1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 110 // getrusage() is prepared to handle the associated failure.
 111 #ifndef RUSAGE_THREAD
 112   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 113 #endif
 114 
 115 #define MAX_PATH    (2 * K)
 116 
 117 #define MAX_SECS 100000000
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 #define LARGEPAGES_BIT (1 << 6)
 123 ////////////////////////////////////////////////////////////////////////////////
 124 // global variables
 125 julong os::Linux::_physical_memory = 0;
 126 
 127 address   os::Linux::_initial_thread_stack_bottom = NULL;
 128 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 129 
 130 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 132 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 133 Mutex* os::Linux::_createThread_lock = NULL;
 134 pthread_t os::Linux::_main_thread;
 135 int os::Linux::_page_size = -1;
 136 const int os::Linux::_vm_default_page_size = (8 * K);
 137 bool os::Linux::_supports_fast_thread_cpu_time = false;
 138 const char * os::Linux::_glibc_version = NULL;
 139 const char * os::Linux::_libpthread_version = NULL;
 140 pthread_condattr_t os::Linux::_condattr[1];
 141 
 142 static jlong initial_time_count=0;
 143 
 144 static int clock_tics_per_sec = 100;
 145 
 146 // For diagnostics to print a message once. see run_periodic_checks
 147 static sigset_t check_signal_done;
 148 static bool check_signals = true;
 149 
 150 // Signal number used to suspend/resume a thread
 151 
 152 // do not use any signal number less than SIGSEGV, see 4355769
 153 static int SR_signum = SIGUSR2;
 154 sigset_t SR_sigset;
 155 
 156 // Declarations
 157 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 158 
 159 // utility functions
 160 
 161 static int SR_initialize();
 162 
 163 julong os::available_memory() {
 164   return Linux::available_memory();
 165 }
 166 
 167 julong os::Linux::available_memory() {
 168   // values in struct sysinfo are "unsigned long"
 169   struct sysinfo si;
 170   sysinfo(&si);
 171 
 172   return (julong)si.freeram * si.mem_unit;
 173 }
 174 
 175 julong os::physical_memory() {
 176   return Linux::physical_memory();
 177 }
 178 
 179 // Return true if user is running as root.
 180 
 181 bool os::have_special_privileges() {
 182   static bool init = false;
 183   static bool privileges = false;
 184   if (!init) {
 185     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 186     init = true;
 187   }
 188   return privileges;
 189 }
 190 
 191 
 192 #ifndef SYS_gettid
 193 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 194   #ifdef __ia64__
 195     #define SYS_gettid 1105
 196   #else
 197     #ifdef __i386__
 198       #define SYS_gettid 224
 199     #else
 200       #ifdef __amd64__
 201         #define SYS_gettid 186
 202       #else
 203         #ifdef __sparc__
 204           #define SYS_gettid 143
 205         #else
 206           #error define gettid for the arch
 207         #endif
 208       #endif
 209     #endif
 210   #endif
 211 #endif
 212 
 213 // Cpu architecture string
 214 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 215 
 216 
 217 // pid_t gettid()
 218 //
 219 // Returns the kernel thread id of the currently running thread. Kernel
 220 // thread id is used to access /proc.
 221 pid_t os::Linux::gettid() {
 222   int rslt = syscall(SYS_gettid);
 223   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 224   return (pid_t)rslt;
 225 }
 226 
 227 // Most versions of linux have a bug where the number of processors are
 228 // determined by looking at the /proc file system.  In a chroot environment,
 229 // the system call returns 1.  This causes the VM to act as if it is
 230 // a single processor and elide locking (see is_MP() call).
 231 static bool unsafe_chroot_detected = false;
 232 static const char *unstable_chroot_error = "/proc file system not found.\n"
 233                      "Java may be unstable running multithreaded in a chroot "
 234                      "environment on Linux when /proc filesystem is not mounted.";
 235 
 236 void os::Linux::initialize_system_info() {
 237   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 238   if (processor_count() == 1) {
 239     pid_t pid = os::Linux::gettid();
 240     char fname[32];
 241     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 242     FILE *fp = fopen(fname, "r");
 243     if (fp == NULL) {
 244       unsafe_chroot_detected = true;
 245     } else {
 246       fclose(fp);
 247     }
 248   }
 249   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 250   assert(processor_count() > 0, "linux error");
 251 }
 252 
 253 void os::init_system_properties_values() {
 254   // The next steps are taken in the product version:
 255   //
 256   // Obtain the JAVA_HOME value from the location of libjvm.so.
 257   // This library should be located at:
 258   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 259   //
 260   // If "/jre/lib/" appears at the right place in the path, then we
 261   // assume libjvm.so is installed in a JDK and we use this path.
 262   //
 263   // Otherwise exit with message: "Could not create the Java virtual machine."
 264   //
 265   // The following extra steps are taken in the debugging version:
 266   //
 267   // If "/jre/lib/" does NOT appear at the right place in the path
 268   // instead of exit check for $JAVA_HOME environment variable.
 269   //
 270   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 271   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 272   // it looks like libjvm.so is installed there
 273   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 274   //
 275   // Otherwise exit.
 276   //
 277   // Important note: if the location of libjvm.so changes this
 278   // code needs to be changed accordingly.
 279 
 280   // See ld(1):
 281   //      The linker uses the following search paths to locate required
 282   //      shared libraries:
 283   //        1: ...
 284   //        ...
 285   //        7: The default directories, normally /lib and /usr/lib.
 286 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 287   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 288 #else
 289   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 290 #endif
 291 
 292 // Base path of extensions installed on the system.
 293 #define SYS_EXT_DIR     "/usr/java/packages"
 294 #define EXTENSIONS_DIR  "/lib/ext"
 295 
 296   // Buffer that fits several sprintfs.
 297   // Note that the space for the colon and the trailing null are provided
 298   // by the nulls included by the sizeof operator.
 299   const size_t bufsize =
 300     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 301          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 302   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 303 
 304   // sysclasspath, java_home, dll_dir
 305   {
 306     char *pslash;
 307     os::jvm_path(buf, bufsize);
 308 
 309     // Found the full path to libjvm.so.
 310     // Now cut the path to <java_home>/jre if we can.
 311     pslash = strrchr(buf, '/');
 312     if (pslash != NULL) {
 313       *pslash = '\0';            // Get rid of /libjvm.so.
 314     }
 315     pslash = strrchr(buf, '/');
 316     if (pslash != NULL) {
 317       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 318     }
 319     Arguments::set_dll_dir(buf);
 320 
 321     if (pslash != NULL) {
 322       pslash = strrchr(buf, '/');
 323       if (pslash != NULL) {
 324         *pslash = '\0';          // Get rid of /<arch>.
 325         pslash = strrchr(buf, '/');
 326         if (pslash != NULL) {
 327           *pslash = '\0';        // Get rid of /lib.
 328         }
 329       }
 330     }
 331     Arguments::set_java_home(buf);
 332     set_boot_path('/', ':');
 333   }
 334 
 335   // Where to look for native libraries.
 336   //
 337   // Note: Due to a legacy implementation, most of the library path
 338   // is set in the launcher. This was to accomodate linking restrictions
 339   // on legacy Linux implementations (which are no longer supported).
 340   // Eventually, all the library path setting will be done here.
 341   //
 342   // However, to prevent the proliferation of improperly built native
 343   // libraries, the new path component /usr/java/packages is added here.
 344   // Eventually, all the library path setting will be done here.
 345   {
 346     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 347     // should always exist (until the legacy problem cited above is
 348     // addressed).
 349     const char *v = ::getenv("LD_LIBRARY_PATH");
 350     const char *v_colon = ":";
 351     if (v == NULL) { v = ""; v_colon = ""; }
 352     // That's +1 for the colon and +1 for the trailing '\0'.
 353     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 354                                                      strlen(v) + 1 +
 355                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 356                                                      mtInternal);
 357     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 358     Arguments::set_library_path(ld_library_path);
 359     FREE_C_HEAP_ARRAY(char, ld_library_path);
 360   }
 361 
 362   // Extensions directories.
 363   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 364   Arguments::set_ext_dirs(buf);
 365 
 366   FREE_C_HEAP_ARRAY(char, buf);
 367 
 368 #undef DEFAULT_LIBPATH
 369 #undef SYS_EXT_DIR
 370 #undef EXTENSIONS_DIR
 371 }
 372 
 373 ////////////////////////////////////////////////////////////////////////////////
 374 // breakpoint support
 375 
 376 void os::breakpoint() {
 377   BREAKPOINT;
 378 }
 379 
 380 extern "C" void breakpoint() {
 381   // use debugger to set breakpoint here
 382 }
 383 
 384 ////////////////////////////////////////////////////////////////////////////////
 385 // signal support
 386 
 387 debug_only(static bool signal_sets_initialized = false);
 388 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 389 
 390 bool os::Linux::is_sig_ignored(int sig) {
 391   struct sigaction oact;
 392   sigaction(sig, (struct sigaction*)NULL, &oact);
 393   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 394                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 395   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 396     return true;
 397   } else {
 398     return false;
 399   }
 400 }
 401 
 402 void os::Linux::signal_sets_init() {
 403   // Should also have an assertion stating we are still single-threaded.
 404   assert(!signal_sets_initialized, "Already initialized");
 405   // Fill in signals that are necessarily unblocked for all threads in
 406   // the VM. Currently, we unblock the following signals:
 407   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 408   //                         by -Xrs (=ReduceSignalUsage));
 409   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 410   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 411   // the dispositions or masks wrt these signals.
 412   // Programs embedding the VM that want to use the above signals for their
 413   // own purposes must, at this time, use the "-Xrs" option to prevent
 414   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 415   // (See bug 4345157, and other related bugs).
 416   // In reality, though, unblocking these signals is really a nop, since
 417   // these signals are not blocked by default.
 418   sigemptyset(&unblocked_sigs);
 419   sigemptyset(&allowdebug_blocked_sigs);
 420   sigaddset(&unblocked_sigs, SIGILL);
 421   sigaddset(&unblocked_sigs, SIGSEGV);
 422   sigaddset(&unblocked_sigs, SIGBUS);
 423   sigaddset(&unblocked_sigs, SIGFPE);
 424 #if defined(PPC64)
 425   sigaddset(&unblocked_sigs, SIGTRAP);
 426 #endif
 427   sigaddset(&unblocked_sigs, SR_signum);
 428 
 429   if (!ReduceSignalUsage) {
 430     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 431       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 432       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 436       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 437     }
 438     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 439       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 440       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 441     }
 442   }
 443   // Fill in signals that are blocked by all but the VM thread.
 444   sigemptyset(&vm_sigs);
 445   if (!ReduceSignalUsage) {
 446     sigaddset(&vm_sigs, BREAK_SIGNAL);
 447   }
 448   debug_only(signal_sets_initialized = true);
 449 
 450 }
 451 
 452 // These are signals that are unblocked while a thread is running Java.
 453 // (For some reason, they get blocked by default.)
 454 sigset_t* os::Linux::unblocked_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &unblocked_sigs;
 457 }
 458 
 459 // These are the signals that are blocked while a (non-VM) thread is
 460 // running Java. Only the VM thread handles these signals.
 461 sigset_t* os::Linux::vm_signals() {
 462   assert(signal_sets_initialized, "Not initialized");
 463   return &vm_sigs;
 464 }
 465 
 466 // These are signals that are blocked during cond_wait to allow debugger in
 467 sigset_t* os::Linux::allowdebug_blocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &allowdebug_blocked_sigs;
 470 }
 471 
 472 void os::Linux::hotspot_sigmask(Thread* thread) {
 473 
 474   //Save caller's signal mask before setting VM signal mask
 475   sigset_t caller_sigmask;
 476   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 477 
 478   OSThread* osthread = thread->osthread();
 479   osthread->set_caller_sigmask(caller_sigmask);
 480 
 481   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 482 
 483   if (!ReduceSignalUsage) {
 484     if (thread->is_VM_thread()) {
 485       // Only the VM thread handles BREAK_SIGNAL ...
 486       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 487     } else {
 488       // ... all other threads block BREAK_SIGNAL
 489       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 490     }
 491   }
 492 }
 493 
 494 //////////////////////////////////////////////////////////////////////////////
 495 // detecting pthread library
 496 
 497 void os::Linux::libpthread_init() {
 498   // Save glibc and pthread version strings.
 499 #if !defined(_CS_GNU_LIBC_VERSION) || \
 500     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 501   #error "glibc too old (< 2.3.2)"
 502 #endif
 503 
 504   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 505   assert(n > 0, "cannot retrieve glibc version");
 506   char *str = (char *)malloc(n, mtInternal);
 507   confstr(_CS_GNU_LIBC_VERSION, str, n);
 508   os::Linux::set_glibc_version(str);
 509 
 510   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 511   assert(n > 0, "cannot retrieve pthread version");
 512   str = (char *)malloc(n, mtInternal);
 513   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 514   os::Linux::set_libpthread_version(str);
 515 }
 516 
 517 /////////////////////////////////////////////////////////////////////////////
 518 // thread stack expansion
 519 
 520 // os::Linux::manually_expand_stack() takes care of expanding the thread
 521 // stack. Note that this is normally not needed: pthread stacks allocate
 522 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 523 // committed. Therefore it is not necessary to expand the stack manually.
 524 //
 525 // Manually expanding the stack was historically needed on LinuxThreads
 526 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 527 // it is kept to deal with very rare corner cases:
 528 //
 529 // For one, user may run the VM on an own implementation of threads
 530 // whose stacks are - like the old LinuxThreads - implemented using
 531 // mmap(MAP_GROWSDOWN).
 532 //
 533 // Also, this coding may be needed if the VM is running on the primordial
 534 // thread. Normally we avoid running on the primordial thread; however,
 535 // user may still invoke the VM on the primordial thread.
 536 //
 537 // The following historical comment describes the details about running
 538 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 539 
 540 
 541 // Force Linux kernel to expand current thread stack. If "bottom" is close
 542 // to the stack guard, caller should block all signals.
 543 //
 544 // MAP_GROWSDOWN:
 545 //   A special mmap() flag that is used to implement thread stacks. It tells
 546 //   kernel that the memory region should extend downwards when needed. This
 547 //   allows early versions of LinuxThreads to only mmap the first few pages
 548 //   when creating a new thread. Linux kernel will automatically expand thread
 549 //   stack as needed (on page faults).
 550 //
 551 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 552 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 553 //   region, it's hard to tell if the fault is due to a legitimate stack
 554 //   access or because of reading/writing non-exist memory (e.g. buffer
 555 //   overrun). As a rule, if the fault happens below current stack pointer,
 556 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 557 //   application (see Linux kernel fault.c).
 558 //
 559 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 560 //   stack overflow detection.
 561 //
 562 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 563 //   not use MAP_GROWSDOWN.
 564 //
 565 // To get around the problem and allow stack banging on Linux, we need to
 566 // manually expand thread stack after receiving the SIGSEGV.
 567 //
 568 // There are two ways to expand thread stack to address "bottom", we used
 569 // both of them in JVM before 1.5:
 570 //   1. adjust stack pointer first so that it is below "bottom", and then
 571 //      touch "bottom"
 572 //   2. mmap() the page in question
 573 //
 574 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 575 // if current sp is already near the lower end of page 101, and we need to
 576 // call mmap() to map page 100, it is possible that part of the mmap() frame
 577 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 578 // That will destroy the mmap() frame and cause VM to crash.
 579 //
 580 // The following code works by adjusting sp first, then accessing the "bottom"
 581 // page to force a page fault. Linux kernel will then automatically expand the
 582 // stack mapping.
 583 //
 584 // _expand_stack_to() assumes its frame size is less than page size, which
 585 // should always be true if the function is not inlined.
 586 
 587 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 588   #define NOINLINE
 589 #else
 590   #define NOINLINE __attribute__ ((noinline))
 591 #endif
 592 
 593 static void _expand_stack_to(address bottom) NOINLINE;
 594 
 595 static void _expand_stack_to(address bottom) {
 596   address sp;
 597   size_t size;
 598   volatile char *p;
 599 
 600   // Adjust bottom to point to the largest address within the same page, it
 601   // gives us a one-page buffer if alloca() allocates slightly more memory.
 602   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 603   bottom += os::Linux::page_size() - 1;
 604 
 605   // sp might be slightly above current stack pointer; if that's the case, we
 606   // will alloca() a little more space than necessary, which is OK. Don't use
 607   // os::current_stack_pointer(), as its result can be slightly below current
 608   // stack pointer, causing us to not alloca enough to reach "bottom".
 609   sp = (address)&sp;
 610 
 611   if (sp > bottom) {
 612     size = sp - bottom;
 613     p = (volatile char *)alloca(size);
 614     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 615     p[0] = '\0';
 616   }
 617 }
 618 
 619 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 620   assert(t!=NULL, "just checking");
 621   assert(t->osthread()->expanding_stack(), "expand should be set");
 622   assert(t->stack_base() != NULL, "stack_base was not initialized");
 623 
 624   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 625     sigset_t mask_all, old_sigset;
 626     sigfillset(&mask_all);
 627     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 628     _expand_stack_to(addr);
 629     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 630     return true;
 631   }
 632   return false;
 633 }
 634 
 635 //////////////////////////////////////////////////////////////////////////////
 636 // create new thread
 637 
 638 // Thread start routine for all newly created threads
 639 static void *java_start(Thread *thread) {
 640   // Try to randomize the cache line index of hot stack frames.
 641   // This helps when threads of the same stack traces evict each other's
 642   // cache lines. The threads can be either from the same JVM instance, or
 643   // from different JVM instances. The benefit is especially true for
 644   // processors with hyperthreading technology.
 645   static int counter = 0;
 646   int pid = os::current_process_id();
 647   alloca(((pid ^ counter++) & 7) * 128);
 648 
 649   thread->initialize_thread_current();
 650 
 651   OSThread* osthread = thread->osthread();
 652   Monitor* sync = osthread->startThread_lock();
 653 
 654   osthread->set_thread_id(os::current_thread_id());
 655 
 656   if (UseNUMA) {
 657     int lgrp_id = os::numa_get_group_id();
 658     if (lgrp_id != -1) {
 659       thread->set_lgrp_id(lgrp_id);
 660     }
 661   }
 662   // initialize signal mask for this thread
 663   os::Linux::hotspot_sigmask(thread);
 664 
 665   // initialize floating point control register
 666   os::Linux::init_thread_fpu_state();
 667 
 668   // handshaking with parent thread
 669   {
 670     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 671 
 672     // notify parent thread
 673     osthread->set_state(INITIALIZED);
 674     sync->notify_all();
 675 
 676     // wait until os::start_thread()
 677     while (osthread->get_state() == INITIALIZED) {
 678       sync->wait(Mutex::_no_safepoint_check_flag);
 679     }
 680   }
 681 
 682   // call one more level start routine
 683   thread->run();
 684 
 685   return 0;
 686 }
 687 
 688 bool os::create_thread(Thread* thread, ThreadType thr_type,
 689                        size_t stack_size) {
 690   assert(thread->osthread() == NULL, "caller responsible");
 691 
 692   // Allocate the OSThread object
 693   OSThread* osthread = new OSThread(NULL, NULL);
 694   if (osthread == NULL) {
 695     return false;
 696   }
 697 
 698   // set the correct thread state
 699   osthread->set_thread_type(thr_type);
 700 
 701   // Initial state is ALLOCATED but not INITIALIZED
 702   osthread->set_state(ALLOCATED);
 703 
 704   thread->set_osthread(osthread);
 705 
 706   // init thread attributes
 707   pthread_attr_t attr;
 708   pthread_attr_init(&attr);
 709   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 710 
 711   // stack size
 712   // calculate stack size if it's not specified by caller
 713   if (stack_size == 0) {
 714     stack_size = os::Linux::default_stack_size(thr_type);
 715 
 716     switch (thr_type) {
 717     case os::java_thread:
 718       // Java threads use ThreadStackSize which default value can be
 719       // changed with the flag -Xss
 720       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 721       stack_size = JavaThread::stack_size_at_create();
 722       break;
 723     case os::compiler_thread:
 724       if (CompilerThreadStackSize > 0) {
 725         stack_size = (size_t)(CompilerThreadStackSize * K);
 726         break;
 727       } // else fall through:
 728         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 729     case os::vm_thread:
 730     case os::pgc_thread:
 731     case os::cgc_thread:
 732     case os::watcher_thread:
 733       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 734       break;
 735     }
 736   }
 737 
 738   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 739   pthread_attr_setstacksize(&attr, stack_size);
 740 
 741   // glibc guard page
 742   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 743 
 744   ThreadState state;
 745 
 746   {
 747     pthread_t tid;
 748     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 749 
 750     pthread_attr_destroy(&attr);
 751 
 752     if (ret != 0) {
 753       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 754         perror("pthread_create()");
 755       }
 756       // Need to clean up stuff we've allocated so far
 757       thread->set_osthread(NULL);
 758       delete osthread;
 759       return false;
 760     }
 761 
 762     // Store pthread info into the OSThread
 763     osthread->set_pthread_id(tid);
 764 
 765     // Wait until child thread is either initialized or aborted
 766     {
 767       Monitor* sync_with_child = osthread->startThread_lock();
 768       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 769       while ((state = osthread->get_state()) == ALLOCATED) {
 770         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 771       }
 772     }
 773   }
 774 
 775   // Aborted due to thread limit being reached
 776   if (state == ZOMBIE) {
 777     thread->set_osthread(NULL);
 778     delete osthread;
 779     return false;
 780   }
 781 
 782   // The thread is returned suspended (in state INITIALIZED),
 783   // and is started higher up in the call chain
 784   assert(state == INITIALIZED, "race condition");
 785   return true;
 786 }
 787 
 788 /////////////////////////////////////////////////////////////////////////////
 789 // attach existing thread
 790 
 791 // bootstrap the main thread
 792 bool os::create_main_thread(JavaThread* thread) {
 793   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 794   return create_attached_thread(thread);
 795 }
 796 
 797 bool os::create_attached_thread(JavaThread* thread) {
 798 #ifdef ASSERT
 799   thread->verify_not_published();
 800 #endif
 801 
 802   // Allocate the OSThread object
 803   OSThread* osthread = new OSThread(NULL, NULL);
 804 
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // Store pthread info into the OSThread
 810   osthread->set_thread_id(os::Linux::gettid());
 811   osthread->set_pthread_id(::pthread_self());
 812 
 813   // initialize floating point control register
 814   os::Linux::init_thread_fpu_state();
 815 
 816   // Initial thread state is RUNNABLE
 817   osthread->set_state(RUNNABLE);
 818 
 819   thread->set_osthread(osthread);
 820 
 821   if (UseNUMA) {
 822     int lgrp_id = os::numa_get_group_id();
 823     if (lgrp_id != -1) {
 824       thread->set_lgrp_id(lgrp_id);
 825     }
 826   }
 827 
 828   if (os::Linux::is_initial_thread()) {
 829     // If current thread is initial thread, its stack is mapped on demand,
 830     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 831     // the entire stack region to avoid SEGV in stack banging.
 832     // It is also useful to get around the heap-stack-gap problem on SuSE
 833     // kernel (see 4821821 for details). We first expand stack to the top
 834     // of yellow zone, then enable stack yellow zone (order is significant,
 835     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 836     // is no gap between the last two virtual memory regions.
 837 
 838     JavaThread *jt = (JavaThread *)thread;
 839     address addr = jt->stack_yellow_zone_base();
 840     assert(addr != NULL, "initialization problem?");
 841     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 842 
 843     osthread->set_expanding_stack();
 844     os::Linux::manually_expand_stack(jt, addr);
 845     osthread->clear_expanding_stack();
 846   }
 847 
 848   // initialize signal mask for this thread
 849   // and save the caller's signal mask
 850   os::Linux::hotspot_sigmask(thread);
 851 
 852   return true;
 853 }
 854 
 855 void os::pd_start_thread(Thread* thread) {
 856   OSThread * osthread = thread->osthread();
 857   assert(osthread->get_state() != INITIALIZED, "just checking");
 858   Monitor* sync_with_child = osthread->startThread_lock();
 859   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 860   sync_with_child->notify();
 861 }
 862 
 863 // Free Linux resources related to the OSThread
 864 void os::free_thread(OSThread* osthread) {
 865   assert(osthread != NULL, "osthread not set");
 866 
 867   if (Thread::current()->osthread() == osthread) {
 868     // Restore caller's signal mask
 869     sigset_t sigmask = osthread->caller_sigmask();
 870     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 871   }
 872 
 873   delete osthread;
 874 }
 875 
 876 //////////////////////////////////////////////////////////////////////////////
 877 // initial thread
 878 
 879 // Check if current thread is the initial thread, similar to Solaris thr_main.
 880 bool os::Linux::is_initial_thread(void) {
 881   char dummy;
 882   // If called before init complete, thread stack bottom will be null.
 883   // Can be called if fatal error occurs before initialization.
 884   if (initial_thread_stack_bottom() == NULL) return false;
 885   assert(initial_thread_stack_bottom() != NULL &&
 886          initial_thread_stack_size()   != 0,
 887          "os::init did not locate initial thread's stack region");
 888   if ((address)&dummy >= initial_thread_stack_bottom() &&
 889       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 890     return true;
 891   } else {
 892     return false;
 893   }
 894 }
 895 
 896 // Find the virtual memory area that contains addr
 897 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 898   FILE *fp = fopen("/proc/self/maps", "r");
 899   if (fp) {
 900     address low, high;
 901     while (!feof(fp)) {
 902       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 903         if (low <= addr && addr < high) {
 904           if (vma_low)  *vma_low  = low;
 905           if (vma_high) *vma_high = high;
 906           fclose(fp);
 907           return true;
 908         }
 909       }
 910       for (;;) {
 911         int ch = fgetc(fp);
 912         if (ch == EOF || ch == (int)'\n') break;
 913       }
 914     }
 915     fclose(fp);
 916   }
 917   return false;
 918 }
 919 
 920 // Locate initial thread stack. This special handling of initial thread stack
 921 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 922 // bogus value for initial thread.
 923 void os::Linux::capture_initial_stack(size_t max_size) {
 924   // stack size is the easy part, get it from RLIMIT_STACK
 925   size_t stack_size;
 926   struct rlimit rlim;
 927   getrlimit(RLIMIT_STACK, &rlim);
 928   stack_size = rlim.rlim_cur;
 929 
 930   // 6308388: a bug in ld.so will relocate its own .data section to the
 931   //   lower end of primordial stack; reduce ulimit -s value a little bit
 932   //   so we won't install guard page on ld.so's data section.
 933   stack_size -= 2 * page_size();
 934 
 935   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 936   //   7.1, in both cases we will get 2G in return value.
 937   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 938   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 939   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 940   //   in case other parts in glibc still assumes 2M max stack size.
 941   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 942   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 943   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 944     stack_size = 2 * K * K IA64_ONLY(*2);
 945   }
 946   // Try to figure out where the stack base (top) is. This is harder.
 947   //
 948   // When an application is started, glibc saves the initial stack pointer in
 949   // a global variable "__libc_stack_end", which is then used by system
 950   // libraries. __libc_stack_end should be pretty close to stack top. The
 951   // variable is available since the very early days. However, because it is
 952   // a private interface, it could disappear in the future.
 953   //
 954   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 955   // to __libc_stack_end, it is very close to stack top, but isn't the real
 956   // stack top. Note that /proc may not exist if VM is running as a chroot
 957   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 958   // /proc/<pid>/stat could change in the future (though unlikely).
 959   //
 960   // We try __libc_stack_end first. If that doesn't work, look for
 961   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 962   // as a hint, which should work well in most cases.
 963 
 964   uintptr_t stack_start;
 965 
 966   // try __libc_stack_end first
 967   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 968   if (p && *p) {
 969     stack_start = *p;
 970   } else {
 971     // see if we can get the start_stack field from /proc/self/stat
 972     FILE *fp;
 973     int pid;
 974     char state;
 975     int ppid;
 976     int pgrp;
 977     int session;
 978     int nr;
 979     int tpgrp;
 980     unsigned long flags;
 981     unsigned long minflt;
 982     unsigned long cminflt;
 983     unsigned long majflt;
 984     unsigned long cmajflt;
 985     unsigned long utime;
 986     unsigned long stime;
 987     long cutime;
 988     long cstime;
 989     long prio;
 990     long nice;
 991     long junk;
 992     long it_real;
 993     uintptr_t start;
 994     uintptr_t vsize;
 995     intptr_t rss;
 996     uintptr_t rsslim;
 997     uintptr_t scodes;
 998     uintptr_t ecode;
 999     int i;
1000 
1001     // Figure what the primordial thread stack base is. Code is inspired
1002     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1003     // followed by command name surrounded by parentheses, state, etc.
1004     char stat[2048];
1005     int statlen;
1006 
1007     fp = fopen("/proc/self/stat", "r");
1008     if (fp) {
1009       statlen = fread(stat, 1, 2047, fp);
1010       stat[statlen] = '\0';
1011       fclose(fp);
1012 
1013       // Skip pid and the command string. Note that we could be dealing with
1014       // weird command names, e.g. user could decide to rename java launcher
1015       // to "java 1.4.2 :)", then the stat file would look like
1016       //                1234 (java 1.4.2 :)) R ... ...
1017       // We don't really need to know the command string, just find the last
1018       // occurrence of ")" and then start parsing from there. See bug 4726580.
1019       char * s = strrchr(stat, ')');
1020 
1021       i = 0;
1022       if (s) {
1023         // Skip blank chars
1024         do { s++; } while (s && isspace(*s));
1025 
1026 #define _UFM UINTX_FORMAT
1027 #define _DFM INTX_FORMAT
1028 
1029         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1030         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1031         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1032                    &state,          // 3  %c
1033                    &ppid,           // 4  %d
1034                    &pgrp,           // 5  %d
1035                    &session,        // 6  %d
1036                    &nr,             // 7  %d
1037                    &tpgrp,          // 8  %d
1038                    &flags,          // 9  %lu
1039                    &minflt,         // 10 %lu
1040                    &cminflt,        // 11 %lu
1041                    &majflt,         // 12 %lu
1042                    &cmajflt,        // 13 %lu
1043                    &utime,          // 14 %lu
1044                    &stime,          // 15 %lu
1045                    &cutime,         // 16 %ld
1046                    &cstime,         // 17 %ld
1047                    &prio,           // 18 %ld
1048                    &nice,           // 19 %ld
1049                    &junk,           // 20 %ld
1050                    &it_real,        // 21 %ld
1051                    &start,          // 22 UINTX_FORMAT
1052                    &vsize,          // 23 UINTX_FORMAT
1053                    &rss,            // 24 INTX_FORMAT
1054                    &rsslim,         // 25 UINTX_FORMAT
1055                    &scodes,         // 26 UINTX_FORMAT
1056                    &ecode,          // 27 UINTX_FORMAT
1057                    &stack_start);   // 28 UINTX_FORMAT
1058       }
1059 
1060 #undef _UFM
1061 #undef _DFM
1062 
1063       if (i != 28 - 2) {
1064         assert(false, "Bad conversion from /proc/self/stat");
1065         // product mode - assume we are the initial thread, good luck in the
1066         // embedded case.
1067         warning("Can't detect initial thread stack location - bad conversion");
1068         stack_start = (uintptr_t) &rlim;
1069       }
1070     } else {
1071       // For some reason we can't open /proc/self/stat (for example, running on
1072       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1073       // most cases, so don't abort:
1074       warning("Can't detect initial thread stack location - no /proc/self/stat");
1075       stack_start = (uintptr_t) &rlim;
1076     }
1077   }
1078 
1079   // Now we have a pointer (stack_start) very close to the stack top, the
1080   // next thing to do is to figure out the exact location of stack top. We
1081   // can find out the virtual memory area that contains stack_start by
1082   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1083   // and its upper limit is the real stack top. (again, this would fail if
1084   // running inside chroot, because /proc may not exist.)
1085 
1086   uintptr_t stack_top;
1087   address low, high;
1088   if (find_vma((address)stack_start, &low, &high)) {
1089     // success, "high" is the true stack top. (ignore "low", because initial
1090     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1091     stack_top = (uintptr_t)high;
1092   } else {
1093     // failed, likely because /proc/self/maps does not exist
1094     warning("Can't detect initial thread stack location - find_vma failed");
1095     // best effort: stack_start is normally within a few pages below the real
1096     // stack top, use it as stack top, and reduce stack size so we won't put
1097     // guard page outside stack.
1098     stack_top = stack_start;
1099     stack_size -= 16 * page_size();
1100   }
1101 
1102   // stack_top could be partially down the page so align it
1103   stack_top = align_size_up(stack_top, page_size());
1104 
1105   if (max_size && stack_size > max_size) {
1106     _initial_thread_stack_size = max_size;
1107   } else {
1108     _initial_thread_stack_size = stack_size;
1109   }
1110 
1111   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1112   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1113 }
1114 
1115 ////////////////////////////////////////////////////////////////////////////////
1116 // time support
1117 
1118 // Time since start-up in seconds to a fine granularity.
1119 // Used by VMSelfDestructTimer and the MemProfiler.
1120 double os::elapsedTime() {
1121 
1122   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1123 }
1124 
1125 jlong os::elapsed_counter() {
1126   return javaTimeNanos() - initial_time_count;
1127 }
1128 
1129 jlong os::elapsed_frequency() {
1130   return NANOSECS_PER_SEC; // nanosecond resolution
1131 }
1132 
1133 bool os::supports_vtime() { return true; }
1134 bool os::enable_vtime()   { return false; }
1135 bool os::vtime_enabled()  { return false; }
1136 
1137 double os::elapsedVTime() {
1138   struct rusage usage;
1139   int retval = getrusage(RUSAGE_THREAD, &usage);
1140   if (retval == 0) {
1141     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1142   } else {
1143     // better than nothing, but not much
1144     return elapsedTime();
1145   }
1146 }
1147 
1148 jlong os::javaTimeMillis() {
1149   timeval time;
1150   int status = gettimeofday(&time, NULL);
1151   assert(status != -1, "linux error");
1152   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1153 }
1154 
1155 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1156   timeval time;
1157   int status = gettimeofday(&time, NULL);
1158   assert(status != -1, "linux error");
1159   seconds = jlong(time.tv_sec);
1160   nanos = jlong(time.tv_usec) * 1000;
1161 }
1162 
1163 
1164 #ifndef CLOCK_MONOTONIC
1165   #define CLOCK_MONOTONIC (1)
1166 #endif
1167 
1168 void os::Linux::clock_init() {
1169   // we do dlopen's in this particular order due to bug in linux
1170   // dynamical loader (see 6348968) leading to crash on exit
1171   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1172   if (handle == NULL) {
1173     handle = dlopen("librt.so", RTLD_LAZY);
1174   }
1175 
1176   if (handle) {
1177     int (*clock_getres_func)(clockid_t, struct timespec*) =
1178            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1179     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1180            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1181     if (clock_getres_func && clock_gettime_func) {
1182       // See if monotonic clock is supported by the kernel. Note that some
1183       // early implementations simply return kernel jiffies (updated every
1184       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1185       // for nano time (though the monotonic property is still nice to have).
1186       // It's fixed in newer kernels, however clock_getres() still returns
1187       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1188       // resolution for now. Hopefully as people move to new kernels, this
1189       // won't be a problem.
1190       struct timespec res;
1191       struct timespec tp;
1192       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1193           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1194         // yes, monotonic clock is supported
1195         _clock_gettime = clock_gettime_func;
1196         return;
1197       } else {
1198         // close librt if there is no monotonic clock
1199         dlclose(handle);
1200       }
1201     }
1202   }
1203   warning("No monotonic clock was available - timed services may " \
1204           "be adversely affected if the time-of-day clock changes");
1205 }
1206 
1207 #ifndef SYS_clock_getres
1208   #if defined(IA32) || defined(AMD64)
1209     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1210     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1211   #else
1212     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1213     #define sys_clock_getres(x,y)  -1
1214   #endif
1215 #else
1216   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1217 #endif
1218 
1219 void os::Linux::fast_thread_clock_init() {
1220   if (!UseLinuxPosixThreadCPUClocks) {
1221     return;
1222   }
1223   clockid_t clockid;
1224   struct timespec tp;
1225   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1226       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1227 
1228   // Switch to using fast clocks for thread cpu time if
1229   // the sys_clock_getres() returns 0 error code.
1230   // Note, that some kernels may support the current thread
1231   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1232   // returned by the pthread_getcpuclockid().
1233   // If the fast Posix clocks are supported then the sys_clock_getres()
1234   // must return at least tp.tv_sec == 0 which means a resolution
1235   // better than 1 sec. This is extra check for reliability.
1236 
1237   if (pthread_getcpuclockid_func &&
1238       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1239       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1240     _supports_fast_thread_cpu_time = true;
1241     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1242   }
1243 }
1244 
1245 jlong os::javaTimeNanos() {
1246   if (os::supports_monotonic_clock()) {
1247     struct timespec tp;
1248     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1249     assert(status == 0, "gettime error");
1250     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1251     return result;
1252   } else {
1253     timeval time;
1254     int status = gettimeofday(&time, NULL);
1255     assert(status != -1, "linux error");
1256     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1257     return 1000 * usecs;
1258   }
1259 }
1260 
1261 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1262   if (os::supports_monotonic_clock()) {
1263     info_ptr->max_value = ALL_64_BITS;
1264 
1265     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1266     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1267     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1268   } else {
1269     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1270     info_ptr->max_value = ALL_64_BITS;
1271 
1272     // gettimeofday is a real time clock so it skips
1273     info_ptr->may_skip_backward = true;
1274     info_ptr->may_skip_forward = true;
1275   }
1276 
1277   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1278 }
1279 
1280 // Return the real, user, and system times in seconds from an
1281 // arbitrary fixed point in the past.
1282 bool os::getTimesSecs(double* process_real_time,
1283                       double* process_user_time,
1284                       double* process_system_time) {
1285   struct tms ticks;
1286   clock_t real_ticks = times(&ticks);
1287 
1288   if (real_ticks == (clock_t) (-1)) {
1289     return false;
1290   } else {
1291     double ticks_per_second = (double) clock_tics_per_sec;
1292     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1293     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1294     *process_real_time = ((double) real_ticks) / ticks_per_second;
1295 
1296     return true;
1297   }
1298 }
1299 
1300 
1301 char * os::local_time_string(char *buf, size_t buflen) {
1302   struct tm t;
1303   time_t long_time;
1304   time(&long_time);
1305   localtime_r(&long_time, &t);
1306   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1307                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1308                t.tm_hour, t.tm_min, t.tm_sec);
1309   return buf;
1310 }
1311 
1312 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1313   return localtime_r(clock, res);
1314 }
1315 
1316 ////////////////////////////////////////////////////////////////////////////////
1317 // runtime exit support
1318 
1319 // Note: os::shutdown() might be called very early during initialization, or
1320 // called from signal handler. Before adding something to os::shutdown(), make
1321 // sure it is async-safe and can handle partially initialized VM.
1322 void os::shutdown() {
1323 
1324   // allow PerfMemory to attempt cleanup of any persistent resources
1325   perfMemory_exit();
1326 
1327   // needs to remove object in file system
1328   AttachListener::abort();
1329 
1330   // flush buffered output, finish log files
1331   ostream_abort();
1332 
1333   // Check for abort hook
1334   abort_hook_t abort_hook = Arguments::abort_hook();
1335   if (abort_hook != NULL) {
1336     abort_hook();
1337   }
1338 
1339 }
1340 
1341 // Note: os::abort() might be called very early during initialization, or
1342 // called from signal handler. Before adding something to os::abort(), make
1343 // sure it is async-safe and can handle partially initialized VM.
1344 void os::abort(bool dump_core, void* siginfo, void* context) {
1345   os::shutdown();
1346   if (dump_core) {
1347 #ifndef PRODUCT
1348     fdStream out(defaultStream::output_fd());
1349     out.print_raw("Current thread is ");
1350     char buf[16];
1351     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1352     out.print_raw_cr(buf);
1353     out.print_raw_cr("Dumping core ...");
1354 #endif
1355     ::abort(); // dump core
1356   }
1357 
1358   ::exit(1);
1359 }
1360 
1361 // Die immediately, no exit hook, no abort hook, no cleanup.
1362 void os::die() {
1363   ::abort();
1364 }
1365 
1366 
1367 // This method is a copy of JDK's sysGetLastErrorString
1368 // from src/solaris/hpi/src/system_md.c
1369 
1370 size_t os::lasterror(char *buf, size_t len) {
1371   if (errno == 0)  return 0;
1372 
1373   const char *s = ::strerror(errno);
1374   size_t n = ::strlen(s);
1375   if (n >= len) {
1376     n = len - 1;
1377   }
1378   ::strncpy(buf, s, n);
1379   buf[n] = '\0';
1380   return n;
1381 }
1382 
1383 // thread_id is kernel thread id (similar to Solaris LWP id)
1384 intx os::current_thread_id() { return os::Linux::gettid(); }
1385 int os::current_process_id() {
1386   return ::getpid();
1387 }
1388 
1389 // DLL functions
1390 
1391 const char* os::dll_file_extension() { return ".so"; }
1392 
1393 // This must be hard coded because it's the system's temporary
1394 // directory not the java application's temp directory, ala java.io.tmpdir.
1395 const char* os::get_temp_directory() { return "/tmp"; }
1396 
1397 static bool file_exists(const char* filename) {
1398   struct stat statbuf;
1399   if (filename == NULL || strlen(filename) == 0) {
1400     return false;
1401   }
1402   return os::stat(filename, &statbuf) == 0;
1403 }
1404 
1405 bool os::dll_build_name(char* buffer, size_t buflen,
1406                         const char* pname, const char* fname) {
1407   bool retval = false;
1408   // Copied from libhpi
1409   const size_t pnamelen = pname ? strlen(pname) : 0;
1410 
1411   // Return error on buffer overflow.
1412   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1413     return retval;
1414   }
1415 
1416   if (pnamelen == 0) {
1417     snprintf(buffer, buflen, "lib%s.so", fname);
1418     retval = true;
1419   } else if (strchr(pname, *os::path_separator()) != NULL) {
1420     int n;
1421     char** pelements = split_path(pname, &n);
1422     if (pelements == NULL) {
1423       return false;
1424     }
1425     for (int i = 0; i < n; i++) {
1426       // Really shouldn't be NULL, but check can't hurt
1427       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1428         continue; // skip the empty path values
1429       }
1430       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1431       if (file_exists(buffer)) {
1432         retval = true;
1433         break;
1434       }
1435     }
1436     // release the storage
1437     for (int i = 0; i < n; i++) {
1438       if (pelements[i] != NULL) {
1439         FREE_C_HEAP_ARRAY(char, pelements[i]);
1440       }
1441     }
1442     if (pelements != NULL) {
1443       FREE_C_HEAP_ARRAY(char*, pelements);
1444     }
1445   } else {
1446     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1447     retval = true;
1448   }
1449   return retval;
1450 }
1451 
1452 // check if addr is inside libjvm.so
1453 bool os::address_is_in_vm(address addr) {
1454   static address libjvm_base_addr;
1455   Dl_info dlinfo;
1456 
1457   if (libjvm_base_addr == NULL) {
1458     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1459       libjvm_base_addr = (address)dlinfo.dli_fbase;
1460     }
1461     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1462   }
1463 
1464   if (dladdr((void *)addr, &dlinfo) != 0) {
1465     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1466   }
1467 
1468   return false;
1469 }
1470 
1471 bool os::dll_address_to_function_name(address addr, char *buf,
1472                                       int buflen, int *offset,
1473                                       bool demangle) {
1474   // buf is not optional, but offset is optional
1475   assert(buf != NULL, "sanity check");
1476 
1477   Dl_info dlinfo;
1478 
1479   if (dladdr((void*)addr, &dlinfo) != 0) {
1480     // see if we have a matching symbol
1481     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1482       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1483         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1484       }
1485       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1486       return true;
1487     }
1488     // no matching symbol so try for just file info
1489     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1490       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1491                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1492         return true;
1493       }
1494     }
1495   }
1496 
1497   buf[0] = '\0';
1498   if (offset != NULL) *offset = -1;
1499   return false;
1500 }
1501 
1502 struct _address_to_library_name {
1503   address addr;          // input : memory address
1504   size_t  buflen;        //         size of fname
1505   char*   fname;         // output: library name
1506   address base;          //         library base addr
1507 };
1508 
1509 static int address_to_library_name_callback(struct dl_phdr_info *info,
1510                                             size_t size, void *data) {
1511   int i;
1512   bool found = false;
1513   address libbase = NULL;
1514   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1515 
1516   // iterate through all loadable segments
1517   for (i = 0; i < info->dlpi_phnum; i++) {
1518     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1519     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1520       // base address of a library is the lowest address of its loaded
1521       // segments.
1522       if (libbase == NULL || libbase > segbase) {
1523         libbase = segbase;
1524       }
1525       // see if 'addr' is within current segment
1526       if (segbase <= d->addr &&
1527           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1528         found = true;
1529       }
1530     }
1531   }
1532 
1533   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1534   // so dll_address_to_library_name() can fall through to use dladdr() which
1535   // can figure out executable name from argv[0].
1536   if (found && info->dlpi_name && info->dlpi_name[0]) {
1537     d->base = libbase;
1538     if (d->fname) {
1539       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1540     }
1541     return 1;
1542   }
1543   return 0;
1544 }
1545 
1546 bool os::dll_address_to_library_name(address addr, char* buf,
1547                                      int buflen, int* offset) {
1548   // buf is not optional, but offset is optional
1549   assert(buf != NULL, "sanity check");
1550 
1551   Dl_info dlinfo;
1552   struct _address_to_library_name data;
1553 
1554   // There is a bug in old glibc dladdr() implementation that it could resolve
1555   // to wrong library name if the .so file has a base address != NULL. Here
1556   // we iterate through the program headers of all loaded libraries to find
1557   // out which library 'addr' really belongs to. This workaround can be
1558   // removed once the minimum requirement for glibc is moved to 2.3.x.
1559   data.addr = addr;
1560   data.fname = buf;
1561   data.buflen = buflen;
1562   data.base = NULL;
1563   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1564 
1565   if (rslt) {
1566     // buf already contains library name
1567     if (offset) *offset = addr - data.base;
1568     return true;
1569   }
1570   if (dladdr((void*)addr, &dlinfo) != 0) {
1571     if (dlinfo.dli_fname != NULL) {
1572       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1573     }
1574     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1575       *offset = addr - (address)dlinfo.dli_fbase;
1576     }
1577     return true;
1578   }
1579 
1580   buf[0] = '\0';
1581   if (offset) *offset = -1;
1582   return false;
1583 }
1584 
1585 // Loads .dll/.so and
1586 // in case of error it checks if .dll/.so was built for the
1587 // same architecture as Hotspot is running on
1588 
1589 
1590 // Remember the stack's state. The Linux dynamic linker will change
1591 // the stack to 'executable' at most once, so we must safepoint only once.
1592 bool os::Linux::_stack_is_executable = false;
1593 
1594 // VM operation that loads a library.  This is necessary if stack protection
1595 // of the Java stacks can be lost during loading the library.  If we
1596 // do not stop the Java threads, they can stack overflow before the stacks
1597 // are protected again.
1598 class VM_LinuxDllLoad: public VM_Operation {
1599  private:
1600   const char *_filename;
1601   char *_ebuf;
1602   int _ebuflen;
1603   void *_lib;
1604  public:
1605   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1606     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1607   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1608   void doit() {
1609     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1610     os::Linux::_stack_is_executable = true;
1611   }
1612   void* loaded_library() { return _lib; }
1613 };
1614 
1615 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1616   void * result = NULL;
1617   bool load_attempted = false;
1618 
1619   // Check whether the library to load might change execution rights
1620   // of the stack. If they are changed, the protection of the stack
1621   // guard pages will be lost. We need a safepoint to fix this.
1622   //
1623   // See Linux man page execstack(8) for more info.
1624   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1625     ElfFile ef(filename);
1626     if (!ef.specifies_noexecstack()) {
1627       if (!is_init_completed()) {
1628         os::Linux::_stack_is_executable = true;
1629         // This is OK - No Java threads have been created yet, and hence no
1630         // stack guard pages to fix.
1631         //
1632         // This should happen only when you are building JDK7 using a very
1633         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1634         //
1635         // Dynamic loader will make all stacks executable after
1636         // this function returns, and will not do that again.
1637         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1638       } else {
1639         warning("You have loaded library %s which might have disabled stack guard. "
1640                 "The VM will try to fix the stack guard now.\n"
1641                 "It's highly recommended that you fix the library with "
1642                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1643                 filename);
1644 
1645         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1646         JavaThread *jt = JavaThread::current();
1647         if (jt->thread_state() != _thread_in_native) {
1648           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1649           // that requires ExecStack. Cannot enter safe point. Let's give up.
1650           warning("Unable to fix stack guard. Giving up.");
1651         } else {
1652           if (!LoadExecStackDllInVMThread) {
1653             // This is for the case where the DLL has an static
1654             // constructor function that executes JNI code. We cannot
1655             // load such DLLs in the VMThread.
1656             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1657           }
1658 
1659           ThreadInVMfromNative tiv(jt);
1660           debug_only(VMNativeEntryWrapper vew;)
1661 
1662           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1663           VMThread::execute(&op);
1664           if (LoadExecStackDllInVMThread) {
1665             result = op.loaded_library();
1666           }
1667           load_attempted = true;
1668         }
1669       }
1670     }
1671   }
1672 
1673   if (!load_attempted) {
1674     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1675   }
1676 
1677   if (result != NULL) {
1678     // Successful loading
1679     return result;
1680   }
1681 
1682   Elf32_Ehdr elf_head;
1683   int diag_msg_max_length=ebuflen-strlen(ebuf);
1684   char* diag_msg_buf=ebuf+strlen(ebuf);
1685 
1686   if (diag_msg_max_length==0) {
1687     // No more space in ebuf for additional diagnostics message
1688     return NULL;
1689   }
1690 
1691 
1692   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1693 
1694   if (file_descriptor < 0) {
1695     // Can't open library, report dlerror() message
1696     return NULL;
1697   }
1698 
1699   bool failed_to_read_elf_head=
1700     (sizeof(elf_head)!=
1701      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1702 
1703   ::close(file_descriptor);
1704   if (failed_to_read_elf_head) {
1705     // file i/o error - report dlerror() msg
1706     return NULL;
1707   }
1708 
1709   typedef struct {
1710     Elf32_Half  code;         // Actual value as defined in elf.h
1711     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1712     char        elf_class;    // 32 or 64 bit
1713     char        endianess;    // MSB or LSB
1714     char*       name;         // String representation
1715   } arch_t;
1716 
1717 #ifndef EM_486
1718   #define EM_486          6               /* Intel 80486 */
1719 #endif
1720 #ifndef EM_AARCH64
1721   #define EM_AARCH64    183               /* ARM AARCH64 */
1722 #endif
1723 
1724   static const arch_t arch_array[]={
1725     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1726     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1727     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1728     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1729     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1730     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1731     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1732     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1733 #if defined(VM_LITTLE_ENDIAN)
1734     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1735 #else
1736     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1737 #endif
1738     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1739     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1740     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1741     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1742     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1743     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1744     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1745     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1746   };
1747 
1748 #if  (defined IA32)
1749   static  Elf32_Half running_arch_code=EM_386;
1750 #elif   (defined AMD64)
1751   static  Elf32_Half running_arch_code=EM_X86_64;
1752 #elif  (defined IA64)
1753   static  Elf32_Half running_arch_code=EM_IA_64;
1754 #elif  (defined __sparc) && (defined _LP64)
1755   static  Elf32_Half running_arch_code=EM_SPARCV9;
1756 #elif  (defined __sparc) && (!defined _LP64)
1757   static  Elf32_Half running_arch_code=EM_SPARC;
1758 #elif  (defined __powerpc64__)
1759   static  Elf32_Half running_arch_code=EM_PPC64;
1760 #elif  (defined __powerpc__)
1761   static  Elf32_Half running_arch_code=EM_PPC;
1762 #elif  (defined ARM)
1763   static  Elf32_Half running_arch_code=EM_ARM;
1764 #elif  (defined S390)
1765   static  Elf32_Half running_arch_code=EM_S390;
1766 #elif  (defined ALPHA)
1767   static  Elf32_Half running_arch_code=EM_ALPHA;
1768 #elif  (defined MIPSEL)
1769   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1770 #elif  (defined PARISC)
1771   static  Elf32_Half running_arch_code=EM_PARISC;
1772 #elif  (defined MIPS)
1773   static  Elf32_Half running_arch_code=EM_MIPS;
1774 #elif  (defined M68K)
1775   static  Elf32_Half running_arch_code=EM_68K;
1776 #elif  (defined AARCH64)
1777   static  Elf32_Half running_arch_code=EM_AARCH64;
1778 #else
1779     #error Method os::dll_load requires that one of following is defined:\
1780          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1781 #endif
1782 
1783   // Identify compatability class for VM's architecture and library's architecture
1784   // Obtain string descriptions for architectures
1785 
1786   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1787   int running_arch_index=-1;
1788 
1789   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1790     if (running_arch_code == arch_array[i].code) {
1791       running_arch_index    = i;
1792     }
1793     if (lib_arch.code == arch_array[i].code) {
1794       lib_arch.compat_class = arch_array[i].compat_class;
1795       lib_arch.name         = arch_array[i].name;
1796     }
1797   }
1798 
1799   assert(running_arch_index != -1,
1800          "Didn't find running architecture code (running_arch_code) in arch_array");
1801   if (running_arch_index == -1) {
1802     // Even though running architecture detection failed
1803     // we may still continue with reporting dlerror() message
1804     return NULL;
1805   }
1806 
1807   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1808     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1809     return NULL;
1810   }
1811 
1812 #ifndef S390
1813   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1814     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1815     return NULL;
1816   }
1817 #endif // !S390
1818 
1819   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1820     if (lib_arch.name!=NULL) {
1821       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1822                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1823                  lib_arch.name, arch_array[running_arch_index].name);
1824     } else {
1825       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1826                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1827                  lib_arch.code,
1828                  arch_array[running_arch_index].name);
1829     }
1830   }
1831 
1832   return NULL;
1833 }
1834 
1835 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1836                                 int ebuflen) {
1837   void * result = ::dlopen(filename, RTLD_LAZY);
1838   if (result == NULL) {
1839     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1840     ebuf[ebuflen-1] = '\0';
1841   }
1842   return result;
1843 }
1844 
1845 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1846                                        int ebuflen) {
1847   void * result = NULL;
1848   if (LoadExecStackDllInVMThread) {
1849     result = dlopen_helper(filename, ebuf, ebuflen);
1850   }
1851 
1852   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1853   // library that requires an executable stack, or which does not have this
1854   // stack attribute set, dlopen changes the stack attribute to executable. The
1855   // read protection of the guard pages gets lost.
1856   //
1857   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1858   // may have been queued at the same time.
1859 
1860   if (!_stack_is_executable) {
1861     JavaThread *jt = Threads::first();
1862 
1863     while (jt) {
1864       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1865           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1866         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1867                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1868           warning("Attempt to reguard stack yellow zone failed.");
1869         }
1870       }
1871       jt = jt->next();
1872     }
1873   }
1874 
1875   return result;
1876 }
1877 
1878 void* os::dll_lookup(void* handle, const char* name) {
1879   void* res = dlsym(handle, name);
1880   return res;
1881 }
1882 
1883 void* os::get_default_process_handle() {
1884   return (void*)::dlopen(NULL, RTLD_LAZY);
1885 }
1886 
1887 static bool _print_ascii_file(const char* filename, outputStream* st) {
1888   int fd = ::open(filename, O_RDONLY);
1889   if (fd == -1) {
1890     return false;
1891   }
1892 
1893   char buf[32];
1894   int bytes;
1895   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1896     st->print_raw(buf, bytes);
1897   }
1898 
1899   ::close(fd);
1900 
1901   return true;
1902 }
1903 
1904 void os::print_dll_info(outputStream *st) {
1905   st->print_cr("Dynamic libraries:");
1906 
1907   char fname[32];
1908   pid_t pid = os::Linux::gettid();
1909 
1910   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1911 
1912   if (!_print_ascii_file(fname, st)) {
1913     st->print("Can not get library information for pid = %d\n", pid);
1914   }
1915 }
1916 
1917 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1918   FILE *procmapsFile = NULL;
1919 
1920   // Open the procfs maps file for the current process
1921   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1922     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1923     char line[PATH_MAX + 100];
1924 
1925     // Read line by line from 'file'
1926     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1927       u8 base, top, offset, inode;
1928       char permissions[5];
1929       char device[6];
1930       char name[PATH_MAX + 1];
1931 
1932       // Parse fields from line
1933       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1934              &base, &top, permissions, &offset, device, &inode, name);
1935 
1936       // Filter by device id '00:00' so that we only get file system mapped files.
1937       if (strcmp(device, "00:00") != 0) {
1938 
1939         // Call callback with the fields of interest
1940         if(callback(name, (address)base, (address)top, param)) {
1941           // Oops abort, callback aborted
1942           fclose(procmapsFile);
1943           return 1;
1944         }
1945       }
1946     }
1947     fclose(procmapsFile);
1948   }
1949   return 0;
1950 }
1951 
1952 void os::print_os_info_brief(outputStream* st) {
1953   os::Linux::print_distro_info(st);
1954 
1955   os::Posix::print_uname_info(st);
1956 
1957   os::Linux::print_libversion_info(st);
1958 
1959 }
1960 
1961 void os::print_os_info(outputStream* st) {
1962   st->print("OS:");
1963 
1964   os::Linux::print_distro_info(st);
1965 
1966   os::Posix::print_uname_info(st);
1967 
1968   // Print warning if unsafe chroot environment detected
1969   if (unsafe_chroot_detected) {
1970     st->print("WARNING!! ");
1971     st->print_cr("%s", unstable_chroot_error);
1972   }
1973 
1974   os::Linux::print_libversion_info(st);
1975 
1976   os::Posix::print_rlimit_info(st);
1977 
1978   os::Posix::print_load_average(st);
1979 
1980   os::Linux::print_full_memory_info(st);
1981 }
1982 
1983 // Try to identify popular distros.
1984 // Most Linux distributions have a /etc/XXX-release file, which contains
1985 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1986 // file that also contains the OS version string. Some have more than one
1987 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1988 // /etc/redhat-release.), so the order is important.
1989 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1990 // their own specific XXX-release file as well as a redhat-release file.
1991 // Because of this the XXX-release file needs to be searched for before the
1992 // redhat-release file.
1993 // Since Red Hat has a lsb-release file that is not very descriptive the
1994 // search for redhat-release needs to be before lsb-release.
1995 // Since the lsb-release file is the new standard it needs to be searched
1996 // before the older style release files.
1997 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1998 // next to last resort.  The os-release file is a new standard that contains
1999 // distribution information and the system-release file seems to be an old
2000 // standard that has been replaced by the lsb-release and os-release files.
2001 // Searching for the debian_version file is the last resort.  It contains
2002 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2003 // "Debian " is printed before the contents of the debian_version file.
2004 
2005 const char* distro_files[] = {
2006   "/etc/oracle-release",
2007   "/etc/mandriva-release",
2008   "/etc/mandrake-release",
2009   "/etc/sun-release",
2010   "/etc/redhat-release",
2011   "/etc/lsb-release",
2012   "/etc/SuSE-release",
2013   "/etc/turbolinux-release",
2014   "/etc/gentoo-release",
2015   "/etc/ltib-release",
2016   "/etc/angstrom-version",
2017   "/etc/system-release",
2018   "/etc/os-release",
2019   NULL };
2020 
2021 void os::Linux::print_distro_info(outputStream* st) {
2022   for (int i = 0;; i++) {
2023     const char* file = distro_files[i];
2024     if (file == NULL) {
2025       break;  // done
2026     }
2027     // If file prints, we found it.
2028     if (_print_ascii_file(file, st)) {
2029       return;
2030     }
2031   }
2032 
2033   if (file_exists("/etc/debian_version")) {
2034     st->print("Debian ");
2035     _print_ascii_file("/etc/debian_version", st);
2036   } else {
2037     st->print("Linux");
2038   }
2039   st->cr();
2040 }
2041 
2042 static void parse_os_info(char* distro, size_t length, const char* file) {
2043   FILE* fp = fopen(file, "r");
2044   if (fp != NULL) {
2045     char buf[256];
2046     // get last line of the file.
2047     while (fgets(buf, sizeof(buf), fp)) { }
2048     // Edit out extra stuff in expected ubuntu format
2049     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2050       char* ptr = strstr(buf, "\"");  // the name is in quotes
2051       if (ptr != NULL) {
2052         ptr++; // go beyond first quote
2053         char* nl = strchr(ptr, '\"');
2054         if (nl != NULL) *nl = '\0';
2055         strncpy(distro, ptr, length);
2056       } else {
2057         ptr = strstr(buf, "=");
2058         ptr++; // go beyond equals then
2059         char* nl = strchr(ptr, '\n');
2060         if (nl != NULL) *nl = '\0';
2061         strncpy(distro, ptr, length);
2062       }
2063     } else {
2064       // if not in expected Ubuntu format, print out whole line minus \n
2065       char* nl = strchr(buf, '\n');
2066       if (nl != NULL) *nl = '\0';
2067       strncpy(distro, buf, length);
2068     }
2069     // close distro file
2070     fclose(fp);
2071   }
2072 }
2073 
2074 void os::get_summary_os_info(char* buf, size_t buflen) {
2075   for (int i = 0;; i++) {
2076     const char* file = distro_files[i];
2077     if (file == NULL) {
2078       break; // ran out of distro_files
2079     }
2080     if (file_exists(file)) {
2081       parse_os_info(buf, buflen, file);
2082       return;
2083     }
2084   }
2085   // special case for debian
2086   if (file_exists("/etc/debian_version")) {
2087     strncpy(buf, "Debian ", buflen);
2088     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2089   } else {
2090     strncpy(buf, "Linux", buflen);
2091   }
2092 }
2093 
2094 void os::Linux::print_libversion_info(outputStream* st) {
2095   // libc, pthread
2096   st->print("libc:");
2097   st->print("%s ", os::Linux::glibc_version());
2098   st->print("%s ", os::Linux::libpthread_version());
2099   st->cr();
2100 }
2101 
2102 void os::Linux::print_full_memory_info(outputStream* st) {
2103   st->print("\n/proc/meminfo:\n");
2104   _print_ascii_file("/proc/meminfo", st);
2105   st->cr();
2106 }
2107 
2108 void os::print_memory_info(outputStream* st) {
2109 
2110   st->print("Memory:");
2111   st->print(" %dk page", os::vm_page_size()>>10);
2112 
2113   // values in struct sysinfo are "unsigned long"
2114   struct sysinfo si;
2115   sysinfo(&si);
2116 
2117   st->print(", physical " UINT64_FORMAT "k",
2118             os::physical_memory() >> 10);
2119   st->print("(" UINT64_FORMAT "k free)",
2120             os::available_memory() >> 10);
2121   st->print(", swap " UINT64_FORMAT "k",
2122             ((jlong)si.totalswap * si.mem_unit) >> 10);
2123   st->print("(" UINT64_FORMAT "k free)",
2124             ((jlong)si.freeswap * si.mem_unit) >> 10);
2125   st->cr();
2126 }
2127 
2128 // Print the first "model name" line and the first "flags" line
2129 // that we find and nothing more. We assume "model name" comes
2130 // before "flags" so if we find a second "model name", then the
2131 // "flags" field is considered missing.
2132 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2133 #if defined(IA32) || defined(AMD64)
2134   // Other platforms have less repetitive cpuinfo files
2135   FILE *fp = fopen("/proc/cpuinfo", "r");
2136   if (fp) {
2137     while (!feof(fp)) {
2138       if (fgets(buf, buflen, fp)) {
2139         // Assume model name comes before flags
2140         bool model_name_printed = false;
2141         if (strstr(buf, "model name") != NULL) {
2142           if (!model_name_printed) {
2143             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2144             st->print_raw(buf);
2145             model_name_printed = true;
2146           } else {
2147             // model name printed but not flags?  Odd, just return
2148             fclose(fp);
2149             return true;
2150           }
2151         }
2152         // print the flags line too
2153         if (strstr(buf, "flags") != NULL) {
2154           st->print_raw(buf);
2155           fclose(fp);
2156           return true;
2157         }
2158       }
2159     }
2160     fclose(fp);
2161   }
2162 #endif // x86 platforms
2163   return false;
2164 }
2165 
2166 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2167   // Only print the model name if the platform provides this as a summary
2168   if (!print_model_name_and_flags(st, buf, buflen)) {
2169     st->print("\n/proc/cpuinfo:\n");
2170     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2171       st->print_cr("  <Not Available>");
2172     }
2173   }
2174 }
2175 
2176 #if defined(AMD64) || defined(IA32) || defined(X32)
2177 const char* search_string = "model name";
2178 #elif defined(SPARC)
2179 const char* search_string = "cpu";
2180 #else
2181 const char* search_string = "Processor";
2182 #endif
2183 
2184 // Parses the cpuinfo file for string representing the model name.
2185 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2186   FILE* fp = fopen("/proc/cpuinfo", "r");
2187   if (fp != NULL) {
2188     while (!feof(fp)) {
2189       char buf[256];
2190       if (fgets(buf, sizeof(buf), fp)) {
2191         char* start = strstr(buf, search_string);
2192         if (start != NULL) {
2193           char *ptr = start + strlen(search_string);
2194           char *end = buf + strlen(buf);
2195           while (ptr != end) {
2196              // skip whitespace and colon for the rest of the name.
2197              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2198                break;
2199              }
2200              ptr++;
2201           }
2202           if (ptr != end) {
2203             // reasonable string, get rid of newline and keep the rest
2204             char* nl = strchr(buf, '\n');
2205             if (nl != NULL) *nl = '\0';
2206             strncpy(cpuinfo, ptr, length);
2207             fclose(fp);
2208             return;
2209           }
2210         }
2211       }
2212     }
2213     fclose(fp);
2214   }
2215   // cpuinfo not found or parsing failed, just print generic string.  The entire
2216   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2217 #if defined(AMD64)
2218   strncpy(cpuinfo, "x86_64", length);
2219 #elif defined(IA32)
2220   strncpy(cpuinfo, "x86_32", length);
2221 #elif defined(IA64)
2222   strncpy(cpuinfo, "IA64", length);
2223 #elif defined(SPARC)
2224   strncpy(cpuinfo, "sparcv9", length);
2225 #elif defined(AARCH64)
2226   strncpy(cpuinfo, "AArch64", length);
2227 #elif defined(ARM)
2228   strncpy(cpuinfo, "ARM", length);
2229 #elif defined(PPC)
2230   strncpy(cpuinfo, "PPC64", length);
2231 #elif defined(ZERO_LIBARCH)
2232   strncpy(cpuinfo, ZERO_LIBARCH, length);
2233 #else
2234   strncpy(cpuinfo, "unknown", length);
2235 #endif
2236 }
2237 
2238 void os::print_siginfo(outputStream* st, void* siginfo) {
2239   const siginfo_t* si = (const siginfo_t*)siginfo;
2240 
2241   os::Posix::print_siginfo_brief(st, si);
2242 #if INCLUDE_CDS
2243   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2244       UseSharedSpaces) {
2245     FileMapInfo* mapinfo = FileMapInfo::current_info();
2246     if (mapinfo->is_in_shared_space(si->si_addr)) {
2247       st->print("\n\nError accessing class data sharing archive."   \
2248                 " Mapped file inaccessible during execution, "      \
2249                 " possible disk/network problem.");
2250     }
2251   }
2252 #endif
2253   st->cr();
2254 }
2255 
2256 
2257 static void print_signal_handler(outputStream* st, int sig,
2258                                  char* buf, size_t buflen);
2259 
2260 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2261   st->print_cr("Signal Handlers:");
2262   print_signal_handler(st, SIGSEGV, buf, buflen);
2263   print_signal_handler(st, SIGBUS , buf, buflen);
2264   print_signal_handler(st, SIGFPE , buf, buflen);
2265   print_signal_handler(st, SIGPIPE, buf, buflen);
2266   print_signal_handler(st, SIGXFSZ, buf, buflen);
2267   print_signal_handler(st, SIGILL , buf, buflen);
2268   print_signal_handler(st, SR_signum, buf, buflen);
2269   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2270   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2271   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2272   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2273 #if defined(PPC64)
2274   print_signal_handler(st, SIGTRAP, buf, buflen);
2275 #endif
2276 }
2277 
2278 static char saved_jvm_path[MAXPATHLEN] = {0};
2279 
2280 // Find the full path to the current module, libjvm.so
2281 void os::jvm_path(char *buf, jint buflen) {
2282   // Error checking.
2283   if (buflen < MAXPATHLEN) {
2284     assert(false, "must use a large-enough buffer");
2285     buf[0] = '\0';
2286     return;
2287   }
2288   // Lazy resolve the path to current module.
2289   if (saved_jvm_path[0] != 0) {
2290     strcpy(buf, saved_jvm_path);
2291     return;
2292   }
2293 
2294   char dli_fname[MAXPATHLEN];
2295   bool ret = dll_address_to_library_name(
2296                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2297                                          dli_fname, sizeof(dli_fname), NULL);
2298   assert(ret, "cannot locate libjvm");
2299   char *rp = NULL;
2300   if (ret && dli_fname[0] != '\0') {
2301     rp = realpath(dli_fname, buf);
2302   }
2303   if (rp == NULL) {
2304     return;
2305   }
2306 
2307   if (Arguments::sun_java_launcher_is_altjvm()) {
2308     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2309     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2310     // If "/jre/lib/" appears at the right place in the string, then
2311     // assume we are installed in a JDK and we're done. Otherwise, check
2312     // for a JAVA_HOME environment variable and fix up the path so it
2313     // looks like libjvm.so is installed there (append a fake suffix
2314     // hotspot/libjvm.so).
2315     const char *p = buf + strlen(buf) - 1;
2316     for (int count = 0; p > buf && count < 5; ++count) {
2317       for (--p; p > buf && *p != '/'; --p)
2318         /* empty */ ;
2319     }
2320 
2321     if (strncmp(p, "/jre/lib/", 9) != 0) {
2322       // Look for JAVA_HOME in the environment.
2323       char* java_home_var = ::getenv("JAVA_HOME");
2324       if (java_home_var != NULL && java_home_var[0] != 0) {
2325         char* jrelib_p;
2326         int len;
2327 
2328         // Check the current module name "libjvm.so".
2329         p = strrchr(buf, '/');
2330         if (p == NULL) {
2331           return;
2332         }
2333         assert(strstr(p, "/libjvm") == p, "invalid library name");
2334 
2335         rp = realpath(java_home_var, buf);
2336         if (rp == NULL) {
2337           return;
2338         }
2339 
2340         // determine if this is a legacy image or modules image
2341         // modules image doesn't have "jre" subdirectory
2342         len = strlen(buf);
2343         assert(len < buflen, "Ran out of buffer room");
2344         jrelib_p = buf + len;
2345         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2346         if (0 != access(buf, F_OK)) {
2347           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2348         }
2349 
2350         if (0 == access(buf, F_OK)) {
2351           // Use current module name "libjvm.so"
2352           len = strlen(buf);
2353           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2354         } else {
2355           // Go back to path of .so
2356           rp = realpath(dli_fname, buf);
2357           if (rp == NULL) {
2358             return;
2359           }
2360         }
2361       }
2362     }
2363   }
2364 
2365   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2366   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2367 }
2368 
2369 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2370   // no prefix required, not even "_"
2371 }
2372 
2373 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2374   // no suffix required
2375 }
2376 
2377 ////////////////////////////////////////////////////////////////////////////////
2378 // sun.misc.Signal support
2379 
2380 static volatile jint sigint_count = 0;
2381 
2382 static void UserHandler(int sig, void *siginfo, void *context) {
2383   // 4511530 - sem_post is serialized and handled by the manager thread. When
2384   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2385   // don't want to flood the manager thread with sem_post requests.
2386   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2387     return;
2388   }
2389 
2390   // Ctrl-C is pressed during error reporting, likely because the error
2391   // handler fails to abort. Let VM die immediately.
2392   if (sig == SIGINT && is_error_reported()) {
2393     os::die();
2394   }
2395 
2396   os::signal_notify(sig);
2397 }
2398 
2399 void* os::user_handler() {
2400   return CAST_FROM_FN_PTR(void*, UserHandler);
2401 }
2402 
2403 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2404   struct timespec ts;
2405   // Semaphore's are always associated with CLOCK_REALTIME
2406   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2407   // see unpackTime for discussion on overflow checking
2408   if (sec >= MAX_SECS) {
2409     ts.tv_sec += MAX_SECS;
2410     ts.tv_nsec = 0;
2411   } else {
2412     ts.tv_sec += sec;
2413     ts.tv_nsec += nsec;
2414     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2415       ts.tv_nsec -= NANOSECS_PER_SEC;
2416       ++ts.tv_sec; // note: this must be <= max_secs
2417     }
2418   }
2419 
2420   return ts;
2421 }
2422 
2423 extern "C" {
2424   typedef void (*sa_handler_t)(int);
2425   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2426 }
2427 
2428 void* os::signal(int signal_number, void* handler) {
2429   struct sigaction sigAct, oldSigAct;
2430 
2431   sigfillset(&(sigAct.sa_mask));
2432   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2433   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2434 
2435   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2436     // -1 means registration failed
2437     return (void *)-1;
2438   }
2439 
2440   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2441 }
2442 
2443 void os::signal_raise(int signal_number) {
2444   ::raise(signal_number);
2445 }
2446 
2447 // The following code is moved from os.cpp for making this
2448 // code platform specific, which it is by its very nature.
2449 
2450 // Will be modified when max signal is changed to be dynamic
2451 int os::sigexitnum_pd() {
2452   return NSIG;
2453 }
2454 
2455 // a counter for each possible signal value
2456 static volatile jint pending_signals[NSIG+1] = { 0 };
2457 
2458 // Linux(POSIX) specific hand shaking semaphore.
2459 static sem_t sig_sem;
2460 static PosixSemaphore sr_semaphore;
2461 
2462 void os::signal_init_pd() {
2463   // Initialize signal structures
2464   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2465 
2466   // Initialize signal semaphore
2467   ::sem_init(&sig_sem, 0, 0);
2468 }
2469 
2470 void os::signal_notify(int sig) {
2471   Atomic::inc(&pending_signals[sig]);
2472   ::sem_post(&sig_sem);
2473 }
2474 
2475 static int check_pending_signals(bool wait) {
2476   Atomic::store(0, &sigint_count);
2477   for (;;) {
2478     for (int i = 0; i < NSIG + 1; i++) {
2479       jint n = pending_signals[i];
2480       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2481         return i;
2482       }
2483     }
2484     if (!wait) {
2485       return -1;
2486     }
2487     JavaThread *thread = JavaThread::current();
2488     ThreadBlockInVM tbivm(thread);
2489 
2490     bool threadIsSuspended;
2491     do {
2492       thread->set_suspend_equivalent();
2493       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2494       ::sem_wait(&sig_sem);
2495 
2496       // were we externally suspended while we were waiting?
2497       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2498       if (threadIsSuspended) {
2499         // The semaphore has been incremented, but while we were waiting
2500         // another thread suspended us. We don't want to continue running
2501         // while suspended because that would surprise the thread that
2502         // suspended us.
2503         ::sem_post(&sig_sem);
2504 
2505         thread->java_suspend_self();
2506       }
2507     } while (threadIsSuspended);
2508   }
2509 }
2510 
2511 int os::signal_lookup() {
2512   return check_pending_signals(false);
2513 }
2514 
2515 int os::signal_wait() {
2516   return check_pending_signals(true);
2517 }
2518 
2519 ////////////////////////////////////////////////////////////////////////////////
2520 // Virtual Memory
2521 
2522 int os::vm_page_size() {
2523   // Seems redundant as all get out
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Solaris allocates memory by pages.
2529 int os::vm_allocation_granularity() {
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Rationale behind this function:
2535 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2536 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2537 //  samples for JITted code. Here we create private executable mapping over the code cache
2538 //  and then we can use standard (well, almost, as mapping can change) way to provide
2539 //  info for the reporting script by storing timestamp and location of symbol
2540 void linux_wrap_code(char* base, size_t size) {
2541   static volatile jint cnt = 0;
2542 
2543   if (!UseOprofile) {
2544     return;
2545   }
2546 
2547   char buf[PATH_MAX+1];
2548   int num = Atomic::add(1, &cnt);
2549 
2550   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2551            os::get_temp_directory(), os::current_process_id(), num);
2552   unlink(buf);
2553 
2554   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2555 
2556   if (fd != -1) {
2557     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2558     if (rv != (off_t)-1) {
2559       if (::write(fd, "", 1) == 1) {
2560         mmap(base, size,
2561              PROT_READ|PROT_WRITE|PROT_EXEC,
2562              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2563       }
2564     }
2565     ::close(fd);
2566     unlink(buf);
2567   }
2568 }
2569 
2570 static bool recoverable_mmap_error(int err) {
2571   // See if the error is one we can let the caller handle. This
2572   // list of errno values comes from JBS-6843484. I can't find a
2573   // Linux man page that documents this specific set of errno
2574   // values so while this list currently matches Solaris, it may
2575   // change as we gain experience with this failure mode.
2576   switch (err) {
2577   case EBADF:
2578   case EINVAL:
2579   case ENOTSUP:
2580     // let the caller deal with these errors
2581     return true;
2582 
2583   default:
2584     // Any remaining errors on this OS can cause our reserved mapping
2585     // to be lost. That can cause confusion where different data
2586     // structures think they have the same memory mapped. The worst
2587     // scenario is if both the VM and a library think they have the
2588     // same memory mapped.
2589     return false;
2590   }
2591 }
2592 
2593 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2594                                     int err) {
2595   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2596           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2597           strerror(err), err);
2598 }
2599 
2600 static void warn_fail_commit_memory(char* addr, size_t size,
2601                                     size_t alignment_hint, bool exec,
2602                                     int err) {
2603   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2604           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2605           alignment_hint, exec, strerror(err), err);
2606 }
2607 
2608 // NOTE: Linux kernel does not really reserve the pages for us.
2609 //       All it does is to check if there are enough free pages
2610 //       left at the time of mmap(). This could be a potential
2611 //       problem.
2612 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2613   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2614   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2615                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2616   if (res != (uintptr_t) MAP_FAILED) {
2617     if (UseNUMAInterleaving) {
2618       numa_make_global(addr, size);
2619     }
2620     return 0;
2621   }
2622 
2623   int err = errno;  // save errno from mmap() call above
2624 
2625   if (!recoverable_mmap_error(err)) {
2626     warn_fail_commit_memory(addr, size, exec, err);
2627     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2628   }
2629 
2630   return err;
2631 }
2632 
2633 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2634   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2635 }
2636 
2637 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2638                                   const char* mesg) {
2639   assert(mesg != NULL, "mesg must be specified");
2640   int err = os::Linux::commit_memory_impl(addr, size, exec);
2641   if (err != 0) {
2642     // the caller wants all commit errors to exit with the specified mesg:
2643     warn_fail_commit_memory(addr, size, exec, err);
2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2645   }
2646 }
2647 
2648 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2649 #ifndef MAP_HUGETLB
2650   #define MAP_HUGETLB 0x40000
2651 #endif
2652 
2653 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2654 #ifndef MADV_HUGEPAGE
2655   #define MADV_HUGEPAGE 14
2656 #endif
2657 
2658 int os::Linux::commit_memory_impl(char* addr, size_t size,
2659                                   size_t alignment_hint, bool exec) {
2660   int err = os::Linux::commit_memory_impl(addr, size, exec);
2661   if (err == 0) {
2662     realign_memory(addr, size, alignment_hint);
2663   }
2664   return err;
2665 }
2666 
2667 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2668                           bool exec) {
2669   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2670 }
2671 
2672 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2673                                   size_t alignment_hint, bool exec,
2674                                   const char* mesg) {
2675   assert(mesg != NULL, "mesg must be specified");
2676   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2677   if (err != 0) {
2678     // the caller wants all commit errors to exit with the specified mesg:
2679     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2680     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2681   }
2682 }
2683 
2684 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2685   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2686     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2687     // be supported or the memory may already be backed by huge pages.
2688     ::madvise(addr, bytes, MADV_HUGEPAGE);
2689   }
2690 }
2691 
2692 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2693   // This method works by doing an mmap over an existing mmaping and effectively discarding
2694   // the existing pages. However it won't work for SHM-based large pages that cannot be
2695   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2696   // small pages on top of the SHM segment. This method always works for small pages, so we
2697   // allow that in any case.
2698   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2699     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2700   }
2701 }
2702 
2703 void os::numa_make_global(char *addr, size_t bytes) {
2704   Linux::numa_interleave_memory(addr, bytes);
2705 }
2706 
2707 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2708 // bind policy to MPOL_PREFERRED for the current thread.
2709 #define USE_MPOL_PREFERRED 0
2710 
2711 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2712   // To make NUMA and large pages more robust when both enabled, we need to ease
2713   // the requirements on where the memory should be allocated. MPOL_BIND is the
2714   // default policy and it will force memory to be allocated on the specified
2715   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2716   // the specified node, but will not force it. Using this policy will prevent
2717   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2718   // free large pages.
2719   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2720   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2721 }
2722 
2723 bool os::numa_topology_changed() { return false; }
2724 
2725 size_t os::numa_get_groups_num() {
2726   int max_node = Linux::numa_max_node();
2727   return max_node > 0 ? max_node + 1 : 1;
2728 }
2729 
2730 int os::numa_get_group_id() {
2731   int cpu_id = Linux::sched_getcpu();
2732   if (cpu_id != -1) {
2733     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2734     if (lgrp_id != -1) {
2735       return lgrp_id;
2736     }
2737   }
2738   return 0;
2739 }
2740 
2741 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2742   for (size_t i = 0; i < size; i++) {
2743     ids[i] = i;
2744   }
2745   return size;
2746 }
2747 
2748 bool os::get_page_info(char *start, page_info* info) {
2749   return false;
2750 }
2751 
2752 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2753                      page_info* page_found) {
2754   return end;
2755 }
2756 
2757 
2758 int os::Linux::sched_getcpu_syscall(void) {
2759   unsigned int cpu = 0;
2760   int retval = -1;
2761 
2762 #if defined(IA32)
2763   #ifndef SYS_getcpu
2764     #define SYS_getcpu 318
2765   #endif
2766   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2767 #elif defined(AMD64)
2768 // Unfortunately we have to bring all these macros here from vsyscall.h
2769 // to be able to compile on old linuxes.
2770   #define __NR_vgetcpu 2
2771   #define VSYSCALL_START (-10UL << 20)
2772   #define VSYSCALL_SIZE 1024
2773   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2774   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2775   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2776   retval = vgetcpu(&cpu, NULL, NULL);
2777 #endif
2778 
2779   return (retval == -1) ? retval : cpu;
2780 }
2781 
2782 // Something to do with the numa-aware allocator needs these symbols
2783 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2784 extern "C" JNIEXPORT void numa_error(char *where) { }
2785 
2786 
2787 // If we are running with libnuma version > 2, then we should
2788 // be trying to use symbols with versions 1.1
2789 // If we are running with earlier version, which did not have symbol versions,
2790 // we should use the base version.
2791 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2792   void *f = dlvsym(handle, name, "libnuma_1.1");
2793   if (f == NULL) {
2794     f = dlsym(handle, name);
2795   }
2796   return f;
2797 }
2798 
2799 bool os::Linux::libnuma_init() {
2800   // sched_getcpu() should be in libc.
2801   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2802                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2803 
2804   // If it's not, try a direct syscall.
2805   if (sched_getcpu() == -1) {
2806     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2807                                     (void*)&sched_getcpu_syscall));
2808   }
2809 
2810   if (sched_getcpu() != -1) { // Does it work?
2811     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2812     if (handle != NULL) {
2813       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2814                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2815       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2816                                        libnuma_dlsym(handle, "numa_max_node")));
2817       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2818                                         libnuma_dlsym(handle, "numa_available")));
2819       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2820                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2821       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2822                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2823       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2824                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2825 
2826 
2827       if (numa_available() != -1) {
2828         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2829         // Create a cpu -> node mapping
2830         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2831         rebuild_cpu_to_node_map();
2832         return true;
2833       }
2834     }
2835   }
2836   return false;
2837 }
2838 
2839 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2840 // The table is later used in get_node_by_cpu().
2841 void os::Linux::rebuild_cpu_to_node_map() {
2842   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2843                               // in libnuma (possible values are starting from 16,
2844                               // and continuing up with every other power of 2, but less
2845                               // than the maximum number of CPUs supported by kernel), and
2846                               // is a subject to change (in libnuma version 2 the requirements
2847                               // are more reasonable) we'll just hardcode the number they use
2848                               // in the library.
2849   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2850 
2851   size_t cpu_num = os::active_processor_count();
2852   size_t cpu_map_size = NCPUS / BitsPerCLong;
2853   size_t cpu_map_valid_size =
2854     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2855 
2856   cpu_to_node()->clear();
2857   cpu_to_node()->at_grow(cpu_num - 1);
2858   size_t node_num = numa_get_groups_num();
2859 
2860   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2861   for (size_t i = 0; i < node_num; i++) {
2862     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2863       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2864         if (cpu_map[j] != 0) {
2865           for (size_t k = 0; k < BitsPerCLong; k++) {
2866             if (cpu_map[j] & (1UL << k)) {
2867               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2868             }
2869           }
2870         }
2871       }
2872     }
2873   }
2874   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2875 }
2876 
2877 int os::Linux::get_node_by_cpu(int cpu_id) {
2878   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2879     return cpu_to_node()->at(cpu_id);
2880   }
2881   return -1;
2882 }
2883 
2884 GrowableArray<int>* os::Linux::_cpu_to_node;
2885 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2886 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2887 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2888 os::Linux::numa_available_func_t os::Linux::_numa_available;
2889 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2890 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2891 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2892 unsigned long* os::Linux::_numa_all_nodes;
2893 
2894 bool os::pd_uncommit_memory(char* addr, size_t size) {
2895   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2896                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2897   return res  != (uintptr_t) MAP_FAILED;
2898 }
2899 
2900 static address get_stack_commited_bottom(address bottom, size_t size) {
2901   address nbot = bottom;
2902   address ntop = bottom + size;
2903 
2904   size_t page_sz = os::vm_page_size();
2905   unsigned pages = size / page_sz;
2906 
2907   unsigned char vec[1];
2908   unsigned imin = 1, imax = pages + 1, imid;
2909   int mincore_return_value = 0;
2910 
2911   assert(imin <= imax, "Unexpected page size");
2912 
2913   while (imin < imax) {
2914     imid = (imax + imin) / 2;
2915     nbot = ntop - (imid * page_sz);
2916 
2917     // Use a trick with mincore to check whether the page is mapped or not.
2918     // mincore sets vec to 1 if page resides in memory and to 0 if page
2919     // is swapped output but if page we are asking for is unmapped
2920     // it returns -1,ENOMEM
2921     mincore_return_value = mincore(nbot, page_sz, vec);
2922 
2923     if (mincore_return_value == -1) {
2924       // Page is not mapped go up
2925       // to find first mapped page
2926       if (errno != EAGAIN) {
2927         assert(errno == ENOMEM, "Unexpected mincore errno");
2928         imax = imid;
2929       }
2930     } else {
2931       // Page is mapped go down
2932       // to find first not mapped page
2933       imin = imid + 1;
2934     }
2935   }
2936 
2937   nbot = nbot + page_sz;
2938 
2939   // Adjust stack bottom one page up if last checked page is not mapped
2940   if (mincore_return_value == -1) {
2941     nbot = nbot + page_sz;
2942   }
2943 
2944   return nbot;
2945 }
2946 
2947 
2948 // Linux uses a growable mapping for the stack, and if the mapping for
2949 // the stack guard pages is not removed when we detach a thread the
2950 // stack cannot grow beyond the pages where the stack guard was
2951 // mapped.  If at some point later in the process the stack expands to
2952 // that point, the Linux kernel cannot expand the stack any further
2953 // because the guard pages are in the way, and a segfault occurs.
2954 //
2955 // However, it's essential not to split the stack region by unmapping
2956 // a region (leaving a hole) that's already part of the stack mapping,
2957 // so if the stack mapping has already grown beyond the guard pages at
2958 // the time we create them, we have to truncate the stack mapping.
2959 // So, we need to know the extent of the stack mapping when
2960 // create_stack_guard_pages() is called.
2961 
2962 // We only need this for stacks that are growable: at the time of
2963 // writing thread stacks don't use growable mappings (i.e. those
2964 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2965 // only applies to the main thread.
2966 
2967 // If the (growable) stack mapping already extends beyond the point
2968 // where we're going to put our guard pages, truncate the mapping at
2969 // that point by munmap()ping it.  This ensures that when we later
2970 // munmap() the guard pages we don't leave a hole in the stack
2971 // mapping. This only affects the main/initial thread
2972 
2973 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2974   if (os::Linux::is_initial_thread()) {
2975     // As we manually grow stack up to bottom inside create_attached_thread(),
2976     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2977     // we don't need to do anything special.
2978     // Check it first, before calling heavy function.
2979     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2980     unsigned char vec[1];
2981 
2982     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2983       // Fallback to slow path on all errors, including EAGAIN
2984       stack_extent = (uintptr_t) get_stack_commited_bottom(
2985                                                            os::Linux::initial_thread_stack_bottom(),
2986                                                            (size_t)addr - stack_extent);
2987     }
2988 
2989     if (stack_extent < (uintptr_t)addr) {
2990       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2991     }
2992   }
2993 
2994   return os::commit_memory(addr, size, !ExecMem);
2995 }
2996 
2997 // If this is a growable mapping, remove the guard pages entirely by
2998 // munmap()ping them.  If not, just call uncommit_memory(). This only
2999 // affects the main/initial thread, but guard against future OS changes
3000 // It's safe to always unmap guard pages for initial thread because we
3001 // always place it right after end of the mapped region
3002 
3003 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3004   uintptr_t stack_extent, stack_base;
3005 
3006   if (os::Linux::is_initial_thread()) {
3007     return ::munmap(addr, size) == 0;
3008   }
3009 
3010   return os::uncommit_memory(addr, size);
3011 }
3012 
3013 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3014 // at 'requested_addr'. If there are existing memory mappings at the same
3015 // location, however, they will be overwritten. If 'fixed' is false,
3016 // 'requested_addr' is only treated as a hint, the return value may or
3017 // may not start from the requested address. Unlike Linux mmap(), this
3018 // function returns NULL to indicate failure.
3019 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3020   char * addr;
3021   int flags;
3022 
3023   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3024   if (fixed) {
3025     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3026     flags |= MAP_FIXED;
3027   }
3028 
3029   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3030   // touch an uncommitted page. Otherwise, the read/write might
3031   // succeed if we have enough swap space to back the physical page.
3032   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3033                        flags, -1, 0);
3034 
3035   return addr == MAP_FAILED ? NULL : addr;
3036 }
3037 
3038 static int anon_munmap(char * addr, size_t size) {
3039   return ::munmap(addr, size) == 0;
3040 }
3041 
3042 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3043                             size_t alignment_hint) {
3044   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3045 }
3046 
3047 bool os::pd_release_memory(char* addr, size_t size) {
3048   return anon_munmap(addr, size);
3049 }
3050 
3051 static bool linux_mprotect(char* addr, size_t size, int prot) {
3052   // Linux wants the mprotect address argument to be page aligned.
3053   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3054 
3055   // According to SUSv3, mprotect() should only be used with mappings
3056   // established by mmap(), and mmap() always maps whole pages. Unaligned
3057   // 'addr' likely indicates problem in the VM (e.g. trying to change
3058   // protection of malloc'ed or statically allocated memory). Check the
3059   // caller if you hit this assert.
3060   assert(addr == bottom, "sanity check");
3061 
3062   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3063   return ::mprotect(bottom, size, prot) == 0;
3064 }
3065 
3066 // Set protections specified
3067 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3068                         bool is_committed) {
3069   unsigned int p = 0;
3070   switch (prot) {
3071   case MEM_PROT_NONE: p = PROT_NONE; break;
3072   case MEM_PROT_READ: p = PROT_READ; break;
3073   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3074   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3075   default:
3076     ShouldNotReachHere();
3077   }
3078   // is_committed is unused.
3079   return linux_mprotect(addr, bytes, p);
3080 }
3081 
3082 bool os::guard_memory(char* addr, size_t size) {
3083   return linux_mprotect(addr, size, PROT_NONE);
3084 }
3085 
3086 bool os::unguard_memory(char* addr, size_t size) {
3087   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3088 }
3089 
3090 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3091                                                     size_t page_size) {
3092   bool result = false;
3093   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3094                  MAP_ANONYMOUS|MAP_PRIVATE,
3095                  -1, 0);
3096   if (p != MAP_FAILED) {
3097     void *aligned_p = align_ptr_up(p, page_size);
3098 
3099     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3100 
3101     munmap(p, page_size * 2);
3102   }
3103 
3104   if (warn && !result) {
3105     warning("TransparentHugePages is not supported by the operating system.");
3106   }
3107 
3108   return result;
3109 }
3110 
3111 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3112   bool result = false;
3113   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3114                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3115                  -1, 0);
3116 
3117   if (p != MAP_FAILED) {
3118     // We don't know if this really is a huge page or not.
3119     FILE *fp = fopen("/proc/self/maps", "r");
3120     if (fp) {
3121       while (!feof(fp)) {
3122         char chars[257];
3123         long x = 0;
3124         if (fgets(chars, sizeof(chars), fp)) {
3125           if (sscanf(chars, "%lx-%*x", &x) == 1
3126               && x == (long)p) {
3127             if (strstr (chars, "hugepage")) {
3128               result = true;
3129               break;
3130             }
3131           }
3132         }
3133       }
3134       fclose(fp);
3135     }
3136     munmap(p, page_size);
3137   }
3138 
3139   if (warn && !result) {
3140     warning("HugeTLBFS is not supported by the operating system.");
3141   }
3142 
3143   return result;
3144 }
3145 
3146 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3147 //
3148 // From the coredump_filter documentation:
3149 //
3150 // - (bit 0) anonymous private memory
3151 // - (bit 1) anonymous shared memory
3152 // - (bit 2) file-backed private memory
3153 // - (bit 3) file-backed shared memory
3154 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3155 //           effective only if the bit 2 is cleared)
3156 // - (bit 5) hugetlb private memory
3157 // - (bit 6) hugetlb shared memory
3158 //
3159 static void set_coredump_filter(void) {
3160   FILE *f;
3161   long cdm;
3162 
3163   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3164     return;
3165   }
3166 
3167   if (fscanf(f, "%lx", &cdm) != 1) {
3168     fclose(f);
3169     return;
3170   }
3171 
3172   rewind(f);
3173 
3174   if ((cdm & LARGEPAGES_BIT) == 0) {
3175     cdm |= LARGEPAGES_BIT;
3176     fprintf(f, "%#lx", cdm);
3177   }
3178 
3179   fclose(f);
3180 }
3181 
3182 // Large page support
3183 
3184 static size_t _large_page_size = 0;
3185 
3186 size_t os::Linux::find_large_page_size() {
3187   size_t large_page_size = 0;
3188 
3189   // large_page_size on Linux is used to round up heap size. x86 uses either
3190   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3191   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3192   // page as large as 256M.
3193   //
3194   // Here we try to figure out page size by parsing /proc/meminfo and looking
3195   // for a line with the following format:
3196   //    Hugepagesize:     2048 kB
3197   //
3198   // If we can't determine the value (e.g. /proc is not mounted, or the text
3199   // format has been changed), we'll use the largest page size supported by
3200   // the processor.
3201 
3202 #ifndef ZERO
3203   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3204                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3205 #endif // ZERO
3206 
3207   FILE *fp = fopen("/proc/meminfo", "r");
3208   if (fp) {
3209     while (!feof(fp)) {
3210       int x = 0;
3211       char buf[16];
3212       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3213         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3214           large_page_size = x * K;
3215           break;
3216         }
3217       } else {
3218         // skip to next line
3219         for (;;) {
3220           int ch = fgetc(fp);
3221           if (ch == EOF || ch == (int)'\n') break;
3222         }
3223       }
3224     }
3225     fclose(fp);
3226   }
3227 
3228   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3229     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3230             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3231             proper_unit_for_byte_size(large_page_size));
3232   }
3233 
3234   return large_page_size;
3235 }
3236 
3237 size_t os::Linux::setup_large_page_size() {
3238   _large_page_size = Linux::find_large_page_size();
3239   const size_t default_page_size = (size_t)Linux::page_size();
3240   if (_large_page_size > default_page_size) {
3241     _page_sizes[0] = _large_page_size;
3242     _page_sizes[1] = default_page_size;
3243     _page_sizes[2] = 0;
3244   }
3245 
3246   return _large_page_size;
3247 }
3248 
3249 bool os::Linux::setup_large_page_type(size_t page_size) {
3250   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3251       FLAG_IS_DEFAULT(UseSHM) &&
3252       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3253 
3254     // The type of large pages has not been specified by the user.
3255 
3256     // Try UseHugeTLBFS and then UseSHM.
3257     UseHugeTLBFS = UseSHM = true;
3258 
3259     // Don't try UseTransparentHugePages since there are known
3260     // performance issues with it turned on. This might change in the future.
3261     UseTransparentHugePages = false;
3262   }
3263 
3264   if (UseTransparentHugePages) {
3265     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3266     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3267       UseHugeTLBFS = false;
3268       UseSHM = false;
3269       return true;
3270     }
3271     UseTransparentHugePages = false;
3272   }
3273 
3274   if (UseHugeTLBFS) {
3275     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3276     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3277       UseSHM = false;
3278       return true;
3279     }
3280     UseHugeTLBFS = false;
3281   }
3282 
3283   return UseSHM;
3284 }
3285 
3286 void os::large_page_init() {
3287   if (!UseLargePages &&
3288       !UseTransparentHugePages &&
3289       !UseHugeTLBFS &&
3290       !UseSHM) {
3291     // Not using large pages.
3292     return;
3293   }
3294 
3295   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3296     // The user explicitly turned off large pages.
3297     // Ignore the rest of the large pages flags.
3298     UseTransparentHugePages = false;
3299     UseHugeTLBFS = false;
3300     UseSHM = false;
3301     return;
3302   }
3303 
3304   size_t large_page_size = Linux::setup_large_page_size();
3305   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3306 
3307   set_coredump_filter();
3308 }
3309 
3310 #ifndef SHM_HUGETLB
3311   #define SHM_HUGETLB 04000
3312 #endif
3313 
3314 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3315                                             char* req_addr, bool exec) {
3316   // "exec" is passed in but not used.  Creating the shared image for
3317   // the code cache doesn't have an SHM_X executable permission to check.
3318   assert(UseLargePages && UseSHM, "only for SHM large pages");
3319   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3320 
3321   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3322     return NULL; // Fallback to small pages.
3323   }
3324 
3325   key_t key = IPC_PRIVATE;
3326   char *addr;
3327 
3328   bool warn_on_failure = UseLargePages &&
3329                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3330                          !FLAG_IS_DEFAULT(UseSHM) ||
3331                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3332   char msg[128];
3333 
3334   // Create a large shared memory region to attach to based on size.
3335   // Currently, size is the total size of the heap
3336   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3337   if (shmid == -1) {
3338     // Possible reasons for shmget failure:
3339     // 1. shmmax is too small for Java heap.
3340     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3341     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3342     // 2. not enough large page memory.
3343     //    > check available large pages: cat /proc/meminfo
3344     //    > increase amount of large pages:
3345     //          echo new_value > /proc/sys/vm/nr_hugepages
3346     //      Note 1: different Linux may use different name for this property,
3347     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3348     //      Note 2: it's possible there's enough physical memory available but
3349     //            they are so fragmented after a long run that they can't
3350     //            coalesce into large pages. Try to reserve large pages when
3351     //            the system is still "fresh".
3352     if (warn_on_failure) {
3353       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3354       warning("%s", msg);
3355     }
3356     return NULL;
3357   }
3358 
3359   // attach to the region
3360   addr = (char*)shmat(shmid, req_addr, 0);
3361   int err = errno;
3362 
3363   // Remove shmid. If shmat() is successful, the actual shared memory segment
3364   // will be deleted when it's detached by shmdt() or when the process
3365   // terminates. If shmat() is not successful this will remove the shared
3366   // segment immediately.
3367   shmctl(shmid, IPC_RMID, NULL);
3368 
3369   if ((intptr_t)addr == -1) {
3370     if (warn_on_failure) {
3371       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3372       warning("%s", msg);
3373     }
3374     return NULL;
3375   }
3376 
3377   return addr;
3378 }
3379 
3380 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3381                                         int error) {
3382   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3383 
3384   bool warn_on_failure = UseLargePages &&
3385       (!FLAG_IS_DEFAULT(UseLargePages) ||
3386        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3387        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3388 
3389   if (warn_on_failure) {
3390     char msg[128];
3391     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3392                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3393     warning("%s", msg);
3394   }
3395 }
3396 
3397 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3398                                                         char* req_addr,
3399                                                         bool exec) {
3400   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3401   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3402   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3403 
3404   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3405   char* addr = (char*)::mmap(req_addr, bytes, prot,
3406                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3407                              -1, 0);
3408 
3409   if (addr == MAP_FAILED) {
3410     warn_on_large_pages_failure(req_addr, bytes, errno);
3411     return NULL;
3412   }
3413 
3414   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3415 
3416   return addr;
3417 }
3418 
3419 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3420 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3421 //   (req_addr != NULL) or with a given alignment.
3422 //  - bytes shall be a multiple of alignment.
3423 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3424 //  - alignment sets the alignment at which memory shall be allocated.
3425 //     It must be a multiple of allocation granularity.
3426 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3427 //  req_addr or NULL.
3428 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3429 
3430   size_t extra_size = bytes;
3431   if (req_addr == NULL && alignment > 0) {
3432     extra_size += alignment;
3433   }
3434 
3435   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3436     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3437     -1, 0);
3438   if (start == MAP_FAILED) {
3439     start = NULL;
3440   } else {
3441     if (req_addr != NULL) {
3442       if (start != req_addr) {
3443         ::munmap(start, extra_size);
3444         start = NULL;
3445       }
3446     } else {
3447       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3448       char* const end_aligned = start_aligned + bytes;
3449       char* const end = start + extra_size;
3450       if (start_aligned > start) {
3451         ::munmap(start, start_aligned - start);
3452       }
3453       if (end_aligned < end) {
3454         ::munmap(end_aligned, end - end_aligned);
3455       }
3456       start = start_aligned;
3457     }
3458   }
3459   return start;
3460 
3461 }
3462 
3463 // Reserve memory using mmap(MAP_HUGETLB).
3464 //  - bytes shall be a multiple of alignment.
3465 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3466 //  - alignment sets the alignment at which memory shall be allocated.
3467 //     It must be a multiple of allocation granularity.
3468 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3469 //  req_addr or NULL.
3470 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3471                                                          size_t alignment,
3472                                                          char* req_addr,
3473                                                          bool exec) {
3474   size_t large_page_size = os::large_page_size();
3475   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3476 
3477   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3478   assert(is_size_aligned(bytes, alignment), "Must be");
3479 
3480   // First reserve - but not commit - the address range in small pages.
3481   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3482 
3483   if (start == NULL) {
3484     return NULL;
3485   }
3486 
3487   assert(is_ptr_aligned(start, alignment), "Must be");
3488 
3489   char* end = start + bytes;
3490 
3491   // Find the regions of the allocated chunk that can be promoted to large pages.
3492   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3493   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3494 
3495   size_t lp_bytes = lp_end - lp_start;
3496 
3497   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3498 
3499   if (lp_bytes == 0) {
3500     // The mapped region doesn't even span the start and the end of a large page.
3501     // Fall back to allocate a non-special area.
3502     ::munmap(start, end - start);
3503     return NULL;
3504   }
3505 
3506   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3507 
3508   void* result;
3509 
3510   // Commit small-paged leading area.
3511   if (start != lp_start) {
3512     result = ::mmap(start, lp_start - start, prot,
3513                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3514                     -1, 0);
3515     if (result == MAP_FAILED) {
3516       ::munmap(lp_start, end - lp_start);
3517       return NULL;
3518     }
3519   }
3520 
3521   // Commit large-paged area.
3522   result = ::mmap(lp_start, lp_bytes, prot,
3523                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3524                   -1, 0);
3525   if (result == MAP_FAILED) {
3526     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3527     // If the mmap above fails, the large pages region will be unmapped and we
3528     // have regions before and after with small pages. Release these regions.
3529     //
3530     // |  mapped  |  unmapped  |  mapped  |
3531     // ^          ^            ^          ^
3532     // start      lp_start     lp_end     end
3533     //
3534     ::munmap(start, lp_start - start);
3535     ::munmap(lp_end, end - lp_end);
3536     return NULL;
3537   }
3538 
3539   // Commit small-paged trailing area.
3540   if (lp_end != end) {
3541     result = ::mmap(lp_end, end - lp_end, prot,
3542                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3543                     -1, 0);
3544     if (result == MAP_FAILED) {
3545       ::munmap(start, lp_end - start);
3546       return NULL;
3547     }
3548   }
3549 
3550   return start;
3551 }
3552 
3553 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3554                                                    size_t alignment,
3555                                                    char* req_addr,
3556                                                    bool exec) {
3557   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3558   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3559   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3560   assert(is_power_of_2(os::large_page_size()), "Must be");
3561   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3562 
3563   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3564     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3565   } else {
3566     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3567   }
3568 }
3569 
3570 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3571                                  char* req_addr, bool exec) {
3572   assert(UseLargePages, "only for large pages");
3573 
3574   char* addr;
3575   if (UseSHM) {
3576     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3577   } else {
3578     assert(UseHugeTLBFS, "must be");
3579     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3580   }
3581 
3582   if (addr != NULL) {
3583     if (UseNUMAInterleaving) {
3584       numa_make_global(addr, bytes);
3585     }
3586 
3587     // The memory is committed
3588     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3589   }
3590 
3591   return addr;
3592 }
3593 
3594 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3595   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3596   return shmdt(base) == 0;
3597 }
3598 
3599 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3600   return pd_release_memory(base, bytes);
3601 }
3602 
3603 bool os::release_memory_special(char* base, size_t bytes) {
3604   bool res;
3605   if (MemTracker::tracking_level() > NMT_minimal) {
3606     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3607     res = os::Linux::release_memory_special_impl(base, bytes);
3608     if (res) {
3609       tkr.record((address)base, bytes);
3610     }
3611 
3612   } else {
3613     res = os::Linux::release_memory_special_impl(base, bytes);
3614   }
3615   return res;
3616 }
3617 
3618 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3619   assert(UseLargePages, "only for large pages");
3620   bool res;
3621 
3622   if (UseSHM) {
3623     res = os::Linux::release_memory_special_shm(base, bytes);
3624   } else {
3625     assert(UseHugeTLBFS, "must be");
3626     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3627   }
3628   return res;
3629 }
3630 
3631 size_t os::large_page_size() {
3632   return _large_page_size;
3633 }
3634 
3635 // With SysV SHM the entire memory region must be allocated as shared
3636 // memory.
3637 // HugeTLBFS allows application to commit large page memory on demand.
3638 // However, when committing memory with HugeTLBFS fails, the region
3639 // that was supposed to be committed will lose the old reservation
3640 // and allow other threads to steal that memory region. Because of this
3641 // behavior we can't commit HugeTLBFS memory.
3642 bool os::can_commit_large_page_memory() {
3643   return UseTransparentHugePages;
3644 }
3645 
3646 bool os::can_execute_large_page_memory() {
3647   return UseTransparentHugePages || UseHugeTLBFS;
3648 }
3649 
3650 // Reserve memory at an arbitrary address, only if that area is
3651 // available (and not reserved for something else).
3652 
3653 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3654   const int max_tries = 10;
3655   char* base[max_tries];
3656   size_t size[max_tries];
3657   const size_t gap = 0x000000;
3658 
3659   // Assert only that the size is a multiple of the page size, since
3660   // that's all that mmap requires, and since that's all we really know
3661   // about at this low abstraction level.  If we need higher alignment,
3662   // we can either pass an alignment to this method or verify alignment
3663   // in one of the methods further up the call chain.  See bug 5044738.
3664   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3665 
3666   // Repeatedly allocate blocks until the block is allocated at the
3667   // right spot.
3668 
3669   // Linux mmap allows caller to pass an address as hint; give it a try first,
3670   // if kernel honors the hint then we can return immediately.
3671   char * addr = anon_mmap(requested_addr, bytes, false);
3672   if (addr == requested_addr) {
3673     return requested_addr;
3674   }
3675 
3676   if (addr != NULL) {
3677     // mmap() is successful but it fails to reserve at the requested address
3678     anon_munmap(addr, bytes);
3679   }
3680 
3681   int i;
3682   for (i = 0; i < max_tries; ++i) {
3683     base[i] = reserve_memory(bytes);
3684 
3685     if (base[i] != NULL) {
3686       // Is this the block we wanted?
3687       if (base[i] == requested_addr) {
3688         size[i] = bytes;
3689         break;
3690       }
3691 
3692       // Does this overlap the block we wanted? Give back the overlapped
3693       // parts and try again.
3694 
3695       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3696       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3697         unmap_memory(base[i], top_overlap);
3698         base[i] += top_overlap;
3699         size[i] = bytes - top_overlap;
3700       } else {
3701         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3702         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3703           unmap_memory(requested_addr, bottom_overlap);
3704           size[i] = bytes - bottom_overlap;
3705         } else {
3706           size[i] = bytes;
3707         }
3708       }
3709     }
3710   }
3711 
3712   // Give back the unused reserved pieces.
3713 
3714   for (int j = 0; j < i; ++j) {
3715     if (base[j] != NULL) {
3716       unmap_memory(base[j], size[j]);
3717     }
3718   }
3719 
3720   if (i < max_tries) {
3721     return requested_addr;
3722   } else {
3723     return NULL;
3724   }
3725 }
3726 
3727 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3728   return ::read(fd, buf, nBytes);
3729 }
3730 
3731 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3732   return ::pread(fd, buf, nBytes, offset);
3733 }
3734 
3735 // Short sleep, direct OS call.
3736 //
3737 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3738 // sched_yield(2) will actually give up the CPU:
3739 //
3740 //   * Alone on this pariticular CPU, keeps running.
3741 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3742 //     (pre 2.6.39).
3743 //
3744 // So calling this with 0 is an alternative.
3745 //
3746 void os::naked_short_sleep(jlong ms) {
3747   struct timespec req;
3748 
3749   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3750   req.tv_sec = 0;
3751   if (ms > 0) {
3752     req.tv_nsec = (ms % 1000) * 1000000;
3753   } else {
3754     req.tv_nsec = 1;
3755   }
3756 
3757   nanosleep(&req, NULL);
3758 
3759   return;
3760 }
3761 
3762 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3763 void os::infinite_sleep() {
3764   while (true) {    // sleep forever ...
3765     ::sleep(100);   // ... 100 seconds at a time
3766   }
3767 }
3768 
3769 // Used to convert frequent JVM_Yield() to nops
3770 bool os::dont_yield() {
3771   return DontYieldALot;
3772 }
3773 
3774 void os::naked_yield() {
3775   sched_yield();
3776 }
3777 
3778 ////////////////////////////////////////////////////////////////////////////////
3779 // thread priority support
3780 
3781 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3782 // only supports dynamic priority, static priority must be zero. For real-time
3783 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3784 // However, for large multi-threaded applications, SCHED_RR is not only slower
3785 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3786 // of 5 runs - Sep 2005).
3787 //
3788 // The following code actually changes the niceness of kernel-thread/LWP. It
3789 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3790 // not the entire user process, and user level threads are 1:1 mapped to kernel
3791 // threads. It has always been the case, but could change in the future. For
3792 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3793 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3794 
3795 int os::java_to_os_priority[CriticalPriority + 1] = {
3796   19,              // 0 Entry should never be used
3797 
3798    4,              // 1 MinPriority
3799    3,              // 2
3800    2,              // 3
3801 
3802    1,              // 4
3803    0,              // 5 NormPriority
3804   -1,              // 6
3805 
3806   -2,              // 7
3807   -3,              // 8
3808   -4,              // 9 NearMaxPriority
3809 
3810   -5,              // 10 MaxPriority
3811 
3812   -5               // 11 CriticalPriority
3813 };
3814 
3815 static int prio_init() {
3816   if (ThreadPriorityPolicy == 1) {
3817     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3818     // if effective uid is not root. Perhaps, a more elegant way of doing
3819     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3820     if (geteuid() != 0) {
3821       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3822         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3823       }
3824       ThreadPriorityPolicy = 0;
3825     }
3826   }
3827   if (UseCriticalJavaThreadPriority) {
3828     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3829   }
3830   return 0;
3831 }
3832 
3833 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3834   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3835 
3836   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3837   return (ret == 0) ? OS_OK : OS_ERR;
3838 }
3839 
3840 OSReturn os::get_native_priority(const Thread* const thread,
3841                                  int *priority_ptr) {
3842   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3843     *priority_ptr = java_to_os_priority[NormPriority];
3844     return OS_OK;
3845   }
3846 
3847   errno = 0;
3848   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3849   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3850 }
3851 
3852 // Hint to the underlying OS that a task switch would not be good.
3853 // Void return because it's a hint and can fail.
3854 void os::hint_no_preempt() {}
3855 
3856 ////////////////////////////////////////////////////////////////////////////////
3857 // suspend/resume support
3858 
3859 //  the low-level signal-based suspend/resume support is a remnant from the
3860 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3861 //  within hotspot. Now there is a single use-case for this:
3862 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3863 //      that runs in the watcher thread.
3864 //  The remaining code is greatly simplified from the more general suspension
3865 //  code that used to be used.
3866 //
3867 //  The protocol is quite simple:
3868 //  - suspend:
3869 //      - sends a signal to the target thread
3870 //      - polls the suspend state of the osthread using a yield loop
3871 //      - target thread signal handler (SR_handler) sets suspend state
3872 //        and blocks in sigsuspend until continued
3873 //  - resume:
3874 //      - sets target osthread state to continue
3875 //      - sends signal to end the sigsuspend loop in the SR_handler
3876 //
3877 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3878 
3879 static void resume_clear_context(OSThread *osthread) {
3880   osthread->set_ucontext(NULL);
3881   osthread->set_siginfo(NULL);
3882 }
3883 
3884 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3885                                  ucontext_t* context) {
3886   osthread->set_ucontext(context);
3887   osthread->set_siginfo(siginfo);
3888 }
3889 
3890 // Handler function invoked when a thread's execution is suspended or
3891 // resumed. We have to be careful that only async-safe functions are
3892 // called here (Note: most pthread functions are not async safe and
3893 // should be avoided.)
3894 //
3895 // Note: sigwait() is a more natural fit than sigsuspend() from an
3896 // interface point of view, but sigwait() prevents the signal hander
3897 // from being run. libpthread would get very confused by not having
3898 // its signal handlers run and prevents sigwait()'s use with the
3899 // mutex granting granting signal.
3900 //
3901 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3902 //
3903 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3904   // Save and restore errno to avoid confusing native code with EINTR
3905   // after sigsuspend.
3906   int old_errno = errno;
3907 
3908   Thread* thread = Thread::current();
3909   OSThread* osthread = thread->osthread();
3910   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3911 
3912   os::SuspendResume::State current = osthread->sr.state();
3913   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3914     suspend_save_context(osthread, siginfo, context);
3915 
3916     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3917     os::SuspendResume::State state = osthread->sr.suspended();
3918     if (state == os::SuspendResume::SR_SUSPENDED) {
3919       sigset_t suspend_set;  // signals for sigsuspend()
3920 
3921       // get current set of blocked signals and unblock resume signal
3922       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3923       sigdelset(&suspend_set, SR_signum);
3924 
3925       sr_semaphore.signal();
3926       // wait here until we are resumed
3927       while (1) {
3928         sigsuspend(&suspend_set);
3929 
3930         os::SuspendResume::State result = osthread->sr.running();
3931         if (result == os::SuspendResume::SR_RUNNING) {
3932           sr_semaphore.signal();
3933           break;
3934         }
3935       }
3936 
3937     } else if (state == os::SuspendResume::SR_RUNNING) {
3938       // request was cancelled, continue
3939     } else {
3940       ShouldNotReachHere();
3941     }
3942 
3943     resume_clear_context(osthread);
3944   } else if (current == os::SuspendResume::SR_RUNNING) {
3945     // request was cancelled, continue
3946   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3947     // ignore
3948   } else {
3949     // ignore
3950   }
3951 
3952   errno = old_errno;
3953 }
3954 
3955 static int SR_initialize() {
3956   struct sigaction act;
3957   char *s;
3958 
3959   // Get signal number to use for suspend/resume
3960   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3961     int sig = ::strtol(s, 0, 10);
3962     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3963         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3964       SR_signum = sig;
3965     } else {
3966       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3967               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3968     }
3969   }
3970 
3971   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3972          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3973 
3974   sigemptyset(&SR_sigset);
3975   sigaddset(&SR_sigset, SR_signum);
3976 
3977   // Set up signal handler for suspend/resume
3978   act.sa_flags = SA_RESTART|SA_SIGINFO;
3979   act.sa_handler = (void (*)(int)) SR_handler;
3980 
3981   // SR_signum is blocked by default.
3982   // 4528190 - We also need to block pthread restart signal (32 on all
3983   // supported Linux platforms). Note that LinuxThreads need to block
3984   // this signal for all threads to work properly. So we don't have
3985   // to use hard-coded signal number when setting up the mask.
3986   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3987 
3988   if (sigaction(SR_signum, &act, 0) == -1) {
3989     return -1;
3990   }
3991 
3992   // Save signal flag
3993   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3994   return 0;
3995 }
3996 
3997 static int sr_notify(OSThread* osthread) {
3998   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3999   assert_status(status == 0, status, "pthread_kill");
4000   return status;
4001 }
4002 
4003 // "Randomly" selected value for how long we want to spin
4004 // before bailing out on suspending a thread, also how often
4005 // we send a signal to a thread we want to resume
4006 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4007 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4008 
4009 // returns true on success and false on error - really an error is fatal
4010 // but this seems the normal response to library errors
4011 static bool do_suspend(OSThread* osthread) {
4012   assert(osthread->sr.is_running(), "thread should be running");
4013   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4014 
4015   // mark as suspended and send signal
4016   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4017     // failed to switch, state wasn't running?
4018     ShouldNotReachHere();
4019     return false;
4020   }
4021 
4022   if (sr_notify(osthread) != 0) {
4023     ShouldNotReachHere();
4024   }
4025 
4026   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4027   while (true) {
4028     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4029       break;
4030     } else {
4031       // timeout
4032       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4033       if (cancelled == os::SuspendResume::SR_RUNNING) {
4034         return false;
4035       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4036         // make sure that we consume the signal on the semaphore as well
4037         sr_semaphore.wait();
4038         break;
4039       } else {
4040         ShouldNotReachHere();
4041         return false;
4042       }
4043     }
4044   }
4045 
4046   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4047   return true;
4048 }
4049 
4050 static void do_resume(OSThread* osthread) {
4051   assert(osthread->sr.is_suspended(), "thread should be suspended");
4052   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4053 
4054   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4055     // failed to switch to WAKEUP_REQUEST
4056     ShouldNotReachHere();
4057     return;
4058   }
4059 
4060   while (true) {
4061     if (sr_notify(osthread) == 0) {
4062       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4063         if (osthread->sr.is_running()) {
4064           return;
4065         }
4066       }
4067     } else {
4068       ShouldNotReachHere();
4069     }
4070   }
4071 
4072   guarantee(osthread->sr.is_running(), "Must be running!");
4073 }
4074 
4075 ///////////////////////////////////////////////////////////////////////////////////
4076 // signal handling (except suspend/resume)
4077 
4078 // This routine may be used by user applications as a "hook" to catch signals.
4079 // The user-defined signal handler must pass unrecognized signals to this
4080 // routine, and if it returns true (non-zero), then the signal handler must
4081 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4082 // routine will never retun false (zero), but instead will execute a VM panic
4083 // routine kill the process.
4084 //
4085 // If this routine returns false, it is OK to call it again.  This allows
4086 // the user-defined signal handler to perform checks either before or after
4087 // the VM performs its own checks.  Naturally, the user code would be making
4088 // a serious error if it tried to handle an exception (such as a null check
4089 // or breakpoint) that the VM was generating for its own correct operation.
4090 //
4091 // This routine may recognize any of the following kinds of signals:
4092 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4093 // It should be consulted by handlers for any of those signals.
4094 //
4095 // The caller of this routine must pass in the three arguments supplied
4096 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4097 // field of the structure passed to sigaction().  This routine assumes that
4098 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4099 //
4100 // Note that the VM will print warnings if it detects conflicting signal
4101 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4102 //
4103 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4104                                                  siginfo_t* siginfo,
4105                                                  void* ucontext,
4106                                                  int abort_if_unrecognized);
4107 
4108 void signalHandler(int sig, siginfo_t* info, void* uc) {
4109   assert(info != NULL && uc != NULL, "it must be old kernel");
4110   int orig_errno = errno;  // Preserve errno value over signal handler.
4111   JVM_handle_linux_signal(sig, info, uc, true);
4112   errno = orig_errno;
4113 }
4114 
4115 
4116 // This boolean allows users to forward their own non-matching signals
4117 // to JVM_handle_linux_signal, harmlessly.
4118 bool os::Linux::signal_handlers_are_installed = false;
4119 
4120 // For signal-chaining
4121 struct sigaction sigact[NSIG];
4122 uint64_t sigs = 0;
4123 #if (64 < NSIG-1)
4124 #error "Not all signals can be encoded in sigs. Adapt its type!"
4125 #endif
4126 bool os::Linux::libjsig_is_loaded = false;
4127 typedef struct sigaction *(*get_signal_t)(int);
4128 get_signal_t os::Linux::get_signal_action = NULL;
4129 
4130 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4131   struct sigaction *actp = NULL;
4132 
4133   if (libjsig_is_loaded) {
4134     // Retrieve the old signal handler from libjsig
4135     actp = (*get_signal_action)(sig);
4136   }
4137   if (actp == NULL) {
4138     // Retrieve the preinstalled signal handler from jvm
4139     actp = get_preinstalled_handler(sig);
4140   }
4141 
4142   return actp;
4143 }
4144 
4145 static bool call_chained_handler(struct sigaction *actp, int sig,
4146                                  siginfo_t *siginfo, void *context) {
4147   // Call the old signal handler
4148   if (actp->sa_handler == SIG_DFL) {
4149     // It's more reasonable to let jvm treat it as an unexpected exception
4150     // instead of taking the default action.
4151     return false;
4152   } else if (actp->sa_handler != SIG_IGN) {
4153     if ((actp->sa_flags & SA_NODEFER) == 0) {
4154       // automaticlly block the signal
4155       sigaddset(&(actp->sa_mask), sig);
4156     }
4157 
4158     sa_handler_t hand = NULL;
4159     sa_sigaction_t sa = NULL;
4160     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4161     // retrieve the chained handler
4162     if (siginfo_flag_set) {
4163       sa = actp->sa_sigaction;
4164     } else {
4165       hand = actp->sa_handler;
4166     }
4167 
4168     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4169       actp->sa_handler = SIG_DFL;
4170     }
4171 
4172     // try to honor the signal mask
4173     sigset_t oset;
4174     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4175 
4176     // call into the chained handler
4177     if (siginfo_flag_set) {
4178       (*sa)(sig, siginfo, context);
4179     } else {
4180       (*hand)(sig);
4181     }
4182 
4183     // restore the signal mask
4184     pthread_sigmask(SIG_SETMASK, &oset, 0);
4185   }
4186   // Tell jvm's signal handler the signal is taken care of.
4187   return true;
4188 }
4189 
4190 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4191   bool chained = false;
4192   // signal-chaining
4193   if (UseSignalChaining) {
4194     struct sigaction *actp = get_chained_signal_action(sig);
4195     if (actp != NULL) {
4196       chained = call_chained_handler(actp, sig, siginfo, context);
4197     }
4198   }
4199   return chained;
4200 }
4201 
4202 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4203   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4204     return &sigact[sig];
4205   }
4206   return NULL;
4207 }
4208 
4209 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4210   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4211   sigact[sig] = oldAct;
4212   sigs |= (uint64_t)1 << (sig-1);
4213 }
4214 
4215 // for diagnostic
4216 int sigflags[NSIG];
4217 
4218 int os::Linux::get_our_sigflags(int sig) {
4219   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4220   return sigflags[sig];
4221 }
4222 
4223 void os::Linux::set_our_sigflags(int sig, int flags) {
4224   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4225   if (sig > 0 && sig < NSIG) {
4226     sigflags[sig] = flags;
4227   }
4228 }
4229 
4230 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4231   // Check for overwrite.
4232   struct sigaction oldAct;
4233   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4234 
4235   void* oldhand = oldAct.sa_sigaction
4236                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4237                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4238   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4239       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4240       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4241     if (AllowUserSignalHandlers || !set_installed) {
4242       // Do not overwrite; user takes responsibility to forward to us.
4243       return;
4244     } else if (UseSignalChaining) {
4245       // save the old handler in jvm
4246       save_preinstalled_handler(sig, oldAct);
4247       // libjsig also interposes the sigaction() call below and saves the
4248       // old sigaction on it own.
4249     } else {
4250       fatal("Encountered unexpected pre-existing sigaction handler "
4251             "%#lx for signal %d.", (long)oldhand, sig);
4252     }
4253   }
4254 
4255   struct sigaction sigAct;
4256   sigfillset(&(sigAct.sa_mask));
4257   sigAct.sa_handler = SIG_DFL;
4258   if (!set_installed) {
4259     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4260   } else {
4261     sigAct.sa_sigaction = signalHandler;
4262     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4263   }
4264   // Save flags, which are set by ours
4265   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4266   sigflags[sig] = sigAct.sa_flags;
4267 
4268   int ret = sigaction(sig, &sigAct, &oldAct);
4269   assert(ret == 0, "check");
4270 
4271   void* oldhand2  = oldAct.sa_sigaction
4272                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4273                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4274   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4275 }
4276 
4277 // install signal handlers for signals that HotSpot needs to
4278 // handle in order to support Java-level exception handling.
4279 
4280 void os::Linux::install_signal_handlers() {
4281   if (!signal_handlers_are_installed) {
4282     signal_handlers_are_installed = true;
4283 
4284     // signal-chaining
4285     typedef void (*signal_setting_t)();
4286     signal_setting_t begin_signal_setting = NULL;
4287     signal_setting_t end_signal_setting = NULL;
4288     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4289                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4290     if (begin_signal_setting != NULL) {
4291       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4292                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4293       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4294                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4295       libjsig_is_loaded = true;
4296       assert(UseSignalChaining, "should enable signal-chaining");
4297     }
4298     if (libjsig_is_loaded) {
4299       // Tell libjsig jvm is setting signal handlers
4300       (*begin_signal_setting)();
4301     }
4302 
4303     set_signal_handler(SIGSEGV, true);
4304     set_signal_handler(SIGPIPE, true);
4305     set_signal_handler(SIGBUS, true);
4306     set_signal_handler(SIGILL, true);
4307     set_signal_handler(SIGFPE, true);
4308 #if defined(PPC64)
4309     set_signal_handler(SIGTRAP, true);
4310 #endif
4311     set_signal_handler(SIGXFSZ, true);
4312 
4313     if (libjsig_is_loaded) {
4314       // Tell libjsig jvm finishes setting signal handlers
4315       (*end_signal_setting)();
4316     }
4317 
4318     // We don't activate signal checker if libjsig is in place, we trust ourselves
4319     // and if UserSignalHandler is installed all bets are off.
4320     // Log that signal checking is off only if -verbose:jni is specified.
4321     if (CheckJNICalls) {
4322       if (libjsig_is_loaded) {
4323         if (PrintJNIResolving) {
4324           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4325         }
4326         check_signals = false;
4327       }
4328       if (AllowUserSignalHandlers) {
4329         if (PrintJNIResolving) {
4330           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4331         }
4332         check_signals = false;
4333       }
4334     }
4335   }
4336 }
4337 
4338 // This is the fastest way to get thread cpu time on Linux.
4339 // Returns cpu time (user+sys) for any thread, not only for current.
4340 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4341 // It might work on 2.6.10+ with a special kernel/glibc patch.
4342 // For reference, please, see IEEE Std 1003.1-2004:
4343 //   http://www.unix.org/single_unix_specification
4344 
4345 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4346   struct timespec tp;
4347   int rc = os::Linux::clock_gettime(clockid, &tp);
4348   assert(rc == 0, "clock_gettime is expected to return 0 code");
4349 
4350   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4351 }
4352 
4353 /////
4354 // glibc on Linux platform uses non-documented flag
4355 // to indicate, that some special sort of signal
4356 // trampoline is used.
4357 // We will never set this flag, and we should
4358 // ignore this flag in our diagnostic
4359 #ifdef SIGNIFICANT_SIGNAL_MASK
4360   #undef SIGNIFICANT_SIGNAL_MASK
4361 #endif
4362 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4363 
4364 static const char* get_signal_handler_name(address handler,
4365                                            char* buf, int buflen) {
4366   int offset = 0;
4367   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4368   if (found) {
4369     // skip directory names
4370     const char *p1, *p2;
4371     p1 = buf;
4372     size_t len = strlen(os::file_separator());
4373     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4374     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4375   } else {
4376     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4377   }
4378   return buf;
4379 }
4380 
4381 static void print_signal_handler(outputStream* st, int sig,
4382                                  char* buf, size_t buflen) {
4383   struct sigaction sa;
4384 
4385   sigaction(sig, NULL, &sa);
4386 
4387   // See comment for SIGNIFICANT_SIGNAL_MASK define
4388   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4389 
4390   st->print("%s: ", os::exception_name(sig, buf, buflen));
4391 
4392   address handler = (sa.sa_flags & SA_SIGINFO)
4393     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4394     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4395 
4396   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4397     st->print("SIG_DFL");
4398   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4399     st->print("SIG_IGN");
4400   } else {
4401     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4402   }
4403 
4404   st->print(", sa_mask[0]=");
4405   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4406 
4407   address rh = VMError::get_resetted_sighandler(sig);
4408   // May be, handler was resetted by VMError?
4409   if (rh != NULL) {
4410     handler = rh;
4411     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4412   }
4413 
4414   st->print(", sa_flags=");
4415   os::Posix::print_sa_flags(st, sa.sa_flags);
4416 
4417   // Check: is it our handler?
4418   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4419       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4420     // It is our signal handler
4421     // check for flags, reset system-used one!
4422     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4423       st->print(
4424                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4425                 os::Linux::get_our_sigflags(sig));
4426     }
4427   }
4428   st->cr();
4429 }
4430 
4431 
4432 #define DO_SIGNAL_CHECK(sig)                      \
4433   do {                                            \
4434     if (!sigismember(&check_signal_done, sig)) {  \
4435       os::Linux::check_signal_handler(sig);       \
4436     }                                             \
4437   } while (0)
4438 
4439 // This method is a periodic task to check for misbehaving JNI applications
4440 // under CheckJNI, we can add any periodic checks here
4441 
4442 void os::run_periodic_checks() {
4443   if (check_signals == false) return;
4444 
4445   // SEGV and BUS if overridden could potentially prevent
4446   // generation of hs*.log in the event of a crash, debugging
4447   // such a case can be very challenging, so we absolutely
4448   // check the following for a good measure:
4449   DO_SIGNAL_CHECK(SIGSEGV);
4450   DO_SIGNAL_CHECK(SIGILL);
4451   DO_SIGNAL_CHECK(SIGFPE);
4452   DO_SIGNAL_CHECK(SIGBUS);
4453   DO_SIGNAL_CHECK(SIGPIPE);
4454   DO_SIGNAL_CHECK(SIGXFSZ);
4455 #if defined(PPC64)
4456   DO_SIGNAL_CHECK(SIGTRAP);
4457 #endif
4458 
4459   // ReduceSignalUsage allows the user to override these handlers
4460   // see comments at the very top and jvm_solaris.h
4461   if (!ReduceSignalUsage) {
4462     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4463     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4464     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4465     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4466   }
4467 
4468   DO_SIGNAL_CHECK(SR_signum);
4469 }
4470 
4471 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4472 
4473 static os_sigaction_t os_sigaction = NULL;
4474 
4475 void os::Linux::check_signal_handler(int sig) {
4476   char buf[O_BUFLEN];
4477   address jvmHandler = NULL;
4478 
4479 
4480   struct sigaction act;
4481   if (os_sigaction == NULL) {
4482     // only trust the default sigaction, in case it has been interposed
4483     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4484     if (os_sigaction == NULL) return;
4485   }
4486 
4487   os_sigaction(sig, (struct sigaction*)NULL, &act);
4488 
4489 
4490   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4491 
4492   address thisHandler = (act.sa_flags & SA_SIGINFO)
4493     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4494     : CAST_FROM_FN_PTR(address, act.sa_handler);
4495 
4496 
4497   switch (sig) {
4498   case SIGSEGV:
4499   case SIGBUS:
4500   case SIGFPE:
4501   case SIGPIPE:
4502   case SIGILL:
4503   case SIGXFSZ:
4504     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4505     break;
4506 
4507   case SHUTDOWN1_SIGNAL:
4508   case SHUTDOWN2_SIGNAL:
4509   case SHUTDOWN3_SIGNAL:
4510   case BREAK_SIGNAL:
4511     jvmHandler = (address)user_handler();
4512     break;
4513 
4514   default:
4515     if (sig == SR_signum) {
4516       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4517     } else {
4518       return;
4519     }
4520     break;
4521   }
4522 
4523   if (thisHandler != jvmHandler) {
4524     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4525     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4526     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4527     // No need to check this sig any longer
4528     sigaddset(&check_signal_done, sig);
4529     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4530     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4531       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4532                     exception_name(sig, buf, O_BUFLEN));
4533     }
4534   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4535     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4536     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4537     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4538     // No need to check this sig any longer
4539     sigaddset(&check_signal_done, sig);
4540   }
4541 
4542   // Dump all the signal
4543   if (sigismember(&check_signal_done, sig)) {
4544     print_signal_handlers(tty, buf, O_BUFLEN);
4545   }
4546 }
4547 
4548 extern void report_error(char* file_name, int line_no, char* title,
4549                          char* format, ...);
4550 
4551 extern bool signal_name(int signo, char* buf, size_t len);
4552 
4553 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4554   if (0 < exception_code && exception_code <= SIGRTMAX) {
4555     // signal
4556     if (!signal_name(exception_code, buf, size)) {
4557       jio_snprintf(buf, size, "SIG%d", exception_code);
4558     }
4559     return buf;
4560   } else {
4561     return NULL;
4562   }
4563 }
4564 
4565 // this is called _before_ the most of global arguments have been parsed
4566 void os::init(void) {
4567   char dummy;   // used to get a guess on initial stack address
4568 //  first_hrtime = gethrtime();
4569 
4570   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4571 
4572   init_random(1234567);
4573 
4574   ThreadCritical::initialize();
4575 
4576   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4577   if (Linux::page_size() == -1) {
4578     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4579           strerror(errno));
4580   }
4581   init_page_sizes((size_t) Linux::page_size());
4582 
4583   Linux::initialize_system_info();
4584 
4585   // main_thread points to the aboriginal thread
4586   Linux::_main_thread = pthread_self();
4587 
4588   Linux::clock_init();
4589   initial_time_count = javaTimeNanos();
4590 
4591   // pthread_condattr initialization for monotonic clock
4592   int status;
4593   pthread_condattr_t* _condattr = os::Linux::condAttr();
4594   if ((status = pthread_condattr_init(_condattr)) != 0) {
4595     fatal("pthread_condattr_init: %s", strerror(status));
4596   }
4597   // Only set the clock if CLOCK_MONOTONIC is available
4598   if (os::supports_monotonic_clock()) {
4599     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4600       if (status == EINVAL) {
4601         warning("Unable to use monotonic clock with relative timed-waits" \
4602                 " - changes to the time-of-day clock may have adverse affects");
4603       } else {
4604         fatal("pthread_condattr_setclock: %s", strerror(status));
4605       }
4606     }
4607   }
4608   // else it defaults to CLOCK_REALTIME
4609 
4610   // If the pagesize of the VM is greater than 8K determine the appropriate
4611   // number of initial guard pages.  The user can change this with the
4612   // command line arguments, if needed.
4613   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4614     StackYellowPages = 1;
4615     StackRedPages = 1;
4616     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4617   }
4618 
4619   // retrieve entry point for pthread_setname_np
4620   Linux::_pthread_setname_np =
4621     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4622 
4623 }
4624 
4625 // To install functions for atexit system call
4626 extern "C" {
4627   static void perfMemory_exit_helper() {
4628     perfMemory_exit();
4629   }
4630 }
4631 
4632 // this is called _after_ the global arguments have been parsed
4633 jint os::init_2(void) {
4634   Linux::fast_thread_clock_init();
4635 
4636   // Allocate a single page and mark it as readable for safepoint polling
4637   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4638   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4639 
4640   os::set_polling_page(polling_page);
4641 
4642 #ifndef PRODUCT
4643   if (Verbose && PrintMiscellaneous) {
4644     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4645                (intptr_t)polling_page);
4646   }
4647 #endif
4648 
4649   if (!UseMembar) {
4650     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4651     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4652     os::set_memory_serialize_page(mem_serialize_page);
4653 
4654 #ifndef PRODUCT
4655     if (Verbose && PrintMiscellaneous) {
4656       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4657                  (intptr_t)mem_serialize_page);
4658     }
4659 #endif
4660   }
4661 
4662   // initialize suspend/resume support - must do this before signal_sets_init()
4663   if (SR_initialize() != 0) {
4664     perror("SR_initialize failed");
4665     return JNI_ERR;
4666   }
4667 
4668   Linux::signal_sets_init();
4669   Linux::install_signal_handlers();
4670 
4671   // Check minimum allowable stack size for thread creation and to initialize
4672   // the java system classes, including StackOverflowError - depends on page
4673   // size.  Add a page for compiler2 recursion in main thread.
4674   // Add in 2*BytesPerWord times page size to account for VM stack during
4675   // class initialization depending on 32 or 64 bit VM.
4676   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4677                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4678                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4679 
4680   size_t threadStackSizeInBytes = ThreadStackSize * K;
4681   if (threadStackSizeInBytes != 0 &&
4682       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4683     tty->print_cr("\nThe stack size specified is too small, "
4684                   "Specify at least " SIZE_FORMAT "k",
4685                   os::Linux::min_stack_allowed/ K);
4686     return JNI_ERR;
4687   }
4688 
4689   // Make the stack size a multiple of the page size so that
4690   // the yellow/red zones can be guarded.
4691   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4692                                                 vm_page_size()));
4693 
4694   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4695 
4696 #if defined(IA32)
4697   workaround_expand_exec_shield_cs_limit();
4698 #endif
4699 
4700   Linux::libpthread_init();
4701   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4702     tty->print_cr("[HotSpot is running with %s, %s]\n",
4703                   Linux::glibc_version(), Linux::libpthread_version());
4704   }
4705 
4706   if (UseNUMA) {
4707     if (!Linux::libnuma_init()) {
4708       UseNUMA = false;
4709     } else {
4710       if ((Linux::numa_max_node() < 1)) {
4711         // There's only one node(they start from 0), disable NUMA.
4712         UseNUMA = false;
4713       }
4714     }
4715     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4716     // we can make the adaptive lgrp chunk resizing work. If the user specified
4717     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4718     // disable adaptive resizing.
4719     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4720       if (FLAG_IS_DEFAULT(UseNUMA)) {
4721         UseNUMA = false;
4722       } else {
4723         if (FLAG_IS_DEFAULT(UseLargePages) &&
4724             FLAG_IS_DEFAULT(UseSHM) &&
4725             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4726           UseLargePages = false;
4727         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4728           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4729           UseAdaptiveSizePolicy = false;
4730           UseAdaptiveNUMAChunkSizing = false;
4731         }
4732       }
4733     }
4734     if (!UseNUMA && ForceNUMA) {
4735       UseNUMA = true;
4736     }
4737   }
4738 
4739   if (MaxFDLimit) {
4740     // set the number of file descriptors to max. print out error
4741     // if getrlimit/setrlimit fails but continue regardless.
4742     struct rlimit nbr_files;
4743     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4744     if (status != 0) {
4745       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4746         perror("os::init_2 getrlimit failed");
4747       }
4748     } else {
4749       nbr_files.rlim_cur = nbr_files.rlim_max;
4750       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4751       if (status != 0) {
4752         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4753           perror("os::init_2 setrlimit failed");
4754         }
4755       }
4756     }
4757   }
4758 
4759   // Initialize lock used to serialize thread creation (see os::create_thread)
4760   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4761 
4762   // at-exit methods are called in the reverse order of their registration.
4763   // atexit functions are called on return from main or as a result of a
4764   // call to exit(3C). There can be only 32 of these functions registered
4765   // and atexit() does not set errno.
4766 
4767   if (PerfAllowAtExitRegistration) {
4768     // only register atexit functions if PerfAllowAtExitRegistration is set.
4769     // atexit functions can be delayed until process exit time, which
4770     // can be problematic for embedded VM situations. Embedded VMs should
4771     // call DestroyJavaVM() to assure that VM resources are released.
4772 
4773     // note: perfMemory_exit_helper atexit function may be removed in
4774     // the future if the appropriate cleanup code can be added to the
4775     // VM_Exit VMOperation's doit method.
4776     if (atexit(perfMemory_exit_helper) != 0) {
4777       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4778     }
4779   }
4780 
4781   // initialize thread priority policy
4782   prio_init();
4783 
4784   return JNI_OK;
4785 }
4786 
4787 // Mark the polling page as unreadable
4788 void os::make_polling_page_unreadable(void) {
4789   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4790     fatal("Could not disable polling page");
4791   }
4792 }
4793 
4794 // Mark the polling page as readable
4795 void os::make_polling_page_readable(void) {
4796   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4797     fatal("Could not enable polling page");
4798   }
4799 }
4800 
4801 int os::active_processor_count() {
4802   // Linux doesn't yet have a (official) notion of processor sets,
4803   // so just return the number of online processors.
4804   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4805   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4806   return online_cpus;
4807 }
4808 
4809 void os::set_native_thread_name(const char *name) {
4810   if (Linux::_pthread_setname_np) {
4811     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4812     snprintf(buf, sizeof(buf), "%s", name);
4813     buf[sizeof(buf) - 1] = '\0';
4814     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4815     // ERANGE should not happen; all other errors should just be ignored.
4816     assert(rc != ERANGE, "pthread_setname_np failed");
4817   }
4818 }
4819 
4820 bool os::distribute_processes(uint length, uint* distribution) {
4821   // Not yet implemented.
4822   return false;
4823 }
4824 
4825 bool os::bind_to_processor(uint processor_id) {
4826   // Not yet implemented.
4827   return false;
4828 }
4829 
4830 ///
4831 
4832 void os::SuspendedThreadTask::internal_do_task() {
4833   if (do_suspend(_thread->osthread())) {
4834     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4835     do_task(context);
4836     do_resume(_thread->osthread());
4837   }
4838 }
4839 
4840 class PcFetcher : public os::SuspendedThreadTask {
4841  public:
4842   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4843   ExtendedPC result();
4844  protected:
4845   void do_task(const os::SuspendedThreadTaskContext& context);
4846  private:
4847   ExtendedPC _epc;
4848 };
4849 
4850 ExtendedPC PcFetcher::result() {
4851   guarantee(is_done(), "task is not done yet.");
4852   return _epc;
4853 }
4854 
4855 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4856   Thread* thread = context.thread();
4857   OSThread* osthread = thread->osthread();
4858   if (osthread->ucontext() != NULL) {
4859     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4860   } else {
4861     // NULL context is unexpected, double-check this is the VMThread
4862     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4863   }
4864 }
4865 
4866 // Suspends the target using the signal mechanism and then grabs the PC before
4867 // resuming the target. Used by the flat-profiler only
4868 ExtendedPC os::get_thread_pc(Thread* thread) {
4869   // Make sure that it is called by the watcher for the VMThread
4870   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4871   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4872 
4873   PcFetcher fetcher(thread);
4874   fetcher.run();
4875   return fetcher.result();
4876 }
4877 
4878 ////////////////////////////////////////////////////////////////////////////////
4879 // debug support
4880 
4881 bool os::find(address addr, outputStream* st) {
4882   Dl_info dlinfo;
4883   memset(&dlinfo, 0, sizeof(dlinfo));
4884   if (dladdr(addr, &dlinfo) != 0) {
4885     st->print(PTR_FORMAT ": ", p2i(addr));
4886     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4887       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4888                 p2i(addr) - p2i(dlinfo.dli_saddr));
4889     } else if (dlinfo.dli_fbase != NULL) {
4890       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4891     } else {
4892       st->print("<absolute address>");
4893     }
4894     if (dlinfo.dli_fname != NULL) {
4895       st->print(" in %s", dlinfo.dli_fname);
4896     }
4897     if (dlinfo.dli_fbase != NULL) {
4898       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4899     }
4900     st->cr();
4901 
4902     if (Verbose) {
4903       // decode some bytes around the PC
4904       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4905       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4906       address       lowest = (address) dlinfo.dli_sname;
4907       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4908       if (begin < lowest)  begin = lowest;
4909       Dl_info dlinfo2;
4910       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4911           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4912         end = (address) dlinfo2.dli_saddr;
4913       }
4914       Disassembler::decode(begin, end, st);
4915     }
4916     return true;
4917   }
4918   return false;
4919 }
4920 
4921 ////////////////////////////////////////////////////////////////////////////////
4922 // misc
4923 
4924 // This does not do anything on Linux. This is basically a hook for being
4925 // able to use structured exception handling (thread-local exception filters)
4926 // on, e.g., Win32.
4927 void
4928 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4929                          JavaCallArguments* args, Thread* thread) {
4930   f(value, method, args, thread);
4931 }
4932 
4933 void os::print_statistics() {
4934 }
4935 
4936 int os::message_box(const char* title, const char* message) {
4937   int i;
4938   fdStream err(defaultStream::error_fd());
4939   for (i = 0; i < 78; i++) err.print_raw("=");
4940   err.cr();
4941   err.print_raw_cr(title);
4942   for (i = 0; i < 78; i++) err.print_raw("-");
4943   err.cr();
4944   err.print_raw_cr(message);
4945   for (i = 0; i < 78; i++) err.print_raw("=");
4946   err.cr();
4947 
4948   char buf[16];
4949   // Prevent process from exiting upon "read error" without consuming all CPU
4950   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4951 
4952   return buf[0] == 'y' || buf[0] == 'Y';
4953 }
4954 
4955 int os::stat(const char *path, struct stat *sbuf) {
4956   char pathbuf[MAX_PATH];
4957   if (strlen(path) > MAX_PATH - 1) {
4958     errno = ENAMETOOLONG;
4959     return -1;
4960   }
4961   os::native_path(strcpy(pathbuf, path));
4962   return ::stat(pathbuf, sbuf);
4963 }
4964 
4965 bool os::check_heap(bool force) {
4966   return true;
4967 }
4968 
4969 // Is a (classpath) directory empty?
4970 bool os::dir_is_empty(const char* path) {
4971   DIR *dir = NULL;
4972   struct dirent *ptr;
4973 
4974   dir = opendir(path);
4975   if (dir == NULL) return true;
4976 
4977   // Scan the directory
4978   bool result = true;
4979   char buf[sizeof(struct dirent) + MAX_PATH];
4980   while (result && (ptr = ::readdir(dir)) != NULL) {
4981     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4982       result = false;
4983     }
4984   }
4985   closedir(dir);
4986   return result;
4987 }
4988 
4989 // This code originates from JDK's sysOpen and open64_w
4990 // from src/solaris/hpi/src/system_md.c
4991 
4992 int os::open(const char *path, int oflag, int mode) {
4993   if (strlen(path) > MAX_PATH - 1) {
4994     errno = ENAMETOOLONG;
4995     return -1;
4996   }
4997 
4998   // All file descriptors that are opened in the Java process and not
4999   // specifically destined for a subprocess should have the close-on-exec
5000   // flag set.  If we don't set it, then careless 3rd party native code
5001   // might fork and exec without closing all appropriate file descriptors
5002   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5003   // turn might:
5004   //
5005   // - cause end-of-file to fail to be detected on some file
5006   //   descriptors, resulting in mysterious hangs, or
5007   //
5008   // - might cause an fopen in the subprocess to fail on a system
5009   //   suffering from bug 1085341.
5010   //
5011   // (Yes, the default setting of the close-on-exec flag is a Unix
5012   // design flaw)
5013   //
5014   // See:
5015   // 1085341: 32-bit stdio routines should support file descriptors >255
5016   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5017   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5018   //
5019   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5020   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5021   // because it saves a system call and removes a small window where the flag
5022   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5023   // and we fall back to using FD_CLOEXEC (see below).
5024 #ifdef O_CLOEXEC
5025   oflag |= O_CLOEXEC;
5026 #endif
5027 
5028   int fd = ::open64(path, oflag, mode);
5029   if (fd == -1) return -1;
5030 
5031   //If the open succeeded, the file might still be a directory
5032   {
5033     struct stat64 buf64;
5034     int ret = ::fstat64(fd, &buf64);
5035     int st_mode = buf64.st_mode;
5036 
5037     if (ret != -1) {
5038       if ((st_mode & S_IFMT) == S_IFDIR) {
5039         errno = EISDIR;
5040         ::close(fd);
5041         return -1;
5042       }
5043     } else {
5044       ::close(fd);
5045       return -1;
5046     }
5047   }
5048 
5049 #ifdef FD_CLOEXEC
5050   // Validate that the use of the O_CLOEXEC flag on open above worked.
5051   // With recent kernels, we will perform this check exactly once.
5052   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5053   if (!O_CLOEXEC_is_known_to_work) {
5054     int flags = ::fcntl(fd, F_GETFD);
5055     if (flags != -1) {
5056       if ((flags & FD_CLOEXEC) != 0)
5057         O_CLOEXEC_is_known_to_work = 1;
5058       else
5059         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5060     }
5061   }
5062 #endif
5063 
5064   return fd;
5065 }
5066 
5067 
5068 // create binary file, rewriting existing file if required
5069 int os::create_binary_file(const char* path, bool rewrite_existing) {
5070   int oflags = O_WRONLY | O_CREAT;
5071   if (!rewrite_existing) {
5072     oflags |= O_EXCL;
5073   }
5074   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5075 }
5076 
5077 // return current position of file pointer
5078 jlong os::current_file_offset(int fd) {
5079   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5080 }
5081 
5082 // move file pointer to the specified offset
5083 jlong os::seek_to_file_offset(int fd, jlong offset) {
5084   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5085 }
5086 
5087 // This code originates from JDK's sysAvailable
5088 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5089 
5090 int os::available(int fd, jlong *bytes) {
5091   jlong cur, end;
5092   int mode;
5093   struct stat64 buf64;
5094 
5095   if (::fstat64(fd, &buf64) >= 0) {
5096     mode = buf64.st_mode;
5097     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5098       int n;
5099       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5100         *bytes = n;
5101         return 1;
5102       }
5103     }
5104   }
5105   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5106     return 0;
5107   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5108     return 0;
5109   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5110     return 0;
5111   }
5112   *bytes = end - cur;
5113   return 1;
5114 }
5115 
5116 // Map a block of memory.
5117 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5118                         char *addr, size_t bytes, bool read_only,
5119                         bool allow_exec) {
5120   int prot;
5121   int flags = MAP_PRIVATE;
5122 
5123   if (read_only) {
5124     prot = PROT_READ;
5125   } else {
5126     prot = PROT_READ | PROT_WRITE;
5127   }
5128 
5129   if (allow_exec) {
5130     prot |= PROT_EXEC;
5131   }
5132 
5133   if (addr != NULL) {
5134     flags |= MAP_FIXED;
5135   }
5136 
5137   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5138                                      fd, file_offset);
5139   if (mapped_address == MAP_FAILED) {
5140     return NULL;
5141   }
5142   return mapped_address;
5143 }
5144 
5145 
5146 // Remap a block of memory.
5147 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5148                           char *addr, size_t bytes, bool read_only,
5149                           bool allow_exec) {
5150   // same as map_memory() on this OS
5151   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5152                         allow_exec);
5153 }
5154 
5155 
5156 // Unmap a block of memory.
5157 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5158   return munmap(addr, bytes) == 0;
5159 }
5160 
5161 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5162 
5163 static clockid_t thread_cpu_clockid(Thread* thread) {
5164   pthread_t tid = thread->osthread()->pthread_id();
5165   clockid_t clockid;
5166 
5167   // Get thread clockid
5168   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5169   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5170   return clockid;
5171 }
5172 
5173 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5174 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5175 // of a thread.
5176 //
5177 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5178 // the fast estimate available on the platform.
5179 
5180 jlong os::current_thread_cpu_time() {
5181   if (os::Linux::supports_fast_thread_cpu_time()) {
5182     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5183   } else {
5184     // return user + sys since the cost is the same
5185     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5186   }
5187 }
5188 
5189 jlong os::thread_cpu_time(Thread* thread) {
5190   // consistent with what current_thread_cpu_time() returns
5191   if (os::Linux::supports_fast_thread_cpu_time()) {
5192     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5193   } else {
5194     return slow_thread_cpu_time(thread, true /* user + sys */);
5195   }
5196 }
5197 
5198 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5199   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5200     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5201   } else {
5202     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5203   }
5204 }
5205 
5206 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5207   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5208     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5209   } else {
5210     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5211   }
5212 }
5213 
5214 //  -1 on error.
5215 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5216   pid_t  tid = thread->osthread()->thread_id();
5217   char *s;
5218   char stat[2048];
5219   int statlen;
5220   char proc_name[64];
5221   int count;
5222   long sys_time, user_time;
5223   char cdummy;
5224   int idummy;
5225   long ldummy;
5226   FILE *fp;
5227 
5228   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5229   fp = fopen(proc_name, "r");
5230   if (fp == NULL) return -1;
5231   statlen = fread(stat, 1, 2047, fp);
5232   stat[statlen] = '\0';
5233   fclose(fp);
5234 
5235   // Skip pid and the command string. Note that we could be dealing with
5236   // weird command names, e.g. user could decide to rename java launcher
5237   // to "java 1.4.2 :)", then the stat file would look like
5238   //                1234 (java 1.4.2 :)) R ... ...
5239   // We don't really need to know the command string, just find the last
5240   // occurrence of ")" and then start parsing from there. See bug 4726580.
5241   s = strrchr(stat, ')');
5242   if (s == NULL) return -1;
5243 
5244   // Skip blank chars
5245   do { s++; } while (s && isspace(*s));
5246 
5247   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5248                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5249                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5250                  &user_time, &sys_time);
5251   if (count != 13) return -1;
5252   if (user_sys_cpu_time) {
5253     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5254   } else {
5255     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5256   }
5257 }
5258 
5259 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5260   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5261   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5262   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5263   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5264 }
5265 
5266 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5267   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5268   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5269   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5270   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5271 }
5272 
5273 bool os::is_thread_cpu_time_supported() {
5274   return true;
5275 }
5276 
5277 // System loadavg support.  Returns -1 if load average cannot be obtained.
5278 // Linux doesn't yet have a (official) notion of processor sets,
5279 // so just return the system wide load average.
5280 int os::loadavg(double loadavg[], int nelem) {
5281   return ::getloadavg(loadavg, nelem);
5282 }
5283 
5284 void os::pause() {
5285   char filename[MAX_PATH];
5286   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5287     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5288   } else {
5289     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5290   }
5291 
5292   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5293   if (fd != -1) {
5294     struct stat buf;
5295     ::close(fd);
5296     while (::stat(filename, &buf) == 0) {
5297       (void)::poll(NULL, 0, 100);
5298     }
5299   } else {
5300     jio_fprintf(stderr,
5301                 "Could not open pause file '%s', continuing immediately.\n", filename);
5302   }
5303 }
5304 
5305 
5306 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5307 // comment paragraphs are worth repeating here:
5308 //
5309 // Assumption:
5310 //    Only one parker can exist on an event, which is why we allocate
5311 //    them per-thread. Multiple unparkers can coexist.
5312 //
5313 // _Event serves as a restricted-range semaphore.
5314 //   -1 : thread is blocked, i.e. there is a waiter
5315 //    0 : neutral: thread is running or ready,
5316 //        could have been signaled after a wait started
5317 //    1 : signaled - thread is running or ready
5318 //
5319 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5320 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5321 // For specifics regarding the bug see GLIBC BUGID 261237 :
5322 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5323 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5324 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5325 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5326 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5327 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5328 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5329 // of libpthread avoids the problem, but isn't practical.
5330 //
5331 // Possible remedies:
5332 //
5333 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5334 //      This is palliative and probabilistic, however.  If the thread is preempted
5335 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5336 //      than the minimum period may have passed, and the abstime may be stale (in the
5337 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5338 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5339 //
5340 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5341 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5342 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5343 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5344 //      thread.
5345 //
5346 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5347 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5348 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5349 //      This also works well.  In fact it avoids kernel-level scalability impediments
5350 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5351 //      timers in a graceful fashion.
5352 //
5353 // 4.   When the abstime value is in the past it appears that control returns
5354 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5355 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5356 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5357 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5358 //      It may be possible to avoid reinitialization by checking the return
5359 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5360 //      condvar we must establish the invariant that cond_signal() is only called
5361 //      within critical sections protected by the adjunct mutex.  This prevents
5362 //      cond_signal() from "seeing" a condvar that's in the midst of being
5363 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5364 //      desirable signal-after-unlock optimization that avoids futile context switching.
5365 //
5366 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5367 //      structure when a condvar is used or initialized.  cond_destroy()  would
5368 //      release the helper structure.  Our reinitialize-after-timedwait fix
5369 //      put excessive stress on malloc/free and locks protecting the c-heap.
5370 //
5371 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5372 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5373 // and only enabling the work-around for vulnerable environments.
5374 
5375 // utility to compute the abstime argument to timedwait:
5376 // millis is the relative timeout time
5377 // abstime will be the absolute timeout time
5378 // TODO: replace compute_abstime() with unpackTime()
5379 
5380 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5381   if (millis < 0)  millis = 0;
5382 
5383   jlong seconds = millis / 1000;
5384   millis %= 1000;
5385   if (seconds > 50000000) { // see man cond_timedwait(3T)
5386     seconds = 50000000;
5387   }
5388 
5389   if (os::supports_monotonic_clock()) {
5390     struct timespec now;
5391     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5392     assert_status(status == 0, status, "clock_gettime");
5393     abstime->tv_sec = now.tv_sec  + seconds;
5394     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5395     if (nanos >= NANOSECS_PER_SEC) {
5396       abstime->tv_sec += 1;
5397       nanos -= NANOSECS_PER_SEC;
5398     }
5399     abstime->tv_nsec = nanos;
5400   } else {
5401     struct timeval now;
5402     int status = gettimeofday(&now, NULL);
5403     assert(status == 0, "gettimeofday");
5404     abstime->tv_sec = now.tv_sec  + seconds;
5405     long usec = now.tv_usec + millis * 1000;
5406     if (usec >= 1000000) {
5407       abstime->tv_sec += 1;
5408       usec -= 1000000;
5409     }
5410     abstime->tv_nsec = usec * 1000;
5411   }
5412   return abstime;
5413 }
5414 
5415 void os::PlatformEvent::park() {       // AKA "down()"
5416   // Transitions for _Event:
5417   //   -1 => -1 : illegal
5418   //    1 =>  0 : pass - return immediately
5419   //    0 => -1 : block; then set _Event to 0 before returning
5420 
5421   // Invariant: Only the thread associated with the Event/PlatformEvent
5422   // may call park().
5423   // TODO: assert that _Assoc != NULL or _Assoc == Self
5424   assert(_nParked == 0, "invariant");
5425 
5426   int v;
5427   for (;;) {
5428     v = _Event;
5429     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5430   }
5431   guarantee(v >= 0, "invariant");
5432   if (v == 0) {
5433     // Do this the hard way by blocking ...
5434     int status = pthread_mutex_lock(_mutex);
5435     assert_status(status == 0, status, "mutex_lock");
5436     guarantee(_nParked == 0, "invariant");
5437     ++_nParked;
5438     while (_Event < 0) {
5439       status = pthread_cond_wait(_cond, _mutex);
5440       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5441       // Treat this the same as if the wait was interrupted
5442       if (status == ETIME) { status = EINTR; }
5443       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5444     }
5445     --_nParked;
5446 
5447     _Event = 0;
5448     status = pthread_mutex_unlock(_mutex);
5449     assert_status(status == 0, status, "mutex_unlock");
5450     // Paranoia to ensure our locked and lock-free paths interact
5451     // correctly with each other.
5452     OrderAccess::fence();
5453   }
5454   guarantee(_Event >= 0, "invariant");
5455 }
5456 
5457 int os::PlatformEvent::park(jlong millis) {
5458   // Transitions for _Event:
5459   //   -1 => -1 : illegal
5460   //    1 =>  0 : pass - return immediately
5461   //    0 => -1 : block; then set _Event to 0 before returning
5462 
5463   guarantee(_nParked == 0, "invariant");
5464 
5465   int v;
5466   for (;;) {
5467     v = _Event;
5468     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5469   }
5470   guarantee(v >= 0, "invariant");
5471   if (v != 0) return OS_OK;
5472 
5473   // We do this the hard way, by blocking the thread.
5474   // Consider enforcing a minimum timeout value.
5475   struct timespec abst;
5476   compute_abstime(&abst, millis);
5477 
5478   int ret = OS_TIMEOUT;
5479   int status = pthread_mutex_lock(_mutex);
5480   assert_status(status == 0, status, "mutex_lock");
5481   guarantee(_nParked == 0, "invariant");
5482   ++_nParked;
5483 
5484   // Object.wait(timo) will return because of
5485   // (a) notification
5486   // (b) timeout
5487   // (c) thread.interrupt
5488   //
5489   // Thread.interrupt and object.notify{All} both call Event::set.
5490   // That is, we treat thread.interrupt as a special case of notification.
5491   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5492   // We assume all ETIME returns are valid.
5493   //
5494   // TODO: properly differentiate simultaneous notify+interrupt.
5495   // In that case, we should propagate the notify to another waiter.
5496 
5497   while (_Event < 0) {
5498     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5499     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5500       pthread_cond_destroy(_cond);
5501       pthread_cond_init(_cond, os::Linux::condAttr());
5502     }
5503     assert_status(status == 0 || status == EINTR ||
5504                   status == ETIME || status == ETIMEDOUT,
5505                   status, "cond_timedwait");
5506     if (!FilterSpuriousWakeups) break;                 // previous semantics
5507     if (status == ETIME || status == ETIMEDOUT) break;
5508     // We consume and ignore EINTR and spurious wakeups.
5509   }
5510   --_nParked;
5511   if (_Event >= 0) {
5512     ret = OS_OK;
5513   }
5514   _Event = 0;
5515   status = pthread_mutex_unlock(_mutex);
5516   assert_status(status == 0, status, "mutex_unlock");
5517   assert(_nParked == 0, "invariant");
5518   // Paranoia to ensure our locked and lock-free paths interact
5519   // correctly with each other.
5520   OrderAccess::fence();
5521   return ret;
5522 }
5523 
5524 void os::PlatformEvent::unpark() {
5525   // Transitions for _Event:
5526   //    0 => 1 : just return
5527   //    1 => 1 : just return
5528   //   -1 => either 0 or 1; must signal target thread
5529   //         That is, we can safely transition _Event from -1 to either
5530   //         0 or 1.
5531   // See also: "Semaphores in Plan 9" by Mullender & Cox
5532   //
5533   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5534   // that it will take two back-to-back park() calls for the owning
5535   // thread to block. This has the benefit of forcing a spurious return
5536   // from the first park() call after an unpark() call which will help
5537   // shake out uses of park() and unpark() without condition variables.
5538 
5539   if (Atomic::xchg(1, &_Event) >= 0) return;
5540 
5541   // Wait for the thread associated with the event to vacate
5542   int status = pthread_mutex_lock(_mutex);
5543   assert_status(status == 0, status, "mutex_lock");
5544   int AnyWaiters = _nParked;
5545   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5546   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5547     AnyWaiters = 0;
5548     pthread_cond_signal(_cond);
5549   }
5550   status = pthread_mutex_unlock(_mutex);
5551   assert_status(status == 0, status, "mutex_unlock");
5552   if (AnyWaiters != 0) {
5553     // Note that we signal() *after* dropping the lock for "immortal" Events.
5554     // This is safe and avoids a common class of  futile wakeups.  In rare
5555     // circumstances this can cause a thread to return prematurely from
5556     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5557     // will simply re-test the condition and re-park itself.
5558     // This provides particular benefit if the underlying platform does not
5559     // provide wait morphing.
5560     status = pthread_cond_signal(_cond);
5561     assert_status(status == 0, status, "cond_signal");
5562   }
5563 }
5564 
5565 
5566 // JSR166
5567 // -------------------------------------------------------
5568 
5569 // The solaris and linux implementations of park/unpark are fairly
5570 // conservative for now, but can be improved. They currently use a
5571 // mutex/condvar pair, plus a a count.
5572 // Park decrements count if > 0, else does a condvar wait.  Unpark
5573 // sets count to 1 and signals condvar.  Only one thread ever waits
5574 // on the condvar. Contention seen when trying to park implies that someone
5575 // is unparking you, so don't wait. And spurious returns are fine, so there
5576 // is no need to track notifications.
5577 
5578 // This code is common to linux and solaris and will be moved to a
5579 // common place in dolphin.
5580 //
5581 // The passed in time value is either a relative time in nanoseconds
5582 // or an absolute time in milliseconds. Either way it has to be unpacked
5583 // into suitable seconds and nanoseconds components and stored in the
5584 // given timespec structure.
5585 // Given time is a 64-bit value and the time_t used in the timespec is only
5586 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5587 // overflow if times way in the future are given. Further on Solaris versions
5588 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5589 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5590 // As it will be 28 years before "now + 100000000" will overflow we can
5591 // ignore overflow and just impose a hard-limit on seconds using the value
5592 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5593 // years from "now".
5594 
5595 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5596   assert(time > 0, "convertTime");
5597   time_t max_secs = 0;
5598 
5599   if (!os::supports_monotonic_clock() || isAbsolute) {
5600     struct timeval now;
5601     int status = gettimeofday(&now, NULL);
5602     assert(status == 0, "gettimeofday");
5603 
5604     max_secs = now.tv_sec + MAX_SECS;
5605 
5606     if (isAbsolute) {
5607       jlong secs = time / 1000;
5608       if (secs > max_secs) {
5609         absTime->tv_sec = max_secs;
5610       } else {
5611         absTime->tv_sec = secs;
5612       }
5613       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5614     } else {
5615       jlong secs = time / NANOSECS_PER_SEC;
5616       if (secs >= MAX_SECS) {
5617         absTime->tv_sec = max_secs;
5618         absTime->tv_nsec = 0;
5619       } else {
5620         absTime->tv_sec = now.tv_sec + secs;
5621         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5622         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5623           absTime->tv_nsec -= NANOSECS_PER_SEC;
5624           ++absTime->tv_sec; // note: this must be <= max_secs
5625         }
5626       }
5627     }
5628   } else {
5629     // must be relative using monotonic clock
5630     struct timespec now;
5631     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5632     assert_status(status == 0, status, "clock_gettime");
5633     max_secs = now.tv_sec + MAX_SECS;
5634     jlong secs = time / NANOSECS_PER_SEC;
5635     if (secs >= MAX_SECS) {
5636       absTime->tv_sec = max_secs;
5637       absTime->tv_nsec = 0;
5638     } else {
5639       absTime->tv_sec = now.tv_sec + secs;
5640       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5641       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5642         absTime->tv_nsec -= NANOSECS_PER_SEC;
5643         ++absTime->tv_sec; // note: this must be <= max_secs
5644       }
5645     }
5646   }
5647   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5648   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5649   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5650   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5651 }
5652 
5653 void Parker::park(bool isAbsolute, jlong time) {
5654   // Ideally we'd do something useful while spinning, such
5655   // as calling unpackTime().
5656 
5657   // Optional fast-path check:
5658   // Return immediately if a permit is available.
5659   // We depend on Atomic::xchg() having full barrier semantics
5660   // since we are doing a lock-free update to _counter.
5661   if (Atomic::xchg(0, &_counter) > 0) return;
5662 
5663   Thread* thread = Thread::current();
5664   assert(thread->is_Java_thread(), "Must be JavaThread");
5665   JavaThread *jt = (JavaThread *)thread;
5666 
5667   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5668   // Check interrupt before trying to wait
5669   if (Thread::is_interrupted(thread, false)) {
5670     return;
5671   }
5672 
5673   // Next, demultiplex/decode time arguments
5674   timespec absTime;
5675   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5676     return;
5677   }
5678   if (time > 0) {
5679     unpackTime(&absTime, isAbsolute, time);
5680   }
5681 
5682 
5683   // Enter safepoint region
5684   // Beware of deadlocks such as 6317397.
5685   // The per-thread Parker:: mutex is a classic leaf-lock.
5686   // In particular a thread must never block on the Threads_lock while
5687   // holding the Parker:: mutex.  If safepoints are pending both the
5688   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5689   ThreadBlockInVM tbivm(jt);
5690 
5691   // Don't wait if cannot get lock since interference arises from
5692   // unblocking.  Also. check interrupt before trying wait
5693   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5694     return;
5695   }
5696 
5697   int status;
5698   if (_counter > 0)  { // no wait needed
5699     _counter = 0;
5700     status = pthread_mutex_unlock(_mutex);
5701     assert(status == 0, "invariant");
5702     // Paranoia to ensure our locked and lock-free paths interact
5703     // correctly with each other and Java-level accesses.
5704     OrderAccess::fence();
5705     return;
5706   }
5707 
5708 #ifdef ASSERT
5709   // Don't catch signals while blocked; let the running threads have the signals.
5710   // (This allows a debugger to break into the running thread.)
5711   sigset_t oldsigs;
5712   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5713   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5714 #endif
5715 
5716   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5717   jt->set_suspend_equivalent();
5718   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5719 
5720   assert(_cur_index == -1, "invariant");
5721   if (time == 0) {
5722     _cur_index = REL_INDEX; // arbitrary choice when not timed
5723     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5724   } else {
5725     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5726     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5727     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5728       pthread_cond_destroy(&_cond[_cur_index]);
5729       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5730     }
5731   }
5732   _cur_index = -1;
5733   assert_status(status == 0 || status == EINTR ||
5734                 status == ETIME || status == ETIMEDOUT,
5735                 status, "cond_timedwait");
5736 
5737 #ifdef ASSERT
5738   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5739 #endif
5740 
5741   _counter = 0;
5742   status = pthread_mutex_unlock(_mutex);
5743   assert_status(status == 0, status, "invariant");
5744   // Paranoia to ensure our locked and lock-free paths interact
5745   // correctly with each other and Java-level accesses.
5746   OrderAccess::fence();
5747 
5748   // If externally suspended while waiting, re-suspend
5749   if (jt->handle_special_suspend_equivalent_condition()) {
5750     jt->java_suspend_self();
5751   }
5752 }
5753 
5754 void Parker::unpark() {
5755   int status = pthread_mutex_lock(_mutex);
5756   assert(status == 0, "invariant");
5757   const int s = _counter;
5758   _counter = 1;
5759   if (s < 1) {
5760     // thread might be parked
5761     if (_cur_index != -1) {
5762       // thread is definitely parked
5763       if (WorkAroundNPTLTimedWaitHang) {
5764         status = pthread_cond_signal(&_cond[_cur_index]);
5765         assert(status == 0, "invariant");
5766         status = pthread_mutex_unlock(_mutex);
5767         assert(status == 0, "invariant");
5768       } else {
5769         // must capture correct index before unlocking
5770         int index = _cur_index;
5771         status = pthread_mutex_unlock(_mutex);
5772         assert(status == 0, "invariant");
5773         status = pthread_cond_signal(&_cond[index]);
5774         assert(status == 0, "invariant");
5775       }
5776     } else {
5777       pthread_mutex_unlock(_mutex);
5778       assert(status == 0, "invariant");
5779     }
5780   } else {
5781     pthread_mutex_unlock(_mutex);
5782     assert(status == 0, "invariant");
5783   }
5784 }
5785 
5786 
5787 extern char** environ;
5788 
5789 // Run the specified command in a separate process. Return its exit value,
5790 // or -1 on failure (e.g. can't fork a new process).
5791 // Unlike system(), this function can be called from signal handler. It
5792 // doesn't block SIGINT et al.
5793 int os::fork_and_exec(char* cmd) {
5794   const char * argv[4] = {"sh", "-c", cmd, NULL};
5795 
5796   pid_t pid = fork();
5797 
5798   if (pid < 0) {
5799     // fork failed
5800     return -1;
5801 
5802   } else if (pid == 0) {
5803     // child process
5804 
5805     execve("/bin/sh", (char* const*)argv, environ);
5806 
5807     // execve failed
5808     _exit(-1);
5809 
5810   } else  {
5811     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5812     // care about the actual exit code, for now.
5813 
5814     int status;
5815 
5816     // Wait for the child process to exit.  This returns immediately if
5817     // the child has already exited. */
5818     while (waitpid(pid, &status, 0) < 0) {
5819       switch (errno) {
5820       case ECHILD: return 0;
5821       case EINTR: break;
5822       default: return -1;
5823       }
5824     }
5825 
5826     if (WIFEXITED(status)) {
5827       // The child exited normally; get its exit code.
5828       return WEXITSTATUS(status);
5829     } else if (WIFSIGNALED(status)) {
5830       // The child exited because of a signal
5831       // The best value to return is 0x80 + signal number,
5832       // because that is what all Unix shells do, and because
5833       // it allows callers to distinguish between process exit and
5834       // process death by signal.
5835       return 0x80 + WTERMSIG(status);
5836     } else {
5837       // Unknown exit code; pass it through
5838       return status;
5839     }
5840   }
5841 }
5842 
5843 // is_headless_jre()
5844 //
5845 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5846 // in order to report if we are running in a headless jre
5847 //
5848 // Since JDK8 xawt/libmawt.so was moved into the same directory
5849 // as libawt.so, and renamed libawt_xawt.so
5850 //
5851 bool os::is_headless_jre() {
5852   struct stat statbuf;
5853   char buf[MAXPATHLEN];
5854   char libmawtpath[MAXPATHLEN];
5855   const char *xawtstr  = "/xawt/libmawt.so";
5856   const char *new_xawtstr = "/libawt_xawt.so";
5857   char *p;
5858 
5859   // Get path to libjvm.so
5860   os::jvm_path(buf, sizeof(buf));
5861 
5862   // Get rid of libjvm.so
5863   p = strrchr(buf, '/');
5864   if (p == NULL) {
5865     return false;
5866   } else {
5867     *p = '\0';
5868   }
5869 
5870   // Get rid of client or server
5871   p = strrchr(buf, '/');
5872   if (p == NULL) {
5873     return false;
5874   } else {
5875     *p = '\0';
5876   }
5877 
5878   // check xawt/libmawt.so
5879   strcpy(libmawtpath, buf);
5880   strcat(libmawtpath, xawtstr);
5881   if (::stat(libmawtpath, &statbuf) == 0) return false;
5882 
5883   // check libawt_xawt.so
5884   strcpy(libmawtpath, buf);
5885   strcat(libmawtpath, new_xawtstr);
5886   if (::stat(libmawtpath, &statbuf) == 0) return false;
5887 
5888   return true;
5889 }
5890 
5891 // Get the default path to the core file
5892 // Returns the length of the string
5893 int os::get_core_path(char* buffer, size_t bufferSize) {
5894   /*
5895    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5896    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5897    */
5898   const int core_pattern_len = 129;
5899   char core_pattern[core_pattern_len] = {0};
5900 
5901   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5902   if (core_pattern_file == -1) {
5903     return -1;
5904   }
5905 
5906   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5907   ::close(core_pattern_file);
5908   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5909     return -1;
5910   }
5911   if (core_pattern[ret-1] == '\n') {
5912     core_pattern[ret-1] = '\0';
5913   } else {
5914     core_pattern[ret] = '\0';
5915   }
5916 
5917   char *pid_pos = strstr(core_pattern, "%p");
5918   int written;
5919 
5920   if (core_pattern[0] == '/') {
5921     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5922   } else {
5923     char cwd[PATH_MAX];
5924 
5925     const char* p = get_current_directory(cwd, PATH_MAX);
5926     if (p == NULL) {
5927       return -1;
5928     }
5929 
5930     if (core_pattern[0] == '|') {
5931       written = jio_snprintf(buffer, bufferSize,
5932                         "\"%s\" (or dumping to %s/core.%d)",
5933                                      &core_pattern[1], p, current_process_id());
5934     } else {
5935       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5936     }
5937   }
5938 
5939   if (written < 0) {
5940     return -1;
5941   }
5942 
5943   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5944     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5945 
5946     if (core_uses_pid_file != -1) {
5947       char core_uses_pid = 0;
5948       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5949       ::close(core_uses_pid_file);
5950 
5951       if (core_uses_pid == '1') {
5952         jio_snprintf(buffer + written, bufferSize - written,
5953                                           ".%d", current_process_id());
5954       }
5955     }
5956   }
5957 
5958   return strlen(buffer);
5959 }
5960 
5961 /////////////// Unit tests ///////////////
5962 
5963 #ifndef PRODUCT
5964 
5965 #define test_log(...)              \
5966   do {                             \
5967     if (VerboseInternalVMTests) {  \
5968       tty->print_cr(__VA_ARGS__);  \
5969       tty->flush();                \
5970     }                              \
5971   } while (false)
5972 
5973 class TestReserveMemorySpecial : AllStatic {
5974  public:
5975   static void small_page_write(void* addr, size_t size) {
5976     size_t page_size = os::vm_page_size();
5977 
5978     char* end = (char*)addr + size;
5979     for (char* p = (char*)addr; p < end; p += page_size) {
5980       *p = 1;
5981     }
5982   }
5983 
5984   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5985     if (!UseHugeTLBFS) {
5986       return;
5987     }
5988 
5989     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5990 
5991     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5992 
5993     if (addr != NULL) {
5994       small_page_write(addr, size);
5995 
5996       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5997     }
5998   }
5999 
6000   static void test_reserve_memory_special_huge_tlbfs_only() {
6001     if (!UseHugeTLBFS) {
6002       return;
6003     }
6004 
6005     size_t lp = os::large_page_size();
6006 
6007     for (size_t size = lp; size <= lp * 10; size += lp) {
6008       test_reserve_memory_special_huge_tlbfs_only(size);
6009     }
6010   }
6011 
6012   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6013     size_t lp = os::large_page_size();
6014     size_t ag = os::vm_allocation_granularity();
6015 
6016     // sizes to test
6017     const size_t sizes[] = {
6018       lp, lp + ag, lp + lp / 2, lp * 2,
6019       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6020       lp * 10, lp * 10 + lp / 2
6021     };
6022     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6023 
6024     // For each size/alignment combination, we test three scenarios:
6025     // 1) with req_addr == NULL
6026     // 2) with a non-null req_addr at which we expect to successfully allocate
6027     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6028     //    expect the allocation to either fail or to ignore req_addr
6029 
6030     // Pre-allocate two areas; they shall be as large as the largest allocation
6031     //  and aligned to the largest alignment we will be testing.
6032     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6033     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6034       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6035       -1, 0);
6036     assert(mapping1 != MAP_FAILED, "should work");
6037 
6038     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6039       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6040       -1, 0);
6041     assert(mapping2 != MAP_FAILED, "should work");
6042 
6043     // Unmap the first mapping, but leave the second mapping intact: the first
6044     // mapping will serve as a value for a "good" req_addr (case 2). The second
6045     // mapping, still intact, as "bad" req_addr (case 3).
6046     ::munmap(mapping1, mapping_size);
6047 
6048     // Case 1
6049     test_log("%s, req_addr NULL:", __FUNCTION__);
6050     test_log("size            align           result");
6051 
6052     for (int i = 0; i < num_sizes; i++) {
6053       const size_t size = sizes[i];
6054       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6055         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6056         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6057                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6058         if (p != NULL) {
6059           assert(is_ptr_aligned(p, alignment), "must be");
6060           small_page_write(p, size);
6061           os::Linux::release_memory_special_huge_tlbfs(p, size);
6062         }
6063       }
6064     }
6065 
6066     // Case 2
6067     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6068     test_log("size            align           req_addr         result");
6069 
6070     for (int i = 0; i < num_sizes; i++) {
6071       const size_t size = sizes[i];
6072       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6073         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6074         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6075         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6076                  size, alignment, p2i(req_addr), p2i(p),
6077                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6078         if (p != NULL) {
6079           assert(p == req_addr, "must be");
6080           small_page_write(p, size);
6081           os::Linux::release_memory_special_huge_tlbfs(p, size);
6082         }
6083       }
6084     }
6085 
6086     // Case 3
6087     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6088     test_log("size            align           req_addr         result");
6089 
6090     for (int i = 0; i < num_sizes; i++) {
6091       const size_t size = sizes[i];
6092       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6093         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6094         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6095         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6096                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6097         // as the area around req_addr contains already existing mappings, the API should always
6098         // return NULL (as per contract, it cannot return another address)
6099         assert(p == NULL, "must be");
6100       }
6101     }
6102 
6103     ::munmap(mapping2, mapping_size);
6104 
6105   }
6106 
6107   static void test_reserve_memory_special_huge_tlbfs() {
6108     if (!UseHugeTLBFS) {
6109       return;
6110     }
6111 
6112     test_reserve_memory_special_huge_tlbfs_only();
6113     test_reserve_memory_special_huge_tlbfs_mixed();
6114   }
6115 
6116   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6117     if (!UseSHM) {
6118       return;
6119     }
6120 
6121     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6122 
6123     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6124 
6125     if (addr != NULL) {
6126       assert(is_ptr_aligned(addr, alignment), "Check");
6127       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6128 
6129       small_page_write(addr, size);
6130 
6131       os::Linux::release_memory_special_shm(addr, size);
6132     }
6133   }
6134 
6135   static void test_reserve_memory_special_shm() {
6136     size_t lp = os::large_page_size();
6137     size_t ag = os::vm_allocation_granularity();
6138 
6139     for (size_t size = ag; size < lp * 3; size += ag) {
6140       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6141         test_reserve_memory_special_shm(size, alignment);
6142       }
6143     }
6144   }
6145 
6146   static void test() {
6147     test_reserve_memory_special_huge_tlbfs();
6148     test_reserve_memory_special_shm();
6149   }
6150 };
6151 
6152 void TestReserveMemorySpecial_test() {
6153   TestReserveMemorySpecial::test();
6154 }
6155 
6156 #endif