LogConfiguration::finalize();
4039 
4040   return true;
4041 }
4042 
4043 
4044 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4045   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4046   return is_supported_jni_version(version);
4047 }
4048 
4049 
4050 jboolean Threads::is_supported_jni_version(jint version) {
4051   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4052   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4053   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4054   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4055   return JNI_FALSE;
4056 }
4057 
4058 
4059 void Threads::add(JavaThread* p, bool force_daemon) {
4060   // The threads lock must be owned at this point
4061   assert_locked_or_safepoint(Threads_lock);
4062 
4063   // See the comment for this method in thread.hpp for its purpose and
4064   // why it is called here.
4065   p->initialize_queues();
4066   p->set_next(_thread_list);
4067   _thread_list = p;
4068   _number_of_threads++;
4069   oop threadObj = p->threadObj();
4070   bool daemon = true;
4071   // Bootstrapping problem: threadObj can be null for initial
4072   // JavaThread (or for threads attached via JNI)
4073   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4074     _number_of_non_daemon_threads++;
4075     daemon = false;
4076   }
4077 
4078   ThreadService::add_thread(p, daemon);
4079 
4080   // Possible GC point.
4081   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4082 }
4083 
4084 void Threads::remove(JavaThread* p) {
4085   // Extra scope needed for Thread_lock, so we can check
4086   // that we do not remove thread without safepoint code notice
4087   { MutexLocker ml(Threads_lock);
4088 
4089     assert(includes(p), "p must be present");
4090 
4091     JavaThread* current = _thread_list;
4092     JavaThread* prev    = NULL;
4093 
4094     while (current != p) {
4095       prev    = current;
4096       current = current->next();
4097     }
4098 
4099     if (prev) {
4100       prev->set_next(current->next());
4101     } else {
4102       _thread_list = p->next();
4103     }
4104     _number_of_threads--;
4105     oop threadObj = p->threadObj();
4106     bool daemon = true;
4107     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4108       _number_of_non_daemon_threads--;
4109       daemon = false;
4110 
4111       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4112       // on destroy_vm will wake up.
4113       if (number_of_non_daemon_threads() == 1) {
4114         Threads_lock->notify_all();
4115       }
4116     }
4117     ThreadService::remove_thread(p, daemon);
4118 
4119     // Make sure that safepoint code disregard this thread. This is needed since
4120     // the thread might mess around with locks after this point. This can cause it
4121     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4122     // of this thread since it is removed from the queue.
4123     p->set_terminated_value();
4124   } // unlock Threads_lock
4125 
4126   // Since Events::log uses a lock, we grab it outside the Threads_lock
4127   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4128 }
4129 
4130 // Threads_lock must be held when this is called (or must be called during a safepoint)
4131 bool Threads::includes(JavaThread* p) {
4132   assert(Threads_lock->is_locked(), "sanity check");
4133   ALL_JAVA_THREADS(q) {
4134     if (q == p) {
4135       return true;
4136     }
4137   }
4138   return false;
4139 }
4140 
4141 // Operations on the Threads list for GC.  These are not explicitly locked,
4142 // but the garbage collector must provide a safe context for them to run.
4143 // In particular, these things should never be called when the Threads_lock
4144 // is held by some other thread. (Note: the Safepoint abstraction also
4145 // uses the Threads_lock to guarantee this property. It also makes sure that
4146 // all threads gets blocked when exiting or starting).
4147 
4148 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4149   ALL_JAVA_THREADS(p) {
4150     p->oops_do(f, cld_f, cf);
4151   }
4152   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4153 }
4154 
4155 void Threads::change_thread_claim_parity() {
4156   // Set the new claim parity.
4157   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4158          "Not in range.");
4159   _thread_claim_parity++;
4160   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4161   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4162          "Not in range.");
4163 }
4164 
4165 #ifdef ASSERT
4166 void Threads::assert_all_threads_claimed() {
4167   ALL_JAVA_THREADS(p) {
4168     const int thread_parity = p->oops_do_parity();
4169     assert((thread_parity == _thread_claim_parity),
4170            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4171   }
4172 }
4173 #endif // ASSERT
4174 
4175 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4176   int cp = Threads::thread_claim_parity();
4177   ALL_JAVA_THREADS(p) {
4178     if (p->claim_oops_do(is_par, cp)) {
4179       p->oops_do(f, cld_f, cf);
4180     }
4181   }
4182   VMThread* vmt = VMThread::vm_thread();
4183   if (vmt->claim_oops_do(is_par, cp)) {
4184     vmt->oops_do(f, cld_f, cf);
4185   }
4186 }
4187 
4188 #if INCLUDE_ALL_GCS
4189 // Used by ParallelScavenge
4190 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4191   ALL_JAVA_THREADS(p) {
4192     q->enqueue(new ThreadRootsTask(p));
4193   }
4194   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4195 }
4196 
4197 // Used by Parallel Old
4198 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4199   ALL_JAVA_THREADS(p) {
4200     q->enqueue(new ThreadRootsMarkingTask(p));
4201   }
4202   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4203 }
4204 #endif // INCLUDE_ALL_GCS
4205 
4206 void Threads::nmethods_do(CodeBlobClosure* cf) {
4207   ALL_JAVA_THREADS(p) {
4208     p->nmethods_do(cf);
4209   }
4210   VMThread::vm_thread()->nmethods_do(cf);
4211 }
4212 
4213 void Threads::metadata_do(void f(Metadata*)) {
4214   ALL_JAVA_THREADS(p) {
4215     p->metadata_do(f);
4216   }
4217 }
4218 
4219 class ThreadHandlesClosure : public ThreadClosure {
4220   void (*_f)(Metadata*);
4221  public:
4222   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4223   virtual void do_thread(Thread* thread) {
4224     thread->metadata_handles_do(_f);
4225   }
4226 };
4227 
4228 void Threads::metadata_handles_do(void f(Metadata*)) {
4229   // Only walk the Handles in Thread.
4230   ThreadHandlesClosure handles_closure(f);
4231   threads_do(&handles_closure);
4232 }
4233 
4234 void Threads::deoptimized_wrt_marked_nmethods() {
4235   ALL_JAVA_THREADS(p) {
4236     p->deoptimized_wrt_marked_nmethods();
4237   }
4238 }
4239 
4240 
4241 // Get count Java threads that are waiting to enter the specified monitor.
4242 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4243                                                          address monitor,
4244                                                          bool doLock) {
4245   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4246          "must grab Threads_lock or be at safepoint");
4247   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4248 
4249   int i = 0;
4250   {
4251     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4252     ALL_JAVA_THREADS(p) {
4253       if (!p->can_call_java()) continue;
4254 
4255       address pending = (address)p->current_pending_monitor();
4256       if (pending == monitor) {             // found a match
4257         if (i < count) result->append(p);   // save the first count matches
4258         i++;
4259       }
4260     }
4261   }
4262   return result;
4263 }
4264 
4265 
4266 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4267                                                       bool doLock) {
4268   assert(doLock ||
4269          Threads_lock->owned_by_self() ||
4270          SafepointSynchronize::is_at_safepoint(),
4271          "must grab Threads_lock or be at safepoint");
4272 
4273   // NULL owner means not locked so we can skip the search
4274   if (owner == NULL) return NULL;
4275 
4276   {
4277     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4278     ALL_JAVA_THREADS(p) {
4279       // first, see if owner is the address of a Java thread
4280       if (owner == (address)p) return p;
4281     }
4282   }
4283   // Cannot assert on lack of success here since this function may be
4284   // used by code that is trying to report useful problem information
4285   // like deadlock detection.
4286   if (UseHeavyMonitors) return NULL;
4287 
4288   // If we didn't find a matching Java thread and we didn't force use of
4289   // heavyweight monitors, then the owner is the stack address of the
4290   // Lock Word in the owning Java thread's stack.
4291   //
4292   JavaThread* the_owner = NULL;
4293   {
4294     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4295     ALL_JAVA_THREADS(q) {
4296       if (q->is_lock_owned(owner)) {
4297         the_owner = q;
4298         break;
4299       }
4300     }
4301   }
4302   // cannot assert on lack of success here; see above comment
4303   return the_owner;
4304 }
4305 
4306 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4307 void Threads::print_on(outputStream* st, bool print_stacks,
4308                        bool internal_format, bool print_concurrent_locks) {
4309   char buf[32];
4310   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4311 
4312   st->print_cr("Full thread dump %s (%s %s):",
4313                Abstract_VM_Version::vm_name(),
4314                Abstract_VM_Version::vm_release(),
4315                Abstract_VM_Version::vm_info_string());
4316   st->cr();
4317 
4318 #if INCLUDE_SERVICES
4319   // Dump concurrent locks
4320   ConcurrentLocksDump concurrent_locks;
4321   if (print_concurrent_locks) {
4322     concurrent_locks.dump_at_safepoint();
4323   }
4324 #endif // INCLUDE_SERVICES
4325 
4326   ALL_JAVA_THREADS(p) {
4327     ResourceMark rm;
4328     p->print_on(st);
4329     if (print_stacks) {
4330       if (internal_format) {
4331         p->trace_stack();
4332       } else {
4333         p->print_stack_on(st);
4334       }
4335     }
4336     st->cr();
4337 #if INCLUDE_SERVICES
4338     if (print_concurrent_locks) {
4339       concurrent_locks.print_locks_on(p, st);
4340     }
4341 #endif // INCLUDE_SERVICES
4342   }
4343 
4344   VMThread::vm_thread()->print_on(st);
4345   st->cr();
4346   Universe::heap()->print_gc_threads_on(st);
4347   WatcherThread* wt = WatcherThread::watcher_thread();
4348   if (wt != NULL) {
4349     wt->print_on(st);
4350     st->cr();
4351   }
4352   CompileBroker::print_compiler_threads_on(st);
4353   st->flush();
4354 }
4355 
4356 // Threads::print_on_error() is called by fatal error handler. It's possible
4357 // that VM is not at safepoint and/or current thread is inside signal handler.
4358 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4359 // memory (even in resource area), it might deadlock the error handler.
4360 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4361                              int buflen) {
4362   bool found_current = false;
4363   st->print_cr("Java Threads: ( => current thread )");
4364   ALL_JAVA_THREADS(thread) {
4365     bool is_current = (current == thread);
4366     found_current = found_current || is_current;
4367 
4368     st->print("%s", is_current ? "=>" : "  ");
4369 
4370     st->print(PTR_FORMAT, p2i(thread));
4371     st->print(" ");
4372     thread->print_on_error(st, buf, buflen);
4373     st->cr();
4374   }
4375   st->cr();
4376 
4377   st->print_cr("Other Threads:");
4378   if (VMThread::vm_thread()) {
4379     bool is_current = (current == VMThread::vm_thread());
4380     found_current = found_current || is_current;
4381     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4382 
4383     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4384     st->print(" ");
4385     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4386     st->cr();
4387   }
4388   WatcherThread* wt = WatcherThread::watcher_thread();
4389   if (wt != NULL) {
4390     bool is_current = (current == wt);
4391     found_current = found_current || is_current;
4392     st->print("%s", is_current ? "=>" : "  ");
4393 
4394     st->print(PTR_FORMAT, p2i(wt));
4395     st->print(" ");
4396     wt->print_on_error(st, buf, buflen);
4397     st->cr();
4398   }
4399   if (!found_current) {
4400     st->cr();
4401     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4402     current->print_on_error(st, buf, buflen);
4403     st->cr();
4404   }
4405 }
4406 
4407 // Internal SpinLock and Mutex
4408 // Based on ParkEvent
4409 
4410 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4411 //
4412 // We employ SpinLocks _only for low-contention, fixed-length
4413 // short-duration critical sections where we're concerned
4414 // about native mutex_t or HotSpot Mutex:: latency.
4415 // The mux construct provides a spin-then-block mutual exclusion
4416 // mechanism.
4417 //
4418 // Testing has shown that contention on the ListLock guarding gFreeList
4419 // is common.  If we implement ListLock as a simple SpinLock it's common
4420 // for the JVM to devolve to yielding with little progress.  This is true
4421 // despite the fact that the critical sections protected by ListLock are
4422 // extremely short.
4423 //
4424 // TODO-FIXME: ListLock should be of type SpinLock.
4425 // We should make this a 1st-class type, integrated into the lock
4426 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4427 // should have sufficient padding to avoid false-sharing and excessive
4428 // cache-coherency traffic.
4429 
4430 
4431 typedef volatile int SpinLockT;
4432 
4433 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4434   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4435     return;   // normal fast-path return
4436   }
4437 
4438   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4439   TEVENT(SpinAcquire - ctx);
4440   int ctr = 0;
4441   int Yields = 0;
4442   for (;;) {
4443     while (*adr != 0) {
4444       ++ctr;
4445       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4446         if (Yields > 5) {
4447           os::naked_short_sleep(1);
4448         } else {
4449           os::naked_yield();
4450           ++Yields;
4451         }
4452       } else {
4453         SpinPause();
4454       }
4455     }
4456     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4457   }
4458 }
4459 
4460 void Thread::SpinRelease(volatile int * adr) {
4461   assert(*adr != 0, "invariant");
4462   OrderAccess::fence();      // guarantee at least release consistency.
4463   // Roach-motel semantics.
4464   // It's safe if subsequent LDs and STs float "up" into the critical section,
4465   // but prior LDs and STs within the critical section can't be allowed
4466   // to reorder or float past the ST that releases the lock.
4467   // Loads and stores in the critical section - which appear in program
4468   // order before the store that releases the lock - must also appear
4469   // before the store that releases the lock in memory visibility order.
4470   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4471   // the ST of 0 into the lock-word which releases the lock, so fence
4472   // more than covers this on all platforms.
4473   *adr = 0;
4474 }
4475 
4476 // muxAcquire and muxRelease:
4477 //
4478 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4479 //    The LSB of the word is set IFF the lock is held.
4480 //    The remainder of the word points to the head of a singly-linked list
4481 //    of threads blocked on the lock.
4482 //
4483 // *  The current implementation of muxAcquire-muxRelease uses its own
4484 //    dedicated Thread._MuxEvent instance.  If we're interested in
4485 //    minimizing the peak number of extant ParkEvent instances then
4486 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4487 //    as certain invariants were satisfied.  Specifically, care would need
4488 //    to be taken with regards to consuming unpark() "permits".
4489 //    A safe rule of thumb is that a thread would never call muxAcquire()
4490 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4491 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4492 //    consume an unpark() permit intended for monitorenter, for instance.
4493 //    One way around this would be to widen the restricted-range semaphore
4494 //    implemented in park().  Another alternative would be to provide
4495 //    multiple instances of the PlatformEvent() for each thread.  One
4496 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4497 //
4498 // *  Usage:
4499 //    -- Only as leaf locks
4500 //    -- for short-term locking only as muxAcquire does not perform
4501 //       thread state transitions.
4502 //
4503 // Alternatives:
4504 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4505 //    but with parking or spin-then-park instead of pure spinning.
4506 // *  Use Taura-Oyama-Yonenzawa locks.
4507 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4508 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4509 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4510 //    acquiring threads use timers (ParkTimed) to detect and recover from
4511 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4512 //    boundaries by using placement-new.
4513 // *  Augment MCS with advisory back-link fields maintained with CAS().
4514 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4515 //    The validity of the backlinks must be ratified before we trust the value.
4516 //    If the backlinks are invalid the exiting thread must back-track through the
4517 //    the forward links, which are always trustworthy.
4518 // *  Add a successor indication.  The LockWord is currently encoded as
4519 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4520 //    to provide the usual futile-wakeup optimization.
4521 //    See RTStt for details.
4522 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4523 //
4524 
4525 
4526 typedef volatile intptr_t MutexT;      // Mux Lock-word
4527 enum MuxBits { LOCKBIT = 1 };
4528 
4529 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4530   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4531   if (w == 0) return;
4532   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4533     return;
4534   }
4535 
4536   TEVENT(muxAcquire - Contention);
4537   ParkEvent * const Self = Thread::current()->_MuxEvent;
4538   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4539   for (;;) {
4540     int its = (os::is_MP() ? 100 : 0) + 1;
4541 
4542     // Optional spin phase: spin-then-park strategy
4543     while (--its >= 0) {
4544       w = *Lock;
4545       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4546         return;
4547       }
4548     }
4549 
4550     Self->reset();
4551     Self->OnList = intptr_t(Lock);
4552     // The following fence() isn't _strictly necessary as the subsequent
4553     // CAS() both serializes execution and ratifies the fetched *Lock value.
4554     OrderAccess::fence();
4555     for (;;) {
4556       w = *Lock;
4557       if ((w & LOCKBIT) == 0) {
4558         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4559           Self->OnList = 0;   // hygiene - allows stronger asserts
4560           return;
4561         }
4562         continue;      // Interference -- *Lock changed -- Just retry
4563       }
4564       assert(w & LOCKBIT, "invariant");
4565       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4566       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4567     }
4568 
4569     while (Self->OnList != 0) {
4570       Self->park();
4571     }
4572   }
4573 }
4574 
4575 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4576   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4577   if (w == 0) return;
4578   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4579     return;
4580   }
4581 
4582   TEVENT(muxAcquire - Contention);
4583   ParkEvent * ReleaseAfter = NULL;
4584   if (ev == NULL) {
4585     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4586   }
4587   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4588   for (;;) {
4589     guarantee(ev->OnList == 0, "invariant");
4590     int its = (os::is_MP() ? 100 : 0) + 1;
4591 
4592     // Optional spin phase: spin-then-park strategy
4593     while (--its >= 0) {
4594       w = *Lock;
4595       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4596         if (ReleaseAfter != NULL) {
4597           ParkEvent::Release(ReleaseAfter);
4598         }
4599         return;
4600       }
4601     }
4602 
4603     ev->reset();
4604     ev->OnList = intptr_t(Lock);
4605     // The following fence() isn't _strictly necessary as the subsequent
4606     // CAS() both serializes execution and ratifies the fetched *Lock value.
4607     OrderAccess::fence();
4608     for (;;) {
4609       w = *Lock;
4610       if ((w & LOCKBIT) == 0) {
4611         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4612           ev->OnList = 0;
4613           // We call ::Release while holding the outer lock, thus
4614           // artificially lengthening the critical section.
4615           // Consider deferring the ::Release() until the subsequent unlock(),
4616           // after we've dropped the outer lock.
4617           if (ReleaseAfter != NULL) {
4618             ParkEvent::Release(ReleaseAfter);
4619           }
4620           return;
4621         }
4622         continue;      // Interference -- *Lock changed -- Just retry
4623       }
4624       assert(w & LOCKBIT, "invariant");
4625       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4626       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4627     }
4628 
4629     while (ev->OnList != 0) {
4630       ev->park();
4631     }
4632   }
4633 }
4634 
4635 // Release() must extract a successor from the list and then wake that thread.
4636 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4637 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4638 // Release() would :
4639 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4640 // (B) Extract a successor from the private list "in-hand"
4641 // (C) attempt to CAS() the residual back into *Lock over null.
4642 //     If there were any newly arrived threads and the CAS() would fail.
4643 //     In that case Release() would detach the RATs, re-merge the list in-hand
4644 //     with the RATs and repeat as needed.  Alternately, Release() might
4645 //     detach and extract a successor, but then pass the residual list to the wakee.
4646 //     The wakee would be responsible for reattaching and remerging before it
4647 //     competed for the lock.
4648 //
4649 // Both "pop" and DMR are immune from ABA corruption -- there can be
4650 // multiple concurrent pushers, but only one popper or detacher.
4651 // This implementation pops from the head of the list.  This is unfair,
4652 // but tends to provide excellent throughput as hot threads remain hot.
4653 // (We wake recently run threads first).
4654 //
4655 // All paths through muxRelease() will execute a CAS.
4656 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4657 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4658 // executed within the critical section are complete and globally visible before the
4659 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4660 void Thread::muxRelease(volatile intptr_t * Lock)  {
4661   for (;;) {
4662     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4663     assert(w & LOCKBIT, "invariant");
4664     if (w == LOCKBIT) return;
4665     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4666     assert(List != NULL, "invariant");
4667     assert(List->OnList == intptr_t(Lock), "invariant");
4668     ParkEvent * const nxt = List->ListNext;
4669     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4670 
4671     // The following CAS() releases the lock and pops the head element.
4672     // The CAS() also ratifies the previously fetched lock-word value.
4673     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4674       continue;
4675     }
4676     List->OnList = 0;
4677     OrderAccess::fence();
4678     List->unpark();
4679     return;
4680   }
4681 }
4682 
4683 
4684 void Threads::verify() {
4685   ALL_JAVA_THREADS(p) {
4686     p->verify();
4687   }
4688   VMThread* thread = VMThread::vm_thread();
4689   if (thread != NULL) thread->verify();
4690 }