1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   thread->initialize_thread_current();
 423 
 424   OSThread* osthr = thread->osthread();
 425   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 426 
 427   if (UseNUMA) {
 428     int lgrp_id = os::numa_get_group_id();
 429     if (lgrp_id != -1) {
 430       thread->set_lgrp_id(lgrp_id);
 431     }
 432   }
 433 
 434   // Diagnostic code to investigate JDK-6573254
 435   int res = 30115;  // non-java thread
 436   if (thread->is_Java_thread()) {
 437     res = 20115;    // java thread
 438   }
 439 
 440   // Install a win32 structured exception handler around every thread created
 441   // by VM, so VM can generate error dump when an exception occurred in non-
 442   // Java thread (e.g. VM thread).
 443   __try {
 444     thread->run();
 445   } __except(topLevelExceptionFilter(
 446                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 447     // Nothing to do.
 448   }
 449 
 450   // One less thread is executing
 451   // When the VMThread gets here, the main thread may have already exited
 452   // which frees the CodeHeap containing the Atomic::add code
 453   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 454     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 455   }
 456 
 457   // Thread must not return from exit_process_or_thread(), but if it does,
 458   // let it proceed to exit normally
 459   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 460 }
 461 
 462 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 463                                   int thread_id) {
 464   // Allocate the OSThread object
 465   OSThread* osthread = new OSThread(NULL, NULL);
 466   if (osthread == NULL) return NULL;
 467 
 468   // Initialize support for Java interrupts
 469   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 470   if (interrupt_event == NULL) {
 471     delete osthread;
 472     return NULL;
 473   }
 474   osthread->set_interrupt_event(interrupt_event);
 475 
 476   // Store info on the Win32 thread into the OSThread
 477   osthread->set_thread_handle(thread_handle);
 478   osthread->set_thread_id(thread_id);
 479 
 480   if (UseNUMA) {
 481     int lgrp_id = os::numa_get_group_id();
 482     if (lgrp_id != -1) {
 483       thread->set_lgrp_id(lgrp_id);
 484     }
 485   }
 486 
 487   // Initial thread state is INITIALIZED, not SUSPENDED
 488   osthread->set_state(INITIALIZED);
 489 
 490   return osthread;
 491 }
 492 
 493 
 494 bool os::create_attached_thread(JavaThread* thread) {
 495 #ifdef ASSERT
 496   thread->verify_not_published();
 497 #endif
 498   HANDLE thread_h;
 499   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 500                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 501     fatal("DuplicateHandle failed\n");
 502   }
 503   OSThread* osthread = create_os_thread(thread, thread_h,
 504                                         (int)current_thread_id());
 505   if (osthread == NULL) {
 506     return false;
 507   }
 508 
 509   // Initial thread state is RUNNABLE
 510   osthread->set_state(RUNNABLE);
 511 
 512   thread->set_osthread(osthread);
 513   return true;
 514 }
 515 
 516 bool os::create_main_thread(JavaThread* thread) {
 517 #ifdef ASSERT
 518   thread->verify_not_published();
 519 #endif
 520   if (_starting_thread == NULL) {
 521     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 522     if (_starting_thread == NULL) {
 523       return false;
 524     }
 525   }
 526 
 527   // The primordial thread is runnable from the start)
 528   _starting_thread->set_state(RUNNABLE);
 529 
 530   thread->set_osthread(_starting_thread);
 531   return true;
 532 }
 533 
 534 // Allocate and initialize a new OSThread
 535 bool os::create_thread(Thread* thread, ThreadType thr_type,
 536                        size_t stack_size) {
 537   unsigned thread_id;
 538 
 539   // Allocate the OSThread object
 540   OSThread* osthread = new OSThread(NULL, NULL);
 541   if (osthread == NULL) {
 542     return false;
 543   }
 544 
 545   // Initialize support for Java interrupts
 546   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 547   if (interrupt_event == NULL) {
 548     delete osthread;
 549     return NULL;
 550   }
 551   osthread->set_interrupt_event(interrupt_event);
 552   osthread->set_interrupted(false);
 553 
 554   thread->set_osthread(osthread);
 555 
 556   if (stack_size == 0) {
 557     switch (thr_type) {
 558     case os::java_thread:
 559       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 560       if (JavaThread::stack_size_at_create() > 0) {
 561         stack_size = JavaThread::stack_size_at_create();
 562       }
 563       break;
 564     case os::compiler_thread:
 565       if (CompilerThreadStackSize > 0) {
 566         stack_size = (size_t)(CompilerThreadStackSize * K);
 567         break;
 568       } // else fall through:
 569         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 570     case os::vm_thread:
 571     case os::pgc_thread:
 572     case os::cgc_thread:
 573     case os::watcher_thread:
 574       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 575       break;
 576     }
 577   }
 578 
 579   // Create the Win32 thread
 580   //
 581   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 582   // does not specify stack size. Instead, it specifies the size of
 583   // initially committed space. The stack size is determined by
 584   // PE header in the executable. If the committed "stack_size" is larger
 585   // than default value in the PE header, the stack is rounded up to the
 586   // nearest multiple of 1MB. For example if the launcher has default
 587   // stack size of 320k, specifying any size less than 320k does not
 588   // affect the actual stack size at all, it only affects the initial
 589   // commitment. On the other hand, specifying 'stack_size' larger than
 590   // default value may cause significant increase in memory usage, because
 591   // not only the stack space will be rounded up to MB, but also the
 592   // entire space is committed upfront.
 593   //
 594   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 595   // for CreateThread() that can treat 'stack_size' as stack size. However we
 596   // are not supposed to call CreateThread() directly according to MSDN
 597   // document because JVM uses C runtime library. The good news is that the
 598   // flag appears to work with _beginthredex() as well.
 599 
 600 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 601   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 602 #endif
 603 
 604   HANDLE thread_handle =
 605     (HANDLE)_beginthreadex(NULL,
 606                            (unsigned)stack_size,
 607                            (unsigned (__stdcall *)(void*)) java_start,
 608                            thread,
 609                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 610                            &thread_id);
 611   if (thread_handle == NULL) {
 612     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 613     // without the flag.
 614     thread_handle =
 615       (HANDLE)_beginthreadex(NULL,
 616                              (unsigned)stack_size,
 617                              (unsigned (__stdcall *)(void*)) java_start,
 618                              thread,
 619                              CREATE_SUSPENDED,
 620                              &thread_id);
 621   }
 622   if (thread_handle == NULL) {
 623     // Need to clean up stuff we've allocated so far
 624     CloseHandle(osthread->interrupt_event());
 625     thread->set_osthread(NULL);
 626     delete osthread;
 627     return NULL;
 628   }
 629 
 630   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 631 
 632   // Store info on the Win32 thread into the OSThread
 633   osthread->set_thread_handle(thread_handle);
 634   osthread->set_thread_id(thread_id);
 635 
 636   // Initial thread state is INITIALIZED, not SUSPENDED
 637   osthread->set_state(INITIALIZED);
 638 
 639   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 640   return true;
 641 }
 642 
 643 
 644 // Free Win32 resources related to the OSThread
 645 void os::free_thread(OSThread* osthread) {
 646   assert(osthread != NULL, "osthread not set");
 647   CloseHandle(osthread->thread_handle());
 648   CloseHandle(osthread->interrupt_event());
 649   delete osthread;
 650 }
 651 
 652 static jlong first_filetime;
 653 static jlong initial_performance_count;
 654 static jlong performance_frequency;
 655 
 656 
 657 jlong as_long(LARGE_INTEGER x) {
 658   jlong result = 0; // initialization to avoid warning
 659   set_high(&result, x.HighPart);
 660   set_low(&result, x.LowPart);
 661   return result;
 662 }
 663 
 664 
 665 jlong os::elapsed_counter() {
 666   LARGE_INTEGER count;
 667   if (win32::_has_performance_count) {
 668     QueryPerformanceCounter(&count);
 669     return as_long(count) - initial_performance_count;
 670   } else {
 671     FILETIME wt;
 672     GetSystemTimeAsFileTime(&wt);
 673     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 674   }
 675 }
 676 
 677 
 678 jlong os::elapsed_frequency() {
 679   if (win32::_has_performance_count) {
 680     return performance_frequency;
 681   } else {
 682     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 683     return 10000000;
 684   }
 685 }
 686 
 687 
 688 julong os::available_memory() {
 689   return win32::available_memory();
 690 }
 691 
 692 julong os::win32::available_memory() {
 693   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 694   // value if total memory is larger than 4GB
 695   MEMORYSTATUSEX ms;
 696   ms.dwLength = sizeof(ms);
 697   GlobalMemoryStatusEx(&ms);
 698 
 699   return (julong)ms.ullAvailPhys;
 700 }
 701 
 702 julong os::physical_memory() {
 703   return win32::physical_memory();
 704 }
 705 
 706 bool os::has_allocatable_memory_limit(julong* limit) {
 707   MEMORYSTATUSEX ms;
 708   ms.dwLength = sizeof(ms);
 709   GlobalMemoryStatusEx(&ms);
 710 #ifdef _LP64
 711   *limit = (julong)ms.ullAvailVirtual;
 712   return true;
 713 #else
 714   // Limit to 1400m because of the 2gb address space wall
 715   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 716   return true;
 717 #endif
 718 }
 719 
 720 // VC6 lacks DWORD_PTR
 721 #if _MSC_VER < 1300
 722 typedef UINT_PTR DWORD_PTR;
 723 #endif
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 752   struct {
 753     DWORD dwType;     // must be 0x1000
 754     LPCSTR szName;    // pointer to name (in user addr space)
 755     DWORD dwThreadID; // thread ID (-1=caller thread)
 756     DWORD dwFlags;    // reserved for future use, must be zero
 757   } info;
 758 
 759   info.dwType = 0x1000;
 760   info.szName = name;
 761   info.dwThreadID = -1;
 762   info.dwFlags = 0;
 763 
 764   __try {
 765     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 766   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 767 }
 768 
 769 bool os::distribute_processes(uint length, uint* distribution) {
 770   // Not yet implemented.
 771   return false;
 772 }
 773 
 774 bool os::bind_to_processor(uint processor_id) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 void os::win32::initialize_performance_counter() {
 780   LARGE_INTEGER count;
 781   if (QueryPerformanceFrequency(&count)) {
 782     win32::_has_performance_count = 1;
 783     performance_frequency = as_long(count);
 784     QueryPerformanceCounter(&count);
 785     initial_performance_count = as_long(count);
 786   } else {
 787     win32::_has_performance_count = 0;
 788     FILETIME wt;
 789     GetSystemTimeAsFileTime(&wt);
 790     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 791   }
 792 }
 793 
 794 
 795 double os::elapsedTime() {
 796   return (double) elapsed_counter() / (double) elapsed_frequency();
 797 }
 798 
 799 
 800 // Windows format:
 801 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 802 // Java format:
 803 //   Java standards require the number of milliseconds since 1/1/1970
 804 
 805 // Constant offset - calculated using offset()
 806 static jlong  _offset   = 116444736000000000;
 807 // Fake time counter for reproducible results when debugging
 808 static jlong  fake_time = 0;
 809 
 810 #ifdef ASSERT
 811 // Just to be safe, recalculate the offset in debug mode
 812 static jlong _calculated_offset = 0;
 813 static int   _has_calculated_offset = 0;
 814 
 815 jlong offset() {
 816   if (_has_calculated_offset) return _calculated_offset;
 817   SYSTEMTIME java_origin;
 818   java_origin.wYear          = 1970;
 819   java_origin.wMonth         = 1;
 820   java_origin.wDayOfWeek     = 0; // ignored
 821   java_origin.wDay           = 1;
 822   java_origin.wHour          = 0;
 823   java_origin.wMinute        = 0;
 824   java_origin.wSecond        = 0;
 825   java_origin.wMilliseconds  = 0;
 826   FILETIME jot;
 827   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 828     fatal("Error = %d\nWindows error", GetLastError());
 829   }
 830   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 831   _has_calculated_offset = 1;
 832   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 833   return _calculated_offset;
 834 }
 835 #else
 836 jlong offset() {
 837   return _offset;
 838 }
 839 #endif
 840 
 841 jlong windows_to_java_time(FILETIME wt) {
 842   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 843   return (a - offset()) / 10000;
 844 }
 845 
 846 // Returns time ticks in (10th of micro seconds)
 847 jlong windows_to_time_ticks(FILETIME wt) {
 848   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 849   return (a - offset());
 850 }
 851 
 852 FILETIME java_to_windows_time(jlong l) {
 853   jlong a = (l * 10000) + offset();
 854   FILETIME result;
 855   result.dwHighDateTime = high(a);
 856   result.dwLowDateTime  = low(a);
 857   return result;
 858 }
 859 
 860 bool os::supports_vtime() { return true; }
 861 bool os::enable_vtime() { return false; }
 862 bool os::vtime_enabled() { return false; }
 863 
 864 double os::elapsedVTime() {
 865   FILETIME created;
 866   FILETIME exited;
 867   FILETIME kernel;
 868   FILETIME user;
 869   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 870     // the resolution of windows_to_java_time() should be sufficient (ms)
 871     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 872   } else {
 873     return elapsedTime();
 874   }
 875 }
 876 
 877 jlong os::javaTimeMillis() {
 878   if (UseFakeTimers) {
 879     return fake_time++;
 880   } else {
 881     FILETIME wt;
 882     GetSystemTimeAsFileTime(&wt);
 883     return windows_to_java_time(wt);
 884   }
 885 }
 886 
 887 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 888   FILETIME wt;
 889   GetSystemTimeAsFileTime(&wt);
 890   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 891   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 892   seconds = secs;
 893   nanos = jlong(ticks - (secs*10000000)) * 100;
 894 }
 895 
 896 jlong os::javaTimeNanos() {
 897   if (!win32::_has_performance_count) {
 898     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 899   } else {
 900     LARGE_INTEGER current_count;
 901     QueryPerformanceCounter(&current_count);
 902     double current = as_long(current_count);
 903     double freq = performance_frequency;
 904     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 905     return time;
 906   }
 907 }
 908 
 909 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 910   if (!win32::_has_performance_count) {
 911     // javaTimeMillis() doesn't have much percision,
 912     // but it is not going to wrap -- so all 64 bits
 913     info_ptr->max_value = ALL_64_BITS;
 914 
 915     // this is a wall clock timer, so may skip
 916     info_ptr->may_skip_backward = true;
 917     info_ptr->may_skip_forward = true;
 918   } else {
 919     jlong freq = performance_frequency;
 920     if (freq < NANOSECS_PER_SEC) {
 921       // the performance counter is 64 bits and we will
 922       // be multiplying it -- so no wrap in 64 bits
 923       info_ptr->max_value = ALL_64_BITS;
 924     } else if (freq > NANOSECS_PER_SEC) {
 925       // use the max value the counter can reach to
 926       // determine the max value which could be returned
 927       julong max_counter = (julong)ALL_64_BITS;
 928       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 929     } else {
 930       // the performance counter is 64 bits and we will
 931       // be using it directly -- so no wrap in 64 bits
 932       info_ptr->max_value = ALL_64_BITS;
 933     }
 934 
 935     // using a counter, so no skipping
 936     info_ptr->may_skip_backward = false;
 937     info_ptr->may_skip_forward = false;
 938   }
 939   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 940 }
 941 
 942 char* os::local_time_string(char *buf, size_t buflen) {
 943   SYSTEMTIME st;
 944   GetLocalTime(&st);
 945   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 946                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 947   return buf;
 948 }
 949 
 950 bool os::getTimesSecs(double* process_real_time,
 951                       double* process_user_time,
 952                       double* process_system_time) {
 953   HANDLE h_process = GetCurrentProcess();
 954   FILETIME create_time, exit_time, kernel_time, user_time;
 955   BOOL result = GetProcessTimes(h_process,
 956                                 &create_time,
 957                                 &exit_time,
 958                                 &kernel_time,
 959                                 &user_time);
 960   if (result != 0) {
 961     FILETIME wt;
 962     GetSystemTimeAsFileTime(&wt);
 963     jlong rtc_millis = windows_to_java_time(wt);
 964     jlong user_millis = windows_to_java_time(user_time);
 965     jlong system_millis = windows_to_java_time(kernel_time);
 966     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 967     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 968     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 969     return true;
 970   } else {
 971     return false;
 972   }
 973 }
 974 
 975 void os::shutdown() {
 976   // allow PerfMemory to attempt cleanup of any persistent resources
 977   perfMemory_exit();
 978 
 979   // flush buffered output, finish log files
 980   ostream_abort();
 981 
 982   // Check for abort hook
 983   abort_hook_t abort_hook = Arguments::abort_hook();
 984   if (abort_hook != NULL) {
 985     abort_hook();
 986   }
 987 }
 988 
 989 
 990 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 991                                          PMINIDUMP_EXCEPTION_INFORMATION,
 992                                          PMINIDUMP_USER_STREAM_INFORMATION,
 993                                          PMINIDUMP_CALLBACK_INFORMATION);
 994 
 995 static HANDLE dumpFile = NULL;
 996 
 997 // Check if dump file can be created.
 998 void os::check_dump_limit(char* buffer, size_t buffsz) {
 999   bool status = true;
1000   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1001     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1002     status = false;
1003   }
1004 
1005 #ifndef ASSERT
1006   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1007     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1008     status = false;
1009   }
1010 #endif
1011 
1012   if (status) {
1013     const char* cwd = get_current_directory(NULL, 0);
1014     int pid = current_process_id();
1015     if (cwd != NULL) {
1016       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1017     } else {
1018       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1019     }
1020 
1021     if (dumpFile == NULL &&
1022        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1023                  == INVALID_HANDLE_VALUE) {
1024       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1025       status = false;
1026     }
1027   }
1028   VMError::record_coredump_status(buffer, status);
1029 }
1030 
1031 void os::abort(bool dump_core, void* siginfo, void* context) {
1032   HINSTANCE dbghelp;
1033   EXCEPTION_POINTERS ep;
1034   MINIDUMP_EXCEPTION_INFORMATION mei;
1035   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1036 
1037   HANDLE hProcess = GetCurrentProcess();
1038   DWORD processId = GetCurrentProcessId();
1039   MINIDUMP_TYPE dumpType;
1040 
1041   shutdown();
1042   if (!dump_core || dumpFile == NULL) {
1043     if (dumpFile != NULL) {
1044       CloseHandle(dumpFile);
1045     }
1046     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1047   }
1048 
1049   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1050 
1051   if (dbghelp == NULL) {
1052     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1053     CloseHandle(dumpFile);
1054     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055   }
1056 
1057   _MiniDumpWriteDump =
1058       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1059                                     PMINIDUMP_EXCEPTION_INFORMATION,
1060                                     PMINIDUMP_USER_STREAM_INFORMATION,
1061                                     PMINIDUMP_CALLBACK_INFORMATION),
1062                                     GetProcAddress(dbghelp,
1063                                     "MiniDumpWriteDump"));
1064 
1065   if (_MiniDumpWriteDump == NULL) {
1066     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1067     CloseHandle(dumpFile);
1068     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1069   }
1070 
1071   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1072 
1073   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1074   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1075 #if API_VERSION_NUMBER >= 11
1076   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1077                              MiniDumpWithUnloadedModules);
1078 #endif
1079 
1080   if (siginfo != NULL && context != NULL) {
1081     ep.ContextRecord = (PCONTEXT) context;
1082     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1083 
1084     mei.ThreadId = GetCurrentThreadId();
1085     mei.ExceptionPointers = &ep;
1086     pmei = &mei;
1087   } else {
1088     pmei = NULL;
1089   }
1090 
1091   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1092   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1093   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1094       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1095     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1096   }
1097   CloseHandle(dumpFile);
1098   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1099 }
1100 
1101 // Die immediately, no exit hook, no abort hook, no cleanup.
1102 void os::die() {
1103   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1104 }
1105 
1106 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1107 //  * dirent_md.c       1.15 00/02/02
1108 //
1109 // The declarations for DIR and struct dirent are in jvm_win32.h.
1110 
1111 // Caller must have already run dirname through JVM_NativePath, which removes
1112 // duplicate slashes and converts all instances of '/' into '\\'.
1113 
1114 DIR * os::opendir(const char *dirname) {
1115   assert(dirname != NULL, "just checking");   // hotspot change
1116   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1117   DWORD fattr;                                // hotspot change
1118   char alt_dirname[4] = { 0, 0, 0, 0 };
1119 
1120   if (dirp == 0) {
1121     errno = ENOMEM;
1122     return 0;
1123   }
1124 
1125   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1126   // as a directory in FindFirstFile().  We detect this case here and
1127   // prepend the current drive name.
1128   //
1129   if (dirname[1] == '\0' && dirname[0] == '\\') {
1130     alt_dirname[0] = _getdrive() + 'A' - 1;
1131     alt_dirname[1] = ':';
1132     alt_dirname[2] = '\\';
1133     alt_dirname[3] = '\0';
1134     dirname = alt_dirname;
1135   }
1136 
1137   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1138   if (dirp->path == 0) {
1139     free(dirp);
1140     errno = ENOMEM;
1141     return 0;
1142   }
1143   strcpy(dirp->path, dirname);
1144 
1145   fattr = GetFileAttributes(dirp->path);
1146   if (fattr == 0xffffffff) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOENT;
1150     return 0;
1151   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1152     free(dirp->path);
1153     free(dirp);
1154     errno = ENOTDIR;
1155     return 0;
1156   }
1157 
1158   // Append "*.*", or possibly "\\*.*", to path
1159   if (dirp->path[1] == ':' &&
1160       (dirp->path[2] == '\0' ||
1161       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1162     // No '\\' needed for cases like "Z:" or "Z:\"
1163     strcat(dirp->path, "*.*");
1164   } else {
1165     strcat(dirp->path, "\\*.*");
1166   }
1167 
1168   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1169   if (dirp->handle == INVALID_HANDLE_VALUE) {
1170     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1171       free(dirp->path);
1172       free(dirp);
1173       errno = EACCES;
1174       return 0;
1175     }
1176   }
1177   return dirp;
1178 }
1179 
1180 // parameter dbuf unused on Windows
1181 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1182   assert(dirp != NULL, "just checking");      // hotspot change
1183   if (dirp->handle == INVALID_HANDLE_VALUE) {
1184     return 0;
1185   }
1186 
1187   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1188 
1189   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1190     if (GetLastError() == ERROR_INVALID_HANDLE) {
1191       errno = EBADF;
1192       return 0;
1193     }
1194     FindClose(dirp->handle);
1195     dirp->handle = INVALID_HANDLE_VALUE;
1196   }
1197 
1198   return &dirp->dirent;
1199 }
1200 
1201 int os::closedir(DIR *dirp) {
1202   assert(dirp != NULL, "just checking");      // hotspot change
1203   if (dirp->handle != INVALID_HANDLE_VALUE) {
1204     if (!FindClose(dirp->handle)) {
1205       errno = EBADF;
1206       return -1;
1207     }
1208     dirp->handle = INVALID_HANDLE_VALUE;
1209   }
1210   free(dirp->path);
1211   free(dirp);
1212   return 0;
1213 }
1214 
1215 // This must be hard coded because it's the system's temporary
1216 // directory not the java application's temp directory, ala java.io.tmpdir.
1217 const char* os::get_temp_directory() {
1218   static char path_buf[MAX_PATH];
1219   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1220     return path_buf;
1221   } else {
1222     path_buf[0] = '\0';
1223     return path_buf;
1224   }
1225 }
1226 
1227 static bool file_exists(const char* filename) {
1228   if (filename == NULL || strlen(filename) == 0) {
1229     return false;
1230   }
1231   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1232 }
1233 
1234 bool os::dll_build_name(char *buffer, size_t buflen,
1235                         const char* pname, const char* fname) {
1236   bool retval = false;
1237   const size_t pnamelen = pname ? strlen(pname) : 0;
1238   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1239 
1240   // Return error on buffer overflow.
1241   if (pnamelen + strlen(fname) + 10 > buflen) {
1242     return retval;
1243   }
1244 
1245   if (pnamelen == 0) {
1246     jio_snprintf(buffer, buflen, "%s.dll", fname);
1247     retval = true;
1248   } else if (c == ':' || c == '\\') {
1249     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1250     retval = true;
1251   } else if (strchr(pname, *os::path_separator()) != NULL) {
1252     int n;
1253     char** pelements = split_path(pname, &n);
1254     if (pelements == NULL) {
1255       return false;
1256     }
1257     for (int i = 0; i < n; i++) {
1258       char* path = pelements[i];
1259       // Really shouldn't be NULL, but check can't hurt
1260       size_t plen = (path == NULL) ? 0 : strlen(path);
1261       if (plen == 0) {
1262         continue; // skip the empty path values
1263       }
1264       const char lastchar = path[plen - 1];
1265       if (lastchar == ':' || lastchar == '\\') {
1266         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1267       } else {
1268         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1269       }
1270       if (file_exists(buffer)) {
1271         retval = true;
1272         break;
1273       }
1274     }
1275     // release the storage
1276     for (int i = 0; i < n; i++) {
1277       if (pelements[i] != NULL) {
1278         FREE_C_HEAP_ARRAY(char, pelements[i]);
1279       }
1280     }
1281     if (pelements != NULL) {
1282       FREE_C_HEAP_ARRAY(char*, pelements);
1283     }
1284   } else {
1285     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1286     retval = true;
1287   }
1288   return retval;
1289 }
1290 
1291 // Needs to be in os specific directory because windows requires another
1292 // header file <direct.h>
1293 const char* os::get_current_directory(char *buf, size_t buflen) {
1294   int n = static_cast<int>(buflen);
1295   if (buflen > INT_MAX)  n = INT_MAX;
1296   return _getcwd(buf, n);
1297 }
1298 
1299 //-----------------------------------------------------------
1300 // Helper functions for fatal error handler
1301 #ifdef _WIN64
1302 // Helper routine which returns true if address in
1303 // within the NTDLL address space.
1304 //
1305 static bool _addr_in_ntdll(address addr) {
1306   HMODULE hmod;
1307   MODULEINFO minfo;
1308 
1309   hmod = GetModuleHandle("NTDLL.DLL");
1310   if (hmod == NULL) return false;
1311   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1312                                           &minfo, sizeof(MODULEINFO))) {
1313     return false;
1314   }
1315 
1316   if ((addr >= minfo.lpBaseOfDll) &&
1317       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1318     return true;
1319   } else {
1320     return false;
1321   }
1322 }
1323 #endif
1324 
1325 struct _modinfo {
1326   address addr;
1327   char*   full_path;   // point to a char buffer
1328   int     buflen;      // size of the buffer
1329   address base_addr;
1330 };
1331 
1332 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1333                                   address top_address, void * param) {
1334   struct _modinfo *pmod = (struct _modinfo *)param;
1335   if (!pmod) return -1;
1336 
1337   if (base_addr   <= pmod->addr &&
1338       top_address > pmod->addr) {
1339     // if a buffer is provided, copy path name to the buffer
1340     if (pmod->full_path) {
1341       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1342     }
1343     pmod->base_addr = base_addr;
1344     return 1;
1345   }
1346   return 0;
1347 }
1348 
1349 bool os::dll_address_to_library_name(address addr, char* buf,
1350                                      int buflen, int* offset) {
1351   // buf is not optional, but offset is optional
1352   assert(buf != NULL, "sanity check");
1353 
1354 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1355 //       return the full path to the DLL file, sometimes it returns path
1356 //       to the corresponding PDB file (debug info); sometimes it only
1357 //       returns partial path, which makes life painful.
1358 
1359   struct _modinfo mi;
1360   mi.addr      = addr;
1361   mi.full_path = buf;
1362   mi.buflen    = buflen;
1363   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1364     // buf already contains path name
1365     if (offset) *offset = addr - mi.base_addr;
1366     return true;
1367   }
1368 
1369   buf[0] = '\0';
1370   if (offset) *offset = -1;
1371   return false;
1372 }
1373 
1374 bool os::dll_address_to_function_name(address addr, char *buf,
1375                                       int buflen, int *offset,
1376                                       bool demangle) {
1377   // buf is not optional, but offset is optional
1378   assert(buf != NULL, "sanity check");
1379 
1380   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1381     return true;
1382   }
1383   if (offset != NULL)  *offset  = -1;
1384   buf[0] = '\0';
1385   return false;
1386 }
1387 
1388 // save the start and end address of jvm.dll into param[0] and param[1]
1389 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1390                            address top_address, void * param) {
1391   if (!param) return -1;
1392 
1393   if (base_addr   <= (address)_locate_jvm_dll &&
1394       top_address > (address)_locate_jvm_dll) {
1395     ((address*)param)[0] = base_addr;
1396     ((address*)param)[1] = top_address;
1397     return 1;
1398   }
1399   return 0;
1400 }
1401 
1402 address vm_lib_location[2];    // start and end address of jvm.dll
1403 
1404 // check if addr is inside jvm.dll
1405 bool os::address_is_in_vm(address addr) {
1406   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1407     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1408       assert(false, "Can't find jvm module.");
1409       return false;
1410     }
1411   }
1412 
1413   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1414 }
1415 
1416 // print module info; param is outputStream*
1417 static int _print_module(const char* fname, address base_address,
1418                          address top_address, void* param) {
1419   if (!param) return -1;
1420 
1421   outputStream* st = (outputStream*)param;
1422 
1423   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1424   return 0;
1425 }
1426 
1427 // Loads .dll/.so and
1428 // in case of error it checks if .dll/.so was built for the
1429 // same architecture as Hotspot is running on
1430 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1431   void * result = LoadLibrary(name);
1432   if (result != NULL) {
1433     return result;
1434   }
1435 
1436   DWORD errcode = GetLastError();
1437   if (errcode == ERROR_MOD_NOT_FOUND) {
1438     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1439     ebuf[ebuflen - 1] = '\0';
1440     return NULL;
1441   }
1442 
1443   // Parsing dll below
1444   // If we can read dll-info and find that dll was built
1445   // for an architecture other than Hotspot is running in
1446   // - then print to buffer "DLL was built for a different architecture"
1447   // else call os::lasterror to obtain system error message
1448 
1449   // Read system error message into ebuf
1450   // It may or may not be overwritten below (in the for loop and just above)
1451   lasterror(ebuf, (size_t) ebuflen);
1452   ebuf[ebuflen - 1] = '\0';
1453   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1454   if (fd < 0) {
1455     return NULL;
1456   }
1457 
1458   uint32_t signature_offset;
1459   uint16_t lib_arch = 0;
1460   bool failed_to_get_lib_arch =
1461     ( // Go to position 3c in the dll
1462      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1463      ||
1464      // Read location of signature
1465      (sizeof(signature_offset) !=
1466      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1467      ||
1468      // Go to COFF File Header in dll
1469      // that is located after "signature" (4 bytes long)
1470      (os::seek_to_file_offset(fd,
1471      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1472      ||
1473      // Read field that contains code of architecture
1474      // that dll was built for
1475      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1476     );
1477 
1478   ::close(fd);
1479   if (failed_to_get_lib_arch) {
1480     // file i/o error - report os::lasterror(...) msg
1481     return NULL;
1482   }
1483 
1484   typedef struct {
1485     uint16_t arch_code;
1486     char* arch_name;
1487   } arch_t;
1488 
1489   static const arch_t arch_array[] = {
1490     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1491     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1492     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1493   };
1494 #if   (defined _M_IA64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1496 #elif (defined _M_AMD64)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1498 #elif (defined _M_IX86)
1499   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1500 #else
1501   #error Method os::dll_load requires that one of following \
1502          is defined :_M_IA64,_M_AMD64 or _M_IX86
1503 #endif
1504 
1505 
1506   // Obtain a string for printf operation
1507   // lib_arch_str shall contain string what platform this .dll was built for
1508   // running_arch_str shall string contain what platform Hotspot was built for
1509   char *running_arch_str = NULL, *lib_arch_str = NULL;
1510   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1511     if (lib_arch == arch_array[i].arch_code) {
1512       lib_arch_str = arch_array[i].arch_name;
1513     }
1514     if (running_arch == arch_array[i].arch_code) {
1515       running_arch_str = arch_array[i].arch_name;
1516     }
1517   }
1518 
1519   assert(running_arch_str,
1520          "Didn't find running architecture code in arch_array");
1521 
1522   // If the architecture is right
1523   // but some other error took place - report os::lasterror(...) msg
1524   if (lib_arch == running_arch) {
1525     return NULL;
1526   }
1527 
1528   if (lib_arch_str != NULL) {
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load %s-bit .dll on a %s-bit platform",
1531                 lib_arch_str, running_arch_str);
1532   } else {
1533     // don't know what architecture this dll was build for
1534     ::_snprintf(ebuf, ebuflen - 1,
1535                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1536                 lib_arch, running_arch_str);
1537   }
1538 
1539   return NULL;
1540 }
1541 
1542 void os::print_dll_info(outputStream *st) {
1543   st->print_cr("Dynamic libraries:");
1544   get_loaded_modules_info(_print_module, (void *)st);
1545 }
1546 
1547 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1548   HANDLE   hProcess;
1549 
1550 # define MAX_NUM_MODULES 128
1551   HMODULE     modules[MAX_NUM_MODULES];
1552   static char filename[MAX_PATH];
1553   int         result = 0;
1554 
1555   if (!os::PSApiDll::PSApiAvailable()) {
1556     return 0;
1557   }
1558 
1559   int pid = os::current_process_id();
1560   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1561                          FALSE, pid);
1562   if (hProcess == NULL) return 0;
1563 
1564   DWORD size_needed;
1565   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1566                                         sizeof(modules), &size_needed)) {
1567     CloseHandle(hProcess);
1568     return 0;
1569   }
1570 
1571   // number of modules that are currently loaded
1572   int num_modules = size_needed / sizeof(HMODULE);
1573 
1574   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1575     // Get Full pathname:
1576     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1577                                            filename, sizeof(filename))) {
1578       filename[0] = '\0';
1579     }
1580 
1581     MODULEINFO modinfo;
1582     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1583                                             &modinfo, sizeof(modinfo))) {
1584       modinfo.lpBaseOfDll = NULL;
1585       modinfo.SizeOfImage = 0;
1586     }
1587 
1588     // Invoke callback function
1589     result = callback(filename, (address)modinfo.lpBaseOfDll,
1590                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1591     if (result) break;
1592   }
1593 
1594   CloseHandle(hProcess);
1595   return result;
1596 }
1597 
1598 #ifndef PRODUCT
1599 bool os::get_host_name(char* buf, size_t buflen) {
1600   DWORD size = (DWORD)buflen;
1601   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1602 }
1603 #endif // PRODUCT
1604 
1605 void os::get_summary_os_info(char* buf, size_t buflen) {
1606   stringStream sst(buf, buflen);
1607   os::win32::print_windows_version(&sst);
1608   // chop off newline character
1609   char* nl = strchr(buf, '\n');
1610   if (nl != NULL) *nl = '\0';
1611 }
1612 
1613 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1614   int ret = vsnprintf(buf, len, fmt, args);
1615   // Get the correct buffer size if buf is too small
1616   if (ret < 0) {
1617     return _vscprintf(fmt, args);
1618   }
1619   return ret;
1620 }
1621 
1622 void os::print_os_info_brief(outputStream* st) {
1623   os::print_os_info(st);
1624 }
1625 
1626 void os::print_os_info(outputStream* st) {
1627 #ifdef ASSERT
1628   char buffer[1024];
1629   st->print("HostName: ");
1630   if (get_host_name(buffer, sizeof(buffer))) {
1631     st->print("%s ", buffer);
1632   } else {
1633     st->print("N/A ");
1634   }
1635 #endif
1636   st->print("OS:");
1637   os::win32::print_windows_version(st);
1638 }
1639 
1640 void os::win32::print_windows_version(outputStream* st) {
1641   OSVERSIONINFOEX osvi;
1642   VS_FIXEDFILEINFO *file_info;
1643   TCHAR kernel32_path[MAX_PATH];
1644   UINT len, ret;
1645 
1646   // Use the GetVersionEx information to see if we're on a server or
1647   // workstation edition of Windows. Starting with Windows 8.1 we can't
1648   // trust the OS version information returned by this API.
1649   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1650   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1651   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1652     st->print_cr("Call to GetVersionEx failed");
1653     return;
1654   }
1655   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1656 
1657   // Get the full path to \Windows\System32\kernel32.dll and use that for
1658   // determining what version of Windows we're running on.
1659   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1660   ret = GetSystemDirectory(kernel32_path, len);
1661   if (ret == 0 || ret > len) {
1662     st->print_cr("Call to GetSystemDirectory failed");
1663     return;
1664   }
1665   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1666 
1667   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1668   if (version_size == 0) {
1669     st->print_cr("Call to GetFileVersionInfoSize failed");
1670     return;
1671   }
1672 
1673   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1674   if (version_info == NULL) {
1675     st->print_cr("Failed to allocate version_info");
1676     return;
1677   }
1678 
1679   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1680     os::free(version_info);
1681     st->print_cr("Call to GetFileVersionInfo failed");
1682     return;
1683   }
1684 
1685   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1686     os::free(version_info);
1687     st->print_cr("Call to VerQueryValue failed");
1688     return;
1689   }
1690 
1691   int major_version = HIWORD(file_info->dwProductVersionMS);
1692   int minor_version = LOWORD(file_info->dwProductVersionMS);
1693   int build_number = HIWORD(file_info->dwProductVersionLS);
1694   int build_minor = LOWORD(file_info->dwProductVersionLS);
1695   int os_vers = major_version * 1000 + minor_version;
1696   os::free(version_info);
1697 
1698   st->print(" Windows ");
1699   switch (os_vers) {
1700 
1701   case 6000:
1702     if (is_workstation) {
1703       st->print("Vista");
1704     } else {
1705       st->print("Server 2008");
1706     }
1707     break;
1708 
1709   case 6001:
1710     if (is_workstation) {
1711       st->print("7");
1712     } else {
1713       st->print("Server 2008 R2");
1714     }
1715     break;
1716 
1717   case 6002:
1718     if (is_workstation) {
1719       st->print("8");
1720     } else {
1721       st->print("Server 2012");
1722     }
1723     break;
1724 
1725   case 6003:
1726     if (is_workstation) {
1727       st->print("8.1");
1728     } else {
1729       st->print("Server 2012 R2");
1730     }
1731     break;
1732 
1733   case 10000:
1734     if (is_workstation) {
1735       st->print("10");
1736     } else {
1737       // The server version name of Windows 10 is not known at this time
1738       st->print("%d.%d", major_version, minor_version);
1739     }
1740     break;
1741 
1742   default:
1743     // Unrecognized windows, print out its major and minor versions
1744     st->print("%d.%d", major_version, minor_version);
1745     break;
1746   }
1747 
1748   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1749   // find out whether we are running on 64 bit processor or not
1750   SYSTEM_INFO si;
1751   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1752   os::Kernel32Dll::GetNativeSystemInfo(&si);
1753   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1754     st->print(" , 64 bit");
1755   }
1756 
1757   st->print(" Build %d", build_number);
1758   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1759   st->cr();
1760 }
1761 
1762 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1763   // Nothing to do for now.
1764 }
1765 
1766 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1767   HKEY key;
1768   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1769                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1770   if (status == ERROR_SUCCESS) {
1771     DWORD size = (DWORD)buflen;
1772     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1773     if (status != ERROR_SUCCESS) {
1774         strncpy(buf, "## __CPU__", buflen);
1775     }
1776     RegCloseKey(key);
1777   } else {
1778     // Put generic cpu info to return
1779     strncpy(buf, "## __CPU__", buflen);
1780   }
1781 }
1782 
1783 void os::print_memory_info(outputStream* st) {
1784   st->print("Memory:");
1785   st->print(" %dk page", os::vm_page_size()>>10);
1786 
1787   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1788   // value if total memory is larger than 4GB
1789   MEMORYSTATUSEX ms;
1790   ms.dwLength = sizeof(ms);
1791   GlobalMemoryStatusEx(&ms);
1792 
1793   st->print(", physical %uk", os::physical_memory() >> 10);
1794   st->print("(%uk free)", os::available_memory() >> 10);
1795 
1796   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1797   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1798   st->cr();
1799 }
1800 
1801 void os::print_siginfo(outputStream *st, void *siginfo) {
1802   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1803   st->print("siginfo:");
1804   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1805 
1806   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1807       er->NumberParameters >= 2) {
1808     switch (er->ExceptionInformation[0]) {
1809     case 0: st->print(", reading address"); break;
1810     case 1: st->print(", writing address"); break;
1811     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1812                        er->ExceptionInformation[0]);
1813     }
1814     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1815   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1816              er->NumberParameters >= 2 && UseSharedSpaces) {
1817     FileMapInfo* mapinfo = FileMapInfo::current_info();
1818     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1819       st->print("\n\nError accessing class data sharing archive."       \
1820                 " Mapped file inaccessible during execution, "          \
1821                 " possible disk/network problem.");
1822     }
1823   } else {
1824     int num = er->NumberParameters;
1825     if (num > 0) {
1826       st->print(", ExceptionInformation=");
1827       for (int i = 0; i < num; i++) {
1828         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1829       }
1830     }
1831   }
1832   st->cr();
1833 }
1834 
1835 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1836   // do nothing
1837 }
1838 
1839 static char saved_jvm_path[MAX_PATH] = {0};
1840 
1841 // Find the full path to the current module, jvm.dll
1842 void os::jvm_path(char *buf, jint buflen) {
1843   // Error checking.
1844   if (buflen < MAX_PATH) {
1845     assert(false, "must use a large-enough buffer");
1846     buf[0] = '\0';
1847     return;
1848   }
1849   // Lazy resolve the path to current module.
1850   if (saved_jvm_path[0] != 0) {
1851     strcpy(buf, saved_jvm_path);
1852     return;
1853   }
1854 
1855   buf[0] = '\0';
1856   if (Arguments::sun_java_launcher_is_altjvm()) {
1857     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1858     // for a JAVA_HOME environment variable and fix up the path so it
1859     // looks like jvm.dll is installed there (append a fake suffix
1860     // hotspot/jvm.dll).
1861     char* java_home_var = ::getenv("JAVA_HOME");
1862     if (java_home_var != NULL && java_home_var[0] != 0 &&
1863         strlen(java_home_var) < (size_t)buflen) {
1864       strncpy(buf, java_home_var, buflen);
1865 
1866       // determine if this is a legacy image or modules image
1867       // modules image doesn't have "jre" subdirectory
1868       size_t len = strlen(buf);
1869       char* jrebin_p = buf + len;
1870       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1871       if (0 != _access(buf, 0)) {
1872         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1873       }
1874       len = strlen(buf);
1875       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1876     }
1877   }
1878 
1879   if (buf[0] == '\0') {
1880     GetModuleFileName(vm_lib_handle, buf, buflen);
1881   }
1882   strncpy(saved_jvm_path, buf, MAX_PATH);
1883   saved_jvm_path[MAX_PATH - 1] = '\0';
1884 }
1885 
1886 
1887 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1888 #ifndef _WIN64
1889   st->print("_");
1890 #endif
1891 }
1892 
1893 
1894 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1895 #ifndef _WIN64
1896   st->print("@%d", args_size  * sizeof(int));
1897 #endif
1898 }
1899 
1900 // This method is a copy of JDK's sysGetLastErrorString
1901 // from src/windows/hpi/src/system_md.c
1902 
1903 size_t os::lasterror(char* buf, size_t len) {
1904   DWORD errval;
1905 
1906   if ((errval = GetLastError()) != 0) {
1907     // DOS error
1908     size_t n = (size_t)FormatMessage(
1909                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1910                                      NULL,
1911                                      errval,
1912                                      0,
1913                                      buf,
1914                                      (DWORD)len,
1915                                      NULL);
1916     if (n > 3) {
1917       // Drop final '.', CR, LF
1918       if (buf[n - 1] == '\n') n--;
1919       if (buf[n - 1] == '\r') n--;
1920       if (buf[n - 1] == '.') n--;
1921       buf[n] = '\0';
1922     }
1923     return n;
1924   }
1925 
1926   if (errno != 0) {
1927     // C runtime error that has no corresponding DOS error code
1928     const char* s = strerror(errno);
1929     size_t n = strlen(s);
1930     if (n >= len) n = len - 1;
1931     strncpy(buf, s, n);
1932     buf[n] = '\0';
1933     return n;
1934   }
1935 
1936   return 0;
1937 }
1938 
1939 int os::get_last_error() {
1940   DWORD error = GetLastError();
1941   if (error == 0) {
1942     error = errno;
1943   }
1944   return (int)error;
1945 }
1946 
1947 WindowsSemaphore::WindowsSemaphore(uint value) {
1948   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1949 
1950   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1951 }
1952 
1953 WindowsSemaphore::~WindowsSemaphore() {
1954   ::CloseHandle(_semaphore);
1955 }
1956 
1957 void WindowsSemaphore::signal(uint count) {
1958   if (count > 0) {
1959     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1960 
1961     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1962   }
1963 }
1964 
1965 void WindowsSemaphore::wait() {
1966   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1967   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1968   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1969 }
1970 
1971 // sun.misc.Signal
1972 // NOTE that this is a workaround for an apparent kernel bug where if
1973 // a signal handler for SIGBREAK is installed then that signal handler
1974 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1975 // See bug 4416763.
1976 static void (*sigbreakHandler)(int) = NULL;
1977 
1978 static void UserHandler(int sig, void *siginfo, void *context) {
1979   os::signal_notify(sig);
1980   // We need to reinstate the signal handler each time...
1981   os::signal(sig, (void*)UserHandler);
1982 }
1983 
1984 void* os::user_handler() {
1985   return (void*) UserHandler;
1986 }
1987 
1988 void* os::signal(int signal_number, void* handler) {
1989   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1990     void (*oldHandler)(int) = sigbreakHandler;
1991     sigbreakHandler = (void (*)(int)) handler;
1992     return (void*) oldHandler;
1993   } else {
1994     return (void*)::signal(signal_number, (void (*)(int))handler);
1995   }
1996 }
1997 
1998 void os::signal_raise(int signal_number) {
1999   raise(signal_number);
2000 }
2001 
2002 // The Win32 C runtime library maps all console control events other than ^C
2003 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2004 // logoff, and shutdown events.  We therefore install our own console handler
2005 // that raises SIGTERM for the latter cases.
2006 //
2007 static BOOL WINAPI consoleHandler(DWORD event) {
2008   switch (event) {
2009   case CTRL_C_EVENT:
2010     if (is_error_reported()) {
2011       // Ctrl-C is pressed during error reporting, likely because the error
2012       // handler fails to abort. Let VM die immediately.
2013       os::die();
2014     }
2015 
2016     os::signal_raise(SIGINT);
2017     return TRUE;
2018     break;
2019   case CTRL_BREAK_EVENT:
2020     if (sigbreakHandler != NULL) {
2021       (*sigbreakHandler)(SIGBREAK);
2022     }
2023     return TRUE;
2024     break;
2025   case CTRL_LOGOFF_EVENT: {
2026     // Don't terminate JVM if it is running in a non-interactive session,
2027     // such as a service process.
2028     USEROBJECTFLAGS flags;
2029     HANDLE handle = GetProcessWindowStation();
2030     if (handle != NULL &&
2031         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2032         sizeof(USEROBJECTFLAGS), NULL)) {
2033       // If it is a non-interactive session, let next handler to deal
2034       // with it.
2035       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2036         return FALSE;
2037       }
2038     }
2039   }
2040   case CTRL_CLOSE_EVENT:
2041   case CTRL_SHUTDOWN_EVENT:
2042     os::signal_raise(SIGTERM);
2043     return TRUE;
2044     break;
2045   default:
2046     break;
2047   }
2048   return FALSE;
2049 }
2050 
2051 // The following code is moved from os.cpp for making this
2052 // code platform specific, which it is by its very nature.
2053 
2054 // Return maximum OS signal used + 1 for internal use only
2055 // Used as exit signal for signal_thread
2056 int os::sigexitnum_pd() {
2057   return NSIG;
2058 }
2059 
2060 // a counter for each possible signal value, including signal_thread exit signal
2061 static volatile jint pending_signals[NSIG+1] = { 0 };
2062 static HANDLE sig_sem = NULL;
2063 
2064 void os::signal_init_pd() {
2065   // Initialize signal structures
2066   memset((void*)pending_signals, 0, sizeof(pending_signals));
2067 
2068   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2069 
2070   // Programs embedding the VM do not want it to attempt to receive
2071   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2072   // shutdown hooks mechanism introduced in 1.3.  For example, when
2073   // the VM is run as part of a Windows NT service (i.e., a servlet
2074   // engine in a web server), the correct behavior is for any console
2075   // control handler to return FALSE, not TRUE, because the OS's
2076   // "final" handler for such events allows the process to continue if
2077   // it is a service (while terminating it if it is not a service).
2078   // To make this behavior uniform and the mechanism simpler, we
2079   // completely disable the VM's usage of these console events if -Xrs
2080   // (=ReduceSignalUsage) is specified.  This means, for example, that
2081   // the CTRL-BREAK thread dump mechanism is also disabled in this
2082   // case.  See bugs 4323062, 4345157, and related bugs.
2083 
2084   if (!ReduceSignalUsage) {
2085     // Add a CTRL-C handler
2086     SetConsoleCtrlHandler(consoleHandler, TRUE);
2087   }
2088 }
2089 
2090 void os::signal_notify(int signal_number) {
2091   BOOL ret;
2092   if (sig_sem != NULL) {
2093     Atomic::inc(&pending_signals[signal_number]);
2094     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2095     assert(ret != 0, "ReleaseSemaphore() failed");
2096   }
2097 }
2098 
2099 static int check_pending_signals(bool wait_for_signal) {
2100   DWORD ret;
2101   while (true) {
2102     for (int i = 0; i < NSIG + 1; i++) {
2103       jint n = pending_signals[i];
2104       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2105         return i;
2106       }
2107     }
2108     if (!wait_for_signal) {
2109       return -1;
2110     }
2111 
2112     JavaThread *thread = JavaThread::current();
2113 
2114     ThreadBlockInVM tbivm(thread);
2115 
2116     bool threadIsSuspended;
2117     do {
2118       thread->set_suspend_equivalent();
2119       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2120       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2121       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2122 
2123       // were we externally suspended while we were waiting?
2124       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2125       if (threadIsSuspended) {
2126         // The semaphore has been incremented, but while we were waiting
2127         // another thread suspended us. We don't want to continue running
2128         // while suspended because that would surprise the thread that
2129         // suspended us.
2130         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2131         assert(ret != 0, "ReleaseSemaphore() failed");
2132 
2133         thread->java_suspend_self();
2134       }
2135     } while (threadIsSuspended);
2136   }
2137 }
2138 
2139 int os::signal_lookup() {
2140   return check_pending_signals(false);
2141 }
2142 
2143 int os::signal_wait() {
2144   return check_pending_signals(true);
2145 }
2146 
2147 // Implicit OS exception handling
2148 
2149 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2150                       address handler) {
2151     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2152   // Save pc in thread
2153 #ifdef _M_IA64
2154   // Do not blow up if no thread info available.
2155   if (thread) {
2156     // Saving PRECISE pc (with slot information) in thread.
2157     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2158     // Convert precise PC into "Unix" format
2159     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2160     thread->set_saved_exception_pc((address)precise_pc);
2161   }
2162   // Set pc to handler
2163   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2164   // Clear out psr.ri (= Restart Instruction) in order to continue
2165   // at the beginning of the target bundle.
2166   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2167   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2168 #else
2169   #ifdef _M_AMD64
2170   // Do not blow up if no thread info available.
2171   if (thread) {
2172     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2173   }
2174   // Set pc to handler
2175   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2176   #else
2177   // Do not blow up if no thread info available.
2178   if (thread) {
2179     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2180   }
2181   // Set pc to handler
2182   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2183   #endif
2184 #endif
2185 
2186   // Continue the execution
2187   return EXCEPTION_CONTINUE_EXECUTION;
2188 }
2189 
2190 
2191 // Used for PostMortemDump
2192 extern "C" void safepoints();
2193 extern "C" void find(int x);
2194 extern "C" void events();
2195 
2196 // According to Windows API documentation, an illegal instruction sequence should generate
2197 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2198 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2199 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2200 
2201 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2202 
2203 // From "Execution Protection in the Windows Operating System" draft 0.35
2204 // Once a system header becomes available, the "real" define should be
2205 // included or copied here.
2206 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2207 
2208 // Handle NAT Bit consumption on IA64.
2209 #ifdef _M_IA64
2210   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2211 #endif
2212 
2213 // Windows Vista/2008 heap corruption check
2214 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2215 
2216 #define def_excpt(val) #val, val
2217 
2218 struct siglabel {
2219   char *name;
2220   int   number;
2221 };
2222 
2223 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2224 // C++ compiler contain this error code. Because this is a compiler-generated
2225 // error, the code is not listed in the Win32 API header files.
2226 // The code is actually a cryptic mnemonic device, with the initial "E"
2227 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2228 // ASCII values of "msc".
2229 
2230 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2231 
2232 
2233 struct siglabel exceptlabels[] = {
2234     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2235     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2236     def_excpt(EXCEPTION_BREAKPOINT),
2237     def_excpt(EXCEPTION_SINGLE_STEP),
2238     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2239     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2240     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2241     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2242     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2243     def_excpt(EXCEPTION_FLT_OVERFLOW),
2244     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2245     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2246     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2247     def_excpt(EXCEPTION_INT_OVERFLOW),
2248     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2249     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2250     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2251     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2252     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2253     def_excpt(EXCEPTION_STACK_OVERFLOW),
2254     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2255     def_excpt(EXCEPTION_GUARD_PAGE),
2256     def_excpt(EXCEPTION_INVALID_HANDLE),
2257     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2258     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2259 #ifdef _M_IA64
2260     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2261 #endif
2262     NULL, 0
2263 };
2264 
2265 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2266   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2267     if (exceptlabels[i].number == exception_code) {
2268       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2269       return buf;
2270     }
2271   }
2272 
2273   return NULL;
2274 }
2275 
2276 //-----------------------------------------------------------------------------
2277 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2278   // handle exception caused by idiv; should only happen for -MinInt/-1
2279   // (division by zero is handled explicitly)
2280 #ifdef _M_IA64
2281   assert(0, "Fix Handle_IDiv_Exception");
2282 #else
2283   #ifdef  _M_AMD64
2284   PCONTEXT ctx = exceptionInfo->ContextRecord;
2285   address pc = (address)ctx->Rip;
2286   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2287   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2288   if (pc[0] == 0xF7) {
2289     // set correct result values and continue after idiv instruction
2290     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2291   } else {
2292     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2293   }
2294   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2295   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2296   // idiv opcode (0xF7).
2297   ctx->Rdx = (DWORD)0;             // remainder
2298   // Continue the execution
2299   #else
2300   PCONTEXT ctx = exceptionInfo->ContextRecord;
2301   address pc = (address)ctx->Eip;
2302   assert(pc[0] == 0xF7, "not an idiv opcode");
2303   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2304   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2305   // set correct result values and continue after idiv instruction
2306   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2307   ctx->Eax = (DWORD)min_jint;      // result
2308   ctx->Edx = (DWORD)0;             // remainder
2309   // Continue the execution
2310   #endif
2311 #endif
2312   return EXCEPTION_CONTINUE_EXECUTION;
2313 }
2314 
2315 //-----------------------------------------------------------------------------
2316 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2317   PCONTEXT ctx = exceptionInfo->ContextRecord;
2318 #ifndef  _WIN64
2319   // handle exception caused by native method modifying control word
2320   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2321 
2322   switch (exception_code) {
2323   case EXCEPTION_FLT_DENORMAL_OPERAND:
2324   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2325   case EXCEPTION_FLT_INEXACT_RESULT:
2326   case EXCEPTION_FLT_INVALID_OPERATION:
2327   case EXCEPTION_FLT_OVERFLOW:
2328   case EXCEPTION_FLT_STACK_CHECK:
2329   case EXCEPTION_FLT_UNDERFLOW:
2330     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2331     if (fp_control_word != ctx->FloatSave.ControlWord) {
2332       // Restore FPCW and mask out FLT exceptions
2333       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2334       // Mask out pending FLT exceptions
2335       ctx->FloatSave.StatusWord &=  0xffffff00;
2336       return EXCEPTION_CONTINUE_EXECUTION;
2337     }
2338   }
2339 
2340   if (prev_uef_handler != NULL) {
2341     // We didn't handle this exception so pass it to the previous
2342     // UnhandledExceptionFilter.
2343     return (prev_uef_handler)(exceptionInfo);
2344   }
2345 #else // !_WIN64
2346   // On Windows, the mxcsr control bits are non-volatile across calls
2347   // See also CR 6192333
2348   //
2349   jint MxCsr = INITIAL_MXCSR;
2350   // we can't use StubRoutines::addr_mxcsr_std()
2351   // because in Win64 mxcsr is not saved there
2352   if (MxCsr != ctx->MxCsr) {
2353     ctx->MxCsr = MxCsr;
2354     return EXCEPTION_CONTINUE_EXECUTION;
2355   }
2356 #endif // !_WIN64
2357 
2358   return EXCEPTION_CONTINUE_SEARCH;
2359 }
2360 
2361 static inline void report_error(Thread* t, DWORD exception_code,
2362                                 address addr, void* siginfo, void* context) {
2363   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2364 
2365   // If UseOsErrorReporting, this will return here and save the error file
2366   // somewhere where we can find it in the minidump.
2367 }
2368 
2369 //-----------------------------------------------------------------------------
2370 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2371   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2372   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2373 #ifdef _M_IA64
2374   // On Itanium, we need the "precise pc", which has the slot number coded
2375   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2376   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2377   // Convert the pc to "Unix format", which has the slot number coded
2378   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2379   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2380   // information is saved in the Unix format.
2381   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2382 #else
2383   #ifdef _M_AMD64
2384   address pc = (address) exceptionInfo->ContextRecord->Rip;
2385   #else
2386   address pc = (address) exceptionInfo->ContextRecord->Eip;
2387   #endif
2388 #endif
2389   Thread* t = Thread::current_or_null_safe();
2390 
2391   // Handle SafeFetch32 and SafeFetchN exceptions.
2392   if (StubRoutines::is_safefetch_fault(pc)) {
2393     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2394   }
2395 
2396 #ifndef _WIN64
2397   // Execution protection violation - win32 running on AMD64 only
2398   // Handled first to avoid misdiagnosis as a "normal" access violation;
2399   // This is safe to do because we have a new/unique ExceptionInformation
2400   // code for this condition.
2401   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2402     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2403     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2404     address addr = (address) exceptionRecord->ExceptionInformation[1];
2405 
2406     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2407       int page_size = os::vm_page_size();
2408 
2409       // Make sure the pc and the faulting address are sane.
2410       //
2411       // If an instruction spans a page boundary, and the page containing
2412       // the beginning of the instruction is executable but the following
2413       // page is not, the pc and the faulting address might be slightly
2414       // different - we still want to unguard the 2nd page in this case.
2415       //
2416       // 15 bytes seems to be a (very) safe value for max instruction size.
2417       bool pc_is_near_addr =
2418         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2419       bool instr_spans_page_boundary =
2420         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2421                          (intptr_t) page_size) > 0);
2422 
2423       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2424         static volatile address last_addr =
2425           (address) os::non_memory_address_word();
2426 
2427         // In conservative mode, don't unguard unless the address is in the VM
2428         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2429             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2430 
2431           // Set memory to RWX and retry
2432           address page_start =
2433             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2434           bool res = os::protect_memory((char*) page_start, page_size,
2435                                         os::MEM_PROT_RWX);
2436 
2437           if (PrintMiscellaneous && Verbose) {
2438             char buf[256];
2439             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2440                          "at " INTPTR_FORMAT
2441                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2442                          page_start, (res ? "success" : strerror(errno)));
2443             tty->print_raw_cr(buf);
2444           }
2445 
2446           // Set last_addr so if we fault again at the same address, we don't
2447           // end up in an endless loop.
2448           //
2449           // There are two potential complications here.  Two threads trapping
2450           // at the same address at the same time could cause one of the
2451           // threads to think it already unguarded, and abort the VM.  Likely
2452           // very rare.
2453           //
2454           // The other race involves two threads alternately trapping at
2455           // different addresses and failing to unguard the page, resulting in
2456           // an endless loop.  This condition is probably even more unlikely
2457           // than the first.
2458           //
2459           // Although both cases could be avoided by using locks or thread
2460           // local last_addr, these solutions are unnecessary complication:
2461           // this handler is a best-effort safety net, not a complete solution.
2462           // It is disabled by default and should only be used as a workaround
2463           // in case we missed any no-execute-unsafe VM code.
2464 
2465           last_addr = addr;
2466 
2467           return EXCEPTION_CONTINUE_EXECUTION;
2468         }
2469       }
2470 
2471       // Last unguard failed or not unguarding
2472       tty->print_raw_cr("Execution protection violation");
2473       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2474                    exceptionInfo->ContextRecord);
2475       return EXCEPTION_CONTINUE_SEARCH;
2476     }
2477   }
2478 #endif // _WIN64
2479 
2480   // Check to see if we caught the safepoint code in the
2481   // process of write protecting the memory serialization page.
2482   // It write enables the page immediately after protecting it
2483   // so just return.
2484   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2485     JavaThread* thread = (JavaThread*) t;
2486     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2487     address addr = (address) exceptionRecord->ExceptionInformation[1];
2488     if (os::is_memory_serialize_page(thread, addr)) {
2489       // Block current thread until the memory serialize page permission restored.
2490       os::block_on_serialize_page_trap();
2491       return EXCEPTION_CONTINUE_EXECUTION;
2492     }
2493   }
2494 
2495   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2496       VM_Version::is_cpuinfo_segv_addr(pc)) {
2497     // Verify that OS save/restore AVX registers.
2498     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2499   }
2500 
2501   if (t != NULL && t->is_Java_thread()) {
2502     JavaThread* thread = (JavaThread*) t;
2503     bool in_java = thread->thread_state() == _thread_in_Java;
2504 
2505     // Handle potential stack overflows up front.
2506     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2507       if (os::uses_stack_guard_pages()) {
2508 #ifdef _M_IA64
2509         // Use guard page for register stack.
2510         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2511         address addr = (address) exceptionRecord->ExceptionInformation[1];
2512         // Check for a register stack overflow on Itanium
2513         if (thread->addr_inside_register_stack_red_zone(addr)) {
2514           // Fatal red zone violation happens if the Java program
2515           // catches a StackOverflow error and does so much processing
2516           // that it runs beyond the unprotected yellow guard zone. As
2517           // a result, we are out of here.
2518           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2519         } else if(thread->addr_inside_register_stack(addr)) {
2520           // Disable the yellow zone which sets the state that
2521           // we've got a stack overflow problem.
2522           if (thread->stack_yellow_zone_enabled()) {
2523             thread->disable_stack_yellow_zone();
2524           }
2525           // Give us some room to process the exception.
2526           thread->disable_register_stack_guard();
2527           // Tracing with +Verbose.
2528           if (Verbose) {
2529             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2530             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2531             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2532             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2533                           thread->register_stack_base(),
2534                           thread->register_stack_base() + thread->stack_size());
2535           }
2536 
2537           // Reguard the permanent register stack red zone just to be sure.
2538           // We saw Windows silently disabling this without telling us.
2539           thread->enable_register_stack_red_zone();
2540 
2541           return Handle_Exception(exceptionInfo,
2542                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2543         }
2544 #endif
2545         if (thread->stack_yellow_zone_enabled()) {
2546           // Yellow zone violation.  The o/s has unprotected the first yellow
2547           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2548           // update the enabled status, even if the zone contains only one page.
2549           thread->disable_stack_yellow_zone();
2550           // If not in java code, return and hope for the best.
2551           return in_java
2552               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2553               :  EXCEPTION_CONTINUE_EXECUTION;
2554         } else {
2555           // Fatal red zone violation.
2556           thread->disable_stack_red_zone();
2557           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2558           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2559                        exceptionInfo->ContextRecord);
2560           return EXCEPTION_CONTINUE_SEARCH;
2561         }
2562       } else if (in_java) {
2563         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2564         // a one-time-only guard page, which it has released to us.  The next
2565         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2566         return Handle_Exception(exceptionInfo,
2567                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2568       } else {
2569         // Can only return and hope for the best.  Further stack growth will
2570         // result in an ACCESS_VIOLATION.
2571         return EXCEPTION_CONTINUE_EXECUTION;
2572       }
2573     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2574       // Either stack overflow or null pointer exception.
2575       if (in_java) {
2576         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2577         address addr = (address) exceptionRecord->ExceptionInformation[1];
2578         address stack_end = thread->stack_base() - thread->stack_size();
2579         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2580           // Stack overflow.
2581           assert(!os::uses_stack_guard_pages(),
2582                  "should be caught by red zone code above.");
2583           return Handle_Exception(exceptionInfo,
2584                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2585         }
2586         // Check for safepoint polling and implicit null
2587         // We only expect null pointers in the stubs (vtable)
2588         // the rest are checked explicitly now.
2589         CodeBlob* cb = CodeCache::find_blob(pc);
2590         if (cb != NULL) {
2591           if (os::is_poll_address(addr)) {
2592             address stub = SharedRuntime::get_poll_stub(pc);
2593             return Handle_Exception(exceptionInfo, stub);
2594           }
2595         }
2596         {
2597 #ifdef _WIN64
2598           // If it's a legal stack address map the entire region in
2599           //
2600           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2601           address addr = (address) exceptionRecord->ExceptionInformation[1];
2602           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2603             addr = (address)((uintptr_t)addr &
2604                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2605             os::commit_memory((char *)addr, thread->stack_base() - addr,
2606                               !ExecMem);
2607             return EXCEPTION_CONTINUE_EXECUTION;
2608           } else
2609 #endif
2610           {
2611             // Null pointer exception.
2612 #ifdef _M_IA64
2613             // Process implicit null checks in compiled code. Note: Implicit null checks
2614             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2615             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2616               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2617               // Handle implicit null check in UEP method entry
2618               if (cb && (cb->is_frame_complete_at(pc) ||
2619                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2620                 if (Verbose) {
2621                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2622                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2623                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2624                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2625                                 *(bundle_start + 1), *bundle_start);
2626                 }
2627                 return Handle_Exception(exceptionInfo,
2628                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2629               }
2630             }
2631 
2632             // Implicit null checks were processed above.  Hence, we should not reach
2633             // here in the usual case => die!
2634             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2635             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2636                          exceptionInfo->ContextRecord);
2637             return EXCEPTION_CONTINUE_SEARCH;
2638 
2639 #else // !IA64
2640 
2641             // Windows 98 reports faulting addresses incorrectly
2642             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2643                 !os::win32::is_nt()) {
2644               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2645               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2646             }
2647             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2648                          exceptionInfo->ContextRecord);
2649             return EXCEPTION_CONTINUE_SEARCH;
2650 #endif
2651           }
2652         }
2653       }
2654 
2655 #ifdef _WIN64
2656       // Special care for fast JNI field accessors.
2657       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2658       // in and the heap gets shrunk before the field access.
2659       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2660         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2661         if (addr != (address)-1) {
2662           return Handle_Exception(exceptionInfo, addr);
2663         }
2664       }
2665 #endif
2666 
2667       // Stack overflow or null pointer exception in native code.
2668       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2669                    exceptionInfo->ContextRecord);
2670       return EXCEPTION_CONTINUE_SEARCH;
2671     } // /EXCEPTION_ACCESS_VIOLATION
2672     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2673 #if defined _M_IA64
2674     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2675               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2676       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2677 
2678       // Compiled method patched to be non entrant? Following conditions must apply:
2679       // 1. must be first instruction in bundle
2680       // 2. must be a break instruction with appropriate code
2681       if ((((uint64_t) pc & 0x0F) == 0) &&
2682           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2683         return Handle_Exception(exceptionInfo,
2684                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2685       }
2686     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2687 #endif
2688 
2689 
2690     if (in_java) {
2691       switch (exception_code) {
2692       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2693         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2694 
2695       case EXCEPTION_INT_OVERFLOW:
2696         return Handle_IDiv_Exception(exceptionInfo);
2697 
2698       } // switch
2699     }
2700     if (((thread->thread_state() == _thread_in_Java) ||
2701          (thread->thread_state() == _thread_in_native)) &&
2702          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2703       LONG result=Handle_FLT_Exception(exceptionInfo);
2704       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2705     }
2706   }
2707 
2708   if (exception_code != EXCEPTION_BREAKPOINT) {
2709     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2710                  exceptionInfo->ContextRecord);
2711   }
2712   return EXCEPTION_CONTINUE_SEARCH;
2713 }
2714 
2715 #ifndef _WIN64
2716 // Special care for fast JNI accessors.
2717 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2718 // the heap gets shrunk before the field access.
2719 // Need to install our own structured exception handler since native code may
2720 // install its own.
2721 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2722   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2723   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2724     address pc = (address) exceptionInfo->ContextRecord->Eip;
2725     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2726     if (addr != (address)-1) {
2727       return Handle_Exception(exceptionInfo, addr);
2728     }
2729   }
2730   return EXCEPTION_CONTINUE_SEARCH;
2731 }
2732 
2733 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2734   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2735                                                      jobject obj,           \
2736                                                      jfieldID fieldID) {    \
2737     __try {                                                                 \
2738       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2739                                                                  obj,       \
2740                                                                  fieldID);  \
2741     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2742                                               _exception_info())) {         \
2743     }                                                                       \
2744     return 0;                                                               \
2745   }
2746 
2747 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2748 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2749 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2750 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2751 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2752 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2753 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2754 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2755 
2756 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2757   switch (type) {
2758   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2759   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2760   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2761   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2762   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2763   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2764   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2765   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2766   default:        ShouldNotReachHere();
2767   }
2768   return (address)-1;
2769 }
2770 #endif
2771 
2772 // Virtual Memory
2773 
2774 int os::vm_page_size() { return os::win32::vm_page_size(); }
2775 int os::vm_allocation_granularity() {
2776   return os::win32::vm_allocation_granularity();
2777 }
2778 
2779 // Windows large page support is available on Windows 2003. In order to use
2780 // large page memory, the administrator must first assign additional privilege
2781 // to the user:
2782 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2783 //   + select Local Policies -> User Rights Assignment
2784 //   + double click "Lock pages in memory", add users and/or groups
2785 //   + reboot
2786 // Note the above steps are needed for administrator as well, as administrators
2787 // by default do not have the privilege to lock pages in memory.
2788 //
2789 // Note about Windows 2003: although the API supports committing large page
2790 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2791 // scenario, I found through experiment it only uses large page if the entire
2792 // memory region is reserved and committed in a single VirtualAlloc() call.
2793 // This makes Windows large page support more or less like Solaris ISM, in
2794 // that the entire heap must be committed upfront. This probably will change
2795 // in the future, if so the code below needs to be revisited.
2796 
2797 #ifndef MEM_LARGE_PAGES
2798   #define MEM_LARGE_PAGES 0x20000000
2799 #endif
2800 
2801 static HANDLE    _hProcess;
2802 static HANDLE    _hToken;
2803 
2804 // Container for NUMA node list info
2805 class NUMANodeListHolder {
2806  private:
2807   int *_numa_used_node_list;  // allocated below
2808   int _numa_used_node_count;
2809 
2810   void free_node_list() {
2811     if (_numa_used_node_list != NULL) {
2812       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2813     }
2814   }
2815 
2816  public:
2817   NUMANodeListHolder() {
2818     _numa_used_node_count = 0;
2819     _numa_used_node_list = NULL;
2820     // do rest of initialization in build routine (after function pointers are set up)
2821   }
2822 
2823   ~NUMANodeListHolder() {
2824     free_node_list();
2825   }
2826 
2827   bool build() {
2828     DWORD_PTR proc_aff_mask;
2829     DWORD_PTR sys_aff_mask;
2830     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2831     ULONG highest_node_number;
2832     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2833     free_node_list();
2834     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2835     for (unsigned int i = 0; i <= highest_node_number; i++) {
2836       ULONGLONG proc_mask_numa_node;
2837       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2838       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2839         _numa_used_node_list[_numa_used_node_count++] = i;
2840       }
2841     }
2842     return (_numa_used_node_count > 1);
2843   }
2844 
2845   int get_count() { return _numa_used_node_count; }
2846   int get_node_list_entry(int n) {
2847     // for indexes out of range, returns -1
2848     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2849   }
2850 
2851 } numa_node_list_holder;
2852 
2853 
2854 
2855 static size_t _large_page_size = 0;
2856 
2857 static bool resolve_functions_for_large_page_init() {
2858   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2859     os::Advapi32Dll::AdvapiAvailable();
2860 }
2861 
2862 static bool request_lock_memory_privilege() {
2863   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2864                           os::current_process_id());
2865 
2866   LUID luid;
2867   if (_hProcess != NULL &&
2868       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2869       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2870 
2871     TOKEN_PRIVILEGES tp;
2872     tp.PrivilegeCount = 1;
2873     tp.Privileges[0].Luid = luid;
2874     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2875 
2876     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2877     // privilege. Check GetLastError() too. See MSDN document.
2878     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2879         (GetLastError() == ERROR_SUCCESS)) {
2880       return true;
2881     }
2882   }
2883 
2884   return false;
2885 }
2886 
2887 static void cleanup_after_large_page_init() {
2888   if (_hProcess) CloseHandle(_hProcess);
2889   _hProcess = NULL;
2890   if (_hToken) CloseHandle(_hToken);
2891   _hToken = NULL;
2892 }
2893 
2894 static bool numa_interleaving_init() {
2895   bool success = false;
2896   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2897 
2898   // print a warning if UseNUMAInterleaving flag is specified on command line
2899   bool warn_on_failure = use_numa_interleaving_specified;
2900 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2901 
2902   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2903   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2904   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2905 
2906   if (os::Kernel32Dll::NumaCallsAvailable()) {
2907     if (numa_node_list_holder.build()) {
2908       if (PrintMiscellaneous && Verbose) {
2909         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2910         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2911           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2912         }
2913         tty->print("\n");
2914       }
2915       success = true;
2916     } else {
2917       WARN("Process does not cover multiple NUMA nodes.");
2918     }
2919   } else {
2920     WARN("NUMA Interleaving is not supported by the operating system.");
2921   }
2922   if (!success) {
2923     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2924   }
2925   return success;
2926 #undef WARN
2927 }
2928 
2929 // this routine is used whenever we need to reserve a contiguous VA range
2930 // but we need to make separate VirtualAlloc calls for each piece of the range
2931 // Reasons for doing this:
2932 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2933 //  * UseNUMAInterleaving requires a separate node for each piece
2934 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2935                                          DWORD prot,
2936                                          bool should_inject_error = false) {
2937   char * p_buf;
2938   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2939   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2940   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2941 
2942   // first reserve enough address space in advance since we want to be
2943   // able to break a single contiguous virtual address range into multiple
2944   // large page commits but WS2003 does not allow reserving large page space
2945   // so we just use 4K pages for reserve, this gives us a legal contiguous
2946   // address space. then we will deallocate that reservation, and re alloc
2947   // using large pages
2948   const size_t size_of_reserve = bytes + chunk_size;
2949   if (bytes > size_of_reserve) {
2950     // Overflowed.
2951     return NULL;
2952   }
2953   p_buf = (char *) VirtualAlloc(addr,
2954                                 size_of_reserve,  // size of Reserve
2955                                 MEM_RESERVE,
2956                                 PAGE_READWRITE);
2957   // If reservation failed, return NULL
2958   if (p_buf == NULL) return NULL;
2959   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2960   os::release_memory(p_buf, bytes + chunk_size);
2961 
2962   // we still need to round up to a page boundary (in case we are using large pages)
2963   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2964   // instead we handle this in the bytes_to_rq computation below
2965   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2966 
2967   // now go through and allocate one chunk at a time until all bytes are
2968   // allocated
2969   size_t  bytes_remaining = bytes;
2970   // An overflow of align_size_up() would have been caught above
2971   // in the calculation of size_of_reserve.
2972   char * next_alloc_addr = p_buf;
2973   HANDLE hProc = GetCurrentProcess();
2974 
2975 #ifdef ASSERT
2976   // Variable for the failure injection
2977   long ran_num = os::random();
2978   size_t fail_after = ran_num % bytes;
2979 #endif
2980 
2981   int count=0;
2982   while (bytes_remaining) {
2983     // select bytes_to_rq to get to the next chunk_size boundary
2984 
2985     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2986     // Note allocate and commit
2987     char * p_new;
2988 
2989 #ifdef ASSERT
2990     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2991 #else
2992     const bool inject_error_now = false;
2993 #endif
2994 
2995     if (inject_error_now) {
2996       p_new = NULL;
2997     } else {
2998       if (!UseNUMAInterleaving) {
2999         p_new = (char *) VirtualAlloc(next_alloc_addr,
3000                                       bytes_to_rq,
3001                                       flags,
3002                                       prot);
3003       } else {
3004         // get the next node to use from the used_node_list
3005         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3006         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3007         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3008                                                             next_alloc_addr,
3009                                                             bytes_to_rq,
3010                                                             flags,
3011                                                             prot,
3012                                                             node);
3013       }
3014     }
3015 
3016     if (p_new == NULL) {
3017       // Free any allocated pages
3018       if (next_alloc_addr > p_buf) {
3019         // Some memory was committed so release it.
3020         size_t bytes_to_release = bytes - bytes_remaining;
3021         // NMT has yet to record any individual blocks, so it
3022         // need to create a dummy 'reserve' record to match
3023         // the release.
3024         MemTracker::record_virtual_memory_reserve((address)p_buf,
3025                                                   bytes_to_release, CALLER_PC);
3026         os::release_memory(p_buf, bytes_to_release);
3027       }
3028 #ifdef ASSERT
3029       if (should_inject_error) {
3030         if (TracePageSizes && Verbose) {
3031           tty->print_cr("Reserving pages individually failed.");
3032         }
3033       }
3034 #endif
3035       return NULL;
3036     }
3037 
3038     bytes_remaining -= bytes_to_rq;
3039     next_alloc_addr += bytes_to_rq;
3040     count++;
3041   }
3042   // Although the memory is allocated individually, it is returned as one.
3043   // NMT records it as one block.
3044   if ((flags & MEM_COMMIT) != 0) {
3045     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3046   } else {
3047     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3048   }
3049 
3050   // made it this far, success
3051   return p_buf;
3052 }
3053 
3054 
3055 
3056 void os::large_page_init() {
3057   if (!UseLargePages) return;
3058 
3059   // print a warning if any large page related flag is specified on command line
3060   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3061                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3062   bool success = false;
3063 
3064 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3065   if (resolve_functions_for_large_page_init()) {
3066     if (request_lock_memory_privilege()) {
3067       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3068       if (s) {
3069 #if defined(IA32) || defined(AMD64)
3070         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3071           WARN("JVM cannot use large pages bigger than 4mb.");
3072         } else {
3073 #endif
3074           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3075             _large_page_size = LargePageSizeInBytes;
3076           } else {
3077             _large_page_size = s;
3078           }
3079           success = true;
3080 #if defined(IA32) || defined(AMD64)
3081         }
3082 #endif
3083       } else {
3084         WARN("Large page is not supported by the processor.");
3085       }
3086     } else {
3087       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3088     }
3089   } else {
3090     WARN("Large page is not supported by the operating system.");
3091   }
3092 #undef WARN
3093 
3094   const size_t default_page_size = (size_t) vm_page_size();
3095   if (success && _large_page_size > default_page_size) {
3096     _page_sizes[0] = _large_page_size;
3097     _page_sizes[1] = default_page_size;
3098     _page_sizes[2] = 0;
3099   }
3100 
3101   cleanup_after_large_page_init();
3102   UseLargePages = success;
3103 }
3104 
3105 // On win32, one cannot release just a part of reserved memory, it's an
3106 // all or nothing deal.  When we split a reservation, we must break the
3107 // reservation into two reservations.
3108 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3109                                   bool realloc) {
3110   if (size > 0) {
3111     release_memory(base, size);
3112     if (realloc) {
3113       reserve_memory(split, base);
3114     }
3115     if (size != split) {
3116       reserve_memory(size - split, base + split);
3117     }
3118   }
3119 }
3120 
3121 // Multiple threads can race in this code but it's not possible to unmap small sections of
3122 // virtual space to get requested alignment, like posix-like os's.
3123 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3124 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3125   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3126          "Alignment must be a multiple of allocation granularity (page size)");
3127   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3128 
3129   size_t extra_size = size + alignment;
3130   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3131 
3132   char* aligned_base = NULL;
3133 
3134   do {
3135     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3136     if (extra_base == NULL) {
3137       return NULL;
3138     }
3139     // Do manual alignment
3140     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3141 
3142     os::release_memory(extra_base, extra_size);
3143 
3144     aligned_base = os::reserve_memory(size, aligned_base);
3145 
3146   } while (aligned_base == NULL);
3147 
3148   return aligned_base;
3149 }
3150 
3151 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3152   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3153          "reserve alignment");
3154   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3155   char* res;
3156   // note that if UseLargePages is on, all the areas that require interleaving
3157   // will go thru reserve_memory_special rather than thru here.
3158   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3159   if (!use_individual) {
3160     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3161   } else {
3162     elapsedTimer reserveTimer;
3163     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3164     // in numa interleaving, we have to allocate pages individually
3165     // (well really chunks of NUMAInterleaveGranularity size)
3166     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3167     if (res == NULL) {
3168       warning("NUMA page allocation failed");
3169     }
3170     if (Verbose && PrintMiscellaneous) {
3171       reserveTimer.stop();
3172       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3173                     reserveTimer.milliseconds(), reserveTimer.ticks());
3174     }
3175   }
3176   assert(res == NULL || addr == NULL || addr == res,
3177          "Unexpected address from reserve.");
3178 
3179   return res;
3180 }
3181 
3182 // Reserve memory at an arbitrary address, only if that area is
3183 // available (and not reserved for something else).
3184 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3185   // Windows os::reserve_memory() fails of the requested address range is
3186   // not avilable.
3187   return reserve_memory(bytes, requested_addr);
3188 }
3189 
3190 size_t os::large_page_size() {
3191   return _large_page_size;
3192 }
3193 
3194 bool os::can_commit_large_page_memory() {
3195   // Windows only uses large page memory when the entire region is reserved
3196   // and committed in a single VirtualAlloc() call. This may change in the
3197   // future, but with Windows 2003 it's not possible to commit on demand.
3198   return false;
3199 }
3200 
3201 bool os::can_execute_large_page_memory() {
3202   return true;
3203 }
3204 
3205 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3206                                  bool exec) {
3207   assert(UseLargePages, "only for large pages");
3208 
3209   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3210     return NULL; // Fallback to small pages.
3211   }
3212 
3213   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3214   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3215 
3216   // with large pages, there are two cases where we need to use Individual Allocation
3217   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3218   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3219   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3220     if (TracePageSizes && Verbose) {
3221       tty->print_cr("Reserving large pages individually.");
3222     }
3223     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3224     if (p_buf == NULL) {
3225       // give an appropriate warning message
3226       if (UseNUMAInterleaving) {
3227         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3228       }
3229       if (UseLargePagesIndividualAllocation) {
3230         warning("Individually allocated large pages failed, "
3231                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3232       }
3233       return NULL;
3234     }
3235 
3236     return p_buf;
3237 
3238   } else {
3239     if (TracePageSizes && Verbose) {
3240       tty->print_cr("Reserving large pages in a single large chunk.");
3241     }
3242     // normal policy just allocate it all at once
3243     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3244     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3245     if (res != NULL) {
3246       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3247     }
3248 
3249     return res;
3250   }
3251 }
3252 
3253 bool os::release_memory_special(char* base, size_t bytes) {
3254   assert(base != NULL, "Sanity check");
3255   return release_memory(base, bytes);
3256 }
3257 
3258 void os::print_statistics() {
3259 }
3260 
3261 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3262   int err = os::get_last_error();
3263   char buf[256];
3264   size_t buf_len = os::lasterror(buf, sizeof(buf));
3265   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3266           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3267           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3268 }
3269 
3270 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3271   if (bytes == 0) {
3272     // Don't bother the OS with noops.
3273     return true;
3274   }
3275   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3276   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3277   // Don't attempt to print anything if the OS call fails. We're
3278   // probably low on resources, so the print itself may cause crashes.
3279 
3280   // unless we have NUMAInterleaving enabled, the range of a commit
3281   // is always within a reserve covered by a single VirtualAlloc
3282   // in that case we can just do a single commit for the requested size
3283   if (!UseNUMAInterleaving) {
3284     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3285       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3286       return false;
3287     }
3288     if (exec) {
3289       DWORD oldprot;
3290       // Windows doc says to use VirtualProtect to get execute permissions
3291       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3292         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3293         return false;
3294       }
3295     }
3296     return true;
3297   } else {
3298 
3299     // when NUMAInterleaving is enabled, the commit might cover a range that
3300     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3301     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3302     // returns represents the number of bytes that can be committed in one step.
3303     size_t bytes_remaining = bytes;
3304     char * next_alloc_addr = addr;
3305     while (bytes_remaining > 0) {
3306       MEMORY_BASIC_INFORMATION alloc_info;
3307       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3308       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3309       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3310                        PAGE_READWRITE) == NULL) {
3311         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3312                                             exec);)
3313         return false;
3314       }
3315       if (exec) {
3316         DWORD oldprot;
3317         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3318                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3319           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3320                                               exec);)
3321           return false;
3322         }
3323       }
3324       bytes_remaining -= bytes_to_rq;
3325       next_alloc_addr += bytes_to_rq;
3326     }
3327   }
3328   // if we made it this far, return true
3329   return true;
3330 }
3331 
3332 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3333                           bool exec) {
3334   // alignment_hint is ignored on this OS
3335   return pd_commit_memory(addr, size, exec);
3336 }
3337 
3338 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3339                                   const char* mesg) {
3340   assert(mesg != NULL, "mesg must be specified");
3341   if (!pd_commit_memory(addr, size, exec)) {
3342     warn_fail_commit_memory(addr, size, exec);
3343     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3344   }
3345 }
3346 
3347 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3348                                   size_t alignment_hint, bool exec,
3349                                   const char* mesg) {
3350   // alignment_hint is ignored on this OS
3351   pd_commit_memory_or_exit(addr, size, exec, mesg);
3352 }
3353 
3354 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3355   if (bytes == 0) {
3356     // Don't bother the OS with noops.
3357     return true;
3358   }
3359   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3360   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3361   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3362 }
3363 
3364 bool os::pd_release_memory(char* addr, size_t bytes) {
3365   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3366 }
3367 
3368 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3369   return os::commit_memory(addr, size, !ExecMem);
3370 }
3371 
3372 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3373   return os::uncommit_memory(addr, size);
3374 }
3375 
3376 // Set protections specified
3377 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3378                         bool is_committed) {
3379   unsigned int p = 0;
3380   switch (prot) {
3381   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3382   case MEM_PROT_READ: p = PAGE_READONLY; break;
3383   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3384   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3385   default:
3386     ShouldNotReachHere();
3387   }
3388 
3389   DWORD old_status;
3390 
3391   // Strange enough, but on Win32 one can change protection only for committed
3392   // memory, not a big deal anyway, as bytes less or equal than 64K
3393   if (!is_committed) {
3394     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3395                           "cannot commit protection page");
3396   }
3397   // One cannot use os::guard_memory() here, as on Win32 guard page
3398   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3399   //
3400   // Pages in the region become guard pages. Any attempt to access a guard page
3401   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3402   // the guard page status. Guard pages thus act as a one-time access alarm.
3403   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3404 }
3405 
3406 bool os::guard_memory(char* addr, size_t bytes) {
3407   DWORD old_status;
3408   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3409 }
3410 
3411 bool os::unguard_memory(char* addr, size_t bytes) {
3412   DWORD old_status;
3413   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3414 }
3415 
3416 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3417 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3418 void os::numa_make_global(char *addr, size_t bytes)    { }
3419 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3420 bool os::numa_topology_changed()                       { return false; }
3421 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3422 int os::numa_get_group_id()                            { return 0; }
3423 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3424   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3425     // Provide an answer for UMA systems
3426     ids[0] = 0;
3427     return 1;
3428   } else {
3429     // check for size bigger than actual groups_num
3430     size = MIN2(size, numa_get_groups_num());
3431     for (int i = 0; i < (int)size; i++) {
3432       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3433     }
3434     return size;
3435   }
3436 }
3437 
3438 bool os::get_page_info(char *start, page_info* info) {
3439   return false;
3440 }
3441 
3442 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3443                      page_info* page_found) {
3444   return end;
3445 }
3446 
3447 char* os::non_memory_address_word() {
3448   // Must never look like an address returned by reserve_memory,
3449   // even in its subfields (as defined by the CPU immediate fields,
3450   // if the CPU splits constants across multiple instructions).
3451   return (char*)-1;
3452 }
3453 
3454 #define MAX_ERROR_COUNT 100
3455 #define SYS_THREAD_ERROR 0xffffffffUL
3456 
3457 void os::pd_start_thread(Thread* thread) {
3458   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3459   // Returns previous suspend state:
3460   // 0:  Thread was not suspended
3461   // 1:  Thread is running now
3462   // >1: Thread is still suspended.
3463   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3464 }
3465 
3466 class HighResolutionInterval : public CHeapObj<mtThread> {
3467   // The default timer resolution seems to be 10 milliseconds.
3468   // (Where is this written down?)
3469   // If someone wants to sleep for only a fraction of the default,
3470   // then we set the timer resolution down to 1 millisecond for
3471   // the duration of their interval.
3472   // We carefully set the resolution back, since otherwise we
3473   // seem to incur an overhead (3%?) that we don't need.
3474   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3475   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3476   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3477   // timeBeginPeriod() if the relative error exceeded some threshold.
3478   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3479   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3480   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3481   // resolution timers running.
3482  private:
3483   jlong resolution;
3484  public:
3485   HighResolutionInterval(jlong ms) {
3486     resolution = ms % 10L;
3487     if (resolution != 0) {
3488       MMRESULT result = timeBeginPeriod(1L);
3489     }
3490   }
3491   ~HighResolutionInterval() {
3492     if (resolution != 0) {
3493       MMRESULT result = timeEndPeriod(1L);
3494     }
3495     resolution = 0L;
3496   }
3497 };
3498 
3499 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3500   jlong limit = (jlong) MAXDWORD;
3501 
3502   while (ms > limit) {
3503     int res;
3504     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3505       return res;
3506     }
3507     ms -= limit;
3508   }
3509 
3510   assert(thread == Thread::current(), "thread consistency check");
3511   OSThread* osthread = thread->osthread();
3512   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3513   int result;
3514   if (interruptable) {
3515     assert(thread->is_Java_thread(), "must be java thread");
3516     JavaThread *jt = (JavaThread *) thread;
3517     ThreadBlockInVM tbivm(jt);
3518 
3519     jt->set_suspend_equivalent();
3520     // cleared by handle_special_suspend_equivalent_condition() or
3521     // java_suspend_self() via check_and_wait_while_suspended()
3522 
3523     HANDLE events[1];
3524     events[0] = osthread->interrupt_event();
3525     HighResolutionInterval *phri=NULL;
3526     if (!ForceTimeHighResolution) {
3527       phri = new HighResolutionInterval(ms);
3528     }
3529     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3530       result = OS_TIMEOUT;
3531     } else {
3532       ResetEvent(osthread->interrupt_event());
3533       osthread->set_interrupted(false);
3534       result = OS_INTRPT;
3535     }
3536     delete phri; //if it is NULL, harmless
3537 
3538     // were we externally suspended while we were waiting?
3539     jt->check_and_wait_while_suspended();
3540   } else {
3541     assert(!thread->is_Java_thread(), "must not be java thread");
3542     Sleep((long) ms);
3543     result = OS_TIMEOUT;
3544   }
3545   return result;
3546 }
3547 
3548 // Short sleep, direct OS call.
3549 //
3550 // ms = 0, means allow others (if any) to run.
3551 //
3552 void os::naked_short_sleep(jlong ms) {
3553   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3554   Sleep(ms);
3555 }
3556 
3557 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3558 void os::infinite_sleep() {
3559   while (true) {    // sleep forever ...
3560     Sleep(100000);  // ... 100 seconds at a time
3561   }
3562 }
3563 
3564 typedef BOOL (WINAPI * STTSignature)(void);
3565 
3566 void os::naked_yield() {
3567   // Use either SwitchToThread() or Sleep(0)
3568   // Consider passing back the return value from SwitchToThread().
3569   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3570     SwitchToThread();
3571   } else {
3572     Sleep(0);
3573   }
3574 }
3575 
3576 // Win32 only gives you access to seven real priorities at a time,
3577 // so we compress Java's ten down to seven.  It would be better
3578 // if we dynamically adjusted relative priorities.
3579 
3580 int os::java_to_os_priority[CriticalPriority + 1] = {
3581   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3582   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3583   THREAD_PRIORITY_LOWEST,                       // 2
3584   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3585   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3586   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3587   THREAD_PRIORITY_NORMAL,                       // 6
3588   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3589   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3590   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3591   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3592   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3593 };
3594 
3595 int prio_policy1[CriticalPriority + 1] = {
3596   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3597   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3598   THREAD_PRIORITY_LOWEST,                       // 2
3599   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3600   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3601   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3602   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3603   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3604   THREAD_PRIORITY_HIGHEST,                      // 8
3605   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3606   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3607   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3608 };
3609 
3610 static int prio_init() {
3611   // If ThreadPriorityPolicy is 1, switch tables
3612   if (ThreadPriorityPolicy == 1) {
3613     int i;
3614     for (i = 0; i < CriticalPriority + 1; i++) {
3615       os::java_to_os_priority[i] = prio_policy1[i];
3616     }
3617   }
3618   if (UseCriticalJavaThreadPriority) {
3619     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3620   }
3621   return 0;
3622 }
3623 
3624 OSReturn os::set_native_priority(Thread* thread, int priority) {
3625   if (!UseThreadPriorities) return OS_OK;
3626   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3627   return ret ? OS_OK : OS_ERR;
3628 }
3629 
3630 OSReturn os::get_native_priority(const Thread* const thread,
3631                                  int* priority_ptr) {
3632   if (!UseThreadPriorities) {
3633     *priority_ptr = java_to_os_priority[NormPriority];
3634     return OS_OK;
3635   }
3636   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3637   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3638     assert(false, "GetThreadPriority failed");
3639     return OS_ERR;
3640   }
3641   *priority_ptr = os_prio;
3642   return OS_OK;
3643 }
3644 
3645 
3646 // Hint to the underlying OS that a task switch would not be good.
3647 // Void return because it's a hint and can fail.
3648 void os::hint_no_preempt() {}
3649 
3650 void os::interrupt(Thread* thread) {
3651   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3652          Threads_lock->owned_by_self(),
3653          "possibility of dangling Thread pointer");
3654 
3655   OSThread* osthread = thread->osthread();
3656   osthread->set_interrupted(true);
3657   // More than one thread can get here with the same value of osthread,
3658   // resulting in multiple notifications.  We do, however, want the store
3659   // to interrupted() to be visible to other threads before we post
3660   // the interrupt event.
3661   OrderAccess::release();
3662   SetEvent(osthread->interrupt_event());
3663   // For JSR166:  unpark after setting status
3664   if (thread->is_Java_thread()) {
3665     ((JavaThread*)thread)->parker()->unpark();
3666   }
3667 
3668   ParkEvent * ev = thread->_ParkEvent;
3669   if (ev != NULL) ev->unpark();
3670 }
3671 
3672 
3673 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3674   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3675          "possibility of dangling Thread pointer");
3676 
3677   OSThread* osthread = thread->osthread();
3678   // There is no synchronization between the setting of the interrupt
3679   // and it being cleared here. It is critical - see 6535709 - that
3680   // we only clear the interrupt state, and reset the interrupt event,
3681   // if we are going to report that we were indeed interrupted - else
3682   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3683   // depending on the timing. By checking thread interrupt event to see
3684   // if the thread gets real interrupt thus prevent spurious wakeup.
3685   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3686   if (interrupted && clear_interrupted) {
3687     osthread->set_interrupted(false);
3688     ResetEvent(osthread->interrupt_event());
3689   } // Otherwise leave the interrupted state alone
3690 
3691   return interrupted;
3692 }
3693 
3694 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3695 ExtendedPC os::get_thread_pc(Thread* thread) {
3696   CONTEXT context;
3697   context.ContextFlags = CONTEXT_CONTROL;
3698   HANDLE handle = thread->osthread()->thread_handle();
3699 #ifdef _M_IA64
3700   assert(0, "Fix get_thread_pc");
3701   return ExtendedPC(NULL);
3702 #else
3703   if (GetThreadContext(handle, &context)) {
3704 #ifdef _M_AMD64
3705     return ExtendedPC((address) context.Rip);
3706 #else
3707     return ExtendedPC((address) context.Eip);
3708 #endif
3709   } else {
3710     return ExtendedPC(NULL);
3711   }
3712 #endif
3713 }
3714 
3715 // GetCurrentThreadId() returns DWORD
3716 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3717 
3718 static int _initial_pid = 0;
3719 
3720 int os::current_process_id() {
3721   return (_initial_pid ? _initial_pid : _getpid());
3722 }
3723 
3724 int    os::win32::_vm_page_size              = 0;
3725 int    os::win32::_vm_allocation_granularity = 0;
3726 int    os::win32::_processor_type            = 0;
3727 // Processor level is not available on non-NT systems, use vm_version instead
3728 int    os::win32::_processor_level           = 0;
3729 julong os::win32::_physical_memory           = 0;
3730 size_t os::win32::_default_stack_size        = 0;
3731 
3732 intx          os::win32::_os_thread_limit    = 0;
3733 volatile intx os::win32::_os_thread_count    = 0;
3734 
3735 bool   os::win32::_is_nt                     = false;
3736 bool   os::win32::_is_windows_2003           = false;
3737 bool   os::win32::_is_windows_server         = false;
3738 
3739 // 6573254
3740 // Currently, the bug is observed across all the supported Windows releases,
3741 // including the latest one (as of this writing - Windows Server 2012 R2)
3742 bool   os::win32::_has_exit_bug              = true;
3743 bool   os::win32::_has_performance_count     = 0;
3744 
3745 void os::win32::initialize_system_info() {
3746   SYSTEM_INFO si;
3747   GetSystemInfo(&si);
3748   _vm_page_size    = si.dwPageSize;
3749   _vm_allocation_granularity = si.dwAllocationGranularity;
3750   _processor_type  = si.dwProcessorType;
3751   _processor_level = si.wProcessorLevel;
3752   set_processor_count(si.dwNumberOfProcessors);
3753 
3754   MEMORYSTATUSEX ms;
3755   ms.dwLength = sizeof(ms);
3756 
3757   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3758   // dwMemoryLoad (% of memory in use)
3759   GlobalMemoryStatusEx(&ms);
3760   _physical_memory = ms.ullTotalPhys;
3761 
3762   OSVERSIONINFOEX oi;
3763   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3764   GetVersionEx((OSVERSIONINFO*)&oi);
3765   switch (oi.dwPlatformId) {
3766   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3767   case VER_PLATFORM_WIN32_NT:
3768     _is_nt = true;
3769     {
3770       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3771       if (os_vers == 5002) {
3772         _is_windows_2003 = true;
3773       }
3774       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3775           oi.wProductType == VER_NT_SERVER) {
3776         _is_windows_server = true;
3777       }
3778     }
3779     break;
3780   default: fatal("Unknown platform");
3781   }
3782 
3783   _default_stack_size = os::current_stack_size();
3784   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3785   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3786          "stack size not a multiple of page size");
3787 
3788   initialize_performance_counter();
3789 }
3790 
3791 
3792 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3793                                       int ebuflen) {
3794   char path[MAX_PATH];
3795   DWORD size;
3796   DWORD pathLen = (DWORD)sizeof(path);
3797   HINSTANCE result = NULL;
3798 
3799   // only allow library name without path component
3800   assert(strchr(name, '\\') == NULL, "path not allowed");
3801   assert(strchr(name, ':') == NULL, "path not allowed");
3802   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3803     jio_snprintf(ebuf, ebuflen,
3804                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3805     return NULL;
3806   }
3807 
3808   // search system directory
3809   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3810     if (size >= pathLen) {
3811       return NULL; // truncated
3812     }
3813     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3814       return NULL; // truncated
3815     }
3816     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3817       return result;
3818     }
3819   }
3820 
3821   // try Windows directory
3822   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3823     if (size >= pathLen) {
3824       return NULL; // truncated
3825     }
3826     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3827       return NULL; // truncated
3828     }
3829     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3830       return result;
3831     }
3832   }
3833 
3834   jio_snprintf(ebuf, ebuflen,
3835                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3836   return NULL;
3837 }
3838 
3839 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3840 
3841 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3842   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3843   return TRUE;
3844 }
3845 
3846 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3847   // Basic approach:
3848   //  - Each exiting thread registers its intent to exit and then does so.
3849   //  - A thread trying to terminate the process must wait for all
3850   //    threads currently exiting to complete their exit.
3851 
3852   if (os::win32::has_exit_bug()) {
3853     // The array holds handles of the threads that have started exiting by calling
3854     // _endthreadex().
3855     // Should be large enough to avoid blocking the exiting thread due to lack of
3856     // a free slot.
3857     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3858     static int handle_count = 0;
3859 
3860     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3861     static CRITICAL_SECTION crit_sect;
3862     static volatile jint process_exiting = 0;
3863     int i, j;
3864     DWORD res;
3865     HANDLE hproc, hthr;
3866 
3867     // The first thread that reached this point, initializes the critical section.
3868     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3869       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3870     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3871       EnterCriticalSection(&crit_sect);
3872 
3873       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3874         // Remove from the array those handles of the threads that have completed exiting.
3875         for (i = 0, j = 0; i < handle_count; ++i) {
3876           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3877           if (res == WAIT_TIMEOUT) {
3878             handles[j++] = handles[i];
3879           } else {
3880             if (res == WAIT_FAILED) {
3881               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3882                       GetLastError(), __FILE__, __LINE__);
3883             }
3884             // Don't keep the handle, if we failed waiting for it.
3885             CloseHandle(handles[i]);
3886           }
3887         }
3888 
3889         // If there's no free slot in the array of the kept handles, we'll have to
3890         // wait until at least one thread completes exiting.
3891         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3892           // Raise the priority of the oldest exiting thread to increase its chances
3893           // to complete sooner.
3894           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3895           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3896           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3897             i = (res - WAIT_OBJECT_0);
3898             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3899             for (; i < handle_count; ++i) {
3900               handles[i] = handles[i + 1];
3901             }
3902           } else {
3903             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3904                     (res == WAIT_FAILED ? "failed" : "timed out"),
3905                     GetLastError(), __FILE__, __LINE__);
3906             // Don't keep handles, if we failed waiting for them.
3907             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3908               CloseHandle(handles[i]);
3909             }
3910             handle_count = 0;
3911           }
3912         }
3913 
3914         // Store a duplicate of the current thread handle in the array of handles.
3915         hproc = GetCurrentProcess();
3916         hthr = GetCurrentThread();
3917         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3918                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3919           warning("DuplicateHandle failed (%u) in %s: %d\n",
3920                   GetLastError(), __FILE__, __LINE__);
3921         } else {
3922           ++handle_count;
3923         }
3924 
3925         // The current exiting thread has stored its handle in the array, and now
3926         // should leave the critical section before calling _endthreadex().
3927 
3928       } else if (what != EPT_THREAD) {
3929         if (handle_count > 0) {
3930           // Before ending the process, make sure all the threads that had called
3931           // _endthreadex() completed.
3932 
3933           // Set the priority level of the current thread to the same value as
3934           // the priority level of exiting threads.
3935           // This is to ensure it will be given a fair chance to execute if
3936           // the timeout expires.
3937           hthr = GetCurrentThread();
3938           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3939           for (i = 0; i < handle_count; ++i) {
3940             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3941           }
3942           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3943           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3944             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3945                     (res == WAIT_FAILED ? "failed" : "timed out"),
3946                     GetLastError(), __FILE__, __LINE__);
3947           }
3948           for (i = 0; i < handle_count; ++i) {
3949             CloseHandle(handles[i]);
3950           }
3951           handle_count = 0;
3952         }
3953 
3954         OrderAccess::release_store(&process_exiting, 1);
3955       }
3956 
3957       LeaveCriticalSection(&crit_sect);
3958     }
3959 
3960     if (what == EPT_THREAD) {
3961       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3962         // Some other thread is about to call exit(), so we
3963         // don't let the current thread proceed to _endthreadex()
3964         SuspendThread(GetCurrentThread());
3965         // Avoid busy-wait loop, if SuspendThread() failed.
3966         Sleep(EXIT_TIMEOUT);
3967       }
3968     }
3969   }
3970 
3971   // We are here if either
3972   // - there's no 'race at exit' bug on this OS release;
3973   // - initialization of the critical section failed (unlikely);
3974   // - the current thread has stored its handle and left the critical section;
3975   // - the process-exiting thread has raised the flag and left the critical section.
3976   if (what == EPT_THREAD) {
3977     _endthreadex((unsigned)exit_code);
3978   } else if (what == EPT_PROCESS) {
3979     ::exit(exit_code);
3980   } else {
3981     _exit(exit_code);
3982   }
3983 
3984   // Should not reach here
3985   return exit_code;
3986 }
3987 
3988 #undef EXIT_TIMEOUT
3989 
3990 void os::win32::setmode_streams() {
3991   _setmode(_fileno(stdin), _O_BINARY);
3992   _setmode(_fileno(stdout), _O_BINARY);
3993   _setmode(_fileno(stderr), _O_BINARY);
3994 }
3995 
3996 
3997 bool os::is_debugger_attached() {
3998   return IsDebuggerPresent() ? true : false;
3999 }
4000 
4001 
4002 void os::wait_for_keypress_at_exit(void) {
4003   if (PauseAtExit) {
4004     fprintf(stderr, "Press any key to continue...\n");
4005     fgetc(stdin);
4006   }
4007 }
4008 
4009 
4010 int os::message_box(const char* title, const char* message) {
4011   int result = MessageBox(NULL, message, title,
4012                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4013   return result == IDYES;
4014 }
4015 
4016 #ifndef PRODUCT
4017 #ifndef _WIN64
4018 // Helpers to check whether NX protection is enabled
4019 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4020   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4021       pex->ExceptionRecord->NumberParameters > 0 &&
4022       pex->ExceptionRecord->ExceptionInformation[0] ==
4023       EXCEPTION_INFO_EXEC_VIOLATION) {
4024     return EXCEPTION_EXECUTE_HANDLER;
4025   }
4026   return EXCEPTION_CONTINUE_SEARCH;
4027 }
4028 
4029 void nx_check_protection() {
4030   // If NX is enabled we'll get an exception calling into code on the stack
4031   char code[] = { (char)0xC3 }; // ret
4032   void *code_ptr = (void *)code;
4033   __try {
4034     __asm call code_ptr
4035   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4036     tty->print_raw_cr("NX protection detected.");
4037   }
4038 }
4039 #endif // _WIN64
4040 #endif // PRODUCT
4041 
4042 // this is called _before_ the global arguments have been parsed
4043 void os::init(void) {
4044   _initial_pid = _getpid();
4045 
4046   init_random(1234567);
4047 
4048   win32::initialize_system_info();
4049   win32::setmode_streams();
4050   init_page_sizes((size_t) win32::vm_page_size());
4051 
4052   // This may be overridden later when argument processing is done.
4053   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4054                 os::win32::is_windows_2003());
4055 
4056   // Initialize main_process and main_thread
4057   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4058   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4059                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4060     fatal("DuplicateHandle failed\n");
4061   }
4062   main_thread_id = (int) GetCurrentThreadId();
4063 
4064   // initialize fast thread access - only used for 32-bit
4065   win32::initialize_thread_ptr_offset();
4066 }
4067 
4068 // To install functions for atexit processing
4069 extern "C" {
4070   static void perfMemory_exit_helper() {
4071     perfMemory_exit();
4072   }
4073 }
4074 
4075 static jint initSock();
4076 
4077 // this is called _after_ the global arguments have been parsed
4078 jint os::init_2(void) {
4079   // Allocate a single page and mark it as readable for safepoint polling
4080   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4081   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4082 
4083   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4084   guarantee(return_page != NULL, "Commit Failed for polling page");
4085 
4086   os::set_polling_page(polling_page);
4087 
4088 #ifndef PRODUCT
4089   if (Verbose && PrintMiscellaneous) {
4090     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4091                (intptr_t)polling_page);
4092   }
4093 #endif
4094 
4095   if (!UseMembar) {
4096     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4097     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4098 
4099     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4100     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4101 
4102     os::set_memory_serialize_page(mem_serialize_page);
4103 
4104 #ifndef PRODUCT
4105     if (Verbose && PrintMiscellaneous) {
4106       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4107                  (intptr_t)mem_serialize_page);
4108     }
4109 #endif
4110   }
4111 
4112   // Setup Windows Exceptions
4113 
4114   // for debugging float code generation bugs
4115   if (ForceFloatExceptions) {
4116 #ifndef  _WIN64
4117     static long fp_control_word = 0;
4118     __asm { fstcw fp_control_word }
4119     // see Intel PPro Manual, Vol. 2, p 7-16
4120     const long precision = 0x20;
4121     const long underflow = 0x10;
4122     const long overflow  = 0x08;
4123     const long zero_div  = 0x04;
4124     const long denorm    = 0x02;
4125     const long invalid   = 0x01;
4126     fp_control_word |= invalid;
4127     __asm { fldcw fp_control_word }
4128 #endif
4129   }
4130 
4131   // If stack_commit_size is 0, windows will reserve the default size,
4132   // but only commit a small portion of it.
4133   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4134   size_t default_reserve_size = os::win32::default_stack_size();
4135   size_t actual_reserve_size = stack_commit_size;
4136   if (stack_commit_size < default_reserve_size) {
4137     // If stack_commit_size == 0, we want this too
4138     actual_reserve_size = default_reserve_size;
4139   }
4140 
4141   // Check minimum allowable stack size for thread creation and to initialize
4142   // the java system classes, including StackOverflowError - depends on page
4143   // size.  Add a page for compiler2 recursion in main thread.
4144   // Add in 2*BytesPerWord times page size to account for VM stack during
4145   // class initialization depending on 32 or 64 bit VM.
4146   size_t min_stack_allowed =
4147             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4148                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4149   if (actual_reserve_size < min_stack_allowed) {
4150     tty->print_cr("\nThe stack size specified is too small, "
4151                   "Specify at least %dk",
4152                   min_stack_allowed / K);
4153     return JNI_ERR;
4154   }
4155 
4156   JavaThread::set_stack_size_at_create(stack_commit_size);
4157 
4158   // Calculate theoretical max. size of Threads to guard gainst artifical
4159   // out-of-memory situations, where all available address-space has been
4160   // reserved by thread stacks.
4161   assert(actual_reserve_size != 0, "Must have a stack");
4162 
4163   // Calculate the thread limit when we should start doing Virtual Memory
4164   // banging. Currently when the threads will have used all but 200Mb of space.
4165   //
4166   // TODO: consider performing a similar calculation for commit size instead
4167   // as reserve size, since on a 64-bit platform we'll run into that more
4168   // often than running out of virtual memory space.  We can use the
4169   // lower value of the two calculations as the os_thread_limit.
4170   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4171   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4172 
4173   // at exit methods are called in the reverse order of their registration.
4174   // there is no limit to the number of functions registered. atexit does
4175   // not set errno.
4176 
4177   if (PerfAllowAtExitRegistration) {
4178     // only register atexit functions if PerfAllowAtExitRegistration is set.
4179     // atexit functions can be delayed until process exit time, which
4180     // can be problematic for embedded VM situations. Embedded VMs should
4181     // call DestroyJavaVM() to assure that VM resources are released.
4182 
4183     // note: perfMemory_exit_helper atexit function may be removed in
4184     // the future if the appropriate cleanup code can be added to the
4185     // VM_Exit VMOperation's doit method.
4186     if (atexit(perfMemory_exit_helper) != 0) {
4187       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4188     }
4189   }
4190 
4191 #ifndef _WIN64
4192   // Print something if NX is enabled (win32 on AMD64)
4193   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4194 #endif
4195 
4196   // initialize thread priority policy
4197   prio_init();
4198 
4199   if (UseNUMA && !ForceNUMA) {
4200     UseNUMA = false; // We don't fully support this yet
4201   }
4202 
4203   if (UseNUMAInterleaving) {
4204     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4205     bool success = numa_interleaving_init();
4206     if (!success) UseNUMAInterleaving = false;
4207   }
4208 
4209   if (initSock() != JNI_OK) {
4210     return JNI_ERR;
4211   }
4212 
4213   return JNI_OK;
4214 }
4215 
4216 // Mark the polling page as unreadable
4217 void os::make_polling_page_unreadable(void) {
4218   DWORD old_status;
4219   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4220                       PAGE_NOACCESS, &old_status)) {
4221     fatal("Could not disable polling page");
4222   }
4223 }
4224 
4225 // Mark the polling page as readable
4226 void os::make_polling_page_readable(void) {
4227   DWORD old_status;
4228   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4229                       PAGE_READONLY, &old_status)) {
4230     fatal("Could not enable polling page");
4231   }
4232 }
4233 
4234 
4235 int os::stat(const char *path, struct stat *sbuf) {
4236   char pathbuf[MAX_PATH];
4237   if (strlen(path) > MAX_PATH - 1) {
4238     errno = ENAMETOOLONG;
4239     return -1;
4240   }
4241   os::native_path(strcpy(pathbuf, path));
4242   int ret = ::stat(pathbuf, sbuf);
4243   if (sbuf != NULL && UseUTCFileTimestamp) {
4244     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4245     // the system timezone and so can return different values for the
4246     // same file if/when daylight savings time changes.  This adjustment
4247     // makes sure the same timestamp is returned regardless of the TZ.
4248     //
4249     // See:
4250     // http://msdn.microsoft.com/library/
4251     //   default.asp?url=/library/en-us/sysinfo/base/
4252     //   time_zone_information_str.asp
4253     // and
4254     // http://msdn.microsoft.com/library/default.asp?url=
4255     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4256     //
4257     // NOTE: there is a insidious bug here:  If the timezone is changed
4258     // after the call to stat() but before 'GetTimeZoneInformation()', then
4259     // the adjustment we do here will be wrong and we'll return the wrong
4260     // value (which will likely end up creating an invalid class data
4261     // archive).  Absent a better API for this, or some time zone locking
4262     // mechanism, we'll have to live with this risk.
4263     TIME_ZONE_INFORMATION tz;
4264     DWORD tzid = GetTimeZoneInformation(&tz);
4265     int daylightBias =
4266       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4267     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4268   }
4269   return ret;
4270 }
4271 
4272 
4273 #define FT2INT64(ft) \
4274   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4275 
4276 
4277 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4278 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4279 // of a thread.
4280 //
4281 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4282 // the fast estimate available on the platform.
4283 
4284 // current_thread_cpu_time() is not optimized for Windows yet
4285 jlong os::current_thread_cpu_time() {
4286   // return user + sys since the cost is the same
4287   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4288 }
4289 
4290 jlong os::thread_cpu_time(Thread* thread) {
4291   // consistent with what current_thread_cpu_time() returns.
4292   return os::thread_cpu_time(thread, true /* user+sys */);
4293 }
4294 
4295 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4296   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4297 }
4298 
4299 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4300   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4301   // If this function changes, os::is_thread_cpu_time_supported() should too
4302   if (os::win32::is_nt()) {
4303     FILETIME CreationTime;
4304     FILETIME ExitTime;
4305     FILETIME KernelTime;
4306     FILETIME UserTime;
4307 
4308     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4309                        &ExitTime, &KernelTime, &UserTime) == 0) {
4310       return -1;
4311     } else if (user_sys_cpu_time) {
4312       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4313     } else {
4314       return FT2INT64(UserTime) * 100;
4315     }
4316   } else {
4317     return (jlong) timeGetTime() * 1000000;
4318   }
4319 }
4320 
4321 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4322   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4323   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4324   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4325   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4326 }
4327 
4328 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4329   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4330   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4331   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4332   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4333 }
4334 
4335 bool os::is_thread_cpu_time_supported() {
4336   // see os::thread_cpu_time
4337   if (os::win32::is_nt()) {
4338     FILETIME CreationTime;
4339     FILETIME ExitTime;
4340     FILETIME KernelTime;
4341     FILETIME UserTime;
4342 
4343     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4344                        &KernelTime, &UserTime) == 0) {
4345       return false;
4346     } else {
4347       return true;
4348     }
4349   } else {
4350     return false;
4351   }
4352 }
4353 
4354 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4355 // It does have primitives (PDH API) to get CPU usage and run queue length.
4356 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4357 // If we wanted to implement loadavg on Windows, we have a few options:
4358 //
4359 // a) Query CPU usage and run queue length and "fake" an answer by
4360 //    returning the CPU usage if it's under 100%, and the run queue
4361 //    length otherwise.  It turns out that querying is pretty slow
4362 //    on Windows, on the order of 200 microseconds on a fast machine.
4363 //    Note that on the Windows the CPU usage value is the % usage
4364 //    since the last time the API was called (and the first call
4365 //    returns 100%), so we'd have to deal with that as well.
4366 //
4367 // b) Sample the "fake" answer using a sampling thread and store
4368 //    the answer in a global variable.  The call to loadavg would
4369 //    just return the value of the global, avoiding the slow query.
4370 //
4371 // c) Sample a better answer using exponential decay to smooth the
4372 //    value.  This is basically the algorithm used by UNIX kernels.
4373 //
4374 // Note that sampling thread starvation could affect both (b) and (c).
4375 int os::loadavg(double loadavg[], int nelem) {
4376   return -1;
4377 }
4378 
4379 
4380 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4381 bool os::dont_yield() {
4382   return DontYieldALot;
4383 }
4384 
4385 // This method is a slightly reworked copy of JDK's sysOpen
4386 // from src/windows/hpi/src/sys_api_md.c
4387 
4388 int os::open(const char *path, int oflag, int mode) {
4389   char pathbuf[MAX_PATH];
4390 
4391   if (strlen(path) > MAX_PATH - 1) {
4392     errno = ENAMETOOLONG;
4393     return -1;
4394   }
4395   os::native_path(strcpy(pathbuf, path));
4396   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4397 }
4398 
4399 FILE* os::open(int fd, const char* mode) {
4400   return ::_fdopen(fd, mode);
4401 }
4402 
4403 // Is a (classpath) directory empty?
4404 bool os::dir_is_empty(const char* path) {
4405   WIN32_FIND_DATA fd;
4406   HANDLE f = FindFirstFile(path, &fd);
4407   if (f == INVALID_HANDLE_VALUE) {
4408     return true;
4409   }
4410   FindClose(f);
4411   return false;
4412 }
4413 
4414 // create binary file, rewriting existing file if required
4415 int os::create_binary_file(const char* path, bool rewrite_existing) {
4416   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4417   if (!rewrite_existing) {
4418     oflags |= _O_EXCL;
4419   }
4420   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4421 }
4422 
4423 // return current position of file pointer
4424 jlong os::current_file_offset(int fd) {
4425   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4426 }
4427 
4428 // move file pointer to the specified offset
4429 jlong os::seek_to_file_offset(int fd, jlong offset) {
4430   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4431 }
4432 
4433 
4434 jlong os::lseek(int fd, jlong offset, int whence) {
4435   return (jlong) ::_lseeki64(fd, offset, whence);
4436 }
4437 
4438 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4439   OVERLAPPED ov;
4440   DWORD nread;
4441   BOOL result;
4442 
4443   ZeroMemory(&ov, sizeof(ov));
4444   ov.Offset = (DWORD)offset;
4445   ov.OffsetHigh = (DWORD)(offset >> 32);
4446 
4447   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4448 
4449   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4450 
4451   return result ? nread : 0;
4452 }
4453 
4454 
4455 // This method is a slightly reworked copy of JDK's sysNativePath
4456 // from src/windows/hpi/src/path_md.c
4457 
4458 // Convert a pathname to native format.  On win32, this involves forcing all
4459 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4460 // sometimes rejects '/') and removing redundant separators.  The input path is
4461 // assumed to have been converted into the character encoding used by the local
4462 // system.  Because this might be a double-byte encoding, care is taken to
4463 // treat double-byte lead characters correctly.
4464 //
4465 // This procedure modifies the given path in place, as the result is never
4466 // longer than the original.  There is no error return; this operation always
4467 // succeeds.
4468 char * os::native_path(char *path) {
4469   char *src = path, *dst = path, *end = path;
4470   char *colon = NULL;  // If a drive specifier is found, this will
4471                        // point to the colon following the drive letter
4472 
4473   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4474   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4475           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4476 
4477   // Check for leading separators
4478 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4479   while (isfilesep(*src)) {
4480     src++;
4481   }
4482 
4483   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4484     // Remove leading separators if followed by drive specifier.  This
4485     // hack is necessary to support file URLs containing drive
4486     // specifiers (e.g., "file://c:/path").  As a side effect,
4487     // "/c:/path" can be used as an alternative to "c:/path".
4488     *dst++ = *src++;
4489     colon = dst;
4490     *dst++ = ':';
4491     src++;
4492   } else {
4493     src = path;
4494     if (isfilesep(src[0]) && isfilesep(src[1])) {
4495       // UNC pathname: Retain first separator; leave src pointed at
4496       // second separator so that further separators will be collapsed
4497       // into the second separator.  The result will be a pathname
4498       // beginning with "\\\\" followed (most likely) by a host name.
4499       src = dst = path + 1;
4500       path[0] = '\\';     // Force first separator to '\\'
4501     }
4502   }
4503 
4504   end = dst;
4505 
4506   // Remove redundant separators from remainder of path, forcing all
4507   // separators to be '\\' rather than '/'. Also, single byte space
4508   // characters are removed from the end of the path because those
4509   // are not legal ending characters on this operating system.
4510   //
4511   while (*src != '\0') {
4512     if (isfilesep(*src)) {
4513       *dst++ = '\\'; src++;
4514       while (isfilesep(*src)) src++;
4515       if (*src == '\0') {
4516         // Check for trailing separator
4517         end = dst;
4518         if (colon == dst - 2) break;  // "z:\\"
4519         if (dst == path + 1) break;   // "\\"
4520         if (dst == path + 2 && isfilesep(path[0])) {
4521           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4522           // beginning of a UNC pathname.  Even though it is not, by
4523           // itself, a valid UNC pathname, we leave it as is in order
4524           // to be consistent with the path canonicalizer as well
4525           // as the win32 APIs, which treat this case as an invalid
4526           // UNC pathname rather than as an alias for the root
4527           // directory of the current drive.
4528           break;
4529         }
4530         end = --dst;  // Path does not denote a root directory, so
4531                       // remove trailing separator
4532         break;
4533       }
4534       end = dst;
4535     } else {
4536       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4537         *dst++ = *src++;
4538         if (*src) *dst++ = *src++;
4539         end = dst;
4540       } else {  // Copy a single-byte character
4541         char c = *src++;
4542         *dst++ = c;
4543         // Space is not a legal ending character
4544         if (c != ' ') end = dst;
4545       }
4546     }
4547   }
4548 
4549   *end = '\0';
4550 
4551   // For "z:", add "." to work around a bug in the C runtime library
4552   if (colon == dst - 1) {
4553     path[2] = '.';
4554     path[3] = '\0';
4555   }
4556 
4557   return path;
4558 }
4559 
4560 // This code is a copy of JDK's sysSetLength
4561 // from src/windows/hpi/src/sys_api_md.c
4562 
4563 int os::ftruncate(int fd, jlong length) {
4564   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4565   long high = (long)(length >> 32);
4566   DWORD ret;
4567 
4568   if (h == (HANDLE)(-1)) {
4569     return -1;
4570   }
4571 
4572   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4573   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4574     return -1;
4575   }
4576 
4577   if (::SetEndOfFile(h) == FALSE) {
4578     return -1;
4579   }
4580 
4581   return 0;
4582 }
4583 
4584 
4585 // This code is a copy of JDK's sysSync
4586 // from src/windows/hpi/src/sys_api_md.c
4587 // except for the legacy workaround for a bug in Win 98
4588 
4589 int os::fsync(int fd) {
4590   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4591 
4592   if ((!::FlushFileBuffers(handle)) &&
4593       (GetLastError() != ERROR_ACCESS_DENIED)) {
4594     // from winerror.h
4595     return -1;
4596   }
4597   return 0;
4598 }
4599 
4600 static int nonSeekAvailable(int, long *);
4601 static int stdinAvailable(int, long *);
4602 
4603 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4604 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4605 
4606 // This code is a copy of JDK's sysAvailable
4607 // from src/windows/hpi/src/sys_api_md.c
4608 
4609 int os::available(int fd, jlong *bytes) {
4610   jlong cur, end;
4611   struct _stati64 stbuf64;
4612 
4613   if (::_fstati64(fd, &stbuf64) >= 0) {
4614     int mode = stbuf64.st_mode;
4615     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4616       int ret;
4617       long lpbytes;
4618       if (fd == 0) {
4619         ret = stdinAvailable(fd, &lpbytes);
4620       } else {
4621         ret = nonSeekAvailable(fd, &lpbytes);
4622       }
4623       (*bytes) = (jlong)(lpbytes);
4624       return ret;
4625     }
4626     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4627       return FALSE;
4628     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4629       return FALSE;
4630     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4631       return FALSE;
4632     }
4633     *bytes = end - cur;
4634     return TRUE;
4635   } else {
4636     return FALSE;
4637   }
4638 }
4639 
4640 // This code is a copy of JDK's nonSeekAvailable
4641 // from src/windows/hpi/src/sys_api_md.c
4642 
4643 static int nonSeekAvailable(int fd, long *pbytes) {
4644   // This is used for available on non-seekable devices
4645   // (like both named and anonymous pipes, such as pipes
4646   //  connected to an exec'd process).
4647   // Standard Input is a special case.
4648   HANDLE han;
4649 
4650   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4651     return FALSE;
4652   }
4653 
4654   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4655     // PeekNamedPipe fails when at EOF.  In that case we
4656     // simply make *pbytes = 0 which is consistent with the
4657     // behavior we get on Solaris when an fd is at EOF.
4658     // The only alternative is to raise an Exception,
4659     // which isn't really warranted.
4660     //
4661     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4662       return FALSE;
4663     }
4664     *pbytes = 0;
4665   }
4666   return TRUE;
4667 }
4668 
4669 #define MAX_INPUT_EVENTS 2000
4670 
4671 // This code is a copy of JDK's stdinAvailable
4672 // from src/windows/hpi/src/sys_api_md.c
4673 
4674 static int stdinAvailable(int fd, long *pbytes) {
4675   HANDLE han;
4676   DWORD numEventsRead = 0;  // Number of events read from buffer
4677   DWORD numEvents = 0;      // Number of events in buffer
4678   DWORD i = 0;              // Loop index
4679   DWORD curLength = 0;      // Position marker
4680   DWORD actualLength = 0;   // Number of bytes readable
4681   BOOL error = FALSE;       // Error holder
4682   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4683 
4684   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4685     return FALSE;
4686   }
4687 
4688   // Construct an array of input records in the console buffer
4689   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4690   if (error == 0) {
4691     return nonSeekAvailable(fd, pbytes);
4692   }
4693 
4694   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4695   if (numEvents > MAX_INPUT_EVENTS) {
4696     numEvents = MAX_INPUT_EVENTS;
4697   }
4698 
4699   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4700   if (lpBuffer == NULL) {
4701     return FALSE;
4702   }
4703 
4704   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4705   if (error == 0) {
4706     os::free(lpBuffer);
4707     return FALSE;
4708   }
4709 
4710   // Examine input records for the number of bytes available
4711   for (i=0; i<numEvents; i++) {
4712     if (lpBuffer[i].EventType == KEY_EVENT) {
4713 
4714       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4715                                       &(lpBuffer[i].Event);
4716       if (keyRecord->bKeyDown == TRUE) {
4717         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4718         curLength++;
4719         if (*keyPressed == '\r') {
4720           actualLength = curLength;
4721         }
4722       }
4723     }
4724   }
4725 
4726   if (lpBuffer != NULL) {
4727     os::free(lpBuffer);
4728   }
4729 
4730   *pbytes = (long) actualLength;
4731   return TRUE;
4732 }
4733 
4734 // Map a block of memory.
4735 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4736                         char *addr, size_t bytes, bool read_only,
4737                         bool allow_exec) {
4738   HANDLE hFile;
4739   char* base;
4740 
4741   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4742                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4743   if (hFile == NULL) {
4744     if (PrintMiscellaneous && Verbose) {
4745       DWORD err = GetLastError();
4746       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4747     }
4748     return NULL;
4749   }
4750 
4751   if (allow_exec) {
4752     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4753     // unless it comes from a PE image (which the shared archive is not.)
4754     // Even VirtualProtect refuses to give execute access to mapped memory
4755     // that was not previously executable.
4756     //
4757     // Instead, stick the executable region in anonymous memory.  Yuck.
4758     // Penalty is that ~4 pages will not be shareable - in the future
4759     // we might consider DLLizing the shared archive with a proper PE
4760     // header so that mapping executable + sharing is possible.
4761 
4762     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4763                                 PAGE_READWRITE);
4764     if (base == NULL) {
4765       if (PrintMiscellaneous && Verbose) {
4766         DWORD err = GetLastError();
4767         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4768       }
4769       CloseHandle(hFile);
4770       return NULL;
4771     }
4772 
4773     DWORD bytes_read;
4774     OVERLAPPED overlapped;
4775     overlapped.Offset = (DWORD)file_offset;
4776     overlapped.OffsetHigh = 0;
4777     overlapped.hEvent = NULL;
4778     // ReadFile guarantees that if the return value is true, the requested
4779     // number of bytes were read before returning.
4780     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4781     if (!res) {
4782       if (PrintMiscellaneous && Verbose) {
4783         DWORD err = GetLastError();
4784         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4785       }
4786       release_memory(base, bytes);
4787       CloseHandle(hFile);
4788       return NULL;
4789     }
4790   } else {
4791     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4792                                     NULL /* file_name */);
4793     if (hMap == NULL) {
4794       if (PrintMiscellaneous && Verbose) {
4795         DWORD err = GetLastError();
4796         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4797       }
4798       CloseHandle(hFile);
4799       return NULL;
4800     }
4801 
4802     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4803     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4804                                   (DWORD)bytes, addr);
4805     if (base == NULL) {
4806       if (PrintMiscellaneous && Verbose) {
4807         DWORD err = GetLastError();
4808         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4809       }
4810       CloseHandle(hMap);
4811       CloseHandle(hFile);
4812       return NULL;
4813     }
4814 
4815     if (CloseHandle(hMap) == 0) {
4816       if (PrintMiscellaneous && Verbose) {
4817         DWORD err = GetLastError();
4818         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4819       }
4820       CloseHandle(hFile);
4821       return base;
4822     }
4823   }
4824 
4825   if (allow_exec) {
4826     DWORD old_protect;
4827     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4828     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4829 
4830     if (!res) {
4831       if (PrintMiscellaneous && Verbose) {
4832         DWORD err = GetLastError();
4833         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4834       }
4835       // Don't consider this a hard error, on IA32 even if the
4836       // VirtualProtect fails, we should still be able to execute
4837       CloseHandle(hFile);
4838       return base;
4839     }
4840   }
4841 
4842   if (CloseHandle(hFile) == 0) {
4843     if (PrintMiscellaneous && Verbose) {
4844       DWORD err = GetLastError();
4845       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4846     }
4847     return base;
4848   }
4849 
4850   return base;
4851 }
4852 
4853 
4854 // Remap a block of memory.
4855 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4856                           char *addr, size_t bytes, bool read_only,
4857                           bool allow_exec) {
4858   // This OS does not allow existing memory maps to be remapped so we
4859   // have to unmap the memory before we remap it.
4860   if (!os::unmap_memory(addr, bytes)) {
4861     return NULL;
4862   }
4863 
4864   // There is a very small theoretical window between the unmap_memory()
4865   // call above and the map_memory() call below where a thread in native
4866   // code may be able to access an address that is no longer mapped.
4867 
4868   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4869                         read_only, allow_exec);
4870 }
4871 
4872 
4873 // Unmap a block of memory.
4874 // Returns true=success, otherwise false.
4875 
4876 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4877   MEMORY_BASIC_INFORMATION mem_info;
4878   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4879     if (PrintMiscellaneous && Verbose) {
4880       DWORD err = GetLastError();
4881       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4882     }
4883     return false;
4884   }
4885 
4886   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4887   // Instead, executable region was allocated using VirtualAlloc(). See
4888   // pd_map_memory() above.
4889   //
4890   // The following flags should match the 'exec_access' flages used for
4891   // VirtualProtect() in pd_map_memory().
4892   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4893       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4894     return pd_release_memory(addr, bytes);
4895   }
4896 
4897   BOOL result = UnmapViewOfFile(addr);
4898   if (result == 0) {
4899     if (PrintMiscellaneous && Verbose) {
4900       DWORD err = GetLastError();
4901       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4902     }
4903     return false;
4904   }
4905   return true;
4906 }
4907 
4908 void os::pause() {
4909   char filename[MAX_PATH];
4910   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4911     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4912   } else {
4913     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4914   }
4915 
4916   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4917   if (fd != -1) {
4918     struct stat buf;
4919     ::close(fd);
4920     while (::stat(filename, &buf) == 0) {
4921       Sleep(100);
4922     }
4923   } else {
4924     jio_fprintf(stderr,
4925                 "Could not open pause file '%s', continuing immediately.\n", filename);
4926   }
4927 }
4928 
4929 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4930   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4931 }
4932 
4933 // See the caveats for this class in os_windows.hpp
4934 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4935 // into this method and returns false. If no OS EXCEPTION was raised, returns
4936 // true.
4937 // The callback is supposed to provide the method that should be protected.
4938 //
4939 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4940   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4941   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4942          "crash_protection already set?");
4943 
4944   bool success = true;
4945   __try {
4946     WatcherThread::watcher_thread()->set_crash_protection(this);
4947     cb.call();
4948   } __except(EXCEPTION_EXECUTE_HANDLER) {
4949     // only for protection, nothing to do
4950     success = false;
4951   }
4952   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4953   return success;
4954 }
4955 
4956 // An Event wraps a win32 "CreateEvent" kernel handle.
4957 //
4958 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4959 //
4960 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4961 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4962 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4963 //     In addition, an unpark() operation might fetch the handle field, but the
4964 //     event could recycle between the fetch and the SetEvent() operation.
4965 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4966 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4967 //     on an stale but recycled handle would be harmless, but in practice this might
4968 //     confuse other non-Sun code, so it's not a viable approach.
4969 //
4970 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4971 //     with the Event.  The event handle is never closed.  This could be construed
4972 //     as handle leakage, but only up to the maximum # of threads that have been extant
4973 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4974 //     permit a process to have hundreds of thousands of open handles.
4975 //
4976 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4977 //     and release unused handles.
4978 //
4979 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4980 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4981 //
4982 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4983 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4984 //
4985 // We use (2).
4986 //
4987 // TODO-FIXME:
4988 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4989 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4990 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4991 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4992 //     into a single win32 CreateEvent() handle.
4993 //
4994 // Assumption:
4995 //    Only one parker can exist on an event, which is why we allocate
4996 //    them per-thread. Multiple unparkers can coexist.
4997 //
4998 // _Event transitions in park()
4999 //   -1 => -1 : illegal
5000 //    1 =>  0 : pass - return immediately
5001 //    0 => -1 : block; then set _Event to 0 before returning
5002 //
5003 // _Event transitions in unpark()
5004 //    0 => 1 : just return
5005 //    1 => 1 : just return
5006 //   -1 => either 0 or 1; must signal target thread
5007 //         That is, we can safely transition _Event from -1 to either
5008 //         0 or 1.
5009 //
5010 // _Event serves as a restricted-range semaphore.
5011 //   -1 : thread is blocked, i.e. there is a waiter
5012 //    0 : neutral: thread is running or ready,
5013 //        could have been signaled after a wait started
5014 //    1 : signaled - thread is running or ready
5015 //
5016 // Another possible encoding of _Event would be with
5017 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5018 //
5019 
5020 int os::PlatformEvent::park(jlong Millis) {
5021   // Transitions for _Event:
5022   //   -1 => -1 : illegal
5023   //    1 =>  0 : pass - return immediately
5024   //    0 => -1 : block; then set _Event to 0 before returning
5025 
5026   guarantee(_ParkHandle != NULL , "Invariant");
5027   guarantee(Millis > 0          , "Invariant");
5028 
5029   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5030   // the initial park() operation.
5031   // Consider: use atomic decrement instead of CAS-loop
5032 
5033   int v;
5034   for (;;) {
5035     v = _Event;
5036     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5037   }
5038   guarantee((v == 0) || (v == 1), "invariant");
5039   if (v != 0) return OS_OK;
5040 
5041   // Do this the hard way by blocking ...
5042   // TODO: consider a brief spin here, gated on the success of recent
5043   // spin attempts by this thread.
5044   //
5045   // We decompose long timeouts into series of shorter timed waits.
5046   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5047   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5048   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5049   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5050   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5051   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5052   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5053   // for the already waited time.  This policy does not admit any new outcomes.
5054   // In the future, however, we might want to track the accumulated wait time and
5055   // adjust Millis accordingly if we encounter a spurious wakeup.
5056 
5057   const int MAXTIMEOUT = 0x10000000;
5058   DWORD rv = WAIT_TIMEOUT;
5059   while (_Event < 0 && Millis > 0) {
5060     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5061     if (Millis > MAXTIMEOUT) {
5062       prd = MAXTIMEOUT;
5063     }
5064     rv = ::WaitForSingleObject(_ParkHandle, prd);
5065     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5066     if (rv == WAIT_TIMEOUT) {
5067       Millis -= prd;
5068     }
5069   }
5070   v = _Event;
5071   _Event = 0;
5072   // see comment at end of os::PlatformEvent::park() below:
5073   OrderAccess::fence();
5074   // If we encounter a nearly simultanous timeout expiry and unpark()
5075   // we return OS_OK indicating we awoke via unpark().
5076   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5077   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5078 }
5079 
5080 void os::PlatformEvent::park() {
5081   // Transitions for _Event:
5082   //   -1 => -1 : illegal
5083   //    1 =>  0 : pass - return immediately
5084   //    0 => -1 : block; then set _Event to 0 before returning
5085 
5086   guarantee(_ParkHandle != NULL, "Invariant");
5087   // Invariant: Only the thread associated with the Event/PlatformEvent
5088   // may call park().
5089   // Consider: use atomic decrement instead of CAS-loop
5090   int v;
5091   for (;;) {
5092     v = _Event;
5093     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5094   }
5095   guarantee((v == 0) || (v == 1), "invariant");
5096   if (v != 0) return;
5097 
5098   // Do this the hard way by blocking ...
5099   // TODO: consider a brief spin here, gated on the success of recent
5100   // spin attempts by this thread.
5101   while (_Event < 0) {
5102     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5103     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5104   }
5105 
5106   // Usually we'll find _Event == 0 at this point, but as
5107   // an optional optimization we clear it, just in case can
5108   // multiple unpark() operations drove _Event up to 1.
5109   _Event = 0;
5110   OrderAccess::fence();
5111   guarantee(_Event >= 0, "invariant");
5112 }
5113 
5114 void os::PlatformEvent::unpark() {
5115   guarantee(_ParkHandle != NULL, "Invariant");
5116 
5117   // Transitions for _Event:
5118   //    0 => 1 : just return
5119   //    1 => 1 : just return
5120   //   -1 => either 0 or 1; must signal target thread
5121   //         That is, we can safely transition _Event from -1 to either
5122   //         0 or 1.
5123   // See also: "Semaphores in Plan 9" by Mullender & Cox
5124   //
5125   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5126   // that it will take two back-to-back park() calls for the owning
5127   // thread to block. This has the benefit of forcing a spurious return
5128   // from the first park() call after an unpark() call which will help
5129   // shake out uses of park() and unpark() without condition variables.
5130 
5131   if (Atomic::xchg(1, &_Event) >= 0) return;
5132 
5133   ::SetEvent(_ParkHandle);
5134 }
5135 
5136 
5137 // JSR166
5138 // -------------------------------------------------------
5139 
5140 // The Windows implementation of Park is very straightforward: Basic
5141 // operations on Win32 Events turn out to have the right semantics to
5142 // use them directly. We opportunistically resuse the event inherited
5143 // from Monitor.
5144 
5145 void Parker::park(bool isAbsolute, jlong time) {
5146   guarantee(_ParkEvent != NULL, "invariant");
5147   // First, demultiplex/decode time arguments
5148   if (time < 0) { // don't wait
5149     return;
5150   } else if (time == 0 && !isAbsolute) {
5151     time = INFINITE;
5152   } else if (isAbsolute) {
5153     time -= os::javaTimeMillis(); // convert to relative time
5154     if (time <= 0) {  // already elapsed
5155       return;
5156     }
5157   } else { // relative
5158     time /= 1000000;  // Must coarsen from nanos to millis
5159     if (time == 0) {  // Wait for the minimal time unit if zero
5160       time = 1;
5161     }
5162   }
5163 
5164   Thread* thread = Thread::current();
5165   assert(thread->is_Java_thread(), "Must be JavaThread");
5166   JavaThread *jt = (JavaThread *)thread;
5167 
5168   // Don't wait if interrupted or already triggered
5169   if (Thread::is_interrupted(thread, false) ||
5170       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5171     ResetEvent(_ParkEvent);
5172     return;
5173   } else {
5174     ThreadBlockInVM tbivm(jt);
5175     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5176     jt->set_suspend_equivalent();
5177 
5178     WaitForSingleObject(_ParkEvent, time);
5179     ResetEvent(_ParkEvent);
5180 
5181     // If externally suspended while waiting, re-suspend
5182     if (jt->handle_special_suspend_equivalent_condition()) {
5183       jt->java_suspend_self();
5184     }
5185   }
5186 }
5187 
5188 void Parker::unpark() {
5189   guarantee(_ParkEvent != NULL, "invariant");
5190   SetEvent(_ParkEvent);
5191 }
5192 
5193 // Run the specified command in a separate process. Return its exit value,
5194 // or -1 on failure (e.g. can't create a new process).
5195 int os::fork_and_exec(char* cmd) {
5196   STARTUPINFO si;
5197   PROCESS_INFORMATION pi;
5198 
5199   memset(&si, 0, sizeof(si));
5200   si.cb = sizeof(si);
5201   memset(&pi, 0, sizeof(pi));
5202   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5203                             cmd,    // command line
5204                             NULL,   // process security attribute
5205                             NULL,   // thread security attribute
5206                             TRUE,   // inherits system handles
5207                             0,      // no creation flags
5208                             NULL,   // use parent's environment block
5209                             NULL,   // use parent's starting directory
5210                             &si,    // (in) startup information
5211                             &pi);   // (out) process information
5212 
5213   if (rslt) {
5214     // Wait until child process exits.
5215     WaitForSingleObject(pi.hProcess, INFINITE);
5216 
5217     DWORD exit_code;
5218     GetExitCodeProcess(pi.hProcess, &exit_code);
5219 
5220     // Close process and thread handles.
5221     CloseHandle(pi.hProcess);
5222     CloseHandle(pi.hThread);
5223 
5224     return (int)exit_code;
5225   } else {
5226     return -1;
5227   }
5228 }
5229 
5230 //--------------------------------------------------------------------------------------------------
5231 // Non-product code
5232 
5233 static int mallocDebugIntervalCounter = 0;
5234 static int mallocDebugCounter = 0;
5235 bool os::check_heap(bool force) {
5236   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5237   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5238     // Note: HeapValidate executes two hardware breakpoints when it finds something
5239     // wrong; at these points, eax contains the address of the offending block (I think).
5240     // To get to the exlicit error message(s) below, just continue twice.
5241     HANDLE heap = GetProcessHeap();
5242 
5243     // If we fail to lock the heap, then gflags.exe has been used
5244     // or some other special heap flag has been set that prevents
5245     // locking. We don't try to walk a heap we can't lock.
5246     if (HeapLock(heap) != 0) {
5247       PROCESS_HEAP_ENTRY phe;
5248       phe.lpData = NULL;
5249       while (HeapWalk(heap, &phe) != 0) {
5250         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5251             !HeapValidate(heap, 0, phe.lpData)) {
5252           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5253           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5254           fatal("corrupted C heap");
5255         }
5256       }
5257       DWORD err = GetLastError();
5258       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5259         fatal("heap walk aborted with error %d", err);
5260       }
5261       HeapUnlock(heap);
5262     }
5263     mallocDebugIntervalCounter = 0;
5264   }
5265   return true;
5266 }
5267 
5268 
5269 bool os::find(address addr, outputStream* st) {
5270   // Nothing yet
5271   return false;
5272 }
5273 
5274 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5275   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5276 
5277   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5278     JavaThread* thread = JavaThread::current();
5279     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5280     address addr = (address) exceptionRecord->ExceptionInformation[1];
5281 
5282     if (os::is_memory_serialize_page(thread, addr)) {
5283       return EXCEPTION_CONTINUE_EXECUTION;
5284     }
5285   }
5286 
5287   return EXCEPTION_CONTINUE_SEARCH;
5288 }
5289 
5290 // We don't build a headless jre for Windows
5291 bool os::is_headless_jre() { return false; }
5292 
5293 static jint initSock() {
5294   WSADATA wsadata;
5295 
5296   if (!os::WinSock2Dll::WinSock2Available()) {
5297     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5298                 ::GetLastError());
5299     return JNI_ERR;
5300   }
5301 
5302   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5303     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5304                 ::GetLastError());
5305     return JNI_ERR;
5306   }
5307   return JNI_OK;
5308 }
5309 
5310 struct hostent* os::get_host_by_name(char* name) {
5311   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5312 }
5313 
5314 int os::socket_close(int fd) {
5315   return ::closesocket(fd);
5316 }
5317 
5318 int os::socket(int domain, int type, int protocol) {
5319   return ::socket(domain, type, protocol);
5320 }
5321 
5322 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5323   return ::connect(fd, him, len);
5324 }
5325 
5326 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5327   return ::recv(fd, buf, (int)nBytes, flags);
5328 }
5329 
5330 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5331   return ::send(fd, buf, (int)nBytes, flags);
5332 }
5333 
5334 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5335   return ::send(fd, buf, (int)nBytes, flags);
5336 }
5337 
5338 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5339 #if defined(IA32)
5340   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5341 #elif defined (AMD64)
5342   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5343 #endif
5344 
5345 // returns true if thread could be suspended,
5346 // false otherwise
5347 static bool do_suspend(HANDLE* h) {
5348   if (h != NULL) {
5349     if (SuspendThread(*h) != ~0) {
5350       return true;
5351     }
5352   }
5353   return false;
5354 }
5355 
5356 // resume the thread
5357 // calling resume on an active thread is a no-op
5358 static void do_resume(HANDLE* h) {
5359   if (h != NULL) {
5360     ResumeThread(*h);
5361   }
5362 }
5363 
5364 // retrieve a suspend/resume context capable handle
5365 // from the tid. Caller validates handle return value.
5366 void get_thread_handle_for_extended_context(HANDLE* h,
5367                                             OSThread::thread_id_t tid) {
5368   if (h != NULL) {
5369     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5370   }
5371 }
5372 
5373 // Thread sampling implementation
5374 //
5375 void os::SuspendedThreadTask::internal_do_task() {
5376   CONTEXT    ctxt;
5377   HANDLE     h = NULL;
5378 
5379   // get context capable handle for thread
5380   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5381 
5382   // sanity
5383   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5384     return;
5385   }
5386 
5387   // suspend the thread
5388   if (do_suspend(&h)) {
5389     ctxt.ContextFlags = sampling_context_flags;
5390     // get thread context
5391     GetThreadContext(h, &ctxt);
5392     SuspendedThreadTaskContext context(_thread, &ctxt);
5393     // pass context to Thread Sampling impl
5394     do_task(context);
5395     // resume thread
5396     do_resume(&h);
5397   }
5398 
5399   // close handle
5400   CloseHandle(h);
5401 }
5402 
5403 
5404 // Kernel32 API
5405 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5406 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5407 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5408 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5409 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5410 
5411 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5412 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5413 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5414 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5415 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5416 
5417 
5418 BOOL                        os::Kernel32Dll::initialized = FALSE;
5419 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5420   assert(initialized && _GetLargePageMinimum != NULL,
5421          "GetLargePageMinimumAvailable() not yet called");
5422   return _GetLargePageMinimum();
5423 }
5424 
5425 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5426   if (!initialized) {
5427     initialize();
5428   }
5429   return _GetLargePageMinimum != NULL;
5430 }
5431 
5432 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5433   if (!initialized) {
5434     initialize();
5435   }
5436   return _VirtualAllocExNuma != NULL;
5437 }
5438 
5439 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5440                                            SIZE_T bytes, DWORD flags,
5441                                            DWORD prot, DWORD node) {
5442   assert(initialized && _VirtualAllocExNuma != NULL,
5443          "NUMACallsAvailable() not yet called");
5444 
5445   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5446 }
5447 
5448 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5449   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5450          "NUMACallsAvailable() not yet called");
5451 
5452   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5453 }
5454 
5455 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5456                                                PULONGLONG proc_mask) {
5457   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5458          "NUMACallsAvailable() not yet called");
5459 
5460   return _GetNumaNodeProcessorMask(node, proc_mask);
5461 }
5462 
5463 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5464                                                  ULONG FrameToCapture,
5465                                                  PVOID* BackTrace,
5466                                                  PULONG BackTraceHash) {
5467   if (!initialized) {
5468     initialize();
5469   }
5470 
5471   if (_RtlCaptureStackBackTrace != NULL) {
5472     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5473                                      BackTrace, BackTraceHash);
5474   } else {
5475     return 0;
5476   }
5477 }
5478 
5479 void os::Kernel32Dll::initializeCommon() {
5480   if (!initialized) {
5481     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5482     assert(handle != NULL, "Just check");
5483     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5484     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5485     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5486     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5487     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5488     initialized = TRUE;
5489   }
5490 }
5491 
5492 
5493 
5494 #ifndef JDK6_OR_EARLIER
5495 
5496 void os::Kernel32Dll::initialize() {
5497   initializeCommon();
5498 }
5499 
5500 
5501 // Kernel32 API
5502 inline BOOL os::Kernel32Dll::SwitchToThread() {
5503   return ::SwitchToThread();
5504 }
5505 
5506 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5507   return true;
5508 }
5509 
5510 // Help tools
5511 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5512   return true;
5513 }
5514 
5515 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5516                                                         DWORD th32ProcessId) {
5517   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5518 }
5519 
5520 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5521                                            LPMODULEENTRY32 lpme) {
5522   return ::Module32First(hSnapshot, lpme);
5523 }
5524 
5525 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5526                                           LPMODULEENTRY32 lpme) {
5527   return ::Module32Next(hSnapshot, lpme);
5528 }
5529 
5530 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5531   ::GetNativeSystemInfo(lpSystemInfo);
5532 }
5533 
5534 // PSAPI API
5535 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5536                                              HMODULE *lpModule, DWORD cb,
5537                                              LPDWORD lpcbNeeded) {
5538   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5539 }
5540 
5541 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5542                                                HMODULE hModule,
5543                                                LPTSTR lpFilename,
5544                                                DWORD nSize) {
5545   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5546 }
5547 
5548 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5549                                                HMODULE hModule,
5550                                                LPMODULEINFO lpmodinfo,
5551                                                DWORD cb) {
5552   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5553 }
5554 
5555 inline BOOL os::PSApiDll::PSApiAvailable() {
5556   return true;
5557 }
5558 
5559 
5560 // WinSock2 API
5561 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5562                                         LPWSADATA lpWSAData) {
5563   return ::WSAStartup(wVersionRequested, lpWSAData);
5564 }
5565 
5566 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5567   return ::gethostbyname(name);
5568 }
5569 
5570 inline BOOL os::WinSock2Dll::WinSock2Available() {
5571   return true;
5572 }
5573 
5574 // Advapi API
5575 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5576                                                    BOOL DisableAllPrivileges,
5577                                                    PTOKEN_PRIVILEGES NewState,
5578                                                    DWORD BufferLength,
5579                                                    PTOKEN_PRIVILEGES PreviousState,
5580                                                    PDWORD ReturnLength) {
5581   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5582                                  BufferLength, PreviousState, ReturnLength);
5583 }
5584 
5585 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5586                                               DWORD DesiredAccess,
5587                                               PHANDLE TokenHandle) {
5588   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5589 }
5590 
5591 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5592                                                   LPCTSTR lpName,
5593                                                   PLUID lpLuid) {
5594   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5595 }
5596 
5597 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5598   return true;
5599 }
5600 
5601 void* os::get_default_process_handle() {
5602   return (void*)GetModuleHandle(NULL);
5603 }
5604 
5605 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5606 // which is used to find statically linked in agents.
5607 // Additionally for windows, takes into account __stdcall names.
5608 // Parameters:
5609 //            sym_name: Symbol in library we are looking for
5610 //            lib_name: Name of library to look in, NULL for shared libs.
5611 //            is_absolute_path == true if lib_name is absolute path to agent
5612 //                                     such as "C:/a/b/L.dll"
5613 //            == false if only the base name of the library is passed in
5614 //               such as "L"
5615 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5616                                     bool is_absolute_path) {
5617   char *agent_entry_name;
5618   size_t len;
5619   size_t name_len;
5620   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5621   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5622   const char *start;
5623 
5624   if (lib_name != NULL) {
5625     len = name_len = strlen(lib_name);
5626     if (is_absolute_path) {
5627       // Need to strip path, prefix and suffix
5628       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5629         lib_name = ++start;
5630       } else {
5631         // Need to check for drive prefix
5632         if ((start = strchr(lib_name, ':')) != NULL) {
5633           lib_name = ++start;
5634         }
5635       }
5636       if (len <= (prefix_len + suffix_len)) {
5637         return NULL;
5638       }
5639       lib_name += prefix_len;
5640       name_len = strlen(lib_name) - suffix_len;
5641     }
5642   }
5643   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5644   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5645   if (agent_entry_name == NULL) {
5646     return NULL;
5647   }
5648   if (lib_name != NULL) {
5649     const char *p = strrchr(sym_name, '@');
5650     if (p != NULL && p != sym_name) {
5651       // sym_name == _Agent_OnLoad@XX
5652       strncpy(agent_entry_name, sym_name, (p - sym_name));
5653       agent_entry_name[(p-sym_name)] = '\0';
5654       // agent_entry_name == _Agent_OnLoad
5655       strcat(agent_entry_name, "_");
5656       strncat(agent_entry_name, lib_name, name_len);
5657       strcat(agent_entry_name, p);
5658       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5659     } else {
5660       strcpy(agent_entry_name, sym_name);
5661       strcat(agent_entry_name, "_");
5662       strncat(agent_entry_name, lib_name, name_len);
5663     }
5664   } else {
5665     strcpy(agent_entry_name, sym_name);
5666   }
5667   return agent_entry_name;
5668 }
5669 
5670 #else
5671 // Kernel32 API
5672 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5673 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5674 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5675 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5676 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5677 
5678 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5679 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5680 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5681 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5682 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5683 
5684 void os::Kernel32Dll::initialize() {
5685   if (!initialized) {
5686     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5687     assert(handle != NULL, "Just check");
5688 
5689     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5690     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5691       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5692     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5693     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5694     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5695     initializeCommon();  // resolve the functions that always need resolving
5696 
5697     initialized = TRUE;
5698   }
5699 }
5700 
5701 BOOL os::Kernel32Dll::SwitchToThread() {
5702   assert(initialized && _SwitchToThread != NULL,
5703          "SwitchToThreadAvailable() not yet called");
5704   return _SwitchToThread();
5705 }
5706 
5707 
5708 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5709   if (!initialized) {
5710     initialize();
5711   }
5712   return _SwitchToThread != NULL;
5713 }
5714 
5715 // Help tools
5716 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5717   if (!initialized) {
5718     initialize();
5719   }
5720   return _CreateToolhelp32Snapshot != NULL &&
5721          _Module32First != NULL &&
5722          _Module32Next != NULL;
5723 }
5724 
5725 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5726                                                  DWORD th32ProcessId) {
5727   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5728          "HelpToolsAvailable() not yet called");
5729 
5730   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5731 }
5732 
5733 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5734   assert(initialized && _Module32First != NULL,
5735          "HelpToolsAvailable() not yet called");
5736 
5737   return _Module32First(hSnapshot, lpme);
5738 }
5739 
5740 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5741                                           LPMODULEENTRY32 lpme) {
5742   assert(initialized && _Module32Next != NULL,
5743          "HelpToolsAvailable() not yet called");
5744 
5745   return _Module32Next(hSnapshot, lpme);
5746 }
5747 
5748 
5749 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5750   if (!initialized) {
5751     initialize();
5752   }
5753   return _GetNativeSystemInfo != NULL;
5754 }
5755 
5756 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5757   assert(initialized && _GetNativeSystemInfo != NULL,
5758          "GetNativeSystemInfoAvailable() not yet called");
5759 
5760   _GetNativeSystemInfo(lpSystemInfo);
5761 }
5762 
5763 // PSAPI API
5764 
5765 
5766 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5767 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5768 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5769 
5770 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5771 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5772 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5773 BOOL                    os::PSApiDll::initialized = FALSE;
5774 
5775 void os::PSApiDll::initialize() {
5776   if (!initialized) {
5777     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5778     if (handle != NULL) {
5779       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5780                                                                     "EnumProcessModules");
5781       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5782                                                                       "GetModuleFileNameExA");
5783       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5784                                                                         "GetModuleInformation");
5785     }
5786     initialized = TRUE;
5787   }
5788 }
5789 
5790 
5791 
5792 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5793                                       DWORD cb, LPDWORD lpcbNeeded) {
5794   assert(initialized && _EnumProcessModules != NULL,
5795          "PSApiAvailable() not yet called");
5796   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5797 }
5798 
5799 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5800                                         LPTSTR lpFilename, DWORD nSize) {
5801   assert(initialized && _GetModuleFileNameEx != NULL,
5802          "PSApiAvailable() not yet called");
5803   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5804 }
5805 
5806 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5807                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5808   assert(initialized && _GetModuleInformation != NULL,
5809          "PSApiAvailable() not yet called");
5810   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5811 }
5812 
5813 BOOL os::PSApiDll::PSApiAvailable() {
5814   if (!initialized) {
5815     initialize();
5816   }
5817   return _EnumProcessModules != NULL &&
5818     _GetModuleFileNameEx != NULL &&
5819     _GetModuleInformation != NULL;
5820 }
5821 
5822 
5823 // WinSock2 API
5824 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5825 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5826 
5827 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5828 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5829 BOOL             os::WinSock2Dll::initialized = FALSE;
5830 
5831 void os::WinSock2Dll::initialize() {
5832   if (!initialized) {
5833     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5834     if (handle != NULL) {
5835       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5836       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5837     }
5838     initialized = TRUE;
5839   }
5840 }
5841 
5842 
5843 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5844   assert(initialized && _WSAStartup != NULL,
5845          "WinSock2Available() not yet called");
5846   return _WSAStartup(wVersionRequested, lpWSAData);
5847 }
5848 
5849 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5850   assert(initialized && _gethostbyname != NULL,
5851          "WinSock2Available() not yet called");
5852   return _gethostbyname(name);
5853 }
5854 
5855 BOOL os::WinSock2Dll::WinSock2Available() {
5856   if (!initialized) {
5857     initialize();
5858   }
5859   return _WSAStartup != NULL &&
5860     _gethostbyname != NULL;
5861 }
5862 
5863 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5864 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5865 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5866 
5867 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5868 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5869 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5870 BOOL                     os::Advapi32Dll::initialized = FALSE;
5871 
5872 void os::Advapi32Dll::initialize() {
5873   if (!initialized) {
5874     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5875     if (handle != NULL) {
5876       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5877                                                                           "AdjustTokenPrivileges");
5878       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5879                                                                 "OpenProcessToken");
5880       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5881                                                                         "LookupPrivilegeValueA");
5882     }
5883     initialized = TRUE;
5884   }
5885 }
5886 
5887 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5888                                             BOOL DisableAllPrivileges,
5889                                             PTOKEN_PRIVILEGES NewState,
5890                                             DWORD BufferLength,
5891                                             PTOKEN_PRIVILEGES PreviousState,
5892                                             PDWORD ReturnLength) {
5893   assert(initialized && _AdjustTokenPrivileges != NULL,
5894          "AdvapiAvailable() not yet called");
5895   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5896                                 BufferLength, PreviousState, ReturnLength);
5897 }
5898 
5899 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5900                                        DWORD DesiredAccess,
5901                                        PHANDLE TokenHandle) {
5902   assert(initialized && _OpenProcessToken != NULL,
5903          "AdvapiAvailable() not yet called");
5904   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5905 }
5906 
5907 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5908                                            LPCTSTR lpName, PLUID lpLuid) {
5909   assert(initialized && _LookupPrivilegeValue != NULL,
5910          "AdvapiAvailable() not yet called");
5911   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5912 }
5913 
5914 BOOL os::Advapi32Dll::AdvapiAvailable() {
5915   if (!initialized) {
5916     initialize();
5917   }
5918   return _AdjustTokenPrivileges != NULL &&
5919     _OpenProcessToken != NULL &&
5920     _LookupPrivilegeValue != NULL;
5921 }
5922 
5923 #endif
5924 
5925 #ifndef PRODUCT
5926 
5927 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5928 // contiguous memory block at a particular address.
5929 // The test first tries to find a good approximate address to allocate at by using the same
5930 // method to allocate some memory at any address. The test then tries to allocate memory in
5931 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5932 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5933 // the previously allocated memory is available for allocation. The only actual failure
5934 // that is reported is when the test tries to allocate at a particular location but gets a
5935 // different valid one. A NULL return value at this point is not considered an error but may
5936 // be legitimate.
5937 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5938 void TestReserveMemorySpecial_test() {
5939   if (!UseLargePages) {
5940     if (VerboseInternalVMTests) {
5941       gclog_or_tty->print("Skipping test because large pages are disabled");
5942     }
5943     return;
5944   }
5945   // save current value of globals
5946   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5947   bool old_use_numa_interleaving = UseNUMAInterleaving;
5948 
5949   // set globals to make sure we hit the correct code path
5950   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5951 
5952   // do an allocation at an address selected by the OS to get a good one.
5953   const size_t large_allocation_size = os::large_page_size() * 4;
5954   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5955   if (result == NULL) {
5956     if (VerboseInternalVMTests) {
5957       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5958                           large_allocation_size);
5959     }
5960   } else {
5961     os::release_memory_special(result, large_allocation_size);
5962 
5963     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5964     // we managed to get it once.
5965     const size_t expected_allocation_size = os::large_page_size();
5966     char* expected_location = result + os::large_page_size();
5967     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5968     if (actual_location == NULL) {
5969       if (VerboseInternalVMTests) {
5970         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5971                             expected_location, large_allocation_size);
5972       }
5973     } else {
5974       // release memory
5975       os::release_memory_special(actual_location, expected_allocation_size);
5976       // only now check, after releasing any memory to avoid any leaks.
5977       assert(actual_location == expected_location,
5978              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5979              expected_location, expected_allocation_size, actual_location);
5980     }
5981   }
5982 
5983   // restore globals
5984   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5985   UseNUMAInterleaving = old_use_numa_interleaving;
5986 }
5987 #endif // PRODUCT
5988 
5989 // Fast current thread access
5990 
5991 int os::win32::_thread_ptr_offset = 0;
5992 
5993 static void call_wrapper_dummy() {}
5994 
5995 // We need to call the os_exception_wrapper once so that it sets
5996 // up the offset from FS of the thread pointer.
5997 void os::win32::initialize_thread_ptr_offset() {
5998       os::os_exception_wrapper( (java_call_t)call_wrapper_dummy,
5999                                 NULL, NULL, NULL, NULL);
6000 }